
Distribution-Free Proofs of Proximity

Hugo Aaronson1, Tom Gur1, Ninad Rajgopal1, and Ron D. Rothblum2

1University of Cambridge, ha406@cam.ac.uk, tom.gur@cl.cam.ac.uk,nr549@cam.ac.uk
2Technion, rothblum@cs.technion.ac.il

Abstract

Motivated by the fact that input distributions are often unknown in advance, distribution-
free property testing considers a setting in which the algorithmic task is to accept functions
f : [n] → {0, 1} having a certain property Π and reject functions that are ε-far from Π, where
the distance is measured according to an arbitrary and unknown input distribution D ∼ [n]. As
usual in property testing, the tester is required to do so while making only a sublinear number of
input queries, but as the distribution is unknown, we also allow a sublinear number of samples
from the distribution D.

In this work we initiate the study of distribution-free interactive proofs of proximity (df-IPPs)
in which the distribution-free testing algorithm is assisted by an all powerful but untrusted
prover. Our main result is that for any problem Π ∈ NC, any proximity parameter ε > 0, and
any (trade-off) parameter τ ≤

√
n, we construct a df-IPP for Π with respect to ε, that has

query and sample complexities τ + O(1/ε), and communication complexity Õ(n/τ + 1/ε). For
τ as above and sufficiently large ε (namely, when ε > τ/n), this result matches the parameters
of the best-known general purpose IPPs in the standard uniform setting. Moreover, for such
τ , its parameters are optimal up to poly-logarithmic factors under reasonable cryptographic
assumptions for the same regime of ε as the uniform setting, i.e., when ε ≥ 1/τ .

For smaller values of ε (i.e., when ε < τ/n), our protocol has communication complexity
Ω(1/ε), which is worse than the Õ(n/τ) communication complexity of the uniform IPPs (with
the same query complexity). With the aim of improving on this gap, we further show that for
IPPs over specialised, but large distribution families, such as sufficiently smooth distributions
and product distributions, the communication complexity can be reduced to Õ(n/τ1−o(1)). In
addition, we show that for certain natural families of languages, such as symmetric and (relaxed)
self-correctable languages, it is possible to further improve the efficiency of distribution-free IPPs.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 118 (2023)

mailto:ha406@cam.ac.uk
mailto:tom.gur@cl.cam.ac.uk
mailto:nr549@cam.ac.uk
mailto:rothblum@cs.technion.ac.il

Contents

1 Introduction 1
1.1 Distribution-free Interactive Proofs of Proximity . 2
1.2 Our Results . 3
1.3 Technical Overview . 8
1.4 Related Work . 14

2 Preliminaries and definitions 15
2.1 Hybrid metrics . 15
2.2 Interactive Proofs of Proximity (IPP) . 16

3 Distribution-free IPPs 17
3.1 DF-IPPs for (Relaxed) Correctable Languages . 20
3.2 Symmetric Languages . 23
3.3 Separation between IPPs and Distribution-Free IPPs 30

4 Distribution-Free IPPs for NC 31
4.1 The Polynomial Evaluation Problem . 32
4.2 Distribution-Free Interactive reduction from NC to PVAL 32
4.3 Proof of Theorem 4.1 . 35

5 IPPs over Dispersed Distributions 38
5.1 ρ-Dispersed Distributions . 39
5.2 Polynomial Folding Protocol . 42
5.3 IPP for PVAL over ρ-dispersed distributions . 49

6 IPPs over Product Distributions 52
6.1 Granularisation . 54
6.2 The White-box IPP for PVAL . 55

A Proofs of Claims 5.7, 5.8, and 5.9 67

B Proof of Theorem 5.2 68

C Proof of the Granularisation Lemma 69

D IPPs for Efficiently Learnable Distribution Families 71

1 Introduction

Property Testing, initiated in [RS96, GGR98], is a rich and well-studied research field lying at the
heart of many advancements in sublinear algorithms and complexity theory; see [Gol17, BY22] for a
detailed introduction. Loosely speaking, a testing algorithm for a property Π is given oracle access
to an input function f : [n] → {0, 1} and should decide whether f ∈ Π using a small sublinear
number of queries. As we cannot expect to do so exactly, the tester is required to distinguish
between inputs that are in Π from those that are ε-far from every function in Π. Here, distance
is typically measured using the relative Hamming distance – namely, the fraction of outputs of f
that need to be changed to reach a member of Π.

While modeling distance using the relative Hamming distance is natural and convenient, in
many settings it may not capture the underlying question (for example, when functions always
satisfy a particular format or when some parts in the domain are more important than others).
Following the Probably-Approximately-Correct (PAC) learning model, introduced by Valiant in his
celebrated work in computational learning theory [Val84], distribution-free algorithms have widely
been accepted as a closer abstraction of real-world computational tasks that are required to make
decisions based on limited access to the input data. In this spirit, [GGR98] introduced distribution-
free property testing, where the distance between two functions is with respect to a distribution
D (over inputs to the function), which is arbitrary and unknown to the testing algorithm. Since
D is unknown, in addition to the query oracle to the input f : [n] → {0, 1}, the tester can draw
independent identically distributed random labelled samples (i, f(i)) from a sample oracle, where
each index i is generated independently from the distribution D. The tester is required to reject
any function that is ε-far1 from Π along the unknown distribution D, and the only access that the
tester has to D is via the sample oracle.

The distribution-free model of testing naturally complements the PAC-learning model, and
profound bidirectional connections are known between them.2 Moreover, distribution-free testing
is motivated by the fact that it captures the realistic setting where the tester is required to maintain
its guarantees despite dealing with data from an unknown environment (i.e., via data samples from
some unknown and arbitrary distribution D). It also deals with situations where not all underlying
data points are equally important, e.g., in graphs where certain edges or vertices are more important
than others, and one would like to consider distributions that weigh them appropriately.

Following [GGR98], several distribution-free testing algorithms have been designed for function
classes including monotone Boolean functions and low-degree polynomials over finite fields [HK07],
k-juntas [LCS+18, Bsh19, Bel19], conjunctions (monotone or non-monotone) and linear threshold
functions [GS07, CX16], polynomial threshold functions and decision trees [BFH21], halfspaces
[BFH21, CP22], and low-degree polynomials on Rn [FY20, ABF+23]. Distribution-free testing has
also been studied for graph properties including connectivity [HK08], bipartiteness [Gol19a], k-path
and degree regularity [Gol19b], as well as for word problems like subsequence-freeness [RR22].

Despite such strides of progress, our understanding of distribution-free testing is much more
limited than that of testing with respect to the uniform distribution. This is due to the multitude
of challenges that arise in designing algorithms that need to deal with data samples that can come

1We say f : [n] → {0, 1} is ε-far from a (non-empty) property Π along D, if for every f ′ : [n] → {0, 1} such that
f ′ ∈ Π, it holds that Pi∼D[f(i) ̸= f ′(i)] > ε.

2In particular, in [GGR98], it is shown that if a class of functions C has a proper PAC-learner using membership
queries (where the learner outputs an approximate hypothesis that also belongs to C), then C has a distribution-free
tester that uses roughly the same number of queries and samples as the learner.

1

from any arbitrary distribution, which in turn, makes the model significantly more involved.
This paper aims to bridge the gap between testing over the uniform distribution and distribution-

free testing by capitalising on the power of interactive proofs, and delegating the task of handling
the challenges imposed by the distribution-free setting to a powerful, but untrusted, prover.

1.1 Distribution-free Interactive Proofs of Proximity

In this work, we initiate the study of distribution-free interactive proofs of proximity (distribution-
free IPPs), which are distribution-free testers that are augmented with the help of a prover. In the
rest of this paper, for convenience, rather than thinking of the input as a function, we view it as a
string x ∈ {0, 1}n (which can be similarly be viewed as a truth table of a function fx : [n]→ {0, 1}).
Correspondingly, we view a property Π of functions as a language L over strings (which may be
viewed as truth tables of the functions in Π).

Thus, distribution-free IPPs are protocols where a sublinear time, randomised algorithm, called
the verifier, interacts with an untrusted prover to decide whether the given input x ∈ {0, 1}n
belongs to the language L or is far from such, where distance is measured with respect to a fixed,
but unknown distribution D over [n]. The verifier is given access to the input x through a query
oracle, as well as a sample oracle with respect to D, while the prover can look at the input entirely.
We assume that the prover does not know the queries that the verifier makes to either of its oracles.

We require that for any x ∈ L, there exists an honest prover that interacts with the verifier
and convinces it to accept with high probability, while when x is ε-far from L with respect to
the distribution D, no cheating prover, even computationally unbounded, will make the verifier
accept, except with low probability. Further, we require the distribution-free IPP to meet these
requirements, with respect to the underlying (and unknown) distribution D from which the oracle
draws samples.

In this setting, the verifier’s query complexity and sample complexity, the number of bits ex-
changed in the protocol, i.e., the communication complexity, and the verifier’s running time should
all be sublinear in input length. Other complexity parameters of interest are the number of rounds
of interaction, and the (honest) prover’s running time.

Distribution-free IPPs capture the distribution-free property testing analogue of interactive
proofs (for more information, see Section 1.4). As such, similar to uniform IPPs, distribution-
free IPPs can be alternatively viewed as proof systems where the bounded verifier need only be
convinced of the fact that the input is close to the language, by interacting with a more powerful
prover. One of the main goals of distribution-free IPPs is to overcome the inherent limitations of
distribution-free testing algorithms by showing that for certain properties, verifying proximity over
arbitrary distributions is considerably faster with a prover than actually testing it. In particu-
lar, we want to design distribution-free IPPs (with sublinear query complexity) for rich families of
properties that have no known distribution-free testers.

Of close relevance are the well-studied notion of IPPs over the uniform distribution, which we
refer to in this work as Uniform IPPs, that were introduced in [EKR04, RVW13] (and are trivially
generalised by distribution-free IPPs). Showcasing the power of interaction, [RVW13] constructed
highly non-trivial uniform IPPs for every language that can be decided in bounded depth (e.g.,
NC), which was recently made near-optimal by [RR20] (see [KR15] for the conditional matching
lower bound), and strengthened to encompass also bounded space languages [RRR21].

Motivated intrinsically and by natural applications to delegation of computation, the study of
uniform IPPs has drawn much recent attention on its own right [RVW13, GR18, KR15, RRR21,

2

GG21, GR22]. Moreover, their study has led to interesting models and applications of sublinear
time verification, including non-interactive proofs of proximity (or MAPs) [GR18] (a related model
was studied concurrently and independently by [FGL14]), arguments of proximity [KR15], testing
properties of distributions [CG18, HR22], interactive oracle proofs of proximity [RRR21, BBHR18,
RZR20, BLNR22], verifying machine learning tasks [GRSY21], batch verification for UP [RRR18,
RR20], as well as variants involving zero-knowledge [BRV18] and quantum computation [DGMT22].

1.2 Our Results

Our main contribution is constructing distribution-free IPPs for any language in NC, which for any
query vs communication trade-off parameter τ ≤

√
n, matches the complexity of the best known

IPPs for most settings of the proximity parameter ε – specifically, when ε ≥ τ/n. We further
improve the efficiency of distribution-free IPPs for general ε (i.e., when ε < τ/n), under specific
distribution families such as “smooth” and “learnable” distributions, which are defined below.

In addition, for certain families of languages, such as symmetric and relaxed self-correctable
languages, we construct distribution-free IPPs that improve on our general-purpose distribution-free
IPPs, then use them to provide separation results that provide further insight into the distribution-
free IPP model.

We elaborate on these results next.

1.2.1 Distribution-free IPPs for NC

Our first main result is a sublinear distribution-free IPP for any language computable by low-
depth circuits. In more detail, let (logspace-uniform) NC be the set of languages computable by
(logspace-uniform) Boolean circuits of polynomial size and poly-logarithmic depth. We show that
every language in NC has a distribution-free IPP with sublinear complexity measures, for almost all
values of the proximity parameter ε. We emphasize that this is in stark contrast to distribution-free
testers, which are only known for a handful of languages based on their combinatorial or algebraic
structure. Indeed, the following theorem shows that distribution-free IPPs capture a much richer
class of languages that need not have such special structural properties.

Theorem 1.1 (Distribution-Free IPP for NC). For every language L in logspace-uniform NC
and every trade-off parameter τ = τ(n) ≤

√
n, there exists a distribution-free IPP for L with

proximity parameter ε ≥ Ω
(
log3(n)

n

)
, query complexity τ +O

(
1
ε

)
, sample complexity τ +O

(
1
ε

)
and

communication complexity Õ
(
n
τ + 1

ε

)
.

Moreover, the verifier runs in time Õ
(
n
τ + 1

ε

)
, the prover runs in time poly(n) and the round

complexity is polylog(n).

Here, τ denotes the parameter that trades-off between the query and communication complex-
ities of the distribution-free IPP. Note that, for the above values of τ , our distribution-free IPP
has sublinear query and communication complexity even for very small values of the proximity
parameter ε of the form 1/n1−δ, where δ > 0. An interesting instantiation of our result is obtained
by setting τ to

√
n, and thus, for every ε ≥ 1/

√
n, the query complexity and sample complexities

are O(
√
n), while the communication complexity and verifier running times are both Õ(

√
n).

It is worth noting that, for every ε ≥ 1
τ (and τ ≤

√
n), this result is conditionally optimal up to

poly-logarithmic factors, since [KR15] show a lower bound of Ω(n) on the product of the query and

3

communication complexities of a uniform IPP for a language in NC1, under a strong, but reasonable,
cryptographic assumption. Furthermore, for any ε, the query complexity of Ω(1/ε) is necessary for
any IPP over non-degenerate languages, even over the uniform distribution (see [RVW13, Remark
1.2]).

Remark 1. While Theorem 1.1 refers to distribution-free IPPs over NC languages, the theorem is
more general (see Theorem 4.5). In particular, it also yields distribution-free IPPs with sublinear
query and communication complexities for languages computable by circuits of sub-exponential size
and bounded polynomial depth.

Likewise, in a similar fashion to the known literature on uniform IPPs, we can combine our
techniques directly with [RRR21] to get a constant-round distribution-free IPP for any language
that is computable in poly(n) time and bounded polynomial space.

Comparison to Uniform IPPs for NC [RVW13, RR20]: For any language in NC, Rothblum,
Vadhan andWigderson [RVW13] construct a uniform IPP for any τ = τ(n) and proximity parameter
ε > 0, with query complexity τ + O(1/ε)1+o(1) and communication complexity n

τ1−o(1) . Rothblum
and Rothblum [RR20] improve on this, by reducing the communication complexity to n

τ ·polylog(n).
In particular, the latter obtains an optimal trade-off, up to poly-logarithmic factors, between the
query and communication complexities of a uniform IPP (conditionally, from [KR15]), for every
value of τ and ε ≥ 1/τ . While these results are stated in [RVW13, RR20] by implicitly setting
τ = O(1/ε), for any given ε, this IPP formulation parameterised by τ is obtained by inspection (see
also [GG21, Theorem 6.3]). For comparison, in this setting, our distribution-free IPP has the same
query (and sample) complexity, while the communication complexity and verifier running times are
both Õ(ε · n+ 1/ε).3

Theorem 1.1 gives a construction of a distribution-free IPP for any NC language that matches
the query and communication complexities of the uniform IPP by [RR20], when ε ≥ τ/n. Moreover,
this obtains the (conditionally) optimal trade-offs between query and communication complexities
in the same regime of ε, but when τ ≤

√
n. Indeed, when ε ≥ 1/τ , the product of the query

and communication complexities of the distribution-free IPP from Theorem 1.1 is Õ(n+ τ2). Our
protocol builds on [RVW13], introducing new ideas that allow us to construct IPPs in the more
involved distribution-free setting.

Finally, when the proximity parameter ε is very small, Theorem 1.1 suffers a blow-up in the
communication complexity compared to the uniform IPPs of [RVW13, RR20]. In more detail, when
ε≪ τ/n, the communication complexity in our distribution-free IPP is Ω̃

(
1
ε

)
, whereas the commu-

nication complexity achieved by the uniform IPPs is Õ
(
n
τ

)
(the query complexity roughly remains

the same across all three cases). Thus, our distribution-free IPP has communication complexity at
least Ω(n/τ) for every value of ε, whereas the communication complexity of the uniform IPPs is
much lower when ε≪ τ/n.

3In fact, we prove that for every value of the parameter τ and ε, the distribution-free IPP from Theorem 1.1 has
communication complexity Õ(τ + n/τ + 1/ε); thus, setting τ = O(1/ε) suffices. An additional point to note is that
when τ >

√
n, the IPP always has worse communication complexity than its uniform counterpart irrespective of the

value of ε, and further, never meets the optimal [KR15] lower bound. As such, we only consider τ ≤
√
n as a more

interesting regime of study.

4

1.2.2 IPPs for NC: The case of small ε

Following the discussion in the last section, we aim to construct distribution-free IPPs that achieve
query and communication complexities that match the state-of-the-art uniform IPP for every value
of ε. While we unable to do so in the most general case, we construct such IPPs over specific
families of distributions, which match the complexities of [RVW13] and, in turn, differ from the
complexities of [RR20] only by a factor of no(1). For these IPPs, while the underlying distribution is
still unknown, it is guaranteed to come from the specific family of distributions under consideration.

To describe our results, it will be convenient throughout this section to identify [n] with the
elements of an m-dimensional tensor of size k ∈ N in each dimension, such that km = n. In such a
case, we refer to [n] as [k]m (by fixing some canonical bijection between them).

ρ-Dispersed Distributions: Intuitively speaking, ρ-dispersed distributions capture the sense
that for a smooth distribution over [k]m, along any dimension, its probability mass on any element
in [k]m is not much larger than the average of the probability masses of its neighbours. ρ-dispersed
distributions relax this requirement by having the probability mass on any element bounded by ρ
times the expected mass on any of its neighbours.4 We refer to Section 5.1 for the formal definition
of ρ-dispersed distributions and classification of well-studied distributions.

We show that for distributions that are reasonably smooth in this sense, i.e. for ρ-dispersed
distributions for ρ ≤ ko(1), we obtain IPPs for NC over such distributions for every τ = τ(n) < n and
ε > 0, with query complexity O(τ+1/ε)1+o(1), and communication complexity of Õ

(
n
τ · τ

o(1)
)
, thus

matching the bounds obtained by [RVW13]. It is worth noting that ko(1)-dispersed distributions
are still quite general, e.g. any distribution where the probability mass on any element in [k]m is
in the range

[
1
an ,

a
n

]
, for some a ≤ ko(1) is ko(1)-dispersed.

Theorem 1.2 (IPP for NC over ρ-dispersed distributions). For every language in logspace-
uniform NC, every m,n, k ∈ N such that m = logk(n) (i.e., km = n) and ρ ∈ R such that
ρ ≤ ko(1), for every proximity parameter ε > 0 and trade-off parameter τ > 0, there exists an IPP
over ρ-Dispersed distributions over [k]m with query and sample complexities O(τ + 1/ε)1+o(1) and

communication complexity Õ
(

n
τ1−o(1)

)
.

Moreover, the verifier runs in time no(1) ·
(
τ + n

τ + 1
ε

)
, the prover runs in time poly(n) and the

round complexity is polylog(n).

Theorem 1.2 also holds generally over ρ-dispersed distributions, for any ρ (see Theorem 5.2).
The query complexity increases with ρ, while the communication complexity is independent of
ρ. Theorem 1.2 builds on the ideas used for the distribution-free IPP from Theorem 1.1 while
incorporating new technical insights into the analysis by [RVW13] to generalise over ρ-dispersed
distributions. We leave the task of obtaining IPPs over ρ-dispersed distributions that match [RR20]
as future work.

Product Distributions in the White-Box model: Note that in the IPPs of Theorems 1.1
and 1.2, the verifier does not learn the underlying distribution D. Hence, we ask the following

4For example, the uniform distribution is the only 1-dispersed distribution, i.e., a maximally smooth distribution
in this sense. On the other hand, every distribution over [k]m is trivially a k-dispersed distribution.

5

question: if we could gain more information about D, or further, learn a reasonably good approx-
imation for D, can we improve the query complexity of the IPPs, over general values of ε? We
answer this question in the affirmative for product distributions.

We consider the white-box model for distribution-free IPPs, where the verifier receives a succinct
description of the unknown distribution D over [k]m via a polynomial-sized sampling circuit C, in
addition to query access to the input string. It is worth noting that, for white-box IPPs, the sample
complexity is irrelevant since the verifier has a succinct description of the entire distribution. Thus,
the main complexity parameters here are the query complexity, communication complexity, and
the verifier running time.

While white-box models have been widely studied in the setting of zero-knowledge proofs [SV97,
Vad99, Vad06] and in distribution testing (see survey by [GV11]), we use this model to construct
IPPs for languages in NC over a generalised family of product distributions over [k]m, to get improved
complexities for general values of ε, compared to the distribution-free IPP from Theorem 1.1. We
call this family as m-product distributions, and denote any such distribution D as D = D1× . . .Dm,
where each Dj is supported on [k] and is independent of any other coordinate distributions. In
particular, D(i1, . . . , im) is defined as

∏m
j=1Dj(ij) (see Definition 3.3 for more details about white-

box IPPs and Definition 6.1 for product distributions).

Theorem 1.3 (IPPs for NC over m-product distributions). For every language in logspace-
uniform NC, every τ = τ(n), ε > 0, and m,n, k ∈ N such that m ≤ log(n) and km = n, there
exists a white-box IPP for L over m-product distributions over [k]m. The IPP has query complexity

O(τ+1/ε)1+o(1) and communication complexity
(

n
τ1−o(1) · k + k2

)
·polylog(n). Moreover, the verifier

runs in time no(1)
(
n
τ · k + τ + k2 + 1

ε

)
and the round complexity is polylog(n).

Similar to the previous results, a general version of this IPP can be found in Theorem 6.6.
In particular, when m is large enough (like m = log(n)), then the query and communication
complexity trade-off, as well as the verifier running time of the IPP from Theorem 1.3 match that
of the uniform IPP from [RVW13], while working in this setting.5 Theorem 1.3 builds on the
framework of Theorem 1.1, and uses several new ideas in the construction of the IPP, as well as its
analysis, to improve the complexity. Crucially, it uses that any product distribution has a succinct
description to be able to learn it in the white-box-setting.

It is worth stressing that the IPPs from Theorems 1.2 and 1.3 are incomparable. Indeed, there
exist m-product distributions D = D1 × · · · ×Dm that are poorly dispersed, for eg., D is no longer
smooth when some Dj has a large probability mass over just one element (one row or more generally,
a few rows). For such distributions, the IPP from Theorem 1.3 provides a much better query and
communication trade-off than the IPP from Theorem 1.2, which is a more general result for smooth
distributions.

1.2.3 On the power of distribution-free IPPs

Recall that Theorems 1.2 and 1.3 improve the query and communication complexity trade-off of
our general distribution-free IPP in Theorem 1.1, by considering special families of distributions to
design the IPPs over. A natural direction that complements this approach is to ask whether we can

5A subtle point here is that while Theorem 1.3 is over product distributions over [k]m, when m = 2 (or a small
constant), we get sublinear complexities only by considering distributions over biased matrices [k1]× [k2].

6

use additional information about the language L instead, to construct super-efficient distribution-
free IPPs.

In turn, we study distribution-free IPPs for specific problems of interest. On one hand, for certain
problems we can hope to improve the various associated complexity parameters over our general
distribution-free IPP by capitalising on the structure of the language. On the other hand, this allows
us to obtain complexity-theoretic separations between the power of standard, non-interactive, and
interactive distribution-free testers.

Symmetric languages. We study the power of distribution-free testers and IPPs for symmetric
languages, which are languages that are invariant under permutations. We show that there exist
symmetric languages that are hard for distribution-free testers, yet, given interaction with a prover,
the symmetrical structure can be leveraged to obtain exponentially faster distribution-free IPPs.

Theorem 1.4 (Distribution-free IPPs for symmetric languages). The following statements
hold.

1. Let L be a symmetric language. Then, there exist a distribution-free IPP for L with sample
complexity O(1/ε), communication complexity O(log2(n)/ε) and O(log(n)/ε) round complex-
ity.

2. There exists a symmetric language L′ for every ε > 0 such that any distribution-free property
tester for L′ requires Ω(n1/3−0.0005) queries and labeled samples from the input.

(Relaxed) self-correctable languages. Next, we show that for languages that admit self-
correctability, we can transform any IPP into a distribution-free IPP at a negligible cost. In fact,
we can deal with a far more general class of languages; namely, languages that are relaxed locally
correctable [BSGH+04, GRR20]. Loosely speaking, these are languages that admit a correcting
algorithm that is required to correct the symbol at every location of the codeword, by reading a
small number of locations in it, but is allowed to abort if noticing that the given word is corrupted.
This family of languages is of central importance in the interactive proofs and probabilistically
checkable proofs literature, and in particular, it captures languages of low-degree polynomials,
holographic IPPs, and various relaxed locally correctable and decodable languages that were used
to prove complexity-theoretic separations (cf. [Gur17]).

Proposition 1.5 (Generic Transformations for IPPs for RLCCs). For any subset L of a
binary RLCC, C ⊆ {0, 1}n, if L has an IPP over the uniform distribution with query complexity q
and communication complexity c for proximity ε > 0, then there exists a distribution-free IPP for L
with the same round complexity, communication complexity and query complexity q +O(tε), where
t is the query complexity of the corrector of C.

A detailed statement can be found in Theorem 3.1. As a corollary of Proposition 1.5, we are
able to lift complexity-theoretic results concerning uniform IPPs to the setting of distribution-free
IPPs. In particular, we obtain strong separations between the power of distribution-free testers,
distribution-free non-interactive proofs of proximity (MAPs), and distribution-free IPPs.

Corollary 1.6 (Complexity separations). There exists a language L such the following hold
true.

7

1. Property Testing: The query complexity of distribution-free testing L (without a proof) is
Θ(n0.999±o(1)).

2. MAP: L has a distribution-free MAP with query and communication complexities Θ(n0.499±o(1)).
Moreover, for every p ≥ 1, the distribution-free MAP query complexity of L with respect to

proofs of length p is Θ
(
n0.999±o(1)

p

)
.

3. IPP: L has a distribution-free IPP with query and communication complexities polylog(n).

See Theorem 3.2 for a more detailed statement. Complementing this Corollary, we prove the
existence of languages that can be tested under the uniform distribution with low query complexity
(and thus, have a uniform IPP with low query complexity and no communication), but for which
distribution-free IPPs require large query complexity or large communication complexity. This
illustrates the difficulty of constructing distribution-free IPPs vs. standard uniform IPPs.

Proposition 1.7 (Distribution-free IPPs vs. uniform testing). The following hold true:

1. There exists ε > 0 and a language L such that L has a property tester over the uniform
distribution with query complexity O(1/ε) for proximity parameter ε. However, for any
distribution-free MAP for L with proximity parameter ε, query complexity q, and proof length
p, max(q, p) = Ω(ε · n).

2. Assuming the existence of exponentially hard pseudo-random generators, there exists ε > 0
such that for all q = q(n) ≤ n, there exists a language L, such that for any distribution-free
IPP for L with proximity parameter ε, communication complexity c, and query complexity
q, max(c, q) = Ω(

√
ε · n). However, L has a uniform property tester with query complexity

O(1/ε) for proximity parameter ε.

See Section 3.3 for more details. Table 1 provides a comparison of some of these results with
related testing models. It is an interesting open direction to exhibit distribution-free IPPs that
improve on the query complexity lower bounds known for distribution-testing functional properties
like monotonicity [HK07], monotone conjunctions [CX16], or k-juntas [LCS+19].

1.3 Technical Overview

In this technical overview, we highlight the proofs of Theorems 1.1, 1.2, and 1.3. The general
strategy for proving these theorems builds on the Uniform IPPs for NC from [RVW13, RR20].
However, the setting of distribution-free testing is more involved, and below, we highlight the
key challenges encountered in this setting, and our ideas to overcome them. Our distribution-free
IPPs are constructed through an interplay of various techniques and tools from interactive proofs,
property testing, and distribution testing; see Section 3.2, for further details on the proof strategy
of Theorem 1.4.

Note that, for convenience, we show the construction of the distribution-free IPP from Theorem
1.1 in the setting of τ = O(1/ε), for any proximity parameter ε, obtaining query complexity O(1/ε)
and communication complexity Õ(ε ·n+1/ε). This can be shown to be equivalent to the statement
of Theorem 1.1 that is parameterised by τ ; for more details see Section 4. Similarly, the IPPs for
our other results are parameterised in terms of the proximity parameter ε.

8

Property
Testing

IPP
DF-Property
Testing

DF-IPP

Languages
in NC

Ω(n) (e.g., low-
degree univari-
ate polynomial)

Õ(
√
n)

[RVW13,
RR20]

Ω(n) simi-
larly

Õ(
√
n) (arbitrary distributions,

for ε ≥ 1/
√
n); see Theorem 1.1

n1/2+o(1) (smooth distributions);
see Theorem 1.2
n1/2+o(1) (product distributions);
see Theorem 1.3

TensorSum
Ω(n0.99+o(1))
[GR18]

polylog(n)
[GR18]

Ω(n0.99+o(1))
Trivially,
from [GR18]

polylog(n); see Corollary 1.6

Symmetric
Properties

Θ(1) (ε = O(1))
Folklore

polylog(n)
[RVW13]

Ω(n
1
3)

Theorem 1.4
polylog(n); see Theorem 1.4

Table 1: This is a table of our main results (TensorSum is defined in Definition 3.6). The com-
plexities shown here are those that minimise the sum of the query and communication complexity.
Note that while the uniform property tester for symmetric properties is more efficient than the
corresponding uniform IPP, this only holds for restricted (constant) values of ε.

1.3.1 Proof outline of Theorem 1.1

The [RVW13] protocol (as well as the follow-up work [RR20]) is centered around a parameterised
problem called PVAL. Loosely speaking, the PVAL language contains all strings, whose encoding
under a specific code, called the low degree extension, is equal to given values when projected on to
the given coordinates. More precisely, the PVAL problem is parameterised by a (sufficiently large)
finite field F, integers k,m, n such that k,m < |F| and km = n, a set of vectors J = (j1, . . . , jt) ⊂ Fm

of size t and a t-length vector v⃗ ∈ Ft. An input X ∈ Fkm is in PVAL(J, v⃗) if it holds that PX(ji) = vi,
for every i ∈ [t], where PX : Fm → F is the m-variate low-degree extension (LDE) of X.6

The interactive reduction from NC to PVAL. Let L be any language in NC and let ε > 0
be the input proximity parameter. Let X ∈ {0, 1}n be the input to L and D be the unknown
underlying distribution over which the verifier can access X through a sample oracle. The first
step in [RVW13] is to show an interactive reduction ΠNC from L to (a parameterisation of) PVAL,
where the verifier does not access the input X ∈ {0, 1}n.7

In more detail, let BD(X) (respectively BU (X)) be the set of binary strings that are at a distance
at most ε along the distribution D (respectively the uniform distribution U) from X. In [RVW13],
the verifier in ΠNC generates parameters (F, k,m, J, v⃗) for PVAL, where J is a set of t points in Fm,
such that the following hold when t is sufficiently large.

• If X ∈ L, then X ∈ PVAL(J, v⃗).

6Recall that the m-variate LDE PX is the unique polynomial with individual degree k − 1 such that PX agrees
with X on [k]m, where we identify [k] with a subset of field elements in some canonical way.

7Technically, an interactive proof is specified by a verifier and an honest prover. However, for the sake of exposition
we refer to them both together as ΠNC in this section.

9

Figure 1: The shaded region (BU (X) ∩
BD(X)) consists of the set of points in
{0, 1}n that are ε-close to X with respect
to both D and U . The soundness promise of
the interactive reduction Π′ ensures that any
string in PVAL(J, v⃗) is present in at most one
of BU (X) or BD(X), but not in both (shaded
region) (with high probability).

Figure 2: In the uniform IPP for PVAL, the
prover sends the (m−1)-variate LDE of each
row of X evaluated on J2 (column indices
of J), in the form of the purported matrix
Y ′ ∈ Fk×t. However, to ensure consistency
of Y ′ with respect to PVAL(J, v⃗), for any
j = (a, b) ∈ J , the univariate LDE of the
bth-column of Y ′ evaluated on a is required
to be equal to v⃗[j].

• If X is ε-far from L along U then, with high probability over the verifier’s randomness, BU (X)
and PVAL(J, v⃗) are disjoint. In other words, with high probability, X is ε-far from PVAL(J, v⃗)
along U .

Furthermore, the points J output by the reduction ΠNC are distributed uniformly at random in
(Fm)t. Crucially, [RVW13] show that the guarantees over the outputs of this reduction only hold
when t = O(log(|BU (X)|) many points are picked in J .8

Since the size of the set BU (X) is
(
n
εn

)
≤ O(2εn log(n)), following from the earlier discussion, by

setting t = O(log(|BU (X)|) = Õ(εn), we ensure that the guarantees of ΠNC hold. An immediate
attempt would be try to extend this analysis verbatim to distribution-free testing, by setting t to
O(log(|BD(X)|)) instead, and thus having ΠNC guarantee that X is ε-far from PVAL(J, v⃗) along
the distribution D, for soundness. However, for an arbitrary unknown distribution D, the size of
BD(X) can be prohibitively large. For example, when D is supported over the first log(n) indices,
for any value of ε, the size of BD(X) blows up to at least 2n−log(n)! Thus, for our choice of t, we
already lose the sublinear time verification and communication complexity, and it is unclear if this
reduction can achieve such soundness guarantees for PVAL.

Uniform IPP for PVAL is also “complete” for distribution-free IPPs for NC. Our key idea
for constructing the distribution-free IPP for L, is in fact, an interactive reduction Π′ to constructing
a uniform IPP for PVAL (with a different parameterisation for PVAL than that obtained by ΠNC).
Theorem 1.1 follows by using the ready-made uniform IPP for PVAL by [RR20].

Consider a NO input X ∈ {0, 1}n to L, that is, an input that satisfies the soundness requirement
dD(X,L) > ε, over the unknown distribution D. To start with, Π′ runs the interactive reduction

8 ΠNC runs t parallel copies of the interactive reduction from L to PVAL over a single point by [GKR15], with the
guarantee that if the input X /∈ L, the probability that X is also in PVAL over t points, is at most 2−t. Now, if X
were instead ε-far from L, then a union bound over all the points in BU (X) ensures a small probability for the event
that there exists a point in BU (X) that is also in PVAL over t points. We refer to Section 4.2.1 for more details.

10

ΠNC from L to PVAL(J, v⃗) with the same value of t = |J | = Õ(εn).
Setting t to be O(log(|BD(X) ∩ BU (X)|)) ≤ O(log(|BU (X)|)) = Õ(εn), we can generalise the

guarantees of ΠNC to show that the intersection of BU (X) and BD(X) is disjoint from PVAL(J, v⃗),
with high probability. Indeed, this builds on the earlier argument (and Footnote 8), but over
BU (X)∩BD(X), alongside the fact that the size of this set is upper bounded by the size of BU (X).
Thus, X cannot be ε-close to PVAL(J, v⃗) along both U and D, or in other words, X is ε-far from
every element of PVAL along at least one of the two distributions (see Figure 1 and Section 4.2.1
for details).

Following this, assume that dD(X,PVAL(J, v⃗)) > ε. We construct the next stage of Π′, based
on a case analysis whether X is additionally ε-far from PVAL(J, v⃗) under the uniform distribution
or not. Indeed, suppose that X is ε-far from PVAL(J, v⃗) under the uniform distribution. This is
the easy case; we can catch this with the uniform IPP for PVAL(J, v⃗) as usual.

On the other hand, suppose that instead, X is close to PVAL(J, v⃗) under the uniform distri-
bution, i.e., dU (X,PVAL(J, v⃗)) ≤ ε. At this point, we observe (following [RR20]) that when J is
distributed uniformly at random, with high probability PVAL(J, v⃗) is a good error correcting code
(i.e., with large minimal distance).9 Since the output J of ΠNC is distributed uniformly at random,
when X is ε-close to PVAL(J, v⃗) over the uniform distribution, ΠNC guarantees that X is in fact
close to a unique element X ′ in PVAL(J, v⃗).

To summarize, so far we have that X is ε-close to X ′ ∈ PVAL(J, v⃗) along U , but by our
soundness condition, X is ε-far from PVAL(J, v⃗), and in particular from X ′, along D. Now, the
verifier uses the sample oracle to D to generate O(1/ε) samples, which we denote by I ⊆ [n],
and the corresponding values in X given by X|I . From the soundness assumption, with high
probability there exists an index i in I such that Xi ̸= X ′

i. Combining this with the fact that
every element in PVAL(J, v⃗) other than X ′ is ε-far from X along the uniform distribution, X ′ is
not in PVAL((J, I), (v⃗, X|I)), where PVAL is parameterised over a larger set. In other words, we
see that X is ε-far from PVAL((J, I), (v⃗, X|I)) along the uniform distribution and a uniform IPP
for PVAL((J, I), (v⃗, X|I)) suffices.

The argument for completeness trivially holds from the guarantees of ΠNC and definition of
an LDE of X, since in this case X ∈ PVAL((J, I), (v⃗, X|I)). We end with a quick note on the
complexity of the distribution-free IPP. The query complexity of O(1/ε) is the same as that of the
uniform IPP by [RR20], and the communication complexity is the sum of the number of bits used
to send the O(1/ε) samples in I in addition to the communication by the uniform IPP, which is
Õ(εn). Overall the communication complexity is Õ

(
1
ε + ε · n

)
which matches that in [RR20] (up

to poly-logarithmic factors) whenever ε ≥ 1/
√
n.

1.3.2 Proof outlines of Theorems 1.2 and 1.3

Next, we describe the proof techniques of Theorems 1.2 and 1.3 that construct IPPs for NC over
smooth distributions and product distributions, matching the complexities of [RVW13] for every
value of ε. This improves over the communication complexity of the distribution-free IPP in Theo-
rem 1.1 when ε≪ 1/

√
n (with roughly the same query complexity). We follow the general strategy

by [RVW13] and the main technical challenges arise during the analysis with respect to the new
promise on the soundness of an IPP for PVAL. We assume some familiarity with the uniform IPP
construction by [RVW13] for this section; see also Section 5.2.1 for more detailed intuition.

9It is worth emphasising that this does not hold for every choice of J , for eg., PVAL(J, v⃗) is a bad error correcting
code when J consists of t copies of the same point.

11

Uniform IPP for PVAL(J, v⃗). We start with a summary of the Uniform IPP from [RVW13]. Let
the input X ∈ [k]m, for k = log n and n = km. Further, let |J | = t.

[RVW13] use a divide and conquer approach, by decomposing the t claims about X into new
claims for each individual row instanceXi ∈ Fkm−1

, for every i ∈ [k]. In more detail, let J = (J1, J2),
where the first component J1 ⊂ F and J2 ⊂ Fm−1. The prover sends the matrix Y ′ ∈ Fk×t, where
each row Y ′

i is the purported set of evaluations of the (m − 1)-variate LDE (of individual degree
k − 1) of Xi on J2. By the definition of an m-variate LDE on X, the prover cannot lie about the
consistency of Y ′ with v⃗, since for each (a, b) ∈ J (where b ∈ J2), the verifier can easily check if the
univariate LDE of Y ′[·, b] (the bth column of Y) evaluated on the coordinate a equals v⃗[(a, b)] (see
Figure 2).

Thus, the initial PVAL instance is now reduced to k instances Xi ∈ Fkm−1
for {PVAL(J2, Y ′

i)}.
A natural idea now is for the verifier to send a random vector z ∈ Fk to the prover, and ask it back
for a “folded” version X ′ ∈ Fkm−1

, that is purported to be z ·X.10 Now, the IPP could recurse on
a single input X ′ ∈ Fkm−1

that has shrunk in size by a factor of k, to the problem PVAL(J2, z · Y ′).
Completeness easily holds, since if X belonged to PVAL(J, v⃗), then the honest prover will just send
the “true” Y ′ ∈ Fk×t and the verifier checks always pass.

Uniform Distance Preservation Lemma. However showing soundness is not straightforward.
Suppose that X is ε-far from PVAL(J, v⃗) under the uniform distribution. It turns out that the
malicious prover has cheated in at least one row of the purported matrix Y ′ (if not, since X is
not in PVAL, there would be at least one column in Y ′ which would be inconsistent with the
corresponding value in v⃗ and the verifier would catch the prover in the checks made above).

For any row Xi ∈ Fkm−1
that is a lower-dimensional input instance, let εi be the distance

between Xi and PVAL(J2, Y
′
i). To ensure that the verifier catches the cheating prover, the folded

instanceX ′ also needs to be reasonably far from PVAL on a lower dimension at the end of a recursive
step. In order to capture this, [RVW13] (implicitly) use a uniform distance preservation lemma,
which states that if X is ε-far from PVAL(J, v⃗), then

∑k
i=1 εi > kε.

Using the uniform distance preservation lemma, [RVW13] observe that if the prover ended up
cheating (roughly) uniformly across all rows in Y ′, then any row Xi would be roughly ε-far from
PV AL(J2, z · Y ′

i), and the IPP would recurse by picking a single row at random. However, the
prover could have cheated across multiple rows of Y ′

i and the verifier does not know these rows. To
accommodate this, the verifier considers log(k) many random foldings of X, where the Hamming
weight of the vectors z used to fold X, range across 1 to k (in powers of 2). In particular, this
results in O(log(log(n))) recursive instances in Fkm−1

. Crucially, they use the uniform distance
preservation lemma to generalise the intuition above and show that for at least one of these folded
instances, the distance is roughly preserved. Moreover, for such a folded instance, the product of
the new distance and the effective query complexity (the number of queries on X to compute the
value at any index in z ·X) is O(1/ε), along with small but super-constant multiplicative factors.

The IPP continues to recursively fold the instance dimension-wise by the above process, until
the size of each final folded instance becomes Õ(εn), which happens after Ω(log(n)/ log(log(n)))
steps. In such a case, the prover directly sends each final instance. Since there exists an instance
X̃j at each level of recursion for which distance is preserved, there exists a final folded instance
X̃, such that the verifier catches a cheating prover by uniformly sampling a few coordinates of
X̃. Moreover, since the product of the distance and effective query complexities for each X̃j are

10The dot product z ·X ∈ Fkm−1

between z ∈ Fk and a matrix X ∈ Fk×km−1

is given by
∑k

i=1 ziXi.

12

roughly maintained to be small at each step of the recursion, making O(1/ε1+o(1)) many queries to
X̃ is sufficient to catch the cheating prover (since the total number of recursive instances after the
stated number of steps is roughly no(1) = 1/εo(1)). The communication complexity is simply the
number of bits used to send all the final folded instances, in addition to sending the matrices Y ′ of
size k × t, and thus is Õ(ε1−o(1)n).

IPPs for NC under specific distribution families. We now highlight some key ideas which
help us construct IPPs over large distribution families like smooth distributions and product distri-
butions. To begin with, on any input X ∈ {0, 1}km , we first reduce L to PVAL using ΠNC. Recall
that in the distribution-free setting, ΠNC outputs (J, v⃗), such that for the soundness promise, with
high probability X cannot be ε-close to PVAL(J, v⃗) along both U and the unknown distribution
from the given family, D. In other words, X is ε-far from PVAL(J, v⃗) along at least one of U or D.
Building on this observation, we design IPPs for PVAL(J, v⃗) over these distribution families, using
an intricate case analysis of the soundness condition.

In more detail, if X is ε-far from PVAL(J, v⃗) under the uniform distribution, then we can di-
rectly use the uniform distance preservation lemma to catch a malicious prover as seen previously
in the uniform IPP. If not, suppose that dD(X,PVAL(J, v⃗)) > ε. Next, we briefly describe the
soundness analysis, using specific distance preservation lemmas for smooth distributions and prod-
uct distributions. Given this, we build on the strategy of the uniform IPP above to construct an
IPP for PVAL(J, v⃗) over these distribution families, with the main technical work being that of
simultaneously incorporating both the uniform and the respective distance preservation lemmas
into the soundness analysis, across the recursive levels.

ρ-dispersed distributions. Recall that ρ-dispersed distributions over [k]m capture the smooth-
ness of a distribution, by requiring that the probability mass on any element is bounded by ρ
times the average mass on any of its neighbours. Adopting similar notation as above, let D̂ be the
marginal distribution of D over [k]m−1.

For any row Xi ∈ Fkm−1
that is a lower-dimensional input instance, let εi be the distance

between Xi and PVAL(J2, Y
′
i) over D̂. Here, we show a distance preservation lemma for ρ-dispersed

distributions, such that for any distribution D that is ρ-dispersed,
∑k

i=1 εi > (kε)/ρ.11 The idea
behind proving this is not obvious immediately; while εi measures the distance along marginal
distributions, ε is the distance from each element of PVAL(J, v⃗) over D (which could be a joint
distribution). However, we crucially use properties about ρ-dispersed distributions to prove this
distance preservation lemma.

Using the strategy described earlier, we get an IPP for NC over ρ-dispersed distributions, having

query and sample complexities ρlog(1/ε)/ log log(n)

ε1+o(1) , while keeping communication complexity the same.

In particular, for ρ = ko(1), the query complexity is 1/ε1+o(1) and matches that of the uniform IPP
for all ε > 0. We refer to Section 5.2.1 for further intuition about this.

Product distributions. Let D be an m-product distribution defined as D = D1 × . . .Dm over
[k]m, where k = log(n), and each Dj is an independent distribution supported on [k]. In particular,
D(i1, . . . , im) is defined as

∏m
j=1Dj(ij).

11Note that the uniform distribution is a 1-dispersed distribution and we thus generalise the uniform distance
preservation lemma.

13

Our main approach here to construct IPPs over such distributions, is to first learn the underlying
distribution and then use this as an aid to obtain near-optimal complexity parameters. For more
context, consider the following k-dispersed distribution D over [k]m, that is supported on the first
row of the first dimension, i.e, exactly on the set of elements of the form (1, i2, . . . , im) for every
(i2, . . . , im) ∈ [k]m−1.12 We see that the IPP over k-dispersed distributions has query complexity
O(1/ε2). However, if the verifier “learns” beforehand that D is only supported on the first row,
then it can focus its attention on a smaller instance in Fkm−1

and potentially obtain much better
query complexity, if D conditioned on the first row is ρ-dispersed, for a small ρ.

Our main technical idea here is to show a learning-augmented distance preservation lemma for
product distributions. Let εi be the distance between Xi and PVAL(J2, Y

′
i) over D̂ = D2×· · ·×Dm.

Based on an alternative analysis to that of ρ-dispersed distributions, we prove that for any product
distribution D,

∑k
i=1 εi > Cε, for C > 1 that only depends on D1. Using this key insight, if the

verifier “transformed” D1 into the uniform distribution over [a0 ·k], where a0 ≥ 1 is a small constant,
then we get a similar expression as the uniform distance preservation lemma, i.e., C = O(k), despite
still measuring distance according to D̂ for the lower dimensional instances.13

We briefly highlight the sequence of tools used to implement the latter idea. The verifier learns
the probability vector of D1, into an approximation P1, using the parallel set lower bound protocol
[BT06] which requires white-box access to D1. Following this, it runs a “granularising” algorithm
taking P1 as input, that outputs the probability vector of a new 8k-granular distribution E1 over
[k + 1] (i.e., for every i, E1(i) is bi/8k), such that in the soundness case, the distance of the input
over E1 is still ε (up to constant factors). Finally, this granularity set is used to “extend” X into a
new input instance X ′ ∈ {0, 1}8k×km−1

, by making copies of each row according to it’s granularity,
and we can thus, equivalently consider the underlying row distribution as the uniform distribution
over [8k]. The last two steps build on ideas from [Gol20] for testing unknown distributions, while
our focus is on the setting of testing with an implicit input.

The details of adapting both distance preservation lemmas and the analysis of the IPP, to handle
changing distributions and input sizes across different levels of recursion, is found in Section 6.

1.4 Related Work

Proofs of Proximity for Distributions. In a related model, [CG18, HR22] study proofs of
proximity for testing distributions. In their setting, for a fixed property Π of distributions, the
verifier receives samples from an unknown distribution D, and interacts with the prover to decide
whether D ∈ Π or D is ε-far from any distribution in Π along the total variation distance. While
there are superficial similarities to our model regarding the use of sample oracle, we focus on
testing properties (or languages) of strings, where the distribution oracle only provides a means of
accessing the input string. In addition, the verifier also has oracle access to the input instance and
the distance for the NO instance is measured with respect to the underlying distribution.

Sample-based IPPs. Another related model is that of Sample-based IPPs [GR22], where the
verifier can only access the input through an oracle that provides labeled samples over the uniform
distribution. They show that any language in logspace-uniform NC has an SIPP with Õ(

√
n) sample

12See Section 5.1; intuitively, for any i2, . . . , im ∈ [k]m−1, D(1, i2, . . . , im) is the only element in the set
{ℓ, i2, . . . , im}ℓ∈[k] with a non-zero probability mass and thus is k-times the average of the probability mass on
its neighbourhood.

13For consistency, a0 = 1, when D1 is just Uk.

14

and communication complexities, by in fact constructing a reduction protocol from an SIPP to the
query-based IPP by [RVW13]. Our model is more general conceptually, since any protocol in our
model needs to be able to test for a language given access to labeled samples over any unknown
distribution. On the other hand, to aid with this generality, we also provide the verifier with the
more powerful oracle access to the input, which SIPPs do not.

That being said, we can use the uniform SIPP by [GR22] within the proof of Theorem 1.1
(instead of the query-based IPP by [RR20]) to obtain a distribution-free SIPP for NC where the
verifier only accesses the input through labeled samples over U and the unknown distribution D,
for any ε ≥ τ/n.14 It is unclear whether we can construct distribution-free SIPPs for general values
of ε (even over smooth or product distributions) that match the complexities of the uniform IPPs
and we leave it as future work.

Interactive Proofs for Agnostic Learning. [GRSY21] study the setting of verifying PAC-
learners. There, the verifier has sampling access to an unknown distributionD over labeled examples
of the form (i, xi), where i ∼ D and x is the underlying input. It’s goal is to verify whether a
hypothesis h : {0, 1}log(n) → {0, 1} given by the prover from a fixed hypothesis class, is the best
approximation of D. From the property testing perspective, the prover wants to convince the
verifier that D′ has the property that every hypothesis in the class has error larger than ε over D,
for some ε > 0 (i.e., the best possible approximation of D by the hypothesis class is at least ε).

Similar to the setting of SIPPs, their scenario focuses on the case where the verifier only has
access to x via a labeled sample oracle, over an unknown distribution. Furthermore, they focus
on testing specific properties pertaining to machine learning, such as closeness to an underlying
hypothesis class, with the hope of getting very low sample complexity (with respect to the VC
dimension of the hypothesis class). In contrast, we deal with verification of general classes of
properties, and in some cases the sample and query complexities are both Õ(

√
n).

2 Preliminaries and definitions

We denote [n] = {1, 2, · · · , n}. A language L is defined as L =
⋃

i∈N Ln ⊆ {0, 1}∗, where each
Ln = L ∩ {0, 1}n.

Throughout this work, we consider languages computable by logspace-uniform Boolean circuits
on n variables of size S(n) (number of gates) and depth d(n) (longest path from the output gate to
some input), with XOR and AND gates of fan-in two. Of particular interest is the class logspace-
uniform NC, which is the class of languages computable by logspace-uniform circuit families of size
poly(n) and depth O(logi(n)) for some fixed i ∈ N. In more detail, L belongs to logspace-uniform
NC, if there exists i ∈ N and a logspace Turing machine M that takes input 1n and outputs the
description of an n-variate circuit of depth O(logi(n)), such that for each x ∈ {0, 1}n, C(x) = 1 if
and only if x ∈ L.

2.1 Hybrid metrics

We denote by ∆(Ωn), the simplex of all possible distributions over a domain Ωn of size n ∈ N. Let
F be a finite field and let x, y be vectors in Fn. For any distribution D ∈ ∆(Ωn), we define the

14The uniform SIPP by [GR22] has communication complexity Õ
(
n
τ
+ 1

ε

)
(for tradeoff τ ≤

√
n), and using this

still gives us the same communication complexity as the query-based distribution-free IPP from Theorem 1.1.

15

distance between x and y as
dD(x, y) = P

i∼D
[xi ̸= yi] .

We use Un to denote the uniform distribution over the set [n], where the size of the support is clear
we denote the uniform distribution by U . Note that if the distance is measured according to U ,
then this is simply the normalised Hamming distance.

For any (non-empty) L ⊆ Fn and any vector x ∈ Fn, we similarly define the distance between
x and L as:

dD(x, L) = min
y∈L

dD(x, y).

If dD(x, L) > ε, we say that x is ε-far from L over the D distribution, otherwise we say it is ε-close.
Furthermore, for any n ∈ N, D ∈ ∆(Ωn), ε > 0, and X ∈ Fn, we denote by BD,ε(X) as the subset
of Fn that is ε-close to X along D. In other words,

BD,ε(X) = {Y ∈ Fn|dD(X,Y) < ε}. (1)

The hybrid metric is the maximum over two distances, this increases the size of the set of
elements ε-far from an input X. The notion of a hybrid metric is key to our proof of Theorem 1.1,
see Section 4 for details. We define the hybrid metric as follows.

Definition 2.1 (Hybrid Metrics). For any pair of distributions D1, D2 over [n], we define the (D1,
D2)-Hybrid Metric µD1,D2 as follows.

µD1,D2(x, y) = max
s∈{D1,D2}

(ds(x, y)).

Remark 2. Note that taking the maximum over two metrics is also a metric, as the triangle
inequality follows since for some s ∈ {D1,D2}, it holds that

µD1,D2(x, y) = ds(x, y) < ds(x, z) + ds(z, y) ≤ µD1,D2(x, z) + µD1,D2(z, y).

In addition, the definitions of distance of an input string to a language extend in a natural way
with respect to µD1,D2.

2.2 Interactive Proofs of Proximity (IPP)

We refer to the standard textbook [AB09] for the definition of an interactive proof (IP). IPPs
[EKR04, RVW13] are interactive proofs that verify the “closeness” of an input string to the given
language. In these interactive proofs, the verifier must accept if the input is in the language and
reject when it is far with some computation performed by an untrusted prover. The goal is to
achieve verification using sublinear queries and communication, by not having to read the input
completely. Following previous literature on IPPs, we view the inputs given to the verifier as having
two parts: an implicit input X ∈ Fn and an explicit input w ∈ F∗ (w could be empty), for some
finite field F. The verifier can access X only via an oracle (query or sample), but can read w in its
entirety. We then refer to {Lw}w∈F∗ as a family of parameterised languages, each language being
parameterised by the explicit input.15 At times, we will refer to this family of languages simply as
L and take the implicit input as already given to the IPP.

15Equivalently, we can view L as a language over pairs (X,w) and define each Lw = {X | (X,w) ∈ L}. The
closeness of a string to L is only measured with respect to X, the first string in the pair.

16

For any language Lw, we denote by (P (X), V X)(w, n, ε) as the output of the interaction between
a verifier V having query access to an input X of length n and a prover P with explicit access to X,
when both have full access to the shared inputs w, n, and ε. An IPP over the uniform distribution
is defined as follows.

Definition 2.2 (IPPs over the Uniform Distribution [EKR04, RVW13]). For any fixed
string w ∈ F∗, let Lw ⊆ F∗ be a parameterised language. We say that L has an interactive proof of
proximity (IPP) if there exists a proof system (P, V) with a (possibly computationally unbounded)
prover P and a computationally bounded verifier V , such that for every n, input X ∈ Fn and
proximity parameter ε > 0, the following hold.

When P has full access to X,w, n, ε, and when V is given query access to X and full access to
w, n, ε, the following hold:

• Completeness: If X ∈ Lw, then

P
V

[
(P (X), V X)(w, n, ε) = 1

]
≥ 2

3
.

• Soundness: If dUn(X,Lw) > ε, then for every computationally unbounded prover P ∗ we have

P
V

[
(P ∗(X), V X)(w, n, ε) = 0

]
≥ 2

3
.

Furthermore, we say that the IPP has query complexity q = q(n, |w|, ε), communication com-
plexity c = c(n, |w|, ε) and round complexity R = R(n, |w|, ε), if P and V exchange at most c bits
in at most R rounds of interaction (having 2 messages per round) and V makes at most q many
queries during this process, for every w, X ∈ Fn, and ε > 0.

Additionally, we call this IPP a Merlin-Arthur proof of proximity (MAP) if over the course of
this protocol, the verifier does not send any messages to the prover.

Below, we state the main result from [RVW13].

Theorem 2.1 (IPP for Low Depth Languages over the Uniform Distribution [RVW13]).
For every language L ⊆ {0, 1}n and ε ∈ (0, 1] computable by log-space-uniform circuits of depth
∆L = ∆L(n) and size S = S(n), there exists an interactive proof of proximity for L with perfect
completeness and soundness at least 1/2.

This IPP has query complexity 1
ε1+o(1) , communication complexity ε ·n ·

(
1

εo(1)

)
+ ε ·n · poly(∆L)

and round complexity O

(
log(1

ε)
log log(n) +∆L · log(S)

)
. In addition, the honest prover runs in time

poly(S, n) and the verifier runs in time (1ε)
1+o(1) + (ε · n)1+o(1)poly(∆L).

3 Distribution-free IPPs

In this section, we define the notion of distribution-free proofs of proximity and provide complexity
theoretic insight regarding the power and limitation of the model. We start by defining the notion
of a distribution-free proof of proximity and then extensions of this notion to the white-box model
and polynomially-samplable distributions. From these definitions we explore some observations of

17

this model. In Section 3.1, for certain structured languages we show that the existence of an IPP is
equivalent to the existence of a distribution-free IPP. Following this, in Section 3.2, we demonstrate
an exponential separation between property testing and IPPs in the distribution-free setting. In
section 3.3, we use a lower bound for IPP from [KR15] to demonstrate a separation between uniform
IPPs and distribution-free IPPs.

Let D = {Dn}n∈N be a distribution ensemble, where each Dn ∈ ∆(Ωn). Whenever the context
is clear, we abuse notation by dropping the support size in Dn.

Distribution-free IPPs (DF-IPPs) are interactive proofs that verify the closeness of an input to a
language L under any arbitrary distribution. If the input is in the language, the DF-IPPmust accept
and if it is far along this distribution, it must reject. Here, the verifier additionally has sample
access to an input string X ∈ {0, 1}n over an unknown (but fixed) distribution D over [n], via a
sample oracle OD(X). The oracle OD(X) returns the tuple (i,Xi), for an index i independently
sampled from D. The soundness condition now requires the algorithm to reject strings that are
ε-far from the language along the distribution D. Additionally, the cheating prover has full access
to the distribution, i.e., the prover has access to all of the individual probabilities that constitute
the distribution.

Definition 3.1 (Distribution-Free IPP). For any fixed string w ∈ F∗, let Lw ⊆ F∗ be a parame-
terised language. We say that Lw has a distribution-free IPP if there exists a proof system (P, V),
where P is a (possibly computationally unbounded) prover and V is a computationally bounded
verifier V , such that for every n, input X ∈ Fn, proximity parameter ε > 0, and for any fixed (but
unknown) distribution Dn ∈ ∆(Ωn) from a distribution ensemble D = {Dn}n∈N, the following hold.

When P has full access to X,w, n, ε and Dn, and when V is given query access to X, as well
as sample access to X via ODn(X) and full access to w, n, ε, the following conditions hold.

• Completeness: If X ∈ Lw, then

P
V,ODn (X)

[(
P (X,D), V X,ODn (X)

)
(w, n, ε) = 1

]
≥ 2

3
.

In other words, if X ∈ Lw then the verifier accepts the input with probability at least 2/3 over
its own randomness and the samples from ODn(X).

• Soundness: If dDn(X,Lw) > ε, then for any computationally unbounded prover P ∗ we have

P
V,ODn (X)

[(
P ∗(X,D), V X,ODn (X)

)
(w, n, ε) = 0

]
≥ 2

3
.

In other words, if dDn(X,Lw) > ε, the verifier rejects with all but 1/3 probability over its own
randomness and the samples from ODn(X), regardless of the cheating prover strategy.

The query complexity q = q(n, |w|, ε), communication complexity c = c(n, |w|, ε) and round
complexity R = R(n, |w|, ε) of the interactive proof are as defined earlier. In addition, the IPP has
sample complexity s = s(n, |w|, ε), if V invokes the sample oracle OD(X) at most s(.) times during
its interaction with P , for any w,X and ε > 0.

Similar to the non-interactive form of an IPP, we can also define a distribution-free MAP. Moreover,
analogous to the PAC-learning setting, we can also consider a fixed set of distributions F and
define a distribution-free IPP over F , by requiring the correctness of the IPP to hold only over the
distributions in F . It will be necessary for us in Sections 4 and 6 to consider IPPs with a soundness
condition over the hybrid metric µ; for simplicity we will still refer to these as IPPs.

18

Remark 3. It is worth noting that while Definition 3.1 provides the honest prover with a full
description of D, most of our protocols enjoy the property that the honest prover does not require
the description.

Remark 4. It is worth noting that for typical properties that are testable given the entire input,
both q(n) and c(n) have to be sublinear in |X| for the IPP to be non-trivial. Indeed, if V sees all
of X, it can directly check if X belongs to L or not. On the other hand, if P sends a string X ′

of length n (purported to be X), then V checks if X ′ ∈ L and perform an equality test between X ′

and X over O(1/ε) samples from OD(X). Completeness follows when X ′ = X, whereas soundness
follows from the distance guarantee of the input X.

White-Box Distribution-Free IPP. In contrast to Definition 3.1 where the verifier has sample
access to the input only via OD(X), we define distribution-free IPPs in the white-box model, where
the verifier now gets the sampling device to the distribution, in the form of a circuit (a notion
explored by Sahai and Vadhan in [SV97]), in addition to oracle access to the input. The distribution
is defined by the output of the circuit when it is fed with a random input of suitable length.

In more detail, C takes a uniformly random string as input and outputs an index in [n], such that
the probability of sampling the index using C is the same as that of D. We consider distributions
that are polynomially samplable, i.e., the circuit C takes polylog(n) many random bits, outputs an
index in [n], and its size is polynomial in the number of its inputs (i.e., the size of C is polylog(n)).
More formally,

Definition 3.2 (Polynomially samplable distributions). Let D = {Dn}n∈N be a distribution en-
semble, where each Dn ∈ ∆(Ωn). D is said to be polynomially-samplable, if there exists a fam-
ily of circuits C = {Cr(n)}n∈N of size poly(log(n)), where Cr(n) : {0, 1}r(n) → {0, 1}log(n), such
that for each n ∈ N, the output distribution of Cr(n) is the same as Dn, i.e., for every i ∈ [n],
Prx∼Ur(n)

{C(x) = i} = Dn(i).
16

Definition 3.3 (White-Box Distribution-Free IPP over polynomially samplable distribu-
tions). For any fixed string w ∈ F∗, let Lw ⊆ F∗ be a parameterised language. We say that Lw has a
white-box IPP over polynomially samplable distributions, if there exists a proof system (P, V), where
P is a (possibly computationally unbounded) prover and V is a computationally bounded verifier V ,
such that for every n, input X ∈ Fn, proximity parameter ε > 0, and for any fixed (but unknown)
distribution D over [n] from a distribution ensemble that is samplable using a polynomial-sized
circuit C : {0, 1}polylog(n) → {0, 1}log(n), the following hold.

When P has full access to X,w, n, ε and D, and when V is given the sampling circuit C, query
access to X, and full access to w, n, ε, we have the following conditions.

• Completeness: If X ∈ Lw, then

P
V

[
(P (X), V X(w, n,C, ε) = 1

]
≥ 2

3
.

• Soundness: If dDn(X,Lw) > ε, then for any computationally unbounded prover P ∗ we have

P
V

[
(P ∗(X), V X(w, n,C, ε) = 0

]
≥ 2

3
.

16In particular, this implies that r(n) ≤ polylog(n).

19

The query complexity q = q(n, |w|, ε), communication complexity c = c(n, |w|, ε) and round
complexity R = R(n, |w|, ε) of the IPP are as defined earlier.

More generally, we can define white-box IPPs on distributions over [n] samplable by circuit
families of size S(n), where S(n) = 2o(log(n)). In this case, the running time of the verifier is given
by T (n, |w|, ε, S(n)), and typically, we require T (n) to be sublinear in n.

Remark 5. Note that the sample complexity of the verifier is not a useful complexity parameter in
the white-box model as the both the prover and the verifier get the entire sampling circuit. Indeed,
the verifier can sample an index from the circuit and query the input value at this index, or it
can possibly use the circuit to perform other computations or simulate input access via some other
distribution. Any samples made using the circuit for querying X count towards the query complexity
of the IPP. Of course, the verifier can go over all possible inputs to the sampler circuit to know the
entire distribution exactly, but then its running time is no longer sublinear.

3.1 DF-IPPs for (Relaxed) Correctable Languages

In this section, we show a generic transformation from an IPP to a distribution-free IPP for any
subset of a relaxed locally correctable code (RLCC), while maintaining the round complexity, query
complexity and communication complexity, in Theorem 3.1. This is an extension.

We show for this large and natural family of languages you can obtain a distribution-free IPP
from a uniform IPP. This includes properties of polynomials or any locally correctable codes as well
as many regularly studied problems in the literature for probabilistically checkable proof. These
RLCCs have exponential better parameters that locally correctable codes and have had significant
recent developments in complexity theory.

For any field F, a code is a subset C ⊆ Fn with relative distance δ > 0, if the relative minimum
distance between any two elements in the code is at least δ, in other words

w1, w2 ∈ C =⇒ dU (w1, w2) ≥ δ.

Definition 3.4 (Locally Correctable Codes). For any field F, let C ⊆ Fn be an error correcting
code with relative distance δ. We say that C is locally correctable if there exists a correcting radius
δr < δ/2 and an algorithm A, called the corrector, such that when A is give oracle access to an
implicit input w ∈ Fn and an explicit input i ∈ [n], the following hold.

1. w ∈ C =⇒ P[Aw(i) = wi] = 1.

2. if ∃c ∈ C such that dU (c, w) ≤ δr =⇒ PA [Aw(i) = ci] ≥ 2
3 .

We say A has query complexity t if it uses at most that many queries to perform the correction,
on any inputs.

We now generalise this notion to relaxed locally correctable codes. In this setting, the corrector
is allowed a third possible output “⊥”, indicating that it has aborted.

Definition 3.5 (Relaxed Locally Correctable Codes (RLCCs)). Let C be an error correcting code
with relative distance δ. We say that C is locally correctable if there exists a δr < δ/2 and a
corrector A, such that when A is given oracle access to an implicit input w ∈ {0, 1}n and explicit
access to the input i ∈ [n], the following hold.

20

1. w ∈ C =⇒ P [Aw(i) = wi] = 1.

2. if ∃c ∈ C such that dU (c, w) < δr =⇒ PA [Aw(i) ∈ {ci,⊥}] ≥ 2
3 .

⊥ is a special abort symbol. We say A has query complexity t if it uses at most that many queries
to perform the correction, on any inputs.

Remark 6. There is also a third condition that says that in the second case, there are a constant
number of coordinates i ∈ [n] for which PA[A

w(i) = ci] >
2
3 . This follows from a transformation

from [BGH+06] given the first two conditions and given that the algorithm requires only constant
queries.

The following theorem states that there exists an IPP for any subset of a relaxed locally cor-
rectable code, The proof follows by a reduction from relaxed correcting to distribution-free IPPs.
This builds on a result from [HK07] which states that there is a distribution-free property tester
for correctable languages that are testable.

Theorem 3.1. For any n ∈ N, let C ⊆ {0, 1}n be an RLCC (i.e., a binary RLCC) with a corrector
Ccor having query complexity t(n) and correcting radius δr. Then for any language L ⊆ C and
every 0 < ε ≤ δr, if L has an IPP over the uniform distribution with query complexity q(n),
communication complexity c(n) and round complexity R(n) on inputs of length n, there exists a

distribution-free IPP for L with query complexity O(q(n) + t(n)
ε), communication complexity c(n)

and round complexity r(n).

Proof. Let (V0, P0) be the IPP for L over the uniform distribution. Recall that the corrector Ccor

takes inputs X ∈ {0, 1}n and an index i ∈ [n], and returns the corrected value of X at i. Then we
construct a distribution-free IPP (Vdf , P0) for L in the following way.

Protocol 1 Distribution-free IPP for a subset of an RLCC C, with corrector Ccor.

1. Vdf runs the uniform IPP between V0 and P0 on the input X ∈ {0, 1}n. It rejects, if V0 rejects.

2. Repeat O(1) times:

(a) Vdf samples 1
ε points from OD(X). Let S be this set.

(b) Vdf checks if there exists i ∈ S, Ccor(X, i) ̸= Xi. If so, it rejects.

3. Vdf accepts otherwise.

For completeness of (Vdf , P0), if X ∈ L, by definition, the honest prover P0 convinces V0 to
accept with probability at least 2

3 and by the perfect completeness of the corrector, for every
sample i, Ccor(X, i) = Xi, therefore Vdf must accept with probability at least 2

3 .
For soundness, suppose X is ε-far from L along D. Either we have that X is ε-far from L along

both D and U , or it is far only along D. In the first case, if dU (X,L) > ε, then X is rejected by the
uniform IPP with probability at least 2

3 . For the other case, suppose that the uniform IPP accepts
X since it is ε-close to L under the uniform distribution. Let c be the closest codeword to the input
X along U , i.e., dU (X, c) ≤ ε. If Vdf does not reject, either for each sampled point in each copy of
S, c coincides with X, or there exists an i in some S such that ci ̸= Xi, but Ccor failed in correcting
Xi to the value ci.

21

Take any iteration of Step 2. The probability that there exists no sample i ∈ S for which
Xi ̸= ci is at most (1− ε)

1
ε ≤ 1

e . On the other hand, the probability there exists an i ∈ S on which
the corrector fails (i.e., Ccor(X, i) = Xi ̸= ci) is at most 1

3 . By a union bound, the probability that
Vdf does not reject in any iteration of this step, is at most 1

e + 1
3 and we can achieve the required

soundness by O(1) repetitions.
Clearly, the communication and round complexities are unchanged as the only interactions with

the prover are in the uniform IPP. Moreover, the query complexity is just q(n) + O(t(n))
ε .

3.1.1 Complexity separations via correctability

A language of interest here is the parameterised sub-tensor sum property denoted as TensorSum,
that was defined in [GR18]. This language is an example of a subset of a correctable code for which
we have MAP lower and upper bounds, testing lower bounds and an IPP upper bound which means
we can use this language to demonstrate separations between these complexity classes using these
uniform results and our result for RLCCs. The protocols for this problem capture the sumcheck
protocol which is one of the most important tools in the field of interactive proofs.

Definition 3.6 (TensorSumF,m,d,H). Let F be a finite field and let H ⊂ F. Let P : Fm → F be a
polynomial of individual degree d. Then, P belongs to TensorSumF,m,d,H iff∑

x∈Hm

P (x) = 0.

We now state the query complexity gaps for TensorSum which as we observed earlier, is a subset
of all low-degree polynomials, that in turn is an RLCC. We use various results from [GR18] to
prove these gaps along with Theorem 3.1.

Theorem 3.2 (Query complexity gaps for distribution-free testing TensorSum). For any field F,
any m, d ∈ N such that d < |F|, and any sub-field H ⊆ F, the following hold true for the language
TensorSumF,m,d,H .

1. For every ε ∈
(
0, 1− dm

|F|

)
, if d ≥ 2(|H|−1), then every distribution-free MAP for TensorSum

(with respect to proximity parameter ε) that has proof complexity p ≥ 1 must have query

complexity q = Ω
(

|H|m
p log |F|

)
.

2. If dm < |F|
10 , then, for every ℓ ∈ {0, ...,m}, TensorSumF,m,d,H has a distribution-free MAP with

proof complexity (d+ 1)ℓ log(|F|) and query complexity |H|m−ℓ(dm2 log |H|) · poly(1/ε).

3. If dm < |F|
10 , then there exists an m-round distribution-free IPP for TensorSumF,m,d,H with

communication complexity O(dm log |F|), and query complexity O(dm · poly(1/ε)).

The property testing lower bound here follows from the MAP lower bound from Lemma 3.15 in
[GR18] and from the fact that distribution-free testing is a more general setting which encompasses
uniform testing and so will require at least as many queries.

The MAP and IPP upper bound come from Lemma 3.14 and Theorem 3.22 respectively
from [GR18]. They also require Theorem 3.1 to reduce to the uniform setting.
Theorem 1.6 follows from this.

22

Proof Sketch of Theorem 1.6. We sketch the proof of the three claims as follows.

1. Θ(n0.999±o(1)) distribution-free query complexity for testing TensorSum:

This holds from Item 1 of Theorem 3.2, by setting p = 1.

2. TensorSum df-MAP query and communication complexity Θ(n0.499±o(1)) and for proof com-

plexity p ≥ 1, query complexity Θ(n
0.999±o(1)

p):

For d = Θ(|H|) = no(1), m = log|H|(n), l = logd+1(
p

log |F|), and ε = O(1), we obtain the upper
bound for query complexity of the MAP in terms of the proof length, from Item 2 of Theorem
3.2 above. The corresponding lower bound is achieved by setting |F| =

√
n and |H|m = n, in

Item 1 of Theorem 3.2.

In particular, setting p = O(
√
n) optimises the sum of proof and query complexities, thus

proving Item 2.

3. Distribution-free IPP with query and communication complexity polylog(n):

This IPP follows from Item 3 of Theorem 3.2, when |F| =
√
n, m = log(n) and d = 2.

3.2 Symmetric Languages

In this section, we show an Ω(n1/3−0.0005) query complexity lower bound for any distribution-free
testers for HAM(w(n)), for some fixed w(n). Following this, we construct a distribution-free IPP
with polylog(n) query and communication complexity for any symmetric language. In fact, this
is shown by a straight-forward interactive reduction to HAM, and constructing a distribution-free
IPP for this problem. Put together, we prove Theorem 1.4, thus demonstrating an exponential
advantage in the query complexity given interaction with a prover in the distribution-free setting.
We define the problem as follows.

Definition 3.7 (The Hamming weight language). For any X ∈ {0, 1}n, let Hwt(X) be the Hamming
weight (the number of non-zero entries) of X.

Let w : N → N be a weight function such that for any n ∈ N, 1 ≤ w(n) ≤ n. We define the
language HAM(w) = {HAMn(w(n))}n∈N, such that for any X ∈ {0, 1}n, X ∈ HAMn(w(n)) ⇐⇒
Hwt(X) = w(n).

The (parameterised) Hamming weight language is one of a general class of languages that are
symmetric, i.e., those which depend only on the Hamming weight of the input string.

Definition 3.8 (Symmetric Languages). A language L = {Ln} is called Symmetric if and only if
for every n ∈ N, there exists a predicate Sn : {0, . . . , n} → {0, 1} such that

Ln = {X ∈ {0, 1}n | Sn(Hwt(X)) = 1}

3.2.1 Testing Lower Bound

Theorem 3.3. For any ε > 0, n ∈ N, there exists w = w(n) > 0 such that any distribution-free
property tester for HAM(w) requires Ω(n1/3−0.0005) queries.

23

We prove this theorem via the following steps:

1. We construct two pairs (D1, X), (D2, Y) of a distribution and an input to HAM(w), where
w = Hwt(Y). The first pair is a NO instance, i.e., dD1(X,HAM(w)) > ε and a tester should
reject this. On the other hand, the second pair is a YES instance, where Y must be accepted
irrespective of the access to the sample oracle with respect to any distribution.

2. We next show that the inputs X,Y are close along U . In other words, with high probabil-
ity, o(n1/3−0.0005) queries made by the tester along the uniform distribution do not help it
distinguish between X and Y .

3. Further, we show that o(n1/3−0.0005) values in X along samples from D1 and those in Y along
samples from D2 will be distributed in the same way (Pi∼D1 [Xi = 1] = Pi∼D2 [Yi = 1]).

By our construction, with high probability, there are no collisions between the samples from U
and D1, or U and D2. This means that the tester can’t distinguish between the 2 distribution-
input pairs by sampling along any of these distributions, with high probability.

4. To conclude, we show a transformation from any query-optimal tester for HAM, to one that
only uses uniformly sampled queries to the input, along with samples from the underlying
distribution oracle (i.e., along D1 for testing X or D2 for testing Y). Putting this together
with the fact that the uniform sampled queries are distinct (with high probability) from the
samples along D1 or D2, we get query lower bound of Ω(n1/3−0.0005) for testing HAM.

We first define the pairs (D1, X), (D2, Y). Consider the partition of [n] into the following 3
intervals.

I1 = [1, n− n
2
3 − n

2
3
−0.001].

I2 = [n− n
2
3 − n

2
3
−0.001 + 1, n− n

2
3
−0.001].

I3 = [n− n
2
3
−0.001 + 1, n].

The distributions D1,D2 ∈ ∆(Ωn) are defined as follows.

∀i0 ∈ I1 : P
i∼D1

[i = i0] =
1−20ε
|I1| . ∀i0 ∈ I1 : P

i∼D2

[i = i0] =
1−20ε
|I1| .

∀i0 ∈ I2 : P
i∼D1

[i = i0] =
12ε
|I2| . ∀i0 ∈ I2 : P

i∼D2

[i = i0] =
8ε
|I2| .

∀i0 ∈ I3 : P
i∼D1

[i = i0] =
8ε
|I3| . ∀i0 ∈ I3 : P

i∼D2

[i = i0] =
12ε
|I3| .

Finally, we define X,Y ∈ {0, 1}n as having a fixed proportion of bits in each interval set to 1,
as follows.

• ∀i ∈ I1, Xi = Yi = 1.

• For I2:

– Hwt(X|I2) =
|I2|
3 , i.e. X takes value 1 for 1

3 of these indices.

In particular, ∀i ∈ [n− n
2
3 − n

2
3
−0.001 + 1, n− 2

3n
2
3 − n

2
3
−0.001 + 1], Xi = 1, for all other

i ∈ I2, Xi = 0.

24

– Hwt(Y |I2) =
|I2|
2 , i.e. Y takes value 1 for 1

2 of these indices.

In particular, ∀i ∈ [n− n
2
3 − n

2
3
−0.001 + 1, n− 1

2n
2
3 − n

2
3
−0.001 + 1], Yi = 1, for all other

i ∈ I2, Yi = 0.

and

• For I3:

– Hwt(X|I3) =
|I3|
2 , X takes value 1 for 1

2 of these indices

That is, ∀i ∈ [n− n
2
3
−0.001 + 1, n− 1

2n
2
3
−0.001 + 1], Xi = 1, for all other i ∈ I3, Xi = 0.

– Hwt(Y |I3) =
|I3|
3 , Y takes value 1 for 1

3 of these indices.

That is, ∀i ∈ [n− n
2
3
−0.001 + 1, n− 2

3n
2
3
−0.001 + 1], Yi = 1, for all other i ∈ I3, Yi = 0.

We first show that with n
1
3
−0.0005 uniformly sampled indices, we expect to only receive elements

of I1 on which X and Y are identical.

Lemma 3.4. With high probability, t = o(n
1
3) uniform samples will only return indices i for which

Xi = Yi = 1. In other words:

Pi∼Ut

[
∀j ∈ [t] : Xij = Yij = 1

]
= 1− o(1) (2)

Proof. The probability of each of these samples having this property is

Pi∼Ut
n

[
∀j ∈ [t] : Xij = Yij = 1

]
≥ (Pi∼Un [ij ∈ I1])

t

=

(
n− 2n− 2

3

n

)t

=

(
1− 2

n
1
3

)t

≥ 1− o(1)

Then we show that sampling along the corresponding distributions returns an index on which
the probability that the input is 1 is the same for both instances.

Lemma 3.5. Pi∼D1 [Xi = 1] = Pi∼D2 [Yi = 1]

Proof. We evaluate both probabilities by summing over each interval as follows

P
i∼D1

[Xi = 1] =
∑

j∈{1,2,3}

P
i∼D1

[Xi = 1|i ∈ Ij] P
i∼D1

[i ∈ Ij]

=
1− 20ε

|I1|
|I1|+

12ε

|I2|
|I2|

1

3
+

8ε

|I3|
|I3|

1

2

= 1− 12ε

25

P
i∼D2

[Yi = 1] =
∑

j∈{1,2,3}

P
i∼D2

[Yi = 1|i ∈ Ij] P
i∼D2

[i ∈ Ij]

=
1− 20ε

|I1|
|I1|+

8ε

|I2|
|I2|

1

2
+

12ε

|I3|
|I3|

1

3

= 1− 12ε.

We then show that for each pair, the probability of sampling the same element twice from the
distribution oracle and from uniform distribution is very small. The following notation is useful.
For any t ∈ N, by U t ×Dt we denote the 2t-length tuple of indices that consists of t i.i.d. samples
from U and t i.i.d. samples from D, drawn independently of each other.

Lemma 3.6. For each j ∈ {1, 2}, sampling t = o(n
1
3
−0.0005) times along Dj or along U results in

distinct indices(no collisions) with high probability. In other words:

j ∈ {1, 2} =⇒ P(i1,··· ,i2t)∼Ut×Dt
j
[∃ℓ, k ∈ [2t] : ℓ ̸= k ∧ iℓ = ik] ≥ 1− o(1) (3)

Proof. We prove this statement for D1 and the other case is analogous to this. For any m > 0,
o(
√
m) uniform samples from [m] will be distinct with probability at least 1 − o(1) (this follows

from the birthday paradox). Each of
√
|I1|,

√
|I2|, and

√
|I3| = Ω(n

1
3
−0.0005) and therefore with

high probability, samples from D1 within any of these intervals will not produce a collision. This
is because restricted to each of the intervals I1, I2, I3, D1 is uniform and therefore even if all the
samples were just on one of these intervals, then with high probability all of the indices sampled
will be distinct.

Similarly, with high probability the t samples along the uniform distribution over [n] won’t
collide with each other. Additionally the probability that they don’t collide with the samples from

D1 is at least

(
1− o(n

1
3)

n

)o(n
1
3)

≥ 1− o(1).

Finally, we need the following result which shows that the only relevant queries for property
testing HAM, are those that are uniformly sampled. Intuitively, this holds since HAM is a symmetric
language: we can permute the indices of the input and the Hamming weight remains unchanged.

Lemma 3.7. For any w ∈ N and any distribution-free testing algorithm A for HAM(w) with
query complexity T and sample complexity S such that T + S = o(

√
n), there exists an equivalent

distribution-free testing algorithm A′ with O(T) queries and O(S) samples, such that A′ only makes
input queries along indices sampled from U .

Proof. Fix some w ∈ N and a distribution-free testing algorithm A for HAM(w) using T queries
to X, some of which are possibly adaptive. Without loss of generality, suppose that A gets all its
labelled samples from OD at the beginning. Following this, we know that A must have the same
output (with high probability) for any pair of inputs which are consistent on these indices sampled
from D.

26

Let i be the last query that A makes, which is not a uniformly sampled index. Let I be the
set of indices already queried and J be the set of indices sampled from D. Let j be a uniformly

random sample from [n]. In particular, j /∈ I ∪ J with probability n−o(
√
n)

n = 1− o(1√
n
).

For any X ∈ {0, 1}n, define X(i,j) as an input string with the values of X swapped at indices i
and j, and similarly, D(i,j) where the probabilities of sampling i and j are swapped. Let Â be the
algorithm that follows the same queries as A, however querying j instead of i, and whose outcome
is the same as A on the input X(i,j) (i.e., A gets the value Xj when it queries i). This follows as
long as j ̸∈ I ∪ J , which as we saw earlier, happens with high probability.

Next, we have the following fact for any D ∈ ∆([n]) and any X ∈ {0, 1}n:

PD,Â

[
Â(X) = 1

]
≥ PD(i,j),A

[
A(X(i,j)) = 1

]
− o

(
1√
n

)
. (4)

Indeed, if A accepts X(i,j) when given a set of samples from D(i,j) and coin flip outcomes, Â
must accept X when sampling from D and having the same coin flip outcomes so long as no collision

occurs which is accounted for by the o
(

1√
n

)
term . In other words,

PD,Â

[
Â(X) = 1

]
≥ PD,Â

[
Â(X) = 1 ∧ j ̸∈ I ∪ J

]
≥ PD(i,j),A

[
A(X(i,j)) = 1

]
− o

(
1√
n

)
.

For each pair (X(i,j),D(i,j)), A returns the correct result with probability at least 2
3 . Therefore,

from Equation 4, Â also returns the correct value on (X,D) with the same probability up to an

additive factor of o
(

1√
n

)
. In other words, repeating this at most T times for all arbitrary queries,

results in a new tester A′. This must be a distribution-free property tester for HAM using T
queries which are all uniformly sampled and S samples from D, with success probability at least
2
3 − o

(
T√
n

)
= 2

3 − o(1). By repeating this tester O(1) times, we can recover the original 2
3 success

probability.

Given these lemmas, we now prove the main result of this section.

Proof of Theorem 3.3. Let Hwt(Y) = w. By Lemmas 3.4, 3.5 and 3.6 we know that the labeled
samples along D1 for X, or D2 for Y , along with queries made along U are not enough to distinguish
whether X is the input tested against distribution D1, or Y is the input tested against distribution
D2. Due to Lemma 3.7, we know that any distribution-free property tester can only use those
queries to distinguish the two cases.

Therefore, it suffices to show that X is ε-far from HAM(w) along D1 as then it becomes im-

possible to distinguish (X,D1) from (Y,D2) with o(n
1
3
−0.0005) queries to the input. The Hamming

distance between X and Y is 1
6(|I2| − |I3|) = n2/3

6 (1 − n−0.001). This is the number of bits of
X that need to be flipped from 0 to 1 to have Hamming weight same as Y . This can be done
by flipping either the elements of I2 or I3 (note that X and Y have the same values in the set
I1). Furthermore, along D1, the weight of elements in I2 is less than I3; so in total the distance

dD1(X,w) = n2/3

6 (1− n−0.001)12ε|I2| > ε.

27

3.2.2 Upper Bound for Symmetric Languages

We next present a distribution-free IPP for HAM(w(n)), for every weight function w(n) ≤ n.

Theorem 3.8. For every n ≥ 2 and every w ≤ n, there exists a distribution-free IPP for HAM(w)

with perfect completeness and soundness 1
3 . This protocol has round complexity O

(
2 log(n)

ε

)
, com-

munication complexity O
(
log(n)2

ε

)
and sample complexity 1

ε . Furthermore, the IPP does not make

any queries to the input and only uses samples from the distribution.

There are O
(
1
ε

)
rounds in this IPP, in each round the verifier samples an index i ∼ D and

then performs a binary split across the indices in [n] as follows. Set I = [n], I0 = [⌊n/2⌋] and
I1 = [⌊n/2⌋+ 1, n], the prover sends the Hamming weight of both I0 and I1. The protocol iterates
by updating I to be set to whichever of I0, I1 contains i and iterate thereon. We iterate until
I = {i}, the verifier queries Xi.

Protocol 2 Interactive Proof of ε-proximity for HAM(w)

1. Repeat O
(
1
ε

)
times:

(a) The verifier samples (i,Xi) from OD. Let i = (i0, · · · i⌈log(n)−1⌉)2.

(b) Set I = [n], v = w, L = 0, U = n, r = 0 and s = ∅.
(c) Repeat the following until |I| = 1.

i. The verifier partitions I into two parts I0 =
[
L, ⌊U+L

2 ⌋
]
, I1 =

(
⌊U+L

2 ⌋, U
]
.

ii. Let the Hamming weight of X over I0, I1 is hs0, hs1 respectively. The prover sends
h′s0, h

′
s1 which is the purported value of hs0 and hs1 respectively.

iii. The verifier rejects if h′s0 + h′s1 ̸= v, or if either of h′s0 /∈ [0, |I0|] or h′s1 /∈ [0, |I1|].
iv. The verifier sends ir to the prover. If ir = 0 then reassign I = I0, U = ⌊U+L

2 ⌋,
s = s0, v = h′s0 otherwise reassign I = I1, L = ⌊U+L

2 ⌋+ 1, s = s1, v = h′s1.
In both cases set r = r + 1.

(d) Finally, Xi ̸= v, the verifier rejects.

2. The verifier accepts otherwise.

Proof. Fix some w ≤ n. Let X ∈ {0, 1}n be the input to HAM(2). For any i ∈ [n], we write
i = (i0, · · · i⌈log(n−1)⌉)2 as its binary expansion. The full IPP for HAM(w) is given in Protocol 2.

Clearly, its sample complexity is 2
ε and it makes no additional queries to X. Below, we prove its

correctness.
Completeness: If X ∈ HAM(w), completeness follows from the fact that the honest prover

will only provide the genuine values for hs0, hs1 in each iteration of the binary search. At the end of
each of the O

(
1
ε

)
rounds, the final value in v is the Hamming weight of X on the interval I = {i}

which is Xi, therefore the verifier will not reject.
Soundness: Suppose dD(X,HAM(w)) > ε. For each round of Step 1, we show that the

probability that the verifier catches the prover is at least ε. Let Y = h′00···0h
′
00···1 · · ·h′11···1 be the

28

n-length Boolean string concatenating all possible values of h′i that the prover sends the verifier in
the final iteration of the binary search process (here the i in h′i is represented in binary).

It is sufficient to prove that an optimal dishonest prover strategy (which is rejected with the
lowest probability at the latest possible point) will have the property that Hwt(Y) = w. By our
assumption, we have that dD(X,Y) ≥ dD(X,HAM(w)) > ε. Thus, with probability at least ε over
the choice of the sample i from D, the verifier rejects in a single round. In other words, repeating
O
(
1
ε

)
times will achieve the desired soundness probability.

Claim 3.9. For all values of n ≥ 2, if we assume in the soundness case that the cheating prover
strategy maximises the probability the verifier accepts, Hwt(Y) = w.

Proof. We proceed by induction on the length of the binary representation of n, denoted by R =
⌈log(n)⌉.

For the base case, suppose R = ⌈log(n)⌉ = 1 ⇐⇒ n = 2. Here the input length n = 2 and
thus, w ≤ 2. In the one round of the binary split the prover sends h′0, h

′
1 for which Y = h′0h

′
1 so that

the value of Hwt(Y) has to be equal to w as if the prover sends values such that h′0 + h′1 ̸= w, the
verifier will reject before it checks its sample in step 1d with probability 1, so the optimal prover
strategy will send values such that Hwt(Y) = w.

For some k ∈ N, suppose that Hwt(Y) = w for R = k − 1, let us take R = k. In the first round
of the binary split: we have that h′0 + h′1 = w, as otherwise the verifier would immediately reject
with probability 1, let Y [0] be the restriction of Y to I0, define Y [1] similarly.

By the inductive assumption as ⌊log(|I0|)⌋ = k − 1, we have Hwt(Y [0]) = h′0, and similarly
Hwt(Y [1]) = h′1. Therefore, Hwt(Y) = Hwt(Y [0]) + Hwt(Y [1]) = h′0 + h′1 = w.

Round complexity: This is the number of times the prover sends hs0, hs1 which is O
(
log(n)

ε

)
.

Communication complexity: The prover sends the values of hs0 and hs1 at each iteration

of the binary search. This happens ⌈log(n)⌉ many times for each sample, and there are O
(
log(n)

ε

)
samples chosen. The verifier only sends the prover O

(
log(n)

ε

)
bits of information over the course

of the IPP. Therefore in total, the communication complexity is O
(
log(n)2

ε

)
.

Remark 7. It is worth noting that the distribution-free IPP from Theorem 3.8 offers a quadratic
improvement in the total “access” complexity (sample complexity and query complexity) over both
its distribution-free tester [CEG95], as well as what we get by using the generic distribution-free
IPP from Theorem 5.2 (since any symmetric language is computable in NC1).

Finally, we observe that the distribution-free IPP for HAM(w) easily extends to any symmetric
language in the following corollary.

Corollary 3.10. Any symmetric language L has a distribution-free IPP with round complexity

O
(
log(n)

ε

)
, communication complexity O

(
log(n)2

ε

)
and sample complexity O

(
1
ε

)
.

Proof. For any input X ∈ {0, 1}n, this is clear from the fact that by having the prover send the
w′ = Hwt(X), we reduce this problem to an instance of HAM(w′), so that the completeness and
soundness conditions follow from its distribution-free IPP. The round complexity only increases by
1 and the sample complexity is unchanged but the communication complexity increases by log(n)

29

for the number of bits sent to specify w′. This leaves the communication complexity unchanged at

O(log
2(n)
ε).

3.3 Separation between IPPs and Distribution-Free IPPs

In this section, we demonstrate that not all languages with a uniform IPP have a distribution-free
IPP with the same query and communication complexity. We do so by showing the existence of a
language L that has an efficient IPP but for which any distribution-free IPP requires a very large
complexity. As a matter of fact, the result is even stronger as the IPP for L is essentially just a
property tester - that is, the prover is not required.

The proof is rather straightforward - we construct a language L in which a very small portion
of the input consists of a very hard property. A standard property tester can safely ignore this part
of the input (since it is small), but for a distribution-free IPP, the distribution could be entirely
concentrated on this small portion.

Proposition 3.11. Suppose that there exists ε > 0 s.t. for all q = q(n) ≤ n, there exists a language
L and a function ℓ(n) s.t. for any uniform IPP (respectively uniform MAP) for L, with proximity
parameter ε, query complexity q = q(n), and communication complexity c = c(n), max(q, c) ≥ ℓ(n),
then the following is true.

For all q = q(n) < ε
2 ·n, there exists a language L′ =

⋃
n∈N L′

n which has the following properties:

1. The property testing query complexity for L′ with proximity parameter ε is O(1/ε).

2. For any distribution-free IPP (respectively MAP) for L′ with proximity parameter ε, query
complexity q(n), and communication complexity c(n), it holds that max(q(n), c(n)) ≥ ℓ(n′),
where n′ = (ε/2) · n.

Proposition 1.7 follows from Proposition 3.11 using known results. Specifically, [KR15, Theorem
4] shows a language for which the conditions of Proposition 3.11 hold for ℓ(n) = Ω(

√
n) (assuming

the PRGs from the hypothesis of Proposition 1.7). The second item of Proposition 1.7 follows
from [GR18, Theorem 4], which shows there exists a language with no efficient MAP satisfying the
criterion for ℓ(n) = Ω(n).

Proof of Proposition 3.11. We prove the theorem w.r.t. to IPPs (i.e., where both the assumption
and conclusion are for IPPs). The result for MAPs is proved in exactly the same way.

Suppose there exists ε > 0 as in the statement of Proposition 3.11. Let q = q(n) ≤ ε
2 · n and

L =
⋃

n∈N Ln be a language such that every IPP for L with wrt proximity parameter ε with query
complexity q has communication complexity c such that max(q, c) ≥ ℓ(n).

We construct a language L′
n as follows.

L′
n =

{
(0(1−ε/2)·n, x) | x ∈ L(ε/2)·n

}
Thus, inputs to L′

n consists of an input of length (ε/2) · n of L, which is preceded by (1− ε/2) · n
zeros. The high level idea is that since the vast majority of the input is always 0, the language L′

is easy to test. However, in the distribution-free setting, we can concentrate all of the “weight” of
the distribution on the suffix. Details follow.

Indeed, in the uniform case, there is a trivial property tester for L′ that queries the input O(1/ε)
times sampled uniformly over the first

(
1− ε

2

)
· n bits and accepts if and only if all the queries

30

return 0. For any I ⊆ [n], we denote by X|I the substring of X restricted to I. Completeness
follows as the tester will accept for X ∈ L′ as all queries return 0 by the definition of L′. Soundness
follows as for dU (X,L′) > ε, by the triangle inequality, dU (X|[n·(1− ε

2)]
, 0n−(ε/2)n) > ε − ε/2 ≥ ε/2

and the tester will query a non-zero entry with high probability after O(1/ε) queries.
We proceed to the distribution-free setting. Let D be the distribution which is uniform over the

last (ε/2) · n bits. Suppose there exists an IPP for L′ with query complexity q and communication
complexity c along D with proximity parameter ε. This IPP immediately yields yields a uniform
IPP for L for input size ε

2 · n and proximity parameter ε. This follows as the distance of X from L′

is now the uniform distance from X restricted to
[
n− ε

2 · n+ 1, n
]
to L. In other words,

dD(X,L′) = dU (X|[n− ε
2
·n+1,n], L).

Thus, for any distribution-free IPP for L′
n with query complexity q(n) and communication

complexity c(n), there is a uniform IPP for inputs of length n′ = ε
2 · n for L with query complexity

q′(n′) = q(n) and communication complexity c′(n′) = c(n). By the definition of the language L,
max(q(n), c(n)) ≥ ℓ(n′) by the property of uniform IPPs for L.

4 Distribution-Free IPPs for NC

Recall that the class NC consists of languages computable by a sequence of Boolean circuits {Cn}n∈N
of polynomial size and poly-logarithmic depth. In this section, we construct a distribution-free IPP
for any language in logspace-uniform NC that uses O(1/ε) queries, as well as O(1/ε) samples from

the input, and O
(
n · ε · polylog(n) + log(n)

ε

)
bits of communication, on inputs of length n and

proximity parameter ε.
Our approach extends the strategy in [RVW13] to the more involved setting of distribution-free

testing. In Section 4.2, we show that the polynomial evaluation problem PVAL, defined in Section
4.1, is not only ‘complete’ for constructing uniform IPPs for languages computable by low-depth
circuits, but also for constructing distribution-free IPPs in the following sense: we reduce the task
of proving proximity to any such language over an unknown (but fixed) distribution, to proving
proximity to PVAL with respect to a new, hybrid-metric notion of soundness. This interactive
reduction is used in all our distribution-free IPPs in this paper.

It is worth noting that analysis over this hybrid metric provides for a better exposition for
Sections 5 and 6, and we also use it here to maintain overall consistency. In essence, it captures
the case analysis explained in Section 1.3.1.

Finally, in Section 4.3 we prove that in fact, constructing distribution-free IPPs for any lan-
guage computable in low-depth reduces to constructing an IPP for PVAL only over the uniform
distribution. We restate the main result of this section.

Theorem 4.1 (Distribution-Free IPP for languages computable in low depth). For every

language L in logspace-uniform NC and every ε > 200 log3(n)
n , there exists a distribution-free IPP for

L with proximity ε, having query complexity O
(
1
ε

)
, sample complexity O

(
1
ε

)
and communication

complexity O
(
log(n)

ε

)
+ ε · n · polylog(n). Moreover, the verifier runs in time Õ

(
1
ε + ε · n

)
, the

prover runs in time poly(n) and the round complexity is polylog(n).

Note that this parameterisation is different from the one stated in Theorem 1.1 and we use it for
more convenience in our analysis. The argument that Theorem 4.1 implies Theorem 1.1 follows. For

31

any input length n ∈ N, let the trade-off parameter τ be such that τ ≤
√
n. Applying Theorem 4.1

with the proximity parameter ε′ = min(ε, 1/τ), we obtain a distribution-free IPP that has query

and sample complexities O(1/ε′) ≤ τ+O(1/ε), communication complexity O
(
log(n)

ε + log(n) · τ
)
+

(n/τ)·polylog(n), and verifier runtime Õ
(
τ + n

τ + 1
ε

)
, as stated in Theorem 1.1. On the other hand,

the converse simply follows by setting τ = O(1/ε) in Theorem 1.1.
In particular, for the case when ε ≥ 1/

√
n, we obtain a distribution-free IPP for NC that achieves

the optimum of the trade-off between the sum of query and communication complexities. Formally,

Corollary 4.2. For every language L in logspace-uniform NC and every ε ≥ 1/
√
n, there exists

a distribution-free IPP for L with proximity parameter ε, having query and sample complexities
O(
√
n), with the communication complexity and verifier running time being at most Õ(

√
n).

4.1 The Polynomial Evaluation Problem

Let F be a finite field, and [k] be identified with a subset of F of size k ∈ N via some bijection. Let
m,n ∈ N be integers such that n = km. We start by defining the low-degree extension of a string
in Fkm .

Definition 4.1 (Low-degree Extension (LDE)). For any X ∈ Fn
(
or alternatively X ∈ Fkm

)
, we

define PX : Fm → F as the unique m-variate polynomial over F with individual degree at most k−1,
such that it evaluates to X on [k]m.

We next define the polynomial evaluation problem PVAL. For any fixed set of points J ⊂ Fm

and a vector of values v⃗ ∈ F|J |, PVAL parameterised by J, v⃗, is the problem of deciding whether
the LDE of the given input X ∈ Fn is consistent with v⃗ on the points in J . Formally, the language
PVAL is defined as follows.

Definition 4.2 (PVAL, [RVW13]). PVAL is a language parameterised by (F, k,m, J, v⃗), where J ⊂
Fm and v⃗ ∈ F|J |, such that an input X ∈ Fkm belongs to PVAL(F, k,m, J, v⃗) if and only if for every
j ∈ J , PX(j) = v⃗j. Equivalently, this can be stated as saying that PX(J) = v⃗.

When it is clear from context, we drop F, k,m from the explicit input (i.e., the string of input
parameters) and consider X as an instance of PVAL(J, v⃗).

4.2 Distribution-Free Interactive reduction from NC to PVAL

We first demonstrate an interactive protocol that reduces the problem of constructing a distribution-
free IPP for any low-depth computable language L to an instance of PVAL, but over a hybrid distance
metric. In more detail, we depart from the interactive reduction by [RVW13] for the uniform setting,
by showing that in the soundness case where the input is ε-far along D from L, this generalised
reduction produces an instance for PVAL that only satisfies a weaker promise with respect to a
new distance measure, instead of guaranteeing distance with respect to D. Complementing this,
our new task will be to design IPPs for PVAL which are powerful enough to reject a larger set of
inputs that satisfy this weaker soundness promise, which we show in Section 4.3 (see also Sections
5.3 and 6.2).

The soundness condition in our case is based on a hybrid metric defined across the underlying
distribution Dn and the uniform distribution Un. We say that on a given input X, if for every
Y ∈ PVAL: dU (X,Y) ≥ ε or dD(X,Y) ≥ ε, then the IPP should reject the input X (this is exactly

32

when PVAL does not intersect the shaded region of Figure 1). The set of inputs X ε-far along D
from PVAL is a subset of this collection of inputs we need to reject. We explain the reason for
reducing to this metric in the following section.

4.2.1 Protocol Intuition for the Interactive Reduction

Let L be a language in NC. For any inputX ∈ {0, 1}n for L, and any arbitrary but fixed distribution
D ∈ ∆([n]), the interactive reduction runs t = O(ε · n · log(n)) instances of the GKR protocol on L
[GKR15]. Here we identify X as a (Boolean-valued) vector in Fkm , where km = n as noted above.

The GKR protocol is an interactive protocol whose output is (j, v) on input X. If X ∈ L, then
PX(j) = v with probability 1, and if X ̸∈ L, then PX(j) = v with probability at most 1/2. This
can be thought of as X ∈ L being reducible to X ∈ PVAL({j}, {v}).

Each instance of the GKR protocol generates a pair (j, v), and all of these pairs are collected
together into (J, v⃗) which defines an instance of PVAL. The completeness of this reduction follows
immediately from that of the GKR protocol, as each pair (j, v) represents the true statement
that PX(j) = v. On the other hand, for any X ′, if X ′ ̸∈ L, then for any malicious prover, the
probability that X ′ ∈ PVAL(J, v⃗) will be at most 2−t by the soundness of the GKR protocol, i.e.,
X ′ /∈ PVAL(J, v⃗) with high probability. By taking a union bound over all X ′ considered close
enough to X (all of which are not in L by the soundness condition of an IPP) and setting t to
be large enough, with high probability, all such close element are not in PVAL implying distance
between X and PVAL.

A natural idea is to now try to argue that, by setting t to be sufficiently large, the input
X is also far along D from PVAL. However, as discussed in Section 1.3.1, the difficulty here is
that while the size of the uniform ε-ball17 BU ,ε(X) around a single element is relatively small, a
similar ball defined by D can be extremely large. In more detail, the uniform ball around a single
element has size O(nεn), so we need to take t = O(log(nεn)) = O(εn log(n)) repetitions of the
GKR protocol in order to apply the union bound in uniform setting. On the other hand, suppose
that the underlying distribution D is supported only over the first log(n) indices, then BD,ε(X)
contains at least 2n−log(n) elements. We now need log(2n−log(n)) ≈ n many instances of the GKR
protocol, which already means that the resulting IPP no longer as sublinear time verification and
communication complexity.

From hereon, it is not obvious how to proceed or even if there is a reduction to showing an
IPP for PVAL. To this end, our solution is to instead, reduce to PVAL over a new soundness
constraint. Beginning with the initial promise on the input, dD(X,L) > ε, we take the intersection
of BD,ε(X) and BU ,ε(X). This set is of course, bounded above by the uniform ball BU ,ε(X), but
also does not contain any elements of L (by the soundness condition) as shown in Figure 1. Taking
a similar union bound over this intersection, we now have a weaker soundness condition for PVAL,
µD,U (X,PVAL) > ε, signifying that no element in the intersection of those two balls is in PVAL. In
other words, with high probability, we have

dD(X,L) > ε =⇒ µD,U (X,PVAL) = min
Y ∈PVAL

(max(dU (X,Y), dD(X,Y))) > ε.

17Recall that for a distribution D, the ε-ball along D around a point X, BD,ε(X), is the set of elements ε-close to
X along D

33

4.2.2 Interactive Reduction from NC to PVAL

Below, we prove our reduction from verifying the proximity of an instance to a language in NC to
verifying the proximity of an instance to PVAL, in the distribution-free sense.

Theorem 4.3. For any ε > 0 and any language L computable by logspace-uniform Boolean circuits
of depth ∆L = ∆L(n), size S = S(n), and fan-in 2, any k ∈ N and m = logk(n), the following
holds. Let F be a finite field of size |F| = Ω(k ·∆L · log(S)).

There exists an interactive protocol (PNC, VNC) with input X ∈ {0, 1}n, whose output is a coor-
dinate set J ⊆ Fm of size t = 4ε · n · log(n), and a vector v⃗ ∈ F|J | defining an instance of PVAL,
such that:

1. Completeness: If X ∈ L, then (J, v⃗) is such that X ∈ PVAL(J, v⃗) (with probability 1). In
other words,

X ∈ L =⇒ P
VNC

[X ∈ PVAL(J, v⃗)] = 1

2. Soundness: ∀D ∈ ∆([n]), if dD(X,L) > ε, then for any cheating prover strategy with
probability at least 1/2 over the verifier’s coins, µD,Un(X,PVAL(J, v⃗)) > ε. In other words,

dD(X,L) > ε =⇒ P
VNC

[µD,U (X,PVAL(J, v⃗)) > ε] ≥ 1

2

The prover runs in time poly(S, log |F|), and the verifier runs in time ε·n·poly(k,∆L, log(S), log |F|)
(the verifier does not need to access the input X). The communication complexity is ε · n ·
poly(k,∆L, log(S), log |F|), and the number of rounds is O(∆L · log(S)). Moreover, J is a uni-
formly random set of t points from Fm.

Remark 8. Note that this interactive reduction does not transform the input X or even access it.
Instead, we invoke an interactive protocol that outputs a concise description of a different language
(namely, a parameterisation of the PVAL language) to which the distance from X is preserved (with
high probability) over a different metric.

The proof of Theorem 4.3 relies on a result by Goldwasser, Kalai and Rothblum [GKR15], which
states that there is an interactive protocol reducing low depth languages to PVAL on a single point
(i.e., |J | = 1).

Theorem 4.4 ([GKR15]). Let L be a language computable by logspace-uniform Boolean circuits
of depth ∆L = ∆L(n), size S = S(n), and fan-in 2, for any k ∈ N and m = logk(n), then the
following holds. Let F be a finite field of size |F| = Ω(k ·∆L · log(S)).

There exists an interactive protocol (PGKR, VGKR), with input X ∈ {0, 1}n, that outputs a coor-
dinate j ∈ Fm and a value v ∈ F, such that:

• Completeness - if X ∈ L then with probability 1, the m-variate low degree extension with
individual degree k − 1 evaluated at j is v: PX(j) = v with probability 1. In other words,

X ∈ L =⇒ P
VGKR

[PX(j) = v] = 1.

34

• Soundness - if X ̸∈ L then for every prover strategy, the probability that PX(j) = v is at
most 1/2 over the verifier’s randomness. In other words,

X ̸∈ L =⇒ P
VGKR

[PX(j) = v] ≤ 1

2
.

The verifier runs in time poly(k,∆L, log(S), log |F|), the prover runs in time poly(S, log |F|), the
communication complexity is poly(k,∆L, log(S), log |F|), and the number of rounds is O(∆L·log(S)).
Moreover, the coordinate j is a uniformly random point from Fm.

Equipped with Theorem 4.4, we are now able to prove our reduction.

Proof of Theorem 4.3. Let (PNC, VNC) be the protocol for which t = 2εn(log(n)+log |F|) ≤ 4εn log(n)
iterations of (PGKR, VGKR) from Theorem 4.4, are run in parallel. This implies that the round com-
plexity is the same as that of a single iteration of this protocol (see, e.g., [GR17, Appendix A] for
additional details). This yields t pairs of the form (j, v) ∈ Fm × F. We collect all of these terms
into a set of coordinates J ⊆ Fm and a set of claims of values on the set v⃗ ∈ Ft.

The running times, round complexity and communication complexity follow from this construc-
tion as it is t = O(εn(log(n)+log |F|)) times the complexity of a single run of (PGKR, VGKR). By the
perfect completeness of each run of (PGKR, VGKR), each invocation produces a pair (j, v) for which
PX(j) = v, we have that the collection of these t parallel runs that generate an instance of PVAL
also satisfy that PX(J) = v⃗.

It remains to prove the soundness of this protocol. Suppose that dD(X,L) > ε. Now, the
probability that any X ′ ̸∈ L is in PVAL is at most 2−t < 1/(2n · |F|)ε·n; this is the probability that
it is consistent with the outputs of each run of (PGKR, VGKR).

It suffices to prove that, with high probability, no element of PVAL is in the intersection BD,ε(X)
and BU ,ε(X). The number of elements in the intersection of these two balls is bounded by the size
of the uniform ball, in other words,

|BD,ε(X) ∩BUn,ε(X)| ≤ |BUn,ε(X)| ≤ nεn.

Therefore taking the union bound over the entire intersection we have the probability of any element
in that intersection satisfying PVAL is less than nεn · 1

24εn log(n) < 1/2 as all of those elements are
not in L, this implies that µD,Un(X,PVAL) > ε with high probability.

4.3 Proof of Theorem 4.1

In this section, we prove our main result that constructs distribution-free IPPs for any language
computable by logspace-uniform circuits of low-depth.

High level sketch of the proof: Consider the (soundness) case where the input X ∈ {0, 1}n
to an NC-language L is such that dD(X,L) > ε. Our main goal is to reduce the construction of a
distribution-free IPP for L to a uniform IPP for PVAL over a larger index set (J ∪ I), for which we
can use a pre-existing IPP from [RR20] (which is a quantitative improvement over a prior IPP for
PVAL from [RVW13]), and get the stated query and communication complexities.

To this end, for the output (J, v⃗) for which the interactive reduction from NC to PVAL from
Theorem 4.3 guarantees that µD,U (X,PVAL(J, v⃗)) > ε. If X is far from PVAL along the uniform

35

distribution, the uniform IPP will reject and so we can assume that X is close to PVAL(J, v⃗)
uniformly (i.e., dU (X,PVAL(J, v⃗)) ≤ ε). At this point we observe that since PVAL is a good error
correcting code (i.e., with large minimal distance), the input X must be close to a unique element
X ′ ∈ PVAL(J, v⃗). However, by our soundness assumption over µ, we know that dD(X,X ′) > ε.

Now, the verifier generates O(1/ε) samples I from D (and the corresponding values in X). Let
PVAL′(I,X|I) be the set of strings in PVAL which agree withX on I. Alternatively, PVAL′(I,X|I) =
PVAL((J, I), (v⃗, X|I)). Since dD(X,PVAL(J, v⃗)) > ε from our initial assumption, we see that with
high probability there exists an index in I on which X ′ and X disagree on. In other words,
X ′ is not in PVAL′(I,X|I) and using the above properties of X ′, we see that X is ε-far from
PVAL((J, I), (v⃗, X|I)) along the uniform distribution. Thus, by applying the uniform IPP we can
catch the cheating prover.

Theorem 4.5 (Theorem 4.1 restated). For every n ∈ N, let L ⊆ {0, 1}n be a language computable
by logspace-uniform circuits with depth ∆L = ∆L(n) ≥ log(n) and size S = S(n). Then, for

ε > 200 log3(n)
n , there exists a distribution-free interactive proof of proximity for L with perfect

completeness and soundness at least 1/2.
This protocol has query complexity O

(
1
ε

)
, sample complexity O

(
1
ε

)
, and communication com-

plexity O
(
log(n)

ε + ε · n · poly(∆L)
)
. In addition, the honest prover runs in time poly(n, S) and

the verifier runs in time Õ
(
1
ε + ε · n · poly(∆L)

)
. Finally, the round complexity of the protocol is

polylog(n) +O(∆L · log(S)).

To prove this, we need the following IPP for PVAL over the uniform distribution.

Theorem 4.6 (Uniform IPP for PVAL [RR20]). Let n ∈ N, ε ≥ 200 log3(n)
n , and F be a finite field

of characteristic 2 of size |F| = Θ(n3ε2 log4(n)).
Then, for any set J ∈ (Fm)t of size O(n · ε · log(n)) and v⃗ ∈ Ft, there exists a uniform

IPP, (PUnif , VUnif), for PVAL(J, v⃗). This protocol has perfect completeness, soundness 1/2, query
complexity O(1/ε), communication complexity Õ(n·ε). Moreover, the honest prover runs in poly(n)
time, the verifier runs in time Õ

(
1
ε + ε · n

)
, and the number of messages communicated between

them is polylog(n).

Proof of Theorem 4.5. We construct a distribution-free IPP with perfect completeness and a con-
stant soundness error (specifically 4/5) which can reduced to, say 1/3, by repetition. This distribution-
free IPP for NC is given in Protocol 3.

The complexities follow from inspection for the chosen parameters. In particular, the query
complexity comes from the IPP for PVAL(J, v⃗) from Theorem 4.6 and the O(1/ε) samples in Step
2 of the protocol make up the sample complexity. The running times of the prover and the verifier,
along with the round complexity come from the sums of the respective values from Theorems 4.3
and 4.6. The communication complexity follows similarly, but also includes the T samples sent to
the prover in addition.

The perfect completeness of Protocol 3, follows from the combination of the completeness
guarantees of (PNC, VNC), as well as (PUnif , VUnif). On the other hand, for soundness, suppose
dD(X,L) > ε. Firstly, we have the following result from [RR20].

Lemma 4.7 (Follows from Proposition 5.4 in [RR20]). Let F be any field and m,n ∈ N. Let
dmin(PVAL(J, v⃗)) represent the relative minimum Hamming distance between any pair of n-length

36

Protocol 3 Distribution-free IPP for any language L computable by circuits of size S(n) and depth
∆L(n).

Input: The verifier Vdf gets implicit input X ∈ {0, 1}n that is accessible through a query oracle,
as well as the sample oracle OD(X), for some unknown distribution D. The verifier also gets
explicit access to ε > 0. The prover Pdf gets direct access to X and ε.

The distribution-free IPP:

1. Let (PNC, VNC) be the interactive reduction from Theorem 4.3 with proximity parameter
ε. Pdf and Vdf run (PNC, VNC) on X, to output a set J ⊂ Fm of size t = 4ε · n · log(n) and
v⃗ ∈ Ft, using parameters k = 2 and m = log(S).

2. Vdf sets T = 3/ε and picks T fresh samples I = ((i1, Xi1), . . . , (it, XiT)) from OD(X). Let
z ∈ {0, 1}T zj = Xij , for every j ∈ [T]. The verifier Vdf sends (I, z) to Pdf .

3. Pdf and Vdf run the uniform IPP (PUnif , VUnif) from Theorem 4.6 for PVAL((J, I), (v⃗, z⃗)) on
input X, using parameters m = log(n) and r = log(1/ε).

4. Vdf accepts if and only if VUnif accepts.

strings in PVAL(J, v⃗). For any t ≥ 2ε · n(log(n) + log |F|) + 4, we have

P
J∼U(Fm)t

[dmin(PVAL(J, v⃗)) < 2ε · n] < 2−4 < 1/10.

Using this, we prove the following lemma that establishes the constraints satisfied by the output
(J, v⃗) of the protocol (PNC, VNC) from Theorem 4.3.

Lemma 4.8. For any n ∈ N, ε > 0, distribution D over [n], X ∈ {0, 1}n, and language L ⊆ {0, 1}n
computable by logspace-uniform circuits with depth ∆L = ∆L(n) and size S = S(n), if dD(X,L) > ε,
the output (J, v⃗) of the protocol (PNC, VNC) from Theorem 4.3 satisfies the following conditions:

• P
VNC

[µD,U (X,PVAL(J, v⃗)) > ε] > 0.5.

• P
VNC

[∃X1 ̸= X2, such that X1, X2 ∈ BU ,ε(X) and X1, X2 ∈ PVAL(J, v⃗)] < 0.1.

While the first condition maintains the soundness guarantee along the hybrid metric promised
by Theorem 4.3, the second condition implies that there is at most one element close to X uniformly
that is in PVAL.

Proof of Lemma 4.8. The first item is satisfied from the soundness guarantees of (PNC, VNC) by
Theorem 4.3.

To prove the second item, we first observe that the probability (over the internal randomness
of VNC) that there exist two distinct strings that are ε-close to X along the uniform distribution in
PVAL is at most the probability that there exist two distinct strings in PVAL that are 2ε-close.

37

P
VNC

[∃X1 ̸= X2, such that X1, X2 ∈ BU ,ε(X) and X1, X2 ∈ PVAL(J, v⃗)]

≤ P
VNC

[∃X1 ̸= X2, such that dU (X1, X2) < 2ε and X1, X2 ∈ PVAL(J, v⃗)]

= P
VNC

[dmin(PVAL(J, v⃗)) < 2ε · n]

< 0.1.

The first transition follows from the triangle inequality for Hamming distances as the distance
between such an X1, X2 is at most the sum of their distances to X. In turn, this probability is
equal to that of the minimum distance of PVAL being less than 2ε, as seen in the next line. Since
J is distributed uniformly at random and generated using VNC’s internal randomness, and its size
is 4ε · n log(n) ≥ 2ε · n · (log(n) + log |F|) + 4, this probability can be upper bounded using Lemma
4.7.

In the first step of each repetition of Protocol 3, we have µD,U (X,PVAL(J, v⃗)) > ε with proba-
bility at least 1/2 by the first item of Lemma 4.8. Suppose that dU (X,PVAL(J, v⃗)) > ε, then VUnif

rejects with probability at least 1/2 in Step 3.
On the other hand, suppose that dU (X,PVAL(J, v⃗)) ≤ ε. Then, from the second item of Lemma

4.8, observe that with probability at least 9/10, there exists at most one W ∈ PVAL(J, v⃗) such that
dU (X,W) < ε.

Further, using the guarantee from the first item of Lemma 4.8, we see that dD(X,PVAL(J, v⃗)) >
ε, and in particular, dD(X,W) > ε. In turn, this implies that W ̸∈ PVAL((J, I), (v⃗, z⃗)) with
probability at least 9/10, since at least one of the entries of z will be an index on which X and W
disagree. More precisely,

P[W ̸∈ PVAL((J, I), (v⃗, z⃗))] ≥ P[∃i ∈ I : Xi ̸= Wi]

≥ 1− (1− ε)t

= 1− (1− ε)3/ε

≥ 1− e−3

> 9/10.

Put together, in each repetition, with probability at least 2/5 (over the internal randomness of
VNC and the choice of I), dU (X,PVAL((J, I), (v⃗, z⃗))) > ε. Indeed, this is the probability that both
the items of Lemma 4.8 hold (more precisely, Item 1 and the complement of Item 2), times the
probability that W /∈ PVAL((J, I), (v⃗, z⃗)).

Thus, at the end of each round, Vdf rejects X with probability at least 1/5, by the sound-
ness guarantee of Theorem 4.6. Soundness error 1/2 can now be achieved by standard soundness
amplification.

5 IPPs over Dispersed Distributions

In Section 4, we showed the construction of a distribution-free IPP for any NC language that uses τ+
O
(
1
ε

)
queries and Õ(nτ+

1
ε) bits of communication, for every τ ≤

√
n and ε. For ε > τ/n this matches

the best IPPs for the uniform distribution. However, for ε < τ/n, the communication complexity is

38

at least Ω̃(n/τ). Compare this to [RVW13], where for any ε = o
(
τ
n

)
, the communication complexity

is Õ(n/τ), still with O(1/ε) query complexity.
While we do not know how to overcome this problem in general, in this section, we introduce a

classification of distributions over [k]m (and km = n), which we call ρ-dispersed distributions (for
1 ≤ ρ ≤ k), to capture the “closeness” of the behaviour of an underlying distribution to the Uniform
distribution. Under such a definition, the larger the value of ρ, the lesser the distribution behaves
like the uniform distribution in this sense. In particular, ρ = 1 captures the uniform distribution,
while every distribution is k-dispersed. For IPPs over the set of ρ-dispersed distributions for a small
enough ρ, we match the result by [RVW13].

For our main result of this section, we construct IPPs for NC languages over ρ-dispersed distri-
butions, which give a smooth trade-off between ρ and the query complexity for fixed communication
complexity. In particular, for small enough values of ρ (i.e., distributions behave like the uniform
distribution), these IPPs achieve better communication complexity than Theorem 1.1, for roughly
the same query complexity when the proximity parameter ε is less than 1/

√
n.

Section Organization. First, we define ρ-Dispersed Distributions in Section 5.1 and then state
the main theorem of this section which is an IPP for NC over such distributions. Subsequently, we
show the construction of an IPP for PVAL over (hybrid metrics for) ρ-Dispersed Distributions in
Sections 5.2 and 5.3, that builds on certain structural properties of such distributions. The final
IPP from Theorem 5.2 is obtained by combining the reduction from Theorem 4.3 with this IPP for
PVAL, and its formal details are provided in Section 5.3.

5.1 ρ-Dispersed Distributions

Below, we define ρ-Dispersed distributions. These are distributions over [k]m for some k,m ∈ N
over which the probability of any element is at most ρ times the average probability taken over any
single dimension. Formally,

Definition 5.1 (ρ-Dispersed Distributions). Let ρ ∈ R be such that 1 ≤ ρ ≤ k. We say that a
distribution D ∈ ∆([k]m) is ρ-Dispersed, if for every j ∈ [m] and for every (i1, . . . , im) ∈ [k]m, we
have

D(i1, . . . , im) ≤ ρ · E
t∼Uk

[D(i1, . . . , t, . . . , im)],

where D(·) denotes the probability mass function.

In other words, for any element i in the support of a ρ-Dispersed distribution D and for every
dimension j ∈ [m], D(i) is at most ρ times the average of D along the jth-dimension, keeping the
rest of the coordinates of i fixed.

For any 1 ≤ ρ ≤ k, we consider ρ-Dispersed distributions as a way of capturing distributions
that behave closely to the uniform distribution. In particular, observe the following simple facts.

• The uniform distribution is a 1-Dispersed distribution as this implies that no index has weight
which is greater that the average.

• Moreover, any distribution over [k]m is trivially a k-Dispersed distribution as k times the
average is the total over that dimension for which every weight in that column is at most that
value.

39

• Let D be a distribution, such that for some i1, · · · , im−1 ∈ [k], there is only one element in the
set {(i1, · · · , im−1, s)}s∈[k] for which D has non-zero weight (and the rest of the distribution
can behave arbitrarily). Then, D is k-dispersed but not (k − δ)-dispersed for any δ > 0.
Indeed, suppose the element with non-zero weight in this set is (i1, . . . , im−1, s0). Then,

D(i1, · · · , im−1, s0) =
k∑

s=1

D(i1, · · · , im−1, s) = k E
s∼Uk

[D(i1, · · · , im−1, s)].

• α-log Lipschitz distributions, introduced by [AFK13], define distribution families which are
locally smooth, in the sense that if points that are close to each other in Hamming distance
cannot have vastly different probability masses under D. More formally, we define α-log
Lipschitz distributions as follows:

Definition 5.2. A distribution D is α-log Lipschitz if ∀x, x′ ∈ [k]m that differ in only one
value, the following holds.

| log(D(x))− log(D(x′))| ≤ log(α)

Equivalently stated, we have for every x, x′ ∈ [k]m that differ in only one value, D(x)
D(x′) ≤ α.

This notion captures a wide variety of popularly studied distributions and has been studied
in several different contexts (cf. [AFK13] for more references). Examples include the uniform
distribution (α = 1) or product distributions over [k]m, where the probability of sampling

each element is in the interval
[

1
k−1+α ,

α
k−1+α

]
.

We observe that any α-log-Lipschitz distribution is also
(

α·k
α+k−1

)
-dispersed.18 This holds

because, the log-Lipschitz condition of D implies that for the index (i1, · · · , im) ∈ [k]m and

value t ∈ [m] for which the ratio D(i1,···im)
E

t∼[k]
[D(i1,··· ,t,··· ,im)] is maximised, the following is true.

max

 D(i1, · · · im)

E
t∼[k]

[D(i1, · · · , t, · · · , im)]

 = max

(
kD(i1, · · · im)∑

t∈[k]D(i1, · · · , t, · · · , im)

)

≤ kD(i1, · · · im)

D(i1, · · · im) + k−1
α D(i1, · · · im)

=
α · k

α+ k − 1

and thus, it is
(

α·k
α+k−1

)
-dispersed. In particular, we know that ko(1)-log-Lipschitz distribu-

tions are ko(1)-dispersed.

18Note that this inclusion is strict, since α-dispersed distributions need not be supported on all elements, unlike
α-log-Lipschitz distributions, which by definition have non-zero measure everywhere.

40

• Let D̂ be an m-product distribution over [k]m defined as D̂ = D × · · · × D, where D is a
distribution over [k] with minimum weight pmin and maximum pmax, and the product is

taken m times. Then, D̂ is
(

kpmax

pmax+(k−1)pmin

)
-dispersed. To see this, observe that, pmax =(

kpmax

pmax+(k−1)pmin

)
· E
t∼D

[D(t)] as E
t∼D

[D(t)] = pmax+(k−1)pmin

k .

For any distribution D over [k]m, for any p ∈ [m] and for any (i1, · · · , im−p) ∈ [k]m−p, we define
the marginal distribution over p dimensions as D(m−p) ∈ ∆(Ωkm−p) as follows.

D(m−p)(i1, · · · , im−p) =
∑
t∈[k]

D(i1, · · · im−p, t).

Note that for p1, p2 ∈ [m], D(m−p1)(m−p2) = D(m−p1−p2).

Lemma 5.1. For any m, k, ρ ∈ N, and any distribution D over [k]m, D is a ρ-Dispersed distribution
implies D(m−1) is ρ-Dispersed.

Proof. We first restrict our attention to the ρ-Dispersed condition on the first index and the same
analysis extends to this condition on any index in [m−1]. For any (i1, . . . , im−1) ∈ [k]m−1, we have

D(m−1)(i1, · · · , im−1) =
∑
j∈[k]

D(i1, · · · , im−1, j)

≤
∑
j∈[k]

ρ E
l∼[k]

[D(l, i2, · · · , im−1, j)]

≤ ρ E
l∼[k]

∑
j∈[k]

D(l, i2, · · · , im−1, j)


≤ ρ E

l∼[k]
[D(m−1)(l, i2, · · · , im−1)]

The first and last lines follow by the definition of D(m−1).

We now state the main theorem of this section. Again, for convenience, we stick to the setting
where the query vs communication complexity trade-off parameter is set to O(1/ε).

Theorem 5.2 (Formal statement for Theorem 1.2). Let n ∈ N, and set k = log(n) and m = logk(n)
(such that km = n), let L ⊆ {0, 1}n be a language computable by logspace-uniform circuits with
depth ∆L = ∆L(n) and size S = S(n). Then, for ε > 0, ρ ∈ R, there exists an interactive proof of
proximity over ρ-Dispersed distributions over [k]m for L with perfect completeness and soundness
at least 1/2.

This protocol has query complexity ρlog(1/ε)/ log log(n)

ε1+o(1) , sample complexity ρlog(1/ε)/ log log(n)

ε1+o(1) , communi-

cation complexity ε1−o(1)·n·log2(n)+ε·n·poly(∆L) and round complexity O

(
log(1

ε)
log log(n) +∆L · log(S)

)
.

In addition, the honest prover runs in time poly(S, n) and the verifier runs in time

no(1) ·

(
ρlog(1/ε)/ log log(n)

ε
+ ε · n · poly(∆L)

)
.

41

Figure 3: During the polynomial folding protocol, the prover sends the univariate LDE of each row
of X evaluated on the columns of J , collected in the matrix Y ∈ Fk1×t. For any j = (j1, j2) ∈ J ,
the univariate LDE of the jth2 -column of Y restricted to j1 is equal to v⃗[j].

It is worth noting that for ρ = ko(1), we have that ρlog(1/ε)/ log log(n) = ko(r) = 1/εo(1) and so we
match the query and communication complexities of the uniform IPP from [RVW13] (up to poly
logarithmic factors). More importantly, ρ does not contribute to the communication complexity of
the IPP.

5.2 Polynomial Folding Protocol

We now demonstrate an interactive protocol that accepts any input in PVAL(J, v⃗), while rejecting
any input that is far along the hybrid metric for any ρ-Dispersed D from Definition 5.1. The idea
is to reduce an instance of PVAL to a set of PVAL instances, each on one lesser variable. We then
generalise the protocol analysis in [RVW13], to be able to handle this new condition for soundness
over the hybrid metric.

We require the following notation for this protocol intuition. We define column marginals over
[k1]× [k2] for k1, k2 ∈ N. For which we define the marginal as follows.

∀j ∈ [k2] : Dc(j) =
∑
i∈[k1]

D(i, j).

We define a hybrid metric µDc,Uk2
over the column marginals of D and the uniform distribution.

For any x, y ∈ Fk2 , we have

µDc,Uk2
(x, y) = max(dDc(x, y), dUk2

(x, y)).

Whenever the usage of D is clear from the context, we refer to this metric as µc.

5.2.1 Protocol Intuition for Polynomial Folding

Let F be a finite field of size max{ℓ1, ℓ2} = poly(k1, k2), where k1 < ℓ1, k2 < ℓ2. We start with the
two dimensional case, by viewing the input X as an element in Fk1×k2 and defining PX : F2 → F

42

as its bivariate low-degree extension (LDE). We reduce the problem of checking proximity of X
to PVAL on bivariate LDEs along µD,Un to checking proximity of strings in Fk2 to PVAL defined
on univariate LDEs (of degree k2 − 1) along µDc,Uk2

. This idea naturally extends to the m-variate

case, where X ∈ Fkm as we can reduce the dimensionality by 1 repeatedly, by taking X to be a
k × km−1 matrix of values over F.

In more detail, PVAL is parameterised by (J, v⃗) with input X, where J ⊆ Fl1×l2 is a set of t
coordinates, and PVAL is satisfied if and only if the evaluations of PX on these points is the vector
v⃗. Let J2 = {i2 | ∃i s.t. (i, i2) ∈ J}, i.e., J2 is the projection of the elements in J onto its second
coordinate. For every i2 ∈ J2, we define a new set of coordinates Qi2 = {(i, i2) | i ∈ [k1]}. Note
that, we can interpolate the value at any coordinate (i1, i2) ∈ J using the univariate LDE over
Qi2 , of degree k1 − 1. The condition for completeness is for X to be in PVAL(J, v⃗), whereas for
soundness we would like to have that X is ε-far from PVAL(J, v⃗) along the (D, U)-hybrid metric,
i.e., µD,Un(X,PVAL(J, v⃗)) > ε.

The protocol proceeds as follows, for each i2 ∈ J2, the prover sends the evaluations of PX(Qi2).
There will with high probability be t such values of i2 (as |J2| ≈ |J |=t). Since each Qi2 is of size
k1, in total, the honest prover sends a k1 × t matrix Y of evaluations of PX (as shown in Figure
3), the verifier receives Y ′. The verifier then checks that these values are consistent with v⃗ at each
point (i1, i2) in J using the univariate low degree extension over Qi2 .

The [RVW13] protocol works as follows. For each j ∈ [k1], let Xj be the jth row of X. We now
have t new conditions on any row Xj ; the low degree extension of Xj restricted to J2 is the jth row
of Y ′, denoted by Y ′

j . This corresponds to a new instance of PVAL(J2, Y
′
j) for each j ∈ [k1], which

is defined on the univariate low degree extension of Xj .
If the previous check succeeds, the verifier sends a uniformly random vector z ∈ Fk1 to the

prover and the new case of PVAL will be PVAL

(
J2, z · Y ′

)
for which we want to test membership

of w = z ·X.19 Completeness of any such instance of PVAL follows from the linearity of polynomial
interpolation.

On the other hand, we generalise the soundness analysis in the following way. It is worth
emphasising that the distance of a vector in Fk2 from PVAL(J2, Y

′
j) for any j, is taken along the

marginal distribution of columns in D. This is the distribution of i2 returned from sampling
(i1, i2) ∼ D, so we can test against this distribution by sampling from D.

At this point, to pass the verifier’s checks and make it accept, the prover has to “lie” on a
certain set of rows by pretending that the input is X ′ ∈ {0, 1}n which satisfies PVAL. We first look
at the case that the prover lies in just one row and how a uniformly random z will assist the verifier
in catching the prover. We then extend this intuition to the case where the prover lies on any
number of rows and show how repeating this process with random z of varying Hamming weights
will catch the prover.

Suppose first that the prover only lies about one row i∗. The distance of that row from satisfying
PVAL(J2, Y

′
i∗) is now ε along one of Uk2 or Dc because of the original soundness condition. When

the verifier picks a uniformly random z from Fk1 , with high probability zi∗ is non-zero. For some
X ′ that belongs to PVAL(J, v⃗), on every column that Xi∗ differs from X ′

i∗ , w differs from z · X ′

(note that X ′ is consistent with X on all the other rows). Since Xi∗ is ε-far from PVAL(J2, Y
′
i∗)

along µc, the LDE of the corresponding z ·X is far from satisfying z · Y ′ along µc. This means that

19For any z ∈ Fk1 and any matrix A ∈ Fk1×k2 , the dot product z ·A ∈ Fk2 is the linear combination of the rows of
A whose coefficients come from z.

43

w is far from this new folded instance of PVAL.
For when the prover cheats on multiple rows, we prove that there is some m∗ ∈ [log(k1)] such

that by sampling a random set of k1
2m∗ rows, with high probability at least one of these rows will be

Ω(ε · k1/ρ · 2m
∗
)-far from satisfying the corresponding row of PVAL along µc as D is ρ-Dispersed.

Since the verifier does not know the value of m∗, the verifier looks at each m ∈ [log(k1)] and
uniformly samples a zm of Hamming weight 2m. Here, we use a lemma on distances between linear
subspaces, which is a generalisation of an analogous lemma in [RVW13]. This lemma states that
for our metric, if S and T are linear subspaces then a point in S far from T implies a uniformly
random element of S will be far from T with high probability. This implies that zm∗ · X will be

(ε/ρ2m
∗
)-far from PVAL

(
J2, zm∗ · Y ′

)
along µc with high probability.

There are log(k1) different instances of PVAL and one of these is far from the corresponding
zm ·X. For each m ∈ [log(k1)] the prover sends the verifier zm ·X and the verifier checks if each of

this is consistent with PVAL

(
J2, zm · Y ′

)
. The next stage is for the verifier to check that each w′

m

that the prover purports to be zm ·X is close to the correct value. The verifier does this by sampling
columns of X along the Dc and the Uk2 distributions and computing the projection of zm ·X onto
these samples, then querying the entire corresponding columns of X. If either consistency checks
fail then the verifier rejects. Completeness follows immediately, but for soundness we have that
µDc,Uk2

(zm∗ ·X,PVAL(J2, zm∗ ·Y ′)) > ε/2m
∗
ρ and therefore sampling zm ·X will catch the cheating

prover after O(ρ
2m∗ε

) samples from zm ·X. Each query to zm ·X requires 2m queries to X.

The total query complexity here is Õ(ρ
2m∗ε) · 2m

∗
= Õ(ρ/ε) and the total sample complexity

is O(ρ/ε), which is a blowup of ρ from the original uniform case in [RVW13]. This happens as
the distance from X to X ′ that differ on a single element, (i,j) is D(i, j) originally but when we
consider distance on a row vector, it becomes

∑
i′∈k1 D(i

′, j). In the uniform case this corresponds
to multiplying by k1, however, when the distribution is ρ-Dispersed, we multiply by k1/ρ. The
communication complexity is unchanged only sending Y ′ and log(k1) different folded rows to total
O(|J |k1 + k2 log(k1)). For example, we can still achieve sublinear complexity even for ρ = k1
for k1 = n1/4, k2 = n3/4, ε = n−1/2 and |J | = nε log(n). In this case the communication and
query complexity are both Õ(n3/4). In this case, we require k1 ̸= k2 as otherwise we do not have
sublinear communication complexity and query complexity. In that case the query complexity
would be Õ(

√
n/ε) and the communication would be Õ(n3/2ε) where they can’t both be sublinear.

5.2.2 Polynomial Folding Proof

For the following protocol, we takeX ∈ Fk×kp for some p ∈ N. For any i ∈ [k], we defineX[i, ·] ∈ Fkp

to be the ith row of X such that

∀(i1, · · · , ip) ∈ [k]p : X[i, ·](i1,··· ,ip) = Xi,i1,··· ,ip .

For i ∈ [t], Y ∈ F|J |×kp , we define Y [i, ·] and Y ′[i, ·] similarly. Note that for j ∈ [k]p, Y ′[·, j]
refers to the jth column of this object such that

∀i ∈ [k] : Y ′[·, j]i = Yi,j .

PX is the p+1-variate LDE of X to an [ℓ1]× [ℓ1]
p hypercube containing X for sufficiently large

ℓ1 = poly(k). We sometimes identify this p+1-dimensional hypercube as a two dimensional ℓ1× ℓ2

44

matrix for ℓ2 = ℓp1). Additionally, we sometimes treat X as a k× k2 matrix of elements of a field F
for k2 = kp, and J as a subset of a larger l1 × l2 matrix and each j ∈ J as j = (j1, j2) ∈ [ℓ1]× [ℓ2].
We define J2 to be the set of columns that contain elements of J in other words

J2 = {j2 ∈ Fkp : (j1, j2) ∈ J}.

Protocol 4 Polynomial Folding Protocol

The protocol, (P1, V1) has explicit input (F, k, p, J, v⃗, κ), for soundness amplification parameter
κ > 0 and implicit input X ∈ Fk×kp that the prover has no access to. This protocol proceeds in
two rounds:

1. Prover sends Verifier: for each row i ∈ [k] of X, send its encoding by PX[i,·] (the (p−1)-variate
LDE of the ith row of X) restricted to coordinates J2. We call this matrix Y ∈ Fk×|J |.

Verifier: receive Y ′ ∈ Fk×|J |, reject if for some (j1, j2) ∈ J , the univariate low degree extension
of the jth2 column of Y ′ (i.e., PY ′[·,j2]) on j1 is not equal to the correct value in v⃗. In other
words reject if

∃(j1, j2) ∈ J : PY ′[·,j2](j1) ̸= v⃗[j1, j2].

2. Verifier sends Prover: for each a ∈ [log(k/κ) + 1], send a uniformly random vector z⃗a ∈ Fk of
Hamming weight 2aκ.

The output is (log(k/κ) + 1) tuples {(a, z⃗a, J2, v⃗a = z⃗a · Y ′)}a∈[log(k/κ)+1].

Theorem 5.3. For any κ > 0, ρ-Dispersed distribution D(p+1) over [k] × [kp], the polynomial
folding protocol (Protocol 4), (P1, V1) on shared input (J, v⃗) and prover input X produces an output
of (log(k/κ) + 1) tuples {(a, z⃗a, J2, v⃗a = z⃗a · Y ′)}a∈[log(k/κ)+1] and obeys the following conditions:

Completeness: If X satisfies PVAL(J, v⃗) and we have an honest prover, the verifier does not
reject and ∀a ∈ [log(k/κ) + 1], z⃗a ·X ∈ PVAL(J2, v⃗a).

Bounded Locality: ∀a ∈ [log(k/κ)], in the a-th output of the interactive protocol {(a, z⃗a, J2, z⃗a ·
Y ′)}a∈[log(k/κ)+1], each coordinate of z⃗a ·X is a linear combination of τa = 2a · κ coordinates of X.

Soundness: For D(p+1) ∈ ∆([n]), if X is ε-far from PVAL(J, v⃗) along µD(p+1),U , then for any

cheating prover P ′, with all but ((|F| − 1)−1 + e−κ/(4 log(k))) probability over V ′s coins, either V
rejects, or there exists some a∗ ∈ [log(k/κ) + 1] s.t.

µD(p),Ukp
(z⃗a∗ ·X,PVAL(J2, v⃗a∗)) >

ε · 2a∗

4ρ
.

In other words,

PV0

[
µD(p),Ukp

(z⃗a∗ ·X,PVAL(J2, v⃗a)) >
ε · 2a∗

4ρ

]
≥ 1− ((|F| − 1)−1 + e−κ/(4 log(k)))

This protocol has communication complexity O(|J |·k ·log(k)·log |F|) and one round of communi-
cation. The honest prover runs in time poly(kt, log |F|), and the verifier runs in time poly(|J |, k, log |F|).

45

Note that the verifier never accesses X in this protocol.
Now, µD(p),Ukp

is the new distance measure between the individual row vectors. This distance

is equivalently obtained under the process of sampling from D(p+1) and ignoring the last part of
the index, and doing the same for U .

Let PVALi = PVAL(J2, Y
′[i, ·]) be the set of vectors Z ∈ Fkp , such that the low degree extension

of Z restricted to the points in J2 are equal to the values in Y ′[i, ·]. Further, for each i ∈ [k], define
εi = µD(p),Ukp

(X[i, ·],PVALi).
The soundness of Theorem 5.3 now relies on the following sequence of lemmas. To begin with,

we state the “distance preservation lemma” to prove that the distance from X to PVAL(J, v⃗) is
maintained for the sum of column marginal distances between X[i, ·] and PVALi across all the k
rows.

Lemma 5.4.

µD(p+1),Un
(X,PVAL(J, v⃗)) > ε =⇒

k∑
i=1

µD(p),Ukp
(X[i, ·],PVAL(J2, Y ′[i, ·])) > k

ρ
ε

Proof. We proceed by choosing X ′ which allows us to relate the D(p+1)-distance between X and
PVAL(J, v⃗), with the distances between the individual rows of X to their corresponding lower-
dimensional PVAL instances, but with respect to the marginal D(p). We then see that this sum is
maximal over both the D(p+1) and the uniform distribution.

More precisely, for each i ∈ [k], let X ′[i, ·] be the element of PVALi that minimises the hybrid
distance, µD(p),Ukp

(X[i, ·], X ′[i, ·]). We set X ′ such that for each i ∈ [k], it’s ith row is X ′[i, ·]. Put
together with the fact that the verifier has not rejected at the end of step 1, we immediately observe
that X ′ ∈ PVAL(J, v⃗). Indeed, this holds as the univariate LDE of each column of Y ′ restricted to
J1, gives us exactly v⃗.

In what follows, we focus our calculations to distance over the D(p+1) distribution. The same
calculations hold for distances over U as well (U is always 1-Dispersed).

k∑
i=1

µD(p),Ukp
(X[i, ·],PVALi) =

k∑
i=1

µD(p),Ukp
(X[i, ·], X ′[i, ·])

≥
k∑

i=1

dD(p)(X[i, ·], X ′[i, ·])

=

k∑
i=1

P
j′∼D(p)

[
Xij′ ̸= X ′

ij′
]

This follows as the first expression is the maximum over the distances with respect to the two

46

distributions under consideration. Further,

k∑
i=1

P
j′∼D(p)

[
Xij′ ̸= X ′

ij′
]
=

k∑
i=1

k∑
l=1

P
(i′,j′)∼D(p+1)

[
Xij′ ̸= X ′

ij′ ∧ (i′ = l)
]

≥ k

ρ

k∑
i=1

P
(i′,j′)∼D(p+1)

[
Xij′ ̸= X ′

ij′ ∧ i′ = i
]

=
k

ρ
P

(i′,j′)∼D(p+1)

[
Xi′j′ ̸= X ′

i′j′
]

=
k

ρ
dD(p+1)(X,X ′)

This follows from the definition of the marginal distribution and the definition of ρ-Dispersed
distributions. We note that this inequality can be tight in certain cases.20

Therefore, as observed earlier, we have that
∑k

i=1 µD(p),Ukp
(X[i, ·],PVALi) ≥ k

ρdD(p+1)(X,X ′),

as well as
∑k

i=1 µD(p),Ukp
(X[i, ·],PVALi) ≥ k

ρdUn(X,X ′). Thus,

k∑
i=1

µD(p),Ukp
(X[i, ·],PVALi) ≥

k

ρ
µD(p+1),Un

(X,X ′) ≥ k

ρ
µD(p+1),Un

(X,PVAL).

We next have the following lemma on the distance between subspaces on arbitrary metrics that
satisfy certain invariance constraints.

Lemma 5.5. Let d : V×V→ R be a metric defined over a vector space V on a field F, such that
the following invariance conditions hold on d.

1. For every X,Y ∈ V, a ∈ F, d(aX, aY) = d(X,Y).

2. For every X,Y, Z ∈ V, d(X + Z, Y + Z) = d(X,Y).

Let S and T be two linear subspaces of Fn (for any finite field F and n ∈ N). Suppose that there
exists some point s ∈ S such that d(s, T) > ε. Then, with all but 1

|F|−1 probability over the choice

of a uniformly random point r from S, d(r, T) > ε
2 .

Proof. We sample a uniformly random vector in S by first taking uniformly random r ∈ S and
then, if r = s return s, and if not, take a uniformly random sample from the line between r and s,
excluding s.

If r = s, then the condition is fulfilled, if not then we look at the line along r, s. We claim that
there can be at most one element along this line whose distance from T is less than ε

2 . If this is
true, the theorem follows as the probability of sampling an element close to T is less than 1

|F|−1 .

20For ρ = k, consider a distribution is only supported on one row i0, if i = i0 the following holds:
P

(i′,j′)∼∗

[
Xij′ ̸= X ′

ij′
]
= P

(i′,j′)∼D(p+1)

[
Xi0j′ ̸= X ′

i0j′ ∧ (i′ = i0)
]
. In the case that i ̸= i0, both sides of this equa-

tion are 0.

47

Suppose otherwise for contradiction and we have r1, r2 on the line and t1, t2 ∈ T such that
d(r1, t1) < ε

2 and d(r2, t2) < ε
2 . As these points are on the same line, for some a ∈ F, we have

s = r1 + a(r2 − r1) and ts = t1 + a(t2 − t1). Therefore:

d(s, ts) = d(r1 + a(r2 − r1), t1 + a(t2 − t1))

= d((1− a)r1 + ar2, (1− a)t1 + at2)

≤ d((1− a)r1 + ar2, (1− a)t1 + ar2) + d((1− a)t1 + ar2, (1− a)t1 + at2)

≤ d((1− a)r1, (1− a)t1) + d(ar2, at2)

≤ d(r1, t1) + d(r2, t2)

<
ε

2
+

ε

2
< ε

This contradicts the initial assumption that s is far from T , therefore this lemma follows by
contradiction.

Note that µD(p),Ukp
as the maximum of two metrics is a metric. We next prove that we can

apply Lemma 5.5 with this distance measure, since it satisfies the constraints required.

Lemma 5.6. The metric µD(p),Ukp
satisfies both the invariance properties in Lemma 5.5.

Proof. • Invariance under vector addition:

µD(p),Ukp
(X + Z, Y + Z) = max(dD(p)(X + Z, Y + Z), dUkp

(X + Z, Y + Z))

= max(dD(p)(X,Y), dUkp
(X,Y))

= µD(p),Ukp
(X,Y)

• Invariance under scalar multiplication:

µD(p),Ukp
(aX, aY) = max(dD(p)(aX, aY), dUkp

(aX, aY))

= max(dD(p)(X,Y), dUkp
(X,Y))

= µD(p),Ukp
(X,Y)

We finish by proving the following set of important claims. In Claim 5.7, we prove that there
is a set of rows I ⊆ [k] for which for all i ∈ I, X[i, ·] is sufficiently far from PVALi, given the size
of I. Then, in Claim 5.8 we prove that with high probability ∃a∗ ∈ [log(k/κ) + 1] such that a
randomly chosen za∗ ∈ Fk of Hamming weight roughly 2a

∗
has some row from I. Finally, in Claim

5.9, we combine these with Lemma 5.5 to show that sampling log(k/κ) + 1 many random vectors
{za}a∈[log(k/κ)+1] in the polynomial folding protocol, results in at least one folded instance of PVAL
which is sufficiently far from the correspondingly folded instance za ·X.

Claim 5.7. If the verifier does not reject in Step 1, then there exists an integer b ∈ {0, · · · , log(k)},
and a subset I ⊆ [k], s.t. ∀i ∈ I, εi ≥ kε/(2b+1ρ) and |I| ≥ 2b/4 log(k).

48

Claim 5.8. In Step 2 of protocol 4, for a ∈ [log(k/κ) + 1], let Ia be the set of non-zero coordinates
in z⃗a (this set is of size 2a · κ). Take b as guaranteed by Claim 5.7 and a∗ = min(log(k/κ),
log(k)− b). With all but e−κ/4 log(k) probability over the verifier’s choice of za∗, there exists i∗ ∈ Ia∗

s.t. εi∗ > ε · 2a∗/2ρ.

Claim 5.9. Take a∗ as guaranteed by Claim 5.8. With all but ((|F|−1)−1+ e−κ/4 log(k)) probability
over the verifier’s choice of z⃗a∗, it holds for v⃗a∗ = za∗ · Y ′ that

µD(p),Ukp
(z⃗a∗ ·X,PVAL(J2, v⃗a∗)) > ε · 2a∗/4ρ.

The proofs of the above claims are analogous to the uniform setting and can be found in
Appendix A.

Proof of Theorem 5.3. Completeness follows as the only stage where the verifier can reject is in
stage 1. There, the honest prover would send the true value of Y which is consistent with v⃗ on J .
This also results in a valid folded version of PVAL, PVAL(J2, z⃗a · Y), for which ∀a ∈ [log(k/κ) + 1] :
z⃗a ·X ∈ PVAL(J2, z⃗a · Y), for any random linear combination z⃗a picked by the verifier.

Bounded locality follows from the fact that sampling an element of the folded vector will require
queries to the input equal to the Hamming weight of the corresponding folding vector z⃗a.

The soundness follows directly from the Claim 5.9 whereby we have that with all but ((|F| −
1)−1 + e−κ/(4 log(k))) probability over the verifier’s randomness, X will have µD(p),Ukp

distance at

least ε · 2a∗/4ρ from satisfying at least one of the new instances of PVAL.

5.3 IPP for PVAL over ρ-dispersed distributions

Now that we have that polynomial folding lemma, we can develop the overall interactive protocol
for distinguishing between being in PVAL and being far from PVAL along the µD,Un distance. The
IPP is presented in Protocol 5.

Note that since D(m−1) is also a ρ-dispersed distribution by Lemma 5.1, we can iterate Theorem
5.3 on [k]m−1.

Theorem 5.10. For n, k ∈ N, r ≤ logk(n), k
r ≤ 1

ε , r ≤ k, r = ω(1), m = logk(n), a field F for
which |F| = polylog(n) such that 10r ≤ |F| ≤ 1/ε, D a ρ-Dispersed distribution over [k]m and (J, v⃗)
defining an instance of PVAL, Protocol 5, (P0, V0), satisfies the following properties:

1. Completeness: If X ∈ PVAL(J, v⃗) then the verifier accepts with probability 1. In other
words,

X ∈ PVAL(J, v⃗) =⇒ P
V0,OD(X)

[
(P0(X,D), V X,OD(X)

0)(n, ε) accepts
]
= 1.

2. Soundness: For D ∈ ∆([n]), if µD,U (X,PVAL(J, v⃗)) > ε then the verifier rejects with prob-
ability at least 1

2 .In other words,

µD,U (X,PVAL(J, v⃗)) > ε =⇒ P
V0,OD(X)

[
(P ∗

0 (X,D), V X,OD(X)
0)(n, ε) rejects

]
≥ 1

2
.

49

Protocol 5 IPP for PVAL over ρ-dispersed distributions

The implicit input is X ∈ Fkm , the explicit input is (F, k,m, J, v⃗) and a round parameter r ∈ N.
Take n = |X| = km to be the input message length, and set a soundness amplification parameter
κ = 8 log(r) · log(k).

1. Set W0 ←− (λ, λ, J, v⃗), where λ is the empty string. For s ∈ 1, ..., r, Ws ←− Φ.

2. Proceed in phases s←− 0, ..., r − 1:

For each ((z⃗1, ..., z⃗s), (a1, ..., as), J, v⃗) inWs, in parallel, the prover and the verifier run Protocol
4 (the Polynomial Folding Protocol) with k = k, l1 = poly(k), p = m − s − 1, κ = 8 ·
log(k) log(r). Taking Xs = z⃗s · (... · (z⃗1 ·X)), the instance is (Xs, J, v⃗).

The output of each run is a collection of tuples {(a, z⃗a, J2, z⃗a · Y ′)}a∈[log(k/κ)+1]. For each
a ∈ [log(k/κ) + 1], add ((z⃗1, ..., z⃗s, z⃗s+1, a), (a1, ..., as, a), Js+1, v⃗s+1, a) to Ws+1.

3. For each ((z⃗1, ..., z⃗r), (a1, ..., ar), Jr, v⃗r) ∈ Wr, do the following in parallel:

(a) Prover sends Verifier: Xr = z⃗r · (... · (z⃗1 ·X)) where Xr ∈ Fkm−r
.

(b) Verifier: receive X ′
r and check if PX′

r
|Jr = v⃗r, else reject immediately.

(c) Verifier: set εr = ε ·
∏r

s=1 ρ
−1(2as/4). Pick (10/εr) uniformly random coordinates in X ′

r

and then the same number of coordinates along the D distribution. For each coordinate
j that was picked, verify that X ′

r[j] = (z⃗r.(....(z⃗1.X)))[j] by querying the appropriate
coordinates in the original input message X. If any of these checks fail, then reject
immediately.

4. If the verifier did not reject so far then it accepts.

This protocol has query complexity ρr(1/ε)1+o(1), sample complexity ρr(1/ε)1+o(1), communica-
tion complexity (n/kr+ |J | ·k)(1/ε)o(1), and the number of messages is (2r+1) (round complexity is
r+1). The honest prover runs in poly(n) time, and the verifier runs in ((ρr/ε)+n/kr + |J |k)no(1)

time.

Proof. The honest prover runs in time poly(n), this follows from construction, as all the prover
sends the verifier is a series of matrices Y ′ and inner products of the various values of z with
X. The communication complexity will be the total communication from the polynomial folding
protocol for each iteration of step 2 (1 ≤ s < r) along with the complexity of sending each value of
Xr in step 3a.

50

r∑
s=1

log(k/κ+ 1)s ·O(|J | · k · log(k) · log |F|) + log(k/κ+ 1)r
n

kr
log |F|

= (log(k/κ) + 1)r ·O(|J | · k · log(k) · log |F|) + log(k/κ+ 1)r
n

kr
log |F|

= O(log(k))r · log |F| ·O(n/kr + |J | · k · log(k))

=
1

εo(1)
(n/kr + |J | · k)

= (n/kr + |J | · k) 1

εo(1)
.

This follows from the fact that kr = O
(
1
ε

)
and |F| ≤ 1/ε.

The completeness of this protocol follows as the only parts it can reject are the polynomial
folding protocols which are perfectly complete and step 3b which says that X ′

r is consistent with
v⃗r. The latter holds since X ′

r = Xr is consistent with v⃗r.
Additionally, the verifier runs in time no(1) ·((ρr/ε)+n/kr+k|J |), this follows from construction.

The first part from sampling X, the second from processing the Xr sent by the prover and the last
part from processing the Y ′ sent by the prover in the polynomial folding protocol. Note also that
log |F|, the number of rounds and the number of folded instances of PVAL are encompassed by the
no(1) term.

The query complexity only has contributions from step 3c. At this step for each tuple (a1, · · · , ar),
the verifier takes 10/εr = 10/ε ·

∏r
i=1

4ρ
2as samples and uniform queries to Xr. This results in total

sample complexity

∑
(a1,··· ,ar)∈[log(k/κ)+1]r

10

ε

r∏
s=1

4ρ/2as ≤ ρr/ε1+o(1).

Furthermore, the number of queries taken will be the number of samples and queries to Xr

times the number of queries from X to obtain a query from Xr which, by bounded locality of the
polynomial folding protocol is equal to

τr =
r∏

s=1

2asκ.

Therefore the total query complexity is

∑
(a1,··· ,ar)∈[log(k/κ)+1]r

10τr
εr

=
∑

(a1,··· ,ar)∈[log(k/κ)+1]r

10

ε

(
r∏

s=1

4ρ/2as

)(
r∏

s=1

2asκ

)

=
∑

(a1,··· ,ar)∈[log(k/κ)+1]r

10

ε
(4ρκ)r

= (log(k/κ) + 1)r
10 · (4ρκ)r

ε

= ρr/ε1+o(1)

51

This follows since logr(k) = 1/εo(1), 4r = 1/εo(1), and κr = (log(k) log(r))r < log2r(k) = 1/εo(1)

as r < k.
The total set of messages are those from r iterations of the polynomial folding protocol along

with 1 message from step 3a, in total this amounts to 2r + 1 messages and round complexity r.
Soundness follows as given the initial input, X that is ε-far from PVAL along the µD,Un distance.

By soundness of the polynomial folding protocol (Theorem 5.3) and with a union bound over r
such rounds, with all but r · ((|F| − 1)−1 + e−κ/4 log(k)) probability, there is some resulting tuple:
U∗
r = ((z⃗∗1 , ..., z⃗r

∗), (a∗1, ..., a
∗
r), J

∗
r , v⃗

∗
r), such that the instance (X∗

r , J
∗
r , v⃗

∗
r) specified by U∗

r is ε∗r-far
from PVAL(J∗

r , v⃗
∗
r) on PX′

r
along the µD(m−r),Un/kr

distance, where:

ε∗r ≥ ε ·
r∏

s=1

·2a∗s/4ρ.

As we will assume that the verifier does not reject in Step 3, the corresponding X ′∗
r has to

satisfy this instance of PVAL, therefore it must be far from X∗
r along µD(m−r),Un/kr

. In Step 3c, the

verifier picks 10/ε∗r uniformly random coordinates and then the same number of coordinates along
the folded D distribution. As the µD(m−r),Un/kr

-distance between X∗
r and X ′∗

r is at least ε∗r far along

one of these distributions then the verifier will reject with probability at least 9/10.
A union bound over all the r-many polynomial foldings, ensures that the soundness error is at

most:

r · (1/(|F| − 1) + e−κ/4 log(k)) + 1/10 ≤ r · (1/(10r − 1) + e−2 log(r)) + 1/10 < 1/2

Remark 9. The only step in Protocol 5 that is altered from the proof of the IPP under uniform
distribution (Theorem 2.1) is in Step 3c, which involves sampling indices from the folded indices
along U , as well as D. Thus, the number of queries increase by a factor of ρr by the fact that
we have ρ-Dispersed distributions, but the prover run-time and communication complexity remain
unchanged.

Finally, the IPP for languages computable by low-depth circuits over ρ-dispersed distributions is
provided in Protocol 6 and the proof of Theorem 5.2 is provided in Appendix B.

6 IPPs over Product Distributions

In Section 4, we show the existence of distribution-free IPPs for NC languages with query complex-
ity O

(
1
ε

)
and communication complexity Õ

(
ε · n+ 1

ε

)
. Motivated by matching the communication

complexity of ε1−o(1) · n from [RVW13], in Section 5 we construct IPPs for ρ-dispersed distribu-

tions that achieve this communication complexity, while having query complexity ρlog(1/ε)/ log log(n)

ε1+o(1) .
This, however, does not provide optimal query complexity for certain product distributions, eg.,
distributions that are concentrated on a small set of rows along some dimension, as they could be
Ω(k)-dispersed.

As such, in this section, we construct IPPs over product distributions that match the complexi-
ties of the uniform IPP from [RVW13]. In what follows, we prove Theorem 1.3 to show a white-box
IPP for NC over any m-product distribution samplable using polynomial-sized circuits. The theme

52

Protocol 6 IPP over ρ-dispersed distributions, (P, V), for a language L with a circuit of size S(n)
and depth ∆L(n).

Let (PNC, VNC) be the interactive reduction from Theorem 4.3 and let (P0, V0) be Protocol 5 from
Theorem 5.10.
The input is X ∈ {0, 1}n and we set k = log(n), m = logk(n), r = log(1/ε)/ log(k) and |F| =
poly(n).

1. (P, V) run (PNC, VNC) on X. The output of this protocol is J ⊂ Fm for which |J | = 4εn·log(n)
and v⃗ ∈ Ft.

2. (P, V) run (P0, V0) to verify membership of X, identified as an element in Fkm , in PVAL(J, v⃗).
V rejects, if V0 rejects.

3. V accepts otherwise.

of this section is to use the sample oracle to learn the distribution D and then use the learned
distribution to design an IPP over a distribution family F , improving the query complexity of the
IPP from Theorems 4.5 and 5.2 which does not acquire any information about the distribution. In
Appendix D, we show a framework for translating any interactive proof that can learn a distribu-
tion family F using only samples, into a black-box IPP for NC over any distribution in F , that
generalises the intuition for Theorem 1.3. We start by defining the relevant family of distributions.

Definition 6.1 (m-Product Distributions). Let F be any field. For any n ∈ N and any integral
function m = m(n), let k be an integer such that n = km. Then D = {Dn} is called an m-product
distribution ensemble, where Dn is a distribution over [k]m (by fixing some canonical bijection
from [k]m to [n]), if there exists distributions D1,D2, . . . ,Dm ∈ ∆([k]), such that for any index
(i1, . . . , im) ∈ [k]m, D(i1, . . . , im) =

∏m
r=1Dr(ir).

To understand this better, consider a product distribution D over [n] where the probability
of picking each index i ∈ {0, 1}log(n) is given by log(n) independent random variables over {0, 1},
where the jth-bit in the index is 1 with probability pj . Alternatively, we can view the input as a
(log(n))-dimensional tensor, having 2 elements in each dimension (by fixing some enumeration over
the cells into input indices). Now,

∏
j pj represents the probability of sampling a cell in the tensor.

m-product distributions generalise this by considering product distributions over m-dimensional
tensors, having k elements in each dimension, such that km = n.

Given this, we can define the oracle OD that provides labeled samples to the verifier. For
example, any 2-product distribution Dn over [

√
n]× [

√
n] can be defined as a pair Dn = D1 ×D2,

where D1 and D2 are distributions over [
√
n]. In such a case, the implicit input X ∈ {0, 1}n can

be viewed as a matrix in {0, 1}
√
n×

√
n (by fixing a bijection between the indices of X and cells in

the matrix), and OD can be viewed as an oracle that provides a sample ((i, j), Xij), where (i, j)

are the row and column indices of this matrix sampled from D. Similarly, for a
(

log(n)
log log(n)

)
-product

distribution D, we can view the OD as being defined over
(

log(n)
log log(n)

)
-dimensional tensors with

log(n) elements in each dimension.

We next state the following parallel variant of the Set Lower Bound protocol [GS89] (observed

53

in [BT06]) that will be required in our IPP.

Lemma 6.1 (Corollary 2.7 of [BT06]). For any circuit C : {0, 1}ℓ → {0, 1}log(k), any τ ∈ (0, 1),
define the promise problem Π = {Πℓ,k}

ΠY
ℓ,k := {(C, τ, y1, p1, · · · , yk, pk) : ∀i ∈ [k] : |C−1(yi)| ≥ pik}

ΠN
ℓ,k := {(C, τ, y1, p1, · · · , yk, pk) : ∃i ∈ [k] : |C−1(yi)| ≤ (1− τ)pik}

Then, for any δ > 0, ℓ, k ∈ N, there exists a constant-round interactive proof for Πℓ,k with

completeness probability 1−δ and soundness probability δ. The verifier runs in time O
(
poly(|C|)·k2

δτ2

)
and communication complexity of the interactive proof is O

(
ℓ·k2
δτ2

)
, where |C| is the size of the circuit

C in terms of its input size ℓ. Moreover, the honest prover runs in time at most 2ℓ · poly(k, |C|).21
In particular, if C is a polynomial sized-circuit then ℓ = polylog(k) and thus, |C| is polylog(k) as
well.

We next define the notion of concatenated languages.

Definition 6.2 (Concatenated languages). For any fixed k,m, define gcat : Fkm → F[k+1]×[k]···×[k],
as the map that concatenates 0k

m−1
to the first dimension of a tensor in [k]m. In other words, for

any X ∈ F[k]m, we have

gcat(X) =

{
Xi1,...im , if 1 ≤ i1, . . . , im ≤ k,

0, if i1 = k + 1 and, ∀1 < ℓ ≤ m, 1 ≤ iℓ ≤ k

Moreover, for any language L, we define L0 ⊆ F[k+1]×[k]...[k] as L0 = {gcat(X) | X ∈ L ∩ F[k]m}.

For example, when X ∈ {0, 1}[
√
n]2 , gcat(X) denotes the matrix obtained by concatenating the

vector 0
√
n as the last row. When X ∈ {0, 1}n, gcat appends a 0 to the end of X. In this case, for

any language L ∈ {0, 1}∗, L0 is defined as {(X ◦ 0) | X ∈ Ln}. Note that, one can easily generalise
Definition 6.2 to concatenating any w ∈ Fkm−1

along the jth-dimension of X, for some j ≤ m, but
for the purposes of this section this definition suffices.

In Section 6.1, we show a reduction from testing for a language L over a known m-product
distribution, to testing a closely related language L′ over a granular distribution.

6.1 Granularisation

Definition 6.3 (m-grained distributions). We say that a distribution D in ∆([n]) is m-grained,
for some m ∈ N, if for every i ∈ [n], there exists an 1 ≤ ai ≤ m such that D(i) = ai

m .

Definition 6.4 (D-extending a matrix). Let D be a grained distribution over [k] and let B =
{b1, . . . , bk} be it’s granularities. Let X be a matrix in Fk×k. We call another matrix M ∈ F(k+r)×k,
where r =

∑
j(bj − 1), as a D-extension of X if the following hold for any row Mi, 1 ≤ i ≤ k + r.

Mi =


X[i, ·], if 1 ≤ i ≤ k

X[1, ·], if k < i ≤ k + b1 − 1

X[j, ·], for j ∈ [k], such that k +
∑j−1

ℓ=1(bℓ − 1) < i ≤ k +
∑j

ℓ=1(bℓ − 1)

(5)

21The honest prover may have to go over all possible inputs to C to find one which is mapped to 0log(pik) by a
pairwise independent hash function in the Goldwasser-Sipser set lower bound protocol, for each i ∈ [k]. This implies
the honest prover running time stated in Lemma 6.1.

54

This definition naturally generalises to D-extend a tensor X ∈ Fkm to another tensor M ∈
F(k+r)·km−1

.

Intuitively, the D-extension M ∈ F(k+r)×t is just the matrix X with b1 − 1 repetitions of row
X1 appended to its last row, and so on in sequential order, until bk − 1 repetitions of row Xk are
appended at the end. In the case where m = 1, the D-extension just appends the relevant bits to
the end of the string.

Lemma 6.2 (The granularisation algorithm). Let L be any language and ε > 0. Then the following
hold true.

• Let X ∈ {0, 1}n be an input to L. Let D be any distribution over [n] such that D(i) = pi for
every i ∈ [n].

Then, there exists an algorithm Agran that takes as input {p1, . . . , pn} and outputs the granu-
larities {a1, . . . , an+1} of an 8n-grained distribution D′ over [n+1] (i.e., for every j ∈ [n+1],
D′(j) = aj/8n), that runs in time O(n), such that:

– If X ∈ L, then for X ′ = gcat(X), X ′ ∈ L0.

– If dD(X,L) > ε, then dD′(X ′, L0) > ε/2.

• Let X ∈ {0, 1}km be an input to L (take n = km). Let D = D1 × · · · × Dm be an m-product
distribution, where each Di ∈ ∆([k]). Let D1 be described by the probability distribution vector
{p11, . . . , p1k}.
Then, Agran takes as input {p11, . . . , p1k} and outputs {a11, . . . , a1(k+1)} as the granularities
of an 8k-grained distribution D′

1 over [k + 1], running in time O(k), such that:

– If X ∈ L, then for X ′ = gcat(X), X ′ ∈ L0.

– Let D′ = D′
1 × D2 × · · · × Dm be defined over [k + 1] × [k] × · · · × [k]. If dD(X,L) > ε,

then dD′(X ′, L0) > ε/2.

While Lemma 6.2 is inspired from [Gol20], their work focuses on the reduction from testing
whether an unknown input distribution (via samples) equals some fixed distribution D, to testing
whether an unknown distribution equals the uniform distribution (via granular distributions). In
our case, firstly the input distribution is known, and further, our focus is on the property testing
setting where an implicit input string is provided. The proof of this Lemma is provided in Appendix
C.

6.2 The White-box IPP for PVAL

We start with a white-box IPP for the PVAL problem over polynomially-samplable m-product
distributions.

Theorem 6.3. For any m,n ∈ N, let F be a set of polynomially samplable m-product distributions
over [k]m, such that n = km. Let F be a field such that |F| = polylog(k). Let J ⊂ Fm of size t and
v⃗ ∈ Ft. Let r ∈ N be the round parameter such that 10 < r ≤ log(1/ε)/ log(k) and |F| > 10r.

Then, for every ε > 0 and D ∈ F , Protocol 8 is a white-box IPP for PVAL(F, k,m, J, v⃗) over F
with proximity parameter ε, and completeness and soundness probabilities 2/3, where the soundness
promise is over the µD,U metric.

55

This IPP has query complexity 1/ε1+o(1), communication complexity polylog(n)·
(
k2 + k

εo(1)
· ε · n

)
,

and the verifier runs in no(1)(ε ·n · k+ k2 + 1
ε) time. Moreover, the IPP has O(r) many rounds and

the honest prover runs in 2polylog(n) time.

Proof. Let D be a fixed (but unknown) m-product distribution given as D1× · · ·×Dm, where each
Di is supported on [k]. Let C : {0, 1}polylog(n) → {0, 1}log(n) be the polynomial-sized circuit that
samples D (i.e., for every i ∈ [n],Px∼Upolylog(n)

[C(x) = i] = D(i)).
Let X ∈ {0, 1}km be the implicit input to PVAL(J, v⃗). We view X as an m-dimensional tensor

with length k in each dimension.22 Similar to the setting in Section 4, the input X either has the
promise that it belongs to PVAL(J, v⃗) or that µD,Un(X,PVAL(J, v⃗) > ε.

Notation: For any 0 ≤ ℓ ≤ r − 1 and every j = (j0, . . . , jm−1) in J , let Jℓ ⊂ Fkm−ℓ
be the set

of points specified by the last (m − ℓ) coordinates of any point in J . Following a similar process
as Protocol 5 (in Section 5.3), we build a (log(8k/κ)) + 1)-arity tree of depth r, before making the
queries in the resulting folded instances in each leaf of this tree.

Any node in layer ℓ has a label (a1, . . . , aℓ) that specifies the tuple (z1, . . . , zℓ, a1, . . . , aℓ, Jℓ, v⃗ℓ)
(note that J0 = J and v⃗0 = v⃗). Here, each zi ∈ F8k, ai ∈ [log(8k/κ) + 1], such that Hwt(zi) = 2aiκ,
and v⃗ℓ is some vector in Ft. Sℓ maintains the set of nodes in any layer ℓ, where S0 = {λ, λ, J, v⃗}
is just the original instance (X, J, v⃗) and is written this way for technical reasons. Any tuple in Sℓ
determines the corresponding folded instance Xℓ after ℓ rounds and the corresponding PVAL claim
of satisfying vℓ with respect to Jℓ.

It is worth defining the folded instance Xℓ ∈ Fkm−ℓ
in more detail. Let Ei supported on [k + 1]

be the granular approximation to Di obtained from Agran. We abuse the dot product notation, to
define Xℓ as the ℓ-wise dot product of z1, . . . , zℓ−1 ∈ F8k with X, as zℓ · (· · · · (z1 ·X)), where at each
stage the dot product is in fact, computed between zi and the Ei-extension of gcat(Xi−1) (with X0

set to X). For eg., if U1 ∈ F8k×km−1
is the D′

1-extension of gcat(X0), then z1 ·X ∈ Fkm−1
is in fact,

the dot product, z1 · U1 =
∑8k

j=1 z1j · U1[j, ·] ∈ Fkm−1
.

The extended polynomial protocol is similar to Protocol 5, except that it outputs tuples with
respect to extended matrices. Using that we construct white-box IPP over F in Protocol 8.

Completeness: In any invocation of the extended polynomial folding protocol, if the prover
sends the matrix Y , the verifier always accepts. Moreover, by the definition of matrix extensions,
we see that X ′ ∈ F8k×ks−1

, which is the extension of gcat(X) using B, also obeys similar consistency
claims, i.e., for each i ∈ [8k], PX′[i,·] evaluate on every point in J2 is equal to U [i, ·].23 This means

that for each a ∈ [log(8k/κ) + 1] and za ∈ F8k, by the linearity of computing the LDE on za ·X ′,
we see that za ·X ′ ∈ PVAL(J2, za · U).

Now, for the completeness of IPP itself, we first see that, since all the extended polynomial
folding instances are YES instances with probability 1, so are the ones in Sr. Thus, the honest
prover would send the correct Xr and the verifier will not reject. In fact, the only place that the
verifier may not accept is during the learning step, with probability at most 1/20r; taking a union
bound over the r rounds, we see that Protocol 8 accepts with probability at least 19/20.

22For simplicity, we fix a bijection between the indices of the string X and the cells of a tensor in Fkm

, e.g., in the
lexicographic order of enumerating the cells of a tensor.

23In particular, when X ′
i = 0k

s−1

, we see that PX′
i
is identically zero over Fs−1.

56

Protocol 7 Extended Polynomial Folding Protocol

Explicit Inputs: The granularity set B = {b1, . . . , bk+1} and (F, k, s, Ĵ , v⃗, κ), where Ĵ ⊂ Fs of
size t and v⃗ ∈ Ft.

Prover Input: The prover input is X ∈ Fks (note that this is the implicit input to the verifier,
but it is unused).

Let Ĵ = (J1, J2), where J2 ⊂ Fs−1.

1. For each i ∈ [k], let X[i, ·] be the ith row of X. The prover computes PX[i,·] on every point

in J2. It sends these values in the matrix Y ∈ Fk×t.

2. The verifier receives Ỹ ∈ Fk×t, and rejects if there exists j = (j1, j2) ∈ Ĵ where j2 ∈ Fs−1,
such that the univariate LDE of degree at most (k − 1) of the jth2 -column in Ỹ , PỸ [·,j2]
evaluated on j1 is not equal to v⃗[j].

3. The verifier uses B to extend the matrix gcat(Ỹ) into U ∈ F8k×t.

4. For each a ∈ [log(8k/κ) + 1], the verifier samples a uniformly random vector za ∈ F8k of
Hamming weight 2a ·κ and sends it to the prover. It then outputs log(8k/κ)+1 such tuples
(za, a, J2, za · U)) (the usual dot product).

Soundness: The proof of soundness follows a similar chain of steps as that of Protocol 5. Towards
this end, suppose that µD,U (X,PVAL) > ε. We establish a new distance preservation lemma
for analysing the extended polynomial folding protocol. The idea here is to use the distribution
extended instances to provide a tighter analysis of the query complexity.

For any ℓ, such that 0 ≤ ℓ ≤ r − 1, consider the ℓth round of the extended polynomial folding
protocol. With high probability, from Lemma 6.1, we see that for each i ∈ [k], Pℓ+1(i) ≥ (1− τ) ·
Dℓ+1(i). Moreover, let Eℓ+1 be the granularised distribution on [k + 1] output by Agran on input

Pℓ+1. Furthermore, we define the following truncated product distributions, D̂ℓ+1 = Dℓ+1×· · ·×Dm

supported over [k]m−ℓ and Ûℓ+1 as the uniform distribution over [k]m−ℓ (note that D̂1 = D and Û1
is the uniform distribution over [k]m).

Finally, define X ′
ℓ ∈ F8k×km−ℓ−1

as the Eℓ+1-extension of gcat(Xℓ) and Uℓ ∈ F8k×t as the Eℓ+1-

extension of gcat(Ỹℓ), where Ỹℓ is the proof in the ℓth round of Protocol 7.

Lemma 6.4 (Distance preservation lemma for product distributions). For any 0 ≤ ℓ ≤ r − 1 and
for any γ > 0,

µD̂ℓ+1,Ûℓ+1
(Xℓ,PVAL(Jℓ, v⃗ℓ)) > γ =⇒

8k∑
i=1

µD̂ℓ+2,Ûℓ+2
(X ′

ℓ,i,PVAL(Jℓ+1, Uℓ,i)) > 2k(1− τ)γ

Proof. For ease of exposition, we prove the statement for the case where ℓ = 0. The lemma
statement follows from the same calculations for any ℓ ≤ r − 1.

Recall that X0 = X, J0 = J, v⃗0 = v⃗ and when ℓ = 0, γ equals ε. Let B = {b1, . . . , bk+1}
be granularities of the distribution E1 returned by Agran on input P1. Define X ′ ∈ F8k×km−1

and

U ∈ F8k×t to be the E1-extensions of gcat(X) and gcat(Ỹ) respectively.

57

Protocol 8 White-box IPP for PVAL over m-product distributions

Implicit Input: The implicit input is X ∈ Fkm , where |X| = km = n. The verifier can access
X using a query oracle. The verifier is also given a circuit C : {0, 1}polylog(n) → {0, 1}log(n), that
samples a fixed (but unknown) m-product distribution D = D1 × · · · × Dm over [k]m, which the
verifier may use to simulate the sample oracle OD (or some other distribution), by querying X.

Explicit Inputs: (F, k,m, J, v⃗), ε > 0 and a round parameter r ≤ log(1/ε)
log(k) .

Prover Access: The prover can access X in its entirety and also has access to C.

Input Promise: Either X ∈ PVAL(J, v⃗) or µD,U (X,PVAL(J, v⃗) > ε.

The Protocol:
Set S0 = (λ, λ, J, v⃗). Further, set B0 = ∅, X0 = X, J0 = J , and v⃗0 = v⃗.
For each round 0 ≤ ℓ ≤ r − 1, do the following:

1. Learn Dℓ+1: The prover sends the (ℓ + 1)th marginal distribution Pℓ+1 =
{p̃(ℓ+1),1, . . . , p̃(ℓ+1),k}. The verifier and the prover run the interactive proof from Lemma
6.1 with inputs C,Pℓ+1, τ = 1/1000 and δ = 1/20r, such that the verifier rejects if the
interactive proof rejects.

2. Granularise Pℓ+1: The verifier then runs Agran (Item 2 of Lemma 6.2) on input Pℓ+1 to
get the granularities Bℓ+1 = {b(ℓ+1),1, . . . , b(ℓ+1),(k+1)} of an 8k-grained distribution over
[k + 1].

3. Extended Polynomial Folding: For each tuple ((z1, . . . , zℓ), (a1, . . . , aℓ), Jℓ, v⃗ℓ) in Sℓ,
in parallel, the prover and verifier run the extended polynomial folding protocol, Protocol
7, with explicit inputs (Bℓ,F, k,m − ℓ, Jℓ, v⃗ℓ, κ = 32 · log(8k) log(r)). The implicit input

instance is Xℓ ∈ Fkm−ℓ
, which is the ℓ-wise dot product of z1, . . . , zℓ ∈ F8k with X0 (ob-

tained from the tensor extensions given B0, . . . , Bℓ). In essence, the underlying PVAL input
instance is (Xℓ, Jℓ, v⃗ℓ).

In return, Protocol 7 outputs a collection of tuples {(a, zaℓ+1, Jℓ+1, v⃗
a
ℓ+1)}, one for each

a ∈ [log(8k/κ) + 1], where zaℓ+1 ∈ F8k is a uniformly random vector of weight 2a · κ, and
(Jℓ+1, v⃗

a
ℓ+1) is the new claim corresponding to the folding obtained using zaℓ+1. Thus, for

each a, the tuple ((z1, . . . , z
a
ℓ+1), (a1, . . . , aℓ, a), Jℓ+1, v⃗

a
ℓ+1) is added to Sℓ+1.

Verify the folded instances: For each ((z1, ..., zr), (a1, ..., ar), Jr, v⃗r) ∈ Sr, in parallel:

1. The prover sends Xr, the r-wise dot product of X with z1, . . . , zr. The verifier receives X̃r

and checks if P
X̃r
|Jr = v⃗r, else it rejects immediately.

2. The verifier sets εr = ε (
∏r

s=1(2
as/16)). It picks (10/εr) uniformly random coordinates in

X̃r, as well as along D̂r+1 (i.e., Dr+1 × · · · × Dm) using the sampler C.

For each coordinate j that was sampled, verify that X̃r[j] = Xr[j] by using the sets
B1, . . . , Br and the vectors z1, . . . , zr to compute the appropriate queries to the original
input message X (this can be done because any extension only works with rows of X or
the all 0’s row). If any of these checks fail, then the verifier rejects immediately.

If the verifier did not reject so far, it accepts.

58

Let Wi ∈ Fkm−1
be the instance that minimises the distance along µD̂2,Û2

between X[i, ·] and
PVAL(J1, Ỹ [i, ·]), and let W be the instance in Fk×km−1

composed of these Wi’s as rows. Observe
that W ∈ PVAL(J, v⃗) and thus, µD,U (X,W) > ε. Let W ′ ∈ F8k×km−1

be the E1-extension of
gcat(W). Since X ′ and W ′ are both extended using the same distribution E1, for each i ∈ [8k], the
copies of the closest instance W [i, ·] in W ′ correspond exactly to the copies of the row X[i, ·] in X ′.
Thus, for each i ∈ [8k], W ′[i, ·] is the closest instance along µD̂2,Û2

to X ′[i, ·].
We next study the distance between X ′ and W ′ along µ

(U8k×D̂2),(U8k×Û2)
, by firstly computing

the distance over the D̂1 distribution.

µ
(U8k×D̂2),(U8k×Û2)

(X ′,W ′) ≥ dU8k×D̂2
(X ′,W ′)

=

8k∑
u=1

P
(i,j)∼U8k×D̂2

[
X ′[i, j] ̸= W ′[i, j] | i = u

]
· P
i∼U8k

[i = u]

=
k+1∑
u=1

P
(i,j)∼E1×D̂2

[
gcat(X)[i, j] ̸= gcat(W)[i, j] | i = u

]
· bu
8k

=
k+1∑
u=1

P
(i,j)∼E1×D̂2

[
gcat(X)[i, j] ̸= gcat(W)[i, j] | i = u

]
· P
i∼E1

[i = u]

= dE1×D̂2
(gcat(X), gcat(W))

Here, the third expression holds from the definition of D1-extension, where the uth row appears bu
many times in the extension with probability 1/8k each. Thus, (abusing the index u) we see that
the probability of sampling any row u ∈ [k+1] of gcat(X) ∈ F(k+1)·km−1

is bu/8k, which is the same
as E1.

From Item 2 of Lemma 6.2, Agran guarantees us that

dE1×D̂2
(gcat(X), gcat(W)) >

1

2
dP1×D̂2

(X,W)

=
1

2

k∑
L=1

P
(i,j)∼P1×D̂2

[X[i, j] ̸= W [i, j] | i = L] · P1(L)

≥ (1− τ)

2

k∑
L=1

P
(i,j)∼D1×D̂2

[X[i, j] ̸= W [i, j] | i = L] · D1(L)

=
(1− τ)

2
dD̂1

(X,W)

The third expression comes from the guarantees provided by the parallel set lower bound protocol
(with high probability) on P1.

We next look the same calculations for distances over U8k × Û2. It is worth noting from the
proof of Lemma 6.2, that when the underlying distribution is Uk, Agran outputs the distribution E1
over [k+1] with granularities b1 = · · · = bk = 8 and bk+1 = 0 (the distribution is still uniform over
[k]). In such a case, we maintain the caveat since the concatenated row 0k

m−1
has probability 0

under P1, it can be eliminated from the extension altogether and thus, the E1-extended instance is

59

still over F8k×km−1
. Thus, by defining X ′ and W ′ in a similar fashion,

µ
(U8k×D̂2),(U8k×Û2)

(X ′,W ′) ≥ dU8k×Û2
(X ′,W ′)

=

8k∑
u=1

P
(i,j)∼U8k×Û2

[
X ′[i, j] ̸= W ′[i, j] | i = u

]
· P
i∼U8k

[i = u]

=

k∑
u=1

P
(i,j)∼E1×Û2

[X[i, j] ̸= W [i, j] | i = u] · bu
8k

=
k∑

u=1

P
j∼Û2

[X[u, j] ̸= W [u, j]] · bu
8k

≥
k∑

u=1

P
j∼Û2

[X[u, j] ̸= W [u, j]] · 2

8k

=
1

4
dÛ1

(X,W)

Put together, we have that

µ
(U8k×D̂2),(U8k×Û2)

(X ′,W ′) > (1− τ)µD̂1,Û1
(X,W) >

(1− τ)γ

4
(6)

On the other hand, we have the following upper bound

µ
(U8k×D̂2),(U8k×Û2)

(X ′,W ′)

= max

{(
1

8k

8k∑
u=1

P
j∼D̂2

[
X ′[u, j] ̸= W ′[u, j]

])
,

(
1

8k

8k∑
u=1

P
j∼Û2

[
X ′[u, j] ̸= W [u, j]

])}

=
1

8k
max

{
8k∑
u=1

P
j∼D̂2

[
X ′[u, j] ̸= W ′[u, j]

]
,

8k∑
u=1

P
j∼Û2

[
X ′[u, j] ̸= W ′[u, j]

]}

≤ 1

8k

8k∑
u=1

max

{
P

j∼D̂2

[
X ′[u, j] ̸= W ′[u, j]

]
, P
j∼Û2

[
X ′[u, j] ̸= W ′[u, j]

]}

=
1

8k

8k∑
u=1

µD̂2,Û2
(X ′

u,W
′
u)

(7)

Here, the third expression follows from the fact that for any c1, . . . , ck > 0 and d1, . . . , dk > 0, we
have that max{

∑
i ci,

∑
i di} ≤

∑
imax{ci, di}.

Recall that W ′
i is the closest element in PVAL(J1, Ui) to X ′

i, for each i ∈ [8k]. Combining this
with equations 6 and 7, we get the following expression, from which the lemma follows.

1

8k

8k∑
i=1

µD̂2,Û2
(X ′

i,PVAL(J1, Ui)) ≥ µ
(U8k×D̂2),(U8k×Û2)

(X ′,W ′) >
(1− τ)γ

4

60

Applying the distance preservation lemma from Lemma 6.4 in the proofs of Claims 5.7, 5.8, and
5.9 as before, we have the following claim about the extended polynomial folding protocol.

Claim 6.5. For any 0 ≤ ℓ ≤ r − 1 and γ > 0, suppose that µD̂ℓ+1,Ûℓ+1
(Xℓ,PVAL(Jℓ, v⃗ℓ)) > γ. Let

X ′
ℓ be the Eℓ+1-extension of gcat(Xℓ) and let Uℓ be the Eℓ+1-extension of Ỹℓ ∈ Fk×t, which is the

proof sent in the (ℓ+ 1)th round of Protocol 7.
Then, there exists an a∗ ∈ [log(8k/κ) + 1], such that for a uniformly random za∗ ∈ F8k of

Hamming weight 2a
∗
κ, with probability all but (1/(|F|−1)+e−κ/16 log(k)) probability over the verifier’s

choice of z⃗a∗, it holds for v⃗ℓ+1 = za∗ · Uℓ that

µD̂ℓ+2,Ûℓ+2
(za∗ ·X ′

ℓ,PVAL(Jℓ+1, v⃗ℓ+1)) ≥ γ · 2a∗/16.

Therefore, given that µD,U (X,PVAL(J, v⃗)) > ε, then by the distance preservation lemma and
taking a union bound over all rounds, we get that with probability all but r · (1/(|F| − 1) +
e−κ/16 log(k)), there exists tuple ((z1, . . . , zr), (a1, · · · , ar), Jr, v⃗r) ∈ Sr and corresponding folded
instance Xr, such that

µD̂r+1,Ûr+1
(Xr,PVAL(Jr, v⃗r)) > ε ·

r∏
s=1

k · 2as/16

Thus, the overall probability of accepting X (by a union bound over the learning step, the
extended polynomial folding step, and the folded instance verification step) for r > 10 is at most

rδ + r(1/(|F| − 1) + e−κ/16 log(k)) + (1− εr)
10
εr <

1

20
+

r

10r − 1
+

r

r2
+

1

10
≤ 1

3

Query Complexity: The input is queried only in the final verification stage. For each of the
10
εr

indices sampled on each Xr (over U and D), the verifier makes
∏r

s=1 2
asκ queries to X by the

bounded locality of the extended polynomial folding protocol. There are at most O(logr(k)) =
1/εo(1) many such instances, for every tuple in Sr. By a similar calculation as Theorem 5.10, the
query complexity is given by

1

εo(1)
· 10
εr
·

r∏
s=1

2asκ =
1

εo(1)
· 10
ε
·

r∏
s=1

16

2as
·

r∏
s=1

2asκ =
1

ε1+o(1)

This follows from the fact that kr = 1
ε , O(log(k))r = 1

εo(1)
and κr = O(log(k) log(r))r = 1

εo(1)
.

Communication Complexity: The communication complexity from r iterations of the learning
step is O(rk) for sending the r marginals P1, . . . ,Pr and O(polylog(n) · k2), for our setting of δ and
τ2 in Lemma 6.1, and observing that the input length of C is at most polylog(n) and the number
of rounds r is at most log(n).

Next, from a similar analysis as Theorem 5.10, we see that r iterations of the extended polyno-
mial folding have r ·O(log(k))r · kt · log |F| = 1

εo(1)
· k · n · ε · polylog(n) communication complexity,

from sending all the matrices Y . This calculation follows from the fact that r, O(log(k))r and

61

k = 1
εo(1)

along with that t = nε log(n) and |F| = polylog(k). Further, communicating the folded
instances Xr in the final step uses n

krεo(1)
many bits.

Therefore the total communication complexity is

polylog(n) · k2 + 1

εo(1)
· n · εpolylog(n) + n

kr · εo(1)
= polylog(n) ·

(
k2 +

k

εo(1)
· n · ε

)
.

Number of Messages: The number of messages (and the round complexity) is O(r), since the
learning phase is done in constantly many rounds from Lemma 6.1 and the polynomial folding
protocols are performed in parallel.

Honest Prover Running Time: The running time of the honest prover in the ℓth round is
O
(
2polylog(n)

)
to compute the probability distribution vector ofDℓ+1 by going over all possible inputs

to C and O
(
2polylog(n)

)
in the IP from Lemma 6.1. As seen earlier, a poly(n)-time honest prover

is sufficient for the other stages in the protocol. In total, the honest prover runs in O
(
2polylog(n)

)
time.

Verifier running time: In total, the verifier runs in O
(
r·poly(|C|)k2

δτ2

)
= k2polylog(n) for learning,

and O(rk) = O(k log(n)) for granularisation. The rest follows from a similar analysis as Theorem
5.10, and put together, the verifier running time is no(1)(kεn+ k2 + 1/ε).

We end this section with the white-box IPP for low-depth circuits over polynomially-samplable
m-product distribution families. This IPP builds on the framework from Section 5.

Theorem 6.6. For any m,n ∈ N, let F be a set of polynomially samplable m-product distributions
over [k]m, such that n = km. Moreover, for every n ∈ N, let L ⊆ {0, 1}n be a language computable
by circuits of depth ∆(n) and size S = S(n).

Then, for every large enough input n ∈ N and every ε > 0, there exists a white-box IPP for L
over F with proximity parameter ε, and completeness and soundness probabilities 2/3.

The query complexity of the white-box IPP is 1/ε1+o(1), the communication complexity is
polylog(n) ·

(
k2 + k · ε1−o(1) · n

)
+ ε · n · poly(∆), and the verifier running time is no(1)(k · ε · n +

k2 + 1/ε) + ε · n · poly(∆). Moreover, the number of messages is O(log(1/ε)/ log(k)) + ∆ · log(S))
and the honest prover running time is 2polylog(n) + poly(S).

The theorem follows by combining the interactive reduction from Theorem 4.3 (which doesn’t
access the implicit input), with the white-box IPP over F for PVAL in Protocol 8.

Acknowledgements

We are grateful to Oded Goldreich for his insightful comments, some of which led to rephrasing
Theorem 1.1 to indicate the trade-off between the query and communication complexities with
better clarity. We are also thankful to Marcel Dall’Agnol for many helpful discussions.

Tom Gur and Ninad Rajgopal are supported by the Tom Gur’s UKRI Future Leaders Fellowship
MR/S031545/1. Tom Gur is also supported in part by EPSRC New Horizons Grant EP/X018180/1
and EPSRC RoaRQGrant EP/W032635/1. Ron Rothblum is funded by the European Union (ERC,
FASTPROOF, 101041208). Views and opinions expressed are however those of the author(s) only

62

and do not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[ABF+23] Vipul Arora, Arnab Bhattacharyya, Noah Fleming, Esty Kelman, and Yuichi Yoshida.
Low degree testing over the reals. In Proceedings of the 2023 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 738–792. SIAM, 2023.

[AFK13] Pranjal Awasthi, Vitaly Feldman, and Varun Kanade. Learning using local member-
ship queries. In Shai Shalev-Shwartz and Ingo Steinwart, editors, COLT 2013 - The
26th Annual Conference on Learning Theory, June 12-14, 2013, Princeton University,
NJ, USA, volume 30 of JMLR Workshop and Conference Proceedings, pages 398–431.
JMLR.org, 2013.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklama-
nis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[Bel19] Aleksandrs Belovs. Quantum algorithm for distribution-free junta testing. In René van
Bevern and Gregory Kucherov, editors, Computer Science - Theory and Applications
- 14th International Computer Science Symposium in Russia, CSR 2019, Novosibirsk,
Russia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in Computer Sci-
ence, pages 50–59. Springer, 2019.

[BFH21] Eric Blais, Renato Pinto Jr Ferreira, and Nathaniel Harms. VC dimension and
distribution-free sample-based testing. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 504–517, 2021.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter pcps, and applications to coding. SIAM J. Comput.,
36(4):889–974, 2006.

[BLNR22] Sarah Bordage, Mathieu Lhotel, Jade Nardi, and Hugues Randriam. Interactive oracle
proofs of proximity to algebraic geometry codes. In Shachar Lovett, editor, 37th Com-
putational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA,
USA, volume 234 of LIPIcs, pages 30:1–30:45. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[BRV18] Itay Berman, Ron D. Rothblum, and Vinod Vaikuntanathan. Zero-knowledge proofs of
proximity. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of
LIPIcs, pages 19:1–19:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

63

[BSGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. In Proceedings
of the thirty-sixth annual ACM symposium on Theory of computing, pages 1–10, 2004.

[Bsh19] Nader H. Bshouty. Almost optimal distribution-free junta testing. In Amir Shpilka,
editor, 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New
Brunswick, NJ, USA, volume 137 of LIPIcs, pages 2:1–2:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor.
Comput. Sci., 2(1), 2006.

[BY22] Arnab Bhattacharyya and Yuichi Yoshida. Property Testing - Problems and Tech-
niques. Springer, 2022.

[CEG95] Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algorithms
for estimating the average. Inf. Process. Lett., 53(1):17–25, 1995.

[CG18] Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In
Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages
53:1–53:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[CP22] Xi Chen and Shyamal Patel. Distribution-free testing for halfspaces (almost) requires
pac learning. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1715–1743. SIAM, 2022.

[CX16] Xi Chen and Jinyu Xie. Tight bounds for the distribution-free testing of monotone con-
junctions. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 54–71. SIAM, 2016.

[DGMT22] Marcel Dall’Agnol, Tom Gur, Subhayan Roy Moulik, and Justin Thaler. Quantum
proofs of proximity. Quantum, 6:834, 2022.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically
checkable proofs. Inf. Comput., 189(2):135–159, 2004.

[FGL14] Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests
and decomposability. In Proceedings of the 5th conference on Innovations in theoretical
computer science, pages 483–500, 2014.

[FY20] Noah Fleming and Yuichi Yoshida. Distribution-free testing of linear functions on
Rn. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151
of LIPIcs, pages 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[GG21] Oded Goldreich and Tom Gur. Universal locally verifiable codes and 3-round interac-
tive proofs of proximity for CSP. Theoretical computer science, 878:83–101, 2021.

64

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection
to learning and approximation. J. ACM, 45(4):653–750, 1998.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:
interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.

[Gol19a] Oded Goldreich. Testing bipartitness in an augmented VDF bounded-degree graph
model. CoRR, abs/1905.03070, 2019.

[Gol19b] Oded Goldreich. Testing graphs in vertex-distribution-free models. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 527–534,
2019.

[Gol20] Oded Goldreich. The uniform distribution is complete with respect to testing identity
to a fixed distribution. In Oded Goldreich, editor, Computational Complexity and
Property Testing - On the Interplay Between Randomness and Computation, volume
12050 of Lecture Notes in Computer Science, pages 152–172. Springer, 2020.

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of prox-
imity. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67
of LIPIcs, pages 39:1–39:43. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[GR18] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Comput. Com-
plex., 27(1):99–207, 2018.

[GR22] Guy Goldberg and Guy N Rothblum. Sample-based proofs of proximity. In 13th Inno-
vations in Theoretical Computer Science Conference (ITCS 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[GRR20] Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes.
Theory of Computing, 16(1):1–68, 2020.

[GRSY21] Shafi Goldwasser, Guy N Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interac-
tive proofs for verifying machine learning. In 12th Innovations in Theoretical Computer
Science Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2021.

[GS89] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. Adv. Comput. Res., 5:73–90, 1989.

[GS07] Dana Glasner and Rocco A. Servedio. Distribution-free testing lower bounds for ba-
sic boolean functions. In Moses Charikar, Klaus Jansen, Omer Reingold, and José
D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, 10th International Workshop, APPROX 2007, and
11th International Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-22,
2007, Proceedings, volume 4627 of Lecture Notes in Computer Science, pages 494–508.
Springer, 2007.

65

[Gur17] Tom Gur. On locally verifiable proofs of proximity. PhD thesis, TheWeizmann Institute
of Science (Israel), 2017.

[GV11] Oded Goldreich and Salil P Vadhan. On the complexity of computational problems
regarding distributions. Studies in Complexity and Cryptography, 6650:390–405, 2011.

[HK07] Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J.
Comput., 37(4):1107–1138, 2007.

[HK08] Shirley Halevy and Eyal Kushilevitz. Distribution-free connectivity testing for sparse
graphs. Algorithmica, 51:24–48, 2008.

[HR22] Tal Herman and Guy N Rothblum. Verifying the unseen: interactive proofs for label-
invariant distribution properties. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1208–1219, 2022.

[KR15] Yael Tauman Kalai and Ron D Rothblum. Arguments of proximity. In Advances in
Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part II, pages 422–442. Springer, 2015.

[LCS+18] Zhengyang Liu, Xi Chen, Rocco A Servedio, Ying Sheng, and Jinyu Xie. Distribution-
free junta testing. ACM Transactions on Algorithms (TALG), 15(1):1–23, 2018.

[LCS+19] Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-
free junta testing. ACM Trans. Algorithms, 15(1):1:1–1:23, 2019.

[RR20] Guy N Rothblum and Ron D Rothblum. Batch verification and proofs of proximity
with polylog overhead. In Theory of Cryptography: 18th International Conference,
TCC 2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part II, pages
108–138. Springer, 2020.

[RR22] Dana Ron and Asaf Rosin. Optimal distribution-free sample-based testing of
subsequence-freeness with one-sided error. ACM Transactions on Computation Theory
(TOCT), 14(1):1–31, 2022.

[RRR18] Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Efficient batch verification
for UP. In 33rd Computational Complexity Conference (CCC 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. SIAM J. Comput., 50(3), 2021.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proxim-
ity: delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013.

66

[RZR20] Noga Ron-Zewi and Ron D Rothblum. Local proofs approaching the witness length.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 846–857. IEEE, 2020.

[SV97] Amit Sahai and Salil P. Vadhan. Manipulating statistical difference. In Panos M.
Pardalos, Sanguthevar Rajasekaran, and José Rolim, editors, Randomization Methods
in Algorithm Design, Proceedings of a DIMACS Workshop, Princeton, New Jersey,
USA, December 12-14, 1997, volume 43 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 251–270. DIMACS/AMS, 1997.

[Vad99] Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

[Vad06] Salil P Vadhan. An unconditional study of computational zero knowledge. SIAM
Journal on Computing, 36(4):1160–1214, 2006.

[Val84] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

A Proofs of Claims 5.7, 5.8, and 5.9

Claim 5.7. If the verifier does not reject in Step 1, then there exists an integer b ∈ {0, · · · , log(k)},
and a subset I ⊆ [k], s.t. ∀i ∈ I, εi ≥ kε/(2b+1ρ) and |I| ≥ 2b/4 log(k).

Proof. We have by Lemma 5.4 that
∑

i∈[k] εi > kε/ρ. We suppose by contradiction that for all

b ∈ {0, · · · , log(k)}, the number of rows i s.t. εi ∈ [kε/(2b+1ρ), kε/(2bρ)) is less than 2b/4 log(k), it
follows that:

k∑
i=1

εi <

(log(k)−1∑
b=0

(kε/(2bρ)) · (2b/4 log(k))
)
+ (ε/2ρ)k

= (log(k) + 1)(kε/4ρ log(k)) + (kε/2ρ)

< kε/ρ.

Here the left summand on the first line are the contributions from where εi > ε/2ρ, the right
are the rest for which there can be at most k.

Claim 5.8. In Step 2 of protocol 4, for a ∈ [log(k/κ) + 1], let Ia be the set of non-zero coordinates
in z⃗a (this set is of size 2a · κ). Take b as guaranteed by Claim 5.7 and a∗ = min(log(k/κ),
log(k)− b). With all but e−κ/4 log(k) probability over the verifier’s choice of Ia∗, there exists i∗ ∈ Ia∗

s.t. εi∗ ≥ ε · 2a∗/2ρ.

Proof. We know by Claim 5.7 that there is some b ∈ {0, · · · , log(k)}, and a set I of at least
2b/4 log(k) rows each of which has εi > kε/(2b+1ρ).

When we pick min(k, κk/2b) random rows to include in Ia∗ , with all but
(
1− |I|

k

)κk/2b
≤

e−κ/4 log(k) probability, there will be non zero intersection between I and Ia∗ (via a “birthday
Paradox” argument). The cardinality of Ia∗ is equal to κk/2b, but if this is greater than k, then
setting it to k suffices. The latter holds true, because the total number of rows is k, and in particular
we end up picking every row in I. Now, we set a∗ = min(log(k/κ), log(k)− b) (as |Ia∗ | = 2a

∗
κ), to

ensure that the size of our set Ia∗ is large enough but has size no greater than k.

67

Claim 5.9. Take a∗ as guaranteed by Claim 5.8. With all but ((|F|−1)−1+ e−κ/4 log(k)) probability
over the verifier’s choice of z⃗a∗ , it holds for v⃗a∗ = za∗ · Y ′ that

µD(p),Ukp
(Xa∗ ,PVAL(J2, v⃗a∗)) ≥ ε · 2a∗/4ρ.

Proof. Let T be the linear subspace of messages in Fkp , whose encodings are 0 on J2(the set of
column coordinates of the elements of J and therefore the coordinates of the row of Y). Also
let Ai be the set of vectors that when you add them to the ith row of X, they evaluate to the
corresponding row of y. Observe that for any s⃗ ∈ Ai: Ai = s⃗+ T . Take any such vector s⃗i for each
row i.

By the Claim 5.8, with all but e−κ/4 log(k) probability over the choice of non-zero coordinates of
Ia∗ , there is some i∗ ∈ Ia∗ s.t. εi∗ ≥ 2a

∗
ε/2ρ.

In this case, we give the non-zero values of z⃗a∗(the values in Ia∗) uniformly random elements of
F. We now have a value for Xa∗ = z⃗a∗ · X and a corresponding v⃗a∗ = z⃗a∗ · Y ′, we want to lower
bound the µD(p),Ukp

distance from this Xa∗ and any satisying X ′.
Let A be the set of shift vectors that when added to Xa∗ are consistent with v⃗a∗ . A = s⃗ + T

as before for any shift vector s⃗ ∈ A, the minimal µD(p),Ukp
weight of A (what we are now trying to

minimise) is the same as the µD(p),Ukp
distance from s⃗ to T .

s⃗a∗ =
∑

i∈[k] z⃗a∗ [i]s⃗i is a uniformly random vector in the linear span of {s⃗i}i∈Ia∗ . There is some

i∗ ∈ Ia∗ s.t. εi∗ > ε2a
∗
/2ρ. Therefore by lemma 5.5, with a union bound we have that with proba-

bility at least all but ((|F |−1)−1+e−κ/4 log(k)), we have for some a∗, µD(p),Ukp
(Xa∗ ,PVAL(J2, v⃗a∗)) ≥

ε · 2a∗/4ρ.

B Proof of Theorem 5.2

Proof of Theorem 5.2. The IPP for any such L over ρ-dispersed distributions is specified in Pro-
tocol 6. This protocol has perfect completeness and soundness error 1/4, to achieve the required
soundness we simply repeat O(1) times. Let X ∈ {0, 1}n be the input to L. The properties and
the complexity of the protocol are proved below.

Completeness: Both the protocols used in this IPP have perfect completeness and therefore
X ∈ L implies that the verifier accepts with probability 1.

In the protocol from Theorem 4.3:

X ∈ L =⇒ P
VNC

[X ∈ PVAL(J, v⃗)] = 1.

In protocol 5:

X ∈ PVAL(J, v⃗) =⇒ P
V0,OD(X)

[
(P0(X,D), V X,OD(X)

0)(n, ε) = 1
]
= 1.

Therefore, in the overall IPP, if X ∈ L, V will accept with probability 1.
Soundness: Assume that dD(X,L) > ε. For each repetition of this protocol, the probability

that the verifier outputs (J, v⃗) such that µD,U (X,PVAL(J, v⃗)) > ε is at least 1
2 by the soundness

condition of Theorem 4.3. Similarly, by Theorem 5.10, there is also probability at least 1
2 that given

µD,U (X,PVAL(J, v⃗)) > ε, V0 rejects.

68

In the protocol from Theorem 4.3:

dD(X,L) > ε =⇒ P
VNC

[µD,U (X,PVAL(J, v⃗)) > ε] ≥ 1

2
.

In protocol 5:

µD,U (X,PVAL(J, v⃗)) > ε =⇒ P
V0,OD(X)

[
(P ∗

0 (X,D), V X,OD(X)
0)(n, ε) = 0

]
≥ 1

2
.

Therefore V rejects with probability 1
4 each repetition of this protocol. In total this means that

the verifier rejects with probability at least
(
1− 3

4

)
= 1

4 . We can achieve our soundness condition
by standard soundness amplification.

The complexities of this protocol are achieved by summing the complexities of the component
protocols.

Communication Complexity: The communication complexity from step 1 is εn · poly(∆L),

and is (nε+4εn log2(n)) 1
εo(1)

from step 2. In total, c(n) = (ε ·n+4εn log2(n))1ε
o(1)

+ε ·n ·poly(∆L).

Query Complexity: Note that the reduction to PVAL has no access to the input or the
distribution so do not contribute to either the query or sample complexity. Therefore, we only need

to consider step 2 for which the query complexity is ρlog(1/ε)/ log log(n)

ε1+o(1) .

Sample Complexity: Similarly, we only need consider step 2 for which the sample complexity

is ρlog(1/ε)/ log log(n)

ε1+o(1) .

Prover Running Time: The prover running time from step 1 is poly(S), and is poly(n) from
step 2. In total, the running time is poly(n, S).

Verifier Running Time: The verifier running time from step 1 is ε · n · poly(∆L),

and is
(
ρlog(1/ε)/ log log(n)

ε + nε+ 4nε log2(n)
)
no(1) from step 2. In total, the verifier runs in

no(1)
(
ρlog(1/ε)/ log log(n)

ε + ε · n · poly(∆L)
)
time.

Round Complexity: The round complexity from step 1 is O(∆L · log(S)), and is log(1/ε)
log log(n) +1

from step 2. In total, the round complexity is O
(

log(1/ε)
log log(n) +∆L · log(S)

)
.

C Proof of the Granularisation Lemma

Proof of Lemma 6.2. We prove the first item of the lemma here and this extends analogously to
the second item as well.

We show that the set {a1, · · · , an+1} returned by Agran form the granularities of a distribution
D′ over [n+ 1]. For this, we first show that for any ∀i ∈ [n+ 1] : D′(i) = ai

8n ∈ [0, 1] and then that∑
i∈[n+1]D′(i) = 1.

∀i ∈ [n] : ai = ⌊6n · p(i)⌋+ 2 ∈ [2, 6n+ 2] ⊆ [0, 8n].

Therefore ∀i ∈ [n] : D′(i) = ai
8n ∈ [0, 1].

69

Algorithm 9 Agran: Algorithm for granularising an input distribution.

The input is the distribution D over [n] presented as the list of values {p1, · · · , pn}.

1. Set t = 0.

2. For each i ∈ [n]

(a) return ai = ⌊6n · p(i)⌋+ 2.

(b) assign t = t+ ai.

3. return an+1 = 8n− t.

Let q =
∑

i∈[n]
⌊6npi⌋+2

8n . Observe that q ∈ (0, 1], since

0 <
∑
i∈[n]

⌊6npi⌋+ 2

8n
≤
∑
i∈[n]

6npi + 2

8n
≤ 1

4
+
∑
i∈[n]

3

4
pi ≤ 1

where the we use the fact that {p1, . . . , pn} form a probability distribution. Moreover, observe that
D′(n+1) = 1−q ∈ [0, 1). This implies that every element of the distribution D′ is within the range
[0, 1] and therefore D′ is a distribution as

∑
i∈[n+1]

D′(i) =
∑

i∈[n+1]

ai
8n

=
∑
i∈[n]

ai
8n

+ an+1 =

∑
i∈[n]

ai
8n

+
8n−

∑
i∈[n] ai

8n
= 1.

The linear running time of Agran follows from inspection of Algorithm 9.
Next, we see that if X ∈ L, by the definition of L0, X

′ = gcat(X) ∈ L0. On the other hand,
to show that this transformation of D maintains the distance for any input NO instance, we prove
the following claim.

Claim C.1. ∀i ∈ [n], ai
8n ≥

pi
2

Proof. Suppose p(i) ≤ 1
3n , then

ai
8n
≥ 2

8n
≥ 1

3n
· 1
2
≥ pi

2

Suppose instead that pi ≥ 1
3n , let pi =

r
6n + s for r ∈ N, s ∈ [0, 1

6n):

ai
8n

=
r + 2

8n
≥ r

12n
+

s

2

≥ pi
2

70

Let Y ′ ∈ L0, this implies that there is some Y ∈ L such that Y ′ = gcat(Y).

dD′(X ′, Y ′) =
∑

i∈[n+1]

|X ′
i − Y ′

i |D′(i)

=
∑
i∈[n]

|X ′
i − Y ′

i |D′(i)

≥
∑
i∈[n]

|Xi − Yi|
D(i)
2

≥ 1

2
dD(X,Y) > ε/2.

This follows for every value of Y ′ ∈ L0 including the minimiser, therefore dD′(X ′, L0) > ε/2.

D IPPs for Efficiently Learnable Distribution Families

In this section, we demonstrate an IPP for NC over logspace-uniform low-depth circuit classes, given
that the distribution we test against is efficiently learnable.

For any pair of distributions D1,D2 ∈ ∆(Ωn), define the total variation distance (dTV) as follows

dTV (D1,D2) =
∑
i∈[n]

∣∣Pj∼D1 [j = i]− Pj∼D2 [j = i]
∣∣.

Definition D.1 (Efficiently Learnable Class of Distributions). Let C ⊆ {∆(Ωn)}n∈N be a class of
distributions. We say that C is learnable by an interactive proof, if there exists (P, V) where the
verifier V is given sample access to an unknown (but fixed) D = {Dn} ∈ C (i.e., V gets samples
from [n] according to Dn) and the honest prover has full knowledge of D, along with common inputs
n, ε, such that the proof system satisfies the following properties for every large enough n.

• Completeness: For every D ∈ C, the verifier outputs D̃ =
(
P (D), V D) (n, ε) as a distribution

vector of probabilities or the value ‘reject’ (⊥), such that

P
V,D

[
(D̃ ≠ ⊥) ∧ (dTV (D, D̂) < ε)

]
= 1.

• Soundness: For every D ∈ C and for any computationally unbounded prover P ∗, the output
D̃ =

(
P (D), V D) (n, ε) is either a distribution vector of probabilities or the value ‘reject’ (⊥),

such that
P
V,D

[
(D̃ ≠ ⊥) ∧ (dTV (D, D̂) ≥ ε)

]
≤ 0.1.

The sample complexity s(n, ε), proof complexity p(n, ε), verifier running time t(n, ε) are as defined
earlier. Furthermore, we specify the honest prover running time here to be poly(n).

We next state the following lemma on the closeness of an input with respect to a distribution
D′ that is close to the underlying distribution D, in total variation distance.

Lemma D.1. For any strings X,Y ′ ∈ {0, 1}n and distributions D,D′ over [n],

dD(X,Y ′) ≤ dTV (D,D′) + dD′(X,Y ′).

71

Proof. The proof consists of the following sequence of calculations.

dD(X,Y ′) = P
i∼D

[
Xi ̸= Y ′

i

]
=

∑
i∈[n]∧Xi ̸=Y ′

i

P
j∼D

[j = i]

=
∑

i∈[n]∧Xi ̸=Y ′
i

P
j∼D′

[j = i] +

(
P

j∼D
[j = i]− P

j∼D′
[j = i]

)

≤
∑

i∈[n]∧Xi ̸=Y ′
i

P
j∼D′

[j = i] +

∣∣∣∣ Pj∼D
[j = i]− P

j∼D′
[j = i]

∣∣∣∣
≤

 ∑
i∈[n]∧Xi ̸=Y ′

i

P
j∼D′

[j = i]

+ dTV (D,D′)

= dD′(X,Y ′) + dTV (D,D′)

Corollary D.2. For any string X ∈ {0, 1}n, language L ⊆ {0, 1}n and distributions D,D′ over
[n],

dD(X,L) ≤ dTV (D,D′) + dD′(X,L).

Proof. There exists Y ′ ∈ L such that dD′(X,L) = dD′(X,Y ′). Therefore, by Lemma D.1

dD(X,L) ≤ dD(X,Y ′) ≤ dTV (D,D′) + dD′(X,Y ′) = dTV (D,D′) + dD′(X,L).

The following lemma demonstrates a reduction from proving IPPs over learnable distributions
to uniform IPPs given that we know the distribution.

Lemma D.3. Let L be any language computable by logspace-uniform circuits of size S(n) and
depth D(n), and let ε > 0. Let D be any distribution over [n] such that D(i) = pi for every i ∈ [n],
where each pi ∈ [0, 1].

Then, there exists an algorithm Bgran that given explicit inputs {p1, . . . , pn}, as well as oracle ac-
cess to a string X ∈ {0, 1}n, outputs a vector Q⃗ ∈ {0, 1}8n log(n), such that for a (parameterised) lan-
guage L′

Q computable by logspace-uniform circuits of size S(n)+ Õ(n) and depth D(n)+O(log(n)),

there exists X ′ ∈ {0, 1}8n for which the following holds.

• If X ∈ L, then X ′ ∈ L′
Q.

• If dD(X,L) > ε, then dU8n(X
′, L′

Q) > ε/2.

This algorithm runs in time Õ(n). Additionally, any query to X ′ can be implemented using a
single query to X and O(1) running time, given explicit access to Q⃗.

72

In other words, Lemma D.3 says that given explicit access to a distribution D, Bgran provides an
“implicit” reduction between L and a parameterised language L′

Q computable by log-space uniform
circuits of similar size and depth. By this we mean that Bgran reduces a testing problem for L over
D to another testing problem for L′ over the uniform distribution, by simulating oracle access to
the input X ′ ∈ {0, 1}8n to L′ using the oracle to the original input X ∈ {0, 1}n.

Proof Sketch. Bgran first runs Agran from Lemma 6.2 on input D to obtain a set A of granularities
of a distribution D′ over [n+ 1] for which the following hold.

X ∈ L =⇒ gcat(X) ∈ L0

and
dD(X,L) > ε =⇒ dD′(gcat(X), L0) > ε/2.

Given granularities A = {a1, · · · , an+1}, in Õ(n) running time we can obtain a vector Q⃗ defined
as follows.

Q⃗i =



i, i ∈ [n]

1, i ∈ [n+ 1, n+ a1 − 1]

2, i ∈ [n+ a1, n+ a1 + a2 − 2]
...

n+ 1 i ∈ [n+ 1 +
∑n−1

j=1 aj − 1, 8n]

Let X ′ ∈ {0, 1}8n be the extension of gcat(X) using A. From this, each query i to X ′ becomes
the query Q⃗i to X as XQ⃗i

= X ′
i by the definition of extensions. Therefore in total this algorithm

runs in time Õ(n) and a query to the oracle for X ′ makes a single query to X and has O(1) running
time.

Define a parameterised language L′
Q as the set of strings that are the extensions of L0 using A

(i.e., D′-extensions of L0). Formally,

L′
Q =

{
W ∈ {0, 1}8n | ∃Y ∈ L0 ∩ {0, 1}n+1 such that W is the extension of Y using A

}
Let X ′ be the D′-extension of gcat(X). From this, Item 1 follows as

X ∈ L =⇒ gcat(X) ∈ L0 =⇒ X ′ ∈ L′
Q

On the other hand, for any Y, Ỹ ∈ {0, 1}n, with Y ′ and Ỹ ′ being the D′-extensions of gcat(Y)
and gcat(Ỹ) respectively, we have

dD′(gcat(Y), gcat(Ỹ)) =
n+1∑
i=0

ai
8n
|gcat(Y)i − gcat(Ỹ)i|

=

8n∑
i=0

1

8n
|Y ′

i − Ỹ ′
i |

= dU8n(Y
′, Ỹ ′)

Therefore,
dD(X,L) > ε =⇒ dD′(gcat(X), L0) = dU8n(X

′, L′
Q) > ε/2.

73

The last thing we need to prove is that L′
Q is computable by log-space uniform circuits of size

S(n)+ 8n and depth D(n)+ log(8n). Thus, a log-space Turing machine can first generate a circuit
for L on the first n indices and then generate an O(log(n))-depth circuit of AND gates at the top
to check

∧
j∈[n+1,8n]XQ⃗j

= Xj . This is performed using additional circuitry of size O(n log(n)) (n

AND statements each requiring log(n) bitwise comparisons) and depth O(log(n)).

With this lemma, we can extend our framework from Theorem 5.2 to construct IPPs for lan-
guages computable by low-depth circuits over the class of efficiently learnable distributions (using
interactive proofs) in the sense of Definition D.1.

Theorem D.4. Let C ⊆ {∆(Ωn)}n∈N be a class of distributions that is learnable using an interactive
proof that has sample complexity s(n, ε), proof complexity p(n, ε), verifier running time TV (n, ε)
and honest prover running time poly(n). Moreover, for every n ∈ N, let L ⊆ {0, 1}n be a language
computable by circuits of depth ∆(n) and size S = S(n).

Then, for every large enough input length n ∈ N and every ε > 0, there exists an IPP for L over
C with proximity parameter ε, and perfect completeness and soundness error 2/3.

This IPP has query complexity O(1/ε), sample complexity s(n, ε/4) and communication com-
plexity p(n, ε/4) + Õ(εn) + ε · n · poly(∆, log(n))). In addition, the honest prover runs in poly(S, n)
time and the verifier runs in t(n, ε/2) +O(1/ε) + ε · n · poly(∆, log(n)) + Õ(n).

Proof Sketch. This protocol proceeds by first applying the learning algorithm for C with proximity
parameter ε/2 to learn a distribution D̃ which is ε/2-close to D (it rejects if the learner outputs ⊥).
Next, it runs the granularisation algorithm Bgran from Theorem D.3 to reduce testing X along the
distribution D̃ for membership of L to testing X ′ along the uniform distribution for membership of
L′
Q, for which we can simulate oracle access to X ′ using X and the output of Bgran, Q⃗. Finally, it

runs the IPP from Theorem 4.6 for testing X ′’s membership in L′
Q with proximity parameter ε/4.

Perfect completeness follows as in the learning stage the verifier learns a valid distribution D̃
from the honest prover, the completeness of Bgran and of Theorem 2.1 ensures that if X ∈ L then
X ′ ∈ L′

Q and therefore that the IPP from Theorem 2.1 accepts with probability 1.
For soundness, we show that the transformation to verifying L′

Q preserves distance.

dD(X,L) > ε =⇒ dD̃(X,L) + dTV (D, D̃) > ε

=⇒ dD̃(X,L) +
ε

2
> ε

=⇒ dD̃(X,L) >
ε

2

=⇒ dU8n(X
′, L′

Q) >
ε

4

The first expression comes from Corollary D.2, the second comes from the guarantees on D̃
of the distribution learner, and the fourth from the distance preservation from Lemma D.3. This
means that with probability at least 0.9, the verifier either rejects (because the learner outputs ⊥)
or D̃ is a good approximation of D, and with probability 2/3, the IPP will reject. Put together, the
verifier rejects the input X with probability at least 1/2.

The query complexity follows from the fact that each query to X ′ is simulated by 1 query to
X and from the query complexity from Theorem 4.6. The verifier running time follows as these
queries also cost an additional Õ(n) to generate (via Bgran) and the additional running time from

74

the new oracle can only introduce at most a multiplicative factor of O(1). The other complexities
follow from construction.

From Theorem D.4, we get the following IPP over learnable distributions for NC languages that
matches the parameters of the uniform IPP on every ε.

Corollary D.5. Let F be a class of distributions that can be learnt by an interactive protocol A that
takes sample access to some D in F , using O(1/ε) samples and Õ(εn) communication complexity,
where the verifier runs in time TV (n) and the honest prover runs in poly(n) time.

Then, there exists an IPP for NC over F , with sample complexity O(1/ε), query complexity
O(1/ε) and communication complexity Õ(εn). Moreover, the honest prover runs in time poly(n).

75

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

