
On Lifting Lower Bounds for Noncommutative
Circuits using Automata

V. Arvind* Abhranil Chatterjee†

August 9, 2023

Abstract

We revisit the main result of Carmosino et al [CILM18] which shows
that an Ω(𝑛𝜔/2+𝜖) size noncommutative arithmetic circuit size lower
bound (where 𝜔 is the matrix multiplication exponent) for a constant-
degree 𝑛-variate polynomial family (𝑔𝑛)𝑛 , where each 𝑔𝑛 is a noncom-
mutative polynomial, can be “lifted” to an exponential size circuit size
lower bound for another polynomial family (𝑓𝑛) obtained from (𝑔𝑛) by a
lifting process. In this paper, we present a simpler and more conceptual
automata-theoretic proof of their result.

1 Introduction

Algebraic Complexity concerns itself with the complexity of algebraic compu-
tations of multivariate polynomials. It starts with Strassen’s work on matrix
multiplication from the 1960’s. In the 1970’s, Valiant defined the algebraic
complexity classes VP and VNP [Val79], which are analogues to P and NP,
which brings to focus the problem of proving superpolynomial arithmetic cir-
cuit size lower bounds for an explicit polynomial family like the permanent
Perm𝑛 which is complete for VNP under projection reductions. This research
area has a rich history, nicely described in the text by Burgisser et al [BCS97].
It is believed that separating VP from VNP is easier than the P vs NP problem.
But the problem remains open despite intense research and highly nontrivial
progress in recent years [LST21, KS18] and the Ω(𝑛 log 𝑛) circuit size lower
bound result of Baur and Strassen [BS83] remains the best known lower bound
to this date.

Nisan [Nis91] initiated the study on the algebraic complexity of noncom-
mutative polynomials. The noncommutative polynomial ring F⟨𝑋⟩, where
𝑋 = {𝑥1 , 𝑥2 , . . . , 𝑥𝑛} is a set of 𝑛 free noncommuting variables, consists of
noncommutative polynomials which are F-linear combinations of words over
𝑋. Noncommutative arithmetic circuits computing polynomials in F⟨𝑋⟩ are

*Institute of Mathematical Sciences (HBNI), and Chennai Mathematical Institute, Chennai,
India. Email: arvind@imsc.res.in.

†Indian Statistical Institute, Kolkata, India. Email: abhneil@gmail.com. Research Sup-
ported by DST-INSPIRE Faculty Fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 122 (2023)

defined like their commutative analogs. The only difference is that multipli-
cation gates in the circuit are not commutative. The classes VPnc and VNPnc,
which are noncommutative analogs of VP and VNP, can be defined, as has
been done by Hrubeš et al [sWY10]. In the same article, it is shown that Perm𝑛

is VNPnc-complete under projections. The main lower bound question is to
separate VPnc and VNPnc, i.e. whether the noncommutative permanent Perm𝑛

requires superpolynomial size noncommutative arithmetic circuits. Arguably,
this question should be easier in the noncommutative case. Indeed, Nisan
[Nis91] has shown an exponential lower bound on the size of a noncommuta-
tive formula (more generally, a noncommutative algebraic branching program)
computing the noncommutative Perm𝑛 . However, it remains open for noncom-
mutative circuits. Moreover, we do not have anything better than theΩ(𝑛 log 𝑛)
lower bound result of Baur and Strassen in the unrestricted setting. We note
that, recently, Chatterjee and Hrubeš [CH23] have obtained a quadratic lower
bound for homogeneous noncommutative circuits.

Why is it so difficult to obtain even a quadratic lower bound for unrestricted
noncommutaive circuits? A few years ago, in 2018, Carmosino et al [CILM18]
showed that an Ω(𝑛𝜔/2+𝜖) circuit size lower bound1 for a constant-degree 𝑛

variate polynomial family (𝑔𝑛) can be “lifted” to an exponential circuit size
lower bound for a polynomial family (𝑓𝑛) (which is obtained from (𝑔𝑛) by the
lifting process). The Carmosino et al lifting result partly explains the lack of
success in showing even superlinear (in the number of variables) circuit size
lower bounds for explicit polynomial families. The lifting result is reminis-
cent of Allender and Koucky’s work in the Boolean circuit complexity setting
[AK10], where the authors exploit the self-reducibility structure of some NC1-
complete problems to show that a superlinear TC0 circuit size lower bound for
them can be lifted to superpolynomial TC0 circuit size lower bound.

Before we present the contribution of this paper, it is worth mentioning
a similar result due to Hrubeš, Wigderson, and Yehudayoff [HWY10] which
indeed predates [CILM18]. They show that a super-linear lower bound on the
width of an explicit degree 4 polynomial can be lifted to an exponential circuit
size lower bound for an explicit noncommutative polynomial.

This paper In this paper, we present a simple and a more structured
automata-theoretic argument for the Carmosino et al result [CILM18] stated
above. In their paper, the main idea is to use an encoding scheme that reduces
the number of variables exponentially incurring only a polynomial blow-up in
the degree. The core of the argument is to show the following:

Lemma 1 (Informal). A noncommutative circuit can be decoded efficiently.

In this paper, we prove this using ideas from algebraic automata theory. The
main two ingredients of our proof are to show (a) an efficient representation
of a decoder using a weighted automaton, and (b) the use of the Hadamard
product to construct the decoded circuit. Our proof is not only short and

1Here 𝜔 is the matrix multiplication exponent.

2

simple but also conceptually more satisfying. We highlight two consequences
for different choices of parameters (details in Section 3.3):

• Let (𝑔𝑁) be an explicit noncommutative p-family, where deg(𝑔𝑁) = 𝑡 for
some constant 𝑡 for each 𝑁 , such that ℭ(𝑔𝑁) ≥ Ω(𝑁𝜔/2+𝜖), where 𝜖 > 0
is a constant. Then there is an explicit p-family (ℎ𝑛)𝑛 in VNPnc such that
(ℎ𝑛) requires circuits of size 𝑛Ω(𝑛).

• Suppose (𝑔𝑁) is an explicit noncommutative p-family, where each
deg(𝑔𝑁) = (log 𝑁)𝑂(1), and 𝑔𝑁 requires circuits of size 𝜔(𝑁𝜔/2 · log 𝑁).
Then there is an explicit p-family (ℎ𝑛) in VNPnc such that ℭ(ℎ𝑛) = 𝑛𝜔(1).

2 Preliminaries

We recall some algebraic complexity definitions for noncommutative compu-
tation. Further details on these definitions and basic results can be found in
Nisan’s seminal paper [Nis91].
Definition 2 (Noncommutative Arithmetic Circuit). Let F be a field. A non-
commutative arithmetic circuit 𝐶 over F and noncommuting indeterminates
𝑥1 , 𝑥2 , . . . , 𝑥𝑛 is a directed acyclic graph (DAG) with each node of indegree
zero labeled by a variable or a scalar constant from F: the indegree 0 nodes
are the input nodes of the circuit. Internal nodes are gates of the circuit, and
are of indegree two. They are labeled either by a + or a × (indicating the gate
type). Furthermore, the two inputs to each × gate are designated as left and
right inputs prescribing the order of gate gate multiplication. Each internal
gate computes a polynomial (by adding or multiplying its input polynomials),
and the polynomial computed at an input node is just its label. A special gate
of 𝐶 is designated the output. The polynomial computed by the circuit 𝐶 is the
polynomial computed at its output gate. An arithmetic circuit is a formula if
the fan-out of every gate is at most one. For a polynomial 𝑓 ∈ F⟨𝑋⟩ we denote
by ℭ(𝑓) its optimal circuit size.

We recall some more definitions from Burgisser’s text [Bür00, sWY10,
AJR18].
Definition 3 (p-family). Let F be a field. A sequence of multivariate noncom-
mutative polynomials (𝑓𝑛) over F is called a p-family if there is a polynomial 𝑛𝑐

that bounds both the degree and number of variables in 𝑓𝑛 for each 𝑛. Suppose
𝑓𝑛 ∈ F⟨𝑋𝑛⟩ for each 𝑛. The p-family (𝑓𝑛) is explicit if there is a polynomial-time
algorithm that takes as input a monomial 𝑚 ∈ 𝑋∗

𝑛 and computes its coefficient
in 𝑓𝑛 , for all 𝑛, and in time polynomial in 𝑛. For example, the permament
polynomial (Perm𝑛)𝑛 is an explicit p-family.
Remark 4. In the definition of an explicit p-family, the running time of the
algorithm that computes the coefficient of a monomial 𝑚 ∈ 𝑋∗

𝑛 is polynomial
in the length of 𝑚 encoded in some fixed alphabet like, for example, the binary
alphabet. This point is important when we consider p-families –as indeed
we will need to for the lower bound lifting result– (𝑔𝑛)𝑛 of constant degree
polynomials where deg(𝑔𝑛) ≤ 𝑡 for 𝑡 independent of 𝑛.

3

Some notation that we will use in this paper: for a polynomial 𝑓 ∈ F⟨𝑋⟩
its support supp(𝑓) = {𝑤 ∈ 𝑋∗ | coefficient of 𝑤 is ≠ 0} is the set of monomials
with nonzero coefficient in 𝑓 . Thus, letting 𝑓𝑤 denote the coefficient of 𝑤 in 𝑓 ,
we can write 𝑓 =

∑
𝑤∈supp(𝑓) 𝑓𝑤𝑤.

Definition 5 (Formal Power Series). Let 𝑋 be a set of free noncommuting
variables and F be any field. A formal power series is a function 𝑓 : 𝑋∗ → F,
where 𝑋∗ is the free monoid of all words (i.e. monomials) over 𝑋. We can
equivalently denote the power series 𝑓 by the formal infinite sum

∑
𝑤∈𝑋∗ 𝑓 (𝑤)𝑤.

The set of formal power series form a ring F⟪𝑋⟫ over F known as the power
series ring. Ring addition here is coefficient-wise and ring multiplication is the
standard convolution product.

We recall the definition of a weighted automata [DK21] with some basic
details. Let 𝒜 be a finite state automaton with state set 𝑄 with designated start
state 𝑠 and final state 𝑡. Let 𝑅 be any ring. Then 𝒜 is an 𝑅-weighted automaton
if the transition function

𝛿 : 𝑄 × 𝑌 ×𝑄 → 𝑅

assigns to every transition (𝑞1 , 𝑦, 𝑞2) a weight 𝑟𝑦 ∈ 𝑅. Consequently, every
monomial𝑤 = 𝑦1𝑦2 · · · 𝑦𝑟 ∈ 𝑌∗ along an 𝑠 to 𝑡 transition path𝑃 in the automaton
𝒜 is assigned a weight 𝑟𝑃 ∈ 𝑅 (which the product of the individual weights
for each transition step). The actual weight 𝑟𝑤 associated with monomial 𝑤 is
𝑟𝑤 =

∑
𝑃 𝑟𝑃 , where the sum is over all 𝑠 to 𝑡 transition paths 𝑃 for the monomial

𝑤 (and 𝑟𝑤 = 0 if there are no such paths). We define the formal power series∑
𝑤∈𝑌∗

𝑟𝑤𝑤

to be the power series computed by the weighted automaton 𝒜. Equiva-
lently, for each variable 𝑦 ∈ 𝑌 we have its |𝑄 | × |𝑄 | state transition matrix
𝑀𝑦 ∈ ℳ |𝑄 |(𝑅). The (𝑖 , 𝑗)𝑡ℎ entry of 𝑀𝑦 is the element 𝛿(𝑖 , 𝑦, 𝑗) ∈ 𝑅. Then, cor-
responding monomial 𝑤 = 𝑦1𝑦2 · · · 𝑦𝑑 ∈ 𝑌∗, the transition matrix is the matrix
product

𝑀𝑤 =

𝑑∏
𝑗=1

𝑀𝑦𝑗 ,

and the coefficient 𝑟𝑤 of monomial 𝑤 in the power series computed by 𝒜 is the
(𝑠, 𝑡)𝑡ℎ coefficient 𝑀𝑤[𝑠, 𝑡] of 𝑀𝑤 .

3 Lower Bounds via Efficient Decoding

The proof of the lower bound lifting result [CILM18] can be described quite
simply using some automata theoretic arguments. It is based on a simple
encoder and decoder which can be described using a weighted automata. We
present the details in this section.

4

3.1 Hadamard Product Computation

The notion of Hadamard product is well-studied in algebraic automata theory
[BR11, Theorem 5.5]. It has also been used for noncommutative polynomials
to obtain some algebraic complexity results [AJS09, AMS10, AS10].

For the purpose of this paper, we define the Hadamard product of a non-
commutative polynomial computed by a circuit and a formal series computed
by a small automaton.

Definition 6. Let 𝑓 ∈ F⟨𝑋⟩ be a degree-𝑑 polynomial and 𝑆 be a formal power
series in F⟪𝑋⟫, where 𝑋 is a finite set of free noncommuting variables. The
Hadamard product of 𝑓 and 𝑆 is the noncommutative polynomial

𝑓 ◦ 𝑆 =
∑

𝑚∈𝑋≤𝑑

[𝑚] 𝑓 · [𝑚]𝑆 · 𝑚,

where [𝑚] 𝑓 and [𝑚]𝑆 denote the coefficients of the word 𝑚 in 𝑓 and in 𝑆,
respectively.

We recall the following result showing efficient Hadamard product com-
putation when the polynomial is computable by a small circuit and the series
by a small automaton.

Theorem 7. [AS18] Given a circuit 𝐶 and an automaton 𝐵 computing a homogeneous
degree-𝑘 polynomial 𝑓 ∈ F⟨𝑋⟩ and a formal series 𝑆 ∈ F⟪𝑋⟫ respectively, the
Hadamard product polynomial 𝑓 ◦𝑆 can be evaluated at any point (𝑎1 , 𝑎2 , . . . , 𝑎𝑛) ∈ F𝑛

by evaluating 𝐶(𝑎1𝑀1 , 𝑎2𝑀2 , . . . , 𝑎𝑛𝑀𝑛) where 𝑀1 , 𝑀2 , . . . , 𝑀𝑛 are the transition
matrices of 𝐵, and the dimension of each 𝑀𝑖 is the size of 𝐵.

If 𝐶 is given by black-box access then (𝑓 ◦ 𝑆)(𝑎1 , . . . , 𝑎𝑛) for 𝑎𝑖 ∈ F, 1 ≤
𝑖 ≤ 𝑛 can be evaluated by evaluating 𝐶 on matrices defined by the automaton
𝐵 [AS18] as follows: For each 𝑖 ∈ [𝑛], the transition matrix 𝑀𝑖 in ℳ𝑠(F) are
computed from the automaton 𝐵 (which is of size 𝑠) that encodes layers. We
define 𝑀𝑖[𝑘, ℓ] = [𝑥𝑖]𝐿𝑘,ℓ , where 𝐿𝑘,ℓ is the linear form on the edge (𝑘, ℓ). Now
to compute (𝑓 ◦ 𝑆)(𝑎1 , 𝑎2 , . . . , 𝑎𝑛) where 𝑎𝑖 ∈ F for each 1 ≤ 𝑖 ≤ 𝑛, we compute
𝐶(𝑎1𝑀1 , 𝑎2𝑀2 , . . . 𝑎𝑛𝑀𝑛). The value (𝑓 ◦ 𝑆)(𝑎1 , 𝑎2 , . . . , 𝑎𝑛) is the (1, 𝑠)𝑡ℎ entry
of the matrix 𝑓 (𝑎1𝑀1 , 𝑎2𝑀2 , . . . , 𝑎𝑛𝑀𝑛).

Theorem 7 can be used to efficiently compute a circuit for the Hadamard
product polynomial 𝑓 ◦ 𝑆. Replace each 𝑥𝑖 by 𝑦𝑖𝑥𝑖 in the automaton 𝐵. Let
𝑀1 , . . . , 𝑀𝑛 in be the transition matrices where each entry is a linear form in
𝑌 variables. We can now compute 𝑓 ◦ 𝑆 by evaluating 𝐶(𝑀1 , . . . , 𝑀𝑛) on the
matrices 𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑛. In this evaluation each multiplication gate of the circuit
𝐶 actually denotes matrix multiplication. Hence we have the following.

Theorem 8. Given a noncommutative circuit of size 𝑠′ computing a degree 𝑘 polyno-
mial 𝑓 ∈ F⟨𝑋⟩ and an automaton of size 𝑠 computing a formal series 𝑆 ∈ F⟪𝑋⟫, we
can compute a noncommutative circuit of size 𝑠′𝑠𝜔 for the noncommutative polynomial
𝑓 ◦𝑆 in deterministic time 𝑠′𝑠𝜔 ·poly(𝑛, 𝑘), where 𝜔 denotes the matrix multiplication
exponent.2

2The current best algorithm for matrix multiplication, which is due to Alman and Williams
[AW21], shows 𝜔 < 2.373.

5

3.2 An Efficient Decoder using Weighted Automata

We first define the encoding scheme. Let 𝑋 = {𝑥0 , 𝑥1 , . . . , 𝑥𝑛−1}, 𝑌 =

{𝑦0 , 𝑦1 , . . . , 𝑦𝑚−1} be disjoint sets of noncommuting variables and let 𝑋∗ and
𝑌∗ denote the free monoids of words/monomials in 𝑋 and 𝑌, respectively.

A monoid homomorphism is a mapping

ℎ : 𝑋∗ → 𝑌∗

such that ℎ(𝜖) = 𝜖 and ℎ(𝑤𝑤′) = ℎ(𝑤)ℎ(𝑤′), where we denote the empty word
universally by 𝜖.

A mapping ℎ : 𝑋 → 𝑌∗ is prefix-freeif for any 𝑥, 𝑥′ ∈ 𝑋 ℎ(𝑥) is not a proper
prefix of ℎ(𝑥′). Any such prefix-free mapping ℎ can be uniquely extended to an
injective monoid homomorphism ℎ : 𝑋∗ → 𝑌∗, and we refer to it as an encoder.
We will first consider the following simple encoder.

Definition 9 (Encoder). Let 𝑋 = {𝑥0 , 𝑥1 , . . . , 𝑥𝑛−1}, 𝑌 = {𝑦0 , 𝑦1 , . . . , 𝑦𝑚−1}
be disjoint sets of noncommuting variables where 𝑛 = 𝑚3. For each
𝑖 ∈ {0, 1, . . . , 𝑛 − 1} let 𝑗𝑖𝑘𝑖ℓ𝑖 denote the base-𝑚 representation of 𝑖, where
each 𝑗𝑖 , 𝑘𝑖 , ℓ𝑖 ∈ {0, 1, . . . , 𝑚 − 1}. The encoder is the monoid homomorphism
ℰ : 𝑋∗ → 𝑌∗ that uniquely extends the substitution map ℰ(𝑥𝑖) = 𝑦 𝑗𝑖 𝑦𝑘𝑖 𝑦ℓ𝑖 .

The encoder ℰ : 𝑋∗ → 𝑌∗ of Definition 9 naturally extends by linearity to
polynomials. Thus, ℰ : F⟨𝑋⟩ → F⟨𝑌⟩ encodes noncommutative polynomials
in 𝑋 into noncommutative polynomials in 𝑌.

The decoder automaton

A decoder 𝒟 : 𝑌∗ → 𝑋∗ is a map such that 𝒟(ℰ(𝑚)) = 𝑚 for all monomials
𝑚 ∈ 𝑌∗. By linearity, for any polynomial ℎ ∈ F⟨𝑋⟩ we have 𝒟(ℰ(ℎ)) = ℎ.

As summarized in the following lemma„ it is convenient to formally use
weighted automata to describe the decoder corresponding to ℰ. Let the ring 𝑅

be the free noncommutative polynomial ring F⟨𝑋⟩. Assume that the elements
of F⟨𝑋⟩ commute with variables in 𝑌. Then the formal series which defines
the decoder 𝒟 is

∑
𝑢∈𝑋∗ 𝑢ℰ(𝑢). Notice that in this formal series, for 𝑤 = ℰ(𝑢)

we have 𝑟𝑤 = 𝑢 and 𝑟𝑤 = 0 for all 𝑤 ∈ 𝑌∗ not in the range of the encoder ℰ.

Lemma 10. The series 𝑆 =
∑

𝑤∈𝑋∗ 𝑤ℰ(𝑤) ∈ F⟨𝑋⟩⟪𝑌⟫ is computable by an F⟨𝑋⟩-
weighted automaton of size 2(𝑚 + 1), which is the decoder 𝒟 corresponding to the
encoder ℰ, and 𝑚 = |𝑌 |.

Proof. As 𝑥𝑦 = 𝑦𝑥 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, we observe that the power series
𝑆 =

∑
𝑢∈𝑋∗ 𝑢ℰ(𝑢) has the following simple expression:

𝑆 =

(
𝑛∑
𝑖=1

𝑥𝑖ℰ(𝑥𝑖)
)∗
.

Now, consider the following automaton 𝐴 of size 2𝑚 + 2 (see Figure 1).
We describe the automaton in some detail because in Section 4 we will

discuss this further. The automaton has four layers. The initial layer has just

6

𝑠

0, 0 0, 1 0, 2 0, 𝑚′

2, 0 2, 1 2, 2 2, 𝑚′

𝑡

Figure 1: The transition diagram of the automaton 𝐴

the start state 𝑠. The second and third layers each have 𝑚 states. The final layer
has just the final state 𝑡 from which the automaton loops back to the start state
𝑠 on an 𝜖-transition3.

We now describe the role of the states in the second and third layers of the
automaton.

Let 𝑇 = {0, 1, . . . , 𝑚 − 1}. For each 𝑗 ∈ 𝑇, we define a transition from state
𝑠 to state (0, 𝑗) reading 𝑦 𝑗 (the state (0, 𝑗) encodes the symbol 𝑦 𝑗 it has seen
previously) and (2, 𝑗) to 𝑡 reading 𝑦 𝑗 (the state (2, 𝑗) encodes the symbol 𝑦 𝑗 it
will see next).

The transitions between the second and third layers is where the decoding
actually happens. Between any pair of states (0, 𝑖) in the second layer and
(2, 𝑗) in the third layer, 𝑖 , 𝑗 ∈ 𝑇, the automaton has a weighted transition on
input 𝑦𝑘 , 𝑘 ∈ 𝑇 which has weight 𝑥𝜎(𝑖 , 𝑗 ,𝑘), where 𝜎 : {0, 1, . . . , 𝑚 − 1}3 →
{0, 1, . . . , 𝑛 − 1} is the bĳection

𝜎(𝑖 , 𝑗 , 𝑘) = 𝑚2𝑖 + 𝑚𝑘 + 𝑗.

Notice that between (0, 𝑖) and (2, 𝑗) we have 𝑚 transitions, one for each
𝑦𝑘 , 𝑘 ∈ 𝑇. The simple information-theoretic idea in this construction is that the
states (0, 𝑖), (2, 𝑗) and the transition on 𝑦𝑘 hold the complete information about
the string 𝑦𝑖𝑦 𝑗𝑦𝑘 which the decoder can substitute with 𝑥𝜎(𝑖 , 𝑗 ,𝑘). □

Remark 11. We refer to the above encoder as the 1-to-3 encoder. In Section 4,
where we discuss possibilities of improvements to the lower bound lifting
result, we will consider the more general 1-to-𝑟 encoder.

3Strictly speaking we should remove the 𝜖-transition and directly go to state (0, 𝑗) in the
second layer on reading 𝑦𝑗

7

3.3 The Lower Bound Lifting Result

We are now ready to present the automata-theoretic proof of the lower bound
lifting result of [CILM18]: namely, that a circuit size lower bound of Ω(𝑛𝜔/2+𝜖)
for an explicit p-family (𝑔𝑛) of degree-𝑡 polynomials can be “lifted” to obtain an
exponential circuit size lower bound for an explicit p-family (ℎ𝑛). Notice that
the definition of explicit p-families applies to the constant-degree p-family (𝑔𝑛)
in the sense explained in Remark 4.

The result is an easy consequence of Theorem 8. In fact we will show
stronger result, as the simple analysis in the proof goes through for the choice
of 𝑡 = 𝑂(log 𝑛) and 𝜖 = 𝑂(log log 𝑛/log 𝑛).

We begin with showing that the decoder 𝒟 preserves circuit size quite
efficiently.

Lemma 12 (efficient decoding). For a noncommutative polynomial ℎ ∈ F⟨𝑋⟩
suppose its encoding ℰ(ℎ) ∈ F⟨𝑌⟩ has a noncommutative circuit of size 𝑠. Then ℎ has
a noncommutative circuit of size bounded by 𝑚𝜔 · 𝑠, where 𝑚 = |𝑌 |. More precisely,

ℭ(ℎ) ≤ 𝑂(𝑚𝜔) · ℭ(ℰ(ℎ)).

Proof. The idea is to use the weighted automaton of Lemma 10 which defines
the decoder 𝒟 which computes the formal series 𝑆. We first observe the
following easy claim, that the Hadamard product ℰ(ℎ) ◦ 𝑆 evaluated at 𝑦 𝑗 =

1, 0 ≤ 𝑗 ≤ 𝑚 − 1 is precisely ℎ(𝑋).
Claim 13. ℎ(𝑋) = (ℰ(ℎ) ◦ 𝑆)(1, 1, . . . , 1).

Writing ℎ =
∑

𝑤∈supp(ℎ) ℎ𝑤 · 𝑤, notice that we have ℰ(ℎ) = ∑
𝑤∈supp(ℎ) ℎ𝑤 ·

ℰ(𝑤). Thus we have

ℰ(ℎ) ◦ 𝑆 =
∑

𝑤∈supp(ℎ)
ℎ𝑤 · 𝑤 · ℰ(𝑤),

noting that we are considering 𝑆 as a formal series in the 𝑌 variables with
coefficients as polynomials in the 𝑋 variables. Thus, the evaluation of ℰ(ℎ) ◦ 𝑆
for 𝑌 variables substituted with 1 will yield ℎ =

∑
𝑤∈supp(ℎ) ℎ𝑤 · 𝑤. This proves

the claim.
As the size of the decoder automaton in Lemma 10 is 2𝑚+2, the proof of the

lemma follows from Theorem 8 which gives the claimed bound on the circuit
size of the Hadamard product of a circuit with a weighted automaton. □

Theorem 14. Let (𝑔𝑛)𝑛 be an explicit noncommutative p-family, where deg(𝑔𝑛) = 𝑡

for some constant 𝑡 for each 𝑛, such that ℭ(𝑔𝑛) ≥ Ω(𝑛𝜔/2+𝜖), where 𝜖 > 0 is a
constant. Then there is an explicit p-family (ℎ𝑛)𝑛 in VNPnc where ℎ𝑛 is 𝑛-variate with
deg(ℎ𝑛) = poly(𝑛) such that ℭ(ℎ𝑛) = 𝑛Ω(𝑛).

Proof. Set 𝑑 = ⌈log3 𝑛⌉ and 𝑁 = 𝑛3𝑑 . By assumption we have ℭ(𝑔𝑁) =

Ω(𝑁𝜔/2+𝜖), where deg(𝑔𝑁) = 𝑡. By a 𝑑-fold application of the encoder ℰ to
the polynomial 𝑔𝑁 , we obtain the polynomial

ℎ𝑛 = ℰ𝑑(𝑔𝑁),

8

where ℎ𝑛 ∈ F⟨𝑌𝑑⟩, letting 𝑌𝑑 denote the set of noncommuting variables in the
output polynomial produced by 𝑑 applications of the encoder ℰ.

In general, for 1 ≤ 𝑘 ≤ 𝑑 notice that ℰ 𝑘(𝑔𝑁) ∈ F⟨𝑌𝑘⟩, where 𝑌𝑘 is a set of
𝑁𝑘 = 𝑛3𝑑−𝑘 noncommuting variables, and the degree of ℰ 𝑘(𝑔𝑁) is 𝑡 · 3𝑘 . Notice
that 𝑁3

𝑘+1 = 𝑁𝑘 for each 𝑘 ≥ 1 and |𝑌𝑑 | = 𝑁𝑑 = 𝑛. Therefore, ℎ𝑛(𝑌𝑑) is an
𝑛-variate polynomial of degree precisely 𝑡3𝑑 = 𝑡𝑛.

Claim 15. ℭ(ℎ𝑛) = 𝑛Ω(𝑛).

We will prove the claim by an inductive argument. More precisely, note that
ℰ0(𝑔𝑁) = 𝑔𝑁 and ℰ𝑑(𝑔𝑁) = ℎ𝑛 . Let 𝑛𝑘 = 𝜖(𝑁) · 3𝑘 , 0 ≤ 𝑘 ≤ 𝑑. By assumption,
we have ℭ(ℰ0(𝑔𝑁)) = ℭ(𝑔𝑁) = Ω(𝑁𝜔/2+𝜖(𝑁)) = Ω(𝑁𝜔/2+𝑛0).

Suppose, as induction hypothesis that ℭ(ℰ 𝑘(𝑔)) = Ω(𝑁𝜔/2+𝑛𝑘

𝑘
). Then, by

Lemma 12 we have

ℭ(ℰ 𝑘(𝑔𝑁)) ≤ 𝛼 · ℭ(ℰ(ℰ 𝑘(𝑔𝑁))) · 𝑁𝜔
𝑘+1 ,

for some constant 𝛼 > 1. That implies

ℭ(ℰ 𝑘+1(𝑔𝑁)) ≥
𝛼𝑁𝜔/2+𝑛𝑘

𝑘

𝑁𝜔
𝑘+1

=
𝛼𝑁𝜔/2+𝑛𝑘

𝑘

𝑁
𝜔/3
𝑘

= 𝛼𝑁𝜔/2+𝑛𝑘+1
𝑘+1 .

Putting it together, therefore, ℎ𝑛 = ℰ𝑑(𝑔𝑁) is 𝑛-variate in the variables 𝑌𝑑 of
degree 𝑡3𝑑 = 𝑡 · 𝑛 = poly(𝑛) and

ℭ(ℎ𝑛) = ℭ(ℰ𝑑(𝑔𝑁)) = Ω(𝑛𝜔/2+3𝑑𝜖) = 𝑛Ω(𝑛).

This completes the proof. □

In the above proof, if we let 𝑡 be a function of 𝑁 , notice that choosing
𝑡(𝑁) = (log 𝑁)𝑐 with other parameters remaining the same, still guarantees
(ℎ𝑛)𝑛 to be an explicit p-family with deg(ℎ𝑛) = poly(𝑛) and the lower bound
holds for ℭ(ℎ𝑛) as well. Furthermore, suppose we allow 𝜖 to be a variable
quantity and set 𝜖 = 𝜔

(
log log 𝑁

log 𝑁

)
.4 Then the lower bound assumption becomes

ℭ(𝑔𝑁) = Ω(𝑁𝜔/2+𝜖(𝑁)) = 𝜔(𝑁𝜔/2 · log 𝑁),

where 𝑔𝑁 is of degree (log 𝑁)𝑐 . In particular, this assumption is weaker than
that of Theorem 14. Following the analysis in the proof of Theorem 14 we
obtain the following

Corollary 16. Let (𝑔𝑁)𝑁 be an explicit noncommutative p-family, where deg(𝑔𝑁) =
(log 𝑁)𝑐 for constant 𝑐 > 0 and each 𝑛, such thatℭ(𝑔𝑁) = 𝜔(𝑁𝜔/2 ·log 𝑁). Then there
is an explicit p-family (ℎ𝑛)𝑛 in VNPnc where ℎ𝑛 is 𝑛-variate with deg(ℎ𝑛) = poly(𝑛)
such that ℭ(ℎ𝑛) = 𝑛𝜔(1).

4Here 𝜔(·) is the standard asymptotic notation and not the matrix multiplication exponent.

9

4 Discussion

Can this lower lifting result be improved? As noted in [CILM18], the hard-
ness assumption becomes ℭ(𝑔𝑁) = 𝑁1+𝜖 if the matrix multiplication expo-
nent 𝜔 = 2. Furthermore, the hardness assumption in Corollary 16 becomes
𝜔(𝑁 log 𝑁) for a degree (log 𝑁)𝑂(1) polynomial. Baur and Strassen’s lower
bound is Ω(𝑁 log 𝑑) for an explicit degree-𝑑 𝑁-variate polynomial. Compared
to that the 𝜔(𝑁 log 𝑁) lower bound assumption translates to 𝜔(𝑁𝑑𝛼) for some
𝛼 > 0. Can the degree bound of (log 𝑁)𝑂(1) be relaxed in Corollary 16?

We crucially use the Hadamard product construction described in Lemma 8,
for which the circuit upper bound is 𝑂(𝑠′𝜔𝑠) where 𝑠′ and 𝑠 are the given
automaton and circuit sizes respectively. Matrix multiplication is inherent
here. For, suppose there was a Hadamard product construction with circuit
upper bound 𝑂(𝑠′𝛼𝑠𝛽). Now, we can easily reduce the multiplication of two
𝑠′ × 𝑠′ matrices to the Hadamard product of an automaton of size 𝑂(𝑠′) and a
circuit of size 𝑠 = 𝑂(1). Hence, it follows that 𝛼 = 𝜔.

Another place where there is arguably some room for improvement is
in the choice of the encoder function and decoder automaton construction
(Lemma 10). We note that the decoder automaton of size 2𝑚 + 2 for the 1-to-3
decoder is already optimal to a constant factor. This is because we cannot have
a 𝑜(𝑚) size automaton for 𝒟 due to simple information-theoretic reasons. To
see this, we observe that the decoder has to output a variable 𝑥𝜎(𝑖 , 𝑗 ,𝑘) ∈ 𝑋 on
a single transition edge, call it 𝑒 = (𝑠1 , 𝑠2). But that means the information in
the states 𝑠1 , 𝑠2 and the input read on the transition must contain the complete
information about the triple (𝑖 , 𝑗 , 𝑘), where 𝑖 , 𝑗 , 𝑘 ∈ {0, 1, . . . , 𝑚 − 1} which is
impossible if there are only 𝑜(𝑚) many states as the number of edges need to
be Ω(𝑚2).

The one-shot decoder and directly lifted lower bound Finally, we note that
instead of using 1-to-3 decoder 𝑑 times we can directly decode ℰ𝑑 which
uniquely encodes each 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑁 = 𝑛3𝑑 into a string in 𝑌3𝑑 , where
𝑌 = {𝑦1 , 𝑦2 , . . . , 𝑦𝑛}. Let 𝒟𝑑 denote the corresponding decoder. An automa-
ton for 𝒟𝑑 of size 2𝑛(3𝑑−1)/2 + 2 can be constructed exactly on the same lines as
Lemma 10. The automaton has four layers. The first has the start state 𝑠 and
the last has the final state 𝑡. The second and the third layers have 𝑛(3𝑑−1)/2 states
each. From the start state the automaton reads a prefix of length (3𝑑 − 1)/2 and
remembers it in the state 𝑠1 that it reaches in the second layer. Likewise, each
state 𝑠2 in the third layer corresponds to a suffix of length (3𝑑 − 1)/2. The tran-
sition (𝑠1 , 𝑠2) reads the middle letter which, together with 𝑠1 and 𝑠2, describes
the entire word over 𝑌 of length 3𝑑. This automaton has 𝑀 = 2𝑛(3𝑑−1)/2 + 2
states. Now, applying Lemma 8 we get

ℭ(𝑔𝑁) ≤ 𝑂(𝑀𝜔) · ℭ(ℰ𝑑(𝑔𝑁)) = 𝑂(𝑀𝜔) · ℭ(ℎ𝑛).

As 𝑁 = 𝑛3𝑑 , by substituting we obtain ℭ(ℎ𝑛) ≥ 𝑛3𝑑𝜖+𝜔/2 = 𝑛Ω(𝑛) for constant 𝜖,
which proves Theorem 14.

10

References

[AJR18] Vikraman Arvind, Pushkar S. Joglekar, and Gaurav Rattan. On
the complexity of noncommutative polynomial factorization. Inf.
Comput., 262:22–39, 2018.

[AJS09] Vikraman Arvind, Pushkar S. Joglekar, and Srikanth Srinivasan.
Arithmetic Circuits and the Hadamard Product of Polynomials. In
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT
Kanpur, India, pages 25–36, 2009.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by
means of self-reducibility. J. ACM, 57(3):14:1–14:36, 2010.

[AMS10] Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan.
New Results on Noncommutative and Commutative Polynomial
Identity Testing. Computational Complexity, 19(4):521–558, 2010.

[AS10] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the
noncommutative determinant. In Proceedings of the 42nd ACM Sym-
posium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 677–686, 2010.

[AS18] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the
noncommutative determinant. Computational Complexity, 27(1):1–29,
2018.

[AW21] Josh Alman and Virginia Vassilevska Williams. A Refined Laser
Method and Faster Matrix Multiplication. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pages 522–539. SIAM, 2021.

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrol-
lahi. Algebraic complexity theory, volume 315 of Grundlehren der math-
ematischen Wissenschaften. Springer, 1997.

[BR11] J. Berstel and C. Reutenauer. Noncommutative Rational Series with
Applications. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2011.

[BS83] Walter Baur and Volker Strassen. The Complexity of Partial Deriva-
tives. Theor. Comput. Sci., 22:317–330, 1983.

[CH23] Prerona Chatterjee and Pavel Hrubes. New Lower Bounds Against
Homogeneous Non-Commutative Circuits. In 38th Computational
Complexity Conference, CCC 2023, July 17-20, 2023, Warwick, UK, vol-
ume 264 of LIPIcs, pages 13:1–13:10. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023.

11

http://dx.doi.org/10.1016/j.ic.2018.05.009
http://dx.doi.org/10.1016/j.ic.2018.05.009
http://dx.doi.org/10.1007/s00037-010-0299-8
http://dx.doi.org/10.1007/s00037-010-0299-8
http://dx.doi.org/10.1145/1806689.1806782
http://dx.doi.org/10.1145/1806689.1806782
http://dx.doi.org/10.1007/s00037-016-0148-5
http://dx.doi.org/10.1007/s00037-016-0148-5
https://books.google.co.in/books?id=LL8Nhn72I_8C
https://books.google.co.in/books?id=LL8Nhn72I_8C
http://dx.doi.org/10.4230/LIPIcs.CCC.2023.13
http://dx.doi.org/10.4230/LIPIcs.CCC.2023.13

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complex-
ity Theory, volume 7 of Algorithms and computation in mathematics.
Springer, 2000.

[CILM18] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan
Mihajlin. Hardness Amplification for Non-Commutative Arithmetic
Circuits. In Proceedings of the 33rd Computational Complexity Con-
ference, CCC ’18, Dagstuhl, DEU, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[DK21] Manfred Droste and Dietrich Kuske. Weighted automata. In Hand-
book of Automata Theory, pages 113–150. European Mathematical So-
ciety Publishing House, Zürich, Switzerland, 2021.

[KS18] Neeraj Kayal and Chandan Saha. Guest Column: A Paradigm for
Arithmetic Circuit Lower Bounds. SIGACT News, 49(1):55–65, 2018.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Super-
polynomial Lower Bounds Against Low-Depth Algebraic Circuits.
In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814.
IEEE, 2021.

[Nis91] Noam Nisan. Lower Bounds for Non-Commutative Computation
(Extended Abstract). In Proceedings of the 23rd Annual ACM Sympo-
sium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana,
USA, pages 410–418, 1991.

[sWY10] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Relationless
Completeness and Separations. In Proceedings of the 25th Annual
IEEE Conference on Computational Complexity, CCC 2010, Cambridge,
Massachusetts, June 9-12, 2010, pages 280–290, 2010.

[HWY10] Pavel Hrubeš, Avi Wigderson, and Amir Yehudayoff. Non-
Commutative Circuits and the Sum-of-Squares Problem. In Pro-
ceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC ’10, page 667–676, New York, NY, USA, 2010. Association for
Computing Machinery.

[Val79] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings
of the 11h Annual ACM Symposium on Theory of Computing, April 30 -
May 2, 1979, Atlanta, Georgia, USA, pages 249–261, 1979.

12

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.4171/Automata-1/4
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1145/103418.103462
http://dx.doi.org/10.1109/CCC.2010.34
http://dx.doi.org/10.1109/CCC.2010.34
http://dx.doi.org/10.1145/1806689.1806781
http://dx.doi.org/10.1145/1806689.1806781
http://dx.doi.org/10.1145/800135.804419

