
Randomly punctured Reed–Solomon codes achieve list-decoding

capacity over linear-sized fields

Omar Alrabiah∗ Venkatesan Guruswami† Ray Li‡

Abstract

Reed–Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-
degree polynomials over a finite field on some sequence of distinct field elements. They are widely
known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully
understood. Given the prevalence of Reed-Solomon codes, a fundamental question in coding theory is
determining if Reed–Solomon codes can optimally achieve list-decoding capacity.

A recent breakthrough by Brakensiek, Gopi, and Makam, established that Reed–Solomon codes are
combinatorially list-decodable all the way to capacity. However, their results hold for randomly-punctured
Reed–Solomon codes over an exponentially large field size 2O(n), where n is the block length of the code.
A natural question is whether Reed–Solomon codes can still achieve capacity over smaller fields. Recently,
Guo and Zhang showed that Reed–Solomon codes are list-decodable to capacity with field size O(n2).
We show that Reed–Solomon codes are list-decodable to capacity with linear field size O(n), which is
optimal up to the constant factor. We also give evidence that the ratio between the alphabet size q and
code length n cannot be bounded by an absolute constant.

Our techniques also show that random linear codes are list-decodable up to (the alphabet-independent)

capacity with optimal list-size O(1/ε) and near-optimal alphabet size 2O(1/ε2), where ε is the gap to ca-
pacity. As far as we are aware, list-decoding up to capacity with optimal list-size O(1/ε) was not known
to be achievable with any linear code over a constant alphabet size (even non-constructively), and it was
also not known to be achievable for random linear codes over any alphabet size.

Our proofs are based on the ideas of Guo and Zhang, and we additionally exploit symmetries of
reduced intersection matrices. With our proof, which maintains a hypergraph perspective of the list-
decoding problem, we include an alternate presentation of ideas from Brakensiek, Gopi, and Makam that
more directly connects the list-decoding problem to the GM-MDS theorem via a hypergraph orientation
theorem.

∗Department of EECS, UC Berkeley, Berkeley, CA, 94709, USA. Email: oalrabiah@berkeley.edu. Research supported in
part by a Saudi Arabian Cultural Mission (SACM) Scholarship, NSF CCF-2210823 and V. Guruswami’s Simons Investigator
Award.

†Departments of EECS and Mathematics, and the Simons Institute for the Theory of Computing, UC Berkeley, Berkeley, CA,
94709, USA. Email: venkatg@berkeley.edu. Research supported by a Simons Investigator Award and NSF grants CCF-2210823
and CCF-2228287.

‡Department of EECS, UC Berkeley, Berkeley, CA, 94709, USA. Email: rayyli@berkeley.edu. Research supported by
the NSF Mathematical Sciences Postdoctoral Research Fellowships Program under Grant DMS-2203067, and a UC Berkeley
Initiative for Computational Transformation award.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 125 (2023)

oalrabiah@berkeley.edu
venkatg@berkeley.edu
rayyli@berkeley.edu

Contents

1 Introduction 1

1.1 Our results . 2

List-decoding Reed–Solomon codes. 2

List-decoding random linear codes. 2

Alphabet size lower bounds. 4

2 Preliminaries 4

2.1 Basic notation . 4

2.2 Hypergraphs and connectivity . 4

2.3 Reduced intersection matrices: definition and example . 6

2.4 Reduced intersection matrices: full column rank . 8

2.5 Reduced intersection matrix: row deletions . 8

3 Proof of list-decodability with linear-sized alphabets 9

3.1 Overview of the proof . 9

3.2 Setup for proof of Lemma 3.1 . 11

Types. 11

Global variables. 11

3.3 GetCertificate and GetMatrixSequence: Basic properties 11

3.4 Bad evaluation points admit certificates . 13

3.5 Bounding the number of possible certificates . 14

3.6 Bounding the probability of one certificate . 14

3.7 Finishing the proof of Lemma 3.1 . 16

4 Random Linear Codes 16

4.1 Preliminaries: Notation and Definitions . 16

4.2 Preliminaries: Properties of RLC Reduced Intersection Matrices 17

4.3 The proof . 17

4.4 Technical comparison with [GZ23] . 20

A Alternate presentation of [BGM23] 24

A.1 Preliminaries . 24

Dual of Reed–Solomon codes. 24

Generic Zero Patterns. 24

GM-MDS Theorem. 25

A.2 Hypergraph orientations . 25

A.3 Proof of Theorem 2.10 . 26

B Alphabet size limitations 27

1 Introduction

An (error-correcting) code is simply a set of strings (codewords). In this paper, all codes are linear, meaning
our code C ⊂ Fn

q is a space of vectors over a finite field Fq, for some prime power q. A Reed–Solomon code
[RS60] is a linear code obtained by evaluating low-degree polynomials over Fq. More formally,

RSn,k(α1, . . . , αn)
def
= {(f(α1), . . . , f(αn)) ∈ Fn

q : f ∈ Fq[X],deg(f) < k}. (1)

The rate R of a code C is R
def
= logq |C|/n, which, for a Reed–Solomon code, is k/n. Famously, Reed–

Solomon codes are optimal for the unique decoding problem [RS60]: for any rate R Reed–Solomon code, for
every received word y ∈ Fn

q , there is at most one codeword within Hamming distance pn of y,1 and this error

parameter p = 1−R
2 is optimal by the Singleton bound [Sin64].

In this paper, we study Reed–Solomon codes in the context of list-decoding, a generalization of unique-
decoding that was introduced by Elias and Wozencraft [Eli57, Woz58]. Formally, a code C ⊂ Fn

q is (p, L)-list-
decodable if, for every received word y ∈ Fn

q , there are at most L codewords of C within Hamming distance
pn of y.

It is well known that the list-decoding capacity, namely the largest fraction of errors that can be list-
decoded with small lists, is 1−R [GRS22, Theorem 7.4.1]. Specifically, for p = 1−R− ε, there are (infinite
families of) rate R codes that are (p, L) list-decodable for a list-size L as small as O(1/ε). On the other
hand, for p = 1− R + ε, if a rate R code is (p, L) list decodable, the list size L must be exponential in the
code length n. Informally, a code that is list-decodable up to radius p = 1 − R − ε with list size Oε(1), or
even list size nOε(1) where n is the code length, is said to achieve (list-decoding) capacity.

The list-decodability of Reed–Solomon codes is important for several reasons. Reed–Solomon codes are
the most fundamental algebraic error-correcting code. In fact, all of the prior explicit constructions of
codes achieving list-decoding capacity are algebraic constructions that generalize Reed–Solomon codes, for
example, Folded Reed–Solomon codes [GR08, KRZSW18], Multiplicity codes [GW13, Kop15, KRZSW18],
and algebraic-geometric codes [GX13]. Thus, it is natural to wonder whether and when Reed–Solomon
codes themselves achieve list-decoding capacity. Additionally, all Reed–Solomon codes are optimally unique-
decodable, so (equivalently) they are optimally list-decodable L = 1, making them a natural candidate for
codes achieving list-decoding capacity. Further, capacity-achieving Reed–Solomon codes would potentially
offer advantages over existing explicit capacity-achieving codes, such as simplicity and potentially smaller
alphabet sizes (which we achieve in this work). Lastly, list-decoding of Reed–Solomon codes has found
several applications in complexity theory and pseudorandomness [CPS99, STV01, LP20].

For all these reasons, the list-decodability of Reed–Solomon codes is well-studied. As rate R Reed–
Solomon codes are uniquely decodable up to the optimal radius 1−R

2 given by the Singleton Bound, the
Johnson-bound [Joh62] automatically implies that Reed–Solomon codes are (p, L)-list-decodable for error
parameter p = 1−

√
R− ε and list size L = O(1/ε). Guruswami and Sudan [GS99] showed how to efficiently

list-decode Reed–Solomon codes up to the Johnson radius 1−
√
R. For a long time, this remained the best

list-decodability result (even non-constructively) for Reed–Solomon codes.

Since then, several results suggested Reed–Solomon codes could not be list-decoded up to capacity, and
in fact, not much beyond the Johnson radius 1 −

√
R. Guruswami and Rudra [GR06] showed that, for a

generalization of list-decoding called list-recovery, Reed–Solomon codes are not list-recoverable beyond the
(list-recovery) Johnson bound in some parameter settings. Cheng and Wan [CW07] showed that efficient
list-decoding of Reed–Solomon codes beyond the Johnson radius in certain parameter settings implies fast
algorithms for the discrete logarithm problem. Ben-Sasson, Kopparty, and Radhakrishnan [BKR10] showed
that full-length Reed–Solomon codes (q = n) are not list-decodable much beyond the Johnson bound in some
parameter settings.

Since then, an exciting line of work [RW14, ST20, GLS+22, FKS22, GST22, BGM23, GZ23] has shown the
existence of Reed–Solomon codes that could in fact be list-decoded beyond the Johnson radius. These works
all consider combinatorial list-decodability of randomly punctured Reed–Solomon codes. By combinatorial
list-decodability, we mean that the code is proved to be list-decodable without providing an algorithm to

1The Hamming distance between two codewords is the number of coordinates on which they differ.

1

efficiently decode the list of nearby codewords. By randomly punctured Reed–Solomon code, we mean a code
RSn,k(α1, . . . , αn) where (α1, . . . , αn) are chosen uniformly over all n-tuples of pairwise distinct elements of
Fq. Several of these works [RW14, FKS22, GST22] proved more general list-decoding results about randomly
puncturing any code with good unique-decoding properties, not just Reed–Solomon codes.

In this line of work, a recent breakthrough of Brakensiek, Gopi, and Makam [BGM23] showed, using
notions of “higher-order MDS codes” [BGM22, Rot22], that Reed–Solomon codes can actually be list-decoded
up to capacity. In fact, they show, more strongly, that Reed–Solomon codes can be list-decoded with list size
L with radius p = L

L+1 (1−R), exactly meeting the generalized Singleton bound [ST20], resolving a conjecture
of Shangguan and Tamo [ST20]. However, their results require randomly puncturing Reed–Solomon codes
over an exponentially large field size 2O(n), where n is the block length of the code.

A natural question is how small we can take the field size in a capacity-achieving Reed–Solomon code.
Brakensiek, Dhar, and Gopi [BDG22, Corollary 1.7, Theorem 1.8] showed that the exponential field size in
[BGM23] is indeed necessary to exactly achieve the generalized Singleton bound for L = 2 for rates bounded
away from 0, but smaller field sizes remained possible if one allowed a small ε slack in the parameters.
Recently, an exciting work of Guo and Zhang [GZ23] showed that Reed–Solomon codes are list-decodable
up to capacity, in fact up to (but not exactly at) the generalized Singleton bound, with alphabet size O(n2).

1.1 Our results

List-decoding Reed–Solomon codes. Building on Guo and Zhang’s argument, we show that Reed–
Solomon codes are list-decodable up to capacity and the generalized Singleton bound with linear alphabet
size O(n), which is evidently optimal up to the constant factor. Our main result is the following.

Theorem 1.1. Let ε ∈ (0, 1), L ≥ 2 and q be a prime power such that q ≥ n + k · 210L/ε. Then with
probability at least 1− 2−Ln, a randomly punctured Reed–Solomon code of block length n and rate k/n over
Fq is (L

L+1 (1−R− ε), L) average-radius list-decodable.

As in previous works like [BGM23, GZ23], Theorem 1.1 gives average-radius list-decodability, a stronger
guarantee than list-decodability: for any distinct L + 1 codewords c(1), . . . , c(L+1) and any vector y ∈ Fn

q ,

the average Hamming distance from c(1), . . . , c(L+1) to y is at least L
L+1 (1 − R − ε). Taking L = O(1/ϵ)

in Theorem 1.1, it follows that Reed–Solomon codes achieve list-decoding capacity even over linear-sized
alphabets.

Corollary 1.2. Let ε ∈ (0, 1) and q be a prime power such that q ≥ n+ k · 2O(1/ε2). Then with probability
at least 1 − 2−Ω(n/ε), a randomly punctured Reed–Solomon code of block length n and rate k/n over Fq is
(1−R− ε,O(1ε)) average-radius list-decodable.

The alphabet size in [GZ23] is 2O(L2/ε)nk. Our main contribution is improving their alphabet size from

quadratic to linear. As a secondary improvement, we also bring down the constant factor from 2O(L2/ε) to
2O(L/ε). We defer the proof overview of Theorem 1.1 to Section 3.1 after setting up the necessary notions in
Section 2.

In our proof of Theorem 1.1, we maintain a hypergraph perspective of the list-decoding problem, which
was introduced in [GLS+22]. Section 2.2 elaborates on the advantages of this perspective, which include
(i) more conpact notations, definitions, and lemma statements, (ii) our improved constant factor of 2O(L/ε),
(iii) an improved alphabet size in our random linear codes result below (Theorem 1.3), and (iv) an alternate
presentation of ideas from Brakensiek, Gopi, and Makam [BGM23] that more directly connects the list-
decoding problem to the GM-MDS theorem [DSY14, Lov18, YH19] via a hypergraph orientation theorem
(see Appendix A).

List-decoding random linear codes. A random linear code of rate R and length n over Fq is a random
subspace of Fn

q of dimension Rn. List-decoding random linear codes is well-studied [ZP81, Eli91, GHSZ02,
GHK11, Woo13, RW14, RW18, LW20, MRRZ+20, GLM+21, GM22, PP23] and is an important question
for several reasons. First, finding explicit codes approaching list-decoding capacity is a major challenge, and
random linear codes provide a stepping stone towards explicit codes: a classic result says that uniformly

2

random codes achieve list-decoding capacity [Eli57, Woz58], and showing list-decodability of random linear
codes can be viewed as a derandomization of the uniformly random construction. Mathematically, the
list-decodability of random linear codes concerns a fundamental geometric question: to what extent do
random subspaces over Fq behave like uniformly random sets? In coding theory, list-decodable random linear
codes are useful building blocks in other coding theory constructions [GI01, HW18]. Lastly, the algorithmic
question of decoding random linear codes is closely related to the Learning With Errors (LWE) problem in
cryptography [Reg09] and Learning Parity with Noise (LPN) problem in learning theory [BKW03, FGKP06].

The list-decodability of random linear codes is more difficult to analyze than uniformly random codes,
because codewords do not enjoy the same independence as in random codes. Thus the naive argument
that shows that random linear codes achieve list-decoding capacity [ZP81] gives an exponentially worse list

size of q1/ε than for random codes (ε is the gap to the “q-ary capacity”, R = 1 − Hq(p), where Hq(x)
def
=

x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) is the q-ary entropy function). Several works have sought to
circumvent this difficulty [Eli91, GHSZ02, GHK11, Woo13, RW14, RW18, LW20, GLM+21] improving the
list-size bound to Oq(1/ε), matching the list-size of uniformly random codes.

However, these results are more relevant for smaller alphabet sizes q, and approaching the alphabet-
independent capacity of p = 1−R is less understood. In this setting, uniformly random codes are, with high
probability, list-decodable to capacity with optimal alphabet size 2O(1/ε) 2 and optimal list size O(1/ε).3

However, it was not known whether random linear codes (or, in general, more structured codes) could achieve
similar parameters. In particular, both of the following questions were open (as far as we are aware).

• Are rate R random linear codes (1− R − ε,O(1/ε))-list-decodable with high probability? Previously,
this was not known for any alphabet size q, even alphabet size growing with the length of the code.
Previously, the best list size for random linear codes list-decodable to radius p = 1−R− ε was at least
2Ω(1/ε) [GHK11, RW18].4

• Do there exist any linear codes (even non-constructively) over constant-sized (independent of n) al-
phabets that are (1−R− ε,O(1/ε))-list-decodable?

Using the same framework as the proof of Theorem 1.3, we answer both questions affirmatively. We show
that, with high probability, random linear codes approach the generalized Singleton bound, and thus capacity,
with alphabet size close to the optimal.

Theorem 1.3. For all L ≥ 1, ε ∈ (0, 1), a random linear code over alphabet size q ≥ 210L/ε and n sufficiently
large is with high probability (L

L+1 (1−R− ε), L)-average-radius-list-decodable.

By taking L = O(1/ε), we see that random linear codes achieve capacity with optimal list size O(1/ε)

and near optimal alphabet size 2O(1/ε2).

Corollary 1.4. For all ε > 0, a random linear code over alphabet size q ≥ 2O(1/ε2) and n sufficiently large
is with high probability (1−R− ε,O(1/ε))-average-radius-list-decodable.

The techniques developed in this work for the proof of Theorem 1.1 are important for obtaining the strong
alphabet size guarantees of Theorem 1.3. One could also have adapted the proof of Guo and Zhang, but doing
so in the same natural way would only yield an alphabet size of O(n) (see Section 4.4 for discussions). Further,
our use of the hypergraph machinery, which gives a secondary improvement over [GZ23] in constant factor
in the alphabet size in Corollary 1.2, gives the primary improvement in the alphabet size in Corollary 1.4
from 2O(1/ε3) to 2O(1/ε2).

As the proof of Theorem 1.3 is very similar to the proof of Theorem 1.1, we focus most of the paper on
Theorem 1.1 for brevity and clarity of presentation in Section 2 and Section 3. In Section 4, we show how
the definitions and proof can be modified to work for random linear codes.

2This follows from the list-decoding capacity theorem [Eli57, Woz58]. Over q-ary alphabets, the list-decoding capacity is
given by p = H−1

q (1−R), which is larger than 1−R− ε when q ≥ 2Ω(1/ε).
3For codes over smaller alphabets, the list size O(1/ε), where ε is the gap to capacity, is believed to be optimal, but a proof

is only known for large radius [GV10]. However, for approaching the alphabet independent capacity, the list size O(1/ε) is
known to be optimal by the generalized Singleton bound [ST20].

4[GHK11] appears to give a list-size bound of O(qOR(1)/ε), and [RW18] appears to give a list size bound that is at least

qlog
2(1/ε), and we need q ≥ 2Ω(1/ε)

3

Alphabet size lower bounds. Above, we saw that random linear codes achieve list-decoding capacity
with optimal list-size and near-optimal alphabet size. A natural question, asked by Guo and Zhang, is
how large the alphabet size needs to be for capacity-achieving Reed–Solomon codes. We showed that q ≥
n · 2O(1/ε2) suffices, and by the list-decoding capacity theorem [Eli57, Woz58], we cannot have better than
an exponential-type dependence on 1/ε for subconstant ε < O(1/ log n).

For approaching capacity with constant ε, Ben-Sasson, Kopparty, and Radhakrishnan [BKR10] showed
that, for any c ≥ 1, there exist full-length Reed–Solomon codes that are not list-decodable much beyond
the Johnson bound with list-sizes O(nc). Thus in order to achieve list-decoding capacity, one needs q > n
in some cases. However, while full-length Reed–Solomon codes could not achieve capacity, perhaps it was
possible that Reed–Solomon codes over field size, say q = 2n or even q = (1+ γ)n, could achieve capacity in
all parameter settings. We observe that, as a corollary of [BKR10], such a strong guarantee is not possible.
We show that, for any c > 1, there exist a constant rate R = R(c) > 0 and infinitely many field sizes q such
that all Reed–Solomon codes of length n ≥ q/c and rate R over Fq are not list-decodable to capacity 1−R
with list size nc. The proof is in Appendix B.

Proposition 1.5. Let δ = 2−b for some positive integer b ≥ 3. There exists infinitely many q such that any
Reed–Solomon code of length n ≥ 4δ0.99q and rate δ is not (1− 2δ, nΩ(log(1/δ)))-list-decodable.

2 Preliminaries

2.1 Basic notation

For positive integers t, let [t] denote the set {1, 2, . . . , t}. The Hamming distance d(x, y) between two vectors
x, y ∈ Fn

q is the number of indices i where xi ̸= yi. For a finite field Fq, we follow the standard notation
that Fq[X1, . . . , Xn] denotes the ring of multivariate polynomials with variables X1, . . . , Xn over Fq, and
Fq(X1, . . . , Xn) denotes the field of fractions of the polynomial ring Fq[X1, . . . , Xn]. By abuse of notation,
we let X≤i or X[i] to denote the sequence X1, . . . , Xi, and we let, for example, X≤i = α≤i to denote
X1 = α1, X2 = α2, . . . , Xi = αi. Given a matrix M over the field of fractions Fq(X1, . . . , Xn) and field
elements α1, . . . , αi ∈ Fq, let M(X≤i = α≤i) denote the matrix over Fq(Xi+1, Xi+2, . . . , Xn) obtained by
setting X≤i = α≤i in M .

2.2 Hypergraphs and connectivity

In this work, we maintain a hypergraph perspective of the list-decoding problem, which was introduced in
[GLS+22]. We describe a bad list-decoding instance with a hypergraph where the L + 1 bad codewords
identify the vertices and the n evaluation points identify the hyperedges (Definition 2.1). While prior works
described a bad list-decoding instance by L + 1 sets indicating the agreements of the codewords with the
received word, this hypergraph perspective gives us several advantages:

1. The constraints imposed by a bad list-decoding configuration yield a hypergraph that is weakly-
partition-connected. This is a natural notion of hypergraph connectivity, which is well-studied in
combinatorics [FKK03b, FKK03a, Kir03] and optimization [JMS03, FK09, Fra11, CX18], and which
generalizes a well-known notion (k-partition-connectivity) for graphs [NW61, Tut61].5 This connection
allows us to have more compact notation, definitions, and lemma statements.

2. Because we work with weakly-partition-connected hypergraphs, we save a factor of L in Lemma 2.13
compared to the analogous lemma in [GZ23]. This allows us to improve the constant factor in alphabet

size for Reed–Solomon codes from 2O(L2/ε) in [GZ23] to 2O(L/ε) in Theorem 1.1.

3. For similar reasons, for random linear codes, the hypergraph perspective saves a factor of L in the
alphabet size exponent, improving from 2O(L2/ε) to 2O(L/ε) in Theorem 1.3.

5The notion of weakly-partition-connected sits between two other well-studied notions: k-partition-connected implies k-
weakly-partition-connected implies k-edge-connected [Kir03]. Each of these three notions generalizes an analogous notion on
graphs. On graphs, k-partition-connected and k-weakly-partition-connected are equivalent.

4

en−2

en−1

en

f (1)
f (2)

f (3)

f (4)

f (5)
f (6)

f (7) en−2 = {1, 2, 4} means f (1)(αn−2) = f (2)(αn−2) = f (4)(αn−2) = yn−2

en−1 = {5, 6} means f (5)(αn−1) = f (6)(αn−1) = yn−1

en = {7} means f (7)(αn) = yn

Figure 1: Example edges from an agreement hypergraph H = ([7], (e1, . . . , en)) (Definition 2.1) arising
from a bad list-decoding configuration with polynomials f (1), . . . , f (7) ∈ Fq[X], received word y ∈ Fn

q , and
evaluation points α1, . . . , αn.

4. With the hypergraph perspective, we can give a new presentation of the results in [BGM23] and more
directly connect the list-decoding problem to the GM-MDS theorem [DSY14, Lov18, YH19], as the
heavy-lifting in the combinatorics is done using known results on hypergraph orientations. This is done
in Appendix A.

A hypergraph H = (V, E) is given by a set of vertices V and a set E of (hyper)edges, which are subsets
of the vertices V . In this work, all hypergraphs have labeled edges, meaning we enumerate our edges ei by
distinct indices i from some set, typically [n], in which case we may also think of E as a tuple (e1, . . . , en).
Throughout this paper, the vertex set V is typically [t] for some positive integer t. The weight of a hyperedge

e is wt(e)
def
= max(0, |e| − 1), and the weight of a set of hyperedges E is simply wt(E) def

=
∑

e∈E wt(e).

All hypergraphs that we will consider in this work are agreement hypergraphs for a bad list-decoding
configuration. See Figure 1 for an illustration.

Definition 2.1 (Agreement Hypergraph). Given vectors y, c(1), . . . , c(t) ∈ Fn
q , the agreement hypergraph has

a vertex set [t] and a tuple of n hyperedges (e1, . . . , en) where ei
def
= {j ∈ [t] : cji = yi}.

A key property of hypergraphs that we are concerned with is weak-partition-connectivity.

Definition 2.2 (Weak Partition Connectivity). A hypergraph H = ([t], E) is k-weakly-partition-connected
if, for every partition P of the set of vertices [t],∑

e∈E
max{|P(e)| − 1, 0} ≥ k(|P| − 1) (2)

where |P| is the number of parts of the partition, and |P(e)| is the number of parts of the partition that
edge e intersects.

To give some intuition for weak partition connectivity, we state two of its combinatorial implications.
First, if a graph is k-weakly-partition-connected, then it is k-edge-connected [Kir03], which, by the Hyper-
graph Menger’s (Max-Flow-Min-Cut) theorem [Kir03, Theorem 1.11], equivalently means that every pair
of vertices has k edge-disjoint (hyper)paths between them.6 Second, suppose we replace every hyperedge
e with an arbitrary spanning tree of its vertices (which we effectively do in Definition 2.5). The result-
ing (non-hyper)graph is k-partition-connected,7 which, by the Nash-Williams-Tutte Tree-Packing theorem
[NW61, Tut61], equivalently means there are k edge-disjoint spanning trees (this connection was used in
[GLS+22]).

The key reason we consider weak-partition-connectivity is that a bad list-decoding configuration yields
a k-weakly-partition-connected agreement hypergraph.

6In general the converse is not true.
7In (non-hyper)graphs, k-partition-connectivity and k-weak-partition-connectivity are equivalent.

5

Lemma 2.3 (Bad list gives k-weakly-partition-connected hypergraph. See also Lemma 7.4 of [GLS+22]).
Suppose that vectors y, c(1), . . . , c(L+1) ∈ Fn

q are such that the average Hamming distance from y to c(1), . . . , c(L+1)

is at most L
L+1 (n− k). That is,

∑L+1
j=1 d(y, c(j)) ≤ L(n− k). Then, for some subset J ⊆ [L+1] with |J | ≥ 2,

the agreement hypergraph of (y, c(j) : j ∈ J) is k-weakly-partition-connected.

Proof. Consider the agreement hypergraph ([L+ 1], E) of y, (c(1), . . . , c(L+1)). The edge weight is

∑
e∈E

wt(e) ≥ −n+
∑
e∈E
|e| = −n+

n∑
i=1

L+1∑
j=1

1[yi = c
(j)
i] = −n+

L+1∑
j=1

(n− d(y, c(j))) ≥ Lk. (3)

Let J be an inclusion-minimal subset J ⊆ [L+ 1] with |J | ≥ 2 such that
∑

e∈E wt(e ∩ J) ≥ (|J | − 1)k. By
(3), J = [L + 1] works so J exists (note that singleton subsets of [L + 1] satisfy equality in the preceding
inequality). Let H = (J, EJ) be the agreement hypergraph for vectors (y, c(j) : j ∈ J). Note that the edges of
EJ are exactly (ei ∩ J : ei ∈ E). By minimality of J , for all J ′ ⊊ J , we have

∑
e∈EJ

wt(e ∩ J ′) ≤ (|J ′| − 1)k.
Now, consider a non-trivial partition P = P1 ⊔ · · · ⊔ Pp of J where Pi ̸= J for all i ∈ [p] (as otherwise (2)
trivially follows). We have

∑
e∈EJ

max{|P(e)| − 1, 0} =
∑

e∈EJ ,e̸=∅

(
−1 +

p∑
ℓ=1

1[|e ∩ Pℓ| > 0]

)

=
∑

e∈EJ ,e̸=∅

(
(|e| − 1)−

p∑
ℓ=1

(|e ∩ Pℓ| − 1[|e ∩ Pℓ| > 0])

)

=
∑

e∈EJ ,e̸=∅

(
max(|e| − 1, 0)−

p∑
ℓ=1

max(|e ∩ Pℓ| − 1, 0)

)

=
∑
e∈EJ

wt(e)−
p∑

ℓ=1

∑
e∈EJ

wt(e ∩ Pℓ)

≥ (|J | − 1)k −
p∑

ℓ=1

(|Pℓ| − 1)k

= (p− 1)k = (|P| − 1)k. (4)

This holds for all partitions P of J , so HJ is k-weakly-partition-connected.

Remark 2.4. The condition |J | ≥ 2 is needed later so that the reduced intersection matrix (defined below)
is not a 0× 0 matrix, in which case the matrix does not help establish list-decodability.

2.3 Reduced intersection matrices: definition and example

As in [GZ23], we work with the reduced intersection matrix, though our proof should work essentially
the same with a different matrix called the (non-reduced) intersection matrix, which was considered in
[ST20, GLS+22, BGM23].

Definition 2.5 (Reduced intersection matrix). The reduced intersection matrix RIMq,H associated with a
prime power q and a hypergraph H = ([t], (e1, . . . , en)) is a wt(E)× (t− 1)k matrix over the field of fractions
Fq(X1, . . . , Xn). For each hyperedge ei with vertices j1 < j2 < · · · < j|ei|, we add wt(ei) = |ei| − 1 rows to

RIMH. For u = 2, . . . , |ei|, we add a row ri,u = (r(1), . . . , r(t−1)) of length (t− 1)k defined as follows:

• If j = j1, then r(j) = [1, Xi, X
2
i , . . . , X

k−1
i]

• If j = ju and ju ̸= t, then r(j) = −[1, Xi, X
2
i , . . . , X

k−1
i]

• Otherwise, r(j) = 0k.

6

We typically omit q and write RIMH as q is typically understood.

Example 2.6. Recall the example edges of the agreement hypergraph H = ([7], (e1, . . . , en)) in Figure 1.

en−2

en−1

en

f (1)
f (2)

f (3)

f (4)

f (5)
f (6)

f (7)

The edges en−2, en−1, en from H contribute the following length (t − 1)k rows to its reduced intersection
matrix: Vn−2 −Vn−2 0 0 0 0

Vn−2 0 0 −Vn−2 0 0
0 0 0 0 Vn−1 −Vn−1

 (5)

Here Vi = [1, Xi, X
2
i , . . . , X

k−1
i] is a “Vandermonde row”, and 0 denotes the length-k vector [0, 0, . . . , 0]. Note

that each edge e contributes |e| − 1 rows to the agreement matrix, and in particular en does not contribute
any rows.

Reduced intersection matrices arise by encoding all agreements from a bad list-decoding configuration
into linear constraints on the message symbols (the polynomial coefficients). These constraints are placed
into one matrix that we call the reduced intersection matrix. The following lemma implies that, if every
reduced intersection matrix arising from a possible bad list-decoding configuration has full column rank when
X1 = α1, . . . , Xn = αn, the corresponding Reed–Solomon code is list-decodable.

Lemma 2.7 (RIM of agreement hypergraphs are not full column rank). Let H be an agreement hypergraph
for (y, c(1), . . . , c(t)), where c(j) ∈ Fn

q are codewords of RSn,k(α1, . . . , αn), not all equal to each other. Then
the reduced intersection matrix RIMH(X[n] = α[n]) does not have full column rank.

Proof. By definition,

RIMH(X[n] = α[n]) ·

 f (1) − f (t)

...
f (t−1) − f (t)

 = 0 (6)

where f (1), . . . , f (t) ∈ Fk
q are the vectors of coefficients of the polynomials that generate codewords c(1), . . . , c(t) ∈

Fn
q . Since these vectors are not all equal to each other, RIMH(X[n] = α[n]) does not have full column rank.

Remark 2.8 (Symmetries of reduced intersection matrices). From this definition, it should be clear that
we can divide the variables X1, . . . , Xn into at most 2L classes such that variables in the same class are
exchangeable with respect to the reduced intersection matrix RIMH: if ei and ei′ are the same hyperedge,
then swapping Xi and Xi′ yields the same reduced intersection matrix (up to row permutations). This
observation, which was alluded to in [GZ23], turns out to be crucial in our argument that allows us to
improve the alphabet size in [GZ23] from quadratic to linear.

Remark 2.9. The pairwise distinctness requirement in the definition of average-radius-list-decodability (see
Section 1.1) is nonetheless crucial in the proof of Theorem 1.1, despite the weaker requirement in Lemma 2.7.
That is because we will eventually apply Lemma 2.7 on the subcollection of codewords given from Lemma 2.3,
which can potentially be arbitrary. The guarantee that this subcollection of codewords is not all equal to
each other would then follow from pairwise distinctness of the codewords in the original list.

7

2.4 Reduced intersection matrices: full column rank

The following theorem shows that reduced intersection matrices of k-weakly-partition-connected hypergraphs
are nonsingular when viewed as a matrix over Fq(X1, . . . , Xn). This was essentially conjectured by Shangguan
and Tamo [ST20] and essentially established by Brakensiek, Gopi, and Makam [BGM23], who conjectured
and showed, respectively, nonsingularity of the (non-reduced) intersection matrix under similar conditions.
By the same union bound argument as in [ST20, Theorem 5.8], Theorem 2.10 already implies list-decodability
of Reed–Solomon codes up to the generalized Singleton bound over exponentially large fields sizes, which
is [BGM23, Theorem 1.5]. For completeness, and to demonstrate how the hypergraph perspective more
directly connects the list-decoding problem to the GM-MDS theorem, we include a proof of Theorem 2.10
in Appendix A.

Theorem 2.10 (Full column rank. Implicit from Theorem A.2 of [BGM23]). Let n and k be positive integers
and Fq be a finite field. Let H be a k-weakly-partition-connected hypergraph with n hyperedges and at least 2
vertices. Then RIMH has full column rank over the field Fq(X1, · · · , Xn).

Remark 2.11. We note that, [BGM23] assumes throughout their paper that the alphabet size q is sufficiently
large, but Theorem 2.10 follows from the weaker “q sufficiently large” version: For any fixed field size q,
take Q to be a sufficiently large power of q. Then, by the “q sufficiently large” version of Theorem 2.10,
matrix RIMQ,H has full column rank over the field FQ(X1, . . . , Xn). Hence, the determinant of some square
full-rank submatrix of RIMQ,H is a nonzero polynomial in FQ[X1, . . . , Xn]. The entries of RIMQ,H can all
be viewed as polynomials over Fq, so the corresponding full-rank submatrix of RIMq,H has a determinant
that is a nonzero polynomial in Fq[X1, . . . , Xn] — symbolically, the determinants are the same polynomials,
as Fq and FQ have the same characteristic. Hence, the matrix RIMq,H has full column rank over the field
Fq(X1, . . . , Xn).

2.5 Reduced intersection matrix: row deletions

As in [GZ23], we consider row deletions from the reduced intersection matrix. The goal of this section is
to establish Lemma 2.13, that the full-column-rank-ness of reduced intersection matrices are robust to row
deletions.

Definition 2.12 (Row deletion of reduced intersection matrix). Given a hypergraph H = ([t], (e1, . . . , en))
and set B ⊆ [n], define RIMB

H to be the submatrix of RIMH obtained by deleting all rows containing a variable
Xi with i ∈ B.

The next lemma appears in a weaker form in [GZ23]. It roughly says that, given a reduced intersection
matrix RIMH with some constant factor “slack” in the combinatorial constraints, we can omit a constant
fraction of the rows without compromising the full-column-rank-ness of the matrix. Our version of this
lemma saves roughly a factor of t ∼ L compared to the analogous lemma [GZ23, Lemma 3.11]. The reason is
that the k-weakly-partition-connected condition is more robust to these row deletions (by a factor of roughly
t) than the condition in [GZ23]. As such, our proof is also more direct.

Lemma 2.13 (Robustness to deletions. Similar to Lemma 3.11 of [GZ23]). Let H = ([t], E) be a (k + εn)-
weakly-partition-connected hypergraph with t ≥ 2. For all sets B ⊂ [n] with |B| ≤ εn, we have that RIMB

H is
nonempty and has full column rank.

Proof. By definition of the reduced intersection matrix RIMH, the matrix with row deletions RIMB
H is the

matrix RIMH′ , where H′ = ([t], E ′) is the hypergraph obtained from H by deleting ei for i ∈ B. By
Theorem 2.10, it suffices to prove that H′ is k-weakly-partition connected. Indeed, consider any partition P
of [t]. We have ∑

e∈E′

max{|P(e)| − 1, 0} =
∑
i∈[n]

max{|P(e)| − 1, 0} −
∑
i∈B

max{|P(e)| − 1, 0}

≥ (k + εn) · (|P| − 1)− |B| · (|P| − 1) = k · (|P| − 1), (7)

as desired. The first inequality holds because H is (k + εn)-weakly-partition-connected, and, trivially, any
edge ei touches at most |P| parts of P.

8

Lemma 2.7
Bad list-decoding
configuration has
(k + εn)-w.p.c

agreement hypergraph

Lemma 2.3
RIMs for agreement
hypergraphs do not

have full column rank

Lemma 3.1
RIMs for (k+εn)-w.p.c
hypergraphs have full
column rank w.h.p.

Theorem 1.1
RS code list-

decodable w.h.p.

Union bound over possible
agreement hypergraphs

Lemma 3.8
If RIM not full
column rank, it

admits a certificate.

Corollary 3.10
Number of possible
certificates is small.

Corollary 3.12
The probability
of any one certifi-
cate is very small

Union bound over
possible certificates

Properties of
GetCertificate,
which generates
certificates for

non-full-rank RIMs.

Figure 2: A roadmap of our proof. The orange boxes are preliminaries, and the blue-green boxes are the
meat of the proof address in Section 3. All probabilities are over the random choice of evaluation points
α1, . . . , αn for our Reed–Solomon code.

3 Proof of list-decodability with linear-sized alphabets

3.1 Overview of the proof

By Lemma 2.7 and Lemma 2.3, every bad list-decoding configuration admits a weakly-partition-connected
agreement hypergraph whose reduced intersection matrix does not have full column rank. Thus, to prove
Theorem 1.1, it suffices to show that, with high probability, every such reduced intersection matrix has
full column rank. The main technical lemma for this section is the one stated below. Our main result,
Theorem 1.1, follows by applying Lemma 2.3 and Lemma 2.7 with Lemma 3.1, and taking a union bound
over all

∑L+1
t=2 2tn possible agreement hypergraphs.

Lemma 3.1. Let k be a positive integer and ε > 0. For each (k+ εn)-weakly-partition-connected hypergraph
H = ([t], (e1, . . . , en)) with t ≥ 2, we have, for r = ⌊εn/2⌋,

Pr
α1,...,αn∼Fq distinct

[
RIMH(X[n] = α[n]) does not have full column rank

]
≤
(
n

r

)
2tr ·

(
(t− 1)k

q − n

)r

. (8)

At the highest level, the proof of Lemma 3.1 follows the same outline as [GZ23]. For every sequence of
evaluation points (α1, . . . , αn) ∈ Fn

q for which RIMH does not have full column rank, we show that there is a
certificate (i1, . . . , ir) ∈ [n]r consisting of distinct indices in [n] (Lemma 3.8), which intuitively “attests” to
the failure of the matrix RIMH to be full column rank. We then show that, for any certificate (i1, . . . , ir), the
probability that (α1, . . . , αn) has certificate (i1, . . . , ir) is exponentially small. (More precisely, it will at most

be ((t−1)k
q−n)r. See Corollary 3.12). We then show that there are not too many certificates (Corollary 3.10),

and then union bound over the number of possible certificates to obtain the desired result (Lemma 3.1).

Our argument differs from [GZ23] in how we choose our certificates. The argument of [GZ23] allowed
for up to nr certificates. Our argument instead only needs

(
n
r

)
2tr many certificates, which is much smaller

when r = Ω(n) (the parameter regime of interest here) and overall allows us to save a factor of n in the

9

alphabet size. Our savings comes from leveraging that there are at most 2t different “types” of hyperedges
(see Remark 2.8), and thus at most 2t different types of variables Xi in the reduced intersection matrix
RIMH. This observation was alluded to in [GZ23].8 With this observation in mind, we assume, without loss
of generality, that the edges of H are ordered by their respective type (we can relabel the edges of H, which
effectively permutes the rows of RIMH).

Our method of generating a certificate (i1, . . . , ir) for the evaluation sequence (α1, . . . , αn) (Algorithm 2)
is similar to that of [GZ23] at a high level—with each certificate i1, . . . , ir, we associate a sequence of
(t− 1)k× (t− 1)k submatrices M1, . . . ,Mr of RIMH (Algorithm 1) that are entirely specified by i1, . . . , ir as
follows: since evaluating X[n] = α[n] forces RIMH to not be full rank, then so will all of its (t− 1)k× (t− 1)k
submatrices. Thus if we sequentially ’reveal’ X1 = α1, X2 = α2, . . . , then at some point, Mj becomes
singular exactly when we set Xij = αij — in fact, ij is defined as such, so that we select M1, i1,M2, i2, . . . ,
in that order, but we emphasize that Mj can be computed from i1, . . . , ij−1 without knowing α1, . . . , αn.
Conditioned on Mj being non-singular with X1 = α1, . . . , Xij−1 = αij−1, the probability that Mj becomes

singular when setting Xij = αij is at most (t−1)k
q−n : αij is uniformly random over at least q−n field elements,

and the degree of Xij in the determinant of Mj is at most (t − 1)k (and the determinant is nonzero by
definition). Running conditional probabilities in the correct order, we conclude that the probability that a

particular certificate i1, . . . , ir is generated is at most ((t−1)k
q−n)r, just as in [GZ23].

Whereas [GZ23] pick any matrix Mj that is obtained after removing the variables Xi1 , . . . , Xij−1
, we do

a more deliberate choice of matrices by leveraging the symmetries of RIMH (Remark 2.8). First, we ensure
that we can keep a “bank” of Ωt(r) unused variables of each of the Ot(1) types. Then, starting with a full
column rank submatrix M of RIMH devoid of all variables in the “bank,” we start sequentially applying the
evaluations X1 = α1, X2 = α2, Whenever M(X≤i1 = α≤i1) turns singular, we find that the evaluation
Xi1 = αi1 is what ’caused’ it to become singular. We then go to the “bank” to find a variable Xi′1

of the
same type as Xi1 and “re-indeterminate” M by replacing all instances of Xi1 in M with Xi′1

. That way, we
ensure that M is, in a sense, “reused.” Furthermore, we ensure i′1 > i1, so that the matrix M(X≤i1 = α≤i1)
is now nonsingular, so we can keep going. Of course, if we end up reaching the end (i.e. M(X[n] = α[n]) is
full column rank), then in fact, RIMH(X[n] = α[n]) is full column rank, and so the evaluations (α1, . . . , αn)
were ‘good’ after all.

Otherwise, if the evaluations (α1, . . . , αn) were ‘bad’, then the submatrix M couldn’t have reached the
end, and that can only happen if some specific type was completely exhausted from the bank. However,
given the size of our initial bank, that must have meant that M must have been “re-indeterminated” at least
Ωt(r) times. When that happens, we collect the indices i1, . . . , iℓ that we gathered from this round, remove
them from RIMH, and repeat the process again with a refreshed bank. Since we only need r indices, then
we end up doing at most Ot(1) rounds. Because each round yields a strictly increasing sequence of indices
of length at least Ωt(r), then we up getting a certificate consisting of at most Ot(1) strictly increasing runs
of total length r, of which there are at most

(
n
r

)
·Ot(1)

r.

To be more concrete, when we generate the submatrix M = M1, we ensure that any variable appearing
in M1 has the same type as Ωt(r) variables that are not in M1 (but still in RIMH). This creates a “bank”
of variables of each type. Then, if X≤i1 = α≤i1 was the point that made M1 singular, we can get M2 by
replacing all copies of Xi1 with some Xi′1

that is of the same type and in the “bank.” Since variables i1
and i′1 are of the same type, they have analogous rows in the reduced intersection matrix RIMH, so this new
matrix M2 is still a submatrix of RIMH. Therefore, we can pick up where we left off with M1 but with M2

instead. That is, M2 will in fact be full rank when we apply the evaluations X≤i1 = α≤i1 . Thus the next
index i2 on which M2 turns singular will be strictly greater than i1. We then repeat the process in M2,
replacing Xi2 with some Xi′2

that is in the “bank” and of the same type, getting M3, and so on. We can
continue this process for Ωt(r) steps because of the size of the bank of each type, so we get an increasing run
of length Ωt(r) in our certificate. After we run out of some type in our bank, we remove the used indices
i1, . . . , iℓ from RIMH and repeat the process again with a refreshed bank. This continues for Ot(1) times
only, as we only need r indices in the end.

8Guo and Zhang [GZ23] write “It is possible that achieving an alphabet size linear in n would require establishing and exploit-
ing other properties of intersection matrices or reduced intersection matrices, such as an appropriate notion of exchangeability.”
We found this prediction to be insightful and true.

10

We now finish the proof of Theorem 1.1, assuming Lemma 3.1. The rest of this section is devoted to
proving Lemma 3.1.

Proof of Theorem 1.1, assuming Lemma 3.1. By Lemma 2.3, ifRSn,k(α1, . . . , αn) is not
(

L
L+1 (1−R− ε), L

)
average-radius list-decodable, then there exists a vector y and pairwise distinct codewords c(1), . . . , c(t) with
t ≥ 2 such that the agreement hypergraph H = ([t], E) is (R + ε)n = (k + εn)-weakly-partition-connected.
By Lemma 2.7, the matrix RIMH(X[n] = α[n]) is not full column rank. Now, the number of possible agree-

ment hypergraphs H is at most
∑L+1

t=2 2tn ≤ 2(L+2)n. Thus by the union bound over possible agreement
hypergraphs H with Lemma 3.1, we have, for r = ⌊ εn2 ⌋,

Pr
α[n]

[
RSn,k(α1, . . . , αn) not

(
L

L+ 1
(1−R− ε), L

)
list-decodable

]
≤ Pr

α[n]

[
∃ (k + εn)-w.p.c. agreement hypergraph H such that RIMH(X[n] = α[n]) not full column rank

]
≤ 2(L+2)n max

(k + εn)-w.p.c. H
Pr
α[n]

[
RIMH(X[n] = α[n]) not full column rank

]
≤ 2(L+2)n ·

(
n

r

)
2(L+1)r

(
Lk

q − n

)r

≤
(
2(L+2)n/r · en

r
· 2L+1 Lk

q − n

)r

≤ 2−Ln, (9)

as desired. Here, we used that q = n+ k · 210L/ε.

3.2 Setup for proof of Lemma 3.1

We now devote the rest of this Section to proving Lemma 3.1.

Types. For a hypergraph H = ([t], (e1, . . . , en)), the type of an index i (or, by abuse of notation, the
type of the variable Xi, or the edge ei) is simply the set ei ⊂ [t]. There are 2t types, and by abuse
of notation, we identify the types by the numbers 1, 2, . . . , 2t in an arbitrary fixed order with a bijection
τ : (subsets of [t]) → [2t]. We say a hypergraph is type-ordered if the hyperedges e1, . . . , en are sorted
according to their type: τ(e1) ≤ τ(e2) ≤ · · · ≤ τ(en). Since permuting the labels of the edges of H preserves
the rank of RIMH (it merely permutes the rows of RIMH), we can without loss of generality assume in
Lemma 3.1 that H is type-ordered.

Global variables. Throughout the rest of the section, we fix a positive integer k, parameter ε > 0, and
H = ([t], (e1, . . . , en)), a type-ordered (k + εn)-weakly-partition-connected hypergraph with t ≥ 2. We also
fix

r
def
=
⌊εn
2

⌋
. (10)

3.3 GetCertificate and GetMatrixSequence: Basic properties

As mentioned at the beginning of this section, we design an algorithm, Algorithm 2, that attempts to generate
a certificate (i1, . . . , ir) ∈ [n]r for evaluation points α1, . . . , αn. It uses Algorithm 1, a helper function that
generates the associated square submatrices M1, . . . ,Mr of RIMH. Below, we establish some basic properties
of these algorithms.

First, we establish that the matrices outputted by GetMatrixSequence are well-defined.

Lemma 3.2 (Output is well-defined). For all sequence of indices i1, . . . , ij−1, if M1, . . . ,Mj is the output
of the function GetMatrixSequence(i1, . . . , ij−1), then M1, . . . ,Mj are well-defined.

Proof. If ℓ is a refresh index, then we have |B ∪ {i1, . . . , iℓ−1}| < |B| + r ≤ 2r ≤ εn, so by Lemma 2.13,

RIM
B∪{i1,...,iℓ−1}
H is nonempty and has full column rank. Thus Mℓ exists in Line 13. If ℓ is not a refresh

index, Mℓ is always well-defined by definition.

11

Algorithm 1: GetMatrixSequence

Input: indices i1, . . . , ij−1 ∈ [n] for some j ≥ 1.
Output: M1, . . . ,Mj , which are (t− 1)k × (t− 1)k matrices over Fq(X1, X2, . . . , Xn).

1 B ← ∅, i0 ←⊥, ℓ0 ←⊥
2 for ℓ = 1, . . . , j do

// Mℓ depends only on i1, . . . , iℓ−1

3 if ℓ > 1 then
// Fetch new index from bank B

4 τ ← the type of iℓ−1

5 s← number of indices among iℓ0 , iℓ0+1, . . . , iℓ−1 that are type τ
6 i′ℓ−1 ← the s-th smallest element of B that has type τ

7 if i′ℓ−1 is defined then
8 Mℓ ← the matrix obtained from Mℓ−1 by replacing all copies of Xiℓ−1

with Xi′ℓ−1

9 if Mℓ not yet defined then
// Refresh bank B

10 B ← ∅
11 for τ = 1, . . . , 2t do
12 B ← B ∪ {largest ⌊r/2t⌋ indices of type τ in [n] \ {i1, . . . , iℓ−1}} (if there are less than

⌊r/2t⌋ indices of type τ , then B contains all such indices)

13 Mℓ ← lexicographically smallest nonsingular (t−1)k× (t−1)k submatrix of RIM
B∪{i1,...,iℓ−1}
H

14 ℓ0 ← ℓ // new refresh index

15

16 return M1, . . . ,Mj

Next, we observe that GetMatrixSequence is an “online” algorithm.

Lemma 3.3 (Online). Furthermore, GetMatrixSequence is a deterministic function of i1, . . . , ij−1, and it
computes Mℓ “online”, meaning Mℓ depends only on i1, . . . , iℓ−1 for all ℓ = 1, . . . , j (and M1 is always the
same matrix). In particular, GetMatrixSequence(i1, . . . , ij−1) is a prefix of GetMatrixSequence(i1, . . . , ij).

Proof. By definition and Lemma 3.2.

Definition 3.4 (Refresh index). In GetMatrixSequence, in the outer loop over ℓ, we say a refresh index is
an index ℓ obtained at Line 14 (i.e. when Mℓ is defined on Line 13). For example, ℓ = 1 is a refresh index.

Our first lemma shows that the new indices we are receiving from GetMatrixSequence are in fact new.

Lemma 3.5 (New Variable). In GetMatrixSequence, in the outer loop iteration over ℓ at Line 2, if we
reach Line 8 of GetMatrixSequence, variable Xi′ℓ−1

does not appear in Mℓ0 ,Mℓ0+1, . . . ,Mℓ−1, where ℓ0 is
the largest refresh index less than ℓ.

Proof. Let B be the set defined in Line 12 at iteration ℓ0. In iterations ℓ′ = ℓ0, ℓ0 +1, . . . , ℓ, the set B is the
same, and i′ℓ−1 is in this set B by definition. Thus, the variable Xi′ℓ−1

does not appear in Mℓ0 by definition.

For ℓ′ = ℓ0, ℓ0 +1, . . . , ℓ, the (τ, s) pairs generated at Line 4 and Line 5 are pairwise distinct, so Xi′ℓ−1
is not

added to Mℓ′ for ℓ
′ = ℓ0 + 1, . . . , ℓ− 1 and thus is not in Mℓ0 ,Mℓ0+1, . . . ,Mℓ−1.

To show that the probability of a particular certificate (i1, . . . , ir) is small (Lemma 3.11, Corollary 3.12),
we crucially need that i1, . . . , ir are pairwise distinct. The next lemma proves that this is always the case.

Lemma 3.6 (Distinct indices). For any sequence of evaluation points (α1, . . . , αn) ∈ Fn
q , the output of

GetCertificate(α1, . . . , αn) is a sequence (i1, . . . , ir) ∈ [n]r of pairwise distinct indices.

12

Algorithm 2: GetCertificate

Input: Evaluation points (α1, . . . , αn) ∈ Fn
q .

Output: A “certificate” (i1, . . . , ir) ∈ [n]r.
1 for j = 1, . . . , r do

// M1, . . . ,Mj−1 stay the same, Mj is now defined

2 M1, . . . ,Mj = GetMatrixSequence(i1, . . . , ij−1)
3 ij ← smallest index i such that Mj(X≤i = α≤i) is singular
4 if ij not defined then
5 return ⊥

6 return (i1, . . . , ir)

Proof. By definition of iℓ at Line 3 of GetCertificate, variable Xiℓ must be in Mℓ, so suffices to show that
Mℓ never contains any variable Xi for i ∈ {i1, . . . , iℓ−1}. We induct on ℓ. If ℓ is a refresh index, this is true
by definition. If not, let ℓ0 be the largest refresh index less than ℓ. By induction, i1, . . . , iℓ−2 are not in
Mℓ−1, so we just need to show i′ℓ−1 (the new index replacing iℓ−1 in Mℓ at Line 8) is not any of i1, . . . , iℓ−1.
It is not any of i1, . . . , iℓ0−1 because none of those indices are in B by definition. It is not any of iℓ′ for
ℓ′ = ℓ0, . . . , ℓ− 1, because Xiℓ′ is in Mℓ′ , but Xi′ℓ−1

is not, by Lemma 3.5 .

3.4 Bad evaluation points admit certificates

Here, we establish Lemma 3.8, that if some evaluation points make RIMH not full column rank, then
GetCertificate outputs a certificate. To do so, we first justify our matrix constructions, showing that
the matrices in GetMatrixSequence are in fact submatrices of RIMH.

Lemma 3.7 (GetMatrixSequence gives submatrices of RIMH). For all sequence of indices i1, . . . , ij−1,
if M1, . . . ,Mj is the output of GetMatrixSequence(i1, . . . , ij−1), then M1, . . . ,Mj are (t − 1)k × (t − 1)k
submatrices of RIMH.

Proof. We proceed with induction on ℓ = 1, . . . , j. First, if ℓ is a refresh index, then Mℓ is a submatrix of
RIMH by definition. In particular, M1 is a submatrix of RIMH, so the base case holds. Now suppose ℓ is
not a refresh index and Mℓ−1 is a submatrix of RIMH. Matrix Mℓ is defined by replacing all copies of Xiℓ−1

with Xi′ℓ−1
. To check that Mℓ is a submatrix of RIMH, it suffices to show that

(i) for each row of RIMH containing Xiℓ−1
, replacing all copies of Xiℓ−1

with Xi′ℓ−1
gives another row of

RIMH, and

(ii) the variable Xi′ℓ−1
does not appear in Mℓ−1.

The first item follows from the fact that indices iℓ−1 and i′ℓ−1 are of the same type, so (i) holds by definition
of types and RIMH (see also Remark 2.8). The second item is Lemma 3.5. Thus, Mℓ is a submatrix of RIMH,
completing the induction.

We now show that any n-tuple of bad evaluation points admits a certificate.

Lemma 3.8 (Bad evaluations points admit certificates). If (α1, . . . , αn) ∈ Fn
q are evaluation points such

that RIMH(X[n] = α[n]) does not have full column rank, GetCertificate(α1, . . . , αn) returns a certificate
(i1, . . . , ir) ∈ [n]r (rather than ⊥).

Proof. Suppose for contradiction that GetCertificate returns ⊥ at iteration j in the loop. Then there is
no index i such that Mj(X≤i = α≤i) is singular, so in particular, Mj(X[n] = α[n]) is nonsingular and thus
has full column rank. By Lemma 3.7, Mj is a submatrix of RIMH, so we conclude RIMH has full column
rank.

13

3.5 Bounding the number of possible certificates

In this section, we upper bound the number of possible certificates. The key step is to prove the following
structural result about certificates.

Lemma 3.9 (Certificate structure). Given a sequence of evaluation points (α1, . . . , αn) ∈ Fn
q such that

RIMH(X[n] = α[n]) is not full column rank, the return value (i1, . . . , ir) = GetCertificate(α1, . . . , αn)
satisfies ij−1 < ij for all but at most 2t values j = 2, . . . , r.

Proof. Let (i1, . . . , ir) be the return of GetCertificate, and let M1, . . . ,Mr be the associated matrix se-
quence. By Lemma 3.3, we have M1, . . . ,Mj = GetMatrixSequence(i1, . . . , ij−1) for j = 1, . . . , r. Recall an
index ℓ ∈ [r] is a refresh index if Mℓ is defined on Line 13 rather than Line 8. The lemma follows from two
claims:

(i) If ℓ > 1 is not a refresh index, then iℓ−1 < iℓ.

(ii) Any two refresh indices differ by at least r/2t.

To see claim (i), let ℓ0 be the largest refresh index less than ℓ. By definition of a refresh index, the set
B stays constant between when Mℓ0 is defined and when Mℓ is defined. From the definition of ij at Line 3
in GetCertificate, we know that

• For i < iℓ−1 the matrix Mℓ−1(X≤i = α≤i) is nonsingular.

• The matrix Mℓ(X≤iℓ = α≤iℓ) is singular.

Suppose for contradiction that iℓ < iℓ−1. (Note that iℓ−1 ̸= iℓ by Lemma 3.6.) We contradict the first
item by showing, using the second item, that Mℓ−1(X≤iℓ = α≤iℓ) is also singular. By the definition of
GetMatrixSequence, since ℓ is not a refresh index, Mℓ is defined in Line 8. By construction of B and
i′ℓ−1, we know that i′ℓ−1 > iℓ−1 > iℓ. Thus, not only is Mℓ obtained from Mℓ−1 by replacing all copies
of Xiℓ−1

with Xi′ℓ−1
, but Mℓ(X≤iℓ = α≤iℓ) is also obtained by replacing all copies of Xiℓ−1

with Xi′ℓ−1
in

Mℓ−1(X≤iℓ = α≤iℓ) . Moreover, the variable Xi′ℓ−1
does not appear in Mℓ−1 by Lemma 3.5. So we conclude

that, as Mℓ(X≤iℓ = α≤iℓ) is singular, so is Mℓ−1(X≤iℓ = α≤iℓ).

Now we show claim (ii). Suppose ℓ0 and ℓ1 are consecutive refresh indices. If a variable of type τ
appears in the matrix Mℓ0 , there must be exactly ⌊r/2t⌋ indices of type τ in B (if there were fewer, then
B ∪ {i1, . . . , iℓ−1} would contain all indices of type τ , and the corresponding variables would not appear in

RIM
B∪{i1,...,iℓ−1}
H). Let τ be the type of index iℓ1−1. Since ℓ1 is a refresh index, the number of indices of type τ

among iℓ0 , iℓ0+1, . . . , iℓ1−1 must therefore be ⌊r/2t⌋+1. In particular, this means ℓ1−ℓ0 ≥ ⌊r/2t⌋+1 ≥ r/2t,
as desired.

Corollary 3.10 (Certificate count). The number of possible outputs to GetCertificate is at most
(
n
r

)
2tr.

Proof. The certificate consists of r distinct indices of [n] by Lemma 3.6. We can choose those in
(
n
r

)
ways.

These indices are distributed between at most 2t increasing runs by Lemma 3.9. We can distribute these
indices between the 2t increasing runs in at most (2t)r ways.

3.6 Bounding the probability of one certificate

The goal of this section is to establish Corollary 3.12, which states that the probability of obtaining a

particular certificate is at most ((t−1)k
q−n)r. The argument is implicit in [GZ23], but we include a proof for

completeness.

Lemma 3.11 (Implicit in [GZ23]). Let i1, . . . , ir ∈ [n] be pairwise distinct indices, and M1, . . . ,Mr be
(t−1)k×(t−1)k submatrices of RIMH. Over randomly chosen pairwise distinct evaluation points α1, . . . αn ∈
Fq, define the following events for j = 1, . . . , r:

• Ej is the event that Mj(X≤i = α≤i) is non-singular for all i < ij.

14

• Fj is the event that Mj(X≤ij = α≤ij) is singular.

The probability that all the events hold is at most ((t−1)k
q−n)r.

Proof. Note that the set of evaluation points α1, . . . , αn for which events Ej and Fj occur depends only on
Mj and ij . Furthermore, each of the events Ej and Fj depends only on Mi, ij , and the evaluation points.
Thus, by relabeling the index j, we may assume without loss of generality that i1 < i2 < · · · < ir. We
emphasize that we are not assuming that the output of GetCertificate satisfies i1 < · · · < ir (this is not
true). We are instead just choosing how we ’reveal’ our events Ej and Fj : starting with the smallest index
in i1, . . . , ir and ending with the largest index in it.

We have

Pr
α[n]

 r∧
j=1

(Ej ∧ Fj)

 =

r∏
j=1

Pr
α[n]

[Ej ∧ Fj |E1 ∧ F1 ∧ · · · ∧ Ej−1 ∧ Fj−1]

≤
r∏

j=1

Pr
α[n]

[Fj |E1 ∧ F1 ∧ · · · ∧ Ej−1 ∧ Fj−1 ∧ Ej] (11)

Note that E1∧F1∧· · ·∧Ej−1∧Fj−1∧Ej depends only on α1, . . . , αij−1, and Fj depends only on α1, . . . , αij .
For any α1, . . . , αij−1 for which E1∧F1∧· · ·∧Ej−1∧Fj−1∧Ej holds, we have that Mj(X≤ij−1 = α≤ij−1) is
a (t− 1)k × (t− 1)k matrix in Fq(Xij , Xij+1, . . . , Xn) whose determinant is a nonzero polynomial of degree
at most (t− 1)k in each variable (the determinant contains at most t− 1 rows including Xij , each time with
maximum degree k − 1). In particular, at most (t− 1)k values of αij can make the determinant zero since,
viewing the determinant as a polynomial in variables Xij+1, . . . , Xn with coefficients in Fq[Xij], any single
nonzero coefficient becomes zero on at most (t − 1)k values of αij . Conditioned on α1, . . . , αij−1, the field
element αij is uniformly random over q − ij + 1 ≥ q − n elements. Thus, we have, for all α1, . . . , αij−1 such
that E1 ∧ F1 ∧ · · · ∧ Ej−1 ∧ Fj−1 ∧ Ej ,

Pr
αij

[
Fj |α1, . . . , αij−1

]
≤ (t− 1)k

q − n
. (12)

Since E1 ∧ F1 ∧ · · · ∧ Ej−1 ∧ Fj−1 ∧ Ej depends only on α≤ij−1 and Fj depends only on α≤ij , we have

Pr
α[n]

[Fj |E1 ∧ F1 ∧ · · · ∧ Ej−1 ∧ Fj−1 ∧ Ej] ≤
(t− 1)k

q − n
. (13)

Combining with (11) gives the desired result.

The key result for this section is a corollary of Lemma 3.11.

Corollary 3.12 (Probability of one certficiate). For any sequence i1, . . . , ir ∈ [n], over randomly chosen
pairwise distinct evaluation points α1, . . . , αn, we have

Pr [GetCertificate(α1, . . . , αn) = (i1, . . . , ir)] ≤
(
(t− 1)k

q − n

)r

. (14)

Proof. By Lemma 3.6, we only need to consider pairwise distinct indices i1, . . . , ir, otherwise the probability
is 0. Let M1, . . . ,Mr = GetMatrixSequence(i1, . . . , ir). By Lemma 3.7, matrices M1, . . . ,Mr are all sub-
matrices of RIMH. Thus, Lemma 3.11 applies. Let E1, . . . , Er, F1, . . . , Fr be the events in Lemma 3.11. If
GetCertificate(α1, . . . , αn) = (i1, . . . , ir), then the definition of ij in Line 3 of GetCertificate implies
that events Ej and Fj both occur. By Lemma 3.11, the probability that all Ej and Fj hold is at most

((t−1)k
q−n)r, hence the result.

15

3.7 Finishing the proof of Lemma 3.1

Proof of Lemma 3.1. Recall (Section 3.2) that we fixed H to be a type-ordered (k + εn)-weakly-partition-
connected hypergraph. By Lemma 3.8, if the matrix RIMH(X[n] = α[n]) does not have full column rank, then
GetCertificate(α1, . . . , αn) is some certificate (i1, . . . , ir). The probability that GetCertificate(α1, . . . , αn) =

(i1, . . . , ir) is at most ((t−1)k
q−n)r by Corollary 3.12. By Corollary 3.10, there are at most

(
n
r

)
2tr certificates.

Taking a union bound over possible certificates gives the lemma.

4 Random Linear Codes

In this section, we discuss how to modify the proof of Theorem 1.1 to give Theorem 1.3, list-decoding for
random linear codes (RLCs). Our proof follows the roadmap in Figure 2. The proof is identical up to a
few minor modifications, which we state here for brevity. Below, we state the same lemmas as in the proof
for Reed–Solomon codes, adjusted for random linear codes, and we highlight the key differences in purple.
We expect that our framework could be applied even more generally to show that other families of random
codes — beyond randomly punctured Reed–Solomon codes and random linear codes — achieve list-decoding
capacity with small alphabet sizes, assuming such codes satisfy an appropriate GM-MDS theorem.

4.1 Preliminaries: Notation and Definitions

The generator matrix G ∈ Fn×k
q of a random linear code has independent uniformly random entries in Fq. To

transfer the proof for list-decoding Reed–Solomon codes to list-decoding random linear codes, a key analogy
is to think of the generator matrix as a n× k matrix of nk distinct indeterminates (Xi,ℓ)i∈[n],ℓ∈[k], evaluated
at nk independent and uniformly random field elements (αi,ℓ)i∈[n],ℓ∈[k].

G def
=

X1,1 · · · X1,k

...
. . .

...
Xn,1 · · · Xn,k

 ∈ Fq(X1,1, . . . , Xn,k)
n×k,

G
def
= G|X[n]×[n]=α[n]×[k]

Gi
def
= [Xi,1, . . . , Xi,k] (the ith row of G). (15)

We note that our randomly punctured Reed–Solomon code can also be viewed as an evaluation of G, where
Xi,ℓ is assigned αℓ−1

i where α1, . . . , αn are random distinct field elements over F. In this light, one might
expect our framework can also apply, and indeed it does.

Accordingly, we use similar indexing shorthand, where the notation X[a]×[b] represents the a ·b indetermi-
nates X1,1, X1,2, . . . , Xa,b, and similarly for field elements α[a]×[b]. For field elements α1,1, . . . , αa,b, we write
X[a]×[b] = α[a]×[b] to denote Xi,ℓ = αi,ℓ for 1 ≤ i ≤ a and 1 ≤ b ≤ ℓ.

We again use the notion of an agreement hypergraph in Section 2.2, and Lemma 2.3 still holds. For
each agreement hypergraph H, we consider more general reduced intersection matrix RIMH,G , where the
Xi-Vandermonde-rows are instead the i-th row of G. More precisely,

Definition 4.1 (Reduced intersection matrix, Random Linear Codes, Analogous to Definition 2.5.). The
reduced intersection matrix RIMH,G associated with a hypergraph H = ([t], (e1, . . . , en)) is a wt(E)× (t− 1)k
matrix over the field of fractions Fq(X1,1, . . . , Xn,k). For each hyperedge ei with vertices j1 < j2 < · · · < j|ei|,

we add wt(ei) = |ei| − 1 rows to RIMH,G . For u = 2, . . . , |ei|, we add a row ri,u = (r(1), . . . , r(t−1)) of length
(t− 1)k defined as follows:

• If j = j1, then r(j) = Gi = [Xi,1, Xi,2, Xi,3, . . . , Xi,k]

• If j = ju and ju ̸= t, then r(j) = −Gi = −[Xi,1, Xi,2, Xi,3, . . . , Xi,k]

• Otherwise, r(j) = 0k.

16

4.2 Preliminaries: Properties of RLC Reduced Intersection Matrices

We have similar preliminaries for reduced intersection matrices of random linear codes.

Lemma 4.2 (RIM of agreement hypergraphs are not full column rank, Analogous to Lemma 2.7). Let H be
an agreement hypergraph for (y, c(1), . . . , c(t)), where c(j) ∈ Fn

q are distinct codewords of the code generated
by G|X[n]×[k]=α[n]×[k]

. Then the reduced intersection matrix RIMH,G(X[n]×[k] = α[n]×[k]) does not have full
column rank.

Proof. Analogous to the proof of Lemma 2.7.

Lemma 4.3 (RIM have full column rank, Analogous to Theorem 2.10). Let H be a k-weakly-partition-
connected hypergraph with n hyperedges and at least 2 vertices. Then RIMH,G has full column rank over the
field Fq(X1,1, . . . , Xn,k).

Proof. We note that the Reed–Solomon code reduced intersection matrix RIMH can be obtained from the
random linear code reduced intersection matrix RIMH,G by setting the indeterminates Xi,ℓ = Xℓ−1

i , so
Lemma 4.3 immediately follows from Theorem 2.10. We emphasize that, while Reed–Solomon codes require
large alphabet sizes q ≥ Ω(n), Theorem 2.10 still holds for constant alphabet sizes q (see Remark 2.11), so
we can use it here.

We remark that Lemma 4.3 can be proven directly by following the proof framework of Theorem 2.10
in Appendix A.3, but instead substitute the use of Theorem A.2 with an analogous GM-MDS theorem
for Random Linear Codes, which can be found in Lemma 7 of [DSY15] (Lemma 7 of [DSY15] only implies
Lemma 4.3 for q to be sufficiently large, but again by Remark 2.11 the q sufficiently large version of Lemma 4.3
implies the lemma for all q). That way, the proof of Theorem 1.3 relies only on the proof framework of
Theorem 1.1 and not on any of its lemmas.

We again define row deletions for reduced intersection matrices.

Definition 4.4 (Row deletions, Analogous to Definition 2.12). Given a hypergraph H = ([t], (e1, . . . , en))
and set B ⊆ [n], define RIMB

H,G to be the submatrix of RIMH,G obtained by deleting all rows containing the
row Gi with i ∈ B.

Now we show that, as for Reed–Solomon codes, the full-column-rankness of reduced intersection matrices
is robust to deletions.

Lemma 4.5 (Robustness to deletions, Analogous to Lemma 2.13). Let H = ([t], E) be a (k + εn)-weakly-
partition-connected hypergraph with t ≥ 2. For all sets B ⊂ [n] with |B| ≤ εn, we have that RIMB

H,G is
nonempty and has full column rank.

Proof. The proof is identical to Lemma 2.13, where we instead use the full column rankness of RIMH,G for
k-weakly-partition-connected H (Lemma 4.3) rather than the full column rankness of RIMH (Theorem 2.10).

4.3 The proof

The proof of Theorem 1.3 follows similarly to the proof of Theorem 1.1. Our key lemma, analogous to
Lemma 3.1 is to show that reduced intersection matrices of weakly-partition-connected hypergraphs are full
column rank with high probability.

Lemma 4.6 (Analogous to Lemma 3.1). Let k be a positive integer and ε > 0. For each (k + εn)-weakly-
partition-connected hypergraph H = ([t], (e1, . . . , en)) with t ≥ 2, we have, for r = ⌊εn/2⌋,

Pr
α[n]×[k]

[
RIMH,G(X[n]×[k] = α[n]×[k]) does not have full column rank

]
≤
(
n

r

)
2tr ·

(
t− 1

q

)r

. (16)

17

Algorithm 3: GetMatrixSequenceRLC

Input: indices i1, . . . , ij−1 ∈ [n] for some j ≥ 1.
Output: M1, . . . ,Mj , which are (t− 1)k × (t− 1)k matrices over Fq(X1,1, . . . , Xn,k).

1 B ← ∅, i0 ←⊥, ℓ0 ←⊥
2 for ℓ = 1, . . . , j do

// Mℓ depends only on i1, . . . , iℓ−1

3 if ℓ > 1 then
// Fetch new index from bank B

4 τ ← the type of iℓ−1

5 s← number of indices among iℓ0 , iℓ0+1, . . . , iℓ−1 that are type τ
6 i′ℓ−1 ← the s-th smallest element of B that has type τ

7 if i′ℓ−1 is defined then
8 Mℓ ← the matrix obtained from Mℓ−1 by replacing all copies of row Giℓ−1

with Gi′ℓ−1

9 if Mℓ not yet defined then
// Refresh bank B

10 B ← ∅
11 for τ = 1, . . . , 2t do
12 B ← B ∪ {largest ⌊r/2t⌋ indices of type τ in [n] \ {i1, . . . , iℓ−1}} (if there are less than

⌊r/2t⌋ indices of type τ , then B contains all such indices)

13 Mℓ ← lexicographically smallest nonsingular (t−1)k× (t−1)k submatrix of RIM
B∪{i1,...,iℓ−1}
H,G

14 ℓ0 ← ℓ // new refresh index

15

16 return M1, . . . ,Mj

We highlight that our probability bound here is better than the one in Lemma 3.1 for Reed–Solomon
codes. This is because (i) all indeterminates in our generator matrix (and thus, the reduced intersection
matrix) appear with degree 1 (rather than degree up to k − 1), and (ii) our indeterminates are assigned
independently uniformly at random, rather than random distinct values. Thus, the probability of any
particular square submatrix matrix being made singular with an assignment is at most t−1

q , rather than
(t−1)k
q−n : item (i) improves the numerator from (t− 1)k to t− 1, and item (ii) improves the denominator from

q − n to q. This improved probability bound means we can use a smaller alphabet size for random linear
codes than for Reed–Solomon codes. Other than this difference, the rest of our proof follows analogously.
We include some more details for completeness.

We start with the same setup in Section 3.2, defining types in the same way, and starting with a (k+εn)-
weakly-partition-connected hypergraph H that we assume without loss of generality is type-ordered. We
again fix

r
def
=
⌊εn
2

⌋
(17)

To prove Lemma 4.6, we similarly find a certificate (i1, . . . , ir) for each singular reduced intersection ma-
trix. This certificate is generated by an analogous algorithm, GetCertificateRLC, which uses an analogous
helper function GetMatrixSequenceRLC. We show this certificate has the same three properties

1. A bad generator matrix, namely a generator matrix for which the reduced intersection matrix is not
full column rank, must yield a certificate.

2. There are few possible certificates

3. The probability that a random generator matrix yields a particular certificate is small.

We generate the certificate in a similar way. This time, instead of sequentially revealing the evaluation
points, we sequentially reveal rows of the generator matrix, and i1 indicates.

18

Algorithm 4: GetCertificateRLC

Input: Generator matrix entries α1,1, . . . , αn,k ∈ Fq.
Output: A “certificate” (i1, . . . , ir) ∈ [n]r.

1 for j = 1, . . . , r do
// M1, . . . ,Mj−1 stay the same, Mj is now defined

2 M1, . . . ,Mj = GetMatrixSequenceRLC(i1, . . . , ij−1)
3 ij ← smallest index i such that Mj(X[i]×[k] = α[i]×[k]) is singular
4 if ij not defined then
5 return ⊥

6 return (i1, . . . , ir)

The first item is captured in the following Lemma.

Lemma 4.7 (Bad generator matrix admits certificate, Analogous to Lemma 3.8). If α1,1, . . . , αn,k ∈ Fq

are entries for the generator matrix such that RIMH,G(X[n]×[k] = α[n]×[k]) does not have full column rank,
GetCertificateRLC(α1,1, . . . , αn,k) returns a certificate (i1, . . . , ir) ∈ [n]r (rather than ⊥).

Proof. Analogous to the proof of Lemma 3.8.

Just as for Reed–Solomon codes, we obtain the same bound on the number of possible certificates.

Lemma 4.8 (Certificate count, Analogous to Corollary 3.10). The number of possible outputs to GetCertificateRLC
is at most

(
n
r

)
2tr.

Proof. Analogous to the proof of Corollary 3.10.

Lastly, we obtain an upper bound on the probability of obtaining a particular certificate.

Lemma 4.9 (Probability of one certficiate, Analogous to Corollary 3.12). For any sequence i1, . . . , ir ∈ [n],
over independent uniformly random α1,1, . . . , αn,k, we have

Pr [GetCertificateRLC(α1,1, . . . , αn,k) = (i1, . . . , ir)] ≤
(
t− 1

q

)r

. (18)

Lemma 4.9 is slightly different from the analogous result for Reed–Solomon codes, Corollary 3.12, so we
provide a little more justification here. Similar to Corollary 3.12, Lemma 4.9 follows from a lemma analogous
to Lemma 3.11.

Lemma 4.10 (Analogous to Lemma 3.11). Let i1, . . . , ir ∈ [n] be pairwise distinct indices, and M1, . . . ,Mr

be (t−1)k×(t−1)k submatrices of RIMH,G. Over random generator matrix entries α1,1, . . . αn,k ∈ Fq, define
the following events for j = 1, . . . , r:

• Ej is the event that Mj(X[i]×[k] = α[i]×[k]) is non-singular for all i < ij.

• Fj is the event that Mj(X[ij]×[k] = α[ij]×[k]) is singular.

The probability that all the events hold is at most (t−1
q)r.

Proof of Lemma 4.10. The proof is similar to the proof of Lemma 3.11. Lemma 3.11 follows from combining
Eqaution (12) with the appropriate conditional probabilities. This lemma follows the same approach. We
again assume without loss of generality i1 < i2 < · · · , ir.

Here, we want, analogous to Equation (12), for all α[ij−1]×[k] such that E1 ∧F1 ∧ · · · ∧Ej−1 ∧Fj−1 ∧Ej ,

Pr
α{ij}×[k]

[
Fj |α[ij−1]×[k]

]
≤ t− 1

q
. (19)

19

To see (19), consider the determinant of Mj(X[ij−1]×[k] = α[ij−1]×[k]), a (t − 1)k × (t − 1)k matrix in
Fq(X{ij ,ij+1,...,n}×[k]). View the determinant of Mj(X[ij−1]×[k] = α[ij−1]×[k]) as a polynomial in variables
X{ij+1,...,n}×[k] with coefficients in Fq[Xij ,1, . . . , Xij ,k]. It is nonzero because we assume Ej holds, so there
is some coefficient of the form f(Xij ,1, . . . , Xij ,k) that is nonzero. Since matrix Mj has at most t − 1 rows
containing any variables among Xij ,1, . . . , Xij ,k, each appearing with total degree 1, the total degree of
Xij ,1, . . . , Xij ,k in the determinant of Mj is at most t− 1. Thus, the total degree of f(Xij ,1, . . . , Xij ,k) is at
most t− 1. Hence, by the Schwarz-Zippel lemma, f becomes zero with probability at most t−1

q over random

αij ,1, . . . , αij ,k. Thus, the probability that Fj holds is at most t−1
q , giving (19).

Combining conditional probabilities as in Lemma 3.11 gives the result.

Proof of Theorem 1.3. By Lemma 2.3, if our random linear code generated by G is not
(

L
L+1 (1−R− ε), L

)
average-radius list-decodable, then there exists a vector y and codewords c(1), . . . , c(t) with t ≥ 2 such that
the agreement hypergraph H = ([t], E) is (R + ε)n = (k + εn)-weakly-partition-connected. By Lemma 4.2,
the matrix RIMH,G(X[n]×[k] = α[n]×[k]) is not full column rank. Now, the number of possible agreement hy-

pergraphs H is at most
∑L+1

t=2 2tn ≤ 2(L+2)n. Thus by the union bound over possible agreement hypergraphs
H with Lemma 4.6, we have, for r = ⌊ εn2 ⌋,

Pr
α[n]×[k]

[
Code generated by G|X[n]×[k]=α[n]×[k]

not

(
L

L+ 1
(1−R− ε), L

)
list-decodable

]
≤ Pr

α[n]×[k]

[
∃ (k + εn)-w.p.c. agreement hypergraph H such that RIMH,G(X[n]×[k] = α[n]×[k]) not full column rank

]
≤ 2(L+2)n max

(k + εn)-w.p.c. H
Pr

α[n]×[k]

[
RIMH,G(X[n]×[k] = α[n]×[k]) not full column rank

]
≤ 2(L+2)n ·

(
n

r

)
2(L+1)r

(
L

q

)r

≤
(
2(L+2)n/r · en

r
· 2L+1 · L

q

)r

≤ 2−Ln, (20)

as desired. Here, we used that q = 210L/ε.

4.4 Technical comparison with [GZ23]

To prove that random linear codes achieved list-decoding capacity (Theorem 1.3), we extended the framework
for showing that (randomly punctured) Reed–Solomon codes achieve list-decoding capacity over linear-sized
fields (Theorem 1.1). It is possible to instead use the framework of Guo and Zhang [GZ23] to show a similar
result. However, using the framework of Guo and Zhang in the same way would have only worked for
alphabet size that is linear in n, rather than, in our case, a near-optimal constant. Below, we explain why
our new ideas were necessary for obtaining our near-optimal alphabet size.

In (20), our upper bound on the non-list-decodability probability is

2(L+2)n ·
(
n

r

)
2(L+1)r ·

(
L

q

)r

, (21)

where r = εn/2, where ε > 0 is roughly the gap to capacity. Here, the term 2(L+2)n comes from a union
bound over the number of possible hypergraphs, the term

(
n
r

)
2(L+1)r comes from a union bound over the

number of possible certificates, and the term
(

L
q

)r
bounds the probability of a single certificate. We saw

above that this probability is o(1) as long as q ≥ 210L/ε.

If we applied the framework of [GZ23] to random linear codes, the number of possible certificates would
instead be nr. Our bound on the non-list-decodability probability would then be

2(L+2)n · nr ·
(
L

q

)r

. (22)

For this to bound to be o(1), we need to take q ≥ 2L/ε · n, giving an alphabet size of O(n). This would still
have been a new result, as, previously, the Reed–Solomon codes of [GZ23] gave the smallest known alphabet
size (O(n2)) of any linear code achieving list-decoding capacity with optimal list size O(1/ε). However, using
our framework allows us to achieve a near-optimal constant list size of 2O(L/ε).

20

Acknowledgements

We thank Mary Wootters and Francisco Pernice for helpful discussions about [BGM23] and the hypergraph
perspective of the list-decoding problem. We thank Karthik Chandrasekaran for helpful discussions about hy-
pergraph connectivity notions and for the reference of Theorem A.3 in [Fra11]. We thank Nikhil Shagrithaya
and Jonathan Mosheiff for pointing out a mistake in the proof of Lemma 4.3 in an earlier version of the
paper.

References

[BDG22] Joshua Brakensiek, Manik Dhar, and Sivakanth Gopi. Improved field size bounds for higher
order mds codes. arXiv preprint arXiv:2212.11262, 2022.

[BGM22] Joshua Brakensiek, Sivakanth Gopi, and Visu Makam. Lower bounds for maximally recover-
able tensor codes and higher order mds codes. IEEE Transactions on Information Theory,
68(11):7125–7140, 2022.

[BGM23] Joshua Brakensiek, Sivakanth Gopi, and Visu Makam. Generic reed-solomon codes achieve
list-decoding capacity. In STOC 2023, page to appear, 2023.

[BKR10] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace polynomials and
limits to list decoding of Reed-Solomon codes. IEEE Trans. Inform. Theory, 56(1):113–120,
Jan 2010.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

[CPS99] Jin-Yi Cai, Aduri Pavan, and D Sivakumar. On the hardness of permanent. In Annual Sympo-
sium on Theoretical Aspects of Computer Science, pages 90–99. Springer, 1999.

[CW07] Qi Cheng and Daqing Wan. On the list and bounded distance decodability of Reed-Solomon
codes. SIAM J. Comput., 37(1):195–209, April 2007.

[CX18] Chandra Chekuri and Chao Xu. Minimum cuts and sparsification in hypergraphs. SIAM
Journal on Computing, 47(6):2118–2156, 2018.

[DSY14] Son Hoang Dau, Wentu Song, and Chau Yuen. On the existence of mds codes over small fields
with constrained generator matrices. In 2014 IEEE International Symposium on Information
Theory, pages 1787–1791. IEEE, 2014.

[DSY15] Son Hoang Dau, Wentu Song, and Chau Yuen. On simple multiple access networks. IEEE
Journal on Selected Areas in Communications, 33(2):236–249, 2015.

[Eli57] Peter Elias. List decoding for noisy channels. Wescon Convention Record, Part 2, Institute of
Radio Engineers, pages 99–104, 1957.

[Eli91] Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Information Theory,
37(1):5–12, 1991.

[FGKP06] Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New
results for learning noisy parities and halfspaces. In 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06), pages 563–574. IEEE, 2006.

[FK09] András Frank and Tamás Király. A survey on covering supermodular functions. Research
Trends in Combinatorial Optimization: Bonn 2008, pages 87–126, 2009.

[FKK03a] András Frank, Tamás Király, and Zoltán Király. On the orientation of graphs and hypergraphs.
Discrete Applied Mathematics, 131(2):385–400, 2003.

21

[FKK03b] András Frank, Tamás Király, and Matthias Kriesell. On decomposing a hypergraph into k
connected sub-hypergraphs. Discrete Applied Mathematics, 131(2):373–383, 2003.

[FKS22] Asaf Ferber, Matthew Kwan, and Lisa Sauermann. List-decodability with large radius for
reed-solomon codes. IEEE Transactions on Information Theory, 68(6):3823–3828, 2022.

[Fra11] András Frank. Connections in combinatorial optimization, volume 38. Oxford University Press
Oxford, 2011.

[GHK11] Venkatesan Guruswami, Johan H̊astad, and Swastik Kopparty. On the list-decodability of
random linear codes. IEEE Trans. Inform. Theory, 57(2):718–725, Feb 2011.

[GHSZ02] Venkatesan Guruswami, Johan H̊astad, Madhu Sudan, and David Zuckerman. Combinatorial
bounds for list decoding. IEEE Trans. Inform. Theory, 48(5):1021–1034, May 2002.

[GI01] Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently decodable
codes. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages
658–667. IEEE, 2001.

[GLM+21] Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary
Wootters. Bounds for list-decoding and list-recovery of random linear codes. IEEE Transactions
on Information Theory, 68(2):923–939, 2021.

[GLS+22] Zeyu Guo, Ray Li, Chong Shangguan, Itzhak Tamo, and Mary Wootters. Improved list-
decodability and list-recoverability of reed-solomon codes via tree packings. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 708–719. IEEE,
2022.

[GM22] Venkatesan Guruswami and Jonathan Mosheiff. Punctured low-bias codes behave like random
linear codes. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 36–45. IEEE, 2022.

[GR06] Venkatesan Guruswami and Atri Rudra. Limits to list decoding Reed–Solomon codes. IEEE
Trans. Inform. Theory, 52(8):3642–3649, August 2006.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–150,
2008.

[GRS22] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft available
at https: // cse. buffalo. edu/ faculty/ atri/ courses/ coding-theory/ book/ , 2022.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed–Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[GST22] Eitan Goldberg, Chong Shangguan, and Itzhak Tamo. Singleton-type bounds for list-decoding
and list-recovery, and related results. In 2022 IEEE International Symposium on Information
Theory (ISIT), pages 2565–2570. IEEE, 2022.

[GV10] Venkatesan Guruswami and Salil Vadhan. A lower bound on list size for list decoding. IEEE
Transactions on Information Theory, 56(11):5681–5688, 2010.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of reed–
solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013.

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding reed-solomon, algebraic-geometric,
and gabidulin subcodes up to the singleton bound. In Proceedings of the forty-fifth annual ACM
symposium on Theory of computing, pages 843–852, 2013.

22

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/

[GZ23] Zeyu Guo and Zihan Zhang. Randomly punctured reed-solomon codes achieve the list decoding
capacity over polynomial-size alphabets. arXiv preprint arXiv:2304.01403, 2023.

[HW18] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander codes.
Information and Computation, 261:202–218, 2018.

[JMS03] Kamal Jain, Mohammad Mahdian, and Mohammad R Salavatipour. Packing steiner trees. In
SODA, volume 3, pages 266–274, 2003.

[Joh62] Selmer Johnson. A new upper bound for error-correcting codes. IRE Transactions on Infor-
mation Theory, 8(3):203–207, 1962.

[Kir03] Tamás Király. Edge-connectivity of undirected and directed hypergraphs. PhD thesis, Eötvös
Loránd University, 2003.

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(1):149–182, 2015.

[KRZSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf Saraf, and Mary Wootters. Improved
decoding of folded Reed-Solomon and multiplicity codes. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pages 212–223. IEEE, 2018.

[Lov18] Shachar Lovett. Mds matrices over small fields: A proof of the gm-mds conjecture. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 194–199.
IEEE, 2018.

[LP20] Ben Lund and Aditya Potukuchi. On the list recoverability of randomly punctured codes. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020), volume 176, pages 30:1–30:11, 2020.

[LW20] Ray Li and Mary Wootters. Improved list-decodability of random linear binary codes. IEEE
Transactions on Information Theory, 67(3):1522–1536, 2020.

[MRRZ+20] Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and Mary Wootters. Ldpc
codes achieve list decoding capacity. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 458–469. IEEE, 2020.

[NW61] Crispin St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the
London Mathematical Society, 1(1):445–450, 1961.

[PP23] Aaron Putterman and Edward Pyne. Pseudorandom linear codes are list decodable to capacity.
arXiv preprint arXiv:2303.17554, 2023.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM (JACM), 56(6):1–40, 2009.

[Rot22] Ron M Roth. Higher-order mds codes. IEEE Transactions on Information Theory, 68(12):7798–
7816, 2022.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[RW14] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has abundant near-
optimal rate puncturings. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 764–773. ACM, 2014.

[RW18] Atri Rudra and Mary Wootters. Average-radius list-recoverability of random linear codes. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
644–662. SIAM, 2018.

[Sin64] Richard Singleton. Maximum distance q-nary codes. IEEE Trans. Inform. Theory, 10(2):116–
118, April 1964.

23

[ST20] Chong Shangguan and Itzhak Tamo. Combinatorial list-decoding of Reed-Solomon codes be-
yond the Johnson radius. In Proceedings of the 52nd Annual ACM Symposium on Theory of
Computing, STOC 2020, pages 538–551, 2020.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the xor
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[Tut61] William T. Tutte. On the problem of decomposing a graph into n connected factors. Journal
of the London Mathematical Society, 1(1):221–230, 1961.

[Woo13] Mary Wootters. On the list decodability of random linear codes with large error rates. In
Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13,
pages 853–860, New York, NY, USA, 2013. ACM.

[Woz58] John M. Wozencraft. List decoding. Quarterly Progress Report, Research Laboratory of Elec-
tronics, MIT, 48:90–95, 1958.

[YH19] Hikmet Yildiz and Babak Hassibi. Optimum linear codes with support-constrained generator
matrices over small fields. IEEE Transactions on Information Theory, 65(12):7868–7875, 2019.

[ZP81] Victor Vasilievich Zyablov and Mark Semenovich Pinsker. List concatenated decoding. Problemy
Peredachi Informatsii, 17(4):29–33, 1981.

A Alternate presentation of [BGM23]

Here, we include alternate presentations of some ideas from [BGM23]. Algebraically, our presentation is the
same, but the hypergraph perspective streamlines combinatorial aspects of their ideas.

A.1 Preliminaries

Dual of Reed–Solomon codes. It is well known that the dual of a Reed–Solomon code is a generalized
Reed–Solomon code: Given positive integers k ≤ n and evaluation points α1, . . . , αn ∈ Fq, there exists
nonzero β1, . . . , βn ∈ Fq such that the following matrix, called the parity-check matrix,

H =


β1 β2 · · · βn

β1α1 β2α2 · · · βnαn

...
...

...

β1α
n−k−1
1 β2α

n−k−1
2 · · · βnα

n−k−1
n

 (23)

satisfies Hc = 0n−k if and only if c ∈ RSn,k(α1, . . . , αn).

Generic Zero Patterns. Following [BGM23], we leverage the GM-MDS theorem to establish list-decodability
of Reed–Solomon codes. In this work, we more directly connect the list-decoding problem to the GM-MDS
theorem using a hypergraph orientation lemma (introduced in the next section). Here, we review generic
zero-patterns and the GM-MDS theorem. To keep the meaning of the variable “k” consistent throughout
the paper, we unconventionally state the definition of zero patterns and the GM-MDS theorem with n − k
rows instead of k rows.

Definition A.1. Given positive integers k ≤ n, an (n, n − k)-generic-zero-pattern (GZP) is a collection of
sets S1, . . . , Sn−k ⊂ [n] such that, for all K ⊆ [n− k],∣∣∣∣∣ ⋂

ℓ∈K

Sℓ

∣∣∣∣∣ ≤ n− k − |K|. (24)

24

GM-MDS Theorem. As in [BGM23], we connect the list-decoding problem to the GM-MDS theorem.
Here, we make the connection more directly.

Theorem A.2 (GM-MDS Theorem [DSY14, Lov18, YH19]). Given q ≥ 2n − k − 1 and any generic zero-
pattern S1, . . . , Sn−k ⊂ [n], there exists pairwise distinct evaluation points α1, . . . , αn ∈ Fq and an invertible

matrix M ∈ F(n−k)×(n−k)
q such that, if H is the parity-check matrix for RSn,k(α1, . . . , αn) (as in (23)), then

MH achieves zero-pattern S1, . . . , Sn−k, meaning that (MH)ℓ,i = 0 whenever i ∈ Sℓ.

We note that the original GM-MDS theorem shows that the generator matrix of a (non-generalized) Reed
Solomon code achieves any generic zero pattern. Here, we state that the generator matrix of a generalized
Reed–Solomon code achieves any generic zero pattern, which is an immediate corollary of the former result.

A.2 Hypergraph orientations

Our new perspective of the tools from [BGM23] leverages a well-known theorem about orienting weakly-
partition-connected hypergraphs, stated below. This theorem is most explicitly stated in [Fra11], but it
implicit in [Kir03, FKK03a].

A directed hyperedge is a hyperedge with one vertex assigned as the head. All the other vertices in the
hyperedge are called tails. A directed hypergraph consists of directed hyperedges. In a directed hypergraph,
the in-degree of a vertex v is the number of edges for which v is the head. A path in a directed hypergraph is
a sequence v1, e1, v2, e2, . . . , vs−1, es−1, vs such that for all ℓ = 1, . . . , s− 1, vertex vℓ is a tail of edge eℓ and
vertex vℓ+1 is the head of edge eℓ. An orientation of an (undirected) hypergraph is obtained by assigning a
head to each hyperedge, making every hyperedge directed.

Theorem A.3 (Theorems 9.4.13 and 15.4.4 of [Fra11]). A hypergraph H is k-weakly-partition-connected
if and only if it has an orientation such that, for some vertex v (the “root”), every other vertex u has k
edge-disjoint paths to v.9

We note that Theorem A.3 is remains true if “to v” is replaced with “from v” and k-weakly-partition-
connected is replaced with another hypergraph notion called k-partition-connected. The following corollary
essentially captures (the hard direction of) [BGM23, Lemma 2.8].

Corollary A.4. Let H = ([t], E) be a k-weakly-partition-connected hypergraph with n hyperedges and t ≥ 2.

Then there exists integers δ1, . . . , δt ≥ 0 summing to n− k such that taking δj copies of Sj
def
= {i ∈ [n] : j /∈

ei} ⊂ [n] gives an (n, n− k)-GZP.

Proof. Take the orientation of H and root vertex v ∈ [t] given by Theorem A.3. We now take our δj ’s as

follows: for each non-root j ∈ [t], let δj
def
= degin(j) to be the in-degree of vertex j. For the root v, let

δv
def
= degin(v) − k. Note that δv ≥ 0 as H has another vertex u with k edge-disjoint paths to v. Since

there are n hyperedges, the sum of all δj ’s is thus n − k. We now check the generic zero pattern condition
(24). Consider any nonempty multiset K ⊂ [t] such that each vertex j ∈ [t] appears at most δj times. First,
observe that |K| ≤

∑
j∈K δj by definition of K. Now, we have two cases:

Case 1: K does not contain the root. Then we claim:∣∣∣∣∣ ⋂
ℓ∈K

Sℓ

∣∣∣∣∣ ≤ ∑
j∈[t]\K

δj = n− k −
∑
j∈K

δj ≤ n− k − |K|. (25)

The left side is exactly the number of hyperedges induced by the vertices [t] \K, which is at most the sum
of the indegrees of [t] \K which is exactly

∑
j∈[t]\K δj .

Case 2: K contains the root. Then we claim:∣∣∣∣∣ ⋂
ℓ∈K

Sℓ

∣∣∣∣∣ ≤ −k +
∑

j∈[t]\K

δj = −k +

(
n− k −

(∑
i∈K

δi − k

))
≤ n− k − |K|. (26)

9In [Fra11, Theorems 9.4.13 and 15.4.4], the property of having k edge-disjoint paths to v is called (0, k)-edge-connected.

25

The left side is exactly the number of hyperedges induced by the vertices [t] \K. Fix an arbitrary vertex u
in K. By our orientation, u has k edge-disjoint paths to v. These paths have k distinct edges that “enter”
[t] \K, i.e., their head is in [t] \K but they are not induced by [t] \K. Thus, the number of edges induced
by [t] \K is at most (

∑
i∈[t]\K δi)− k. Hence, we have the first inequality. This completes the proof.

A.3 Proof of Theorem 2.10

In this section, we reprove Theorem 2.10, which we need in this work.

Proof of Theorem 2.10. It suffices to prove that RIMH has full column rank for some evaluation of X1 =
α1, . . . , Xn = αn for α1, . . . , αn ∈ Fq. Furthermore, by Remark 2.11, it also suffices to prove Theorem 2.10
for when q ≥ 2n−k−1. Indeed, that would then show there that is a square (t−1)k× (t−1)k submatrix of
RIMH(X[n] = α[n]) of full column rank, which means that submatrix has nonzero determinant (in Fq), which
means the corresponding square submatrix of RIMH also has a nonzero determinant (in Fq(X1, . . . , Xn)), so
RIMH has full column rank.

Let e1, . . . , en be the edges of our k-weakly-partition-connected hypergraph H. By Corollary A.4, there
a generic zero pattern S1, . . . , Sn−k where, for all ℓ = 1, . . . , n− k, the set Sℓ is {i : j /∈ ei} for some j ∈ [t].

By Theorem A.2, there exists pairwise distinct α1, . . . , αn ∈ Fq and a nonsingular matrix M ∈ F(n−k)×(n−k)
q

such that, for H ∈ F(n−k)×n
q the parity check matrix of RSn,k(α1, . . . , αn), the matrix M · H ∈ F(n−k)×n

q

achieves the zero pattern S1, . . . , Sn−k, meaning that (MH)ℓ,i = 0 whenever i ∈ Sℓ.

Suppose for the sake of contradiction there is a nonzero vector v ∈ F(t−1)k
q such that RIMH(X[n] = α[n]) ·

v = 0. Let f (1), . . . , f (t) ∈ Fk
q be such that v = [f (1), f (2), . . . , f (t−1)] and f (t) = 0. Define c(1), . . . , c(t) ∈ Fn

q

be such that c(i) = G · f (i) where

G
def
=


1 α1 · · · αk−1

1

1 α2 · · · αk−1
2

...
...

...
1 αn · · · αk−1

n

 (27)

We next show that, for any i = 1, . . . , n, c
(j)
i = c

(j′)
i for all j, j′ ∈ ei. Let ei = j1, . . . , j|ei|. Since RIMH(X[n] =

α[n]) · v = 0, we have, by definition of RIMH, for u = 2, . . . , |ei|,

c
(j1)
i − c

(ju)
i = [1, αi, . . . , α

k−1
i] · (f (j1) − f (ju))T = 0. (28)

(note this is true even if ju = t, since f (t) = 0).

Define a vector y ∈ Fn
q such that, for i = 1, . . . , n, we have yi = c

(j)
i , where j is an arbitrary element of

hyperedge ei (by the previous paragraph, the choice of j does not matter). For each j = 1, . . . , t, we must
have (MH · (y − c(j)))ℓ = 0 for all ℓ ∈ [n − k] such that Sℓ is a copy of {i ∈ [n] : j /∈ ei}; the ℓ’th row of
MH is supported only on {i ∈ [n] : j ∈ ei}, and y − c(j) is zero on {i ∈ [n] : j ∈ ei} by definition of y.
Since MHc(j) = M · (Hc(j)) = 0 for all j = 1, . . . , t, we have, for all j and all ℓ such that Sℓ is a copy of
{i ∈ [n] : j /∈ ei},

(MHy)ℓ = (MH · (y − c(j)))ℓ = 0. (29)

By construction, all Sℓ are a copy of some set {i : j /∈ ei}, so we conclude MHy = 0. Since M is invertible,
we must have Hy = 0.

This means y = G · f for some f ∈ Fk
q , so y is the evaluation of a degree-less-than-k polynomial. Since H

is k-weakly-partition-connected, by considering the partition {j}⊔ ([t] \ {j}), there are at least k hyperedges

ei containing vertex j in H, so yi = c
(j)
i in at least k indices i. Since y and c(j) are the evaluation of degree-

less-than-k polynomials, we must have y = c(j). This holds for all j, so we have y = c(1) = · · · = c(t) = 0
(recall f (t) = 0), which contradicts our initial assumption that v ̸= 0.

26

B Alphabet size limitations

In this section, we establish Proposition 1.5. For positive integers m, view F2m as a vector space of dimension
m over base field F2. For a set S ⊂ F2m , let

PS(X)
def
=
∏
α∈S

(X − α). (30)

An affine subspace is a set L+ α = {α+ β : β ∈ L} for some subspace L of F2m .

Lemma B.1 (Proposition 3.2 of [BKR10]). Let L be a subspace of F2m . Then PL has the form

X2dimL

+

dimL−1∑
i=0

αiX
2i . (31)

where αi ∈ F2m

As an immediate corollary, we have

Lemma B.2. Let L be an affine subspace of F2m . Then PL has the form

X2dimL

+

dimL−1∑
i=0

αiX
2i + β (32)

for αi, β ∈ F2m .

Proof. Since L is an affine subspace, there exists γ such that L− γ
def
= {α− γ : α ∈ L} is a subspace of F2m .

By Lemma B.1, we have PL−γ is of the form

X2dimL

+

dimL−1∑
i=0

αiX
2i (33)

for αi ∈ F2m . In particular, PL−γ is F2-linear, so

PL(X) = PL−γ(X + γ) = PL−γ(X) + PL−γ(γ). (34)

Setting β = PL−γ(γ) gives the desired form for PL(X).

Lemma B.3 (Analogous to Lemma 3.5 of [BKR10]). Let S be a subset of F2m of size n. Let u and v

be integers such that 0 ≤ u ≤ v ≤ m. Then there is a family L of at least 2(u+1)m−v2

affine subspaces
of dimension v, such that each affine subspace L ∈ L satisfies |L ∩ S| ≥ n/2m−v, and for any two affine
subspaces L,L′ ∈ L, the difference PL − PL′ has degree at most 2u.

Proof. For every subspace L of dimension v, there exists β0, . . . , β2m−v such that the affine subspaces L+ βi

partition F2m . By pigeonhole, there exists some βi such that |(L + βi) ∩ S| ≥ |S|/2m−v = n/2m−v The
number of subspaces of dimension v is

(2m − 1)(2m − 2) · · · (2m − 2v−1)

(2v − 1)(2v − 2) · · · (2v − 2v−1)
≥ 2v(m−v), (35)

so there are at least 2v(m−v) affine-subspaces L with |L ∩ S| ≥ n/2m−v. For all such affine-subspaces L, the

polynomial PL(X) has the form X2v +
∑v−1

i=0 αiX
2i +β by Lemma B.2. Among these affine-subspaces L, by

the pigeonhole principle, for at least a fraction 2−m(v−u−1) of these subspaces, their subspace polynomials
PL(X) have the same αi for i = u + 1, u + 2, . . . , v. Let L be this family of subspaces. The number of

subspaces is at least 2v(m−v) × 2−m(v−u−1) = 2(u+1)m−v2

, so L is the desired family of affine subspaces.

27

Proof of Proposition 1.5. Let δ = 2−r−1 as in the statement of Proposition 1.5. Consider a Reed–Solomon
code of length n and rate δ over Fq, where q = 2m with m sufficiently large. Let S ⊂ Fq be the set of
n evaluation points. Apple Lemma B.3 with u = m − ⌈1.99r⌉ and v = m − r. This gives a family L
of 2m(m−⌈1.99r⌉)−(m−r)2 = 22rm−⌈1.99r⌉m+r2 ≥ qΩ(log(1/δ)) affine subspaces L ≤ F2m for which |L ∩ S| ≥
n/2m−v = 2δn. Furthermore, for L ∈ L, the subspace polynomials PL each have 2v roots, and agree
on all coefficients of degree larger than 2u. Let L0 be an arbitrary element of L. Then the polynomials
{PL0 − PL : L ∈ L} are each of degree at most 2u = 2−⌈1.99r⌉q ≤ 4δ1.99q ≤ δn, and each agree with PL0(X)
on at least |L ∩ S| ≥ 2δn values of S. Thus, our Reed–Solomon code is not (1− 2δ, nΩ(1/δ))-list-decodable,
as desired.

28

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

