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Abstract
In this paper, we obtain new size lower bounds for proofs in the Polynomial Calculus (PC) proof

system, in two different settings.

When the Boolean variables are encoded using ±1 (as opposed to 0, 1): We establish a lifting
theorem using an asymmetric gadget G, showing that for an unsatisfiable formula F , the lifted
formula F ◦ G requires PC size 2Ω(d), where d is the degree required to refute F . Our lower
bound does not depend on the number of variables n, and holds over every field. The only
previously known size lower bounds in this setting were established quite recently in [Sokolov,
STOC 2020] using lifting with another (symmetric) gadget. The size lower bound there is
2Ω((d−d0)2/n) (where d0 is the degree of the initial equations arising from the formula), and is
shown to hold only over the reals.
When the PC refutation proceeds over a finite field Fp and is allowed to use extension variables:
We show that there is an unsatisfiable formula with N variables for which any PC refutation
using N1+ϵ(1−δ) extension variables, each of arity at most N1−ϵ and size at most Nc, must
have size exp(Ω(N ϵδ/poly log N)). Our proof achieves these bounds by an XOR-ification of the
generalised PHPm,r

n formulas from [Razborov, CC 1998].
The only previously known lower bounds for PC in this setting are those obtained in [Impagliazzo-
MouliPitassi, CCC 2023]; in those bounds the number of extension variables is required to be
sub-quadratic, and their arity is restricted to logarithmic in the number of original variables.
Our result generalises these, and demonstrates a tradeoff between the number and the arity of
extension variables.
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1 Introduction

Propositional proof complexity is the field of study of the complexity of proofs for tautological
Boolean formulae. Cook and Reckhow [5] introduced this area in their seminal work with
the ultimate goal of resolving the question of NP versus coNP using upper/lower bounds for
stronger and stronger proof systems. Polynomial Calculus (PC) is one such propositional
proof system that has received wide attention since its introduction by Clegg, Edmonds and
Impagliazzo [4]. Degree lower bounds for PC and its variant PCR (PC with Resolution)
have been proved starting with the work of Razborov [14], followed by a long series of
works [10], [3], [1], [12], [6]. These translated to size lower bounds through a size-degree
connection established in [4], [10]. Despite these works showing that we have a reasonable
understanding of PC, there has been little progress towards lower bounds for the stronger
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system AC0[p]-Frege, which was one of the main motives for defining PC. Therefore, this
indicates that we have to look at systems stronger than PC in order to get new insights.

Grigoriev and Hirsch [7] introduced one such system called constant-depth PC, where in
addition to the rules of PC we allow extension variables of constant depth to be introduced
and used as new variables. They showed that this system simulates AC0[p]-Frege (at a
proportional depth), making it a suitable target for lower bounds. However, Raz and
Tzameret [13] showed that this system is already powerful enough to simulate the proof
system Cutting Planes (which deals with integer linear inequalities) with polynomially
bounded coefficients. Finally, Impagliazzo, Mouli and Pitassi [8] showed that this system can
simulate at a fixed constant depth AC0[q]-Frege for any prime modulus q, Cutting Planes
and the semialgebraic proof system sum-of-squares SOS with unbounded coefficients, and
can also simulate TC0-Frege at a proportional depth. This implies that general lower bounds
for this system are much harder than lower bounds for AC0[p]-Frege.

The simplest subsystem of the above for which size lower bounds were unknown until
recently is PC over ±1 variables (instead of {0, 1}). Degree lower bounds hold here as
well, since a linear transformation can effect the change between the bases ±1 and {0, 1}.
However, known techniques based on the size-degree connection fail over this basis since they
rely on terms vanishing when variables are set to zero. Moreover, the Tseitin tautologies
require large PC degree but have small PC size over ±1, precluding the existence of such
a generic connection. Sokolov [15] recently showed how to go past this barrier and proved
size lower bounds for PC over ±1 variables. Impagliazzo, Mouli and Pitassi [9] improved
and generalized these bounds to PC over finite fields Fp with a sub-quadratic number of
extension variables, where each extension variable depends on O(log n) original variables.

Our Results.

In this work, we extend the results of both these works [15, 9]. For our first result, we show
a generic degree-to-size lifting result for PC lower bounds over ±1.

▶ Theorem 1.1. Let F be an unsatisfiable formula over variables x1 · · · xn, with a polynomial
encoding of degree d0, which requires degree d > d0 to refute in PC. Let Ind denote the one-bit
indexing gadget. Let F ◦ Ind be the formula obtained by replacing each xi by Ind(wi0, wi1, wi2)
for a fresh set of variables wi0, wi1, wi2 ∈ {±1}. Then F ◦ Ind requires size 2Ω(d) to refute in
PC (over ±1).

Sokolov showed such a lifting result for the SOS proof system, using a symmetric gadget
with certain properties (e.g. majority). Since SOS simulates PC over the reals [2], he obtains
a degree-to-size lift for PC over R. However, we use a different (non-symmetric) gadget,
and our result holds over any field F. Moreover, Sokolov’s lower bounds are of the form
2Ω((d−d0)2/n) (where n is the number of variables, and d0 is the degree of the initial equations
arising from the formula). This gives meaningful results only when d = ω(

√
n). In contrast,

our result works for any superconstant d. Lastly, we believe that our result is arguably
simpler to prove. This result is motivated by the work of Krause and Pudlák [11].

In our next result, we strengthen the lower bounds of [9] over finite fields to handle a
sub-quadratic number of extension variables, each of which is of polynomial size and depends
on a polynomial fraction of the original variables. This is an exponential improvement over
the result of [9] in the arity of the extension variables, i.e. the number of original variables
they can depend on (subject to the condition that the extension axioms are small).

▶ Theorem 1.2. For every N > 0 large enough, any 1 > ϵ, δ > 0, constant c > 0, and prime
p, there exists a tautology F over N variables such that any PC refutation of F over Fp with
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N1+ϵ(1−δ) extension variables, each depending on N1−ϵ variables of F and of size at most
N c, requires size exp(Ω(N ϵδ/poly log N)).

Our Techniques.

In both our results, the notion of quadratic degree introduced in [15] plays a crucial role.
This is the maximum degree that can be obtained from a PC refutation by multiplying any
two terms that appear in the same line; see Definition 3.2. Sokolov’s insight was that it is
easier to reason about this measure for a refutation, and at the same time, it does carry
information about the usual degree. In particular, a refutation with low quadratic degree
can be transformed into one with low degree; Lemma 3.7. An adaptation of this measure
and this method was subsequently used in [9] to similarly reason about refutations using
extension variables. A non-trivial part in both these is establishing that if a variable appears
in the refutation but not in any axiom (other than the Boolean axiom or an extension axiom
of a specific type), then it can be removed from the proof; Lemmas 3.4 and 4.13. This seems
self-evident but needs to be done with care.

To prove our first result Theorem 1.1, we follow Sokolov’s approach, but we employ a lift
by the (asymmetric) one-bit Indexing gadget. The gadget, on variables w0, w1, w2, selects
the value of w1 if w0 = −1 (in this case, w2 is irrelevant) and that of w2 otherwise (now w1
is irrelevant). If there is a small enough proof, then the probabilistic method guarantees
the existence of an assignment to all the selector variables so that under this restriction,
every high-degree quadratic term contains an irrelevant variable. The restricted refutation is
in fact a refutation of the unlifted formula, but may use irrelevant variables along the way.
Such irrelevant variables can be removed from the restricted proof as discussed above, and
then Sokolov’s transformation from low-quadratic-degree to low-degree can be employed,
yielding a contradiction.

To prove our second result, we closely follow the approach of [9], which we outline in
Section 4. However, to handle extension variables of large arity and polynomial size, we use a
similar idea as above; composing a hard tautology with a simple gadget. The gadget we use
here is just the XOR2 gadget (the parity of two variables). We begin by considering family of
restrictions where, for each XOR2 gadget, one of the variables is assigned a random bit while
the other variable remains free. Such restrictions recover the hard formula (possibly with
some variables negated). Using the probabilistic method once again, it is easy to guarantee
the existence of one such restriction under which every extension variable axiom, despite
having a large arity, reduces to logarithmic degree. Thus the problem reduces to proving a
size lower bound for the original unlifted tautology, where extension axioms are bounded
by logarithmic degree. Such extension variables can be handled using the approach of [9]
by further carefully chosen restrictions of small size and even smaller Hamming weight; this
size lower bound is shown in Theorem 5.5. The hard formula we choose is the generalised
Pigeon-Hole-Principle formula PHPm,r

n , introduced by Razborov in [14] (see Proposition 5.2),
and we show that applying such small restrictions preserves the degree hardness shown by
Razborov.

Organisation of the Paper.

In Section 2, we include the basic relevant definitions of the proof systems. In Section 3 we
describe the setting where the encoding is over ±1, and prove Theorem 1.1. In Section 4,
we describe the setting where extension variables are used, in particular describing all the
facts and results from [9] that we crucially use. In Section 5 we prove Theorem 5.5 and
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Theorem 1.2.

2 Preliminaries

The Polynomial Calculus proof system is a line-based proof system. It shows that any set
of polynomial expressions with no common zero contains 1 in its ideal, by building up an
explicit derivation of 1. It can be used to show that a Boolean formula in conjunctive normal
form (CNF) is unsatisfiable (equivalently that a disjunctive normal form expression is a
tautology) by appropriately encoding the variables and clauses and including expressions that
force the variables to take only Boolean values; then common zeroes are exactly satisfying
assignments. While it can also be used with polynomials not arising from CNFs, in this work
we are only concerned with CNF formulas. We follow the notation from [15, 9].

▶ Definition 2.1 (Polynomial Calculus/Polynomial Calculus Resolution). Let Γ = {P1 . . . Pm}
be an unsolvable system of polynomials in variables {x1 . . . xn} over F. A PC (Polynomial
Calculus) refutation of Γ is a sequence of polynomials {R1 . . . Rs} where Rs = 1, and for
every ℓ ∈ [s], Rℓ is either a polynomial from Γ, or is obtained from two previous polynomials
Rj , Rk, j, k < ℓ, by one of the following derivation rules:

Rℓ = αRj + βRk for α, β ∈ F
Rℓ = xiRk for some i ∈ [n]

The size of the refutation is
∑s

ℓ=1 |Rℓ|, where |Rℓ| is the number of monomials in the
polynomial Rℓ. The degree of the refutation is maxℓ deg(Rℓ).

A PCR (Polynomial Calculus Resolution) refutation is a PC refutation over the set of
Boolean variables {x1 . . . xn, x̄1 . . . x̄n} where {x̄1 . . . x̄n} are twin variables of {x1 . . . xn}.
That is, over the {0, 1} encoding, the equations x2

i − xi = 0, x̄i
2 − x̄i = 0 and xi + x̄i − 1 = 0

are treated as axioms. Similarly, over the ±1 encoding, the equations x2
i − 1 = 0, x̄i

2 − 1 = 0
and xix̄i + 1 = 0 are treated as axioms.

In the literature, the terms PC and PCR are often used interchangeably. The notion of
degree is the same in both, but size in PC with the {0, 1} encoding of Boolean variables can
be much larger than in PCR. Throughout this paper, we say PC but really mean PCR. In
particular, our size lower bounds are for PCR.

Note that the minimal degree required to refute a formula is independent of whether
Boolean variables are encoded over {0, 1} or over ±1. However, the minimal size crucially
depends on the encoding. As is well known [3], suitable Tseitin formulas require degree n,
hence they require size exp(Ω(n)) over the {0, 1} basis using size-degree connection, but have
linear-size refutations over ±1.

As is standard, throughout this work we assume that we are working in the ideal modulo
the Boolean axioms, and hence the polynomials in all lines are multilinear in the original
variables. Technically, on deriving a higher degree term, it has to be cancelled by using
suitable multiples of the Boolean axiom; however, these steps do not significantly alter the
size or degree of the refutation.

▶ Definition 2.2 (PC plus Extension Axioms). Let Γ = {P1 . . . Pm} be a set of polynomials in
variables {x1 . . . xn} over a field F, with no common zero. The polynomials in Γ are referred
to as the (initial) axioms. Let z = z1 . . . zM be new extension variables with corresponding
extension axioms zj − Qj(x1 . . . xn). A PC + Ext (PC plus extension) refutation of Γ with
M extension axioms Ext = {zj − Qj(x1 . . . xn) | j ∈ [M ]} is a PC refutation of the set of
polynomials Γ′ = {P1 . . . Pm, z1 − Q1 . . . zM − QM }. The size of the refutation is the total
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size of all lines in the refutation, including the polynomials in Γ′ (where the size of a line
P ∈ Π is the number of monomials in P ). The degree of the refutation is the maximum
degree of any line in the refutation or in Γ′.

Similar to [9], our notion of extension variables is not recursive in the sense that new
extension variables cannot be defined as functions of existing ones. Our extension variables
are only allowed to depend on the original variables of the tautology.

3 PC size lower bounds over ±1 by lifting with one-bit indexing

In this section we prove that if a tautology F requires PC degree d, then the tautology F ′

obtained by lifting each variable in F with a one-bit indexing gadget (over a fresh set of
variables) requires PC size 2Ω(d) over ±1.

▶ Definition 3.1 (One-bit indexing gadget). Let w0, w1, w2 be variables taking values in {±1}.
The function Ind(w0, w1, w2) is defined as follows: Ind(−1, w1, w2) = w1 and Ind(1, w1, w2) =
w2. We call w0 the selector variable and w1, w2 the data variables of the gadget.

Lifting a Boolean formula F by this gadget for each variable means introducing three fresh
variables w0, w1, w2 corresponding to each variable w in F , and replacing each occurrence
of w in F with an expression equivalent to (w0 ∧ w1) ∨ (¬w0 ∧ w2). (This is because in
this basis, true is encoded as −1 and false as +1.) In a PC formulation, it corresponds to
replacing each occurence of w in an axiom (other than the Boolean axiom) by the expression
((1 − w0)w1 + (1 + w0)w2)/2, and adding the Boolean axioms w2

j = 1 for j = 0, 1, 2.
Our idea is to consider refutations of F lifted by the indexing gadget, then apply a

restriction to the selector variables that yields a refutation of F with low quadratic degree,
and from there obtain a small degree refutation of F . The quadratic degree of a refutation is
defined in [15] using the notion of lazy representations of polynomials, and is rephrased here
as follows:

▶ Definition 3.2 (Quadratic set, Quadratic degree, Quadratic terms over ±1; taken from [15],
Section 3.2). Given a proof Π over ±1 variables, the Quadratic set of Π, denoted Q(Π), is
the set of pairs of terms Q(Π) = {(t1, t2) | t1, t2 ∈ P for some line P ∈ Π}.
Denote by QT (Π) the set of quadratic terms {t1t2 | (t1, t2) ∈ Q(Π)}, where the product is
modulo the axioms x2

i = 1.
The Quadratic degree of Π is the max degree of a term in QT (Π).
Informally, Quadratic degree is the max degree of the square of each line (before cancellations).

When we apply the chosen restriction to the selector variables in F ◦ Ind, the irrelevant
variables no longer appear in any of the axioms (except the axioms x2

i = 1; we work modulo
those anyway). However, they may still appear in the refutation, and we need to eliminate
them. For this, we use the Split operation introduced in [15].

▶ Definition 3.3 (Split operation over x [15], Section 5.4). Given a proof Π = (P1, P2, . . . , Pt)
and a variable x ∈ {±1}, each line Pi of Π is of the form Pi,1x + Pi,0, where Pi,1, Pi,0 do
not contain x. The Split operation at x, denoted by Splitx(Π), is the sequence Π′ with the
lines {P1,1, P1,0, P2,1, P2,0, . . . , Pt,1, Pt,0}.

The following lemma shows that Split of a refutation is a valid refutation whenever the
variable we are splitting on does not appear in any axioms except x2 = 1. (That is, x has no
role in the tautology we are considering, but is possible introduced along the way and then
eliminated. The gadget variables rendered irelevant by our chosen restriction are like this.)
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This is in fact a special case of a more general statement shown in [15], and we only need
this case. For ease of reading, we include here a proof of just this special case.

▶ Lemma 3.4. Suppose that Π is a proof and x is a variable that does not appear in any
axioms of Π except x2 = 1. Then Splitx(Π) outputs a valid proof of the axioms of Π, with no
line containing x.

Proof. Let Π be the sequence P1, . . . , Pt. We show by induction on the line number j that
both Pj,1 and Pj,0 are derivable and x-free.

If Pi is an axiom, then it is free of x. So the Split version is Pi,1 = 0, Pi,0 = Pj , and both
these polynomials are derivable.

If Pi = αPj + βPk for some j, k < i, then Pi,b = αPj,b + βPk,b for b = 0, 1.
If Pi = yPj for some j < i and some variable y ̸= x, then Pi,b = yPj,b for b = 0, 1.
If Pi = xPj for some j < i, then since x2 = 1 we obtain Pi,1 = Pj,0 and Pi,0 = Pj,1.
Thus all the lines Pj,b are derivable and do not contain x.
Since the last line of the proof is Pt = 1, we have Pt,1 = 0 and Pt,0 = Pt = 1. Thus

Splitx(Π) derives 1 and is a valid proof from the axioms of Π. ◀

▶ Remark 3.5. It may help to visualise the Splitx process as follows. Consider the case
where the derivation structure underlying Π is tree-like. The tree T is rooted at Pt, and is
unary-binary: linear combination nodes have two children and variable-multiplication nodes
have one child. The Splitx process makes two nodes P0, P1 for each node P of T , and ends up
creating a forest with two trees T0, T1. The desired refutation is T0, since Pt,0 = 1 whereas
Pt,1 = 0. It can be seen that T0 may also be obtained directly from T as follows: for each
axiom node, if the number of edges along the path to the root labeled by multiplication with
x is odd, replace the axiom by 0. (The construction above would have ended at a source
node which is a P1 copy of an axiom, and since axioms are x-free, a P1 copy of an axiom is
0.) Then, replace each edge label ×x by the label ×1.

The lemma below shows that Splitx removes all quadratic terms containing x from the
proof, without introducting any new quadratic terms.

▶ Lemma 3.6. Let Qx(Π) be the set of pairs (t1, t2) ∈ Q(Π) such that x ∈ t1t2, and let
QT x(Π) be the corresponding set of quadratic terms.
If (t1, t2) ∈ Q(Splitx(Π)), then t1 and t2 are both x-free, and at least one of (t1, t2), (t1x, t2x),
is in Q(Π). Thus QT (Splitx(Π)) ⊆ QT (Π) \ QT x(Π).

Proof. Consider a pair (t1, t2) ∈ Q(Splitx(Π). That t1, t2 are x-free follows from Lemma 3.4.
The pair (t1, t2) is contributed to Q(Splitx(Π) by Pb for some line P = xP1 + P0 of Π and
some b ∈ {0, 1}. If P0 contributes the pair, then P also contributes the pair to Q(Π). If P1
contributes the pair, then P contributes the pair (t1x, t2x) to Q(Π). ◀

Finally, we note below that a proof with low quadratic degree can be transformed into
a proof of low (usual) degree. This lemma is proved in [15], Lemma 3.6 using the notion
of lazy representation of polynomials. For completeness, we include in the appendix a very
similar proof but without explicitly using this notion.

▶ Lemma 3.7. [[15], Lemma 3.6] Let Π be a refutation of a set of axioms F of degree d0
with Quadratic degree at most d. Then there exists a refutation Π′ of F with (usual) degree
at most 2 max(d, d0).

We conclude this section with a proof of Theorem 1.1, which we restate here for convenience.
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▶ Theorem 1.1. Let F be an unsatisfiable formula over variables x1 · · · xn, with a polynomial
encoding of degree d0, which requires degree d > d0 to refute in PC. Let Ind denote the one-bit
indexing gadget. Let F ◦ Ind be the formula obtained by replacing each xi by Ind(wi0, wi1, wi2)
for a fresh set of variables wi0, wi1, wi2 ∈ {±1}. Then F ◦ Ind requires size 2Ω(d) to refute in
PC (over ±1).

Proof. Let F ′ denote the formula F ◦ Ind.
Towards a contradiction, let Π be a refutation of F ′ of size 2cd for a small enough c > 0.

An assignment ρi to the selector variable wi0 sets the gadget to one of the two data variables
wij , j ∈ {1, 2}; we say that the other data variable is irrelevant. (If ρi sets wi0 = −1 then
wi2 is irrelevant, else w1 is irrelevant.) We construct an assignment ρ to the selector variables
such that for every pair (t1, t2) ∈ Q(Π|ρ

) with deg(t1t2) ≥ d/2, t1t2 contains an irrelevant
variable. The rest of the proof is simple: we apply this ρ to Π to obtain a refutation of a copy
of F without irrelevant variables. However, the irrelevant variables may still appear in the
proof. We then repeatedly apply Split over each irrelevant variable, to obtain a refutation Π′

of F with no irrelevant variables anywhere. (By Lemma 3.4, the result of the Split is a valid
refutation.) Since every high-degree pair contains an irrelevant variable, and by Lemma 3.6
all pairs where the product contains a irrelevant variable are removed from the proof, Π′

does not contain any high-degree pair and hence is of Quadratic degree less than d/2. We
use Lemma 3.7 to get a refutation of degree less than d of F , contradicting our assumption
about F .

We now show the existence of ρ through a probabilistic argument. Let t1t2 ∈ QT (Π)
with degree in the data variables at least d/2. If, for some gadget, this product contains both
data variables, then for any assignment ρ this product would contain an irrelevant variable.
So without loss of generality we can assume that the product contains only one data variable
from every copy of the gadget. Now, we pick a ρ which is a uniformly random assignment
from {±1}n; i.e. pick the data variable at random in each gadget. For a data variable in t1t2,
the probability that it is picked is equal to 1/2. Therefore, the probability that t1t2 does
not contain any irrelevant variable is at most (1/2)d/2. Since there are only 2cd terms and
therefore 22cd pairs in the proof, we have by a union bound that there exists a restriction
with the required property. ◀

We note here that a proof similar to above also works for the SOS proof system, where
given a refutation

∑
i pifi +

∑
j q2

j = −1 of axioms fi = 0, the operation Split at an irrelevant
variable x is defined (following [15]) as the refutation obtained by averaging the values of pi

and q2
i at x = 1 and x = −1 (this is a valid refutation since x is irrelevant). As a result, we

also obtain a degree-to-size lifting theorem for SOS for the one-bit indexing gadget.

4 PC with extension variables over finite fields

We now consider the setting where the encoding is over {0, 1}, the arithmetic is over finite
fields, and extension variables are allowed; this is the setting for our second main result
Theorem 1.2. In this setting, a size lower bound was obtained in [9] provided the extension
variables are subquadratic in number and at most logarithmic in arity. We follow that
approach but improve the result substantially. In this section, we first outline the framework
of [9], then describe at a high level the outline of our proof of Theorem 1.2, and then present
the relevant definitions/lemmas from [9] that we need to use. The actual formal proof of
Theorem 1.2 appears in the next section.
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4.1 Proof outline
The approach in [9]

We first outline the framework of [9], whose lower bounds we improve. The proof of the lower
bound in [9] proceeds as follows.

Given a small refutation of a well chosen tautology F in PC with extension variables, pick
an extension variable z with extension axiom z − Q that contributes to a lot of pairs of terms
of high Quadratic degree (which is a notion similar to Quadratic degree for ±1 variables as in
Definition 3.2, but generalized to Fp-valued variables; see Definition 4.5). Extension variables
are not necessarily Boolean; z can take a subset of values in the underlying field (over all
possible values to the Boolean variables in Q). If this subset includes zero, apply the partial
assignment that sets z = 0 to the proof to remove all contributions of z to Quadratic degree.

If not, z appears in each line of the proof in the form Pℓ−1zℓ−1 + · · · + P1z + P0 where
ℓ is the least value such that zℓ is a constant. The contributions of z to Quadratic degree
therefore come from interactions of the polynomials Piz

i and Pjzj , over all pairs (i, j), i ̸= j.
Now pick a good pair (i, j) which contributes at least a 1/p2 fraction of the contributions of
z to high Quadratic degree. The key step is to obtain a proof which separates the pair of
polynomials Pi and Pj in each line into two different lines, using an operation called Split, see
Definition 4.12. (Again, this is similar in spirit to the Split operation from Definition 3.3, but
more nuanced.) Split essentially equates each line P to a polynomial of the form R1zi +R0zj ,
and solves for R1 and R0 in terms of P . In order for Split to output a valid proof, though,
some preconditions needs to be satisfied: the axioms need to be free of z except for the
range axiom for z, and this range needs to be such that zi and zj are linearly independent,
i.e. zi ≠ czj or zi−j ≠ c. That is, z needs to take on at least two values a, b such that
ai−j ̸= bi−j . Therefore there are two tasks at hand: getting rid of the extension axiom z − Q,
and doing it in such a way that zi−j is not set to a constant. It is shown that a restriction
to Q can be chosen that sets it to the form (b − a)x + a, with a, b satisfying the precondition
for Split. Once this happens, Split is applied to reduce a fraction of high degree terms (after
applying an additional restriction to make sure x does not occur in the axioms, and then
setting x = (b − a)−1(z − a) in order to get rid of the extension axiom).

This process is repeated until the proof is of low Quadratic degree. Then an argument
from [15] (adapting Lemma 3.7 to the extension-variables setting) is used to move to a low
(usual) degree proof of the tautology F|ρ

, where ρ is the union of all restrictions ρi applied in
this process. This contradicts the degree lower bound for F|ρ

. An important element of this
proof is to ensure that none of the restrictions ρis make the tautology easy. To ensure this,
cleanup operations are performed at each iterations using additional restrictions, to restore
to a sub-copy of F where hardness is preserved. These operations work correctly provided
each extension variable depends on only O(log n) of the n variables of F . Also the number
of iterations of this process has to be bounded as well, which gives an upper bound of o(n2)
on the number of extension variables in order to get mildly exponential lower bounds.

Our proof outline

We largely follow the above approach for our lower bound, but show that sub-quadratically
many extension variables with extension axioms that are polynomial sized and depend on a
polynomial fraction of original variables can be handled.

For this we first reduce the above problem to handling low degree extension variables, by
a simple parity lift. Let F be a tautology and let F ′ be obtained by replacing each input
variable x of F by a two bit parity gadget, i.e. x = w1 ⊕w2. Suppose that there is a PC proof
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of F ′ which uses extension variables of size bounded by N c. In each copy of the gadget we
select one variable at random and set the other variable to zero or one with equal probability,
recovering a copy of F (possibly renaming some variables by their negations). It is easy
to see using a probabilistic argument that there exists a restriction where each extension
variable is of degree at most O(log N).

Thus the problem reduces to proving lower bounds for F where extension axioms z − Q

are degree bounded. We then show that when dealing with such extension variables, the
aforementioned process that picks an extension variable z and either sets it to zero or restricts
it to the form (b − a)x + a can be performed with restrictions whose hamming weight is
bounded by the degree of Q.

Finally, we observe that the tautology PHPm,r
n introduced by Razborov [14], which maps

all r sized subsets of [m] to n holes, is immune to such restrictions and can be cleaned up to
restore hardness. This completes our proof.

For the rest of the article, we fix the finite field Fp, p > 2 (since for the case of p = 2
lower bounds for PC with extension variables can be obtained through standard size-degree
tradeoffs, see the discussion in [9], Section 3).

4.2 Relevant material from [9]: Support, Quadratic Degree, Split
Here we introduce the terminology of [9] and state some lemmas about Quadratic degree
and Split from the same. The reader familiar with [9] can directly jump to Section 5.

As noted above, the notions of Quadratic degree and Split here are not the same as in
Definitions 3.2 and 3.3. To define them appropriately in this setting, we first need some
auxiliary notions.

▶ Definition 4.1 (Support of a variable, Singular/Nonsingular variables. [9], Defs 10,11). Let
z − Q(wi1 , . . . , wiκ

) = 0 be an extension axiom associated with z. The set vars(Q) is defined
as vars(Q) = {wi1 , . . . , wiκ

}, and is sometimes also written as vars(z), the set of variables
that z depends on.

The support of z, supp(z) ⊆ [0, p−1], is equal to the set of all values that z can take under
Boolean assignments to vars(z). That is, supp(z) = {Q(α) | α ∈ {0, 1}|vars(Q)|} ⊆ [0, p − 1].
Sometimes this is also denoted by supp(Q).

We say that z is a Singular variable if 0 ∈ supp(z), otherwise it is NonSingular.
For a Boolean variable w, supp(w) = {0, 1} as enforced by the Boolean axiom w2 = w.

As we apply restrictions to a proof (and hence to all the defining axioms), 0 may get
removed from the support of a variable. Thus an extension variable can change from Singular
to NonSingular, but not the other way around. However, Boolean variables that are not set
by the restriction are always Singular.

▶ Definition 4.2 ([9], Definition 12). Let A ⊆ [1, . . . , p − 1], A ̸= ∅. Define ℓ(A) to be the
least ℓ ∈ [1, p − 1] such that the set {aℓ | a ∈ A} is singleton. For a Nonsingular z, define
ℓ(z) = ℓ(supp(z)).

The following lemma from [9] is stated without proof.

▶ Lemma 4.3 ([9], Lemma 13). Let z be a Nonsingular extension variable with extension
axiom z − Q = 0. Then the following polynomial equations are implied by (and therefore
derivable from) the extension axiom for z plus the Boolean axioms for all variables in vars(Q),
in degree at most |vars(Q)|.

1. z − Q′ = 0, where Q′ is the multilinear version of Q;
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2. For any A′ ⊆ [0, p − 1] such that supp(z) ⊆ A′, Πa∈A′(z − a) = 0;
3. zℓ(z) − c = 0 for some c ∈ F∗

p.

In particular, if z is Nonsingular, then the polynomial equation zp−1 − 1 = 0 is implied
by z − Q = 0 together with the Boolean axioms for vars(Q).

▶ Definition 4.4 ([9], Definition 14). For a term t and a variable w, deg(t, w) is equal to the
degree of w in t. Note that since we are working over Fp, deg(t, w) < p for any variable w.
For a term t, the degree of t, denoted deg(t), equals

∑
w∈vars(t) deg(t, w).

Quadratic degree

The following definition of Quadratic degree is taken from [9].

▶ Definition 4.5 (Quadratic degree [9], Definition 10). Let V be a set of variables and let
S be a subset of V . For a pair of terms t1, t2 over V , and a variable w ∈ V , we define
QdegS(t1, t2, w) as follows. If w ∈ S, then QdegS(t1, t2, w) = 1 if w occurs in at least one
of t1 or t2; if w ̸∈ S, then QdegS(t1, t2, w) = 1 if and only if deg(t1, w) ̸= deg(t2, w). The
overall quadratic degree of the pair t1, t2, QdegS(t1, t2), is equal to

∑
w∈V QdegS(t1, t2, w).

The quadratic degree of a polynomial P is equal to the maximum quadratic degree over all
pairs (t1, t2) such that t1, t2 ∈ P . For a proof Π, the quadratic degree of Π is the maximum
quadratic degree over all polynomials P ∈ Π.

▶ Remark 4.6. The above definition of Quadratic degree treats the variables in the set S

differently from the rest of the variables. Typically S will not be explicitly specified, but will
be assumed to be the set of Singular variables. This means that the notion of Quadratic
degree depends on knowing which variables have zero in their support. For instance, for the
pair (z1, z1z2), the Quadratic degree is two if z1 can take the value zero and one if z1 does
not take the value zero. We go on to observe that Quadratic degree always decreases when a
variable changes from being Singular to Nonsingular, and make sure that this is the case
when we prove our lower bound. This follows the approach of [9] whose lemmas we state
below.

▶ Lemma 4.7 ([9], Lemma 16). Let V be a set of variables and let S and T be subsets of V

such that T ⊆ S. Then for any two terms t1, t2 over V , QdegT (t1, t2) ≤ QdegS(t1, t2).

Since applying a restriction cannot make NonSingular variables Singular, Lemma 4.7
implies that the Quadratic degree of any two terms t1, t2, Qdeg(t1, t2) with respect to the
currently Singular variables cannot increase after applying the restriction. This is stated as
Corollary 17 in [9].

▶ Lemma 4.8 ([9], Lemma 20). Let Π be a PC + Ext refutation of F and let z be a Nonsingular
variable. Let Π′ be the proof obtained from Π by reducing each line of Π by zℓ(z) − c = 0 for
some c ∈ F∗

p. Then for any d ≥ 0, the number of pairs of terms of Quadratic degree at least
d in Π′ is at most that of Π.

We will use the following lemma from [9], which is a generalization of the argument from
[15] that shows how to convert a proof with low Quadratic degree to one with low degree.

▶ Lemma 4.9 ([9], Lemma 21). Let F be a set of unsatisfiable polynomials of degree d0 with
a PC refutation of Quadratic degree at most d ≥ d0 over Fp. Then F has a PC refutation of
degree at most 3pd.
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The Split operation

In this section, we define the operation Split and state its properties. We will only need
to handle variables whose only axiom is (z − a)(z − b) = 0 for a, b ∈ F∗

p, as we will apply
an assignment to any general extension variable to reduce to this case. Below we state the
relevant lemmas from [9].

▶ Lemma 4.10 ([9], Lemma 23). Let z be an extension variable such that supp(z) = {a, b},
where a ̸= b and a, b ∈ F∗

p and let P be any polynomial. Then, for any two distinct numbers
i, j where i < j and aj−i ̸= bj−i, there exists a unique polynomial R = R0zi + R1zj such that
R = P mod (z − a)(z − b).

▶ Remark 4.11. It can be checked that for polynomial P =
∑

l<ℓ(z) Plz
l, the polynomials

R0, R1 have the following form:

R0 = Pi +
∑

l<ℓ(z),l ̸=i,j

c0lPl

R1 = Pj +
∑

l<ℓ(z),l ̸=i,j

c1lPl

for some constants c1i, c0i ∈ Fp. Note that any pair of terms (t1, t2) occurring in either R1
or R0 also occurs in P as (t1zi′

, t2zj′) with (i′, j′) ̸= (i, j). That is, the contribution to
Quadratic degree of P by the interaction of zi and zj is removed.

▶ Definition 4.12 (Split [9], Definition 24). [9] Let z be an extension variable with extension
axiom z − Q = 0 such that supp(z) = {a, b} ⊆ [1, . . . , p − 1]. For any polynomial P and for
every i < j such that aj−i ̸= bj−i, let R = R0zi + R1zj be the unique polynomial given by
Lemma 4.10 such that R = P mod (z−a)(z−b). Then Splitz,i,j(P ) is defined to be the pair of
polynomials {R0, R1}. For a proof Π, and an extension variable z such that supp(z) = {a, b},
we define Splitz,i,j(Π) to be the sequence of lines Splitz,i,j(P ), over all P ∈ Π.

▶ Lemma 4.13 ([9], Lemma 25). Let Π be a refutation of a set of unsatisfiable polynomials
F . Let z be a variable that occurs in Π such that the polynomials in F do not contain z

except for the axiom (z − a)(z − b) = 0 for some a, b ∈ F∗
p. Then for any i, j such that i < j

and aj−i ̸= bj−i, Π′ = Splitz,i,j(Π) forms a valid refutation of F modulo (z − a)(z − b).

5 Proof of the lower bound from Theorem 1.2

5.1 The tautology
We use the PHPm,r

n tautology defined in [14]; it is a variant of the Pigeonhole principle. In
this variant, there are m “fractional” pigeons, r fractional parts add up to a whole “pigeon”,
and there are n holes. The Boolean variables determine which part goes into which hole. A
fractional part can participate in multiple pigeons, and can be assigned to multiple holes.
The constraints enforce that no two r-sized subsets are mapped to the same hole, and no
r-sized subset is mapped to more than one hole. When

(
m
r

)
> n, this is unsatisfiable. We

describe the formula formally below.

▶ Definition 5.1 (PHPm,r
n ; Def 4.1 in [14]). Let m, n, r > 0 be such that

(
m
r

)
> n. Let xij,

for i ∈ [m], j ∈ [n], be variables that indicate the mapping of elements of [m] to holes in [n].



12 New lower bounds for Polynomial Calculus over non-Boolean bases

For a subset I of [m], abbreviate the term
∏

i∈I xij to tIj; note that tIj is only shorthand
and not a variable in the formula. Then PHPm,r

n is the following set of equations.

tI1 + tI2 + · · · + tIn = 1 ∀I ⊂ [m], |I| = r

tIj = 0 ∀I ⊂ [m], |I| = r + 1; ∀j ∈ [n]
tIj1tIj2 = 0 ∀I ⊂ [m], |I| = r; ∀j1, j2 ∈ [n], j1 ̸= j2.

(Note that the last set of constraints is already implied by the first two constraint sets.
It is nonetheless included, in [14], where a degree lower bound is shown even when these
constraints are explicitly given and do not have to be derived.)

We state the lower bound from [14] on degree of PC proofs for PHPm,r
n .

▶ Proposition 5.2 ([14], Theorem 4.2). For any ground field F and any m, r, n > 0 such that(
m
r

)
> n, PHPm,r

n requires proofs of degree n/2 + 1 to refute in PC over F.

5.2 The lower bound
We begin by showing in Theorem 5.5 a weak size lower bound for the PHPm,r

n formulas in PC
when extension variables are allowed, provided the degree of the extension axioms is bounded.
To establish the strong lower bound in Theorem 1.2, as discussed in Section 4.1, we show
that a lift with the parity gadget (an XOR-ification of the formula), followed by a well-chosen
restriction, achieves a degree-reduction of the extension axioms, and use Theorem 5.5.

The weak size lower bound of Theorem 5.5 also uses degree reduction, but it reduces the
quadratic degree of the proof. A crucial ingredient in the quadratic-degree-reduction step is
finding low-Hamming-weight assignments with certain nice properties. We first prove the
existence of these assignments, and then establish the weak lower bound.

▶ Lemma 5.3. Let z be an extension variable with the extension axiom z − Q and let l < p

be a constant such that Ql is not a constant, i.e. supp(Ql) is not singleton. Then there exists
a partial assignment σ of Hamming weight at most l deg(Q), such that for some x ∈ vars(z),
Q|σ

= (b − a)x + a for some a, b with al ̸= bl.

Proof. Let X be the set of variables of Q and let x be a variable that appears in Ql. Since
Ql is not a constant, such a variable always exists. Fix a total ordering over monomials in X

that respects degree. Let M be the least monomial in Ql according to this ordering that
contains x. Let σ be an assignment to X \ {x} obtained as follows. We set every variable
in M other than x to one, and every other variable in X \ {x} to zero. Note that this sets
every monomial lesser than M to a constant since it does not contain x. The same is true
for monomials greater than M that do not contain x. Since the ordering respects degree and
M is minimal according to it, any monomial greater than M that contains x also contains
at least one variable that is not in M and hence is set to zero by σ. Therefore, M is the
only monomial containing x in Ql that survives the restriction under σ; thus (Ql)|σ

= αx + β

for some α ̸= 0. Since (Ql)|σ
= (Q|σ

)l, it follows that Q|σ
has the form (b − a)x + a, where

al = β ̸= α + β = bl. By our choice of σ, it has Hamming weight at most the degree of the
monomial M, which is bounded above by deg(Ql) ≤ l deg(Q). ◀

This lemma will enable us to satisfy the necessary precondition for applying a Split
operation on the variable z, when required.

▶ Corollary 5.4. Suppose that z is an extension variable with the extension axiom z − Q,
where 0 ∈ supp(Q). Then there exists an assignment of Hamming weight at most p deg(Q)
which sets Q to zero.
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Proof. If supp(Q) = {0}, then any assignment to vars(Q) will do. If we are in the nontrivial
case where supp(Q) is not a singleton, then for every l ∈ [p − 1], Ql is not a constant, and
thus we can choose l = p − 1 in Lemma 5.3. We thus obtain a partial assignment σ of
Hamming weight (p − 1) deg(Q) such that Q|σ

= (b − a)x + a, with (Q|σ
)p−1 not a constant;

i.e. ap−1 ̸= bp−1. This means that exactly one of a, b is zero. Setting the value σx to be 0 if
a = 0 and 1 otherwise, we see that Q|σ∪σx

= 0. The Hamming weight of σ ∪ σx is at most
(p − 1) deg(Q) + 1 ≤ p deg(Q). ◀

We now state and prove our main theorem.

▶ Theorem 5.5. Let Π be a PC refutation of PHPm,r
n with M extension variables, each of

degree ≤ k and depending on ≤ κ variables of PHPm,r
n , such that r > 2pk. Then the size of

Π is at least exp(Ω(n2/(M + mn)κk)).

Proof. Let s be the size of the given refutation Π.
For a threshold d that we will choose later and depends on s, we will first show how

to reduce the Quadratic degree to at most d. This will be achieved by finding a suitable
restriction, in stages, that kills all quadratic terms of quadratic degree more that d. In the
process, the restricted formula will become PHPm,r

n′ for some n′ ∈ Θ(n). Using Lemma 4.9 we
will convert this to a PC proof of PHPm,r

n′ of degree at most 3pd but with extension variables,
and then by directly substituting the extension axioms, to a PC proof of degree at most 3pkd

without extension variables. Finally, using the degree lower bound from Proposition 5.2, we
will obtain the desired lower bound on s.

Let H be the set of all pairs of terms in Π of Quadratic degree more than d. We know that
|H| ≤ s2. In each iteration, we will find a restriction that removes a fraction α of the pairs
from H, for α = d

4p2(M+mn) , and removes no more than κ holes from the formula. Thus for
a t satisfying (1 − α)t|H| ≤ (1 − α)ts2 < 1, after t iterations, no high-degree quadratic terms
survive, and the number of remaining holes is n′ ≥ n − tκ = n(1 − tκ/n). Since 1 − α ≤ e−α,
note that t is roughly 2 log s/α. At this point, the choice for d is clearer; we choose d so that
tκ/n is a small enough constant; say tκ/n ≤ 1/2. Choosing d so that α = 4κ log s

n does the
trick; in particular, d = 16p2(M+mn)κ log s

n . With this choice of d, continuing with the outline
above, we obtain a PC proof of degree 3pkd without extension variables for PHPm,r

n′ with
n′ ≥ n/2. From Proposition 5.2, we conclude that 3pkd ≥ n′/2 ≥ n/4, and plugging in the
chosen value of d, we see that

log s ≥ Ω
(

n2

kp3(M + mn)κ

)
.

Now we come to the main part of the proof, namely showing how to obtain the desired
restriction in each iteration.

In each iteration, we first perform the following preprocessing steps. For each extension
variable z with extension axiom z − Q, we compute its support and check whether zero is in
it. If not, we compute ℓ(z) (Definition 4.2) and reduce the proof by zℓ(z) = c. By Lemma 4.3
the latter is derivable from the extension axiom, and by Lemma 4.8, it does not raise the size
of H. Moreover, our measure of Quadratic degree can only decrease when variables switch
from Singular to Nonsingular; see comment after Lemma 4.7.

We then pick a variable y that by an averaging argument contributes to the quadratic
degree of at least a d/(M + mn) fraction of pairs in H. There are three cases to consider.
Case 1: y is an original Boolean variable, say xuv for some u ∈ [m], v ∈ [n]. We choose the
restriction that sets all variables xw,v to 0, thus removing the hole v from the formula. Since
xuv is also set to 0 this way, d/(M + mn) fraction of pairs in H are killed.
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Case 2: y is an extension variable, say z, with the extension axiom z − Q, with 0 ∈ supp(Q),
with deg(Q) ≤ k and |vars(Q)| ≤ κ.

By Corollary 5.4, we can find an assignment σ to vars(Q) that has Hamming weight at
most pk and sets Q to 0. We apply this assignment to the proof, additionally setting z to
zero in the proof as well. We then look at how this assignment affects the tautology, and
apply an additional assignment to restore to PHPm,r

n′ where n′ ≥ n − κ.
We say that a hole v is affected if for some u, the variable xuv is set by σ. Note that at

most κ holes are affected since σ only sets variables in vars(Q). We say that an assignment
commits a pigeon I ∈

([m]
r

)
to a hole v if it sets the term tIv to 1. Now note that σ does

not commit any pigeon I to any affected hole v, because each term tIv is the product of r

variables, and the Hamming weight of σ is at most pk which is less than r/2. Thus we are free
to remove an affected hole from the formula. We do so by setting to zero all unset variabels
xuv for each affected hole v; this makes tIv = 0 for all affected holes v and all pigeons I. The
resulting formula is PHPm,r

n′ where n′ ≥ n − κ, and applying the restriction to the current
refutation gives a new refutation of this reduced formula with at most (1 − d/(M + mn))|H|
pairs of Quadratic degree d or more.
Case 3: y is an extension variable, say z, with the extension axiom z − Q, and 0 ̸∈ supp(Q).
This is the trickiest case.

We need to find a suitable assignment to the variables in vars(Q) to kill many high-degree
quadratic terms involving z. Recall from Definition 4.5 that, since z is non-singular, z

contributes to the degree of a quadratic term pair through terms t1, t2 where the degrees
of z in t1 and t2 are different. By averaging, we can pick indices 0 ≤ i < j ≤ p − 1 such
that pairs of terms of the form (t1zi, t2zj) contribute at least a d/p2(M + mn) fraction of
the contribution of z. Since we had preprocessed using Lemmas 4.3 and 4.8, we know that
i, j < ℓ(z), so zj−i is not a constant. Hence, using Lemma 5.3 with l = j − i, once again
we obtain an assignment σ of Hamming weight ≤ lk such that Q|σ

= (b − a)xuv + a, where
aj−i ̸= bj−i and xuv is some variable of PHPm,r

n .
We would like to apply Splitz,i,j to remove the contribution of these term pairs with

zi, zj (see Section 4.2 and Remark 4.11) and reduce high Quadratic degree terms. But
first we need to meet the preconditions for applying Splitz,i,j . In particular, we need to
get rid of all axioms containing z, except for (z − a)(z − b) = 0; even the extension axiom
z = (b − a)xuv + a must be eliminated. We also need to restore to a version PHPm,r

n′ . To this
end, we apply σ and perform cleanup in a way similar to Case 2, before applying Splitz,i,j .
The only difference is that here we need to get rid of all axioms containing xuv, without
actually setting the latter.

We handle holes v′ other than v affected by σ exactly as in Case 2; all variables touching
this hole (xwv′) but unset by σ are now set to 0, eliminating hole v′.

For the hole v, all variables touching this hole (xwv) but unset by σ are now set to 0,
but xuv is left unset. Nonetheless, we claim that all occurrences of xuv in the axioms are
now eliminated. This is because every such occurrence is in a term tIv, for some subset I of
[m] of size at least r. Since σ sets at most lk < pk variables to one and r > 2pk, each such
occurrence contains at least two variables unset by σ, and in particular contains an unset
variable other than xuv. Therefore, setting all variables of hole v (other than xuv) which are
unset by σ to zero gets rid of all such occurrences and thereby eliminates hole v.

Thus, we end up with a refutation of PHPm,r
n′ for n′ ≥ n − κ such that all affected holes

are eliminated, and xuv is still unset but does not appear in the axioms.
We now intend to substitute xuv = (b − a)−1(z − a). Note that under this substitution,

the extension axiom gets eliminated (becomes 0 = 0) and the Boolean axiom x2
uv − xuv = 0
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reduces to (z − a)(z − b) = 0. This is possible by Lemma 4.3(2), and will enable us to satisfy
all the preconditions to apply Split on z. However, there is a still a catch. The substitution
might actually blow up the number of pairs in H, because it creates three additional pair
of terms for every pair of terms (t1, t2) containing x. To handle this, we note that if the
substitution blows up the number of high Quadratic degree pairs by more than a factor of
3d/4p2(M + mn), then this implies that at least a d/4p2(M + mn) fraction of pairs of terms
must have contained xuv before this substitution. (The same argument is also used in [9].)
In this case, we can just set xuv = 0 instead of the above substitution; this will remove a
d/4p2(M + mn) fraction of pairs of terms (and prevent the need to use Split). Otherwise,
we apply the substitution, introducing at most 3d|H|/4p2(M + mn) new pairs of terms,
and then use Splitz,i,j to obtain a valid refutation of the reduced formula (Lemma 4.13),
removing at least the d|H|/p2(M + mn) pairs of terms which had quadratic degree with a
contribution from z, i, j. Either way, the number of high-degree quadratic terms reduces by
a fraction at least d/4p2(M + mn). Thus, we obtain a refutation of PHPm,r

n′ with at most
(1 − d/4p2(M + mn))|H| pairs of terms of Quadratic degree at least d, with n′ ≥ n − κ.

This completes the description of how to extract a good restriction in each iteration. The
fraction of high-degree Quadratic pairs eliminated is at least d/(M + mn) in the first two
cases and at least d/4p2(M + mn) in case 3. So in every case, at least α = d/4p2(M + mn)
fraction of the pairs is removed. With the analysis given in the beginning of this proof, the
proof of Theorem 5.5 is now complete. ◀

Finally, applying a lift with the XOR2 gadget and by choosing the parameters carefully,
we obtain our claimed lower bound of Theorem 1.2. For convenience, we restate the theorem
here.

▶ Theorem 1.2. For every N > 0 large enough, any 1 > ϵ, δ > 0, constant c > 0, and prime
p, there exists a tautology F over N variables such that any PC refutation of F over Fp with
N1+ϵ(1−δ) extension variables, each depending on N1−ϵ variables of F and of size at most
N c, requires size exp(Ω(N ϵδ/poly log N)).

Proof. Pick an arbitrary n, and set r = 100p(c + 2) log n and m = 2r, so that
(

m
r

)
> n.

Let G be the formula PHPm,r
n . Let F be the formula ontained be composing G with the

parity gadget on two variables; F = G ◦ XOR2. That is, replace each variable x in G by
the XOR of two new variables x1 and x2. The number of variables in the formula F is
N = 2mn = Θ(n log n).

Suppose we are given a PC refutation Π of F of size s, that uses no more than N1+ϵ(1−δ)

extension variables, each of arity bounded by N1−ϵ and size bounded by N c. We will recover
from Π a refutation of G, and then use Theorem 5.5 to obtain the stated lower bound on s.

Set k = 10(c + 2) log N ; then r > 2pk. We will find a restriction that reduces F to G, and
reduces the degree of all extension axioms in Π to at most k. Note that the total size of all
the extension axioms put together is at most N c × N1+ϵ(1−δ) < N c+2. Let ρ be a restriction
that independently, for each variable x of G, picks one of x1, x2 uniformly at random, and
sets it to 0 or 1 with equal probability. For any term t of degree at least k, the probability
that t survives after applying ρ is at most (3/4)k. By the union bound, the probability that
some term in an extension axiom survives ρ is at most N c+2(3/4)k, which is strictly less
than 1 for our choice of k. Hence there exists a restriction ρ that sets exactly one variable in
each XOR gadget, and which reduces all extension axioms to degree at most k. A suitable
renaming of the surviving variables (and interchanging with the negated literal if necessary)
recovers G.
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We thus have a PC refutation Π′ = Π|ρ
of G of size at most s. The number of extension

variables in Π′ is M = N1+ϵ(1−δ) = Õ(n1+ϵ(1−δ)), and each has arity at most κ = Õ(n1−ϵ)
and degree at most k = Θ(log n). Further, M + mn = θ(M). Also as already noted,
r > 2pk. Hence by Theorem 5.5 we conclude that s is at least exp(Ω̃(n2/(M + mn)κk)) =
exp(Ω̃(n1+ϵ/n1+ϵ(1−δ))) = exp(Ω̃(N ϵδ)) (where the Õ, Ω̃ notation hides poly log factors).
This is the claimed bound. ◀
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Appendix

We include here a self-contained proof of Lemma 3.7.

▶ Lemma 3.7. [[15], Lemma 3.6] Let Π be a refutation of a set of axioms F of degree d0
with Quadratic degree at most d. Then there exists a refutation Π′ of F with (usual) degree
at most 2 max(d, d0).

Proof. Let Π = {Pj}j . Now, consider Π′ = {P ′
j}j where P ′

j = tjPj , with each tj ∈ Pj

carefully selected. Since the degree of tjPj is bounded by the Quadratic degree of Pj , every
line in Π′ is of degree at most d. However, Π′ is not an immediate valid refutation of F ,
but it can be transformed into one. We will show that each line of Π′ can be derived from
previous lines and axioms of F in degree at most 2max(d, d0), completing the proof. We
proceed by induction on line number j.

If Pj is an axiom, then we set tj to be an arbitrary term in Pj and derive P ′
j = tjPj in

degree 2d0 starting from Pj .
(Note that in [15], it is claimed that this step can be derived in degree d0. But this is not
always so. For instance, if p = x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 has degree d0 = 3, and
d = 2, then for any term t ∈ p, tp has degree 2 but needs degree 4 > max{d, d0} for the
derivation. )

If Pi = xPj for some j < i, then we select ti = xtj , and consequently, P ′
i = tiPi = tjPj =

P ′
j is derived without raising the degree.

Finally, if Pi = Pj1 + Pj2 , we choose ti to be an arbitrary term in Pi and derive
P ′

i = tiPi = titj1P ′
j1

+ titj2P ′
j2

. We argue that the degree of both titj1 and titj2 is at most d,
and as a result, P ′

i can be derived from P ′
j1

and P ′
j2

in degree at most 2d, which completes
the proof. To justify this assertion, let ti ∈ Pj1 without loss of generality (every term in
Pi appears in either Pj1 or Pj2). Then degree of titj1 is bounded by the Quadratic degree
of Pj1 and hence by d. Additionally, if tj2 ∈ Pi, then the degree of titj2 is bounded by the
quadratic degree of Pi and is also bounded by d. In the case where tj2 ̸∈ Pi, it means that it
was cancelled in the sum and therefore tj2 ∈ Pj1 and so degree of titj2 is bounded by the
Quadratic degree of Pj1 and is again bounded by d.

Thus all lines in Π′ can be derived from previous lines and axioms of F in degree at most
2max(d, d0). Since the last line of Π′ is 1, we get that Π′ can be successfully transformed
into a valid proof of F of degree 2max(d, d0). ◀
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