
Advisor-Verifier-Prover Games and
the Hardness of Information Theoretic Cryptography*

Benny Applebaum
Tel-Aviv University

Tel-Aviv, Israel
benny.applebaum@gmail.com

Oded Nir
Tel-Aviv University

Tel-Aviv, Israel
odednir123@gmail.com

September 14, 2023

Abstract

A major open problem in information-theoretic cryptography is to obtain a super-polynomial lower
bound for the communication complexity of basic cryptographic tasks. This question is wide open even
for very powerful non-interactive primitives such as private information retrieval (or locally-decodable
codes), general secret sharing schemes, conditional disclosure of secrets, and fully-decomposable ran-
domized encoding (or garbling schemes). In fact, for all these primitives we do not even have super-
linear lower bounds. Furthermore, it is unknown how to relate these questions to each other or to other
complexity-theoretic questions.

In this note, we relate all these questions to the classical topic of query/space trade-offs, lifted to
the setting of interactive proof systems. Specifically, we consider the following Advisor-Verifier-Prover
(AVP) game: First, a function f is given to the advisor who computes an advice a. Next, an input x is
given to the verifier and to the prover who claims that f(x) = 1. The verifier should check this claim via
a single round of interaction based on the private advice a and without having any additional information
on f . We focus on the case where the prover is laconic and communicates only a constant number of
bits, and, mostly restrict the attention to the simplest, purely information-theoretic setting, where all
parties are allowed to be computationally unbounded. The goal is to minimize the total communication
complexity which is dominated by the length of the advice plus the length of the verifier’s query.

As our main result, we show that a super-polynomial lower bound for AVPs implies a super-
polynomial lower bound for a wide range of information-theoretic cryptographic tasks. In particular,
we present a communication-efficient transformation from any of the above primitives into an AVP pro-
tocol. Interestingly, each primitive induces some additional property over the resulting protocol. Thus
AVP games form a new common yardstick that highlights the differences between all the above primi-
tives.

Equipped with this view, we revisit the existing (somewhat weak) lower bounds for the above prim-
itives, and show that many of these lower bounds can be unified by proving a single counting-based
lower bound on the communication of AVPs, whereas some techniques are inherently limited to specific
domains. The latter is shown by proving the first polynomial separations between the complexity of
secret-sharing schemes and conditional disclosure of secrets and between the complexity of randomized
encodings and conditional disclosure of secrets.

*This is the full version of a paper that appears in FOCS’23. Research supported by ISF grant no. 2805/21 and by the European
Union (ERC, NFITSC, 101097959). Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can
be held responsible for them.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 136 (2023)

1 Introduction
Information-Theoretic Cryptography deals with the task of secure computation and communication in the
presence of computationally unbounded adversaries. On the foundational level, the goal is to understand
the “cost” of realizing a cryptographic task where the main efficiency measures are communication and
randomness. As an archetypal example, Shannon’s seminal work from the late 40s [59] defines the
task of perfectly-secret communication and provides an upper-bound and a matching lower-bound on its
cost. Unfortunately, for many other tasks, our understanding is much more limited and there are huge,
typically exponential gaps, between the best-known upper bounds and lower bounds. Furthermore, this
is true even for very simple primitives that involve a minimal amount of interaction. Let us review some
of the notable examples.

• Private Information Retrieval (PIR) [26]: In a PIR scheme, a client wishes to query the xth
location of some function f : {0, 1}n → {0, 1} that is being held by k computationally-unbounded
non-colluding servers without revealing the location x to any single server.1 In the most popular
setting the communication is restricted to a single round in which the client generates a vector
of queries, one to each server, and receives back from the servers a vector of responses. We
will further focus on the case of short-downstream PIR (sd-PIR) where the total communication
complexity from the servers to the client is constant (i.e., the number of servers is constant and
each server sends a constant number of bits) and the goal is to minimize the maximal message
length sent by the client. This famous open problem is essentially equivalent to the question of
determining the best-achievable rate of a smooth locally-decodable code (LDCs) with a constant
query complexity and constant-size alphabet [48, 38]. (See the survey [67].) Currently, the best-
known upper bounds for sd-PIR are of the form 2Õ(

√
n) [66, 33, 31]. A lower bound of Cn for

some constant C > 1 is known since the late 90s [54, 63] and while the constant C has been
improved [63], current techniques fall short of providing a super-linear lower bound. In fact,
even the task of improving the constant in the basic case of 3 queries and binary responses requires
highly non-trivial techniques [1]. (Stronger lower-bounds are known for some special cases, see [1]
and [67] for references.)

• Secret Sharing Schemes (SSS) [58, 46]: In a secret-sharing scheme a dealer wishes to distribute a
secret s ∈ {0, 1} among n computationally-unbounded servers such that only “authorized” coali-
tions of servers can recover the secret s. That is, given s and a collection f ⊂ 2[n] of authorized
subsets, the dealer should randomly map s to n random shares s1, . . . , sn such that any coalition
x ∈ f can recover s based on their vector of shares sx = (si)i∈x, and the shares sx of any “unau-
thorized” coalition x /∈ f leak no information on the secret s. To make the problem feasible, we
assume that f is monotone (i.e., a super-set of an authorized set is also authorized), and represent
it as a monotone Boolean function f : {0, 1}n → {0, 1}. The cost of SSS is measured as the
maximal share-size max|si|, and determining the best achievable cost, for a worst-case function
f : {0, 1}n → {0, 1}, is considered to be a central open question in information-theoretic cryptog-
raphy. (See the survey [15].) The best-known upper-bound is (3/2)n+o(n) [9] and the best-known
lower-bound (from the mid 90s!) is Ω(n/log n) [27, 28].

• Fully-Decomposable Randomized Encodings (DRE): Consider the problem of securely evalu-
ating a public function f : {0, 1}n → {0, 1} where the input x = (x1, . . . , xn) is distributed
between n servers and the output should be delivered to a client without revealing the value of the
inputs. We assume that each server holds a single input bit xi and a common random string r that
is hidden from the client. Each server is allowed to send a single message mi = mi(xi, r), and
based on the combination (m1, . . . , mn) of all these messages the client should be able to decode
the value of f(x) without learning any additional information on x. While the Randomized Encod-
ing terminology is relatively modern [8], this notion goes back to the seminal works on Garbled

1One typically thinks of the truth table of f as an N -bit database for N = 2n. We use functional notation in order to unify the
presentation.

2

Circuits [64] and on Private Simultaneous Message Protocols [34, 44]. (See the surveys [43, 2].)
The cost of DRE is the maximal message length maxi|mi|. To the best of our knowledge, the best
upper-bound is 2n/2+o(n) [18, 19] and the best lower-bound is Ω(n/log n) [13].

While all the above primitives share a simple communication pattern their semantics are very differ-
ent. In DRE the information flows in one-way from servers to client, the function f is public and privacy
holds with respect to the servers’ inputs which are fully distributed. In SSS the information flow is from
the client who holds a single secret bit to the servers who initially hold no input. The (public) function f
only determines which subsets can recover the client’s secret (so the function is always applied to public
input). Finally, in PIR the information flows in both directions, the server’s data f is duplicated, and only
the client’s input to the (non-public) f should be hidden. Nevertheless, as already observed the state of
lower bounds in all these cases is somewhat similar and is extremely poor.

We emphasize that lower bounds are not known even for non-explicit functions. In this sense, the
situation here is much worse than the lack of lower bounds in computational complexity. Furthermore,
unlike the computational setting (both in cryptography and complexity) where we have a web of formal
reductions between different problems/primitives that allows us to talk about complete tasks or focus on
a concrete “hardest” problem, no such reductions are known in the current context. Indeed, we currently
have only weak connections between some of the above primitives. 2 As a result, a lower bound for, say
secret sharing does not imply a lower bound against PIR, and vice versa. The main goal of this work
is to partially remedy the situation by providing a single working hypothesis that implies strong lower
bounds against all the above problems. Specifically, we relate all these questions to the classical topic of
query/space trade-offs, lifted to the setting of interactive proof systems.

1.1 Advisor-Verifier-Prover Games

Figure 1: The interaction pattern of AVP protocols.

Consider the following game (hereafter referred to as AVP game) in which an Advisor and a Verifier
wish to collaboratively certify that some function f evaluates to 1 over some input x via the aid of
an untrusted Prover. The game is partitioned into an offline phase and an online phase. In the offline
phase, an arbitrary function f : {0, 1}n → {0, 1} is selected and is delivered only to the advisor who
computes some secret (randomized) advice a. This advice is delivered privately to the verifier and the
advisor leaves the room. Next, in the online phase, the verifier receives an input x ∈ {0, 1}n and sends
a single query b = b(a, x) to an untrusted prover. The prover, who holds x and f , tries to convince the
verifier that f(x) = 1 by sending a single message c = c(b, x, f). The verifier may accept or reject the
answer by computing some predicate over a, x, c and its private random tape. Importantly, the advice is
hidden from the prover and we do not require any form of re-usability of the advice. That is, we measure
soundness with respect to a single use of the system over a fresh advice. To keep the problem simple, we
assume that all the parties are computationally-unbounded, and ask: How many bits of communication,
|a|+|b|+|c|, are needed in order to derive such a protocol with, say perfect completeness and soundness
error of 1/2? Before tackling this question, it is instructive to compare AVPs to some previous, well-
studied, models.

2For example, some “nicely-structured” PIR lead to some variants of Randomized Encodings [18, 53] which, in turn, yield
secret-sharing schemes with non-trivial exponential overhead 2Cn for C < 1 [53, 51, 4, 5, 9, 6].

3

Comparison with other models. First, consider the case where there is no prover at all, i.e., the
advisor who holds f has to send a single message to the verifier who holds x that allows her to determine
with high probability if the outcome is 1 or not. This problem is essentially equivalent to the one-way
randomized communication complexity for which a lower-bound of Ω(2n) was given in [49]. Next,
consider the variant where the prover is trusted and is restricted to answer f -queries on inputs that are
different from x. This variant essentially corresponds to (the non-adaptive version of) Yao’s black-box
model [65] for which a tight lower-bound of Ω(2n/2) is well-known.3 (More generally, the number of
queries must be at least 2n/|a|.) Next, consider the setting where the advice should be reusable over
an arbitrary number of invocations where in each invocation the verifier and the prover gets a different
input x. In this case, the problem is essentially equivalent to the notion of online (read-only) memory
checking [23, 55]. Here too a tight trade-off of |c|≥ 2n/|a| is proved by [55] which, again, implies an
exponential lower-bound of 2n/2 on the total communication. If, on the other hand, we relax the AVP
model and allow the prover and verifier to interact for multiple rounds (for a single instance), then we
get the notion of non-uniform delegation as defined in [40, Section 4.3]. In this model, Goldwasser
et al. show that when f is computed by a D-depth S-size circuit, it admits multi-round AVP protocol
with communication of poly(D, log(S)) and D log n communication rounds. Since every function can
be computed by O(n)-depth O(2n)-size circuit this leads to a poly(n) communication in O(n log n)
rounds.

We observe that, for general functions, one can derive a poly(n) solution even when a single round
of interaction is allowed as illustrated by the following example.
Example 1.1 (Arithmetization-based AVPs). Fix some finite field F of size at least n+2 and let g : Fn →
F denote the (unique) multilinear extension of f : {0, 1}n → {0, 1} over the field F (i.e., g(x) = f(x)
for every 0-1 vector x). The advice a contains a random point x∗ ∈ Fn together with its evaluation
y∗ = g(x∗). In the online phase, the verifier, who holds x and a, samples n + 1 correlated points X =
(x1, . . . , xn+1) whose g-values determine f(x) and such that the known instance x∗ lies in a random
location in the tuple X . The prover should send the g-evaluations of all the entries in X and cheating
can be detected by verifying that the answer on x∗ is consistent with the advice. Concretely, to generate
the tuple X , the verifier fixes some (public) tuple of n + 1 non-zero distinct elements α1, . . . , αn+1 ∈ F,
samples an index i ∈ [n + 1] sets r = (x∗ − x)/αi ∈ Fn and generates the point xj = x + r · αj

for each j ∈ [n + 1]. Given the prover’s answers y1, . . . , yn+1 (supposedly g(xi) = yi) the verifier
verifies that yi = y∗, interpolates a (unique) degree-n univariate polynomial h for which h(αi) = yi and
accepts if h(0) = 1. It is not hard to verify that an honest prover will always convince the verifier and
that a cheating prover will be caught with a probability of at least 1/(n + 1). The error can be decreased
to constant via O(n) parallel repetitions and the total communication complexity (after repetition) is
O(n3) log|F|= O(n3 log n) bits. △

In the above example, the prover’s answer is polynomially long in n. Consider the case where the
prover sends only C bits where C is a constant that does not grow with n. We refer to such a prover as
laconic and conjecture that in this case, either the advice or the query must be super-polynomially long.
That is, the total communication complexity, |a|+|b|+|c| must be super-polynomial.

Hypothesis 1.2 (AVPs are Lengthy). Every prover-laconic AVP protocol that works for the class of n-bit
predicates must have total communication complexity that is super polynomial in n.

Back to Information-Theoretic Primitives. Hypothesis 1.2 allows us to derive super-polynomial
lower bounds on all the above primitives.

Theorem 1.3 (main). Under Hypothesis 1.2, sd-PIR over 2n-bit database, SSS over n-bit predicates,
and DRE over n-bit predicates have all communication cost that grows super-polynomially in n.

3One should note that in the one-way communication setting and Yao’s model the goal is to compute f whereas in our model the
goal is to certify that f(x) = 1. This minor difference does not affect the asymptotic complexity since one can reduce computation
to certification by concurrently running two copies of an AVP protocol once for f and once for ¬f .

4

Thus, the AVP model can serve as a single hub for lower bounds: Any lower bound on its complexity
would also imply similar lower bounds for PIR, SSS, and DRE. Hypothesis 1.2 can be used both as
a working hypothesis or as an (ambitious) target for future works. As a first step, we show that one
can adopt simple “counting-based” lower bounds to this model, and re-derive in a unified way some of
the existing lower bounds that were previously proved separately for each model [47, 35, 50, 20]. (See
Section 4.) Unfortunately, we do not get the best-known lower bounds for any of the above primitives.
We will get back to this point later.

Theorem 1.3 is established by presenting communication-efficient transforms from each of the above
primitives to a laconic-prover AVP protocol. As a by-product, these connections yield a non-trivial AVP
with sub-exponential communication complexity of 2Õ(

√
n) with a laconic prover who communicates a

single bit! (See Section 3). In fact, as the reader may have noticed, the non-laconic AVP from Exam-
ple 1.1 is also rooted in the PIR literature and can be derived from the n-server PIR protocol of [26].
Our transforms from IT primitives to AVPs are fairly simple. Indeed, previous works already established
several relations between different variants of interactive proofs and secure computation protocols to
randomized encodings [39, 36, 2, 10, 11] to SSS/CDS [60] and to PIR protocols [42]. Our main concep-
tual contribution is the formalization of a single, arguably natural proof model, from which all the above
primitives can be reduced.

AVPs with Additional Features. Notably, each primitive induces different additional properties
over the resulting AVP, thus allowing a clean comparison between these different notions. Specifically
we consider the following features:

1. Simple AVPs. We say that an AVP is simple if the verifier satisfies the following 2 properties:
(1) (Input Independent Verdict) The verifier’s final decision (accept/reject) depends only on the
advice a and the prover’s answer c and is independent of the input x or the verifier’s query; and
(2) (Decomposability) the verifier’s query b can be partitioned to n blocks b1, . . . , bn where bi =
bi(a, xi) depends on the advice a and on the ith bit of the input x. We note that “input-independent
verdict” can be always guaranteed in the non-laconic setting (see Section 2.1), but it is unclear how
to generically add it in the laconic setting.

2. Monotonicity: A simple AVP is monotone if the ith block of the verifier’s query bi is taken to be
the empty string whenever the ith bit of the input xi is zero. Here “monotonicity” refers to the
information that is given to the prover: whenever an input bit xi is flipped from 0 to 1 the prover
only gets more information. Indeed, a simple monotone AVP protocol can be applied only to
monotone functions. Nevertheless, it is not hard to show that monotone laconic-AVP with poly(n)
complexity for monotone functions implies laconic-AVP for general (non-monotone functions)
with poly(n) complexity as well (see Observation 3.2).

3. Instance-Hiding. An AVP is instance hiding if the verifier’s query leaks no information on the
input x and if an honest prover can answer the question solely based on f without getting x as an
input. Soundness should still hold even if x is given to the prover.

PIR protocols lead to plain AVP that fail to satisfy any of the above properties (including decomposability
and Input Independent Verdict). In contrast, SSS and DRE both yield simple AVP with an extra property:
monotonicity for SSS-based constructions, and instance-hiding for DRE-based AVPs. We also note that
simple AVPs with no additional properties follow from another natural and well-studied information-
theoretic primitive, Fully-Decomposable Conditional Disclosure of Secrets (CDS) [37] that is implied
by both SSS and DRE. Roughly, this is a variant of secret sharing in which the parties are partitioned into
pairs, and secrecy/correctness are defined only over coalitions that contain a single party per pair. (See
Definition 2.4.) Overall, the transformations to AVPs and the extra properties induce a new partial order
among the primitives as depicted in Figure 2. For example, it suggests that, in a sense, PIR schemes
should be “easier to achieve” than, say, DREs.

5

Figure 2: For primitives P1 and P2, a solid arrow P1 → P2 indicates that a protocol for P1
implies a protocol for P2 with the same complexity. The dashed arrow P1 99K P2 indicates
that there exists a separation between the primitives and P2 is “stronger” than P1 (the result
we prove in Sections 5 and 6). The text near the arrows describes the properties of the AVP
protocol implied by each of the primitives. Recall that Simple AVP is both decomposable and
has input-dependent verdict.

1.2 Lifting Existing Lower-Bounds to AVPs?
While proving our main hypothesis currently seems beyond reach, it is natural to try to prove more
modest lower bounds for AVP communication. The first step we suggest is to take existing lower bounds
for SSS, DRE and PIR and to examine whether they can be generalized to bounds for AVP protocols. The
known lower bounds for the aforementioned primitives were established with techniques from seemingly
unrelated domains: information theory for SSS [28], formula lower bounds for DRE [13] and even
quantum computation for PIR [62]. Is it possible to lift these bounds to the AVP setting and re-derive
the best existing lower-bounds in a unified way?

On the positive side, we show in Section 4 that basic counting-based arguments can be generalized
to AVPs and prove that if the prover’s computation is taken from some class G then log G times A, the
bit-length of the advice, must be Ω(2n). This allows us to unify and extend several results that were
previously proved separately for each primitive, including lower-bound for multilinear PIR [47], linear
CDS protocol [35, 16], SSS with bounded receivers [50], and even general two-party CDS protocols [7,
12] as well as low-degree CDS protocols [20]. This also allows us to conclude that when in any AVP
the advisor’s message length A, the verifier’s message length B and the prover’s message length C must
satisfy the inequality

A · 2B · C = Ω(2n).

For a more formal description see Corollary 4.5.
On the negative side, we show that some of the existing lower-bounds cannot be lifted to the AVP do-

main by proving new separations. Specifically, in Sections 5 and 6, we show that the best-existing lower
bounds for SSS and for DRE do not generalize to AVP protocols. Roughly speaking, Csirmaz’s [28]
lower-bound effectively defines a complexity measure C over functions such that the secret-sharing cost
of a function f is lower-bounded by C(f). We present a function f for which C(f) is Ω(n2/log n)
but it admits a cheap CDS (and AVP) protocol of complexity n1.5+o(1). For partial functions, we can
improve the CDS complexity to n1+o(1), deriving an almost quadratic gap. Similarly, Ball et al. [13]
use Nechiporuk’s [32] complexity measure to lower-bound the DRE complexity of a function f . Here
too, we present a function whose complexity under this measure is Ω(n2/log n) but admits an almost-
linear n1+o(1)-cost CDS (and therefore a cheap AVP). The driving force in both our constructions is the
efficient (yet still with super-polynomial communication) CDS construction of [53] for general func-
tions. Our constructions provide the first separations between fully-decomposable CDS to SSS and
fully-decomposable CDS to DRE.

Our separations also highlight the fact that currently, we do not have any non-trivial lower bounds
for (fully decomposable) CDS. Specifically, to the best of our knowledge, we do not even have a super-

6

constant lower-bound in this case. This seems to be a great target for future research. It is known
that when the secret is huge it is possible to construct CDS schemes with constant-rate, and so natural
lower-bound techniques that apply to the rate, are deemed to fail.

1.3 How plausible is Hypothesis 1.2?
It is natural to ask whether Hypothesis 1.2 can be somehow justified, especially in light of the existence
of polynomial AVPs with non-laconic prover (Example 1.1).4 We provide some justification for the
conjecture by proving a partial converse theorem for the case of regular AVPs, where regularity means
that the number of prover’s answers that are accepted by the verifier is a fixed quantity independent of
f, x and the underlying randomness. Indeed, all known AVP protocols satisfy this assumption.

Theorem 1.4 (partial converse). If every n-bit predicate has a poly(n)-bit regular AVP with a prover
that communicates less than c bits where c is some universal constant, then the 2-party universal function
Un : {0, 1}2n × {0, 1}n → {0, 1} admits a statistical 2-party one-way communication CDS protocol
with poly(n) communication.

Roughly speaking, in a 2-party one-way communication CDS protocol for the universal function,
Alice holds a predicate f : {0, 1}n → {0, 1} (represented as a string of length 2n), Bob holds a string
x ∈ {0, 1}n and a secret s ∈ {0, 1}, Alice sends to Bob a short randomized message a of length poly(n)
and Bob generates a short (poly(n)-long) encoding e that, together with x and f , reveals the secret s
if and only of f(x) = 1. In fact, we will allow some error both in the correctness and in the privacy.
This variant naturally extends the standard notion of 2-party CDS in which the encoding e is generated
non-interactively based on shared randomness r, i.e., e = (e1, e2) where Alice samples e1 = e1(f ; r)
and Bob samples e2 = e2(x; r). (See [12, Section 9] for more general variants of interactive CDS).
The existence of CDS with polynomial complexity seems to be beyond current techniques, and, as
far as we know, one-way communication from Alice (who holds the function) to Bob (who holds the
evaluation point) does not seem to make the problem easier. Thus, Theorem 1.4 provides some evidence
for Hypothesis 1.2.

Note that the theorem assumes that the prover is “very laconic”, i.e., she communicates less than c
bits for some universal constant c. While this assumption (as well as the regularity condition) can be
somewhat relaxed (see Section 7), we currently do not know how to prove the theorem based on a poly-
nomial AVP in which the prover’s communication complexity is bounded by an arbitrary constant. Still,
the theorem highlights the qualitative difference between AVPs in which the prover’s communication
complexity is large and AVPs in which the prover’s communication complexity is small. In particular,
the non-laconic AVP construction from Example 1.1 fails to satisfy the required condition, whereas the
constructions of AVPs from randomized encoding, SSS and CDS have a “very laconic” prover. It should
be mentioned that the qualitative difference between laconic and non-laconic provers also arises in other
contexts, e.g., [60, 22].

Organization. In Section 2 we formally define AVP protocols, and the information-theoretic prim-
itives used in this paper (SSS, DRE, CDS and PIR). Transformations from these primitives to AVPs
are presented in Section 3. In Section 4 we prove the counting-based lower bounds for AVPs, and in
Sections 5 and 6, prove the separations between CDS and secret sharing and between CDS and decom-
posable randomized encodings. Finally, the converse theorem appears in Section 7.

4We thank the anonymous reviewers of FOCS’23 for raising this question.

7

2 Preliminaries

2.1 AVPs
Definition 2.1. An AVP for a family F of n-bit predicates is a tuple Q = (A,V,P,Vacc) that satisfies
the following properties.

1. Syntax: The advice algorithm A takes a enumerate of a function f ∈ F and a random tape rA
and outputs an advice string. The query algorithm V takes as an input an advice a an input x and
a random tape rV , and generates a query. The response function P takes a query b an input x and
a function f and generates a response, and the predicate Vacc takes a verifier’s view (a, x, rV , c)
and decides whether to accept or reject it.

2. Perfect completeness: For every f ∈ F and x such that f(x) = 1 it holds that

Pr
rA,rV

[Vacc(a, x, rV , c) = 1] = 1,

where a = A(f ; rA), b = V(a, x; rV) and c = P(b, x, f).

3. Soundness: For every cheating prover’s strategyP∗, every f ∈ F and every x such that f(x) = 0,
it holds that

Pr
rA,rV

[Vacc(a, x, rV , c∗) = 1] ≤ 0.5,

where a = A(f ; rA), b = V(a, x; rV) and c∗ = P∗(b, x, f).

We say that Q realizes a function f with communication RQ,f if the protocol messages when f is taken
as an input satisfy maxx,rA,rV |A(f ; rA)|+|V(a, x; rV)|+|P(b, x, f)|≤ RQ,f . We say that the protocol
has a communication complexity RQ if Rf,Q ≤ RQ for every f ∈ F . By default, we take F to be the
class of all n-bit predicates, and measure the complexity RQ as a function of n.

We say that the prover is laconic if P always outputs a constant number of bits that does not grow
with n. Of special interest will be the case of a 1-bit prover that communicates a single bit.

Few comments are in place. First, the notion of AVP (with unbounded verifiers) is meaningless
when restricted to a single function f since there exists an AVP protocol with no communication for
every fixed f (the function can be hard-wired into the verifier). This problem vanishes if we put some
restriction on the verifier (e.g., restrict its computational complexity). We also note that the soundness
error can be amplified by parallel repetition and so the choice of 1/2 is somewhat arbitrary. Also, one
can always assume that the verifier is deterministic by embedding her coins as part of the advice. By
using standard randomness sparsification, this does not increase the total amount of communication by
too much (see Lemma A.3). Finally, we emphasize that the definition does not require any form of
re-usability of the advice.

Additional properties. The protocol has input-independent verdict if Vacc depends only in a and
c. The protocol is decomposable if b = V(a, x; rV) can be written as (b1(a, x1), . . . bn(a, xn)) where
xi is the ith bit of x. A decomposable protocol with input-independent verdict is simple. A simple
protocol is monotone if for every i ∈ [n], it holds that bi(a, 0, rV) = ⊥ for every a, rV . The protocol
is instance hiding if (1) for every f and every x, x′ the random variables b = V(a(f ; rA), x; rV) and
b′ = V(a(f ; rA), x′; rV), induced by a random choice of rA and rV , are identically distributed; and (2)
if the response function P(b, x, f) depends only on b and f and is independent of x.

We note that in the non-laconic setting, one can move from input-dependent to input-independent
acceptance easily. The advisor samples a key k of a message authentication code (e.g., a pairwise
independent hash function) and appends it to its advice, the verifier sends the tags t = Hk(x) to the
prover as part of his query and the prover appends to its answer the pair (x, t). The verifier rejects
if Hk(x) ̸= t, and otherwise, runs the original test over the received x. Note that this increases the
communication from the prover to the verifier by O(n) bits and so the resulting prover is not laconic.

8

2.2 Secret-Sharing Schemes
For a string x ∈ {0, 1}n we let Ix be the set {i : xi = 1} ⊂ [n] and write x ≤ x′ if Ix ⊆ Ix′ . A
predicate f : {0, 1}n → {0, 1} is monotone if for every x ≤ x′ it holds that f(x) ≤ f(x′). We present
the definition of secret-sharing schemes, similar to [14, 25]. For the privacy of these schemes, we use
the following notation: For two random variables X and Y , we say that X ≡ Y if they are identically
distributed.

Definition 2.2 (Secret-sharing schemes). A secret-sharing scheme, with domain of secrets S, domain of
random strings R, and finite domains of shares S1, . . . , Sn, is a deterministic function D : S × R →
S1 × · · · × Sn. A dealer distributes a secret s ∈ S according to D by first sampling a random string
r ∈ R with uniform distribution, computing a vector of shares D(s, r) = (s1, . . . , sn), and privately
communicating each share si to the ith party. For a binary string x ∈ {0, 1}n representing a set
Ix = {i : xi = 1}, we denote Dx(s, r) as the restriction of D(s, r) to the Ix-entries (i.e., the shares of
the parties in Ix). A secret-sharing scheme D realizes a monotone predicate f : {0, 1}n → {0, 1} if the
following two requirements hold:

1. Perfect Correctness: The secret s can be reconstructed by any authorized set of parties. That is,
for every x such that f(x) = 1 there exists a reconstruction function Reconx such that for every
secret s ∈ S and every random string r ∈ R, it holds that Reconx (Dx(s, r)) = s.

2. Perfect privacy: Any unauthorized set cannot learn anything about the secret from its shares.
Formally, for every x such that f(x) = 0 and every pair of secrets s, s′ ∈ S, it holds that
Dx(s, r) ≡ Dx(s′, r), where r is sampled with uniform distribution from R.

The secret size in a secret-sharing scheme D is defined as log|S| and the share size of the scheme D
is defined as the largest share size, i.e., max1≤i≤n{log|Si|}.5 The scheme D is a linear secret-sharing
scheme over a finite field F if S = F, R = Fℓ for some integer ℓ ≥ 1, the sets S1, . . . , Sn are vector
spaces over F, and the function D : Fℓ+1 → S1 × · · · × Sn is a linear mapping over F. By default,
linearity is defined over the binary field F2.

Here and throughout the paper we assume, for simplicity, perfect privacy, and perfect correctness.
All of our reductions extend easily to the setting of statistically private and statistically correct primitives.
The secret-sharing definition also generalizes to partial monotone functions over a subset X of {0, 1}n.
In this case, privacy and correctness are defined over inputs in X for which f(x) = 0 and f(x) = 1,
respectively.

2.3 Fully Decomposable Randomized Encoding
Definition 2.3 (Randomized encoding [45, 8]). Let f : X → Y be some function. We say that ENC :
X ×R→ Z is a randomized encoding (RE) of f if the following conditions hold:

1. Perfect correctness: There exists a deterministic reconstruction function DEC such that for every
x ∈ X and every random string r ∈ R it holds that DEC(ENC(x; r)) = f(x).

2. Perfect Privacy: There exists a randomized function SIM, called a simulator, such that for every
input x ∈ X , the distribution SIM(f(x)) is identically distributed to the distribution ENC(x; r)
induced by uniformly sampling r ∈ R.

We say that a RE is fully-decomposable (DRE) if the input domain is X = {0, 1}n and if the en-
coding function ENC can be decomposed into n functions ENCi : {0, 1} × R → Zi such that
ENC(x1, . . . , xn; r) = (ENCi(xi; r))i∈[n] for every (x1, . . . , xn) ∈ {0, 1}n and r. By default, we will
assume that the output domain Y of f is a single bit. The total size of DRE is the bit length of the output
of the encoder, i.e., log|Z|, and the message complexity of the scheme is maxi log|Zi|.

5The share size is sometimes defined to be the total share size, i.e.,
∑

1≤i≤n
log|Si|. However, since the two differ by at most

a linear factor of n, the difference is not important in our context.

9

2.4 Conditional Disclosure of Secrets Protocol
Definition 2.4 (Conditional disclosure of secrets protocols [37]). Let f : X → Y be some function. We
say that ENC : X × S ×R→ Z is a Conditional disclosure of secrets (CDS) of f with secret domain S
if the following conditions hold:

1. ε-correctness: There exists a deterministic reconstruction function DEC such that for every x ∈ X
such that f(x) = 1 it holds that Prr∈R[DEC(x, ENC(x, s; r)) ̸= s] ≤ ε.

2. δ-privacy of secrets: For every input x ∈ X such that f(x) = 0 and every pair of secret s, s′ ∈ S
the distributions ENC(x, s, r) and ENC(x, s′, r), induced by sampling r uniformly from R, are
δ-close in statistical distance.

Throughout the paper (except for the results in Section 7), we focus on the case of perfect correctness
and perfect privacy where ε = δ = 0. For X = X1 × · · · × Xk, we say that the CDS is a k-server
CDS if the encoding function ENC can be decomposed into k functions ENCi : Xi × S × R → Zi such
that ENC((x1, . . . , xk), s; r) = (ENCi(xi, s; r))i∈[k] for every (x1, . . . , xk) ∈ X1 × · · · × Xk. This
corresponds to a setting where there are k servers with private inputs x1, . . . , xk respectively, and joint
input (s, r) and where the ith server computes ENCi(xi, s; r). When Xi = {0, 1} for every i ∈ [k], we
say that the CDS is fully-decomposable – this will be our default setting, and in this case we typically
use n to denote the number of servers. The total size of CDS is the bit length of the output of the encoder,
i.e., log|Z|, and the message complexity of the scheme is maxi log|Zi|. The CDS is linear over a finite
field F if S = F, R = Fℓ for some integer ℓ ≥ 1, Z1, . . . , Zn are vector spaces over F, and the function
ENCi : Fℓ+1 → Zi is a linear function over F for every i ∈ [n]. By default, we take F to be the binary
field F2.

Conditional disclosure of secrets can be viewed as a relaxation of both DRE and secret sharing.
Remark 2.5 (CDS vs Secret-Sharing). A fully-decomposable CDS for f : {0, 1}n → {0, 1} is nothing
but a secret-sharing scheme for the partial function g : {0, 1}2n → {0, 1} that is defined over the set
of inputs {(01), (10)}n and where g(y1, . . . , y2n) = f(x1, . . . , xn) where for every i ∈ [n], the pair
(y2i−1, y2i) equals to 10 if xi = 1 and to 01 if xi = 0. Note that g is monotone in a vacuous way since
it is defined only over inputs y of Hamming weight n. (One can think of the secret-sharing parties as
partitioned into pairs and we consider only coalitions that consist exactly a single participant from each
pair.) Indeed, fully-decomposable CDS is sometimes viewed as non-monotone secret-sharing [17, 53].
Thus, general SSS implies general CDS with similar complexity.
Remark 2.6 (CDS vs DRE). A fully-decomposable CDS for f : {0, 1}n → {0, 1} can be obtained
from a DRE for the predicate g : {0, 1}n+1 → {0, 1} that takes a secret s ∈ {0, 1} and an n-bit input
x ∈ {0, 1} and outputs s if and only if f(x) = 1. That is, g(x, s) = f(x) ∧ s. In fact, the resulting DRE
yields a CDS with input hiding property: The encoding hides the input x, i.e., privacy is strengthened so
that

ENC(x, s, r) ≡ ENC(x′, s′, r),

for every pair (x, s) and (x′, s′) for which g(x, s) = g(x′, s′), and for correctness the decoder needs
only the encoding and does not need x as an additional input.

2.5 Private Information Retrieval
A k-server PIR protocol involves k servers S1, . . . , Sk, each holding the same N -bit string y (the
database), and a user who wants to retrieve a bit yi of the data. PIR was originally defined by Chor
et al. [26]. The definition is taken from [17].

Definition 2.7 (Private Information Retrieval [26, 17]). A k-server PIR protocol
(D,U1, . . . ,Uk,R1, ...,Rk, C) consists of a probability distribution D and three types of algo-
rithms: the user’s query algorithms Uj(·, ·), response algorithms Rj(·, ·), and a reconstruction
algorithm C(·, ·, . . . , ·) (C has k + 2 arguments).

10

At the beginning of the protocol, the user picks a random string r from the distribution D. For
j = 1, . . . , k, it computes a query qj = Uj(i, r) and sends it to server Sj . Each server Sj responds with
an answer aj = Rj(qj , y). Finally, the user computes the bit yi by applying the reconstruction algorithm
C(i, r, a1, . . . , ak). We assume that all algorithms are computationally unbounded. We also assume,
without loss of generality, that both the response and reconstruction algorithms are deterministic. A PIR
protocol is correct and secure if the following requirements hold:

1. Perfect correctness: The user always computes the correct value of yi. Formally, for
every i ∈ {1, . . . , N}, every random string r, and every database y ∈ {0, 1}N ,
C(i, r,R1(U1(i, r), y), . . . ,Rk(Uk(i, r), y)) = yi.

2. Perfect Privacy: Each server has no information about the bit that the user tries to retrieve.
Formally, for every two indices i1, i2 ∈ [N] and every query algorithm j ∈ [k], the distributions
Uj(i1, r) and Uj(i2, r) induced by choosing r ∈ D, are identical.

3 AVP Protocols and Information-Theoretic Primitives

3.1 AVPs from Secret Sharing Schemes
We start by describing the connection between AVP protocols and secret sharing schemes

Theorem 3.1 (AVPs and secret sharing). If there exists a secret sharing scheme that for every monotone
function f : {0, 1}n → {0, 1} has total share size L then there exists a simple AVP protocol for monotone
functions with perfect correctness, soundness 1/2, and where the advice is of length L + 1, the verifier’s
query is of length L and the prover’s answer consists of 1 bit.

Proof. We describe the protocol. The advisor picks uniformly at random a bit s and uses the given
scheme to share it according to f to shares (s1, . . . , sn) of total size L. It then sends the verifier the
vector a = (s, s1, . . . , sn). Next, the verifier sends the prover all of the shares si such that xi = 1.
Then if f(x) = 1 an honest prover can recover the secret s and send it as its message c. Finally, the
verifier outputs 1 iff c = s. Correctness is trivial and soundness follows from secrecy. Indeed, any
cheating prover that convinces the verifier to accept with probability greater than 1/2 an input x for
which f(x) = 0, violates the perfect privacy of the secret sharing scheme.

By plugging in the best-known SSS [9] for general monotone functions, Theorem 3.1 implies that
for every monotone function there exists an AVP protocol with complexity 1.5n+o(n). We further note
that AVPs for monotone functions can be extended to AVPs for general functions.

Observation 3.2. If there exists an AVP for the class of all n-bit monotone predicates with commu-
nication complexity R(n) then there exists an AVP for the class of all n-bit general predicates with
communication complexity R(2n). Furthermore, the transformation preserves simplicity and soundness
error.

Proof. The parties map a non-monotone predicate f : {0, 1}n → {0, 1} into the monotone predicate
g(x1, x′

1, . . . , xn, x′
n) that agrees with f(x1, . . . , xn) whenever x′

i = 1− xi and map an input x for f to
the 2n-bit input (xi, 1− xi)n for g. Then use the monotone AVP over these inputs.

Since the verifier in the protocol based on secret sharing is monotone, even lower bounds for AVP
protocols with monotone verifiers will imply lower bounds for the share size of secret sharing schemes.
Remark 3.3 (about monotonicity). As part of the monotonicity definition we put a simplicity require-
ment, i.e., decomposability and input-independence verdict. We note that these additional conditions are
important. For decomposability, this is clear as monotonicity is not well-defined for non-decomposable
protocols. For input-independence this may be less obvious. However, we note that if one does not put
any restriction on the acceptance predicate, then “monotone” protocols can be applied to non-monotone

11

functions. To see this consider the following SSS-based AVP protocol. Given a non-monotone f the
prover defines fk to be the slice function that agrees with f on k-weight inputs and outputs 0 and 1 on
lighter and heavier inputs, respectively. The advisor shares for each k ∈ [n] a random secret sk accord-
ing to the monotone function fk and appends the shares and secrets as part of the advice a. Given x, the
verifier sends all the shares that are indexed by x. At the end, the verifier accepts the prover’s message
if it equals to the secret si where i is the Hamming-weight of x. It is not hard to verify that the protocol
is correct, sound, decomposable and monotone.6 Getting back to our monotonicity definition, we note
that one can replace the “input-independence verdict” property with the more liberal requirement that
the acceptance predicate is monotone with respect to the input x. Indeed, under this definition monotone
AVPs can be applied only to monotone functions.

3.2 AVPs from CDS and DRE
We can transfrom CDS to a simple (non-monotone) AVP in a way that is similar to the proof of Theo-
rem 3.1.

Theorem 3.4 (AVPs from CDS). If there exists a fully-decomposable CDS for all predicates f :
{0, 1}n → {0, 1} with message size L then there exists a simple AVP protocol for every function f
with perfect correctness, soundness 1/2, and where the advice is of length 2nL + 1, the verifier’s query
is of length nL and the prover’s answer consists of 1 bit. Furthermore, if the CDS is input-private (as
per Remark 2.6) the AVP is instance-hiding.

Proof. The advisor samples a secret s and randomness r and generates, for each i ∈ [n] a pair of CDS
messages ENCi(0, s; r), ENCi(1, s; r) the tuple (ENCi(0, s; r), ENCi(1, s; r))i∈[n] is given as part of the
advice together with the secret s. Given x, the verifier sends to the prover the tuple (ENCi(xi, s; r))i∈[n]
and receives back a bit c. The verifier accepts if c = s. Correctness is trivial, and soundness follows
from the privacy of the CDS. Instance-hiding follows from input-privacy by definition.

Since there are fully-decomposable CDS protocols with message complexity of 2Õ(
√

n) [53], we
derive simple (non-monotone) AVPs with similar complexity.
Remark 3.5 (using 2-server CDS). Theorem 3.4 naturally extends to the 2-party setting. For con-
creteness, assume that we parse the input x ∈ {0, 1}n into two equal halfs, (x1, x2) ∈ {0, 1}n/2 ×
{0, 1}n/2, and assume that the CDS encoding function ENC(x, s; r) decomposes into ENC1(x1, s; r)
and ENC2(x2, s; r). Then, the advisor can set her advice to be a secret s together with the values
(ENC1(x1, s; r))x1∈{0,1}n/2 and (ENC2(x2, s; r))x2∈{0,1}n/2 . The verifier can select the message that
corresponds to her input. This leads to an AVP with advice length of 2 · 2n/2 · L + 1, verifier’s message
length of 2L, and prover’s message length of 1 bit.

AVPs from DRE. Our conversion of DRE to AVPs follows by constructing input-private CDS as
explained in Remark 2.6 and by applying Theorem 3.4. We conclude the following theorem.

Theorem 3.6 (AVPs from DRE). If there exists a fully-decomposable DRE for all predicates g :
{0, 1}n+1 → {0, 1} with message size L then there exists a simple instance-hiding AVP protocol for
every predicate f : {0, 1}n → {0, 1} with perfect correctness, soundness 1/2, and where the advice is
of length 2(n + 1)L, the verifier’s query is of length nL and the prover’s answer consists of 1 bit.

3.3 AVPs and Private Information Retrieval
We formalize the connection between AVPs and PIR protocols by the following theorem:

6In fact, since secret sharing for slice functions can be achieved with complexity of 2Õ(
√

n), the resulting protocol has sub-
exponential complexity. We will get a similar result directly via CDS in the next section.

12

Theorem 3.7 (AVPs and PIR protocols). If there exists a k-server PIR protocol for databases of size
N = 2n where the query for each server is of bit-length L and the answer is of bit-length T , then there
exists an AVP protocol for n-bit predicates with perfect correctness, soundness error of (1 − 1/k) and
where the advice is of bit-length log k + L + T , the verifier’s query is of length kL and the prover’s
answer is of bit-length kT .

Proof. The advisor takes as input a function f and views its truth-table as an N -bit database, she
samples an index i ∈ [k], generates a random pair of query/response (qi, αi) and sends the advice

a := (i, qi, αi).

The query qi is sampled by invoking the client’s query algorithm on a fresh randomness and some fixed
index x∗, and αi is computed by applying the response algorithm of the ith server on the query qi with
respect to the database f . The verifier takes the input x ∈ {0, 1}n, and given the query qi received from
the advisor, he samples randomness r such that qi = Ui(x, r). Such a random string has to exist due to
the privacy of PIR protocols: Any single query does not reveal information about the queried index, and
thus every query must belong to the support of queries for all indices. The verifier then computes queries
for the other k − 1 servers based on r and generates for every j ∈ [k]/{i} the query qj = Uj(x, r). The
verifier sends to the prover P the tuple of queries

b := (q1, . . . , qk).

The prover: for every j ∈ [k], the honest prover computes the answer α′
j of the jth PIR server over the

query qj with respect to the database f , and sends to the verifier the answers

c := (α′
1, . . . , α′

k).

Verifier output: To settle the verdict the verifier computes the reconstruction function of the PIR proto-
col γ = C(x, r, α′

1, . . . , α′
k), and accepts if and only if αi = α′

i and γ = 1.
Analysis: If f(x) = 1 it is clear that the verifier will always output 1 when interacting with an honest

prover. When f(x) = 0, the verifier outputs 1 only if the prover changes at least one of the PIR response
messages in a way that makes C output 1. Since the server-index i is not known to the prover and is
chosen uniformly at random by the advisor, the probability that a malicious prover will be able to leave
the ith message unchanged and cheat the verifier is at most 1− 1/k.

We note that in the AVPs based on SSS, DRE and CDS the prover’s response consists of a single
bit, whereas in PIR-based AVPs the prover’s response is longer (at least 2 bits for the case of 2-server
PIR with binary answers). The theorem can be applied even when the number of servers k and the
answer’s bit-length L grow with n. In this case, we get an AVP with a non-laconic prover. Indeed, by
applying Theorem 3.7 to the Reed-Muller based PIR of [26] that works with Θ(n) servers, we get the
AVP protocol that appears in Example 1.1.

4 AVP Lower Bounds

4.1 Lower Bound on the Size of the Advice
While proving Hypothesis 1.2 seems to be out of reach given current techniques, it is possible to obtain
several weaker lower bounds. We begin by lower-bounding the size of the advice. Throught this section
we let F denote the class of all n-bit predicates.

Theorem 4.1 (Lower bound on the size of the advice). AVP protocols that realize every function in F
with perfect correctness and soundness error δ < 1 require advice strings of size n− 1.

13

This lower bound implies a similar bound for the communication in PIR, CDS, SSS and DRE, but for
all these primitives such a bound is trivial. However, for PIR and CDS even an improvement by a constant
factor will be a breakthrough. For PIR the best-known lower bound is 5n for the total communication
complexity [62], and for fully-decomposable CDS we do not know any argument that excludes the
possibility of total message size of even 3n.

Proof. We begin with the following simple claim.

Claim 4.2. Let Q = (A,V,P) be an AVP protocol with perfect correctness and a constant soundness
error δ < 1. Then for every pair of functions f ̸= f ′ ∈ F the supports of the distributions of advisor-
messages must be different.

Proof of Claim 4.2. Let f ̸= f ′ ∈ F be functions that differ on an input x, and say without loss of
generality that f(x) = 1 and f ′(x) = 0. Assume towards contradiction that the supports of the distribu-
tions of advice messages of Q is the same for both functions. Then the set of verifier messages for both
functions on the input x will also be identical. Denote this set as Bx. Then since f(x) = 1 and Q has
perfect correctness the prover P can always persuade the verifier that x is a 1-input of the f . It is then
easy to describe a prover P ′ that can cheatA and V on the function f ′ and the input x. For every verifier
message b ∈ Bx define P ′(f ′, x, b) = P(f, x, b). The view of the verifier when communicating with P ′

over the function f ′ will be identical to its view when communicating with P over the function f , and
so it will always decide that f ′(x) = 1, in contradiction to the existence of some non-trivial soundness
for Q.

We can now prove a lower bound on the size of the advice by a counting argument. Suppose, towards
a contradiction, that there exists an AVP protocol Q = (A,V,P) whose advice is of size M = n − 2
for every function in F . Denote byM the set of all strings of size ≤ M . There are

∑M
i=0 2i ≤ 2M+1

such strings. Denote by 2M the power set of M, whose size is at most 22M+1
. For every function f

the support of the distribution of advice messages sent by the advisor when f is taken as an input is an
element in 2M, and hence by the above claim the protocol can realize is at most |2M|≤ 22M+1

< 22n

functions, the theorem follows.

4.2 A General AVP Lower Bound
Next, we show a bound based on counting arguments that generalize the ideas of [50]. They study the
case where the secret sharing reconstruction can only be performed by a family of functions GRec. They
prove that for most monotone functions f : {0, 1}n → {0, 1} the total share size S of any scheme for f
must satisfy

S · log|GRec|= Ω(2n/
√

n). (1)

These ideas were generalized in [20], and we show that they actually hold in a more general setting
of AVPs, which implies both [50] and [20] as well as prior bounds on linear-CDS [35] and multilinear
PIR [47]. Our proof closely follows the presentation of [20].

For a function family G, we say that a prover of an AVP protocol is G-compatible if for every fixed
x and f , the honest prover answers the verifier’s query by computing a function g from G. (The choice
of which g to compute may depend on f and x.) For the sake of lower bounds we consider AVPs with
imperfect correctness (this only strengthens the statement).

Theorem 4.3 (AVP lower bounds for families of provers). Let Q be an AVP protocol for all functions
in F with correctness and soundness errors 1/4 with a G-compatible prover and deterministic verifier.7

7We focus on deterministic verifiers for simplicity and since all our transformations from SSS, CDS, DRE and PIR yield
deterministic verifiers. However, this requirement can be easily waived with minor additional cost by using the sparsification
lemma for the verifier’s randomness (Lemma A.3) and pushing the randomness as part of the advisor’s advice.

14

Then for almost all functions f ∈ F the lengths of the advisor’s message denoted by Af satisfy

Af · log |G| = Ω(2n).

The proof of Theorem 4.3 is postponed to Section 4.5.
Remark 4.4 (extension to general function families). We mention that the theorem holds for any class
of Boolean functions F ′ over some domain X ′ at the expense of replacing the Ω(2n) bound with
Ω(VC(F ′)) where VC(F ′) is the Vapnik–Chervonenkis (VC) dimension [61] of F ′. This follows by
noting that an AVP for F ′ can be converted into an AVP for the class Fn of all Boolean functions over
strings of length n = log(VC(F ′)). Indeed, this can be done by defining an injective mapping α from
Fn to F ′ and an injective mapping β between {0, 1}n to X ′ such that f(x) = α(f)(β(x)) for every
f ∈ Fn and x ∈ {0, 1}n. The advisor, prover and verifier can apply these mappings locally and use an
F ′-AVP to derive a Fn-AVP. By plugging in the AVP lower bound for Fn, we derive the lower bound for
F ′. A similar observation is implicit in the proof of [20]. This extension will not be used in this paper,
and is recorded for future works.

Let us apply Theorem 4.3 to several families of prover functions, starting with the case of an unre-
stricted prover that can send the verifier the result of any computation from ≤ B bits to ≤ C bits. There

are ≤
(
2C+1)(2B+1)

such functions, and so the following corollary follows:

Corollary 4.5 (AVP lower bound for general provers). Let Q be an AVP protocol for all functions in F
with a deterministic verifier and with perfect correctness and soundness errors 1/4. Denote for every
f ∈ F by Af the length of the advisor message of Q, and the maximal length of the verifier’s and
prover’s messages by B and C. Then for almost all functions f ∈ F it holds that

Af · 2B+1 · (C + 1) = Ω(2n).

In particular, when both the advisor and prover send sub-exponential messages, i.e., A, C = 2o(n),
the message sent by the verifier has to be of length at least n − O(1). When the verifier is “silent”, i.e.,
when B = 0, we get that for most functions Af · C = Ω(2n), and that the total communication must
be at least Ω(2n/2). In Appendix A.1 we show that this bound is tight by constructing a silent-verifier
AVP with O(2n/2) complexity mimicking similar results from the literature on Yao’s black-box model
and program checking [65, 55].
Remark 4.6 (lower bound for general 2-server CDS). Corollary 4.5 also yields an Ω(n) lower on the
message complexity L of 2-server CDS. Indeed, by Remark 3.5 such a CDS leads to an AVP with
advice A = O(2n/2L), verifier’s message of length B = O(L) and 1-bit prover’s message, and so, by
Corollary 4.5, we get that L = Ω(n). This asymptotically matches the best known lower bounds for
2-server CDS from [7, 12].8

4.3 Arithmetic Low-Degree Provers
Assume that the verifier communicates B′ elements of a finite field F (i.e., the number of bits is B =
B′ log|F|) and that the prover responds with C ′ field elements (i.e., communicates C = C ′ log|F| bits)
and that, for every f and x, the prover’s computation can be written as a degree-d mapping. Since the

number of such mappings G is at most |F|C
′(B′+d

d) it holds that

log |G| ≤ C ′
(

B′ + d

d

)
log|F|≤ C(B/log|F|+1))d ≤ C(2B/log|F|)d.

We can plug this expression in Theorem 4.3 and derive the following corollary:

8We mention that unlike the current lower bound, the lower bounds in [12] apply to explicit functions and achieve better
constants. These tools also provide fine-grained lower bounds for asymmetric protocols in which one of the two CDS parties has
short communication.

15

Corollary 4.7 (Lower bound for d-arithmetic AVP). Let Q be an AVP protocol whose prover is com-
patible with degree-d polynomials over F for functions in F . Denote by Af the advice size of Q for
a function f , and by B and C the maximal message sizes for all functions of the verifier and prover
respectively. Then for most functions in F it holds that

Af C(2B/log|F|)d ≥ Ω(2n).

Equivalently, Af C(2B)d ≥ Ω(2n log|F|)d), and so the lower bound improves for larger fields.
Corollary 4.7 has several interesting implications. Consider, for example, the case of an arithmetic

protocol in which the communication is polynomial, then the corollary asserts that the degree must be
high (at least Ω(n/log n)). Indeed, this is the case for the AVP protocol promised by Example 1.1 that
achieves polynomial communication with an arithmetic prover of degree n.
Remark 4.8 (re-deriving lower bounds for SSS and CDS with low-degree reconstruction). The corollary
also implies previous statements about SSS and CDS protocols with degree-d reconstruction, studied,
e.g., in [35, 20]. Indeed, such schemes yields a d-arithmetic AVP via the reductions from Section 3. For
example, since secret-sharing with total share size of L, leads to an AVP with A = O(L), B = O(L)
and C = 1 (by Theorem 3.1 and Observation 3.2), we get a lower bound on the total share size of
Ω(2n/(d+1)) that matches the lower bounds of [20]. (For small values of d more refined lower bounds
appear in [20].)

Similarly, for (fully-decomposable) CDS protocols with degree-d reconstruction we get a lower
bound of Ω(2n/(d+1)) on the total message length for some n-bit predicate. For the special case of
linear CDS, i.e., d = 1, we get that some n-bit predicate requires a communication of Ω(2n/2) for
a fully-decomposable linear CDS, and, by using Remark 3.5, Ω(2n/4) for 2-server linear CDS where
each party holds n/2 bits of the input. We further note that any 2k-server linear CDS trivially yields
2-server linear CDS with the same total communication and so the lower bound of Ω(2n/4) holds even
for multi-server CDS where the number of servers is even (over an n-bit predicate). Similar bounds were
originally proved in [16]. Matching upper bounds for linear CDS were presented in [53, 21].

Next, we prove the following lower bound for PIR protocols with d-arithmetic servers as a corollary.
In these protocols for every fixed database the PIR servers can only perform arithmetic computations of
degree at most d over some finite field F. To our knowledge, this is the first lower bound for this family
of PIR protocols.

Corollary 4.9 (Lower bound for PIR with arithmetic servers). Let α and β denote the maximal query
and response sizes in a PIR protocol with k d-arithmetic servers for databases of size N = 2n. Then the
queries and responses in the protocol must satisfy

(α + β + log k) · (kβ) · (2kα)d = Ω(N).

Proof. Following Theorem 3.7 we convert the PIR protocol into an AVP such that for each function f it
holds that Af ≤ (α + β + log k), B ≤ kα and C ≤ kβ. The bound now follows from Corollary 4.7 by
noting that |F|≥ 2.

4.4 Multi-linear Provers
The second family of provers we consider are provers based on multilinear PIR servers. By Itoh [47],
(k, ℓ)-multilinear PIR servers are k-server PIR protocols where every query p sent from the client to any
of the servers is composed of ℓ binary vectors q = (q1, . . . , qℓ) ∈ {0, 1}α and where any server’s answer
(for a fixed database y) is of length β and is an ℓ-multilinear function in q over F2. For simplicity, let us
focus in the case where the qi’s are of equal length, i.e., α/ℓ (though everything below generalizes to the
more general setting). Itoh proved that in this model the total communication complexity k(α + β) is
at least Ωk(N1/(ℓ+1)). The proof is based on an incompressibility argument. His bound is known to be
tight only for the case where ℓ = 1. Using Theorem 4.3 we get the same bound with respect to N and ℓ.
Indeed, by Section 3.3, a (k, ℓ)-multilinear PIR with parameters α and β as above translates into an AVP

16

with advice of length A = log k + α + β whose prover sends kβ output bits and where each output is a
multilinear function over ℓ vectors of length m = α/ℓ each (corresponding to the corresponding block
of the verifier’s query). Since any multilinear function over ℓ vectors of length m is determined by its
behavior over mℓ inputs (e.g., a basis in each coordinate), the AVP prover is compatible with a family of
functions of size at most (kβ)(α/ℓ)ℓ

. Therefore, by Theorem 4.3 we get that

(log k + α + β) · (α/ℓ)ℓ log(kβ) = Ω(N).

For a constant k, we get that (α + β)ℓ+1 = Ωk(N) and so the total communication k(α + β) is
Ωk(N1/(ℓ+1)) matching the lower bound of [47].

4.5 Proof of Theorem 4.3
Let G be a function family, and let Q be an AVP protocol with a G-compatible prover. Let f ∈ F be a
function and denote by Af the size of the advice of Q when f is taken as an input. We prove that f can
be described by Af · log |G| bits, and since the description of almost all functions requires at least Ω(2n)
bits the theorem will follow.

Let T be a parameter to be fixed later. We run the AVP advisor T times with f taken as the input with
independent random strings to produce T messages a1, . . . , aT ∈ {0, 1}Af . Then, assume we continue
and run the verifier and the prover T times: For every i ∈ [T] the verifier receives ai, sends to the
prover a message bi(ai, x) and gets back from the prover a message ci(bi, x, f). Then the verifier, given
(ai, ci, x), decides whether to accept or reject the input x. The following properties then follow from the
correctness and soundness of the AVP protocol.

• If f(x) = 1, then there exists a function g ∈ G such that for every i ∈ [T] if the prover sends the
message ci = g(bi, x, f) the verifier accepts x with probability at least 3/4.

• If f(x) = 0, then for every i ∈ [T] and for every function g ∈ G that may be used by the prover it
holds that the probability that the verifier accepts x is at most 1/4.

We set T to be T = (v log|G|) for a large enough constant v. Let x be a 0-input of f . By the second
property, if we use the Chernoff bound and a union bound over all functions in G we get that the prob-
ability (over the choice of the advice) that there is at least one g ∈ G that makes the verifier accept x
in more than T/2 runs is at most 0.01. Since T = (v log|G|), we also get (with the same Chernoff and
union bounds) by the first property that for 1-inputs of f the probability that all functions g ∈ G make
the verifier reject x in more than T/2 runs is at most 0.01.

It then follows from an averaging argument that there exist advice-strings a′
1, . . . a′

T such that for at
least a 0.99-fraction of the inputs of f there exists a prover-function g ∈ G that makes the verifier accept
x in ≥ T/2 runs if and only if f(x) = 1. We use this fact to describe f as follows:

• Write down a′
1, . . . a′

T .

• Write down the set of inputs of f on which the verifier does not predict correctly the value of f(x).
Formally, we denote this set by Z and say that an input x ∈ Z if: (1) f(x) = 0 and there exists a
function g ∈ G such that when the prover employs g the verifier accepts x in at least T/2 runs of
the protocol; (2) f(x) = 1 and for every function g ∈ G employed by the prover in all T runs the
verifier rejects x at least T/2 times.

A decoder will then run the AVP protocol for every advice string in {a′
1, . . . a′

T } and every prover in G9.
Then, it will be able to determine whether f(x) = 1 by asserting that x ̸∈ Z, and that there exists a
prover-function g ∈ G for which the verifier accepts x at least T/2 times.

The size of Z is at most 0.01 · 2n, and there are at most
(2n

0.01·2n

)
≤ 2h(0.01)·2n

different subsets
of 2n elements of this size (where h(·) is the binary entropy function). Thus, Z can be encoded with

9The code of the verifier is also required in the decoding procedure, but since the verifier is independent of f it can be thought
of as public information, or as a part of the code of the decoder itself.

17

h(0.01) · 2n bits, and subsequently f can be encoded with Af · (v log|G|) + h(0.01) · 2n bits. Therefore,
we get that for most functions it holds that Af · log|G|= Ω(2n) as desired.

5 Separating Monotone and Non-Monotone Secret Sharing
We have seen that known SSS (and DREs) lead to AVPs with exponential communication, whereas CDS
protocols lead to AVPs with sub-exponential communication. This suggests that CDS-complexity may
be smaller than SSS complexity. We present the first provable separation between these two notions, and
along the way we show that Csirmaz’s method does not lower-bound the CDS complexity.

Theorem 5.1. There exists a monotone function over 2n bits that can be computed by a fully-
decomposable CDS protocol with total message size n1.5+o(1) but requires a total share size of
Ω(n2/log n) from any secret-sharing scheme.

Note that the CDS complexity of a monotone function is trivially upper-bounded by its SSS com-
plexity since any secret sharing scheme is a CDS protocol with empty 0-messages. Recalling that CDS
is essentially a “non-monotone” variant of SSS, the theorem intuitively shows that monotonicity adds an
additional overhead.

In Appendix B, we show that a stronger separation is possible if we consider partial functions. In
both theorems, the function in question is a variation on the Csirmaz’s function that was used to establish
the best-known secret sharing lower bound [28].

In this section, we denote by [n] the set of integers in the range [0, n − 1]. We start by defining in
two steps the monotone function that will be used to separate the two models.

Definition 5.2 (The Csirmaz functions). For every n ∈ N, let k be the largest integer such that 2k ≤ n.
The function Cn is parameterized by some non-increasing ordering (y0, . . . , y2k−1) of all strings of
length k. Here non-increasing means that

for every i < i′, it holds that yi ̸≤ yi′
. (2)

The function Cn : {0, 1}n+k → {0, 1}, defined in [27], is the monotone function whose min-terms10 are
1i ◦ 0n−i ◦ yi for i = 0, . . . , 2k − 1, that is, the i-th min-term contains i ones concatenated with n − i
zeros, concatenated by yi.

We also define a monotone function C ′
n : {0, 1}2n → {0, 1}, referred to as the separating Csir-

maz function, as follows: Let k be the largest integer such that 2k ≤ n and L = ⌊n/k⌋. Denote by
y(1), . . . y(L) L strings of length k and by y(i)j the jth bit of the string y(i), and define

C ′
n(x1, . . . , x2n−k·L, y(1), . . . , y(L)) = Cn(x1, . . . , xn,

L∨
ℓ=1

y(ℓ)1, . . . ,

L∨
ℓ=1

y(ℓ)k).

In case k · L < n the bits xn+1, . . . , x2n−k·L do not influence the function and therefore are ignored.

Theorem 5.3 (Secret sharing lower bound). The separating Csirmaz function C ′
n requires total share

size of Ω(n2/log n) from any secret sharing scheme that realizes it.

Proof. Csirmaz [27] proved that in any secret-sharing scheme realizing the function Cn the shares of
the last k parties must be of total size at least n. This lower bound holds for any order satisfying (2). For
every i ∈ [1, . . . , L], if we fix in C ′

n the L−1 sets of inputs y(j ̸= i) to 0k we will be left with a residual
function over n + k bits that is isomorphic to Cn. Therefore by [27] in every one of the L subsets of
parties corresponding to the input parts y(1), . . . , y(L) the total share size must be at least n, and the
total share size for C ′

n must be at least Ω(nL) = Ω(n2/log n). 11

10An input x is a min-term of f if for every x′ ≤ x it holds that f(x′) = 1 if and only if x′ = x.
11Csirmaz [28] used the same argument to prove an Ω(n2/log n) bound for the total share size for a similar function:

C′′
n(x1, . . . , x2n−k·L, y(1), . . . , y(L)) =

∨L

i=1 Cn(x1, . . . , xn, y(i)).

18

The following lemma will be proved in Section 5.1

Lemma 5.4. The function Cn has a fully-decomposable CDS protocol where each server communicates
at most n1/2+o(n) bits.

We are now ready to prove Theorem 5.1. We will use the following generic transformation based on
the closure properties over AND and OR gates for secret sharing. (Recall that the message complexity
of a fully-decomposable CDS is ℓ if each server communicates at most ℓ bits.)

Claim 5.5. Suppose that the predicate f : {0, 1}n+1 → {0, 1} can be realized by a fully-decomposable
CDS whose message complexity is ℓ bits. Let g : {0, 1}n+k → {0, 1} be the predicate that is obtained
by substituting the last input of f by the disjunction of k “new” input variables, i.e.,

g : (y1, . . . , yn+k) 7→ f(y1, . . . , yn,

n+k∨
i=n+1

yi).

Then, g can be realized by a fully-decomposable CDS in which each server communicates ℓ bits. More-
over, the same holds for substitution by a conjunction.

Proof. For 1 ≤ i ≤ n + 1 let ENCi : {0, 1} × S × R → {0, 1}ℓ denote the encoding function of the
fully-decomposable CDS for f . The CDS (ENC′

i)1≤i≤n+k for g is defined as follows.
Given a secret s, sample randomness r ∈ R for the original CDS and compute for every 1 ≤ i ≤ n+1

the pair of ℓ-bit messages zi,0 = ENCi(0, s; r)) and zi,1 = ENCi(1, s; r)). In addition, we share the
message zn+1,0 into k shares by sampling ρ1, . . . , ρk−1 ∈ {0, 1}ℓ and setting ρk = zn+1,0− (ρ1 + . . .+
ρk−1). The first n servers in the new CDS act as before, i.e., for 1 ≤ i ≤ n the ith server sends zi,b if its
input is b. Each of the last k servers, i ∈ {n + 1, . . . , n + k}, sends zn+1,1 if yi = 1 and ρi, otherwise.

We analyze the protocol. Fix an input y and let x = (y1, . . . , yn,
∨k

i=1 yi). By definition, g(y) =
f(x), and by construction, the messages that are sent in the g-CDS form a randomized encoding of the
messages that are released in the f -CDS under the input x.12 In particular, if y satisfies g then by the
correctness of the RE, given the g-CDS we can decode the messages of the f -CDS and recover the secret
s. If y does not satisfy g then the messages in the g-CDS can be simulated based on the messages of the
f -CDS over the input x, and since f(x) = 0, the secret remains hidden.

Proof of Theorem 5.1. By Theorem 5.3 the total share size for C ′
n is at least Ω(n2/log n). By Lemma 5.4

the function Cn has a fully-decomposable CDS with message length of n1/2+o(1), and by repeatedly
applying Claim 5.5, we conclude that the same holds for C ′

n. Overall, C ′
n has a CDS whose total

message size is n1.5+o(1) as desired.

5.1 Proof of Lemma 5.4
We now prove Lemma 5.4 in three steps. As a warm-up we describe a 2-server CDS protocol for Cn

with messages of size O(n1/2). Then we show how to fully-decompose Bob’s computation, and finally
we will fully-decompose Alice’s computation.

Claim 5.6. The predicate Cn admits a 2-server CDS protocol where the first server takes as inputs the
first n bits, the second server takes the last k bits and the message sizes are n1/2 + 1.

Proof. Let Cn be a Csirmaz function defined over the ordered strings of length k y0, . . . y2k−1, and let s
be the secret bit. We describe a 2-server CDS protocol for Cn where Alice holds the first n input bits and
Bob holds the last k input bits. The idea is to locally reduce the problem to a less-than-or-equal predicate
and then construct a cheap CDS for this predicate. Details follow.

12More accurately, the mapping (y, s, r) 7→ (y, (ENCi(xi, s; r)1≤i≤n viewed as a deterministic mapping is encoded by the
randomized mapping (y, s, r; ρ) 7→ (y, (ENC′

i(yi, s, r; ρ))1≤i≤n+k where ρ = (ρ1, . . . , ρk−1).

19

Given an input x ∈ {0, 1}n Alice counts the number of leading ones in x and writes this number
in a
√

n-basis, i.e., x is mapped to (a, b) ∈ [
√

n] × [
√

n] where 1(a
√

n+b) is the longest all-1 prefix of
x. Given an input y ∈ {0, 1}k Bob computes the rank of y according to the order that is defined by the
Csirmaz function and writes this number in a

√
n-basis, i.e., Bob maps y to (a′, b′) ∈ [

√
n]× [

√
n] where

y = ya′√n+b′
. Under these mappings Cn(x, y) = 1 if and only if a

√
n + b ≥ a′√n + b′. Accordingly,

we use the following CDS protocol.

A 2-server CDS for Cn

Let s be a secret bit and let R0, . . . , R√
n−1 and r0, . . . , r√

n−1 be random bits.

1. On input x ∈ {0, 1}n, Alice computes the representation (a, b) that corresponds to x and
sends r0, . . . , rb, (s⊕Ra).

2. On input y ∈ {0, 1}k, Bob computes the representation (a′, b′) that corresponds to y and
sends Ra′+1, . . . , R√

n−1, (Ra′ ⊕ rb′).

To analyze the correctness of the protocol, fix an input (x, y) for which a
√

n + b ≥ a
√

n
′ + b′, and

let us distinguish between two cases. If a = a′ and b ≥ b′, the secret can be recovered by retrieving the
bits s⊕Ra, rb′ from Alice’s message and the bit Ra ⊕ rb′ from Bob’s message, and XORing these bits
together. If a > a′ the secret can be recovered by XORing the bit s⊕Ra (sent by Alice) with the bit Ra

(that is sent by Bob).
To argue that the protocol is private, let us fix an input (x, y) for which a

√
n + b < a′√n + b′, and

show that the secret remains hidden. Again we have two cases. If a < a′ the CDS referee receives the
message s ⊕ Ra from Alice, but does not learn any information about the bit Ra. If a = a′ and b < b′,
the referee receives s ⊕ Ra and Ra ⊕ rb′ but does not learn rb′ and thus cannot unmask s. Formally,
in both cases, for any fixing of s, Alice sends a random string and Bob sends an independently chosen
random string, and the view of the referee is independent of s.

We continue by showing how to distribute the 2-server CDS protocol described above. That is, we
will replace Alice with n servers and Bob with k servers, each holding a single input bit.

Simulating Bob with k servers. Recall that in the 2-server protocol Bob takes an input y ∈ [n],
parses it to (a, b) ∈ [

√
n] × [

√
n] and outputs the bits Ra+1, . . . , R√

n and Ra ⊕ rb. We will simulate
Bob by k servers where each server holds a single bit of y. First, observe that it suffices to release a
randomized encoding of Bob’s original message. Specifically, we will release the vector

(Ra+1, . . . , R√
n, Ra ⊕ u, u⊕ rb),

where u is a random bit that is given to the servers as part of their common random string. Now, the key
observation is that on every input the k servers only have to release some subset of the same 3

√
n bits

R0, . . . , R√
n−1, (R0 ⊕ u), . . . , (R√

n−1 ⊕ u), (u⊕ r0), . . . , (u⊕ r√
n−1).

For example, on input (7, 5) (equivalently, the string y7
√

n+5) the servers should release R8, . . . R√
n,

R7⊕u and u⊕r5. We will think of these random bits as secrets known to all servers, and disclose them in
the desired way by running 3

√
n copies of a fully-decomposable CDS where each copy is invoked with

its own corresponding predicate P : {0, 1}k → {0, 1} and independent randomness. By employing the
fully-decomposable CDS protocol of [52] that has messages of size 2O(

√
k log k) for k-bit predicates, and

by recalling that k ≤ log n, we get that each of the k servers emulating Bob communicates at most

3
√

n · 2O(
√

k log k) = n1/2+o(1)

bits.

20

Simulating Alice with n servers. We move on to distribute the role of Alice among n servers.
Recall that Alice maps an input x ∈ {0, 1}n to (ax, bx) ∈ [

√
n] × [

√
n] such that the longest all-one

prefix of x is of length ax
√

n + bx, and then she reveals the message

mx = (r0, . . . , rbx
, (s⊕Rax

)).

We will replace Alice with n servers, each holding a single bit of x, that release the message mx and noth-
ing else. To release the first bx + 1 bits of mx, we will invoke, for each b ∈ [

√
n], a fully-decomposable

CDS for the secret rb with the predicate Qb : {0, 1}n → {0, 1} that maps x to 1 if b ≤ bx. To release the
last bit of mx, we will invoke, for every a ∈ [

√
n], a fully-decomposable CDS with the secret (s⊕ Ra)

and predicate Pa : {0, 1}n → {0, 1} that given x ∈ {0, 1}n outputs 1 if a = ax. Overall, we call 2
√

n
protocols. We will show that in each of these protocols every server communicates O(1) bits and so the
overall complexity is O(

√
n). For this, it suffices to show (Lemma A.1) that each of the above predicates

can be realized by a formula in which each variable appears in a constant number of leaves (i.e., read-k
formula for k = O(1)). We will prove this in the following claim.

Claim 5.7. For each a, b ∈ [
√

n], the predicates Pa : {0, 1}n → {0, 1} and Qb : {0, 1}n → {0, 1} can
be computed by a read-once and a read-twice formula, respectively.

Proof. Fix a ∈ [
√

n]. Recall that Pa(x) = 1 if the number t of leading ones in x satisfies a ·
√

n ≤ t <
(a + 1)

√
n. Thus, Pa is computed by the read-once formula√

na−1∧
k=0

xk

 ∧
√

n(a+1)−1∨
k=

√
na

¬xk

 ,

where x = (x0, . . . , xn−1) and x−1 is a dummy variable that is always set to 1.
We move on to the predicate Qb for some fixed b. For 1 ≤ i ≤

√
n, define the function Qb,i :

{0, 1}i·
√

n → {0, 1} that given x ∈ {0, 1}i·
√

n counts the number t of leading ones in x and sets its
output to 1 if t mod

√
n is at least b. We will show that, for every i, the function Qb,i has a read-twice

formula and conclude the claim by letting Qb(x) := Qb,
√

n(x).
We implement Qb,i recursively. For i = 1, we compute Qb,1 via

b∧
k=0

xk.

Indeed, Qb,1 simply checks if the number of leading ones is at least b, i.e., if all the first b bits are ones.
For i > 1, we parse the input x ∈ {0, 1}i

√
n as a pair (L, R) where L ∈ {0, 1}

√
n contains the first

√
n

bits of x and R ∈ {0, 1}(i−1)
√

n contains the last (i− 1) ·
√

n bits of x, and then compute

Qb,1(L) ∧

Qb,i−1(R) ∨
∨
j

¬Lj

 (3)

By induction on i, we prove that (3) is a read-twice formula that computes Qb,i. First, note that each
variable of L is being read two times (since Qb,1 is a read-once formula) and each of the variables of R
is being read two times (by the induction hypothesis). As for correctness, observe that if (a) the number
of leading ones in x is smaller than

√
n then the output of Qb,i should be Qb,1(L) and if (b) the number

of leading ones is at least
√

n then the output should be Qb,i−1(R). Indeed, in case (a) the expression∨
j ¬Lj evaluates to 1, and so (3) simplifies to Qb,1(L), and in case (b), it holds that Qb,1(L) = 1 and∨
j ¬Lj = 0, and so (3) simplifies to Qb,i−1(R), as required.

This completes the proof of Lemma 5.4.

21

6 Separating CDS Protocols from DRE
We prove the following theorem:

Theorem 6.1. There exists a predicate f : {0, 1}2n → {0, 1} that can be computed by a fully-
decomposable CDS protocol with total message size n1+o(1) such that any DRE for f has total message
length of Ω(n2/log n).

To prove the theorem we define the Multi-Index function MIn (that can be viewed as a non-monotone
analog of the separating Csirmaz function from Section 5), and show that it has the desired DRE lower
bound and CDS upper bound.

Definition 6.2 (The Multi-Index function). Denote by Indexk : {0, 1}2k × {0, 1}k → {0, 1} the index
function that given a “database” string x = (x1, . . . , x2k) and an “index” string y = (y1, . . . , yk)
outputs the yth bit of x (e.g., when y is interpreted as an integer according to the standard binary
representation). For every n ∈ N let k be the largest integer such that 2k ≤ n, let L = ⌊n/k⌋ and define
the Multi-Index function MIn : {0, 1}2n → {0, 1} as follows. The input is parsed into x, y(1), . . . , y(L)
where x = (x1, . . . , x2n−k·L) is a string of length 2n− k ·L and y(1), . . . , y(L) are strings of length k,
and the output is

Indexk(x1, . . . , x2k ,

L∨
ℓ=1

y(ℓ)1, . . . ,

L∨
ℓ=1

y(ℓ)k),

that is, we compute a k-bit index y by letting yj =
∨L

ℓ=1 y(ℓ)j for every j ∈ [k] and output the yth entry
of the database x.

A DRE lower bound for multi-index. In [13] it is shown that the total message complexity of any
DRE for a function f is lower-bounded by the Nečiporuk complexity G(f) [32]. Before defining G(f)
we need to set some notation.

For a function f : {0, 1}n → {0, 1}, a set S ⊆ [n] of input variables, and an assignment z ∈ {0, 1}S

to the variables outside the set S, we denote by fS|z : {0, 1}S → {0, 1} the residual function that is
obtained from f by fixing the variables outside S to z. Let

gS(f) := log(|{fS|z : z ∈ {0, 1}S}|),

denote the number of different functions that can be obtained from f by fixing the variables in S. Then
the Nečiporuk complexity of f is

G(f) := max
V

∑
v∈V

gv(f).

where the maximum ranges over all partitions V of [n].
We show that MIn has a Nečiporuk complexity of Ω(n2/log n), and thus by [13] any DRE for MIn

has total message complexity of Ω(n2/log n).

Claim 6.3. The Nečiporuk’s complexity of MIn is Ω(n2/log n).

Proof. Let n be an integer, k be the largest integer such that 2k ≤ n and L = ⌊n/k⌋. Consider the
partition of the 2n inputs of MIn to L+1 sets V0, V1, . . . VL where for every 1 ≤ i ≤ L, Vi is the set of k
inputs denoted by y(i), and V0 contains the first 2n−kL inputs denoted by x. Then, for every 1 ≤ i ≤ L,
if the variables of Vj ̸=i are set to 0, each of the 22k

possible fixings of the input bits x1, . . . , x2k induces
a different subfunction on the bits of Vi. Hence, For every 1 ≤ i ≤ L it holds that gVi(MIn) ≥ 22k

, and
the Nečiporuk’s complexity of MIn is at least

L∑
i=1

log(22k

) = Ω(n2/log n),

and the claim follows.

22

A CDS upper bound for multi-index. Our next goal is to realize MIn by a fully-decomposable
CDS whose message complexity is no(1). We begin by realizing Indexk.

Lemma 6.4. The predicate Indexk can be realized by a fully-decomposable CDS protocol in which each
server communicates 2O(

√
k log k) bits.

Proof. In [53] it is shown how to realize Indexk with the complexity ℓ = 2O(
√

k log k) by an “almost”-
decomposable CDS. That is, they construct a (k + 1)-server CDS for Indexk where one server A holds
the database x ∈ {0, 1}2k

and each server Bi, i ∈ [k] holds a single bit of the index yi. We will show
how to distribute the message that A computes among 2k parties Aj , j ∈ [2k] each holding a single bit
xj of the database x. For this, we note that the message that A computes has the following form:

A(x, r, w) := r +
n∑

j=1
xj · g(w, j),

where r, w ∈ Zℓ
6 are part of the protocol’s randomness, the sum is computed over Z6 and g : Zℓ

6×[2k]→
Zℓ

6. Instead of computing A we let each server Ai, i ∈ [2k], compute

Ai(xi, r, w; (v1, . . . , v2k−1)) := vi + xi · g(w, i),
where v1, . . . , v2k−1 are sampled uniformly at random from Zℓ

6 and v2k = r −
∑

i<2k vi, and
arithmetic operations are over Z6. To see that the protocol is a CDS for Indexk observe that
(Ai(xi, r, w; (v1, . . . , v2k−1)))i∈[2k] , forms a randomized encoding for A(x, r, w). Consequently, if
Indexk(x, y) = 1 then, by the correctness of the RE, one can recover the message of A given the mes-
sages of the Ai’s by applying the decoder of the original CDS. On the other hand, if Indexk(x, y) = 0
then, by the privacy of the RE, one can simulate the message of (Ai)i∈[2k] given the messages of A and
so the privacy of the new CDS follows from the privacy of the original CDS.

We move on to realize MIn. Recall that MIn is obtained by replacing some of the inputs to Indexk

by disjunctions over blocks of fresh input variables. Thus, we can repeatedly apply Claim 5.5 on the
fully-decomposable protocol for Indexk and get a protocol for MIn with the same 2O(

√
k log k) message

sizes. If we plug in k = ⌊log n⌋ we get that the message sizes are no(1) as desired. This completes the
proof of Theorem 6.1.

7 From prover-laconic AVP to relaxed-CDS
We will show that given a laconic AVP it is possible to construct a 2-party one-way communication CDS
for the “universal function” Un : {0, 1}2n ×{0, 1}n → {0, 1}. Recall that in such a protocol Alice holds
the 2n-bit long truth table of a function f : {0, 1}n → {0, 1}, Bob holds a string x ∈ {0, 1}n and a
secret s ∈ {0, 1}, Alice sends to Bob a short randomized message a of length poly(n) and Bob generates
a short (poly(n)-long) message e that, together with x and f reveals s if and only of f(x) = 1. That
is, the randomized mapping ENC : (f, x, s) 7→ e forms a CDS (as per Definition 2.4) for the universal
function. In fact, we will allow some error both in the correctness and in the privacy, and show that it
can be reduced to negligible while preserving a poly(n) overhead.

The construction. Let Q = (A,V,P,Vacc) be a laconic-prover AVP. For simplicity and wlog we
assume that the verifier is deterministic. (Indeed, we can always let the advisor select the randomness
for the verifier and send is as part of the advice.) We define the following CDS protocol. Given f Alice
plays the role of the advisor A, samples an advice a = A(f ; rA) and sends it to Bob. Given x and
a Bob plays the verifier and computes a query b = V(a, x). In addition, Bob uniformly samples an
“accepting” prover’s answer c ∈ {c : Aacc(a, x, c) = 1}.13 Next, Bob samples a pairwise independent

13This step can be implemented efficiently since the prover’s answer is of constant size. We emphasize that laconicity will be
important even if we do not care about computational complexity.

23

hash function h that outputs a single bit and sends e := (b, h, h(c) + s) where s ∈ {0, 1} is the secret.
Let DEC be a decoder that given x, f and e = (b, h, d = h(c)+s) invokes the AVP prover and computes
c′ = P(b, x, f), then it outputs s′ = d− h(c′).

Analysis. We assume that the AVP protocol is regular in the sense that for every f, x and a the number
of accepted answers Lf,x,a = |{c : Aacc(a, x, c) = 1}| is some fixed number L that is independent of
f, x and a. (Indeed, all known AVP protocols satisfy this assumption.) We denote the soundness error of
the protocol by δ, and note that since the prover’s answer is of constant size both δ and L are constants.
We analyze the protocol. From now on, let us fix some x and f .

Claim 7.1 (correctness). Suppose that f(x) = 1. Then for every s ∈ {0, 1} it holds that the random
variable (b, h, d) = ENC(f, x, s) induced by the randomized protocol, satisfies

Pr[DEC(f, x, (b, h, d)) = s] ≥ 0.5 + 0.5 · L−1.

Proof. When c = c′ the output is always correct, and when c ̸= c′ the output is correct with probability
exactly half since h(c) and h(c′) are uniformly and independently distributed. Therefore, the success
probability is L−1 + (1− L−1) · 0.5 = 0.5 + 0.5 · L−1.

Claim 7.2 (privacy). Suppose that f(x) = 0. Then the distribution (b, h, d|s = 0) induced by the
randomized protocol with s = 0, is β-close to the distribution (b, h, d|s = 1) induced by the randomized
protocol with s = 1, where β =

√
2δ/L.

Before proving Claim 7.2, we need the following simple claim.

Claim 7.3. Let L be a random variable that is distributed over sets of strings where each set is of
cardinality at least L, and let Z be a jointly distributed random variable such that for every unbounded
adversary P ∗ it holds that Pr[P ∗(Z) ∈ L] ≤ δ. Let C be a uniformly sampled element from L, then for
every unbounded adversary P ∗ it holds that Pr[P ∗(Z) = C] ≤ δ/L, equivalently,

Ez∈Z [max
c

(Pr[C = c|Z = z])] ≤ δ/L.

Proof. Fix P ∗ : {0, 1}∗ → {0, 1}∗. We use λ and z to denote fixed outcomes of L and Z. Letting
wz,λ := Pr[Z = z ∧ L = λ] and Cλ denote the uniform distribution over the set λ, we can write
Pr[P ∗(Z) = C] as∑

z,λ:P ∗(z)∈λ

wz,λ · Pr[P ∗(z) = Cλ] ≤
∑

z,λ:P ∗(z)∈λ

wz,λ · L−1 = Pr[P ∗(Z) ∈ L] · L−1 ≤ δ/L.

The “equivalently” part follows by considering an optimal adversary P ∗(z) whose output c maximizes
Pr[C = c|Z = z], and by noting that Pr[P ∗(Z) = C] = Ez∈Z [maxc(Pr[C = c|Z = z])].

Proof of Claim 7.2. Fix some bit s. Consider a random execution and let a, b, c, h be the corresponding
random variables. Apply Claim 7.3 where b plays the role of the random variable Z, c plays the role of
the random variable C, and the set {c′ : Aacc(a, x, c′) = 1} plays the role of the random variable L. By
the soundness of the AVP, the probability of hitting an element in L given the random variable Z, is at
most δ. Hence, by the above claim, the average min-entropy [29] of C given Z, which is defined to be

− log
(
Ez∈Z [max

c
(Pr[C = c|Z = z])]

)
,

is at least log(L/δ). Hence, by the generalized leftover-hashing lemma [29], the random variable
(b, h, h(c)) is

√
δ/(2L)-close to (b, h, u) where u is an independent random bit. The claim follows

for β = 2
√

δ/(2L) =
√

2δ/L.

24

Amplification. When f(x) = 1 our CDS succeeds in decoding with probability 0.5 + 0.5α for
α = 1/L, whereas when f(x) = 0 no adversary can distinguish between an encoding of 0 to an encoding
of 1 with an advantage better than β =

√
2δ/L. As shown in [3], based on the polarization lemmas

of [57, 41], if α2 > β then one can reduce the privacy error and correctness error as per Definition 2.4
to 2−k with a multiplicative overhead which is polynomial in k and in 1/(α2 − β).14 In our setting, α
and β are constants (since L, δ are constants) and the condition α2 > β simplifies to

L < (1/2δ)1/3. (4)

When there is a unique prover’s answer (L = 1), this condition always holds (for any value of δ). This
is indeed the case in the AVP constructions that are based on CDS, SSS, and randomized encoding.15

Equation (4) also follows by assuming that c, the bit-length of the prover’s answer, is sufficiently short
as a function of the soundness error δ, i.e.,

c < (4 log(1/δ)− 1)/3. (5)

Indeed, if the soundness error is at most δ then L ≤ δ2c since otherwise a randomly chosen prover’s
answer will be accepted with probability more than δ. Therefore, (5) implies (4). This completes the
proof of Theorem 1.4.

Extension to non-regular protocols. Assume that the protocol is “somewhat regular” in the sense
that, for every f, x, a it holds that the number of accepted answers Lf,x,a is bounded in an interval
[Lmin, Lmax] where Lmax/Lmin ≤ K for some constant K. Then, the proof of Claim 7.1 can be
generalized to show that correctness holds with probability at least 0.5 + 0.5L−1

max and Claim 7.2 implies

that privacy can be guaranteed up to statistical distance of β =
√

2δL−1
min. In this case, the condition

α2 > β follows by slightly strengthening (4) to Lmax < (1/2Kδ)1/3 which translates to a stronger
condition on the bit-length c, i.e., c < (4 log(1/δ) − log(2K))/3. The argument can be naturally
extended to the case where Lf,x,a ∈ [Lmin, Lmax] for most f, x and a, at the expense of relaxing the
CDS conditions to hold over most inputs.

References
[1] Omar Alrabiah, Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. A near-cubic

lower bound for 3-query locally decodable codes from semirandom CSP refutation. In Proceedings
of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pages 1438–1448, 2023.

[2] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer. In Yehuda
Lindell, editor, Tutorials on the Foundations of Cryptography, pages 1–44. Springer International
Publishing, 2017.

[3] Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional dis-
closure of secrets: Amplification, closure, amortization, lower-bounds, and separations. SIAM J.
Comput., 50(1):32–67, 2021.

[4] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing schemes
for general and uniform access structures. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Part III, volume 11478 of Lecture Notes in Computer
Science, pages 441–471. Springer, 2019.

14The amplification of [3] was presented for the setting of non-interactive CDS but it works in the current setting of one-way
communication CDS (as well as in the more general setting of interactive CDS) as well.

15For PIR-based AVP, this transformation typically fails since L is typically exponential in the number of servers k, whereas
δ = 1/k.

25

[5] Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via robust
conditional disclosure of secrets. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2020, pages 280–293. ACM, 2020.

[6] Benny Applebaum, Amos Beimel, Oded Nir, Naty Peter, and Toniann Pitassi. Secret sharing, slice
formulas, and monotone real circuits. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[7] Benny Applebaum, Thomas Holenstein, Manoj Mishra, and Ofer Shayevitz. The communication
complexity of private simultaneous messages, revisited. J. Cryptol., 33(3):917–953, 2020.

[8] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th Symposium
on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings,
pages 166–175. IEEE Computer Society, 2004.

[9] Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity of
1.5n. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Part III, volume 12827 of Lecture
Notes in Computer Science, pages 627–655. Springer, 2021.

[10] Benny Applebaum and Pavel Raykov. From private simultaneous messages to zero-information
arthur-merlin protocols and back. J. Cryptol., 30(4):961–988, 2017.

[11] Benny Applebaum and Pavel Raykov. On the relationship between statistical zero-knowledge and
statistical randomized encodings. Comput. Complex., 28(4):573–616, 2019.

[12] Benny Applebaum and Prashant Nalini Vasudevan. Placing conditional disclosure of secrets in the
communication complexity universe. J. Cryptol., 34(2):11, 2021.

[13] Marshall Ball, Justin Holmgren, Yuval Ishai, Tianren Liu, and Tal Malkin. On the complexity
of decomposable randomized encodings, or: How friendly can a garbling-friendly PRF be? In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020,
January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 86:1–86:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[14] Amos Beimel and Benny Chor. Universally ideal secret-sharing schemes. IEEE Trans. on Infor-
mation Theory, 40(3):786–794, 1994.

[15] Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes for almost all access
structures and graphs. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography -
18th International Conference, TCC 2020, volume 12552 of Lecture Notes in Computer Science,
pages 499–529. Springer, 2020.

[16] Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter. Linear secret-sharing schemes for for-
bidden graph access structures. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography
- 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Pro-
ceedings, Part II, volume 10678 of Lecture Notes in Computer Science, pages 394–423. Springer,
2017.

[17] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval: A unified con-
struction. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Lan-
guages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12,
2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 912–926. Springer,
2001.

[18] Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic com-
plexity of the worst functions. In Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of
Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings,
volume 8349 of Lecture Notes in Computer Science, pages 317–342. Springer, 2014.

26

[19] Amos Beimel, Eyal Kushilevitz, and Pnina Nissim. The complexity of multiparty PSM protocols
and related models. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Part II, volume 10821 of Lecture Notes in Computer Science, pages
287–318. Springer, 2018.

[20] Amos Beimel, Hussien Othman, and Naty Peter. Quadratic secret sharing and conditional dis-
closure of secrets. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Part III, volume 12827
of Lecture Notes in Computer Science, pages 748–778. Springer, 2021.

[21] Amos Beimel and Naty Peter. Optimal linear multiparty conditional disclosure of secrets protocols.
In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018
- 24th International Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III, volume 11274 of
Lecture Notes in Computer Science, pages 332–362. Springer, 2018.

[22] Itay Berman, Akshay Degwekar, Ron D. Rothblum, and Prashant Nalini Vasudevan. From la-
conic zero-knowledge to public-key cryptography - extended abstract. In Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2018, Proceedings, Part III, pages 674–697, 2018.

[23] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the
correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

[24] Carlo Blundo, Alfredo De Santis, Luisa Gargano, and Ugo Vaccaro. On the information rate of
secret sharing schemes (extended abstract). In Advances in Cryptology - CRYPTO ’92, 12th Annual
International Cryptology Conference, pages 148–167, 1992.

[25] B. Chor and E. Kushilevitz. Secret sharing over infinite domains. J. of Cryptology, 6(2):87–96,
1993.

[26] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval.
J. ACM, 45(6):965–981, 1998.

[27] László Csirmaz. The size of a share must be large. In Alfredo De Santis, editor, Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on the Theory and Application of Cryptographic Techniques,
volume 950 of Lecture Notes in Computer Science, pages 13–22. Springer, 1994.

[28] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math.
Hungar., 32(3–4):429–437, 1996.

[29] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[30] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling. In Jon M.
Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seat-
tle, WA, USA, May 21-23, 2006, pages 711–720. ACM, 2006.

[31] Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 577–584.
ACM, 2015.

[32] I Nečiporuk Eduard. On a boolean function. In Soviet Math. Dokl, volume 7, pages 999–1000,
1966.

[33] Klim Efremenko. 3-query locally decodable codes of subexponential length. In Michael Mitzen-
macher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 39–44. ACM, 2009.

[34] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In 26th STOC, pages
554–563. ACM, 1994.

27

[35] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 485–502. Springer, 2015.

[36] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers. In Advances in Cryptology - CRYPTO 2010, 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 465–
482, 2010.

[37] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private
information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, 2000.

[38] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower bounds for
linear locally decodable codes and private information retrieval. Comput. Complex., 15(3):263–
296, 2006.

[39] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum. A
(de)constructive approach to program checking. In Proceedings of the 40th Annual ACM Sym-
posium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages
143–152, 2008.

[40] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive
proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015.

[41] Thomas Holenstein and Renato Renner. One-way secret-key agreement and applications to circuit
polarization and immunization of public-key encryption. In Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings, pages 478–493, 2005.

[42] Y. Ishai and E. Kushilevitz. On the hardness of information-theoretic multiparty computation. In
C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 439 – 455.
Springer-Verlag, 2004.

[43] Yuval Ishai. Randomization techniques for secure computation. In Manoj Prabhakaran and Amit
Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and Information Security
Series, pages 222–248. IOS Press, 2013.

[44] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with applications. In
Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, Ramat-Gan, Israel,
June 17-19, 1997, Proceedings, pages 174–184. IEEE Computer Society, 1997.

[45] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with applica-
tions to round-efficient secure computation. In 41st Annual Symposium on Foundations of Com-
puter Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 294–
304. IEEE Computer Society, 2000.

[46] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general access
structure. In Globecom 87, pages 99–102. IEEE, 1987. Journal version: Multiple assignment
scheme for sharing secret. J. Cryptol., 6(1):15-20, 1993.

[47] Toshiya Itoh. On lower bounds for the communication complexity of private information retrieval.
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sci-
ences, 84(1):157–164, 2001.

[48] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages
80–86. ACM, 2000.

28

[49] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity.
In Frank Thomson Leighton and Allan Borodin, editors, Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages
596–605. ACM, 1995.

[50] Kasper Green Larsen and Mark Simkin. Secret sharing lower bound: Either reconstruction is hard
or shares are long. In Clemente Galdi and Vladimir Kolesnikov, editors, Security and Cryptography
for Networks - 12th International Conference, SCN 2020, Amalfi, Italy, September 14-16, 2020,
Proceedings, volume 12238 of Lecture Notes in Computer Science, pages 566–578. Springer, 2020.

[51] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In Ilias
Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 699–708. ACM, 2018.

[52] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional disclosure of secrets via non-
linear reconstruction. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20-24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 758–790. Springer, 2017.

[53] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential bar-
rier for general secret sharing. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology – EUROCRYPT 2018 – 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Part I, volume 10820 of Lecture Notes in Computer
Science, pages 567–596. Springer, 2018.

[54] E. Mann. Private access to distributed information. Master’s thesis, Technion – Israel Institute of
Technology, 1998.

[55] Moni Naor and Guy N. Rothblum. The complexity of online memory checking. J. ACM, 56(1):2:1–
2:46, 2009.

[56] Ilan Newman. Private vs. common random bits in communication complexity. Inf. Process. Lett.,
39(2):67–71, 1991.

[57] Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,
50(2):196–249, 2003.

[58] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[59] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J., 28(4):656–715,
1949.

[60] Vinod Vaikuntanathan and Prashant Nalini Vasudevan. Secret sharing and statistical zero knowl-
edge. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 -
21st International Conference on the Theory and Application of Cryptology and Information Secu-
rity, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452
of Lecture Notes in Computer Science, pages 656–680. Springer, 2015.

[61] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

[62] Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes
and private information retrieval. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia
Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lec-
ture Notes in Computer Science, pages 1424–1436. Springer, 2005.

[63] David P. Woodruff. New lower bounds for general locally decodable codes. Electron. Colloquium
Comput. Complex., (006), 2007.

29

[64] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages
162–167. IEEE Computer Society, 1986.

[65] Andrew Chi-Chih Yao. Coherent functions and program checkers (extended abstract). In Harriet
Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 84–94. ACM, 1990.

[66] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. In David S.
Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, San Diego, California, USA, June 11-13, 2007, pages 266–274. ACM, 2007.

[67] Sergey Yekhanin. Locally decodable codes. Found. Trends Theor. Comput. Sci., 6(3):139–255,
2012.

A Omitted Proofs

A.1 An Optimal Silent-Verifier AVP Protocol
We present an AVP with a silent verifier whose total communication complexity is O(2n/2). Set N = 2n,
let us view f as a function over [N], and let us parse the truth table of f as

√
N blocks f1, . . . , f√

N of

bit-length
√

N each. The advisor draws uniformly at random a hash function h : {0, 1}
√

N → {0, 1}
from a universal hash function familyH. Recall that by definition in such a family it holds that

∀X, Y ∈ {0, 1}
√

N , X ̸= Y : Prh∈H[h(X) = h(Y)] ≤ 1/2.

The advisor sends the verifier the hashed values of all blocks, i.e.,

ai = h(fi), ∀i ∈ [
√

N],

together with a0 which is set to be the description of the hash function h. The prover then replies with
the block fi in which the input x lies. Then verifier outputs 1 iff h(fi) = ai.

We omit the simple analysis and note that the description of h can be as small as
√

N (e.g., by
employing Toeplitz-based hashing). Thus the total communication complexity is O(2n/2).

A.2 Formulas and CDS Protocols
Lemma A.1 (Formulas and CDS protocols). Let g : {0, 1}n → {0, 1} be a function that can be com-
puted by a formula where negations only appear at the bottom and every variable xi and its negation ¬xi

appear as a leaf at most σi and σi times respectively. Then g has a fully-decomposable CDS protocol
such that for every i ∈ [n] the 1-message and 0-message of the ith server are of size at most σi and σi

respectively.

Proof of Lemma A.1. The proof is by induction on the size of the formula that we denote by t. Let s
be the CDS secret bit and denote by xi the ith bit of the input x. For t = 1, the formula is either xi or
¬xi for some i ∈ [n]. Then in a CDS protocol for g the secret will be given as is to the 1-message or to
the 0-message of the ith server. To prove the induction step, let G be a formula for g where negations
only appear at the bottom and every variable and its negation appear as a leaf at most σ and σi times
respectively. Say that G is of size t, and that it has the form G = G1 ∧ G2 or G = G1 ∨ G2 where
G1 and G2 are formulas of size t1, t2 < t. For the case of an AND gate, we additively secret-share the
secret s into random s1 and s2 subject to s1 + s2 = s and use a fully-decomposable CDS protocol for
G1 with the secret s1 and for G2 with the secret s2 (we say that a CDS protocol realizes a formula G′ if
it realizes the function computed by G′). For the case of an OR gate, we use fully-decomposable CDS
protocols for both G1 and G2 with the secret s.

30

By the induction hypothesis, each of the functions computed by G1 and G2 has a fully-decomposable
CDS protocol with message sizes that are at most the number of times each variable appears as a leaf
in the formula. The proof then follows from the fact that the leaves of G are exactly the combination of
leaves of G1 and G2.

A.3 Randomness Sparsification for AVP Protocols
Theorem A.2. If there exist an AVP protocol for function in F with messages of maximal sizes A, B
and C and soundness error s then for every ε > 0 there exists an AVP protocol for functions in F with
a deterministic verifier, messages of maximal size Oε(A + B), B and C and soundness error s + ε.

Proof. By Lemma A.3 stated below, for every ε > 0 we can decrease the size of the verifier’s random-
ness to 2B + log B + log(A + n) + 2 log(1/ε) while increasing the soundness error to s + ε. Then the
verifier can be made deterministic by having the advisor draw its randomness rV in its place and send it
as a part of the advice. The advice size will then be

A + 2B + log B + log(A + n) + 2 log(1/ε) = Oε(A + B).

The equality holds since by Theorem 4.1 the size of the original advice A must be of size at least
n− o(1).

We prove the following lemma:

Lemma A.3. Suppose there exists an AVP protocol for every function f ∈ F with verifier-randomness
of length ρ and soundness error s, where the maximal sizes of the messages of the advisor and verifier
are A and B respectively. Then, for any ε > 0 there exists an AVP protocol with the same message sizes,
soundness error s + ε and verifier-randomness

2B + log B + log(A + n) + 2 log(1/ε).

This lemma is similar to the sparsification lemma for CDS that appears in [12], which in turn is
based on the classical theorem of Newman for communication complexity [56]. The proof is taken
almost verbatim from [12]. We denote {0, 1}ρ by R and {0, 1}B by B and describe the proof using
non-Boolean PRGs [30]:

Definition A.4 (non-Boolean PRG). Let D = {D} be a class of functions from R to B and let ε > 0
be an error parameter. We say that G : L → R is a non-Boolean PRG with error ε against D (in short,
(D, ε)-nbPRG) if for every D ∈ D, G ε-fools D, i.e., the statistical distance between D(G(UL)) and
D(UR) is at most ε, where Uχ stands for the uniform distribution over the finite set χ.

Claim A.5. Let Q = (A,V,P) be an AVP protocol for functions in F with soundness error s, verifier-
randomness from R and verifier messages of maximal size B. Let D be the class of functions from R to
B obtained by restricting the computation made by the verifier for all possible advice strings a ∈ {0, 1}A

and inputs x ∈ {0, 1}n. Let G : L → R be a (D, ε)-nbPRG. Then, the AVP protocol Q′ = (A,V ′,P)
where the verifier computes the function V ′ : {0, 1}n × {0, 1}A × L → B defined as

V ′(x, a; r) = V(x, a; G(r))

has the same message sizes as Q and soundness error of s + ε.

Proof. By the properties of the nb-PRG G, for every advice a ∈ {0, 1}A and input x ∈ {0, 1}n it holds
that the distributions induced by the computations of the original and new verifier

V ′(x, a; r) and V(x, a; r′) where r
R←− L, r′ R←− R

are ε-close. Therefore, a malicious prover will be able to “fool” the verifier V ′ with additional probability
at most ε compared to the original AVP protocol Q. The perfect correctness of the protocol is preserved
as for every x and a the support of V ′(x, a; r) is a subset of the support of V(x, a; r′).

31

We instantiate Claim A.5 with a general-purpose nb-PRG whose existence follows easily from the
probabilistic method.

Claim A.6 ([12]). For every ρ, B ∈ N, family D of functions from {0, 1}ρ to {0, 1}B , and ε > 0 a
random function G : {0, 1}ℓ → {0, 1}ρ with ℓ = 2B+log B+log log|D|+2 log(1/ε) is with probability
at least 2/3 a (D, ε)-nbPRG.

Lemma A.3 then follows by combining Claim A.5 and Claim A.6.

B A Stronger CDS vs SSS Separation for Partial Functions
Secret sharing schemes and CDS protocols are often defined over partial functions (equivalently, partial
access structures). A partial function f is defined over a partial domain that consists of two sets of inputs
X0, X1 ⊆ {0, 1}n where f outputs 1 on every x1 ∈ X1, outputs 0 on a every x0 ∈ X0, and is undefined
for inputs outside X0 ∪ X1. We say that f is a partial monotone function if for every x0 ∈ X0 and
x1 ∈ X1 it holds that x1 ̸≤ x0. A secret sharing scheme (resp., CDS protocol) realizes a partial function
f if correctness holds for every set in X1 and privacy holds for every set in X0. The behavior of the
scheme is unconstrained for other inputs. In particular, a set of shares (messages) that corresponds to an
input x ̸∈ X0 ∪X1 may reveal the secret, hide it, or reveal partial information about it.

The following theorem provides an almost-quadratic separation between the complexity of secret-
sharing schemes and fully-decomposable CDS protocols for a partial function.

Theorem B.1. There exists a partial monotone function over 2n bits that can be computed by a
fully-decomposable CDS protocol with total message size n1+o(1), but requires a total share size of
Ω(n2/log n) from any secret-sharing scheme.

The proof relies on partial versions, Dn and D′
n, of the Csirmaz functions, Cn and C ′

n, that were
defined in Section 5. In the following we let Xn be the set of all n-bit strings of the form 1i0n−i for
some 0 ≤ i ≤ n.

Definition B.2 (The partial Csirmaz functions). For every n ∈ N, let k be the largest integer such that
2k ≤ n. Let Dn : {0, 1}n+k → {0, 1} denote the partial function that agrees with the Csirmaz function
Cn over all inputs whose n-bit prefix is a string in the set Xn. For other inputs, the function Dn is
undefined.

Similarly, we let D′
n : {0, 1}2n → {0, 1} denote the partial function that agrees with the separating

Csirmaz function C ′
n over inputs whose n-bit prefix is a string in the set Xn. For other inputs the function

D′
n is undefined.

Proof of Theorem B.1. First, we note that the proof of the Csirmaz lower bounds for Cn and C ′
n ([27,

28]) can be applied as is to Dn and D′
n.16 Next, we begin the proof of the upper bound by showing that

Dn can be realized by a fully-decomposable CDS protocol with messages of size no(1). We lay down the
following notations. Let us parse the input to Dn as (x, w, y) ∈ {0, 1}2k × {0, 1}n−2k × {0, 1}k. Since
the output of Dn depends only on x and y, we will ignore w from now on and view Dn as a function
of x and y. As usual, we think of x as representing a 2k-bit database and of y as a k-bit index. Recall
that the functions Cn, C ′

n (and therefore Dn and D′
n) are parameterized by some non-increasing order

ω over all strings of length k: (y0, . . . , y2k−1). Define the function gω : [2k]→ [2k] as the function that
given an input integer U ∈ [2k] computes its standard binary representation as a string u ∈ {0, 1}k, and
outputs the integer V such that yV = u. That is, the binary string that corresponds to U is the V ’th string
in the order ω.

We now show that on its partial domain, Dn equals a version of the index function where the entries
of the database of are permuted “according to ω”. As before, we denote by Indexk : {0, 1}2k×{0, 1}k →

16In a nutshell, the secret-sharing lower bounds still apply to the partial functions since the partial domain of Dn contains a long
independent sequence, as defined in [24].

32

{0, 1} the index function that given a “database” string x = (x1, . . . , x2k) and an “index” string y =
(y1, . . . , yk) outputs the yth bit of x. We prove the following claim:

Claim B.3 (Dn and the Index function). Let Dn be a partial Csirmaz function defined by an order ω.
Denote by Dt the t’th bit in a string x, and the let Π : {0, 1}2k → {0, 1}2k

be the permutation that
takes as input a database x and outputs a database Π(x) where for every index j ∈ [2k] it holds that
Π(x)j = xgω(j). Then, for every input in the domain of Dn it holds that Dn(x, y) = Indexk(Π(x), y).

Proof. Let (x, y) ∈ {0, 1}2k × {0, 1}k be the first 2k and last k bits of an input to Dn, and let Y ∈ [2k]
be the integer that corresponds to y by the standard binary encoding. If Dn(x, y) = 1 then by definition
it holds that x = 1j ◦ 0n−j and j ≥ gω(Y). Therefore,

Indexk(Π(x), y) = Π(x)Y = xgω(Y) = 1.

If Dn(x, y) = 0 then by definition it holds that x = 1j ◦ 0n−j and j < gω(Y). Therefore,

Indexk(Π(x), y) = Π(x)Y = xgω(Y) = 0

as desired.

By Claim B.3, it suffices to realize Indexk(Π(x), y) with a fully-decomposable CDS protocol in
order to realize Dn. Since Π merely permutes the entries of x according to gω , it is possible to re-
alize Indexk(Π(x), y) by having each server i ∈ [2k] simulate the role of the g−1

ω (i)’th server in
a fully-decomposable CDS protocol for Indexk(x, y). Recall from the proof of Theorem 6.1 that
Indexk(x, y) has a fully-dceomposable CDS protocol with message size 2O(

√
k log k), and so we get a

fully-decomposable CDS protocol for Dn with the same message size.
We move on to realize D′

n. Similarly to the multi-index function in Section 6, D′
n is obtained by

replacing some of the inputs to Dn by disjunctions over blocks of fresh input variables. Thus, we can
repeatedly apply Claim 5.5 on the fully-decomposable protocol for Dn and get a protocol for D′

n with
the same 2O(

√
k log k) message sizes. If we plug in k = ⌊log n⌋ we get that the message sizes are no(1)

as desired. This completes the proof of Theorem B.1.

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

