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—— Abstract

In this paper, we obtain new size lower bounds for proofs in the Polynomial Calculus (PC) proof
system, in two different settings.

When the Boolean variables are encoded using £1 (as opposed to 0,1): We establish a lifting
theorem using an asymmetric gadget GG, showing that for an unsatisfiable formula F, the lifted
formula F o G requires PC size 2°¥? | where d is the degree required to refute F. Our lower
bound does not depend on the number of variables n, and holds over every field. The only
previously known size lower bounds in this setting were established quite recently in [Sokolov,
STOC 2020] using lifting with another (symmetric) gadget. The size lower bound there is
99((d=do)?/m) (where do is the degree of the initial equations arising from the formula), and is
shown to hold only over the reals.

When the PC refutation proceeds over a finite field F, and is allowed to use extension variables:
We show that there is an unsatisfiable AC°[p] formula with N variables for which any PC
refutation using N1T<(1~% extension variables, each of arity at most N1~ and size at most N¢,
must have size exp(Q(N /polylog N)). Our proof achieves these bounds by an XOR-ification of
the generalised PHP;"" formulas from [Razborov, CC 1998].

The only previously known lower bounds for PC in this setting are those obtained in [Impagliazzo-
Mouli-Pitassi, CCC 2023]; in those bounds the number of extension variables is required to be
sub-quadratic, and their arity is restricted to logarithmic in the number of original variables.
Our result generalises these, and demonstrates a tradeoff between the number and the arity of
extension variables. Since our tautology is represented by a small ACO[p] formula, our results
imply lower bounds for a reasonably strong fragment of AC®[p]-Frege.
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1 Introduction

Propositional proof complexity is the field of study of the complexity of proofs for tautological
Boolean formulae. Cook and Reckhow [6] introduced this area in their seminal work with
the ultimate goal of resolving the question of NP versus coNP using upper/lower bounds for
stronger and stronger proof systems. Polynomial Calculus (PC) is one such propositional
proof system that has received wide attention since its introduction by Clegg, Edmonds and
Impagliazzo [5]. Degree lower bounds for PC and its variant PCR (PC with Resolution)
have been proved starting with the work of Razborov [17], followed by a long series of
works [12], [4], [1], [14], [7]. These translated to size lower bounds through a size-degree
connection established in [5], [12]. Despite these works showing that we have a reasonable
understanding of PC, there has been little progress towards lower bounds for the stronger
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system AC® [p]-Frege, which was one of the main motives for defining PC. Therefore, this
indicates that we have to look at systems stronger than PC in order to get new insights.

Grigoriev and Hirsch [8] introduced one such system called constant-depth PC, where in
addition to the rules of PC we allow extension variables of constant depth to be introduced
and used as new variables. They showed that this system simulates AC°[p]-Frege (at a
proportional depth), making it a suitable target for lower bounds. However, Raz and
Tzameret [16] showed that this system is already powerful enough to simulate the proof
system Cutting Planes (which deals with integer linear inequalities) with polynomially
bounded coefficients. Finally, Impagliazzo, Mouli and Pitassi [10] showed that this system
can simulate at a fixed constant depth ACO[q]—Frege for any prime modulus ¢, Cutting Planes
and the semialgebraic proof system sum-of-squares SOS with unbounded coefficients, and
can also simulate TC%-Frege at a proportional depth. This implies that general lower bounds
for this system are much harder than lower bounds for AC"[p]-Frege.

The simplest subsystem of the above for which size lower bounds were unknown until
recently is PC over +1 variables instead of {0,1}. The switch from the latter basis to the
former can be made using an affine transformation, which preserves degree lower bounds.
However, known techniques based on the size-degree connection fail over this basis since they
rely on terms vanishing when variables are set to zero. Moreover, the Tseitin tautologies
require large PC degree but have small PC size over £1, precluding the existence of such
a generic connection. Sokolov [18] recently showed how to go past this barrier and proved
size lower bounds for PC over +1 variables. Impagliazzo, Mouli and Pitassi [11] improved
and generalized these bounds to PC over finite fields F, with a sub-quadratic number of
extension variables, where each extension variable depends on O(logn) original variables.

Our Results.

In this work, we extend the results of both [18] and [11]. For our first result, we show a
generic degree-to-size lifting result for PC over £1 basis (PCy41y).

» Theorem 1.1. Let F' be an unsatisfiable formula over variables xy - - - x,,, with a polynomial
encoding of degree dy, which requires degree d > dy to refute in PC. Let Ind denote the one-bit
indexing gadget. Let F o Ind be the formula obtained by replacing each x; by Ind(w;g, w;1, w;2)
for a fresh set of variables w;g, w1, wio € {1}. Then F o Ind requires size 22%d) 1o refute in
PC over £1 basis.

Sokolov showed such a lifting result for the SOS proof system, using a symmetric gadget
with certain properties (e.g. majority). By showing that SOS can simulate PCyy;y over
the reals (with respect to both size and degree), similar to the findings in [3] for the {0,1}
basis, Sokolov also obtained a SOS degree to PCy11; size lift over R. In his concluding
remarks, Sokolov posed the question of directly proving a degree-to-size lifting result for
PC{41}, irrespective of the field. Our result addresses this question, offering a lifting result
for PCy41) over any field F using a one-bit indexing gadget.

Furthermore, Sokolov’s PCy.1} size lower bounds over R for lifted formulas are of the
form 29((d=do)*/n) (where n is the number of variables, dy is the degree of the initial
equations arising from the unlifted formula, and d is the SOS degree lower bound for unlifted
formula), yielding meaningful results only when d = w(y/n). In contrast, our result offers
meaningful PCy, 1y size lower bounds for lifted formulas as long as the unlifted formulas have
a superconstant PC degree lower bound. For instance, the graph version of the Pigeonhole
Principle (GPHP) based on a sufficiently expanding bipartite graph has a constant degree
proof over SOS [9] but has a degree of Q(n) over PC [2, 14]. Hence, using Sokolov’s lifting
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theorem with GPHP as an unlifted formula yields nothing, whereas our result shows that
GPHP lifted with a one-bit indexing gadget has exponential size in PCyy irrespective of
the field. This also gives a straightforward exponential size lower bound for PCy1;, a result
only recently proven in Sokolov’s work. Lastly, we believe that our result is arguably simpler
to prove. This result is inspired by the work of Krause and Pudlék [13].

As corollaries of this result, we also obtain (1) a size lower bound in PCy; for random
3-CNF formulas lifted with one bit indexing, Corollary 3.8, (2) an arguably simpler proof of
the size separation between PCy43 and SOSy4q3, Corollary 3.9, and (3) an improved version
of the degree-to-size lifting for SOSy, 1y, Theorem 3.10.

In our next result, we strengthen the lower bounds of [11] for PC over finite fields to
handle a sub-quadratic number of extension variables, each of which is of polynomial size and
depends on a polynomial fraction of the original variables. While [11] showed lower bounds
under the same setting for a sub-quadratic number of extension variables, they restricted the
arity of these extension variables, i.e., the number of original variables they can depend on, to
be logarithmic in the number of original variables. Thus, we have an exponential improvement
over the result of [11] in the arity of the extension variables provided the extension axioms
remain small. Moreover, the constraint of polynomial-sized extension axioms in our result is
also implicitly present in [11], as they restrict the arity of extension axioms to be logarithmic
in the number of original variables, thereby only allowing polynomial-sized extension axioms.

» Theorem 1.2. For every N > 0 large enough, any 1 > ¢,5 > 0, constant ¢ > 0, and prime
p, there exists a tautology F' over N wvariables such that any PC refutation of F' over F), with
N1+e(=9) extension variables, each depending on N'—¢ variables of F and of size at most
Ne¢, requires size exp((N /polylog N)).

Our Techniques.

In both our results, the notion of quadratic degree introduced in [18] plays a crucial role.
This is the maximum degree that can be obtained from a PC refutation by multiplying any
two terms that appear in the same line; see Definition 3.2. Sokolov’s insight was that it is
easier to reason about this measure for a refutation, and at the same time, it does carry
information about the usual degree. In particular, a refutation with low quadratic degree
can be transformed into one with low degree; Lemma 3.7. An adaptation of this measure
and this method was subsequently used in [11] to similarly reason about refutations using
extension variables. A non-trivial part in both these is establishing that if a variable appears
in the refutation but not in any axiom (other than the Boolean axiom or an extension axiom
of a specific type), then it can be removed from the proof; Lemmas 3.4 and 4.13. This seems
self-evident but needs to be done with care.

To prove our first result Theorem 1.1, we follow Sokolov’s approach, but we employ a lift
by the (asymmetric) one-bit Indexing gadget. The gadget, on variables wq, w1, ws, selects
the value of wy if wy = —1 (in this case, ws is irrelevant) and that of ws otherwise (now wy
is irrelevant). If there is a small enough proof, then the probabilistic method guarantees
the existence of an assignment to all the selector variables so that under this restriction,
every high-degree quadratic term contains an irrelevant variable. The restricted refutation is
in fact a refutation of the unlifted formula, but may use irrelevant variables along the way.
Such irrelevant variables can be removed from the restricted proof as discussed above, and
then Sokolov’s transformation from low-quadratic-degree to low-degree can be employed,
yielding a contradiction.

To prove our second result, we closely follow the approach of [11], which we outline in
Section 4. However, to handle extension variables of large arity and polynomial size, we use a
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similar idea as above; composing a hard tautology with a simple gadget. The gadget we use
here is just the XOR; gadget (the parity of two variables). We begin by considering family of
restrictions where, for each XORjy gadget, one of the variables is assigned a random bit while
the other variable remains free. Such restrictions recover the hard formula (possibly with
some variables negated). Using the probabilistic method once again, it is easy to guarantee
the existence of one such restriction under which every extension variable axiom, despite
having a large arity, reduces to logarithmic degree due to its polynomial size. Thus the
problem reduces to proving a size lower bound for the original unlifted tautology, where
extension axioms are bounded by logarithmic degree. Such extension variables can be handled
using the approach of [11] by further carefully chosen restrictions of small size and even
smaller Hamming weight; this size lower bound is shown in Theorem 5.5. The hard formula
we choose is the generalised Pigeon-Hole-Principle formula PHP]"", introduced by Razborov
in [17] (see Proposition 5.2), and we show that applying such small restrictions preserves
the degree hardness shown by Razborov. The system of polynomials over F,, underlying our
tautology is not a translation of a small CNF formula (as in [11]). Nevertheless, they can be
represented by small size, low depth AC°[p] circuits. Therefore, our lower bounds still imply
lower bounds for (the corresponding fragment of) AC°[p]-Frege.

We note here that the notions of Quadratic degree and the associated operation Split
which reduces it were introduced by Sokolov [18] and generalized in Impagliazzo, Mouli,
Pitassi [11]. Since we extend results of both works, we use two different but very related
notions of Quadratic degree and Split in this paper: in Section 3 we use the notions from
[18] and in Sections 4 and 5 we use the notions from [11].

Organisation of the Paper.

In Section 2, we include the basic relevant definitions of the proof systems. In Section 3 we
describe the setting where the encoding is over £1, and prove Theorem 1.1. In Section 4, we
consider the setting where extension variables are used, and describe all the facts and results
from [11] that we crucially use. In Section 5 we prove Theorem 5.5 and Theorem 1.2.

2  Preliminaries
We follow the notation from [18, 11].

» Definition 2.1 (Polynomial Calculus/Polynomial Calculus Resolution). LetI' = {P; ... Py}
be an unsolvable system of polynomials in variables {z ...z, } over F. A PC (Polynomial
Calculus) refutation of T is a sequence of polynomials {R; ... Rs} where Rs = 1, and for
every £ € [s], Ry is either a polynomial from T, or is obtained from two previous polynomials
R, Ry, 3,k < £, by one of the following derivation rules:

R;=aR; + Ry fora, € F

Ry = x; Ry, for some i € [n]

The size of the refutation is Y ,_, |Re|, where |Ry| is the number of monomials in the
polynomial Ry. The degree of the refutation is max, deg(Ry).

A PCR (Polynomial Calculus Resolution) refutation is a PC refutation over the set of
Boolean variables {x1...Tn,Z1...Tn} where {Z1...Z,} are twin variables of {x1 ...z}
That is, over the {0,1} encoding, the equations v? —x; =0, ;> —2; =0 and x; + T; — 1 =0
are treated as avioms. Similarly, over the £1 encoding, the equations 2 —1 =0, ;> —1 =0
and x;x; + 1 =0 are treated as axioms.
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In the literature, the terms PC and PCR are often used interchangeably. The notion of
degree is the same in both, but size in PC with the {0,1} encoding of Boolean variables can
be much larger than in PCR. Throughout this paper, we say PC but really mean PCR. In
particular, our size lower bounds are for PCR.

Note that the minimal degree required to refute a formula is independent of whether
Boolean variables are encoded over {0,1} or over +1. However, the minimal size crucially
depends on the encoding. As is well known [4], suitable Tseitin formulas require degree n,
hence they require size exp(§2(n)) over the {0, 1} basis using size-degree connection, but have
linear-size refutations over +1.

As is standard, we work in the ideal modulo the Boolean axioms, and hence the polynomials
in all lines are multilinear in the original variables. Technically, on deriving a higher degree
term, it has to be cancelled by using suitable multiples of the Boolean axiom; however, these
steps do not significantly alter the size or degree of the refutation.

» Definition 2.2 (PC plus Extension Axioms). LetT' = {P; ... P} be a set of polynomials in
variables {x1...x,} over a field F, with no common zero. The polynomials in T' are referred
to as the (initial) axioms. Let z = 21 ...zp be new extension variables with corresponding
extension azioms z; — Qj(x1...x,). A PC+ Ext (PC plus extension) refutation of I' with
M extension azioms Ext = {z; — Qj(z1...2,) | j € [M]} is a PC refutation of the set of
polynomials TV = {Py ... Py,z1 — Q1...20m — Qum}. The size of the refutation is the total
size of all lines in the refutation, including the polynomials in T (where the size of a line
P € 11 is the number of monomials in P). The degree of the refutation is the mazimum
degree of any line in the refutation or in I".

Similar to [11], our notion of extension variables is not recursive in the sense that new
extension variables cannot be defined as functions of existing ones. Our extension variables
are only allowed to depend on the original variables of the tautology.

We also consider the Sum-of-Squares (SOS) proof system, which is a semi-algebraic proof
system. While algebraic proof systems (like PC) are defined over any field and are based
on polynomial equalities, semi-algebraic proof systems are defined only over R and are
based on polynomial inequalities. SOS serves as an analogue to the algebraic Nullstellensatz
proof system (a static version of PC), albeit for polynomial inequalities over the reals,
contrasting Nullstellensatz’s treatment of polynomial equalities over arbitrary fields. Similar
to Nullstellensatz, SOS is a static proof system.

We specifically consider SOS over Boolean variables taking values in {+1, —1}. Formally,

» Definition 2.3 (Sum-of-Squares over {£1} Basis). Let ' = {f1 = 0,..., fm, = 0;h1 >
0,...,hs >0} be an unsolvable system of polynomial equalities and inequalities over Boolean
variables {1, ..., x,} taking values in {+1,—1}. Let R=22 —1=0,...,22 — 1 =0 be the
range azioms enforcing x;’s to be £1. A SOSy; (Sum-of-Squares over {£1} basis) refutation
of T is an explicit list of real polynomials (qo, ..., qs;P1y- - sDmiT1, .- Tn) Such that

do + Z(bhz + Zpifi + Zﬂ(ﬂ?f -1)=-1
i=0 i=1 i=1

and for each i € [s], q; is a sum of squares of polynomials.

The degree of the SOS refutation is max(deg(qo), max;(deg(q;) + deg(h;)), max;(deg(p;) +
deg(f:))). The size of the SOS refutation is |qo| + > i o(|ai| + |hi]) + >oiey ([pi| + 1 fi]), where
|p| is the number of monomials in the polynomial p.



New lower bounds for Polynomial Calculus over non-Boolean bases

To define the degree and size, we have omitted the consideration of terms involving
range axioms, as they do not significantly affect the degree or size of the proof. Henceforth,
we will proceed under the assumption that all computations are performed modulo the
ideal generated by the range axioms. Consequently, all polynomials involved are treated as
multilinear. Furthermore, given our focus on the £1 basis for SOS, we have assumed the
absence of twin variables, as the variable = can be readily substituted with —z.

3 PC size lower bounds over +1 by lifting with one-bit indexing

In this section we prove that if a tautology F requires PC degree d, then the tautology F”
obtained by lifting each variable in F' with a one-bit indexing gadget (over a fresh set of
variables) requires PC size 2%(4) over +1.

» Definition 3.1 (One-bit indexing gadget). Let wo, w1, wy be variables taking values in {£1}.
The function Ind(wg, w1, ws) is defined as follows: Ind(—1, w1, wy) = wy and Ind(1,wy,ws) =
wy. We call wy the selector variable and wy,ws the data variables of the gadget.

Lifting a Boolean formula F' by this gadget for each variable means introducing three fresh
variables wg, w1, ws corresponding to each variable w in F', and replacing each occurrence of
w in F' with an expression equivalent to (1 —wg)wi /24 (14 wg)wz/2, and adding the Boolean
axioms w‘? =1 for j =0,1,2. (Note that if F' is in CNF with narrow (logarithmic width)
clauses, then the lifted formula is also expressible in CNF with only polynomial blowup.)

Our idea is to consider refutations of F' lifted by the indexing gadget, then apply a
restriction to the selector variables yielding a refutation of F' with low quadratic degree, and
thence obtain a small degree refutation of F'. The quadratic degree of a refutation is defined
in [18] using the notion of lazy representations of polynomials, and is rephrased below:

» Definition 3.2 (Quadratic set, Quadratic degree, Quadratic terms over +1; taken from [18],
Section 3.2). Given a proof Il over £1 variables, the Quadratic set of I1, denoted Q(II), is
the set of pairs of terms Q(II) = {(t1,t2) | t1,t2 € P for some line P € I1}.

Denote by QT (II) the set of quadratic terms {tita | (t1,t2) € O(II)}, where the product is
modulo the azioms z3 = 1.

The Quadratic degree of Il is the maz degree of a term in QT (II).

Informally, Quadratic degree is the max degree of the square of each line (before cancellations).

When we apply the chosen restriction to the selector variables in F' o Ind, the irrelevant
variables no longer appear in any of the axioms (except the axioms z7 = 1; we work modulo
those anyway). However, they may still appear in the refutation, and we need to eliminate
them. For this, we use the Split operation introduced in [18].

» Definition 3.3 (Split operation over x [18], Section 5.4). Given a proof 11 = (Py, Py, ..., P;)
and a variable x € {£1}, each line P; of II is of the form P;1x + P, o, where P, 1, P, o do
not contain x. The Split operation at x, denoted by Split,(I1), is the sequence I with the
lines {P1717 1:)1707 P271, P270, ceey Pt71, Pt,O}-

The following lemma shows that Split of a refutation is a valid refutation whenever the
variable we are splitting on does not appear in any axioms except 22 = 1. (That is,  has no
role in the tautology we are considering, but is possible introduced along the way and then
eliminated. The gadget variables rendered irrelevant by our chosen restriction are like this.)
This is in fact a special case of a more general statement shown in [18], and we only need
this case. For ease of reading, we include here a proof of just this special case.
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» Lemma 3.4. Suppose that 11 is a proof and x is a variable that does not appear in any
axioms of 11 except x®> = 1. Then Split, (I1) outputs a valid proof of the axioms of 11, with no
line containing x.

Proof. Let II be the sequence P4, ..., P;. We show by induction on the line number j that
both P;; and P; g are derivable and z-free.

If P; is an axiom, then it is free of z. So the Split version is P;1 = 0, Pjo = P;, and
both these polynomials are derivable.

If P; = aP; + 8P for some i, k < j, then P;p = aP;p + 8P for b=0,1.

If P; = yP; for some i < j and some variable y # x, then P;, = yP;; for b=0, 1.

If P; = xP; for some ¢ < j, then since 2 = 1 we obtain Pj1=PF;pand Pjo=PF;;.

Thus all the lines P;; are derivable and do not contain z.

Since the last line of the proof is P, = 1, we have P,; = 0 and P,o = P, = 1. Thus
Split, (IT) derives 1 and is a valid proof from the axioms of II. <

» Remark 3.5. It may help to visualise the Split, process as follows. Consider the case
where the derivation structure underlying II is tree-like. The tree T is rooted at P;, and is
unary-binary: linear combination nodes have two children and variable-multiplication nodes
have one child. The Split,, process makes two nodes Py, P; for each node P of T, and ends up
creating a forest with two trees Ty, T1. The desired refutation is Tp, since P; o = 1 whereas
P;1 = 0. It can be seen that Ty may also be obtained directly from T as follows: for each
axiom node, if the number of edges along the path to the root labeled by multiplication with
x is odd, replace the axiom by 0. (The construction above would have ended at a source
node which is a P; copy of an axiom, and since axioms are z-free, a P, copy of an axiom is
0.) Then, replace each edge label xz by the label x1.

The lemma below shows that Split, removes all quadratic terms containing x from the
proof, without introducing any new quadratic terms.

» Lemma 3.6. Let Q. (I) be the set of pairs (t1,t2) € Q(I) such that x € tita, and let
QT .(I1) be the corresponding set of quadratic terms.

If (t1,t2) € Q(Split,(II)), then t1 and ty are both x-free, and at least one of (t1,t2), (t1z,t2x),
is in Q(II). Thus QT (Split,(II)) C QT (II) \ QT ,(II).

Proof. Consider a pair (¢1,t2) € Q(Split, (IT). That ¢1,t2 are z-free follows from Lemma 3.4.
The pair (t1,%2) is contributed to Q(Split, (II) by P, for some line P = 2P, + Py of IT and
some b € {0,1}. If Py contributes the pair, then P also contributes the pair to Q(II). If P,
contributes the pair, then P contributes the pair (t1z,t2x) to Q(II). <

Finally, we note below that a proof with low quadratic degree can be transformed into a
proof of low (usual) degree. This lemma is proved in [18], Lemma 3.6 using the notion of
lazy representation of polynomials. For completeness, we include here a very similar proof
but without explicitly using this notion.

» Lemma 3.7. [[18], Lemma 3.6] Let 11 be a refutation of a set of axioms F of degree dy
with Quadratic degree at most d. Then there exists a refutation II' of F with (usual) degree
at most 2max(d, dp).

Proof. Let Il = {P;};. Now, consider II' = {P]}; where P; = t;P;, with each t; € P;
carefully selected. Since the degree of t;P; is bounded by the Quadratic degree of P;, every
line in II’ is of degree at most d. However, II' is not an immediate valid refutation of F,
but it can be transformed into one. We will show that each line of II' can be derived from
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previous lines and axioms of F' in degree at most 2max(d, dy), completing the proof. We
proceed by induction on line number j.

If P; is an axiom, then we set ¢; to be an arbitrary term in P; and derive ij =t;P; in

degree 2dy starting from P;.
(Note that in [18], it is claimed that this step can be derived in degree dy. But this is not
always so. For instance, if p = r1x0x3 + 22324 + T3T4T1 + T4x122 has degree dy = 3, and
d = 2, then for any term t € p, tp has degree 2 but needs degree 4 > max{d, dy} for the
derivation. )

If P, = xP; for some j < i, then we select t; = xt;, and consequently, P/ =t,P;, =t;P; =
PJ{ is derived without raising the degree.

Finally, if P, = P;, + P;,, we choose t; to be an arbitrary term in P; and derive
P! =t,P, = titijjfl + titszJ{Q. We argue that the degree of both ¢;t;, and ¢;t;, is at most d,
and as a result, P} can be derived from P} and P}, in degree at most 2d, which completes
the proof. To justify this assertion, let ¢; € P;, without loss of generality (every term in
P; appears in either P;, or P;,). Then degree of ¢;t;, is bounded by the Quadratic degree
of P;, and hence by d. Additionally, if ¢;, € P;, then the degree of t;t;, is bounded by the
quadratic degree of P; and is also bounded by d. In the case where t;, & P;, it means that it
was cancelled in the sum and therefore ¢;, € P;, and so degree of ¢;t;, is bounded by the
Quadratic degree of P;, and is again bounded by d.

Thus all lines in II’ can be derived from previous lines and axioms of F in degree at most
2max(d, dp). Since the last line of IT" is 1, we get that II' can be successfully transformed
into a valid proof of F' of degree 2max(d, dp). <

We now give a proof of Theorem 1.1, which we restate here for convenience.

» Theorem 1.1. Let F' be an unsatisfiable formula over variables x1 - - - x,,, with a polynomial
encoding of degree dy, which requires degree d > dy to refute in PC. Let Ind denote the one-bit
indexing gadget. Let F o Ind be the formula obtained by replacing each x; by Ind(w;g, w;1, w;2)
for a fresh set of variables wig, w;1, w2 € {£1}. Then F o Ind requires size 28(d) o refute in
PC over £1 basis.

Proof. Let F’ denote the formula F o Ind.

Towards a contradiction, let IT be a refutation of F” of size 2°? for a small enough ¢ > 0.
An assignment p; to the selector variable w;o sets the gadget to one of the two data variables
w;j, j € {1,2}; we say that the other data variable is irrelevant. (If p; sets w;o = —1 then
wjo is irrelevant, else wy is irrelevant.) We construct an assignment p to the selector variables
such that for every pair (t1,t2) € Q(II),) with deg(ti1t2) > d/2, t1t2 contains an irrelevant
variable. The rest of the proof is simple: we apply this p to II to obtain a refutation of a copy
of F without irrelevant variables. However, the irrelevant variables may still appear in the
proof. We then repeatedly apply Split over each irrelevant variable, to obtain a refutation IT’
of F with no irrelevant variables anywhere. (By Lemma 3.4, the result of Split is a valid
refutation.) Since every high-degree pair contains an irrelevant variable, and by Lemma 3.6
all pairs where the product contains an irrelevant variable are removed from the proof, IT’
does not contain any high-degree pair and hence has Quadratic degree less than d/2. Using
Lemma 3.7, we get a refutation of degree less than d of F', contradicting our assumption.

We now show the existence of p through a probabilistic argument. Let t1t2 € QT (II)
with degree in the data variables at least d/2. If, for some gadget, the product ¢1te contains
both data variables, then for any assignment p, t1t2 would contain an irrelevant variable.
So without loss of generality we can assume that ¢1f5 contains only one data variable from
every copy of the gadget. Now, pick a p uniformly at random from {£1}"; i.e. pick the data
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variable at random in each gadget. For a data variable in ¢1t5, the probability that it is picked
is equal to 1/2. Therefore, the probability that t1t5 does not contain any irrelevant variable
is at most (1/2)d/2. Since there are only 2°¢ terms and therefore 22¢¢ pairs in the proof, the
union bound guarantees that there exists a restriction with the required property. <

As a corollary, we obtain an exponential size lower bound for PC;1;y by using any
unsatisfiable CNF formula with a PC degree 2(n) and lifting it with a one-bit indexing
gadget. Specifically, by combining the lifting theorem with the result of Alekhnovich and
Razborov [2] regarding the PC degree of random CNF formulas, we get the following corollary:

» Corollary 3.8. Let ¢ be a random 3-CNF formula on m = O(n) clauses. Then, with high
probability, any PC¢i1y-proof of 1 o Ind has size exp(2(n)).

Another corollary of our lifting result is an easy separation between SOS proof size and
PC proof size over the {£1} basis, a result recently shown by Sokolov [18]. Sokolov showed
that the graph version of the Pigeonhole Principle (GPHP) based on sufficiently expanding
bipartite graphs has an exponential size lower bound for PCyy. Together with the constant
degree and polynomial size upper bound on SOS-proofs (independent of the basis) of GPHP
from [9], he established an exponential separation. We can now achieve an exponential
separation simply by using our lifting theorem.

» Corollary 3.9. Let ¢y be the GPHP formula on sufficiently expanding bipartite graphs, and
let Y be its lift by the one-bit indexing gadget. Then v requires exponential size over PCyyqy,
but has a polynomial size proof over SOS41;.

Proof. The GPHP formulas require (n) PC degree [2, 14]. Hence, by Theorem 1.1, their
lift with a one-bit indexing gadget requires exponential size over PCy41;.

Since GPHP has a constant degree and polynomial size proof over SOS41, lifting it
with a one-bit indexing gadget will still yield a polynomial size proof. <

A proof similar to the PC lifting theorem also works for the SOS proof system, where
given a refutation ) . p;fi+> j qu = —1 of axioms f; = 0, the operation Split at an irrelevant
variable z is defined (following [18]) as the refutation obtained by averaging the values of p;
and ¢? at z = 1 and o = —1 (this is a valid refutation since z is irrelevant). As a result, we
also obtain a degree-to-size lifting theorem for SOS4; for the one-bit indexing gadget.

» Theorem 3.10. Let T ={f1 =0,..., fru =0;h1 >0,...,hs > 0} be an unsolvable system
of polynomial equalities and inequalities of degree dy over (£1)-valued Boolean variables
{z1,...,x,}. Let Ind denote the one-bit indexing gadget. If d > dy is the minimal degree of
an SOS.41 refutation of T', then any SOS1, refutation of T o Ind has size 22(d—do),

Proof. Let f/ = fioInd and A = h;oInd. Then 'oInd = {f] = 0,...,f,, = 0;h] >
0,...,h, > 0}. The input variables to T" o Ind are {w;g,wi1,w;i2li € [n]}, where z; =
Ind(wjp, wi1, wi2). We refer to wyg as the selector variable of the indexing gadget, while w;;
and w;s are termed as data variables.

Now, towards a contradiction, assume that we have an SOS.; refutation

™= (QO5"'aQS;p17"'7pm)

of T o Ind with a size of 2¢(?=9) for a sufficiently small ¢ € (0,1):

G+ ahi+ Y piff =1
=0 i=1
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Consider an assignment p; to the selector variable w;g, setting the gadget to one of the
two data variables w;;, where j € {1,2}. We denote the other data variable as irrelevant. (If
pi sets w;o = —1, then w;y is irrelevant; otherwise, w;; is irrelevant.) For an assignment p
to selector variables and a monomial ¢ over w;; variables, we deem it irrelevant w.r.t p if
it contains an irrelevant data variable. Moreover, we term a monomial as fat if it contains
more than d — dy data variables.

Considering a uniformly random assignment p to selector variables, note that a fat
monomial becomes irrelevant w.r.t. p with a probability of at least 1 —1/2979%. Let H be the
set of fat monomials among the polynomials (qo, . - - , ¢s; P1, - - - , Pm)- Since |H| < 2¢(d=do) by
the union bound, there exists an assignment p to selector variables such that every monomial
in H is irrelevant w.r.t p. We select such a restriction p.

Now, we observe:

I' o Ind|, reduces to I' over relevant data variables.

For each ¢ € [n], let w;;,, j € {1,2}, be irrelevant data variables under assignment p.

Then, 7 under restriction p becomes:

m

dolo+ > _(@ilp)(hil,) + D _(ilo)(fll,) = —1.
1=0

i=1

Since hj|, = h; and f/|, = fi, and since a sum-of-squares (the polynomials g;’s) restricted
by p is still a sum-of-squares, we see that 7|, is an SOS4; refutation of I'.

Note that the restrictions ¢;|,, pi|,, may still contain irrelevant data variables, which
eventually cancel out in the refutation 7|,. We eliminate these by assigning them values in
{+1, —1} uniformly at random and considering the expected resulting value on each side of
the equation. Since the refutation 7|, is a polynomial identity, it will remain an equality if
we take expectations on both sides. Letting E; denote E
expectation, we get

Wiy ey, » A0 USIng linearity of

m

1= ol + D@l + 301l f

=0 i=1

= Ey[qolp) + Y Erlailpl hi + Y Er[pil] fi-
=0 =1

Note that if a polynomial is a sum of squares of polynomials over variables taking values
in {+1,—1}, then assigning a subset of variables to values uniformly and randomly results
in a random polynomial whose expectation is still a sum of squares. For instance, with
a single square Q = P? = (sz + r)? where x takes values in {+1,—1} and s,r are z-free,
E.[Q] = Ex[(sz +1)?] = Ex[s?2? + r? + 2zsr] = s® + r?. Hence we see that

7" = (Erlgolo), Erlailols - - s Exlgslols Exlpilpls - - - Er[pml o))

is a valid SOS4; refutation of T'.

Furtherrmore, since under p each fat monomial in 7 contains an irrelevant variable, all
the fat monomials vanish under expectation. Thus, each polynomial in 7’ has degree less
than d — dy, and 7’ is a refutation of I" of degree less than d, leading to a contradiction. <

This improves Sokolov’s lifting theorem for SOS.;, where he lifted SOS_1; degree d to

2
exp(Q(@)) SOS.; size, where dg represents the degree of the initial polynomial system.
Consequently, his findings are only significant when d = w(y/n), whereas our results are
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applicable for any superconstant degree lower bound. One notable example is the ordering
principle; as shown in [15], its SOS degree is Q(n'/*). Thus, lifting the ordering principle
with a one-bit indexing gadget will yield exponential size lower bounds using our lifting
result, whereas previous results would fail to achieve this.

4 PC with extension variables over finite fields

We now consider the setting where the encoding is over {0, 1}, the arithmetic is over finite
fields, and extension variables are allowed; this is the setting for our second main result
Theorem 1.2. In this setting, a size lower bound was obtained in [11] provided the extension
variables are subquadratic in number and at most logarithmic in arity. We follow that
approach but improve the result substantially. In this section, we first outline the framework
of [11], then describe at a high level the outline of our proof of Theorem 1.2, and then present
the relevant definitions/lemmas from [11] that we need to use. The actual formal proof of
Theorem 1.2 appears in the next section.

4.1 The approach in [11]

We first outline the framework of [11], whose lower bounds we improve. The proof of the
lower bound in [11] proceeds as follows.

Given a small refutation of a well chosen tautology F' in PC with extension variables, pick
an extension variable z with extension axiom z — @ that contributes to a lot of pairs of terms
of high Quadratic degree (which is a notion similar to Quadratic degree for 1 variables as in
Definition 3.2, but generalized to Fp-valued variables; see Definition 4.5). Extension variables
are not necessarily Boolean; z can take a subset of values in the underlying field (over all
possible values to the Boolean variables in ). If this subset includes zero, apply the partial

assignment that sets z = 0 to the proof to remove all contributions of z to Quadratic degree.

If not, z appears in each line of the proof in the form Py_12¢~ + - + P,z + Py where
¢ is the least value such that 2¢ is a constant. The contributions of z to Quadratic degree

therefore come from interactions of the polynomials P;z* and P;z7, over all pairs (i, j), i # j.

Now pick a good pair (4, j) which contributes at least a 1/p? fraction of the contributions of
z to high Quadratic degree. The key step is to obtain a proof which separates the pair of
polynomials P; and P; in each line into two different lines, using an operation called Split, see
Definition 4.12. (Again, this is similar in spirit to the Split operation from Definition 3.3, but
more nuanced.) Split essentially equates each line P to a polynomial of the form R;z*+ Rgz7,
and solves for R; and Ry in terms of P. In order for Split to output a valid proof, though,
some preconditions needs to be satisfied: the axioms need to be free of z except for the
range axiom for z, and this range needs to be such that z* and z7 are linearly independent,
ie. 2' # czd or 27 # c. That is, z needs to take on at least two values a,b such that
a’~7 # b*~J. Therefore there are two tasks at hand: getting rid of the extension axiom z — Q,
and doing it in such a way that 2°~7 is not set to a constant. It is shown that a restriction
to @ can be chosen that sets it to the form (b — a)x + a, with a, b satisfying the precondition
for Split. Once this happens, Split is applied to reduce a fraction of high degree terms (after
applying an additional restriction to make sure x does not occur in the axioms, and then
setting © = (b — a)~!(z — a) in order to get rid of the extension axiom).

This process is repeated until the proof is of low Quadratic degree. Then an argument
from [18] (adapting Lemma 3.7 to the extension-variables setting) is used to move to a low
(usual) degree proof of the tautology F),, where p is the union of all restrictions p; applied in
this process. This contradicts the degree lower bound for F| . An important element of this

11
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proof is to ensure that none of the restrictions p;s make the tautology easy. To ensure this,
cleanup operations are performed at each iterations using additional restrictions, to restore
to a sub-copy of F where hardness is preserved. These operations work correctly provided
each extension variable depends on only O(logn) of the n variables of F. Also the number
of iterations of this process has to be bounded as well, which gives an upper bound of o(n?)
on the number of extension variables in order to get mildly exponential lower bounds.

4.2 Qur proof outline

We largely follow the above approach for our lower bound, but show that sub-quadratically
many extension variables with extension axioms that are polynomial sized and depend on a
polynomial fraction of original variables can be handled.

For this we first reduce the above problem to handling low degree extension variables, by
a simple parity lift. Let F' be a tautology and let F’ be obtained by replacing each input
variable x of F' by a two bit parity gadget, i.e. © = w; Gws. Suppose that there is a PC proof
of F’ which uses extension variables of size bounded by N¢. In each copy of the gadget we
select one variable at random and set the other variable to zero or one with equal probability,
recovering a copy of F' (possibly renaming some variables by their negations). It is easy
to see using a probabilistic argument that there exists a restriction where each extension
variable is of degree at most O(log N).

Thus the problem reduces to proving lower bounds for F' where extension axioms z — @)
are degree bounded. We then show that when dealing with such extension variables, the
aforementioned process that picks an extension variable z and either sets it to zero or restricts
it to the form (b — a)z + a can be performed with restrictions whose hamming weight is
bounded by the degree of Q.

Finally, we observe that the tautology PHP"" introduced by Razborov [17], which maps
all r sized subsets of [m] to n holes, is immune to such restrictions and can be cleaned up to
restore hardness. This completes our proof.

For the rest of the article, we fix the finite field F,, p > 2 (since for the case of p = 2
lower bounds for PC with extension variables can be obtained through standard size-degree
tradeoffs, see the discussion in [11], Section 3).

4.3 Relevant material from [11]: Support, Quadratic Degree, Split

Here we introduce the terminology of [11] and state some lemmas about Quadratic degree
and Split from the same. The reader familiar with [11] can directly jump to Section 5.

As noted above, the notions of Quadratic degree and Split here are not the same as in
Definitions 3.2 and 3.3. To define them appropriately in this setting, we first need some
auxiliary notions.

» Definition 4.1 (Support of a variable, Singular/Nonsingular variables. [11], Defs 10,11). Let
z2— Q(w;y,...,w; ) =0 be an extension axiom associated with z. The set vars(Q) is defined
as vars(Q) = {w;,, ..., w;_}, and is sometimes also written as vars(z), the set of variables
that z depends on.

The support of z, supp(z) C [0,p—1], is equal to the set of all values that z can take under
Boolean assignments to vars(z). That is, supp(z) = {Q(a) | a € {0, 1}vars(@1} C [0,p — 1].
Sometimes this is also denoted by supp(Q).

We say that z is a Singular variable if 0 € supp(z), otherwise it is NonSingular.

2:

For a Boolean variable w, supp(w) = {0,1} as enforced by the Boolean axiom w?* = w.
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As we apply restrictions to a proof (and hence to all the defining axioms), 0 may get
removed from the support of a variable. Thus an extension variable can change from Singular
to NonSingular, but not the other way around. However, Boolean variables that are not set
by the restriction are always Singular.

» Definition 4.2 ([11], Definition 12). Let A C[1,...,p— 1], A # (. Define £(A) to be the
least £ € [1,p — 1] such that the set {a’ | a € A} is singleton. For a Nonsingular z, define

U(2) = £(supp(2)).
The following lemma from [11] is stated without proof.

» Lemma 4.3 ([11], Lemma 13). Let z be a Nonsingular extension variable with extension
aziom z — Q = 0. Then the following polynomial equations are implied by (and therefore
derivable from) the extension axiom for z plus the Boolean axioms for all variables in vars(Q),
in degree at most |vars(Q)]|.

1. 2 — Q' =0, where Q' is the multilinear version of Q;

2. For any A’ C[0,p — 1] such that supp(z) C A’, Uyea(z —a) = 0;

3. 2/ — ¢ =0 for some c € Fy.

In particular, if z is Nonsingular, then the polynomial equation 22! — 1 = 0 is implied
by z — @ = 0 together with the Boolean axioms for vars(Q).

» Definition 4.4 ([11], Definition 14). For a term t and a variable w, deg(t,w) is equal to
the degree of w in t. Note that since we are working over F,,, deg(t, w) < p for any variable
w. For a term t, the degree of t, denoted deg(t), equals Y ) deg(t, w).

wevars(t

Quadratic degree
The following definition of Quadratic degree is taken from [11].

» Definition 4.5 (Quadratic degree [11], Definition 10). Let V' be a set of variables and let
S be a subset of V. For a pair of terms t1,ta over V, and a variable w € V, we define
Qdeg® (t1,t2,w) as follows. If w € S, then Qdeg® (t1,t2,w) = 1 if w occurs in at least one
of t1 orty; if w &€ S, then Qdeg®(ty,t2,w) = 1 if and only if deg(ty, w) # deg(ta, w). The
overall quadratic degree of the pair ti,ts, Qdeg®(t1,t3), is equal to Y wev Qdeg® (t1,t2,w).
The quadratic degree of a polynomial P is equal to the maximum quadratic degree over all
pairs (t1,te) such that t1,ty € P. For a proof II, the quadratic degree of 11 is the maximum
quadratic degree over all polynomials P € II.

» Remark 4.6. The above definition of Quadratic degree treats the variables in the set S
differently from the rest of the variables. Typically S will not be explicitly specified, but will
be assumed to be the set of Singular variables. This means that the notion of Quadratic
degree depends on knowing which variables have zero in their support. For instance, for the
pair (z1, 2122), the Quadratic degree is two if z; can take the value zero and one if z; does
not take the value zero. We observe that Quadratic degree always decreases when a variable
changes from being Singular to Nonsingular, and make sure that this is the case when we
prove our lower bound. This follows the approach of [11] whose lemmas we state below.

» Lemma 4.7 ([11], Lemma 16). Let V be a set of variables and let S and T be subsets of V
such that T C S. Then for any two terms ty,ty over V., Qdeg™ (t1,t2) < Qdeg®(t1,1ts).

Since applying a restriction cannot make NonSingular variables Singular, Lemma 4.7
implies that the Quadratic degree of any two terms t1,te, Qdeg(t1,t2) with respect to the

13
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currently Singular variables cannot increase after applying the restriction. This is stated as
Corollary 17 in [11].

» Lemma 4.8 ([11], Lemma 20). Let II be a PC+ Ext refutation of F and let z be a
Nonsingular variable. Let II' be the proof obtained from II by reducing each line of I by
242 — ¢ =0 for some ¢ € Fy. Then for any d > 0, the number of pairs of terms of Quadratic
degree at least d in II' is at most that of II.

We will use the following lemma from [11], which is a generalization of the argument from
[18] that shows how to convert a proof with low Quadratic degree to one with low degree.

» Lemma 4.9 ([11], Lemma 21). Let F be a set of unsatisfiable polynomials of degree dy with
a PC refutation of Quadratic degree at most d > dy over F,. Then F' has a PC refutation of
degree at most 3pd.

The Split operation

In this section, we define the operation Split and state its properties. We will only need
g
an assignment to any general extension variable to reduce to this case. Below we state the

relevant lemmas from [11].

to handle variables whose only axiom is (z — a)(z — b) = 0 for a,b € F}, as we will apply

» Lemma 4.10 ([11], Lemma 23). Let z be an extension variable such that supp(z) = {a, b},
where a # b and a,b € F), and let P be any polynomial. Then, for any two distinct numbers
1,J where 1 < j and a? ™" # W7, there exists a unique polynomial R = Ryz' + R12? such that
R=P mod (z —a)(z—b).

» Remark 4.11. It can be checked that for polynomial P = Zld(z) P2, the polynomials
Ry, Ry have the following form:

Ry =PF; + Z cor Py
1<l(2),l#1,5

R, =P; + Z cuby
1<L(2),l#1,5

for some constants ci;, co; € Fp. Note that any pair of terms (¢1,?2) occurring in either Ry
or Ry also occurs in P as (tz% t927") with (i/,5') # (i,7). That is, the contribution to
Quadratic degree of P by the interaction of z* and 27 is removed.

» Definition 4.12 (Split [11], Definition 24). [11] Let z be an extension variable with
extension axiom z — Q = 0 such that supp(z) = {a,b} C[1,...,p — 1]. For any polynomial
P and for every i < j such that a’~* # b 7%, let R = Roz' + R12’ be the unique polynomial
given by Lemma 4.10 such that R = P mod (2 — a)(z —b). Then Split, ; ;(P) is defined to
be the pair of polynomials {Ro, R1}. For a proof II, and an extension variable z such that
supp(z) = {a, b}, Split, ; ;(I1) is the sequence of lines Split, ; ;(P), over all P € II.

» Lemma 4.13 ([11], Lemma 25). Let II be a refutation of a set of unsatisfiable polynomials
F. Let z be a variable that occurs in 11 such that the polynomials in F' do not contain z
except for the axiom (z — a)(z —b) =0 for some a,b € Fy. Then for any i,j such that i < j
and /=" # W70 11" = Split, ; ;(I1) forms a valid refutation of F' modulo (2 — a)(z — b).
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5 Proof of the lower bound from Theorem 1.2

5.1 The tautology

We use the PHP,"" tautology defined in [17]; it is a variant of the Pigeonhole principle. In
this variant, there are m “fractional” pigeons, r fractional parts add up to a whole “pigeon”,
and there are n holes. The Boolean variables determine which part goes into which hole. A

fractional part can participate in multiple pigeons, and can be assigned to multiple holes.

The constraints enforce that no two r-sized subsets are mapped to the same hole, and no
r-sized subset is mapped to more than one hole. When (T) > n, this is unsatisfiable. We
describe the formula formally below.

» Definition 5.1 (PHP]""; Def 4.1 in [17]). Let m,n,r > 0 be such that (") > n. Let z;;,
fori € [m], j € [n], be variables that indicate the mapping of elements of [m] to holes in [n].
For a subset I of [m], abbreviate the term [],.; zi; to tr;; note that ty; is only shorthand
and not a variable in the formula. Then PHP)"" is the following set of equations.

tri+tio+---+t, =1 VIC[’I’I’L],‘I‘:T
tr; =0 VI C [m],|I| =r+1;Vj € [n]
thlthQ =0 VI C [m]v ‘I‘ = T;le,jg € [n]ajl 7& j2-

(Note that the last set of constraints is already implied by the first two constraint sets.

It is nonetheless included, in [17], where a degree lower bound is shown even when these
constraints are explicitly given and do not have to be derived.)

Additionally, we note that although the axioms defining PHP,"" do not have small CNF
representations, they can be represented by linear sized depth two AC® [p] circuits. For our
size lower bound on PC + Ext, we use an XOR lifted version of this tautology, which still has
linear sized depth four ACO[p] circuits. Therefore, we reiterate that our lower bounds still
imply lower bounds for some fragment of ACO[p]-Frege.

We state the lower bound from [17] on the degree of PC proofs for PHP,"".

» Proposition 5.2 ([17], Theorem 4.2). For any ground field F and any m,r,n > 0 such that
(™) > n, PHP}" requires proofs of degree n/2 + 1 to refute in PC over F.

5.2 The lower bound

We begin by showing in Theorem 5.5 a weak size lower bound for the PHP,"" formulas in PC

when extension variables are allowed, provided the degree of the extension axioms is bounded.

To establish the strong lower bound in Theorem 1.2, as discussed in Section 4.2, we show
that a lift with the parity gadget (an XOR-ification of the formula), followed by a well-chosen
restriction, achieves a degree-reduction of the extension axioms, and use Theorem 5.5.

The weak size lower bound of Theorem 5.5 also uses degree reduction, but it reduces the
quadratic degree of the proof. A crucial ingredient in the quadratic-degree-reduction step is
finding low-Hamming-weight assignments with certain nice properties. We first prove the
existence of these assignments, and then show the weak lower bound.

» Lemma 5.3. Let z be an extension variable with the extension axiom z — Q and let | < p
be a constant such that Q' is not a constant, i.e. supp(Q') is not singleton. Then there exists
a partial assignment o of Hamming weight at most [ deg(Q), such that for some x € vars(z),
Q, = (b—a)z + a for some a,b with a' # b'.
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Proof. Let X be the set of variables of Q and let x be a variable that appears in Q. Since
Q' is not a constant, such a variable always exists. Fix a total ordering over monomials in X
that respects degree. Let M be the least monomial in Q' according to this ordering that
contains x. Let o be an assignment to X \ {z} obtained as follows: we set every variable
in M other than z to one, and every other variable in X \ {z} to zero. Note that this sets
every monomial lesser than M to a constant since it does not contain x. The same is true
for monomials greater than M that do not contain x. Since the ordering respects degree and
M is minimal according to it, any monomial greater than M that contains x also contains at
least one variable that is not in M and hence is set to zero by o. Therefore, M is the only
monomial containing z in @' that survives the restriction under o; thus (Ql)‘a = ax + [ for
some o # 0. Since (Q)|, = (Q),)" is not a constant and o sets all variables except z, Q|,
cannot be a constant and must take the form (b — a)x + a, where a' = 8 # a+ 3 =b'. By
our choice of o, it has Hamming weight at most the degree of the monomial M, which is
bounded above by deg(Q') < I deg(Q). <

» Corollary 5.4. Suppose that z is an extension variable with the extension axiom z — Q,
where 0 € supp(Q). Then there exists an assignment of Hamming weight at most p deg(Q)
which sets Q to zero.

Proof. If supp(Q) = {0}, then any assignment to vars(Q) will do.

If supp(Q) is not a singleton, then for every [ € [p — 1], @' is not a constant, and thus
we can choose [ = p — 1 in Lemma 5.3. We thus obtain a partial assignment o of Hamming
weight (p — 1) deg(Q) such that Q, = (b— a)x + a, with (Q|,)?~" not a constant; i.e.
aP~1 # vP~1. This means that exactly one of a,b is zero. Setting the value o, to be 0 if
a =0 and 1 otherwise, we see that Q| , = 0. The Hamming weight of o U o, is at most

(p—1)deg(Q) + 1 < pdeg(Q). <
We now state and prove our main theorem of this section.

» Theorem 5.5. Let I be a PC refutation of PHP,"" with M extension variables, each of
degree < k and depending on < k variables of PHP,"", such that r > 2pk. Then the size of
II is at least exp(Q(n?/(M + mn)kk)).

Proof. Let s be the size of the given refutation II.

For a threshold d that we will choose later and depends on s, we will first show how
to reduce the Quadratic degree to at most d. This will be achieved by finding a suitable
restriction, in stages, that kills all quadratic terms of quadratic degree more that d. In the
process, the restricted formula will become PHP]," for some n’ € ©(n). Using Lemma 4.9 we
will convert this to a PC proof of PHP] ;" of degree at most 3pd but with extension variables,
and then by directly substituting the extension axioms, to a PC proof of degree at most 3pkd
without extension variables. Finally, using the degree lower bound from Proposition 5.2, we
will obtain the desired lower bound on s.

Let H be the set of all pairs of terms in IT of Quadratic degree more than d. We know that
|H| < s%. In each iteration, we will find a restriction that removes a fraction a of the pairs
from H, for a = m,
a t satisfying (1 — )!|H| < (1 — a)ts? < 1, after ¢ iterations, no high-degree quadratic terms
survive, and the number of remaining holes is n’ > n —tk = n(1 —tk/n). Since 1 —a < e~ @,
note that ¢ is roughly 2log s/«. At this point, the choice for d is clearer; we choose d so that

tk/n is a small enough constant; say tx/n < 1/2. Choosing d so that a = % does the
16p* (M +mn)r log s
n

and removes no more than s holes from the formula. Thus for

trick; in particular, d = . With this choice of d, continuing with the outline
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above, we obtain a PC proof of degree 3pkd without extension variables for PHP] " with
n’ > n/2. From Proposition 5.2, we conclude that 3pkd > n’/2 > n/4, and plugging in the
chosen value of d, we see that logs > Q (m)

Now we come to the main part of the proof, namely showing how to obtain the desired
restriction in each iteration.

In each iteration, we first perform the following preprocessing steps. For each extension
variable z with extension axiom z — @), we compute its support and check whether zero is in
it. If not, we compute £(z) (Definition 4.2) and reduce the proof by z/(*) = ¢. By Lemma 4.3
the latter is derivable from the extension axiom, and by Lemma 4.8, it does not raise the size
of H. Moreover, our measure of Quadratic degree can only decrease when variables switch
from Singular to Nonsingular; see comment after Lemma 4.7.

We then pick a variable y that by an averaging argument contributes to the quadratic
degree of at least a d/(M + mn) fraction of pairs in H. There are three cases to consider.
Case 1: y is an original Boolean variable, say ., for some u € [m], v € [n]. We choose the
restriction that sets all variables x, . to 0, thus removing the hole v from the formula. Since
Zyy 18 also set to 0 this way, d/(M + mn) fraction of pairs in H are killed.

Case 2: y is an extension variable, say z, with the extension axiom z — @, with 0 € supp(Q),
with deg(Q) < k and |vars(Q)| < .

By Corollary 5.4, we can find an assignment o to vars(Q) that has Hamming weight at
most pk and sets @ to 0. We apply this assignment to the proof, additionally setting z to
zero in the proof as well. We then look at how this assignment affects the tautology, and
apply an additional assignment to restore to PHP ;" where n’ > n — k.

We say that a hole v is affected if for some u, the variable x,, is set by 0. Note that at
most k holes are affected since o only sets variables in vars(Q)). We say that an assignment
commits a pigeon I € ([T]) to a hole v if it sets the term tr, to 1. Now note that ¢ does
not commit any pigeon I to any affected hole v, because each term ty, is the product of r
variables, and the Hamming weight of o is at most pk which is less than r/2. Thus we are free
to remove an affected hole from the formula. We do so by setting to zero all unset variabels
Ty for each affected hole v; this makes t7, = 0 for all affected holes v and all pigeons I. The
resulting formula is PHP];" where n’ > n — k, and applying the restriction to the current
refutation gives a new refutation of this reduced formula with at most (1 — d/(M + mn))|H|
pairs of Quadratic degree d or more.

Case 3: y is an extension variable, say z, with the extension axiom z — @, and 0 ¢ supp(Q).

This is the trickiest case.

We need to find a suitable assignment to the variables in vars(Q) to kill many high-degree
quadratic terms involving z. Recall from Definition 4.5 that, since z is non-singular, z
contributes to the degree of a quadratic term pair through terms ¢1, ¢ where the degrees
of z in t; and ¢ are different. By averaging, we can pick indices 0 < i < j < p — 1 such
that pairs of terms of the form (t12z%,t227) contribute at least a d/p*(M + mn) fraction of
the contribution of z. Since we had preprocessed using Lemmas 4.3 and 4.8, we know that
i,j < £(2), so 227" is not a constant. Hence, using Lemma 5.3 with [ = j — 4, once again
we obtain an assignment o of Hamming weight < Ik such that Q| = (b — a)zy, + a, where
a?=t # b~ and x,, is some variable of PHP]"".

We would like to apply Split, ; ;
24,29 (see Section 4.3 and Remark 4.11) and reduce high Quadratic degree terms. But
first we need to meet the preconditions for applying Split

to remove the contribution of these term pairs with

i 1n particular, we need to
get rid of all axioms containing z, except for (z — a)(z — b) = 0; even the extension axiom

z = (b— a)xyy + a must be eliminated. We also need to restore to a version PHP]". To this

17
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end, we apply o and perform cleanup in a way similar to Case 2, before applying Split, ; ;.
The only difference is that here we need to get rid of all axioms containing x,,, without
actually setting the latter.

We handle holes v’ other than v affected by o exactly as in Case 2; all variables touching
this hole (2, ) but unset by ¢ are now set to 0, eliminating hole v'.

For the hole v, all variables touching this hole (z,,,) but unset by o are now set to 0,
but x,, is left unset. Nonetheless, we claim that all occurrences of z,, in the axioms are
now eliminated. This is because every such occurrence is in a term ty,, for some subset I of
[m] of size at least r. Since o sets at most [k < pk variables to one and r > 2pk, each such
occurrence contains at least two variables unset by ¢, and in particular contains an unset
variable other than x,,. Therefore, setting all variables of hole v (other than x,,) which are
unset by o to zero gets rid of all such occurrences and thereby eliminates hole v.

Thus, we end up with a refutation of PHP?,’T for n’ > n — k such that all affected holes
are eliminated, and x,, is still unset but does not appear in the axioms.

We now intend to substitute x,, = (b — a)~*(z — a). Note that under this substitution,
the extension axiom gets eliminated (becomes 0 = 0) and the Boolean axiom 22, — 2., = 0
reduces to (z — a)(z — b) = 0. This is possible by Lemma 4.3(2), and will enable us to
satisfy all the preconditions to apply Split on z. However, there is a still a catch. The
substitution might actually blow up the number of pairs in H, because it creates three
additional pair of terms for every pair of terms (¢, t¢2) containing x. To handle this, we
note that if the substitution blows up the number of high Quadratic degree pairs to more
than 3d|H|/4p*(M + mn), then this implies that at least a d/4p*(M + mn) fraction of pairs
of terms in H must have contained ., before this substitution. (The same argument is
also used in [11].) In this case, we can just set z,, = 0 instead of the above substitution;
this will remove a d/4p? (M + mn) fraction of pairs of terms (and prevent the need to use
Split). Otherwise, we apply the substitution, introducing at most 3d|H|/4p?(M + mn) new
pairs of terms, and then use Split, ; ;
(Lemma 4.13), removing at least the d|H|/p?(M + mn) pairs of terms which had quadratic
degree with a contribution from z,4,j. Either way, the number of high-degree quadratic
terms reduces by a fraction at least d/4p*(M +mn). Thus, we obtain a refutation of PHP],"
with at most (1 — d/4p?(M + mn))|H| pairs of terms of Quadratic degree at least d, with
n' >n—k.

to obtain a valid refutation of the reduced formula

This completes the description of how to extract a good restriction in each iteration. The
fraction of high-degree Quadratic pairs eliminated is at least d/(M + mn) in the first two
cases and at least d/4p?(M + mn) in case 3. So in every case, at least o = d/4p*(M + mn)
fraction of the pairs is removed. With the analysis given in the beginning of this proof, the
proof of Theorem 5.5 is now complete. <

Finally, applying a lift with the XOR5 gadget and by choosing the parameters carefully,
we obtain our claimed lower bound of Theorem 1.2.

» Theorem 1.2. For every N > 0 large enough, any 1 > €,0 > 0, constant ¢ > 0, and prime
p, there exists a tautology F' over N variables such that any PC refutation of F' over F), with
N1+e(=9) extension variables, each depending on N'~¢ variables of F and of size at most
Ne¢, requires size exp(Q(N /polylog N)).

Proof. Pick an arbitrary n, and set r = 100p(c + 2)logn and m = 2r, so that (') > n.
Let G be the formula PHP,"". Let F be the formula obtained be composing G with the
parity gadget on two variables; F = G o XOR,. That is, replace each variable z in G by
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the XOR of two new variables ! and x2. The number of variables in the formula F is
N =2mn = O(nlogn).

Suppose we are given a PC refutation II of F' of size s, that uses no more than N1+e¢(1-9)
extension variables, each of arity bounded by N'~¢ and size bounded by N¢. We will recover

from II a refutation of GG, and then use Theorem 5.5 to obtain the stated lower bound on s.

Set k = 10(c+2) log N; then r > 2pk. We will find a restriction that reduces F' to G, and
reduces the degree of all extension axioms in IT to at most k. Note that the total size of all
the extension axioms put together is at most N¢ x N1+¢(1=9) < Ne+2_ Tet p be a restriction
that independently, for each variable x of G, picks one of z!, z2 uniformly at random, and
sets it to 0 or 1 with equal probability. For any term ¢ of degree at least k, the probability
that ¢ survives after applying p is at most (3/4)*. By the union bound, the probability that
some term in an extension axiom survives p is at most N°T2(3/4) which is strictly less
than 1 for our choice of k. Hence there exists a restriction p that sets exactly one variable in
each XOR gadget, and which reduces all extension axioms to degree at most k. A suitable
renaming of the surviving variables (and interchanging with the negated literal if necessary)
recovers G.

We thus have a PC refutation II' = 11| of G' of size at most s. The number of extension
variables in IT" is M = N'*t¢(1=8) = O(n'*+<(1=9)) "and each has arity at most x = O(n'~)
and degree at most k = O(logn). Further, M + mn = 6(M). Also as already noted,
r > 2pk. Hence by Theorem 5.5 we conclude that s is at least exp(Q(n?/(M + mn)kk)) =

exp(Q(n'te/nt*te(1=9))) = exp(Q(N)) (where the O,Q notation hides polylog factors).

This is the claimed bound. |
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