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Abstract

Constructing key-agreement protocols in the random oracle model (ROM) is a viable method
to assess the feasibility of developing public-key cryptography within Minicrypt. Unfortunately,
as shown by Impagliazzo and Rudich (STOC 1989) and Barak and Mahmoody (Crypto 2009),
such protocols can only guarantee limited security: any ℓ-query protocol can be attacked by an
𝑂 (ℓ2)-query adversary. This quadratic gap matches the key-agreement protocol proposed by
Merkle (CACM 78), known as Merkle’s Puzzles.

Besides query complexity, the communication complexity of key-agreement protocols in the
ROM is also an interesting question in the realm of find-grained cryptography, even though only
limited security is achievable. Haitner et al. (ITCS 2019) first observed that in Merkle’s Puzzles,
to obtain secrecy against an eavesdropper with𝑂 (ℓ2) queries, the honest parties must exchange
Ω(ℓ) bits. Therefore, they conjectured that high communication complexity is unavoidable, any
ℓ-query protocols with 𝑐 bits of communication could be attacked by an 𝑂 (𝑐 · ℓ)-query adver-
sary. This, if true, will suggest that Merkle’s Puzzle is also optimal regarding communication
complexity. Building upon techniques from communication complexity, Haitner et al. (ITCS
2019) confirmed this conjecture for two types of key agreement protocols with certain natural
properties.

This work affirms the above conjecture for all non-adaptive protocols with perfect complete-
ness. Our proof uses a novel idea called density increment argument. This method could be of
independent interest as it differs from previous communication lower bounds techniques (and
bypasses some technical barriers).

1 Introduction

Key-agreement protocols [DH76] allow two parties, Alice and Bob, to agree on a shared private
key by communicating over an insecure public channel. Its security requires that any (efficient)
eavesdropper cannot learn the key from the transcript. In an early work, Merkle [Mer78] first
proposed an ingenious key-agreement protocol, known as Merkle’s Puzzles, as follows.
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Protocol 1.1 (Merkle’s Puzzles). Let 𝑓 : [𝑁 ] → [𝑀] be a cryptographic hash function and let ℓ
be a parameter measuring the query complexity of this protocol. Alice and Bob first agree on a
set 𝑊 ⊆ [𝑁 ] of size ℓ2. Then, at the beginning of the protocol, Alice makes ℓ random queries in
𝑊 , i.e., 𝑓 (𝑤1), . . . , 𝑓 (𝑤ℓ ). Similarly, Bob makes another ℓ random queries 𝑓 (𝑤 ′1), . . . , 𝑓 (𝑤

′
ℓ ). By the

birthday paradox, there is a good chance that {𝑤1, . . . ,𝑤ℓ } ∩ {𝑤 ′1, . . . ,𝑤
′
ℓ } ≠ ∅. Alice then sends

𝑧1 = 𝑓 (𝑤1), . . . , 𝑧ℓ = 𝑓 (𝑤ℓ ) to Bob, and Bob checks if there is a 𝑤 ′𝑗 in his query such that 𝑓 (𝑤 ′𝑗 ) = 𝑧𝑖
for some 𝑖 ∈ [ℓ]. If such a pair (𝑤 ′𝑗 , 𝑧𝑖) exists, then Bob sends 𝑧𝑖 back to Alice and sets𝑤 ′𝑗 as his key;
otherwise, Bob aborts. Finally, according to 𝑧𝑖 , Alice chooses 𝑤𝑖 as her key.

As long as the function 𝑓 is collision-free on𝑊 , Alice and Bob will agree on the same key with
high probability. In terms of security, if 𝑓 is modeled as a random function, we can show that any
eavesdropper that breaks this protocol with constant probability has to query a constant fraction
of inputs in𝑊 ; consequently, the query complexity of any eavesdropper must be Ω(ℓ2).

On the other hand, Impagliazzo and Rudich [IR89], followed by Barak and Mahmoody
[BMG09], showed that key-agreement protocol is essentially a public-key primitive and is unlikely
to be based only on hardness assumptions for symmetric cryptography—any key-agreement pro-
tocol only guarantees limited security as long as the symmetric hardness is used in a black-box way.
Specifically, they studied key-agreement protocols in the random oracle model (ROM). In the ROM,
all parties, including the eavesdropper, have oracle access to a random function 𝑓 : [𝑁 ] → [𝑀],
which is an idealization of symmetric primitives like collision-resistant hash function. The effi-
ciency of parties is measured by the number of queries they make to the oracle (in the worst case).
[IR89] proved that any key-agreement protocols in the ROM with ℓ queries can be attacked by an
eavesdropper with 𝑂 (ℓ6) queries. [BMG09] further improved the efficiency of the eavesdropper
to 𝑂 (ℓ2) queries. This result indicates that Merkle’s puzzle is optimal in terms of the number of
oracle queries since it reaches quadratic security. Despite its limited security, the complexity of
key-agreement protocols in the ROM is still an interesting question of fine-grained cryptography.
A long line of research has been conducted on the limitation and possibility of key-agreement
protocols in the ROM, in both classical setting [DH76, Mer78, IR89, BMG09, HMO+19, ACMS23],
distributed setting [DH21] and quantum setting [ACC+22].

Besides oracle queries, another important cost in key-agreement protocols is the communication
cost between Alice and Bob. The communication complexity of (multi-party) protocols, such as
key-agreement, optimally-fair coin tossing, statistically hiding commitment schemes, and multi-
party computation, has garnered considerable attention recently [DSLMM11, HHRS15, HMO+19,
Cou19, AHMS20, CN22].

In this paper, we focus on the communication complexity of key-agreement protocols: a prob-
lem initiated by Haitner et al. [HMO+19]. Concretely, they observed that the communication
complexity of Merkle’s Puzzle is also Ω̃(ℓ) 1, and they conjectured that high communication cost
is unavoidable.

Conjecture 1.2 ([HMO+19], informal). Let Π = (A,B) be a key-agreement protocol such that:

1. A and B agree on the same key with high probability;

2. A and B each make at most ℓ queries to the random function (oracle);

3. Π is secure against any adversary with 𝑞 queries to the random oracle.

1We drop low order terms such as log𝑁 and log𝑀 here.
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Then A and B must communicate Ω(𝑞/ℓ) bits.

As we discussed, Merkle’s puzzle matches the lower bound in this conjecture for 𝑞 = Θ(ℓ2). For
𝑞 = 𝑜 (ℓ2), an asymmetric version of Merkle’s puzzle also matches this lower bound.

Protocol 1.3 (Asymmetric version of Merkle’s Puzzles). Alice and Bob first fix a domain𝑊 of size 𝑞.
Then Alice makes 𝑐 := 𝑞/ℓ random queries in𝑊 and sends them to Bob. Bob also makes ℓ random
queries (in 𝑊 ) and checks if there is a common query in accordance with the original Merkle’s
Puzzles.

[HMO+19] partly tackled this conjecture for two types of key-agreement protocols. We say a
protocol is non-adaptive if both parties choose all their queries at the beginning of the protocol
(before querying the oracle and communicating); that is, their queries are determined by their
internal randomness. Haitner el al. [HMO+19] proved that for any protocol Π = (A,B) that satisfies
the conditions in conjecture 1.2:

• If Π is non-adaptive and has only two rounds, A and B must exchange Ω(𝑞/ℓ) bits.

• If the queries are uniformly sampled, then A and B must communicate Ω(𝑞2/ℓ3) bits.

Note that protocols with uniform queries are also special non-adaptive protocols.
In this paper, we affirm conjecture 1.2 for non-adaptive protocols with perfect completeness,

i.e., Alice and Bob agree on the same key with probability 1. Specifically, we prove the following
theorem.

Theorem 1.4 (Informal). Let Π = (A,B) be a non-adaptive key-agreement protocol such that:

1. A and B agree on the same key with probability 1;

2. A and B each make at most ℓ queries to the random oracle;

3. Π is secure against any adversary with 𝑞 queries to the random oracle.

Then A and B must communicate Ω(𝑞/ℓ) bits.

Our proof is built on the density increment argument introduced by Yang and Zhang [YZ22,
YZ23], which they used to prove communication lower bounds for the unique disjointness problem.
Looking at our main theorem carefully, we acknowledge two non-trivial requirements in our
statement: non-adaptivity and perfect completeness. However, these limitations are not inherent
in this method. Therefore, we are optimistic that our method has a good chance to overcome these
two limitations; more details will be discussed in section 1.2.

It is worth noting that Mazor [Maz23] recently devised a non-adaptive protocol with perfect
completeness and quadratic security guarantee. We observed that this protocol, with minor adjust-
ments, allows a trade-off between communication and security in a similar fashion to protocol 1.3.
Our result shows that Mazor’s construction is optimal among non-adaptive protocols with perfect
completeness.
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1.1 Proof overview

Now we give a high-level overview of our proof. Since the execution of key-agreement protocols
and the attacking process involve many random variables, we first explain our notations.

• We use bold and uppercase letters for random variables and corresponding regular letters
for samples and values, such as 𝑓 , 𝑟𝐴, 𝑟𝐵, 𝑄𝐴, 𝑄𝐵, 𝜏,𝑄𝐸 and 𝑓𝐸 (uppercase for sets and lowercase
for elements and functions).

• Let 𝑭 the RO that the parties have access to, which is a random function from [𝑁 ] to [𝑀].
Moreover, let 𝑹𝐴, 𝑹𝐵 be Alice’s and Bob’s internal randomness. (𝑹𝐴, 𝑹𝐵, 𝑭 ) determines the
entire execution of key-agreement protocols.

• Let 𝑸𝐴,𝑸𝐵 ⊆ [𝑁 ] be the queries made by Alice and Bob in the execution, respectively. Notice
that 𝑸𝐴,𝑸𝐵 is fully determined by 𝑹𝐴, 𝑹𝐵 for non-adaptive protocols. 𝑸𝐴 and 𝑸𝐵 are usually
ordered sets since Alice and Bob make oracle queries one at a time. For the sake of notation
convenience, we sometimes regard 𝑸𝐴 and 𝑸𝐵 as unordered sets.

• Let 𝑻 be the communication transcript between Alice and Bob. Notice that 𝑻 is observed by
the attacker Eve.

• Let 𝑸𝐸 ⊆ [𝑁 ] be Eve’s queries. Let 𝑭𝐸 = 𝑭 (𝑸𝑬 ) be Eve’s observations of the random oracle 𝑭 .
We interpret 𝑭𝐸 as a partial function: for every 𝑥 ∈ 𝑸𝐸 , 𝑭𝐸 (𝑥) = 𝑭 (𝑥); for all other 𝑥 , 𝑭𝐸 (𝑥) = ⊥.

To study the security of key-agreement protocols, Impagliazzo and Rudich [IR89] observed
that the advantage of Alice and Bob over Eve mainly comes from their intersection queries which
have not been queried by Eve, i.e., the knowledge from (𝑸𝐴 ∩ 𝑸𝐵) \ 𝑸𝐸 and 𝑭 ((𝑸𝐴 ∩ 𝑸𝐵) \ 𝑸𝐸).
Based on this insight, they devised an attacker that aims to guess (and query) the set (𝑸𝐴 ∩𝑸𝐵). In
order to learn intersection queries more efficiently, [BMG09] introduced the notion of heavy query.
Given Eve’s current observation, which consists of a transcript 𝜏 and a partial function 𝑓𝐸 , an input
𝑤 ∈ [𝑁 ] \𝑄𝐸 is said to be 𝜀-heavy with respect to (𝜏, 𝑓𝐸) if

Pr[𝑤 ∈ (𝑸𝐴 ∩ 𝑸𝐵) | 𝜏, 𝑓𝐸] ≥ 𝜀.

Now we give an informal description of Eve’s strategy 2:

• Stage I. Eve checks if there exists a heavy query conditioned on transcript 𝜏 and her observa-
tions of the random oracle 𝑓𝐸 . If yes, then query them, update 𝑓𝐸 , and repeat until there are
no heavy queries.

• Stage II. Eve simulates Alice and Bob based on observed information and outputs Alice’s
key in her simulation. In other words, Eve simply outputs a sample from the distribution of
Alice’s key conditioned on observed information.

Suppose that Alice and Bob each make at most ℓ queries and set 𝜀 = Θ(1/ℓ). A standard technique
can prove that Stage I stops within 𝑂 (ℓ/𝜀) = 𝑂 (ℓ2) queries. We can also show that in order to clean
up all heavy queries (Stage I), Ω(ℓ2) queries are inevitable. This querying process does not explore
strong connections to communication complexity.

2This is not exactly the same as [BMG09] due to some technical challenges in [BMG09].
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Our approach. Our main observation is that if Alice and Bob communicate too little, they cannot
utilize their common queries and thus have no advantage over Eve! Hence, we focus on queries
correlated with the transcript 𝜏 instead of all intersection queries. With this in mind, we introduce
correlated query as a refined notion of heavy query.

Definition 1.5 (𝜀-correlated set, informal; see definition 3.2). Eve’s view consists of a transcript 𝜏
and a partial function 𝑓𝐸 . We say a set 𝑆 = {𝑤1, . . . ,𝑤𝑟 } ⊆ [𝑁 ] is 𝜀-correlated with respect to (𝜏, 𝑓𝐸)
if

H (𝑭 (𝑤1), . . . , 𝑭 (𝑤𝑟 ) | 𝑹𝐴, 𝑹𝐵, 𝑓𝐸) −H (𝑭 (𝑤1), . . . , 𝑭 (𝑤𝑟 ) | 𝑹𝐴, 𝑹𝐵, 𝑓𝐸, 𝜏) ≥ 𝜀,

where H(·) denotes the Shannon entropy.

We use 𝑭 (𝑆) to denote (𝑭 (𝑤1), . . . , 𝑭 (𝑤𝑟 )) in the future, and 𝑭 (𝑆) can also be viewed as a partial
function with domain 𝑆 . A main difference between our attacker and [BMG09] is that: instead of
making 𝜀-heavy queries, we clean up all 𝜀-correlated sets of size at most 2ℓ . Another difference is
that we choose 𝜀 = Θ(1) and [BMG09] set 𝜀 = Θ(1/ℓ). Intuitively, this is because a correlated set of
size ℓ is as effective as ℓ single heavy queries. Along these lines, we then have to prove two things:

• Success. Eve can guess the key of Alice/Bob if there is no 𝜀-correlated set of size at most 2ℓ .

• Efficiency. Eve can remove all 𝜀-correlated sets (of size at most 2ℓ) after querying 𝑂 (𝑐)
correlated sets, where 𝑐 is the number of communication bits between Alice and Bob. Thus,
the query complexity of Eve is 𝑂 (𝑐 · ℓ).

Eve can guess the key if there are no small 𝜀-correlated sets. Assume that the protocol Π is
non-adaptive, i.e., 𝑄𝐴 (or 𝑄𝐵) is determined by 𝑟𝐴 (resp., 𝑟𝐵). To study the success probability of
Eve, we consider a rectangle X × Y as follows. Every 𝑥 ∈ X has the form 𝑥 = (𝑟𝐴, 𝑓𝐴) (Alice’s
view) and every 𝑦 ∈ Y has the form 𝑦 = (𝑟𝐵, 𝑓𝐵) (Bob’s view), where 𝑓𝐴, 𝑓𝐵 have domain 𝑄𝐴, 𝑄𝐵

respectively. Note that we enumerate 𝑥 and 𝑦 independently in the rectangle. Consequently, some
pairs (𝑥,𝑦) in this rectangle may be inconsistent. Concretely, we say that a pair 𝑥 = (𝑟𝐴, 𝑓𝐴) and
𝑦 = (𝑟𝐵, 𝑓𝐵) is inconsistent if there exists an input 𝑤 ∈ 𝑄𝐴 ∩𝑄𝐵 such that 𝑓𝐴 (𝑤) ≠ 𝑓𝐵 (𝑤). Define an
output table as follows:

M(𝑥,𝑦) def
=

{
Alice’s key output by Π(𝑟𝐴, 𝑟𝐵, 𝑓𝐴 ∪ 𝑓𝐵), if 𝑓𝐴 and 𝑓𝐵 are consistent;
∗, otherwise.

This table indeed captures all possible executions of the protocol Π. This table is a partial function
because many entries are undefined (the ∗ entries).

During the attack, Eve observes the transcript 𝜏 and makes queries to 𝑓 . Whenever Eve has
observed (𝜏, 𝑓𝐸), we update the tableM by removing the entries that are inconsistent with Eve’s
observation, i.e., we update the table to

M𝜏,𝑓𝐸 (𝑥,𝑦)
def
=

{
M(𝑥,𝑦), if (𝑥,𝑦) are consistent with (𝜏, 𝑓𝐸);
∗, otherwise.

Given this observation (𝜏, 𝑓𝐸), the defined entries ofM𝜏,𝑓𝐸 capture all possible views of Alice and
Bob. Now we sayM𝜏,𝑓𝐸 is almost monochromatic if almost all defined entries ofM𝜏,𝑓𝐸 are equal
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to the same output 𝑏 ∈ {0, 1}. 3 A key step in our proof is to showM𝜏,𝑓𝐸 is almost monochromatic
provided that the following conditions are met:

1. Π has perfect completeness;

2. there is no small 𝜀-correlated set respect to (𝜏, 𝑓𝐸).

Once Eve realizes M𝜏,𝑓𝐸 is almost monochromatic, she knows that Alice’s key is 𝑏 with high
probability.

Upper bound the number of Eve’s queries via density increment argument This part of our
proof is based on the density increment argument in [YZ22, YZ23]. We first define a density
function to capture the amount of hidden information in the transcript 𝜏 about the random function
𝑭 , which is not known by Eve. For every 𝜏 and 𝑓𝐸 , its density function Φ(𝜏, 𝑓𝐸) is defined as

Φ(𝜏, 𝑓𝐸)
def
= H (𝑭 | 𝑹𝐴, 𝑹𝐵, 𝑓𝐸) −H (𝑭 | 𝑹𝐴, 𝑹𝐵, 𝑓𝐸, 𝜏) .

If we replace 𝜏 and 𝑓𝐸 with corresponding random variables, 𝑻 and 𝑭𝑬 , then Φ(𝑻 , 𝑭𝑬 ) equals to
I (𝑭 ;𝑻 | 𝑹𝐴, 𝑹𝐵, 𝑭𝑬 ), the mutual information of 𝑭 and 𝑻 conditioned on 𝑹𝐴, 𝑹𝐵, 𝑭𝑬 . This quantity is
strongly related to the information complexity (IC), a powerful tool for proving lower bounds in
communication complexity [CSWY01, BBCR10]. IC usually refers to the mutual information of
Alice’s input and Bob’s input conditioned on the transcript, so the IC for key-agreement should
look like I (𝑹𝐴, 𝑹𝐵 ;𝑻 ). However, in the ROM, the random function 𝑭 is another random resource
involved in the computation. Therefore, we cannot use IC as a black box to study such key-
agreement protocols. Instead, we use the density increment argument proposed by [YZ23], which
reinterprets IC in a white-box manner.

Let us turn back to our proof. The key idea is that whenever Eve queries an 𝜀-correlated set,
the density function decreases by at least 𝜀 in expectation. To make things clearer, we first explain
our sampling procedure. There are several random variables involved in the analysis, including
(𝑹𝐴, 𝑹𝐵, 𝑭 , 𝑻 , 𝑺1, 𝑺2, . . . ) . Here 𝑺𝑖 is the query set made by Eve in the 𝑖-th round. In our analysis, we
do not sample (𝑹𝐴, 𝑹𝐵, 𝑭 ) all at once. Instead, we consider these random variables to be sampled
in the following order.

1. We first sample the transcript 𝜏 ← 𝑻 and send it to the attacker.

2. In the 𝑖-th round of the attack,
Eve samples her next query set 𝑆𝑖 conditioned on (𝜏, 𝑆1, 𝑓 (𝑆1), . . . , 𝑆𝑖−1, 𝑓 (𝑆𝑖−1)).
We sample 𝑓 (𝑆𝑖) conditional on (𝜏, 𝑆1, 𝑓 (𝑆1), . . . , 𝑆𝑖−1, 𝑓 (𝑆𝑖−1), 𝑆𝑖), and Eve receives 𝑓 (𝑆𝑖).

Suppose that at some point, Eve has already observed 𝑓𝐸 , e.g., 𝑓𝐸 = 𝑓 (𝑆1∪· · ·∪𝑆𝑖−1) and decided
to query 𝑆𝑖 next. By definition, Eve only queries correlated sets, i.e., 𝑆𝑖 is 𝜀-correlated w.r.t. (𝜏, 𝑓𝐸).

3More precisely, ‘almost all’ means if we sample an entry (𝑥,𝑦) according to the probability that it appears in real
execution (conditioned on 𝜏, 𝑓𝐸 ), we haveM(𝑥,𝑦) = 𝑏 with high probability.
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And we prove that for any 𝜀-correlated set 𝑆𝑖 ,

E
𝑓 (𝑆𝑖 )←𝑭 (𝑆𝑖 ) |𝜏,𝑓𝐸

[Φ(𝑻 , 𝑓𝐸 ∪ 𝑓 (𝑆𝑖))] ≤ Φ(𝑻 , 𝑓𝐸) − 𝜀, (1)

where 𝑓𝐸 ∪ 𝑓 (𝑆𝑖) is Eve’s updated observation after making oracle queries on 𝑆𝑖 . We then finish our
argument by observing the following two properties of Φ:

• In the beginning, Φ(𝑻 , 𝑓∅) ≤ 𝑐. Here 𝑓∅ denotes the all-empty function since Eve has no
information about the oracle before making any queries.

• Φ is non-negative: Φ(𝜏, 𝑓𝐸) ≥ 0 for all 𝜏, 𝑓𝐸 .
Equation (1) says that each time Eve queries an 𝜀-correlated set, Φ decreases by 𝜀 (in expectation),
so Eve can query at most 𝑂 (𝑐/𝜀) = 𝑂 (𝑐) sets (in expectation), as we set 𝜀 = Θ(1). Since each set
queried by Eve is of size at most 2ℓ , we conclude that the total number of Eve’s queries is 𝑂 (𝑐ℓ).

Comparison with [HMO+19]. The paper by Haitner et al. uses mostly direct calculations to
derive an upper bound of the mutual information characterizing the advantage of Alice and Bob
over Eve. An important ingredient in their proof is that conditioning on Eve’s view does not
introduce significant dependency between Alice and Bob; this is true for two-round protocols but
fails for multi-round protocols. Even with perfect completeness, their approach encounters similar
barriers. In contrast, our proof mainly depends on the investigation of the structure of the table
M𝜏,𝑓𝐸 , and hence the number of rounds is no longer a restriction.

1.2 Discussions and open problems

In this section, we discuss some open problems and future directions. An immediate question is
how to remove the restrictions in our main theorem. We briefly discuss some potential ways to
solve them below.

Protocols with imperfect completeness. In our proof, the property of perfect completeness is
used in lemma 3.6. The perfect completeness restriction is an analog of proving determinis-
tic communication complexity, while key-agreement protocols with imperfect completeness can
be likened to randomized communication protocols. The density increment argument used in
this paper was originally inspired by the proofs of query-to-communication lifting theorems in
communication complexity [RM97, GPW15, GPW17, YZ22]. In communication complexity, past
experience suggests that the density increment argument is robust in the sense that it usually
extends to proving randomized communication lower bounds. For example, the deterministic
query-to-communication lifting theorem was formalized by [GPW15], then [GPW17] proved the
extension to the randomized query-to-communication lifting theorem, even though it took several
years.

Protocols with adaptive queries. The density increment argument has a good chance of proving
communication lower bounds for adaptive protocols. Particularly, our efficiency proof directly
applies to adaptive protocols. Our proof only utilized the non-adaptivity in lemma 3.6. The round-
by-round analysis introduced by Barak and Mahmoody [BMG09] might be helpful to circumvent
this obstacle. Admittedly, the analysis might be slightly more complicated, but we do not see a
fundamental barrier here.
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Further potential applications. The heavy query technique used in the proof of [BMG09] has
found applications in the context of black-box separations and black-box security in the random or-
acle model (see, e.g., [DSLMM11, KSY11, BKSY11, MP12, HOZ16]). Likewise, it will be interesting
to check if our approach offers fresh perspectives and potential solutions to some open problems.
The following is a list of potential questions.

1. Devise an 𝑂 (ℓ)-round and 𝑂 (ℓ2)-query attack for key-argeement protocols in the ROM
[BMG09, MMV11].

2. Consider an 𝑀-party protocol where all pairs among 𝑀 players agree on secret keys. Given
an attack that recovers a constant fraction of the

(𝑀
2
)

keys with𝑂 (𝑀 ·ℓ2) oracle queries [DH21].

3. In the quantum setting, Alice and Bob are capable of conducting quantum computation
and classical communication, and the random oracle allows quantum queries. [ACC+22]
introduced the Polynomial Compatibility Conjecture and gave an attack (only for protocols
with perfect completeness) assuming this conjecture holds. Devise an attack that has better
efficiency or fewer restrictions.

2 Preliminary

2.1 Notations

For a random variable 𝑿 , denote 𝑥 is sampled from (the distribution of ) 𝑿 as 𝑥 ← 𝑿 ; the support
of 𝑿 is defined as supp(𝑿 ) def

= {𝑥 : Pr [𝑿 = 𝑥] > 0}.

Partial functions There are many ways to view a partial function 𝑓 : [𝑁 ] → [𝑀] ∪ {⊥} with
domain 𝑄

def
= {𝑤 ∈ [𝑁 ] : 𝑓 (𝑤) ≠ ⊥}: It can be viewed as a function 𝑓𝑄 : 𝑄 → [𝑀], or a list

((𝑤𝑖 , 𝑓 (𝑤𝑖))𝑖∈[𝑄 ] . We say two partial functions are consistent if they agree on the intersection
of their domains. For consistent partial functions 𝑓1 and 𝑓2, we use 𝑓1 ∪ 𝑓2 to denote the partial
function with domain 𝑄1 ∪𝑄2 and is consistent with 𝑓1 and 𝑓2.

2.2 Key-agreement protocols

Let Π = (A,B) be a two-party protocol consisting of a pair of probabilistic interactive Turing
machines, where the two parties A and B are often referred to as Alice and Bob. A protocol is
called ℓ-oracle-aided if Alice and Bob have access to an oracle 𝑓 : [𝑁 ] → [𝑀] and each party makes
at most ℓ queries to 𝑓 . An oracle-aided protocol is called non-adaptive when both parties choose
their queries before querying the oracle and communicating. Π produces a transcript 𝜏 which is
the communication bits between players. The communication complexity of Π, denoted by CC(Π),
is the length of the transcript of Π in the worst case.

We focus on oracle-aided key-agreement protocols in the random oracle model, where the
oracle 𝑓 is uniformly sampled from the collection of all functions from [𝑁 ] to [𝑀]. Note that the
execution of the key-agreement protocol is completely determined by 𝑟𝐴, 𝑟𝐵 and 𝑓 , where 𝑟𝐴 (resp.,
𝑟B) is Alice’s (resp., Bob’s) internal randomness. We call the tuple (𝑟𝐴, 𝑟𝐵, 𝑓 ) an extended view. Let
𝑬𝑽 = (𝑹𝐴, 𝑹𝐵, 𝑭 ) denote the distribution of the extended view in a random execution. For every
extended view 𝑣 = (𝑟𝐴, 𝑟𝐵, 𝑓 ), let tran(𝑣), outA (𝑣), outB(𝑣) be the communication transcript, A’s
output, and B’s output respectively, given the extended view 𝑣 .
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Definition 2.1 (Key-agreement protocols). Let 𝛼,𝛾 ∈ [0, 1], 𝑞 ∈ ℕ. A protocol Π = (A,B) is a
(𝛼, 𝑞,𝛾)-key-agreement if the following conditions hold:

1. (1 − 𝛼)-completeness. Pr𝑣←𝑬𝑽 [outA (𝑣) = outB(𝑣)] ≥ 1 − 𝛼.

2. (𝑞,𝛾)-security. For any 𝑞-oracle-aided adversary E,

Pr
𝑣=(𝑟A,𝑟B,𝑓 )←𝑬𝑽

[
E𝑓 (tran(𝑣)) = outA (𝑣)

]
≤ 𝛾 .

Since we aim to prove lower bounds, we assume each party outputs one bit, as per [HMO+19].
Moreover, [HMO+19] proved that studying the following normalized key-agreement protocols
suffices.

Normalized key-agreement protocols. Following [HMO+19], to simplify the proof of the lower
bound, we can transform the key-agreement protocol Π into a normalized protocol called Π′, such
that the secret key output by Bob in Π′ is the first bit of his last query. Formally,

Proposition 2.2. Let Π be a non-adaptive, ℓ-oracle-aided (𝛼, 𝑞,𝛾)-key-agreement protocol with communi-
cation complexity 𝑐. Then there is a non-adaptive (ℓ + 1)-oracle-aided (𝛼, 𝑞,𝛾)-key-agreement protocol Π′
with communication complexity 𝑐 + 1, in which Bob’s output is the first bit of his last query.

2.3 Basic information theory

The Shannon entropy of a random variable 𝑿 is defined as

H(𝑿 ) def
=

∑
𝑥 ∈supp(𝑿 )

Pr [𝑿 = 𝑥] log
(

1
Pr [𝑿 = 𝑥]

)
.

The conditional entropy of a random variable 𝑿 given 𝒀 is defined as

H (𝑿 | 𝒀 ) def
= E

𝑦←𝒀
[H (𝑿 | 𝒀 = 𝑦)] .

We often use (conditional) entropy conditioned on some event 𝐸, which is defined by the same
formula where the probability measure Pr [·] is replace by Pr′[·] def

= Pr [·|𝐸] . Entropy conditioned
on event 𝐸 is denoted as H(𝑿 |𝐸),H(𝑿 |𝒀 , 𝐸).

Let 𝑿 and 𝒀 be two (possibly correlated) random variables. The mutual information of 𝑿 and
𝒀 is defined by

I (𝑿 ; 𝒀 ) def
= H(𝑿 ) −H (𝑿 | 𝒀 ) = H(𝒀 ) −H (𝒀 | 𝑿 ) .

The conditional mutual information is:

I (𝑿𝑖 ; 𝒀 | 𝑿1, . . . ,𝑿𝑖−1)
def
= H (𝑿𝑖 | 𝑿1, . . . ,𝑿𝑖−1) −H (𝑿𝑖 | 𝒀 ,𝑿1, . . . ,𝑿𝑖−1)

Proposition 2.3 (Entropy chain rule). For random variables 𝑿1,𝑿2, . . . ,𝑿𝑛, it holds that

H(𝑿1,𝑿2, . . . ,𝑿𝑛) =
𝑛∑
𝑖=1

H (𝑿𝑖 | 𝑿1,𝑿2, . . . ,𝑿𝑖−1) .
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Proposition 2.4. (Chain rule for mutual information) For 𝑿1,𝑿2, . . . ,𝑿𝑛 are 𝑛 random variables and 𝒀 is
another random variable,

I (𝑿1,𝑿2, . . . ,𝑿𝑛; 𝒀 ) =
𝑛∑
𝑖=1

I (𝑿𝑖 ; 𝒀 | 𝑿1,𝑿2, . . . ,𝑿𝑖−1) .

Proposition 2.5. (Data processing inequality) For two random variables 𝑿 , 𝒀 and a function 𝑓 ,

H(𝑓 (𝑿 )) ≤ H(𝑿 ) and I (𝑓 (𝑿 ); 𝒀 ) ≤ I (𝑿 ; 𝒀 )

3 Communication complexity of key-agreement protocols

This section proves the main theorem:

Theorem 3.1 (Formal version of theorem 1.4). Let Π = (A,B) be an ℓ-query-aided, non-adaptive (0, 𝑞, 𝛾)-
key-agreement (i.e., Π enjoys perfect completeness), then

CC(Π) ≥ 𝑞

2(ℓ + 1) ·
(1 − 𝛾)3

27 − 1 = Ω
(𝑞
ℓ

)
.

By proposition 2.2, it suffices to show that

CC(Π) ≥ 𝑞

2ℓ ·
(1 − 𝛾)3

27 , (2)

for all normalized protocol Π that satisfies the conditions in theorem 3.1.
Correlated sets play a central role in our proof; here we give the formal definition.

Definition 3.2 (𝜀-correlated). Let 𝜏 be a transcript and 𝑓𝐸 be a partial function with domain𝑄𝐸 . We
say a set 𝑆 ⊆ [𝑁 ] is 𝜀-correlated with respect to (𝜏, 𝑓𝐸) if

H (𝑭 (𝑆) | 𝑹𝐴, 𝑹𝐵, 𝑭 (𝑄𝐸) = 𝑓𝐸) −H (𝑭 (𝑆) | 𝑹𝐴, 𝑹𝐵, 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏) ≥ 𝜀,

where (𝑹𝐴, 𝑹𝐵, 𝑭 ) is a random extended view and 𝑻
def
= tran(𝑹𝐴, 𝑹𝐵, 𝑭 ).

3.1 Description of the attacker

The attacker is described in alg. 1. In the algorithm, 𝑓 (𝑖)𝐸 stands for the observations of Eve till the
end of the 𝑖-th iteration. Moreover, we use 𝑬𝑽 (𝜏, 𝑓 (𝑖)𝐸 ) to denote the distribution of the extended
view 𝑬𝑽 conditioned on the following two events: (1) the random oracle is consistent with 𝑓 (𝑖)𝐸 ; (2)
the transcript is 𝜏 .
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Algorithm 1: The attacker E
Input: transcript 𝜏
Oracle : 𝑓 : [𝑁 ] → [𝑀]
Output: 𝑏 ∈ {0, 1,⊥}
Set 𝜀 := (1 − 𝛾)2/9
Initialize 𝑖 := 0 and 𝑓 (0)𝐸 as the empty function
while ∃ 𝑆 ⊆ [𝑁 ] s.t. |𝑆 | ≤ 2ℓ and is 𝜀-correlated w.r.t. (𝜏, 𝑓 (𝑖)𝐸 ) do

Let 𝑆𝑖+1 be any 𝜀-correlated set of size at most 2ℓ
Query 𝑓 on 𝑆𝑖+1 and receive 𝑓 (𝑆𝑖+1)
Set 𝑓 (𝑖+1)𝐸 := 𝑓 (𝑖)𝐸 ∪ 𝑓 (𝑆𝑖+1).
𝑖 := 𝑖 + 1

if ∃ 𝑏 ∈ {0, 1} s.t. Pr
𝑣←𝑬𝑽 (𝜏,𝑓 (𝑖 )𝐸 )

[outA (𝑣) = 𝑏] ≥ 1 −
√

2𝜀 then
Output 𝑏

else
Output ⊥

3.2 Success probability of the attacker

This subsection analyzes the attacker’s success probability for perfect completeness. We will first
introduce the language of the combinatorial rectangle and then use it to analyze the attacker’s
success probability.

3.2.1 Through the lens of rectangles

Combinatorial rectangle is a standard tool in communication complexity. We thus develop this
language for key-agreement protocols in the following.

Let Π be a non-adaptive key-agreement protocol, meaning that queries of Alice is a function
QA (𝑟𝐴) of her internal randomness 𝑟𝐴. If 𝑓𝐴 is a partial function with domain QA (𝑟𝐴), we call the
pair (𝑟𝐴, 𝑓𝐴) a profile of Alice. The profile space of Alice, denoted by X, consists of all possible
profiles of Alice, namely,

X def
=

{
(𝑟𝐴, 𝑓𝐴) : 𝑓𝐴 is a partial function with domain QA (𝑟𝐴)

}
.

For Bob, we analogously defineQB andY def
=

{
(𝑟𝐵, 𝑓𝐵) : 𝑓𝐵 is a partial function with domain QB(𝑟𝐵)

}
.

Given a profile pair (𝑥 = (𝑟𝐴, 𝑓𝐴), 𝑦 = (𝑟𝐵, 𝑓𝐵)) ∈ X ×Y, Alice and Bob can run the protocol by using
𝑓𝐴 and 𝑓𝐵 respectively as oracle answers: when Alice needs to issue an oracle query 𝑤 , she takes
𝑓𝐴 (𝑤) as oracle answer; similarly, Bob takes 𝑓𝐵 (𝑤) as oracle answer when querying 𝑤 . Hence, we
can still define the transcript tran(𝑥,𝑦) and output outA (𝑥,𝑦), outB(𝑥,𝑦).

Note that some profile pairs are imaginary in the sense that the oracle answers of Alice and
Bob are inconsistent. We say 𝑥 = (𝑟𝐴, 𝑓𝐴) ∈ X and 𝑦 = (𝑟𝐵, 𝑓𝐵) ∈ Y are consistent if 𝑓𝐴 and 𝑓𝐵 are
consistent. Define the output tableMΠ ∈ {0, 1, ∗}X×Y via

MΠ (𝑥,𝑦)
def
=

{
outA (𝑥,𝑦), if 𝑥,𝑦 are consistent;
∗, otherwise.
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Let 𝐷 def
= {(𝑥,𝑦) ∈ X × Y :MΠ (𝑥,𝑦) ≠ ∗} be the set of all consistent profile pairs; such profile pairs

can be witnessed in real execution.
A set 𝑅 ⊆ X × Y is called a rectangle if 𝑅 = X𝑅 × Y𝑅 for some X𝑅 ⊆ X and Y𝑅 ⊆ Y. Let 𝜏

be a transcript and 𝑓𝐸 be a partial function with domain 𝑄𝐸 . We care about the profiles that are
consistent with 𝑓𝐸 and produce transcript 𝜏 ; formally, we consider the rectangle X𝜏,𝑓𝐸 ×Y𝜏,𝑓𝐸 where

X𝜏,𝑓𝐸
def
= {𝑥 = (𝑟𝐴, 𝑓𝐴) ∈ X : ∃𝑦 = (𝑟𝐵, 𝑓𝐵) ∈ Y s.t. 𝑓𝐴, 𝑓𝐵, 𝑓𝐸 are consistent and tran(𝑥,𝑦) = 𝜏} ,

and

Y𝜏,𝑓𝐸
def
= {𝑦 = (𝑟𝐵, 𝑓𝐵) ∈ Y : ∃𝑥 = (𝑟𝐴, 𝑓𝐴) ∈ X s.t. 𝑓𝐴, 𝑓𝐵, 𝑓𝐸 are consistent and tran(𝑥,𝑦) = 𝜏} .

IfΠ has perfect completeness, the rectangleX𝜏,𝑓𝐸×Y𝜏,𝑓𝐸 has the following simple but useful property.

Claim 3.3. Assume that Π has perfect completeness. Let (𝑥,𝑦), (𝑥 ′, 𝑦 ′) ∈ X𝜏,𝑓𝐸 ×Y𝜏,𝑓𝐸 for some 𝜏 and 𝑓𝐸 . If
MΠ (𝑥,𝑦) = 0 andMΠ (𝑥 ′, 𝑦 ′) = 1, thenMΠ (𝑥,𝑦 ′) =MΠ (𝑥 ′, 𝑦) = ∗.

Proof. AssumeMΠ (𝑥,𝑦 ′) ≠ ∗. Since (𝑥,𝑦 ′) appears in some execution of Π, by perfect completeness,
we have outA (𝑥,𝑦 ′) = outB(𝑥,𝑦 ′). However, outA (𝑥,𝑦 ′) = outA (𝑥,𝑦 ′) = 0 while outB(𝑥,𝑦 ′) =
outB(𝑥 ′, 𝑦 ′) = 1, a contradiction. The argument for (𝑥 ′, 𝑦) is similar. □

Let 𝑸𝑽 (𝜏, 𝑓𝐸) denote the query set of Alice and Bob conditioned on (𝜏, 𝑓𝐸), namely, 𝑸𝑽 (𝜏, 𝑓𝐸)
def
=

(QA (𝑹𝐴),QB(𝑹𝐵)), where (𝑹𝐴, 𝑹𝐵, ·) = 𝑬𝑽 (𝜏, 𝑓𝐸). Given (𝑄𝐴, 𝑄𝐵) ∈ supp𝑸𝑽 (𝜏, 𝑓𝐸), we obtain a
subrectangle of X𝜏,𝑓𝐸 ×Y𝜏,𝑓𝐸 by adding the restriction that Alice’s (resp., Bob’s) queries is 𝑄𝐴 (resp.,
𝑄𝐵). That is, we consider X𝜏,𝑓𝐸 (𝑄𝐴) × Y𝜏,𝑓𝐸 (𝑄𝐵) where

X𝜏,𝑓𝐸 (𝑄𝐴)
def
=

{
𝑥 = (𝑟𝐴, 𝑓𝐴) ∈ X𝜏,𝑓𝐸 : QA (𝑟𝐴) = 𝑄𝐴

}
,

Y𝜏,𝑓𝐸 (𝑄𝐵)
def
=

{
𝑦 = (𝑟𝐵, 𝑓𝐵) ∈ Y𝜏,𝑓𝐸 : QB(𝑟𝐵) = 𝑄𝐵

}
.

Definition 3.4 (Monochromatic Rectangle). A rectangle 𝑅 ⊆ X×Y is 𝑏-monochromatic if 𝑅∩𝐷 ≠ ∅
and for every (𝑥,𝑦) ∈ 𝑅 ∩ 𝐷 ,MΠ (𝑥,𝑦) = 𝑏; 𝑅 is said to be monochromatic if it is 𝑏-monochromatic
for some 𝑏 ∈ {0, 1}.

The following lemma shows that if the protocol is normalized and has perfect completeness, the
rectangle X𝜏,𝑓𝐸 × Y𝜏,𝑓𝐸 has a special structure: It can be partitioned into monochromatic rectangles
according to the queries.

Lemma 3.5. Suppose Π is normalized and has perfect completeness. Let 𝜏 be a transcript and 𝑓𝐸 be a partial
function. For all (𝑄𝐴, 𝑄𝐵) ∈ supp𝑸𝑽 (𝜏, 𝑓𝐸), the rectangle X𝜏,𝑓𝐸 (𝑄𝐴) × Y𝜏,𝑓𝐸 (𝑄𝐵) is monochromatic.

Proof. Since Π is normalized, for any (𝑥,𝑦) ∈ X𝜏,𝑓𝐸 (𝑄𝐴) × Y𝜏,𝑓𝐸 (𝑄𝐵), outB(𝑥,𝑦) is determined by
𝑄𝐵 . Moreover, because of perfect completeness, outA (𝑥,𝑦) = outB(𝑥,𝑦) for all (𝑥,𝑦) ∈ X𝜏,𝑓𝐸 (𝑄𝐴) ×
Y𝜏,𝑓𝐸 (𝑄𝐵). Thus, X𝜏,𝑓𝐸 (𝑄𝐴) × Y𝜏,𝑓𝐸 (𝑄𝐵) is monochromatic. □
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3.2.2 Analyzing the attacker’s success probability

Next, we show that alg. 1 breaks the security of normalized protocols. The following lemma char-
acterizes what happens after all small 𝜀-correlated sets are cleaned up; it roughly says that if there
exists no small 𝜀-correlated set, the key is almost determined conditioned on Eve’s information.

Lemma 3.6. Let 𝜏 be a transcript and 𝑓𝐸 be a partial function with domain𝑄𝐸 . If there exists no 𝜀-correlated
set of size at most 2ℓ w.r.t. (𝜏, 𝑓𝐸), then ∃𝑏 ∈ {0, 1} s.t. Pr𝑣←𝑬𝑽 (𝜏,𝑓𝐸 ) [outA (𝑣) = 𝑏] ≥ 1 −

√
2𝜀.

Proof. Write 𝛿 def
=
√

2𝜀. Assume towards contradiction that

Pr
𝑣←𝑬𝑽 (𝜏,𝑓𝐸 )

[outA (𝑣) = 𝑏] > 𝛿,∀𝑏 ∈ {0, 1} .

For 𝑏 ∈ {0, 1}, define

G𝑏
def
=

{
(𝑄𝐴, 𝑄𝐵) ∈ supp𝑸𝑽 (𝜏, 𝑓𝐸) : X𝜏,𝑓𝐸 (𝑄𝐴) × Y𝜏,𝑓𝐸 (𝑄𝐵) is 𝑏-monochromatic

}
.

By lemma 3.5, ∀𝑏 ∈ {0, 1},

Pr
𝑣←𝑬𝑽 (𝜏,𝑓𝐸 )

[(QA (𝑣),QB(𝑣)) ∈ G𝑏] = Pr
𝑣←𝑬𝑽 (𝜏,𝑓𝐸 )

[outA (𝑣) = 𝑏] > 𝛿. (3)

For 𝑄 = (𝑄𝐴, 𝑄𝐵), 𝑄 ′ = (𝑄 ′𝐴, 𝑄 ′𝐵), define

ℎ(𝑄,𝑄 ′) def
= H (𝑭 (𝑄𝐴 ∪𝑄𝐵) | 𝑭 (𝑄𝐸) = 𝑓𝐸)
−H

(
𝑭 (𝑄𝐴 ∪𝑄𝐵)

�� QA (𝑹𝐴) = 𝑄 ′𝐴 ∧ QB(𝑹𝐵) = 𝑄 ′𝐵 ∧ 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏
)
,

where (𝑹𝐴, 𝑹𝐵, 𝑭 ) is a random extended view and 𝑻 = tran(𝑹𝐴, 𝑹𝐵, 𝑭 ) as usual. Then, we have

Claim 3.7. For all 𝑄0 = (𝑄0
𝐴, 𝑄

0
𝐵) ∈ G0 and 𝑄1 = (𝑄1

𝐴, 𝑄
1
𝐵) ∈ G1, we have ℎ(𝑄𝑏, 𝑄1−𝑏) ≥ 1 for some

𝑏 ∈ {0, 1}.
The above claim suggests some kind of correlation with the transcript exists; next, we prove

such correlation gives rise to an 𝜀-correlated set.
Consider the following complete bipartite graph, denoted by 𝐺 :

1. The left vertex set is 𝑉0 and each vertex 𝑣 ∈ 𝑉0 is associated with some 𝑄 (𝑣) ∈ G0.

2. The right vertex set is 𝑉1 and each vertex 𝑣 ∈ 𝑉1 is associated with some 𝑄 (𝑣) ∈ G1.

3. For each𝑄 ∈ G0∪G1, the number of vertices associated with𝑄 is proportional to Pr𝑸𝑽 (𝜏,𝑓𝐸 ) [𝑄].

We assign an orientation to 𝐺 as follows: for all 𝑣0 ∈ 𝑉0, 𝑣1 ∈ 𝑉1, if ℎ(𝑄 (𝑣0), 𝑄 (𝑣1)) ≥ 1, then the
edge {𝑣0, 𝑣1} is directed towards 𝑣1; otherwise, {𝑣0, 𝑣1} is directed towards 𝑣0. Let 𝐸 (𝐺) denote the
set of all directed edges. By claim 3.7, each directed edge 𝑣 → 𝑣 ′ satisfies ℎ(𝑄 (𝑣), 𝑄 (𝑣 ′)) ≥ 1. Let
Γ(𝑣) def

= {𝑣 ′ : (𝑣 → 𝑣 ′) ∈ 𝐸 (𝐺)} denote the set of out-neighbors of 𝑣 . WLOG, assume that |𝑉0 | ≤ |𝑉1 |.
By average argument, there exists some 𝑣∗ ∈ 𝑉0 ∪𝑉1 such that |Γ(𝑣∗) | ≥ |𝑉0 | · |𝑉1 |

|𝑉0 |+ |𝑉1 | ≥ |𝑉0 |/2.
Say 𝑣∗ ∈ 𝑉𝑏∗ , then we have

Pr
𝑣←𝑉1−𝑏∗

[(𝑣∗ → 𝑣) ∈ 𝐸 (𝐺)] = |Γ(𝑣
∗) |

|𝑉1−𝑏∗ |
≥ |𝑉0 |

2|𝑉1−𝑏∗ |
=

1
2 ·

Pr𝑣←𝑬𝑽 (𝜏,𝑓𝐸 ) [(QA (𝑣),QB(𝑣)) ∈ G0]
Pr𝑣←𝑬𝑽 (𝜏,𝑓𝐸 ) [(QA (𝑣),QB(𝑣)) ∈ G1−𝑏∗]

>
𝛿

2 .
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Let 𝑄∗ def
= 𝑄 (𝑣∗). Then we have

E
𝑄←𝑸𝑽 (𝜏,𝑓𝐸 )

[ℎ(𝑄∗, 𝑄)] ≥ E
𝑄←𝑸𝑽 (𝜏,𝑓𝐸 )

[ℎ(𝑄∗, 𝑄) | 𝑄 ∈ G1−𝑏∗] Pr
𝑄←𝑸𝑽 (𝜏,𝑓𝐸 )

[𝑄 ∈ G1−𝑏∗]

≥ E
𝑣←𝑉1−𝑏∗

[ℎ(𝑄 (𝑣∗), 𝑄 (𝑣))] · 𝛿

≥ Pr
𝑣←𝑉1−𝑏∗

[(𝑣∗ → 𝑣) ∈ 𝐸 (𝐺)] · 𝛿

=
𝛿2

2 = 𝜀,

(4)

where the second inequality follows from eq. (3) and the construction of𝐺 , and the third inequality
holds because ℎ(𝑄 (𝑣∗), 𝑄 (𝑣)) ≥ 𝟙[(𝑣∗ → 𝑣) ∈ 𝐸 (𝐺)].

Note that E𝑄←𝑸𝑽 (𝜏,𝑓𝐸 ) [ℎ(𝑄∗, 𝑄)] ≥ 𝜀 means that

H
(
𝑭 (𝑄∗𝐴 ∪𝑄∗𝐵)

�� 𝑭 (𝑄𝐸) = 𝑓𝐸
)
−H

(
𝑭 (𝑄∗𝐴 ∪𝑄∗𝐵)

�� QA (𝑹𝐴),QB(𝑹𝐵), 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏
)
≥ 𝜀,

where 𝑄∗ = (𝑄∗𝐴, 𝑄∗𝐵). Thus, letting 𝑄 = 𝑄∗𝐴 ∪𝑄∗𝐵 , we have

H
(
𝑭 (𝑄)

��� 𝑹𝐴, 𝑹𝐵, 𝑭 (𝑄𝐸) = 𝑓𝐸
)
−H

(
𝑭 (𝑄)

��� 𝑹𝐴, 𝑹𝐵, 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏
)

≥ H
(
𝑭 (𝑄)

��� 𝑹𝐴, 𝑹𝐵, 𝑭 (𝑄𝐸) = 𝑓𝐸
)
−H

(
𝑭 (𝑄)

��� QA (𝑹𝐴),QB(𝑹𝐵), 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏
)

= H
(
𝑭 (𝑄)

��� 𝑭 (𝑄𝐸) = 𝑓𝐸
)
−H

(
𝑭 (𝑄)

��� QA (𝑹𝐴),QB(𝑹𝐵), 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏
)

≥ 𝜀,

where the first inequality is by data processing inequality and the second step holds as 𝑭 (𝑄), 𝑹𝐴, 𝑹𝐵

are independent. That is, 𝑄 is 𝜀-correlated w.r.t. (𝜏, 𝑓𝐸), a contradiction. □

Proof of claim 3.7. Define

𝑅𝑏
def
= X𝜏,𝑓𝐸 (𝑄𝑏

𝐴) × Y𝜏,𝑓𝐸 (𝑄𝑏
𝐵) where 𝑏 ∈ {0, 1} .

For all (𝑥,𝑦) ∈ 𝑅0, (𝑥 ′, 𝑦 ′) ∈ 𝑅1, we haveMΠ (𝑥,𝑦) = 0 andMΠ (𝑥 ′, 𝑦 ′) = 1, and henceMΠ (𝑥,𝑦 ′) = ∗
according to claim 3.3. This means that oracle answers in profile 𝑥 and profile 𝑦 ′ are inconsistent.
Note that all inconsistent queries are in 𝑆

def
= 𝑄0

𝐴 ∩𝑄1
𝐵 . Therefore,

supp
(
𝑭 (𝑆) |QA (𝑹𝐴)=𝑄0

𝐴∧QA (𝑹𝐵 )=𝑄0
𝐵∧𝑻=𝜏∧𝑭 (𝑄𝐸 )=𝑓𝐸

)
∩ supp

(
𝑭 (𝑆) |QA (𝑹𝐴)=𝑄1

𝐴∧QA (𝑹𝐵 )=𝑄1
𝐵∧𝑻=𝜏∧𝑭 (𝑄𝐸 )=𝑓𝐸

)
= ∅.

A simple average argument shows that for some 𝑏∗ ∈ {0, 1},���supp
(
𝑭 (𝑆) |QA (𝑹𝐴)=𝑄𝑏∗

𝐴 ∧QA (𝑹𝐵 )=𝑄𝑏∗
𝐵 ∧𝑻=𝜏∧𝑭 (𝑄𝐸 )=𝑓𝐸

)��� ≤ ��supp
(
𝑭 (𝑆) |𝑭 (𝑄𝐸 )=𝑓𝐸

) ��
2 . (5)

Consequently,

Δ
def
= H (𝑭 (𝑆) | 𝑭 (𝑄𝐸) = 𝑓𝐸) −H

(
𝑭 (𝑆)

��� QA (𝑹𝐴) = 𝑄𝑏∗
𝐴 ∧ QB(𝑹𝐵) = 𝑄𝑏∗

𝐵 ∧ 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏
)

≥ H (𝑭 (𝑆) | 𝑭 (𝑄𝐸) = 𝑓𝐸) − log
���supp

(
𝑭 (𝑆) |QA (𝑹𝐴)=𝑄𝑏∗

𝐴 ∧QA (𝑹𝐵 )=𝑄𝑏∗
𝐵 ∧𝑻=𝜏∧𝑭 (𝑄𝐸 )=𝑓𝐸

)���
≥ log

���supp
(
𝑭 (𝑆) |𝑭 |𝑄𝐸=𝑓𝐸

)��� − log
��supp

(
𝑭 (𝑆) |𝑭 (𝑄𝐸 )=𝑓𝐸

) ��
2

= 1,
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where the second inequality follows from eq. (5) and the fact that 𝑭 (𝑆) |𝑭 (𝑄𝐸 )=𝑓𝐸 is uniform distri-
bution.

Now that Δ ≥ 1, it suffice to show ℎ(𝑄1−𝑏∗, 𝑄𝑏∗) ≥ Δ. Since 𝑆 ⊆ 𝑄1−𝑏∗
𝐴 ∪𝑄1−𝑏∗

𝐵 , this follows from
chain rule:

ℎ(𝑄1−𝑏∗, 𝑄𝑏∗) − Δ

= H
(
𝑭 (𝑆)

��� 𝑭 (𝑄𝐸) = 𝑓𝐸
)
−H

(
𝑭 (𝑆)

��� 𝑭 (𝑆),QA (𝑹𝐴) = 𝑄𝑏∗
𝐴 ∧ QB(𝑹𝐵) = 𝑄𝑏∗

𝐵 ∧ 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏
)

≥ 0,

where 𝑆
def
= (𝑄1−𝑏∗

𝐴 ∪𝑄1−𝑏∗
𝐵 ) \ 𝑆 and the inequality holds since 𝑭 (𝑆) |𝑭 (𝑄𝐸 )=𝑓𝐸 is uniform distribution

(and uniform distribution has maximum entropy). □

Corollary 3.8 (Accuracy of E). Let Π be an ℓ-oracle-aided, non-adaptive (1, 𝑞, 𝛾)−key-agreement. Assume
the Π is normalized, then alg. 1 guesses the key correctly with probability at least 1 −

√
2𝜀, i.e.,

Pr
𝑣=(𝑟A,𝑟B,𝑓 )←𝑬𝑽

[
E𝑓 (tran(𝑣)) = outA (𝑣)

]
> 1 −

√
2𝜀.

Proof. By lemma 3.6, E outputs outA (𝑣) except with probability less than
√

2𝜀. □

3.3 Efficiency of the attacker

In this subsection, we analyze the efficiency of the attacker Eve (alg. 1) via the density increment
argument [YZ22, YZ23]. We first introduce the density function. Intuitively, the density function
Φ(𝜏, 𝑓𝐸) captures the amount of hidden information contained in the transcript 𝜏 about the random
function 𝑭 given Eve’s observation of oracle 𝑓𝐸 . As Eve makes effective queries, she learns (a
constant amount of) information in each iteration, so the density function decreases by a constant.

Definition 3.9 (Density function). Let 𝜏 be a transcript and 𝑓𝐸 be a partial function with domain
𝑄𝐸 . Define density function Φ via

Φ(𝜏, 𝑓𝐸)
def
= H (𝑭 | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸) −H (𝑭 | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏) ,

where (𝑹A, 𝑹B, 𝑭 ) is a random extended view and 𝑻
def
= tran(𝑹A, 𝑹B, 𝑭 ).

Lemma 3.10. The density function Φ satisfies the following properties:

1. Φ is non-negative.

2. E𝜏←𝑻 [Φ(𝜏, 𝑓∅)] ≤ CC(Π), where 𝑓∅ denotes the empty function.

3. If 𝑆 if 𝜀-correlated w.r.t. (𝜏, 𝑓𝐸), then E𝑓𝑆←𝑭 (𝑆) |𝑻=𝜏,𝑭 (𝑄𝐸 )=𝑓𝐸
[Φ(𝜏, 𝑓𝐸 ∪ 𝑓𝑆 )] ≤ Φ(𝜏, 𝑓𝐸) − 𝜀.

Proof. We prove these statements as follows.
1. 𝑭 is uniform distribution given 𝑹A, 𝑹B and conditioned on 𝑓 (𝑄𝐸) = 𝑓𝐸 . Hence Φ is non-negative.
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2. By definition, we have that

E
𝜏←𝑻
[Φ(𝜏, 𝑓∅)] = E

𝜏←𝑻
[H (𝑭 | 𝑹A, 𝑹B) −H (𝑭 | 𝑹A, 𝑹B, 𝑻 = 𝜏)]

= H (𝑭 | 𝑹A, 𝑹B) −H (𝑭 | 𝑹A, 𝑹B, 𝑻 )
= I (𝑭 ;𝑻 | 𝑹A, 𝑹B)
≤ H(𝑻 )
≤ CC(Π) .

3. Write 𝑄 ′𝐸
def
= 𝑄𝐸 ∪ 𝑆 . We decompose Φ(𝜏, 𝑓𝐸) − E𝑓𝑆←𝑭 (𝑆) |𝑻=𝜏,𝑭 (𝑄𝐸 )=𝑓𝐸

[Φ(𝜏, 𝑓𝐸 ∪ 𝑓𝑆 )] = 𝜙1 − 𝜙2, where

𝜙1
def
= H (𝑭 | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸) − E

𝑓𝑆←𝑭 (𝑆) |𝑻=𝜏,𝑭 (𝑄𝐸 )=𝑓𝐸

[
H

(
𝑭
�� 𝑹A, 𝑹B, 𝑭 (𝑄 ′𝐸) = (𝑓𝐸 ∪ 𝑓𝑆 )

) ]
,

and

𝜙2
def
= H (𝑭 | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏) − E

𝑓𝑆←𝑭 (𝑆) |𝜏,𝑓𝐸

[
H

(
𝑭
�� 𝑹A, 𝑹B, 𝑭 (𝑄 ′𝐸) = (𝑓𝐸 ∪ 𝑓𝑆 ) ∧ 𝑻 = 𝜏

) ]
.

Since 𝑹A, 𝑹B, 𝑭 are independent, we have (by chain rule)

𝜙1 = H (𝑭 (𝑆) | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸) .

Observe that by the definition of conditional entropy,

E
𝑓𝑆←𝑭 (𝑆) |𝜏,𝑓𝐸

[
H

(
𝑭
�� 𝑹A, 𝑹B, 𝑭 (𝑄 ′𝐸) = (𝑓𝐸 ∪ 𝑓𝑆 ) ∧ 𝑻 = 𝜏

) ]
= H (𝑭 | 𝑹A, 𝑹B, 𝑭 (𝑆), 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏) .

By the chain rule,

𝜙2 = H (𝑭 | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏) −H (𝑭 | 𝑹A, 𝑹B, 𝑭 (𝑆), 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏)
= H (𝑭 (𝑆) | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏) .

(6)

Since 𝑆 is 𝜀-correlated, H (𝑭 (𝑆) | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸) −H (𝑭 (𝑆) | 𝑹A, 𝑹B, 𝑭 (𝑄𝐸) = 𝑓𝐸 ∧ 𝑻 = 𝜏) ≥ 𝜀, and
hence

Φ(𝜏, 𝑓𝐸) − E
𝑓𝑆←𝑭 (𝑆) |𝑻=𝜏,𝑭 (𝑄𝐸 )=𝑓𝐸

[Φ(𝜏, 𝑓𝐸 ∪ 𝑓𝑆 ] = 𝜙1 − 𝜙2 ≥ 𝜀.

□

Following lemma 3.10, we can deduce that our attacker E (alg. 1) makes at most CC(Π)/𝜀
iterations in expectation.

Lemma 3.11 (Efficiency of E). E[# of iterations in the running of E] ≤ CC(Π)
𝜀 .

Proof. Recall the sampling procedure in section 1.1. Then, we define some random variables in a
random execution for analysis. Let 𝑭 (𝑖)𝐸 = 𝑭 (𝑖−1)

𝐸 ∪ 𝑭 (𝑆𝑖) be the observations of Eve until the end of
the 𝑖-th iteration, where 𝑭 (0)𝐸 is the empty function. If E does not enter the 𝑖-th iteration, we define
𝑭 (𝑖)𝐸 = 𝑭 (𝑖−1)

𝐸 . Define a counter variable to record the number of iterations as follows: 𝑪0
def
= 0 and

for 𝑖 ≥ 0

𝑪𝑖+1
def
=

{
𝑪𝑖 + 1, if E enters the 𝑖-th iteration;
𝑪𝑖 , otherwise.
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We claim that for every 𝜏 and 𝑓𝐸 ,

E
[
Φ(𝑻 , 𝑭 (𝑖)𝐸 ) − Φ(𝑻 , 𝑭

(𝑖+1)
𝐸 ) − 𝜀 (𝑪𝑖+1 − 𝑪𝑖)

��� 𝑻 = 𝜏 ∧ 𝑭 (𝑖)𝐸 = 𝑓𝐸
]
≥ 0. (7)

To see this, consider the event Enter𝑖
def
= ‘E enters the 𝑖-th iteration’. Conditioned on Enter𝑖 , 𝑪𝑖+1 −

𝑪𝑖 = 1 and by the third item of lemma 3.10, the underlined part is non-negative; conditioned on
¬Enter𝑖 , the underlined part equals zero by definition.

Since eq. (7) holds for all (𝜏, 𝑓𝐸), we get E
[
Φ(𝑻 , 𝑭 (𝑖)𝐸 ) − Φ(𝑻 , 𝑭

(𝑖+1)
𝐸 ) − 𝜀 (𝑪𝑖+1 − 𝑪𝑖)

]
≥ 0. Summing

over 𝑖 = 0, · · · , 𝑁 − 1, we obtain

E[Φ(𝑻 , 𝑭 (0)𝐸 ] − E[Φ(𝑻 , 𝑭 (𝑁 )𝐸 )] − 𝜀 E[𝑪𝑁 − 𝑪0] ≥ 0.

By the first and second items of lemma 3.10, we have E[Φ(𝑻 , 𝑭 (𝑁 )𝐸 )] ≥ 0 and E[Φ(𝑻 , 𝑭 (0)𝐸 )] ≤ CC(Π).
Note that 𝑪0 = 0 and 𝑪𝑁 equals the total number of iterations because there can never be more
than 𝑁 iterations. Therefore, we get

E[# of iterations in the running of E] = E[𝑪𝑁 ] ≤
CC(Π)

𝜀
.

□

So far, we have bounded the expected number of iterations of alg. 1 from above; however, alg. 1
could make too many queries in the worst case. To prove our main theorem, we need an attacker
who makes a bounded number of queries in the worst case. We construct such an attacker by
running E for a limited number of iterations.

Theorem 3.12. Let E′ be an attacker who runs E but aborts when the number of iterations exceeds CC(Π)
𝜀3/2 .

Then the following statements hold:

1. Efficiency: E′ makes at most 𝑞E′ = 2ℓ · CC(Π)/𝜀3/2 oracle queries.

2. Accuracy: The success probability of E′ is at least 𝛾 .

Proof. Efficiency holds because E′ queries at most CC(Π)/𝜀3/2 sets and each set has size at most 2ℓ .
As for accuracy, let 𝛽, 𝛽 ′ be the success probability of E,E′ respectively. By the definition of E′, we
have

|𝛽 ′ − 𝛽 | ≤ Pr [E′ aborts]

= Pr
[
# of iterations in the running of E is more than CC(Π)/𝜀3/2

]
.

Lemma 3.11 together with Markov’s inequality shows that this quantity is at most
√
𝜀. Therefore,

we have 𝛽 ′ ≥ 𝛽 −√𝜀. By the accuracy of E (corollary 3.8) and our choice of 𝜀 (i.e., 𝜀 = (1−𝛾)2/9), we
obtain 𝛽 ′ ≥ 1 −

√
2𝜀 − √𝜀 > 1 − 3

√
𝜀 = 𝛾 . □
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Proving the main theorem Theorem 3.1 immediately follows from the above lemma.

Proof of theorem 3.1. Let Π be a protocol that satisfies the conditions of theorem 3.1. It suffices to
prove CC(Π) ≥ 𝑞

2ℓ ·
(1−𝛾 )3

27 (eq. (2)), provided that Π is normalized. Since E′ in theorem 3.12 succeeds
with probability 𝛾 and Π is a (𝑞,𝛾)-secure by assumption, we must have 𝑞E′ > 𝑞, which implies

CC(Π) > 𝑞

2ℓ · 𝜀
3/2 =

𝑞

2ℓ ·
(1 − 𝛾)3

27 .

□
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