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Abstract

A simple, recently observed generalization of the classical Singleton bound to list-decoding
asserts that rate R codes are not list-decodable using list-size L beyond an error fraction L

L+1 (1−
R) (the Singleton bound being the case of L = 1, i.e., unique decoding). We prove that in order
to approach this bound for any fixed L > 1, one needs exponential alphabets. Specifically,
for every L > 1 and R ∈ (0, 1), if a rate R code can be list-of-L decoded up to error fraction
L

L+1 (1−R−ε), then its alphabet must have size at least exp(ΩL,R(1/ε)). This is in sharp contrast
to the situation for unique decoding where certain families of rate R algebraic-geometry (AG)
codes over an alphabet of size O(1/ε2) are unique-decodable up to error fraction (1−R− ε)/2.

Our lower bound is tight up to constant factors in the exponent—with high probability ran-
dom codes (or, as shown recently, even random linear codes) over exp(OL(1/ε))-sized alphabets,
can be list-of-L decoded up to error fraction L

L+1 (1−R− ε).

1 Introduction

The Singeton bound [Sin64] states that a code of rate R cannot uniquely correct a fraction of
worst-case errors exceeding 1

2(1 − R). The straightforward generalization of this bound to list
decoding implies that one cannot do list-of-L decoding (where the decoder must output at most L
codewords) beyond an error fraction of L

L+1(1−R). See Figure 1 for an illustration of this bound,
which has been called the generalized Singleton bound [ST20].

Our main result is that approaching the generalized Singleton bound within ε requires an
alphabet size exponential in 1/ε. We say a code C ⊂ Σn is (p, L)-list decodable if for every y ∈ Σn,
there are at most L codewords of C within Hamming distance pn from y. Formally, we prove:

Theorem 1.1. Let L ≥ 2 be a fixed constant and R ∈ (0, 1). There exists an absolute constant
αL,R such that the following holds for all ε > 0 and all sufficiently large n ≥ ΩL,R(1/ε). Let C be a
code of length n with alphabet size q that is ( L

L+1(1−R− ε), L)-list-decodable. Then, q ≥ 2αL,R/ε.
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Figure 1: The generalized Singleton bound, illustrated for L = 2. In any code of rate R, by
pigeonhole, there are three codewords c0, c1, c2 that agree on the first Rn−O(1) coordinates. Then
there is a “list-decoding center” y that differs from each of c0, c1, c2 on at most 2

3(1− R)n+ O(1)
coordinates, so the code is not (23(1−R) + o(1), 2)-list-decodable.

The exponential alphabet size lower bound in Theorem 1.1 is in sharp contrast with the situation
for unique decoding (the L = 1 case), where, for any desired rate R, certain families of algebraic-
geometric (AG) codes over an alphabet of size O(1/ε2) allow unique decoding up to an error fraction
(1−R− ε)/2 with rate R [TVZ82, GS95].

The Plotkin bound [Plo60] implies a lower bound of Ω(1/ε) for such unique decodability,1 and
AG codes come within a quadratic factor of this bound. However, for list decoding with any fixed
list-size L > 1, there is no such AG-like polynomial convergence (as a function of alphabet size) to
the optimal trade-off L

L+1(1−R). In fact, the convergence is exponentially slow.

Remark 1.2. For a code C ⊂ [q]n of rate R, note that a random Hamming ball of radius pn has
in expectation qhq(p)n−o(n)q(R−1)n codewords.2 For C to be (p, L)-list decodable one must therefore
have hq(p) ≤ 1−R+o(1). (This trade-off is the list-decoding capacity for codes of alphabet size q.)
A straightforward computation then implies a lower bound of q ≥ 2ΩR(min(L,1/ε)) on the alphabet
size of a family of ( L

L+1(1 − R − ε), L)-list-decodable codes. For a fixed L, this lower bound does
not scale with ε. In comparison, we get an exponential in 1/ε lower bound for any fixed list size L.

Our work builds on the recent work of Brakensiek, Dhar, and Gopi [BDG22] who proved the
following result for MDS codes that are list-decodable all the way up to the generalized Singleton
bound. Recall that a (linear) MDS code is one whose dimension k, minimum distance d, and block
length n satisfy k + d = n+ 1.

Theorem 1.3 ([BDG22]). Let R ∈ (0, 1). Any linear MDS code that is (23(1−R), 2)-list-decodable

must have alphabet size at least 2ΩR(n).

We present a comparison of our Theorem 1.1 to Theorem 1.3 in Section 3.1. To summarize this
comparison, our result generalizes Theorem 1.3 in four ways: our result (i) applies to general (not
necessarily linear) codes, (ii) incorporates the gap to capacity ε (iii) removes the MDS assumption
(or more generally any assumption on the code distance), and (iv) generalizes to larger L. In
essence, our proof distills the proof of Theorem 1.3 to its combinatorial core, and then adds new
ideas to enable these generalizations.

1The Plotkin bound is typically stated as follows: a code with relative distance at least q−1
q

has size O(n). This
alphabet dependent version follows by, in a rate R code, pigeonholing to find O(n) codewords agreeing on the first
roughly Rn coordinates, and finding (by the Plotkin bound) two codewords that additionally agree on 1

q
fraction of

the remaining coordinates, so that we need q ≥ Ω(1/ε).
2Here, hq(x) := x logq(q − 1)− x logq x− (1− x) logq(1− x) is the q-ary entropy function.
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One can show that an exponential in 1/ε alphabet size suffices to approach the generalized
Singleton bound within ε. The argument is a simple random coding argument with alterations
(see, e.g., [AS16, Chapter 3]), which we present for completeness in Appendix A.1.

Proposition 1.4. Let L ≥ 1 be a fixed constant, let R ∈ (0, 1), and let ε ∈ (0, 1). There exists a
code C over an alphabet size q ≤ 2O(1/ε) that is ( L

L+1(1−R− ε), L)-list-decodable.

Thus the lower bound in Theorem 1.1 is tight up to the constant factor αL,R in the exponent
(which we did not try to optimize). This is perhaps surprising, because Proposition 1.4 considers the
natural random construction, which does not give near-optimal alphabet size for unique decoding
(L = 1). In fact, for unique decoding, the alphabet size exponentially far from optimal: 2O(1/ε)

compared to the optimal poly(1/ε) achieved by AG codes.

We also point out that, as a consequence of recent work [AGL23] on randomly punctured codes
(building on [GZ23]), Proposition 1.4 can be achieved not just with random codes (with alterations),
but also with random linear codes. [AGL23] shows that, for all L ≥ 2 and R, ε ∈ (0, 1), random
linear codes over alphabet size 210L/ε are with high probability ( L

L+1(1−R− ε), L)-list-decodable.

2 Preliminaries

We use standard Landau notation O(·),Ω(·),Θ(·). We use the notations Ox(·),Ωx(·),Θx(·) to mean
that a multiplicative factor depending on the variable(s) x is suppressed. All logs are base-2 unless
otherwise specified. For integers L, let [L] denote the set {1, . . . , L}. Let h(x) := −x log x − (1 −
x) log(1 − x) denote the binary entropy function. Let

(
n
≤r

)
:=
∑r

i=0

(
n
i

)
. We have the binomial

approximation

2h(α)n−o(n)poly n ≤
(

n

αn

)
≤
(

n

≤ αn

)
≤ 2h(α)n

We also use the Chernoff bound for binomials

Pr[Binomial(α,m) > (1 + δ)αm] ≤ e−
δ2

2+δ
αm. (1)

A code C ⊆ Σn is simply a collection of words of equal length over a fixed alphabet Σ. The

dimension of a code C is defined to be k(C) := log|Σ| |C| and the rate is R(C) := k(C)
n =

log|Σ| |C|
n .

The distance of a code C is defined to be d(C) := minc1 ̸=c2∈C d(c1, c2), where d(·, ·) denotes the
Hamming distance between two words. We say a code of length n and dimension k is Maximum
Distance Separable (MDS) if it has minimum distance n− k + 1.

For a string c ∈ Σn and a set A ⊂ [n], we let c|A ∈ Σ|A| denote the string c restricted to the
indices in A.

To highlight the main ideas in Section 3, we prove special cases of Theorem 1.1 for average-
radius-list-decoding : a code C ⊂ [q]n is (p, L)-average-radius-list-decodable if, for any distinct
L + 1 codewords c(1), . . . , c(L+1) and any vector y ∈ [q]n, the average Hamming distance from
c(1), . . . , c(L+1) to y is strictly greater than pn. We observe that average-radius-list-decoding is
a strengthening of (ordinary) list-decoding: any (p, L)-average-radius-list-decodable code is also
(p, L)-list-decodable.
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3 Technical overview

We now introduce the ideas of our main result, Theorem 1.1. Our main result generalizes Theo-
rem 1.3 in four ways, which we outline in Section 3.1. In Section 3.2, Section 3.3, and Section 3.4,
we give a few warmup proofs that show (or give a taste of) how we achieve these generalizations.
For exposition, we focus our warmup lower bounds on list size L = 2 and for average-radius-list-
decoding. In Section 4, we give the full proof of our main result, Theorem 1.1.

3.1 Comparison to [BDG22]

Our work generalizes Theorem 1.3 in four ways.

1. Removing linearity. The proof of Theorem 1.3 uses that the codes in question have a
“higher order MDS” (MDS(3)) property, which is a specific property of the columns of the
parity-check matrix [Rot22, BGM22]. They then show that a small alphabet size contradicts
the higher order MDS property, and hence the assumption of the code in Theorem 1.3. Higher
order MDS codes can only be defined for linear codes, and furthermore, the proof of [BDG22]
used several aspects of the linearity of the code. Thus, on the surface, it may seem like
Theorem 1.3 could not be generalized to non-linear codes.

We show that the linearity assumption is in fact not necessary. We show that one can avoid
the linear-algebraic aspects of the proof in [BDG22], and that careful applications of the
pigeonhole principle suffice to find a bad list-decoding configuration. In our first warmup
(Section 3.2), we show how to do this (for average-radius-list-decoding).

2. Incorporating gap to capacity. While Theorem 1.3 only proves a lower bound for codes
list-decodable exactly up to the generalized Singleton bound, we prove a lower bound even
when the code has an ε gap to capacity, showing an alphabet size lower bound for codes
approaching list-of-L capacity, for any L. In our second warmup (Section 3.3), we show how
to do this (for average-radius-list-decoding).

3. Removing MDS. In the connection between list-decodable codes and higher order MDS
codes, a code is “MDS(L + 1)” if and only if it exactly achieves the generalized Singleton
bound for all L′ ≤ L [BGM23]. The lower bound in Theorem 1.3 is proved for MDS(3), which
requires Theorem 1.3 to assume our code both (i) meets the generalized Singleton bound for
L = 2 and (ii) is MDS. Using arguments similar to the Johnson-bound we show that one
can get away with a weaker distance assumption than MDS, and by adjusting our pigeonhole
argument, we then can eliminate the assumption entirely. We give a taste of how to do this
in our third warmup by showing how to remove the MDS/distance assumption for average-
radius-list-decoding (Section 3.4) — it is only a taste, as removing the distance assumption
is much easier for average-radius-list-decoding than for ordinary list-decoding.

4. Generalizing to larger L. In contrast to lower bounds for higher order MDS codes, gen-
eralizing the list-decoding lower bounds to larger L is not immediate. [BDG22] proved an
alphabet size lower bound of q ≥ 2ΩR(n) for MDS(3) codes. Since all MDS(3) codes are also
MDS(L) for L ≥ 3, their lower bound q ≥ 2ΩR(n) also held for MDS(L) for all L ≥ 3. How-
ever, while the lower bounds for L = 2 imply lower bounds for larger L in higher order MDS
codes, the same is not true for lower bounds for list-of-L decoding: optimal list-of-L decoding
does not necessarily imply optimal list-of-L′ decoding for L′ > L.
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Generalizing all the above machinery to larger L for average-radius list-decoding follows
almost seamlessly from the warmup arguments. However, the list-decoding case is not as
immediate. It requires new ideas to remove the distance assumption, care to find the bad list-
decoding configuration, and a deliberate balancing of parameters to ensure that all distances
from the codewords to the center are simultaneously below the list-decoding radius.

We now give several warmup proofs which show how to achieve these generalizations. Warmup 1
(Section 3.2) achieves the first generalization (removing linearity), Warmup 2 (Section 3.3) achieves
the second generalization (incorporating gap to capacity), and Warmup 3 (Section 3.4) achieves
the third generalization (removing MDS), all for the easier case of average-radius-list-decoding and
L = 2. The full proof of Theorem 1.1 incorporates all of these ideas simultaneously and additionally
achieves the fourth generalization (all L).

3.2 Warmup 1: A lower bound for exactly optimal list-of-2 decoding

First, we show how to prove a lower bound for all (not-necessarily-linear) codes. In other words,
we generalize Theorem 1.3 to a lower bound for all codes. We state and prove the lower bound for
average-radius-list-decoding, though, as demonstrated by our main result, Theorem 1.1, a similar
lower bound holds for ordinary list-decoding.3

Proposition 3.1. For all R ∈ (0, 1), there exists αR > 0 such that the following holds for suffi-
ciently large n. Any MDS code that is (23(1−R), 2)-average-radius-list-decodable must have alphabet
size q ≥ 2αR·n.

Proof. Fix I0 = {1, 2}. Let F be the collection of all subsets of [n] \ I0 of size k − 1. Clearly
|F| ≥ 2ΩR(n). Thus, it suffices to prove that q2 ≥ |F| /2. Suppose for contradiction that

q2 < |F|/2. (2)

Consider picking a uniformly random codeword c ∈ C. For each A ∈ F , let EA be the event that
another codeword c′ agrees with c on A, i.e., c|A = c′|A. For any A ∈ F , there at most qk−1 possible
values of c|A, and thus at most qk−1 codewords c for which c|A uniquely determines c. Hence,

Pr[¬EA] <
qk−1

qk
=

1

q
. (3)

For each codeword c, define the set Fc := {A ∈ F : EA occurs}. For each A ∈ Fc, we can find, by
definition, a codeword fA(c) ∈ C \ {c} such that fA(c)|A = c|A. By linearity of expectation and
(3), we find that

E [|Fc|] = E

[∑
A∈F

1{EA}

]
>
∑
A∈F

(
1− 1

q

)
≥ |F|

2
.

Hence we can find a codeword c ∈ C for which |Fc| > |F| /2. By pigeonhole and (2), there are 2
distinct sets A1, A2 ∈ Fc such that the codewords fA1(c) and fA2(c) agree on the coordinates I0.
These two codewords fA1(c) and fA2(c) are distinct: if not, then fA1(c) = fA2(c) agrees with c
on at least |A1 ∪A2| ≥ k coordinates, contradicting the assumption that the distance is at least
n− k + 1.

3Our main result, Theorem 1.1, requires ε ≥ Ω(1/n), but for such ε = Θ(1/n), a ( 2
3
(1−R), 2)-list-decodable code

is certainly ( 2
3
(1−R− ε), 2)-list-decodable, so Theorem 1.1 implies q ≥ 2ΩL,R(n).
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Figure 2: The bad average-radius-list-decoding configuration we search for in Proposition 3.2. The
list-decoding center y has distances 4εn, (1−R − 3ε)n, and (1−R − 3ε)n from codewords c0, c1,
and c2 respectively.

Let y be the word which agrees with fA1(c) on I0 (and thus fA2(c) as well), and agrees with c
everywhere else. Word y has total distance at most

|I0|+ |[n] \ (I0 ∪A1)|+ |[n] \ (I0 ∪A2)| = 2 + (n− k − 1) + (n− k − 1) = 2(n− k) (4)

from codewords c, fA1(c), fA2(c), contradicting average-radius-list-decoding. Thus, (5) is false,
which means 2q2 ≥ |F| ≥ 2ΩR(n), and so q ≥ 2ΩR(n).

3.3 Warmup 2: Relaxing by ε

Next, we show how to prove an alphabet size lower bound of 2ΩR(1/ε) (Proposition 3.2), assuming
the code has a gap-to-capacity of ε, for average-radius-list-of-2 decoding. We additionally assume
the code has near-optimal minimum distance, similar to Proposition 3.1 and Theorem 1.3, and then
show how one can remove it in Section 3.4.

The proof of Proposition 3.2 follows nearly the same blueprint as the proof of Proposition 3.1.
The new addition will be increasing the size of I0 to be Ω(εn). That way, the bound in (4) decreases
by a factor of 2εn so that it still contradicts average-radius-list-decodability. In exchange, the bound
of 2q2 ≤ |F| is altered to become 2q|I0| ≤ |F|.

Proposition 3.2. For all R ∈ (0, 1), there exists αR > 0 such that the following holds for all
ε ∈ (0, 1) and all sufficiently large n ≥ ΩR(1/ε). Let C be a code of rate R with alphabet size q that
has minimum distance greater than (1−R−ε)n and is (23(1−R−ε), 2)-average-radius-list-decodable.

Then q ≥ 2αR/ε.

Proof. By adjusting αR, it suffices to consider ε sufficiently small compared to R. Fix I0 =
{1, 2, . . . , 4εn}. Let α := R − ε and β := R + ε. For any two subsets A,B ⊆ [n] \ I0 satisfy-
ing |A| = |B| = αn and |A ∪B| ≤ βn, notice that |A \B| = |B \A| ≤ (β − α)n = 2εn. Since
the tuple of sets (A,A \ B,B \ A) determine B, the number of possible subsets B for any given

A is therefore at most
((1−4ε)n

≤2εn

)2
. Thus, by greedily choosing subsets, we can find a family F of(

(1−4ε)n
αn

)
/
((1−4ε)n

≤2εn

)2
≥ 2ΩR(n) subsets of [n] \ I0 such that each subset has size αn and any pairwise

union has size at least βn.
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It suffices to prove that q|I0| ≥ |F|/2. Suppose for contradiction that

q|I0| < |F| /2. (5)

Consider picking a uniformly random codeword c ∈ C. For each A ∈ F , let EA be the event that
another codeword c′ agrees with c on A, i.e., c|A = c′|A. For any A ∈ F , there at most qαn possible
values of c|A, and thus at most qαn codewords c for which c|A uniquely determines c. Hence,

Pr[¬EA] <
qαn

qk
=

1

qεn
. (6)

For each codeword c, define the set Fc := {A ∈ F : EA occurs}. For each A ∈ Fc, we can find, by
definition, a codeword fA(c) ∈ C \ {c} such that fA(c)|A = c|A. By linearity of expectation and
(6), we thus find that

E [|Fc|] = E

[∑
A∈F

1{EA}

]
>
∑
A∈F

(
1− 1

qεn

)
≥ |F|

2
.

Hence we can find a codeword c ∈ C for which |Fc| > |F| /2. By pigeonhole and (5), there are 2
distinct sets A1, A2 ∈ Fc such that the codewords fA1(c) and fA2(c) agree on the coordinates I0.
These two codewords fA1(c) and fA2(c) are distinct: if not, then fA1(c) = fA2(c) agrees with c on
at least |A1 ∪A2| ≥ βn = (R + ε)n coordinates, contradicting the assumption that the distance is
greater than (1−R− ε)n.

Let y be the word which agrees with fA1(c) on I0 (and thus fA2(c) as well), and agrees with c
everywhere else (see Figure 2). Word y has total distance at most

|I0|+ |[n] \ (I0 ∪A1)|+ |[n] \ (I0 ∪A2)| = 4εn+ (1−R− 3ε)n+ (1−R− 3ε)n

= 2(1−R− ε)n

from codewords c, fA1(c), fA2(c), contradicting average-radius-list-decoding. Thus, (5) is false,
which means 2q4εn ≥ |F| ≥ 2ΩR(n), and so q ≥ 2ΩR(1/ε).

3.4 Warmup 3: Removing the distance assumption

In this section, we prove Proposition 3.3, which is the same as Proposition 3.2 but with the distance
assumption removed. To remove it, we simply observe that the minimum distance is already nearly
satisfied in any (23(1 − R − ε), 2)-average-radius-list-decodable code. This is not true for ordinary
list-decoding, so we need additional ideas to remove the minimum distance condition in the general
lower bound, Theorem 1.1, but we include this much simplier proof to illustrate the high level
structure of the proof.

Proposition 3.3. For all R ∈ (0, 1), there exists αR > 0 such that the following holds for all
ε ∈ (0, 1) and all sufficiently large n ≥ ΩR(1/ε). Let C be a code of rate R with alphabet size q that
is (23(1−R− ε), 2)-average-radius-list-decodable. Then q ≥ 2αR/ε.

To prove Proposition 3.3, we need the following simple lemma.

Lemma 3.4. In any (p, 2)-average-radius-list-decodable code, each codeword has at most 1 other
codeword within distance 3p

2 n.
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Proof. If there are 2 codewords c1 and c2 both within distance 3pn/2 of codeword c, then the
word c has average distance pn from the codewords c, c1, c2, contradicting (p, 2)-average-radius-list-
decodability.

Now we can prove Proposition 3.3.

Proof of Proposition 3.3. Let C be a (23(1 − R − ε), 2)-average-radius-list-decodable code. By
Lemma 3.4, each codeword has at most 1 other codeword within distance (1− R − ε)n. Thus, by
choosing codewords greedily, C has a subcode C ′ of size at least |C|/2 that both is (23(1−R−ε), 2)-
average-radius-list-decodable and has minimum distance greater than (1 − R − ε)n. Subcode C ′

has rate at least R′ = R− (1/n). Applying Proposition 3.2 with subcode C ′, rate R′ = R− (1/n),
and ε′ = ε+ (1/n) gives the desired bound on the alphabet size q.

4 The full lower bound: all L and (ordinary) list-decoding.

We now present the full proof of our main result, Theorem 1.1. To do so, we need to combine the
ideas in the Warmups 1, 2, and 3, and add some additional ideas.

4.1 Additional Ingredients

First, we need to generalize the warmups from average-radius list-decoding to (ordinary) list-
decoding. To do so, we use similar ideas to [BDG22], but distill those ideas down to their combi-
natorial essence. The idea is to choose our bad list-decoding configuration by first choosing a bad
average-radius-list-decoding configuration y, c0, c1, . . . , cL, as in the warmups. However, because
the list-decoding center y was much closer to c0 than to each of c1, . . . , cL, we will instead balance
out the distances between them by “transferring” agreements between y and c0 (of which there are
almost n) to agreements between y and c1, . . . , cL, until the y has a similar number of agreements
with each of c0, c1, . . . , cL. Specifically, the parts where we will transfer agreements from c0 to
c1, . . . , cL will be the intervals I1, . . . IL that we define in the proof: for p = L

L+1(1 − R − ε), we
set aside the first pn coordinates for the intervals I0, I1, . . . , IL, meaning that the agreement sets
A1, . . . , AL will have to be subsets of {pn+ 1, . . . , n}.

Next, we need to remove the distance requirement for (ordinary) list-decoding, which is more
difficult than removing the distance requirement for average-radius-list-decoding in Section 3.4. To
do so, we need a lemma similar to Lemma 3.4 that shows that a (p, L)-list-decodable code has a
subcode with large distance and essentially the same rate. Clearly, (p, L)-list-decoding implies that
every codeword is within distance pn of at most L codewords, so we can essentially assume our
code has distance pn. For technical reasons, this is not good enough. In Lemma 4.1, we show, more

strongly, that a (p, L)-list-decodable code has a large subcode with distance (p+ pL

2L)n. Therefore,
to show Theorem 1.1, it suffices for us to show it with the additional assumption that the minimum

distance is (p+ pL

2L)n, which is what we show in Theorem 4.3.

To prove Theorem 4.3, we need additional ideas. In the warmup arguments, we needed to
assume near-optimal minimum distance (namely (1 − R − O(ε))n), to show that the codewords
c1, . . . , cL we find via the pigeonhole argument are pairwise distinct. To accommodate our weaker

assumption of distance p+ pL

2L , we note that our pigeonholing actually gives substantially more than
L codewords, and in particular, certainly at least L · W codewords for some constant W . Then,
it is enough to show that our pigeonholing never produces W codewords that are all equal (rather
than showing we never get two equal codewords). Here, a relaxed condition on our set system F
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c1

c2

y

I0 I1 I2

A1

A2

d0
8εn
3

d1
(1−R−5ε)n

3

d1
(1−R−5ε)n

3

aF

k − 1

I∗{
Figure 3: The agreement pattern we search for via pigeonhole in our upper bound, for L = 2.
Codeword c0 differs from y in at most d0 + 2d1 places and codewords c1 and c2 differ from y in at
most n− d0 − d1 − aF places.

suffices, namely that the sets have very large W -wise, rather than pairwise, unions (see Lemma 4.2
below).

We now present the lemmas described above. The first one implies that any (p, L)-list-decodable

code has a large subcode with distance (p+ pL

2L)n. A similar lemma appears in [GN14, Theorem 15],
and a lemma simliar in spirit appears in [GST22, Theorem 6.1]. We defer the proof to Appendix A.2.

Lemma 4.1. Let p ∈ (0, 1). In any (p, L)-list-decodable code C, every codeword is within relative

distance α := p+ pL

2L of at most L′ = O(L2/p) codewords. Consequently, C has a subcode of size at
least |C|/(L′ + 1) that has relative distance at least α.

The next lemma says that, for sufficiently large W , we can choose a large family of sets with
very large W -wise unions. The proof is a straightforward probabilistic argument, and we defer it
to Appendix A.3.

Lemma 4.2. For all 1 > β > α > 0, for all positive integers m, there exists a constant W =
O (log(1− β)/ log(1− α)) and a family F of 2Ω(m(1−β) log(1−α)/ log(1−β)) subsets of [m], each of size
αm, such that all W -wise unions of subsets are of size at least βm.

4.2 Proof

Now, we put the above ideas all together, and generalize to all L, to give the full theorem. By
Lemma 4.1, the following theorem implies Theorem 1.1

Theorem 4.3. Let L ≥ 2 be a fixed constant and R ∈ (0, 1) and ε ∈ (0, 1), and let n be sufficiently
large. Let C be a code of length n with alphabet size q that is (p, L)-list-decodable for p = L

L+1(1−
R− ε). Suppose also that C has minimum distance at least (p+ pL

2L)n. Then q ≥ 2ΩL,R(1/ε).

Proof. Since we suppress factors of R and L, it suffices to consider ε sufficiently small. With

9



hindsight, define the following parameters

aF := k − 1, (7)

a∪ :=

(
1− p− pL

4L

)
n, (8)

d1 :=

(
1−R− 5ε

L+ 1

)
n,

d0 :=

(
4Lε

L+ 1

)
n,

We remark that the parameters d0 and d1 are chosen to satisfy the following equation and inequal-
ities specifically:

d0 + Ld1 = pn, (9)

n− d0 − d1 − aF ≤ pn, (10)

d0 ≤ 4εn. (11)

Now, let I0, . . . , IL be consecutive subintervals of [n] (in that order), such that interval I0 =
{1, . . . , d0} has size d0, and intervals I1, . . . , IL have size d1. Define I∗ := I0 ∪ I1 ∪ · · · ∪ IL.
Note that |I∗| = d0 + Ld1 =

(9) pn.

Since C has positive rate R and minimum distance (p+ pL/2L)n, then for small enough ε, we
find by applying (9) and the Singleton bound that

1−
(
1−R

2

)L−1

≥ a∪
n− pn

≥ R

1− p
≥ aF

n− pn
≥ (L+ 1)R

1 + (L+ 1)R
. (12)

That is, if we define α ≜ aF/(n−pn) and β ≜ a∪/(n−pn), then (12) implies that α and β lie in an
interval contained in (0, 1) that is completely determined by R and L and not on ε. By applying
Lemma 4.2 on the ground set [n] \ I∗, we get a constant W = OL,R(1) and a family F of 2ΩL,R(n)

subsets of [n] \ I∗, each of size aF , such that every W -wise union of sets in F has size at least a∪.
Here, (12) ensures that W and the number of subsets 2ΩL,R(n) do not depend on ε.

Consider picking a uniformly random codeword c ∈ C. For each A ∈ F , let EA be the event that
another codeword c′ agrees with c on A, i.e., c|A = c′|A. For any A ∈ F , there at most qaF possible
values of c|A, and thus at most qaF codewords c for which c|A uniquely determines c. Hence,

Pr[¬EA] <
qaF

qk
(7)
=

1

q
. (13)

For each codeword c, define the set Fc := {A ∈ F : EA occurs}. For each A ∈ Fc, we can find, by
definition, a codeword fA(c) ∈ C \ {c} such that fA(c)|A = c|A. By linearity of expectation and
(13), we thus find that

E [|Fc|] = E

[∑
A∈F

1{EA}

]
>
∑
A∈F

(
1− 1

q

)
≥ |F|

2
.

Hence we can find a codeword c ∈ C for which |Fc| > |F| /2. Fix this codeword c0 = c. To prove
Theorem 4.3, it suffices to prove that 2 ·W · L · qd0 ≥ |F|. Suppose for contradiction that

W · L · qd0 < |F|/2 (14)

10



By pigeonhole and (14), there are WL sets A1, . . . , AWL ∈ Bc0 such that fA1(c0), . . . , f
AWL(c0)

agree on the coordinates in I0. Further, no W of the codewords can be equal: if, for example,
fA1(c0) = fA2(c0) = · · · = fAW (c0), then this codeword fA1(c0) agrees with c0 on the coordinates
∪W
i=1Ai, which by construction of F has size at least a∪ =(8) (1−p−pL/4L)n. Thus, we have found

two distinct codewords that disagree on at most (p + pL/4L)n positions, which contradicts the
minimum distance assumption of our code. Thus, no W codewords among fA1(c0), . . . , f

AWL(c0)
are equal. In particular, this implies that we have at least L distinct codewords. Without loss of
generality, say the codewords c1 := fA1(c0), c2 := fA2(c0), . . . , cL := fAL(c0) are pairwise distinct.

Let y ∈ [q]n be the list-decoding center that agrees with c1 on coordinates I0 (and thus
c2, . . . , cL), agrees with cj on coordinates Ij for j = 1, . . . , L, and agrees with c0 elsewhere (see
Figure 3). Let us analyze the distance of y to the L+ 1 codewords c0, c1, . . . , cL in two cases:

1. First, by construction of y, the codeword c0 can only disagree with y on I∗. Thus the distance
between y and c0 is most |I∗| = m, which is at most pn by (9).

2. For j = 1, . . . , L, by construction of y, codeword cj agrees with y on I0, Ij , and Aj . Thus, cj
disagrees with y on at most n− |I0| − |Ij | − |Aj | = n− d0 − d1 − aF coordinates, which is at
most pn by (10).

Thus, we have found L + 1 distinct codewords each with Hamming distance at most pn from y,
contradicting that C is (p, L)-list-decodable. Hence, (14) is false, giving us our desired lower bound

q ≥ ( |F|
2WL)

1/d0 ≥(11) 2ΩR(1/ε).

Proof of Theorem 1.1. Let C be a code that is (p, L)-list-decodable for p = L
L+1(1 − R − ε). By

Lemma 4.1 and for ε sufficiently small, every codeword C has a subcode C ′ of C with minimum

distance (p + pL

2L)n and rate R′ = R − log(L′+1)
n = R′ − o(1). Apply Theorem 4.3 to the subcode

C ′ with rate R′ and ε′ = ε+ log(L′+1)
n ≤ ε+ o(1), and use that n is sufficiently large to obtain the

result.

5 Concluding Remarks

As alluded to in Remark 1.2, Theorem 1.1 focuses on the case when L is a fixed constant independent
of 1/ε. It nonetheless leaves open the question of showing an alphabet size lower bound for L
growing with 1/ε.

Question 5.1. Can we show that all codes (for sufficiently large n) that are ( L
L+1(1−R− ε), L)-

list-decodable require alphabet size q ≥ 2ΩR(1/ε) (independent of L)?

In the most general case, our current methods give a constant αL,R in Theorem 1.1 that is at
most exp(−OR(L)). However, in special cases, we get better bounds.

For average-radius list-decoding, such an L-independent alphabet size lower bound of q ≥
2ΩR(1/ε) follows from the warmup arguments in Sections 3.2, 3.3, and 3.4. In particular, one can
check that Proposition 3.2 holds if we assume ( L

L+1(1−R−ε), L)-average-radius-list-decoding, again

with minimum distance (1−R− ε)n, and we again get an alphabet size lower bound of q ≥ 2αR/ε,

independent of L (the lower bound will in fact be
(

n
Rn

)1−δ
for some δ = δ(ε) → 0 decreasing with

11



ε → 0.).4 This implies that Proposition 3.3 also generalizes to give an optimal alphabet size lower
bound of q ≥ 2ΩR(1/ε) for ( L

L+1(1 − R − ε), L)-average-radius-list-decoding (without an additional
distance assumption).

For ordinary list-decoding, if we can assume a fixed relative distance δ > p depending only on
R, then αL,R can be improved to ΩR(1/L) by following the same argument as in Theorem 4.3.
Combining this with the list-decoding capacity theorem (Remark 1.2) gives an L-independent
alphabet size lower bound of q ≥ 2ΩR(1/

√
ε).
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A Deferred Proofs

A.1 Proof of Proposition 1.4

In this appendix, we prove Proposition 1.4. We remark that the proof we present seamlessly extends
to the notion of average-radius-list-decodabililty.

Proof of Proposition 1.4. Fix an alphabet Σ of size q, and set N := ⌊qRn⌋ and p := L
L+1(1−R− ε).

Consider a code C = {c(1), . . . , c(N)} ⊆ Σn where each c(ℓ) is chosen independently and uniformly
at random from Σn. Set p := L

L+1(1−R− ε). For any set I ⊆ [N ] of size L+ 1 and word w ∈ Σn,

let Bw
I be the event that d(c(ℓ), w) ≤ pn for all ℓ ∈ I. Define the sets Aℓ := {i ∈ [n] : c

(ℓ)
i = wi} and

Ei := {ℓ ∈ I : c
(ℓ)
i = wi}. Then by double counting, we find that

n∑
i=1

|Ei| =
∑
ℓ∈I

|Aℓ| =
∑
ℓ∈I

(n− d(c(ℓ), w)) ≥ (1 + LR+ Lε)n . (15)

Consider the hypergraph H with vertices V (H) = I and hyperedges E(H) = {E1, . . . , En}). Let XH
I

be the event that c
(ℓ)
i = wi for all ℓ ∈ Ei and i ∈ [n]. Since each c(ℓ) is independently and uniformly

chosen from Σn, each hyperedge Ei ’imposes’ |Ei| constraints. Thus by using Inequality (15) and
union bounding over all choices of H, we find that

Pr[Bw
i ] ≤ Pr

[
∃ hypergraph H such that XH

I occurs
]

≤ 2(L+1)nq−
∑n

i=1 |Ei|

≤ 2(L+1)nq−(1+LR+Lε)n . (16)

Now, pick q ≥ 23/ε. Using Inequality (16), we conclude that

E

[ ∑
w∈Σn

I⊆[N ],|I|=L+1

1{Bw
I }
]
≤ qn · q(L+1)Rn · 2(L+1)nq−(1+LR+Lε)n

= qRn · 2(L+1)n · q−Lεn

≤ qRn · 2−Ln .
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Thus we can find a code C of rate R such that Bw
I occurs for at most qRn ·2−Ln choices of w and I.

For each such pair (w, I), fix an index iw,I ∈ I and consider the expurgated code C ′ := C \Cb. Then
|C ′| ≥ qRn(1 − 2−Ln) = qn(R−o(1)). Furthermore, since we removed all the ’bad’ codewords from,

none of the events Bw
I now occur in C ′, implying that C ′ is a

(
L

L+1(1−R− ε), L
)
-list-decodable

code.

A.2 Proof of Lemma 4.1

Proof of Lemma 4.1. Let M = ⌈L2

p ⌉. We may assume without loss of generality that the all-0s
string 0n is in the code, and by symmetry it suffices to show that there are at most L + M − 1
codewords within distance at most αn from 0n, i.e., (Hamming) weight at most αn.

There are clearly at most L codewords of weight at most pn be the list-decoding property
(centered at 0). Suppose for contradiction there are M codewords c1, . . . , cM of weight between pn
and αn.

We claim there are L nonzero codewords cj1 , . . . , cjL such that

|supp(cj1) ∩ · · · ∩ supp(cjL)| ≥ pLn.

For i = 1, . . . , n, let ai denote the number of j ∈ [M ] such that i ∈ supp(cj). Let T denote the
number of tuples (i, j1, . . . , jL) ∈ [n]× [M ]L with j1 < j2 < · · · < jL such that i ∈ supp(cj1)∩ · · · ∩
supp(cjL). By double counting,(

M

L

)
max

j1<···<jL
|supp(cj1) ∩ · · · ∩ supp(cjL)| ≥ T =

n∑
i=1

(
ai
L

)
≥ n ·

(
pM

L

)
The last inequality uses convexity of

( ·
L

)
and that

∑n
i=1 ai =

∑M
j=1 | supp(cj)| ≥ M · pn. Rearrang-

ing, we have

max
j1<···<jL

|supp(cj1) ∩ · · · ∩ supp(cjL)| ≥ n ·
(
pM
L

)(
M
L

)
≥ n · (pM)(pM − 1) · · · (pM − L+ 1)

ML

≥ n · pL ·

(
1−

(
L
2

)
pM

)

≥ n · p
L

2
. (17)

by the bound on M . The third inequality uses that (1−a1)(1−a2) · · · (1−an) ≥ 1− (a1+ · · ·+an).

Without loss of generality, (17) is realized by

| supp(c1) ∩ supp(c2) ∩ · · · ∩ supp(cL)| ≥
pL

2
n. (18)

Now consider the codewords 0, c1, c2, . . . , cL, and let S1, S2, . . . , SL be pairwise disjoint subsets of

supp(c1) ∩ · · · ∩ supp(cL) of size (α − p)n = pL

2Ln. There sets exist because of (18). Consider the
word w such that w agrees with cj on Sj for j = 1, . . . , L, and is 0 otherwise. Note that the distance

from w to 0 is at most |S1 ∪ S2 · · · ∪ Sj | ≤ pL

2 n < pn. The distance from w to c1 is at most

| supp(c1) ∪ S2 ∪ S3 ∪ · · · ∪ SL \ S1| = | supp(c1) \ S1| = | supp(c1)| − |S1| ≤ pn.
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Thus, we’ve found L + 1 codewords 0, c1, c2, . . . , cL within distance pn of w, contradicting list-
decodability. Hence, there are at most M − 1 codewords with weight between pn and αn, so there
are at most L+M − 1 codewords with weight at most αn, as desired.

The subcode of C with minimum distance αn can be chosen greedily from C.

A.3 Proof of Lemma 4.2

Proof of Lemma 4.2. With hindsight, letW be the positive integer such that (1−β)/2 ≤ (1−α)W <
(1− β)/(2− 2α), and let M = 2(1−β)m/6W . Pick M sets independently by including each element
of [m] independently with probability α0 = α− 1

m1/3 . By standard concentration arguments, with
high probability, at most o(M) of the sets are of size more than αm.

The probability we have some W -wise union of size less than βm is at most(
M

W

)
·Pr

[
Binomial(1− (1− α0)

W ,m) < βm
]
=

(
M

W

)
·Pr

[
Binomial

(
(1− α0)

W ,m
)
> (1− β)m

]
≤
(
M

W

)
·Pr [Binomial ((1− β)/2,m) > (1− β)m]

≤ MW · e−(1−β)m/6 ≪ 1.

where above used the Chernoff bound (1) with δ = 1. Thus, with high probability, all W -wise
unions have size at least βm and at least M − o(M) sets are of size at most αm. Hence, some
choice of sets exists. Taking the M − o(M) sets of size at most αm, and appending arbitrary
elements to them until they have size exactly αm, gives our desired family.
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