
Deterministic Algorithms
for Low Degree Factors

of Constant Depth Circuits

Mrinal Kumar * Varun Ramanathan* Ramprasad Saptharishi*

Abstract

For every constant d, we design a subexponential time deterministic algorithm that takes
as input a multivariate polynomial f given as a constant depth algebraic circuit over the field
of rational numbers, and outputs all irreducible factors of f of degree at most d together with
their respective multiplicities. Moreover, if f is a sparse polynomial, then the algorithm runs in
quasipolynomial time.

Our results are based on a more fine-grained connection between polynomial identity testing
(PIT) and polynomial factorization in the context of constant degree factors and rely on a clean
connection between divisibility testing of polynomials and PIT due to Forbes [For15] and on
subexponential time deterministic PIT algorithms for constant depth algebraic circuits from the
recent work of Limaye, Srinivasan and Tavenas [LST21].

1 Introduction

A long line of research (cf. [vzG83, Kal85, Kal92, Kal03]) on the question of designing efficient
algorithms for multivariate polynomial factorization concluded with the influential works of
Kaltofen [Kal89] and Kaltofen & Trager [KT88] which gave efficient randomized algorithms for
this problem in the whitebox and blackbox settings respectively.1 These results and the technical
insights discovered in the course of their proofs have since found numerous direct and indirect
applications in various areas of complexity theory. This includes applications to the construction
of pseudorandom generators for low degree polynomials [Bog05], algebraic algorithms [KY08],
hardness-randomness tradeoffs in algebraic complexity [DSY09, GKSS19], algebraic property test-
ing [PS94, AS03, BSCI+20], error correcting codes [BHKS20], deterministic polynomial identity
tests for constant depth circuits [LST21, CKS18] among others.

Given the fundamental nature of the problem and its many applications, the question of
designing efficient deterministic algorithms for multivariate polynomial factorization is of great
interest and importance. Shpilka & Volkovich [SV10] observed that this question is at least as
hard as PIT in the sense that a deterministic factoring algorithm (in fact, an algorithm to check

*Tata Institute of Fundamental Research, Mumbai, India. Email: {mrinal, varun.ramanathan,
ramprasad}@tifr.res.in. Research supported by the Department of Atomic Energy, Government of India,
under project 12-R&D-TFR-5.01-0500.

1Throughout this paper, we use efficient to mean an algorithm whose time complexity is polynomially bounded in the
size, bit-complexity and the degree of the input algebraic circuit.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 139 (2023)

irreducibility suffices for this) for polynomials given by algebraic circuits implies a deterministic
algorithm for PIT for algebraic circuits, a long standing open problem in computer science. In
a later work, Kopparty, Saraf & Shpilka [KSS15] showed a connection in the other direction as
well. They showed that an efficient deterministic algorithm for PIT for algebraic circuits implies
an efficient deterministic algorithm for polynomial factorization for algebraic circuits. Thus, the
questions are essentially equivalent to each other.

An intriguing aspect of the aforementioned equivalence is that while deterministic algorithms
for factoring any rich enough class of circuits (for instance, constant depth circuits) lead to determin-
istic PIT for the same class (see Observation 1 in [SV10] for a precise statement), the connection in
the other direction due to Kopparty, Saraf & Shpilka [KSS15] does not appear to be so fine-grained.
In particular, even if we only wish to factor an otherwise simple class of polynomials, e.g. sparse
polynomials (polynomials with a small number of non-zero monomials), the PIT required as per
the proof in [KSS15] seems to be for significantly more powerful models of algebraic computation
like algebraic branching programs.

As a consequence, while there has been steady progress on the state of the art of determin-
istic PIT algorithms in recent years for various interesting sub-classes of algebraic circuits like
sparse polynomials [KS01], depth-3 circuits with constant top fan-in [SS09, SS10, KS09], read-once
algebraic branching programs [FS13, FSS14, For14, GKST15, GKS16] and constant depth circuits
[LST21], this progress hasn’t translated to progress on the question of deterministic factoring algo-
rithms for these circuit classes. In particular, deterministic factorization algorithms have remained
elusive even for seemingly simple classes of polynomials like sparse polynomials where the cor-
responding PIT problem is very well understood. There are only a handful of results that make
progress towards this and related problems to the best of our knowledge. Shpilka & Volkovich
[SV10] showed a close connection between the problems of polynomial identity testing and that of
decomposing a polynomial given by a circuit into variable disjoint factors and build on these ideas
to give an efficient deterministic algorithm for factoring sparse multilinear polynomials. In subse-
quent works, Volkovich [Vol15, Vol17] gave an efficient deterministic algorithm to factor sparse
polynomials that split into multilinear factors and sparse polynomials with individual degree at
most 2. More recently, a work of Bhargava, Saraf and Volkovich [BSV18] gives a quasipolynomial
time deterministic algorithm for factoring sparse polynomials with small individual degree based
on some beautiful geometric insights.

In general, when the individual degree of a sparse polynomial is not small, no non-trivial
deterministic factoring algorithms appear to be known, even when we have the flexibility of
describing the output as algebraic circuits. As Forbes & Shpilka note in their recent survey [FS15]
on polynomial factorization, we do not even have structural guarantees on the complexity of factors
of sparse polynomials even for seemingly coarse measures of complexity like formula complexity.
In fact, questions that might be potentially easier than factorization like checking if a given sparse
polynomial is a product of constant degree polynomials or checking if a given sparse polynomial is
irreducible are not known to have non-trivial deterministic algorithms. Perhaps a little surprisingly,
till a recent work of Forbes [For15], we did not even have a non-trivial deterministic algorithm for
checking if a given sparse polynomial is divisible by a given constant degree polynomial! Forbes
gave a quasipolynomial time deterministic algorithm for this problem by reducing this question to
a very structured instance of PIT for depth-4 algebraic circuits and then giving a quasipolynomial
time deterministic algorithm for these resulting PIT instances.

This work is motivated by some of these problems, most notably by the question of designing

2

efficient deterministic algorithms for factoring sparse polynomials. While we do not manage
to solve this problem in this generality, we make modest progress towards this: we design a
deterministic quasipolynomial time algorithm that outputs all the low degree factors of a sparse
polynomial. More generally, we show that constant degree factors of a polynomial given by a
constant depth circuit can be computed deterministically in subexponential time.

1.1 Our Results

Theorem 1.1 (Low degree factors of constant depth circuits). Let Q be the field of rational numbers and
ε > 0, d, k ∈ N be arbitrary constants.

Then, there is a deterministic algorithm that takes as input an algebraic circuit C of size s, bit-complexity
t, degree D and depth k and outputs all the irreducible factors of C of degree at most d, along with their
respective multiplicities in time (sDt)O((sDt)ε).

We note that the bit-complexity of an algebraic circuit/formula is a measure of the bit-complexities
of the rational numbers appearing in the circuit. See Definition 2.1 for a formal definition.

When the input polynomial is sparse, i.e. has a small depth-2 circuit, then the time complexity
of the algorithm in Theorem 1.1 can be improved to be quasipolynomially bounded in the input
size. This gives us the following theorem.

Theorem 1.2 (Low degree factors of sparse polynomials). Let d ∈ N be an arbitrary constant.
Then, there is a deterministic algorithm that takes as input a polynomial f ∈ Q[x] of sparsity s, bit-

complexity t, degree D, and outputs all the irreducible factors of f of degree at most d, along with their
respective multiplicities in time (sDt)poly(log sDt).

These results immediately yield an algorithm (with comparable time complexity) to check if the
polynomial computed by a given low depth circuit is a product of polynomials of degree at most
d. More concretely, we have the following corollary that follows by comparison of degrees of the
input polynomial and the low-degree factors (with multiplicities) listed by the algorithms in the
above theorems.

Corollary 1.3. Let Q be the field of rational numbers and ε > 0, d, k ∈ N be arbitrary constants.
Then, there is a deterministic algorithm that takes as input an algebraic circuit C of size s , bit-complexity

t, degree D and depth k and decides if C is a product of irreducibles of degree at most d in time (sDt)O((sDt)ε).
Moreover, when f is a sparse polynomial with sparsity s, then the algorithm runs in (sDt)poly(log sDt)

time.

Note that in the constant depth regime, circuits and formulas are equivalent upto a polynomial
blow-up in size. Thus we will use the terms circuits and formulas interchangeably without any loss
in our final bounds, and most of our presentation will be for formulas.

Field dependence of our results

We end this section with a remark about the field dependence of our results. The field dependence
in our results stems from two reasons. We need an efficient deterministic algorithm for factorization
of univariate polynomials over the underlying field F. In addition to this, our proofs also need
non-trivial deterministic algorithms for polynomial identity testing (PIT) for constant depth circuits
(or very special depth-4 circuits for Theorem 1.2) over the underlying field.

3

The field of rational numbers satisfies both these requirements: a classical algorithm of Lenstra,
Lenstra and Lovász[LLL82] solves the problem of deterministic univariate factorization efficiently
over Q and a recent work of Limaye, Srinivasan and Tavenas [LST21] gives a subexponential time
deterministic algorithm for PIT for constant depth circuits over Q. For Theorem 1.2, the relevant
PIT is for special depth-4 circuits and was given in a work of Forbes [For15]. In fact, Forbes’ result
holds even over finite fields.

We restrict our attention to just the field of rational numbers in the presentation although our
results work over any large characteristic field that supports the above requirements.

1.2 Proof Overview

We now give an overview of some of the main ideas in our proofs. In a nutshell, our proofs are
based on relatively simple structural observations on top of the existing factoring algorithms. The
key is to understand the structure of circuits for which we need a PIT algorithm at every step a little
better, and when looking for low degree factors, we observe that these PIT instances are relatively
simple and their circuit complexity is comparable to the circuit complexity of the input polynomials
themselves. We also crucially use the divisibility testing idea of Forbes [For15] in our algorithm at
two stages; this helps us handle factors of large multiplicities and also lets us obtain true factors
from the output of Hensel Lifting step of the factorization algorithms. This idea again helps in
reducing the complexity of the PIT instance we face in these steps, and in particular, we completely
avoid the linear systems solving step in a typical factorization algorithm that naively (e.g. see
[KSS15]) seems to require PIT for algebraic branching programs. Once the PIT instances are shown
to be relatively simple, we invoke the PIT algorithms of Forbes [For15] and Limaye, Srinivasan &
Tavenas [LST21] to solve these deterministically.

Typical steps in a polynomial factorisation algorithm: Most factorisation algorithms (and ours,
modulo minor deviations) follow this template:

1. Making f monic: Apply a suitable transformation of the form xi 7→ xi + αiy to ensure that f
is monic in y. We may now assume that f ∈ Q[x, y].

2. Preparing for Hensel lift: Ensure that f (x, y) is square-free, and further that f (0, y) is also
square-free.

3. Univariate factorisation: Factorise the univariate polynomial f (0, y) as a product g0(y) · h0(y)
where gcd(g0, h0) = 1. This can be intepreted as a factorisation f (x, y) = g0 · h0 mod I where
I = ⟨x⟩.

4. Hensel lifting: Compute an iterated lift to obtain f = gℓ · hℓ mod I2ℓ for a suitably large ℓ.

5. Reconstruction: From gℓ, obtain an honest-to-god factor g of f (unless f is irreducible).

The first two steps typically involve the use of randomness for suitable polynomial identity
tests. In the first step, we would like α to be a point that keeps the highest degree homogeneous
component of f non-zero, and the second step is handled by translating f by a point δ that keeps
the “discriminant” of f non-zero. The Hensel lift is a deterministic subroutine that eventually
yields small circuits for the lifted factors and the reconstruction step typically involves solving a
linear system. It is mostly due to the “discriminant” that we do not have efficient deterministic

4

factorisation algorithm even for constant-depth circuits as the best upper bound for the discriminant
we have is an algebraic branching program and we do not have efficient hitting sets for them. (Yet!)

For our case, it is instructive to focus on a specific factor g of f and understand what would
be required to make the above template yield this factor. The first observation is that the base
case of Hensel Lifting does not require f to be square-free but rather that the factor g we intend to
reconstruct satisfies g| f and g2 ∤ f . For now, let us assume this and also that f (and hence g and
h = f /g also) is monic in y. We have that gcd(g, h) = 1 but for the Hensel lift, we also need to find
a δ that ensures that gcd(g0, h0) = 1 where g0 = g(δ, y) and h0 = h(δ, y). The set of “good” δ’s is
precisely the points that do not make the resultant Resy(g, h) zero and thus we want to understand
the circuit complexity of this resultant.

The resultant Resy(g, h) is the determinant of a matrix of dimension degy(g) + degy(h) and its
entries are coefficients of g, h when viewed as univariates in y. However, we are only given that f is
computable by a constant-depth formula and we do not have any good bound on the complexity of
h. We circumvent this by working with a pseudo-quotient (introduced by Forbes [For15] in the context
of divisibility testing) h̃ of f and g; we work with Resy(g, h̃) and show that it is also computable
by constant-depth circuits of not-too-large size. Fortunately, the result of Limaye, Srinivasan and
Tavenas [LST21] yields sub-exponential sized hitting sets for constant depth formulas and that
enables us to avoid the use of randomness to prepare for the Hensel Lifting step.

We can then factorise the univariate polynomial f (δ, y) and attempt all possible factors g0
of degree at most d to begin the lifting process from g0 · h0 (where h0 = f (δ, y)/g0). After an
appropriately large lift, we have small circuits (of possibly unbounded depth) computing gℓ and hℓ
such that f̃ = f (x + δ, y) = gℓ · hℓ mod I2ℓ . If gℓ is guaranteed to be monic, and the initial choice
of g0 was indeed g(δ, y), the uniqueness of Hensel lifting would ensure that gℓ is indeed equal to g
(after truncating higher order terms). We can then use standard interpolation to obtain gℓ explicitly
written as a sum of monomials. Finally, to ensure that gℓ is indeed a legitimate factor of f̃ , we
perform divisibility testing to check if gℓ | f̃ .

Handling factors of large multiplicity: The above overview is all we need to obtain any factor g of
degree O(1) that divides f with g2 ∤ f . In order to handle factors with higher “factor-multiplicity”,
we use a simple observation that ga−1 | f but ga ∤ f if and only if g divides f , ∂y f , . . . , ∂ya−1 f but not
∂ya f . We run our algorithm for each of the partial derivatives to collect the list of candidate factors,
and eventually prune them via appropriate divisibility tests.

The specific case of ΣΠ-formulas (or sparse polynomials): The above sketch yields a sub-
exponential time algorithm for obtaining O(1)-degree factors of constant depth formulas. However,
with some additional care, we obtain a quasipolynomial time algorithm in the case when f is a
sparse polynomial. The key observation for this is that we do not really need f to be made monic
for the above approach, but we only need g to be monic to exploit the uniqueness of Hensel lifts.
Since g is a polynomial of degree at most d = O(1), we can find a low Hamming weight vector α
such that g(x + yα) is monic in y. This allows us to control the sparsity increase of f in the process
and we show that the relevant resultant is a polynomial of the form

∑
i

monomiali · (O(1)-degree)ei .

5

Forbes [For15] shows that there are quasipolynomial size hitting sets for such expressions and we
use this instead of the more general hitting set of Limaye, Srinivasan and Tavenas [LST21].

Organization of the paper

The rest of the paper is organized as follows.
In the next section, we start with a discussion of some of the preliminaries and known results

from algebraic complexity and previous works on polynomial factorization that we use for the
design and analysis of our algorithms. In Section 3, we describe and analyze the algorithm for
computing low degree factors of multiplicity one of a given constant depth formula. In Section 4,
we build upon this algorithm to compute arbitrary constant degree factors and complete the proofs
of Theorem 1.1 and Theorem 1.2. Finally, we conclude with some open problems in Section 5.

2 Notation and preliminaries

This section consists of all the necessary building blocks to describe and analyse (in Section 3) the
main algorithm.

Fair warning: A large part of this (slightly lengthy) section is standard techniques in algebraic
complexity that are relevant to this specific context, and is intended to keep the main analysis as
self-contained as possible. A reader with some familiarity with standard algorithmic and structural
results in algebraic complexity might be in a position to directly proceed to Section 3 and revisit
this section for relevant results as required.

Notation

1. Throughout this paper, we work over the field Q of rational numbers. For some of the
statements that are used more generally, we use F to denote an underlying field.

2. We use boldface lower case letters like x, y, a to denote tuples, e.g. x = (x1, x2, . . . , xn). The
arity of the tuple is either stated or will be clear from the context.

3. For a polynomial f and a non-negative integer k, Homk[f] denotes the homogeneous compo-
nent of f of degree equal to k. Hom≤k[f] denotes the sum of homogeneous components of f
of degree at most k, i.e.,

Hom≤k[f] :=
k

∑
i=0

Homi[f].

4. The sparsity of a polynomial f is the number of monomials with a non-zero coefficient in f .

5. For a parameter k ∈ Z≥0, we will use (ΣΠ)(k) to refer to product-depth k circuits2 with the
root gate being + and the deepest layer of gates being ×. Since any constant depth algebraic
circuit of depth k and size s can be converted to a formula of depth k and size sk+1 i.e. poly(s),
we will use the terms circuits and formulas interchangeably, without any loss in the final
bounds we prove.

2We emphasize that this notation does not refer to the kth power of a polynomial computed by a ΣΠ circuit.

6

6. Let f and g be multivariate polynomials such that g | f . Then, the multiplicity or factor
multiplicity of g in f is defined to be the greatest integer a such that ga divides f .

2.1 Circuit/formula bit-complexity

Definition 2.1 (Bit-complexity of a circuit/formula). The bit-complexity of a circuit/formula C, denoted
by bit(C), is defined as the sum of size(C) and the bit-complexities of all the scalars3 present on edges or
leaves. By default, any edge that does not have a scalar on it will be assigned the scalar 1. ♢

Lemma 2.2 (Bit-complexity of evaluations of formulas). Let C be a formula of bit-complexity s computing
a polynomial f (x). If a ∈ Qn with each entry of a having bit-complexity b, then the bit-complexity of f (a)
is at most s · b.

(Proof deferred to Appendix A)

2.2 Relevant subclasses of algebraic circuits

We briefly define subclasses of algebraic circuits that we would use often in this paper.
Definition 2.3 (Power of low-degree polynomials). For a parameter d ∈ Z≥0, let Degd refer to the class
of polynomials of degree at most d. We use (Degd)

∗ to denote the class of polynomials that are powers of
polynomials of degree at most d. ♢

Definition 2.4 (Σ
(
(ΣΠ)(k) · (Degd)

∗
)

-formulas). We will use Σ
(
(ΣΠ)(k) · (Degd)

∗
)

to denote the
subclass of algebraic formulas that compute expressions of the form

∑
i

fi · gei
i

where each fi is a (ΣΠ)(k) formula and each gi is a polynomial of degree at most d and ei’s are arbitrary
positive integers. The size and bit-complexity of the above expression is defined as its size and bit-complexity
when viewed as a general algebraic formula. ♢

Observation 2.5. Let C be the class of Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formulas for fixed parameters k and d. Sup-

pose P1, . . . , Pt are polynomials computed by Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formulas of size s and bit-complexity
b each. Then,

• ∑i Pi is computable by an Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formula of size at most t · s and bit-complexity at
most O(t · b).

• ∏i Pi is computable by an Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formula of size at most sO(t) and bit-complexity at

most bO(t).

(Proof deferred to Appendix A.)

3For a rational number r = p/q, its bit-complexity bit(r) is defined as log(max(|p| , |q|))

7

2.3 Standard preliminaries using interpolation

Lemma 2.6 (Univariate interpolation (Lemma 5.3 [Sap15])). Let f (x) = f0 + f1x + · · ·+ fdxd be a
univariate polynomial of degree at most d. Then, for any 0 ≤ r ≤ d and there are4 field constants α0, . . . , αd
and βr0, . . . , βrd such that

fr = βr0 f (α0) + · · ·+ βrd f (αd).

Furthermore, the bit-complexity of all field constants is bounded by poly(d).

Lemma 2.7 (Computing homogeneous components (Lemma 5.4 [Sap15])). Let f ∈ Q[x] be an
n-variate degree d polynomial. Then, for an 0 ≤ i ≤ d, there are field constants α0, . . . , αd and βi0, βid of
bit-complexity poly(d) such that

Homi(f) = βi0 f (α0 · x) + · · ·+ βid f (αd · x).

In particular for C = (ΣΠ)(k) or Σ
(
(ΣΠ)(k) · (Degd)

∗
)

, if f is computable by C-formulas of size / bit-
complexity at most s then Homi(f) is computable by C-formulas of size / bit-complexity at most poly(s, d).

Lemma 2.8 (Computing partial derivatives in one variable). Let f ∈ Q[x] be an n-variate degree d
polynomial. Then, for an 0 ≤ r ≤ d, there are field elements αi’s and βij’s in Q of bit-complexity poly(d)
such that

∂r f
∂xr

1
=

d

∑
i=0

xi
1 · (βi0 f (α0, x2, . . . , xn) + · · ·+ βid f (αd, x2, . . . , xn))

In particular for C = (ΣΠ)(k) or Σ
(
(ΣΠ)(k) · (Degd)

∗
)

, if f is computable by C-formulas of size /

bit-complexity at most s then ∂r f
∂xr

1
is computable by C-formulas / bit-complexity of size at most O(s · d3).

Proof. We may consider the polynomial f as a univariate in x1, and extract each coefficient of xi
1

using Lemma 2.6 and recombine them to get the appropriate partial derivative. That justifies the
claimed expression.

As for the size, note that if C is (ΣΠ)(k) or Σ
(
(ΣΠ)(k) · (Degd)

∗
)

, multiplying a size s formula

by xi
1, by using distributivity of the top addition gate, results in a C-formula of size at most s · d.

Thus, the overall size of the above expression for the partial derivative is at most O(s · d3).

We will be making use of the following identity, which can be proved via appropriate interpola-
tion or by the inclusion-exclusion principle (along the lines of Lemma 2.2 [Shp02]).

Lemma 2.9 (Fischer’s identity [Fis94, Ell69, Shp02]). If F is a field of characteristic zero or larger than D,
then for any positive integers e1, . . . , en with ∑ ei = D and for r ≤ ∏n

i=1 (ei + 1), there are homogeneous
linear forms L1, . . . , Lr and field constants α1, . . . , αr of bit-complexity poly(d, n) such that

xe1
1 · · · xen

n =
r

∑
i=1

αiLD
i .

4In fact, for any choice of distinct α0, . . . , αd, there are appropriate βr0, . . . , βrd satisfying the equation. If the αi’s are
chosen to have small bit-complexity, we can obtain a poly(d) bound on the bit-complexity of the associated βri’s.

8

2.4 Polynomial identity testing

Lemma 2.10 (Polynomial Identity Lemma [Ore22, DL78, Sch80, Zip79]). Let f ∈ Q[x] be a non-zero
n variate polynomial of degree at most d. Then, for every set S ⊆ Q, the number of zeroes of f in the set
Sn = S × S × · · · × S is at most d|S|n−1.

Definition 2.11 (Low Hamming weight set). Let n ≥ d ≥ 0 be integer parameters. Fix a set Td ⊆ Q of
size (d + 1). The set H(d, n) is defined as

H(d, n) =
{
(a1, . . . , an) : S ∈

(
[n]
≤ d

)
, ai ∈ Td for all i ∈ S and aj = 0 for all j /∈ S

}
.

The size of the above set is at most (n
≤d) · (d + 1)d = nO(d). Furthermore, choosing Td to consist of elements

of Q of bit-complexity poly(d), the bit-complexity of the set H(d, n) is bounded by nO(d) as well. ♢

The following lemma is an easy consequence of Lemma 2.10 and will be crucial for parts of our
proof. We also include a short proof sketch.

Lemma 2.12 (Hitting set for low degree polynomials). Let f ∈ Q[x] be a non-zero n variate polynomial
of degree at most d. Then, there exists a vector a ∈ H(d, n) ⊆ Qn such that f (a) ̸= 0.

(Proof deferred to Appendix A.)

Theorem 2.13 (PIT for constant depth formulas (modification of Corollary 6 [LST21])). Let ε > 0
be a real number and F be a field of characteristic 0. Let C be an algebraic formula of size and bit-
complexity s ≤ poly(n), depth k = o(log log log n) computing a polynomial on n variables, then there is a
deterministic algorithm that can check whether the polynomial computed by C is identically zero or not in
time (sO(k) · n)Oε((sD)ε).

The original statement of Corollary 6 in [LST21] deals specifically with circuits of size s =
poly(n). The above statement can be readily inferred from their proof.

Theorem 2.14 (PIT for Σ
(
(ΣΠ)(1) · (Degd)

∗
)

(Corollary 6.7, [For15])). Let t ≥ 1. Then, the class

C = Σ
(
(ΣΠ)(1) · (Degd)

∗
)

that computes polynomials of the form ∑s
i=1 fi · gdi

i with each fi being s-sparse

and each deg(gi) ≤ d has a poly(n, s, d log s)-explicit hitting set of size poly(s)O(d log s).

We will also crucially use the following lemma that gives an algorithm to obtain the coefficient
vector of a polynomial from an algebraic formula computing it. In our setting, we invoke this
algorithm only for low degree polynomials, and in that case, we can tolerate the runtime of this
algorithm within our budget.

Lemma 2.15 (Interpolating a low degree multivariate polynomial). There is a deterministic algorithm
that, when given a parameter d and an n variate algebraic formula C ∈ Q[x] of size at most s, bit-complexity
at most b and degree at most d, outputs the coefficient vector of the polynomial computed by C.

The algorithm runs in time poly(s, b, nd).

(Proof deferred to Appendix A.)

9

2.5 Deterministic divisibility testing and PIT

Definition 2.16 (Pseudo-quotients). Let f , g ∈ Q[x] be non-zero polynomials with g(0) = β ̸= 0. The
pseudo-quotient of f and g is defined as

Hom≤d f −dg

((
f (x)

β

)
· (1 + g̃ + g̃2 + · · ·+ g̃d f −dg)

)
where d f = deg(f), dg = deg(g) and g̃ = 1 − g

β .
More generally, if α ∈ Qn is such that g(α) ̸= 0, the pseudo-quotient of f and g translated by α is

defined as the pseudo-quotient of f (x +α) and g(x +α). ♢

The following lemma immediately follows from the above definition and Lemma 2.7.

Lemma 2.17 (Complexity of pseudo-quotients). Suppose k ≥ 1 and f (x) ∈ (ΣΠ)(k) and g(x) ∈ Degd
of sizes at most s1, s2 respectively, and suppose g(0) ̸= 0. Then, the pseudo-quotient of f , g is computable by
the C-formulas of size at most poly(s1, s2), where C = Σ

(
(ΣΠ)(k) · (Degd)

∗
)

.

Theorem 2.18 (Divisibility testing to PIT [For15]). Let f (x) and g(x) be non-zero n-variate polynomials
over a field Q such that g(0) = β ̸= 0. Then, g divides f if and only if the polynomial R(x) defined as

R(x) := f (x)− g(x)Q(x)

is identically zero, where Q(x) is the pseudo-quotient of f and g.

An immediate consequence of this theorem is the following corollary that takes into account
the depth of an algebraic formula computing the polynomial R(x) given above, assuming that f
and g themselves can be computed by a low depth formula.

Corollary 2.19 (Divisibility testing to PIT for constant depth formulas [For15]). Suppose f (x) is a
non-zero n-variate polynomial computed by a (ΣΠ)(k) formula of size s, and suppose g(x) is a polynomial
of degree at most d with g(0) = β ̸= 0. Then, we can test if g divides f in time T(k, d, s′) where
s′ = poly(s, d) and T(k, d, s) is the time required to test polynomial identities of the size s expressions of the
form

Σ
(
(ΣΠ)(k) · (Degd)

∗
)

.

(Proof deferred to Appendix A.)

Theorem 2.20 ([For15]). Let F be any sufficiently large field. Then, there is a deterministic algorithm that
takes an input two polynomials f and g and parameters d, D, n, s, where f is an n-variate polynomial of
degree at most D and sparsity s; g is an n variate polynomial of degree d, and outputs whether g divides f or
not in time exp(O(d log2 snDd)).

2.6 Resultants

Definition 2.21 (The Resultant). Let R be a commutative ring. Given polynomials g and h in R[y], where:

g(y) = g0 + · · ·+ yd · gd

h(y) = h0 + y · h1 + · · ·+ yD · hD

10

with gd and hD ̸= 0 the Resultant of g and h, denoted by Resy(g, h), is the determinant of the (D + d)×
(D + d) Sylvester matrix Γ of g and h, given by:

Γ =



h0 h1 . . . hD
.

h0 h1 . . . hD
g0 . . . gd

g0 . . . gd
.

g0 . . . gd


♢

Lemma 2.22 (Resultant and gcd (Corollary 6.20 [vzGG13])). Let R be a unique factorization domain
and g, h ∈ R[y] be non-zero polynomials. Then:

degy(gcd(g, h)) > 0 ⇐⇒ Resy(g, h) = 0

where gcd(g, h) ∈ R[y] and Resy(g, h) ∈ R.

In this paper, R will be Q[x] (which is a unique factorization domain), and Resy(g, h) will
denote the resultant of g, h ∈ Q[x][y] when considered as polynomials in R[y]. We might also
occasionally refer to it as the y-resultant of g and h. For more details about the resultant as well as a
proof of the above lemma, we refer the reader to von zur Gathen and Gerhard’s book on computer
algebra (Chapter 6, [vzGG13]). We mention a simple observation from the above definition that
would be useful for this paper.
Observation 2.23 (Resultant under substitutions). Suppose g(x, y) = g0(x) + g1(x)y + · · · gd(x)yd

and h(x, y) = h0(x) + h1(x)y + · · ·+ hD(x)yD with gd, hD ̸= 0. Then, for any a ∈ Q|x| that ensures
gd(a), hD(a) ̸= 0, we have

(Resy(g, h))(a) = Resy(g(a, y), h(a, y)).

2.7 Hensel Lifting

Now we will state the definition of a lift and the main lemma for Hensel lifting. For more details,
one can look up some of the cited papers or the standard references in computational algebra
[KSS15, ST20, vzGG13, Sud98].
Definition 2.24 (Hensel lifts). Let I ⊆ Q[x, y] be an ideal. Let f , g, h, u, v ∈ Q[x, y] such that f ≡
gh mod I and ug + vh ≡ 1 mod I . Then, we call g′, h′ ∈ Q[x, y] a lift of g and h if:

1. f ≡ g′h′ mod I2,

2. g′ ≡ g mod I and h′ ≡ h mod I , and

3. ∃u′, v′ ∈ Q[x, y] s.t u′g′ + v′h′ ≡ 1 mod I2. ♢

For the rest of the section, we define I to be the ideal ⟨x1, . . . , xn⟩ and Ik := I2k
.

11

Lemma 2.25 (Iterated monic Hensel lifting (Lemma 3.4 [KSS15])). Suppose we’re given f ∈ Q[x, y]
such that f = gh, g is monic in y and gcd(g, h) = 1. We are also given g0, h0, u0, v0 ∈ Q[x, y] such that
g0 ≡ g mod I , h0 ≡ h mod I and u0g0 + v0h0 ≡ 1 mod I . Then, for all k ∈ N, k ≥ 1, there exist
gk, hk, uk, vk ∈ Q[x, y] , with each gk being monic, such that the following conditions hold:

1. The pair gk, hk is a lift of gk−1, hk−1, with ukgk + vkhk ≡ 1 mod Ik; in particular, f ≡ gkhk mod Ik

2. gk ≡ g mod Ik and hk ≡ h mod Ik

Moreover, for each k, gk and hk are unique polynomials modulo Ik satisfying the above conditions when the
gks are monic. For each k, we will call gk, hk the k-th iterated lift of g0, h0.

If degx(g) = d, we can choose an integer k∗ such that d < 2k∗ ≤ 2d and use the above Lemma to
get gk∗ ≡ g mod Ik∗ , which means we can truncate gk∗ to degree d and retrieve g. The next lemma
tells us that this can be done with reasonable bounds on the parameters of the underlying circuits.

Lemma 2.26 (Small circuit for Hensel lifting (Lemma 3.6 [KSS15])). Let f be a degree D polynomial in
Q[x, y], computable by a (ΣΠ)(k) formula of size and bit-complexity s, with a factorization f = gh such
that gcd(g, h) = 1 and g is monic. Let g0 = g mod I and h0 = h mod I be univariates in Q[y] with
gcd(g0, h0) = 1.

Then, there are formulas Cg, Ch of size and bit complexity (sDk)O(k log D) that compute the kth iterated
lift gk,hk of g0,h0, where gk is monic. More generally, if the total degree of gk is at most d, then the size and
bit complexity of the formula for gk is at most (sDk)O(log d).

Moreover, there is a deterministic algorithm, that when given the formulas for f and g0, h0 and integer
k as input, outputs the formulas for gk and hk in time (sDk)O(k log D) (resp. (sDk)O(log d) if gk has total
degree d).

(Proof sketch deferred to Appendix A.)

2.8 Results on polynomial factorization

We rely on the following two fundamental results on polynomial factorization for our results.
The first theorem is a classical algorithm of Lenstra, Lenstra and Lovász for factoring univariate
polynomials over the field of rational numbers.

Theorem 2.27 (Factorizing polynomials with rational coefficients [LLL82, vzGG13]). Let f ∈ Q[x]
be a monic polynomial of degree d. Then there is a deterministic algorithm computing all the irreducible
factors of f that runs in time poly(d, t), where t is the maximum bit-complexity of the coefficients of f .

The second result we need is an easy consequence of the results of Kopparty, Saraf and Shpilka
[KSS15]. They showed that an efficient deterministic algorithm for PIT for algebraic circuits implies
an efficient deterministic algorithm for polynomial factorization. The formal statement below
essentially invokes this for constant degree polynomials. In this case, the PIT instances also happen
to be of constant degree and hence can be easily solved in time that is polynomial in the length of
the coefficient vector of these polynomials.

Theorem 2.28 ([KSS15]). There is a deterministic algorithm that when given as input the coefficient vector
of an n variate polynomial f (x) ∈ Q[x] of total degree d, runs in time nO(d2) and decides if f is irreducible
or not.

12

3 Computing candidate low-degree factors of multiplicity one

We first present the algorithm for computing candidate low-degree factors of multiplicity one in
Algorithm 1 below. In the next section, we use this as a subroutine in Algorithm 2 to compute
factors of all multiplicity and also eliminate those candidates that were not actual factors.

Algorithm 1: Computing candidate degree d factors of factor-multiplicity one

Input : A (ΣΠ)(k)-formula of size s, bit-complexity t, degree D computing a polynomial f (x).
Output : A list of polynomials of degree at most d, that include all factors of f with degree at most d

and multiplicity 1.

1 Set the output list L = ∅.
2 Compute hitting-set H1 = H(d, n) (as defined in Definition 2.11).

3 Compute hitting-set H2 for the class of Σ
(
(ΣΠ)(k) · (Degd)

∗
)

-formulas that have size s′ ≤ (sD)O(d).
(Lemma 3.2, Theorem 2.14)

4 for α,β ∈ H1 and δ ∈ H2 do
5 Define F(x, y) = f (x +α · y + β+ δ) = f (x1 + α1y + β1 + δ1, . . . , xn + αny + β1 + δn)

6 Using interpolation on the formula for F(x, y) (via Lemma 2.6), compute F(0, y) as a sum of
monomials.

7 Factorise the polynomial F(0, y) into irreducible factors as

F(0, y) = σ · Fe1
1 · · · Fer

r .

where 0 ̸= σ ∈ Q and each Fr is monic in y.
8 for T ⊆ [r] of size at most d do
9 Define g0 = ∏i∈T Fei

i and h0 = σ · ∏i/∈T Fei
i , interpretted as polynomials in Q[x, y] for

Lemma 2.25
10 if deg(g0) > d then
11 Continue to the next choice of T in the current loop.

12 Compute polynomials u0, v0 such that u0g0 + v0h0 = 1.
13 Use Hensel-Lifting (Lemma 2.26) to lift the factorisation F(x, y) = g0(x, y) · h0(x, y) mod I,

where I = ⟨x⟩, to obtain algebraic circuits for gℓ, hℓ satisfying

F(x, y) = gℓ(x, y) · hℓ(x, y) mod I2ℓ

with gℓ being monic and d < 2ℓ < 2d.
14 Using interpolation on the circuit for gℓ (via Lemma 2.15), compute gℓ as a sum of

monomials.
15 Add g̃ = gℓ(x − δ − β, 0) to L.

16 return L

Before we discuss the proof of correctness and running time of Algorithm 1, we state two simple
observations that we use in the analysis. We defer the proofs of these observations to the end of the
section.

13

Observation 3.1 (Size growth under a translation of low Hamming weight). Let k > 0 be a parameter.
Let f (x) be an n-variate polynomial of degree at most D with (ΣΠ)k -size at most s. If α,β ∈ H(d, n), the
polynomial f̃ (x, y) = f (x + yα+ β) has (ΣΠ)k -size at most s · DO(d).

Lemma 3.2. Let f (x) be an n-variate polynomial computed by a (ΣΠ)(k) formula of size s, and let g(x)
be an n-variate degree d polynomial with g(0) ̸= 0. Let Q(x) be the pseudo-quotient of f and g. Then, for
any variable y ∈ x, the polynomial Resy(Q, g) is computable by a Σ

(
(ΣΠ)(k) · (Degd)

∗
)

formula of size

at most sO(d).

3.1 Proof of correctness of the Algorithm 1

Lemma 3.3 (Correctness of Algorithm 1). For every input polynomial f computed by (ΣΠ)(k) formulas
of size s, bit-complexity t, degree D and any factor g of degree at most d with g | f and g2 ∤ f , the polynomial
g is included in the output list of Algorithm 1 on input f .

Proof. Algorithm 1 outputs a list of candidate factors; we would like to prove that every factor of f
with degree ≤ d and factor-multiplicity one will be contained in this list. Fix any specific factor g of
f , with deg(g) = d′ ≤ d and factor-multiplicity one, which ensures that gcd(g, f /g) = 1.

1. Make g monic and g(0) ̸= 0

The coefficient of yd′ in g′(x, y) := g(x + yα+ β) is the evaluation of Homd′(g) at α and the
constant term of g′(x, y) is g′(0, 0) = g(β). Thus by Lemma 2.12, there is some α,β ∈ H1
such that Homd′(g)(α) ̸= 0 and g(β) ̸= 0. Fix this choice of α,β. We then have that g′(x, y)
is monic in y, has degy(g′) = deg(g) = d′, and has non-zero constant term.

2. Bound the size of Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formula for the resultant

With the above properties, the pseudo-quotient h′ of f ′(x, y) := f (x + yα+ β) and g′(x, y) is
well-defined and is a polynomial in Σ

(
(ΣΠ)(k) · (Degd)

∗
)

(by Lemma 2.17) of size poly(s, D, d) ≤
poly(sD). By Lemma 3.2, Resy(g′, h′) ∈ Q[x] is a non-zero polynomial computable by

Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formulas of size (sD)O(d).

3. Maintain gcd(g, h) = 1 condition in the univariate setting by hitting the resultant

Let degy(h
′) = r and h′(x, y) = h′0(x) + · · ·+ h′r(x)yr. Since h′ is computable by size (sD)O(d)

formula from Σ
(
(ΣΠ)(k) · (Degd)

∗
)

, so is the leading term h′r(x) by Lemma 2.7. There-
fore by Observation 2.5, the polynomial Γ(x) = Resy(g′, h′) · h′r(x) is also computable

by Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formulas of size s′ = (sD)O(d). Since H2 is a hitting set for

Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formulas of size s′, fix a δ ∈ H2 such that Γ(δ) ̸= 0 and in partic-
ular, the conditions required in Observation 2.23 are true (note that the leading coefficient of
g′ is just 1 by monicness). By Lemma 2.22 and Observation 2.23, we have that g′(δ, y) and
h′(δ, y) are coprime polynomials. Thus, if g′′(x, y) = g′(x + δ, y) and h′′(x, y) = h′(x + δ, y)

14

(h′ being the pseudo-quotient), Theorem 2.18 implies that

f (x +αy + β+ δ) = g′′(x, y) · h′′(x, y)
=⇒ f (αy + β+ δ) = g′′(0, y) · h′′(0, y)

with gcd(g′′(0, y), h′′(0, y)) = 1.

4. Univariate factorization and Hensel Lifting

Line 7 thus factorises the univariate polynomial f (αy +β+ δ) and one of the sets T in Line 8
must correspond to g0(y) chosen in Line 9 to satisfy g0(y) = g′′(0, y) and h0(y) = h′′(0, y).
Thus, we have a factorisation of the form

f (αy + β+ δ) = g′′(0, y) · h′′(0, y) = g0 · h0

=⇒ f (x +αy + β+ δ) = g0 · h0 mod I , where I = ⟨x⟩.

We are therefore set-up to apply Hensel Lifting (Lemma 2.25) to obtain gℓ, hℓ such that gℓ is
monic in y and

f (x +αy + β+ δ) = gℓ(x, y) · hℓ(x, y) mod I2ℓ .

From the uniqueness of Hensel Lifting (which is guaranteed by Lemma 2.25), we must have
that gℓ(x, y) = g′′(x, y) = g(x +αy +β+ δ). Thus, for this choice of α,β, δ and T, we would
include g(x) = g′′(x − β− δ, 0) in the set of candidate factors in Line 15.

Finally, since the lift also ensures that there exist uℓ and vℓ such that uℓgℓ + vℓhℓ = 1 mod I2ℓ ,
we also have that g2

ℓ ∤ f .

3.2 Running time analysis

We now bound the time complexity of the algorithm.

Lemma 3.4 (Running time of Algorithm 1). Let ε > 0, d, k ∈ N be an arbitrary constants and let
f ∈ Q[x] be a polynomial computable by a (ΣΠ)(k) formula C of size s, degree at most D and bit-complexity
t. Then, on input C, Algorithm 1 terminates in time at most (sD)Oε(kd(sD)εd) · tO(d log d).

Moreover, if k = 1, i.e. f has sparsity at most s, then Algorithm 1 terminates in time at most
(sDt)(poly(d) log sDt).

Proof. Let T(1)
k (s, d) be the time-complexity to output the hitting set H1 in Line 2 and T(2)

k (s, D, d)
be the time-complexity to output the hitting set H2 in Line 3.

From Definition 2.11, we immediately have that T(1)
k (s, d) ≤ sO(d). As for T(2)

k (s, D, d), in

the case of k = 1, Theorem 2.14 shows that T(2)
k (s, D, d) ≤ (sD)(poly(d) log sD). For k satisfying

2 ≤ k = o(log log log s), then Theorem 2.13 shows that T(2)
k (s, D, d) ≤ (sD)Oε(kd(sD)εd) for any

constant ε > 0.
Using Lemma 2.6, we get that Line 6 takes poly(s, D, t)-time. Now, each of the coefficients of

F(0, y) has bit-complexity at most poly(s, D, t). Thus, from Theorem 2.27, we get that F(0, y) can
be factorized into its irreducible factors in time at most poly(s, D, t).

15

There are at most Dd choices for the set T in Line 8. For each such choice, Lines 9 to 12 compute
formulas of size poly(s, D, t) for g0, h0, u0, v0 in time poly(s, D, t). By Lemma 2.26, we have that
Line 13 takes time (sDt)O(log d) to compute a formula of the same size and bit-complexity for gℓ.
From Lemma 2.15, we get that we can obtain the coefficient vector of gℓ in time at most (sDt)O(d log d).

Therefore, the overall running time of Algorithm 1 is at most

T(1)
k (s, d) · T(2)

k (s, D, d) · Dd · poly(s, D, t) · (sDt)O(d log d) .

Plugging in the estimates for T(1)
k (s, d), T(2)

k (s, D, d), we get the overall bound of (sD)Oε(kd(sD)εd) ·
tO(d log d) for k > 1, which is essentially dominated by T(2)

k (s, D, d) .

When f has sparsity s, then as discussed in the proof, T(2)
k (s, d) is at most (sD)(poly(d) log sD). Plug-

ging this back in the above expression, we get that the running time is at most (sDt)(poly(d) log sDd).

3.3 Proof of structural lemmas

In this subsection, we include the proofs of Observation 3.1 and Lemma 3.2. This completes the
analysis of Algorithm 1.

Proof of Observation 3.1. By definition of H(d, n) (Definition 2.11), the transformation x 7→ x +

yα+ β takes a monomial ∏i∈[n] xei
i to

(
∏i∈T (xi + αiy + βi)

ei
)
·
(

∏i∈[n]\T xei
i

)
, for some T ⊆ [n] s.t.

|T| = d. If we expand ∏i∈T (xi + αiy + βi)
ei into a sum of monomials, we will get at most DO(d)

monomials (when ∑i ei ≤ D). Expanding each ∏i∈[n] (xi + αiy + βi)
ei at the bottom layer into a

sum of monomials this way, we get the required (ΣΠ)(k) formula with size at most s · DO(d).

Proof of Lemma 3.2. Let x′ = x \ {y} and let C be the class Σ
(
(ΣΠ)(k) · (Degd)

∗
)

. Let us assume
that degy(Q) = D ≤ s and degy(g) = d. By Lemma 2.17, we have that Q(x) is computable by a
C-formula of size at most poly(s, d). Let us consider the (D + d)× (D + d) Sylvester matrix Γ of Q
and g with respect to the variable y whose determinant is Resy(Q, g).

Q(x) = Q0(x′) + y · Q1(x′) + · · ·+ yD · QD(x′)

g(x) = g0(x′) + · · ·+ yd · gd(x′)

Γ =



Q0 Q1 . . . QD
.

Q0 Q1 . . . QD
g0 . . . gd

g0 . . . gd
.

g0 . . . gd


Note that, by Lemma 2.6, each of the Qi’s are computed by a C-formula of size poly(s, D) and each
gi is a polynomial of degree at most d.

16

For a subset S of rows and T of columns, we will use Γ(S, T) to refer to the submatrix restricted
to the rows in S and columns in T, and let Top = {1, . . . , d} and Bot = {d + 1, . . . , d + D}. The
determinant of Γ can then be expressed as

det(Γ) = Resy(Q, g) = ∑
T∈([D+d]

d)

det(Γ(Top, T)) · det(Γ(Bot, T))

For every choice of T, the polynomial det(Γ(Top, T)) is the determinant of a d × d matrix each of
whose entries are computable by s′ = poly(s, D) sized C-formulas. Therefore, using Observation 2.5,
the polynomial det(Γ(Top, T)) is computable by C-formulas of size at most (sD)O(d).

The polynomial det(Γ(Bot, T)) is a degree D polynomial combination of g0, . . . , gd and can
therefore be expressed as

det(Γ(Bot, T)) =
Dd+1

∑
i=1

ai · gei,0
0 · · · gei,d

d

=
Dd+1

∑
i=1

ai ·
(

DO(d)

∑
j=1

bij · f
eij
ij

)
(using Lemma 2.9).

for some polynomials f j of degree at most d. Thus, using Observation 2.5 again, we have that

Resy(Q, g) is computable by Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formulas of size at most DO(d) · (sD)O(d) =

(sD)O(d).

4 Computing factors of all multiplicity

The following lemma essentially shows that the multiplicity of any factor g of a given polynomial
f can be reduced by working with appropriate partial derivatives of f , with respect to variables
that are present in g. This naturally yields an algorithm that uses Algorithm 1 as a subroutine, and
computes all irreducible factors of f .

Lemma 4.1 (Reducing factor multiplicity). Let f (x), g(x) ∈ Q[x] be non-zero polynomials and let x ∈ x
be such that ∂x(g) ̸= 0 and g is square-free. Then, the factor-multiplicity of g in f (i.e. the integer a
satisfying ga | f and ga+1 ∤ f) is also the smallest non-negative integer a such that g ∤ ∂a f

∂xa .

Proof. If the factor-multiplicity of g in f is zero, i.e. g ∤ f , then claim is clearly true. Thus let us
assume that the factor-multiplicity of g in f is a ≥ 1. It suffices to show that the factor-multiplicity
of g in ∂x(f) is exactly a − 1.

Suppose f = ga · h where gcd(g, h) = 1. Then,

∂x f = ∂x(ga) · h + ga · ∂x(h) = ga−1 · (a · ∂x(g) · h + g · ∂x(h)).

Hence, we have that the factor-multiplicity of g in ∂x(f) is at least (a − 1).
On the other hand, we have that ∂x(g) ̸= 0 and g is square-free and hence gcd(g, ∂x(g)) = 1.

Therefore

gcd(g, a · g · ∂x(h) + h · ∂x(g)) = gcd(g, h · ∂x(g)) = gcd(g, h) = 1

and hence ga ∤ ∂x(f) and therefore the factor-multiplicity of f

17

We are now ready to describe the algorithm.

Algorithm 2: Computing list of all degree d irreducible factors and their multiplicities

Input : A (ΣΠ)(k)-formula of size s, bit-complexity t, degree D computing a polynomial f (x).
Output : A list of all irreducible factors f of degree at most d and their multiplicities.

1 Set the output list L = ∅.
2 Set the intermediate candidates list L′ = ∅.
3 Compute hitting-set H1 = H(d, n) (as defined in Definition 2.11).
4 for α ∈ H1 do
5 Define F(x, y) = f (x +α · y) = f (x1 + α1y, . . . , xn + αny)
6 for i = 0, 1, . . . , deg(F) do
7 Define F̃(x, y) = ∂i F

∂yi .

8 Compute the list L̃ of all candidate degree d multiplicity-one factors of F̃(x, y) using
Algorithm 1.

9 foreach g̃(x, y) ∈ L̃ do
10 Add g(x) := g̃(x, 0) to L′.

11 for g ∈ L′ do
12 if g is not irreducible then skip to the next iteration.
13 Let x be a variable that g depends on, so that ∂x(g) ̸= 0.

14 Find the smallest non-negative integer e such that g ∤ ∂e f
∂xe .

15 if e > 1 then add (g, e) to the list L.

16 return L

Lemma 4.2 (Correctness of Algorithm 2). For every input polynomial f computed by a (ΣΠ)(k) formula
of size s, degree D, bit-complexity t and d ∈ N, the list L output by Algorithm 2 is precisely the list of all
irreducible factors of f of degree at most d (up to scalar multiplication) along with their multiplicities in f .

Proof. From Lines 11 to 15 and Lemma 4.1, it is clear that any (g, e) in the output list ensures
that g is an irreducible polynomial, ge | f and ge+1 ∤ f . Thus, it suffices to show that for every
irreducible polynomial g such that deg(g) ≤ d and g | f , some non-zero scalar multiple of g is
under consideration in the list L′. Fix any such irreducible factor g of degree at most r ≤ d and let
its factor-multiplicity be e

By Lemma 2.12, there is some α ∈ H1 such that Homr(g)(α) ̸= 0, where r is the total degree of
g. Thus, for this choice of α, we have that g′(x, y) = g(x+ yα) is a factor of F(x, y) = f (x+ yα) and
g′ is monic in y and has factor-multiplicity e. By Lemma 4.1, we have that g′ has factor-multiplicity
one in F̃(x, y) := ∂e−1F

∂ye−1 . Thus, by the correctness of Algorithm 1 (Lemma 3.3), a non-zero multiple

of the polynomial g′(x, y) must be included in the list L̃ in Line 8. Therefore, a non-zero multiple of
g(x) = g′(x, 0) will be added to L′ in Line 10.

Lemma 4.3 (Running time of Algorithm 2). Let ε > 0, k, d ∈ N be arbitrary constants. Let f ∈ Q[x] be
a polynomial computable by a (ΣΠ)(k) formula C of size s, degree at most D and bit-complexity t. Then, on
input C and d ∈ N, Algorithm 1 terminates in time at most (sDt)O(kd(sDt)εd).

Moreover, if k = 1, i.e. f has sparsity at most s, then Algorithm 1 terminates in time at most
(snDt)O(poly(d)·log snDt).

Proof. From Definition 2.11, we have the size of the set H1 is nO(d). The time complexity of
computing a formula for F from the given formula for f is at most O(sD). From Lemma 2.8,

18

we have that (ΣΠ)k+1 formulas for all the y derivatives of F can be computed in time at most
poly(s, D, t), which is also a bound on the bit-complexity and the size of these formulas. Algorithm 1
is invoked at most D times. The total time taken to construct the list L′ is at most D · T1, where T1 is
the time taken by Algorithm 1 on inputs with formula size and bit-complexity poly(s, D, t), and
degree parameter d. D · T1 is also an upper bound on the size of the list of candidate factors L′.

Now, for each g ∈ L′, from Theorem 2.28, we have that the irreducibility test in Line 12 takes
at most (sDt)O(d2) time. There are at most D instances of divisibility test performed to determine
the exact multiplicity in f of each g ∈ L′. This requires computing the corresponding derivatives,
which as discussed in the previous paragraph, takes time poly(s, D, t) and outputs a formula of
size and bit-complexity poly(s, D, t) for the derivatives, and then doing a divisibility test, the time
complexity of which we denote by T2.

Therefore, the total time taken by the algorithm is at most (nO(d) · poly(s, D, t) · D · T1) + (D ·
T1 · (sDt)O(d2) · poly(s, D, t) · T2).

Now, if f is s sparse, i.e. k = 1, then from Definition 2.11, we have that every vector in H1 has at
most d non-zero coordinates. Thus, from Observation 3.1, for every α ∈ H1, F(x, y) = f (x +α · y)
has sparsity and bit-complexity at most s′ ≤ s · Dd. Note that the derivatives of arbitrary order of
F with respect to any variable also have the same bound on their sparsity and bit-complexity of
coefficients. Thus, in this case, from Lemma 3.4, T1 ≤ (sDt)poly(d) log sDt. From Theorem 2.20, we
have that T2 ≤ (snD)O(d log2 snD). Therefore, the overall running time of the algorithm is at most
(snDt)O(poly(d)·log snDt).

On the other hand, if k > 1, then from Lemma 3.4, T1 ≤ (sD)Oε(kd(sD)εd) · tO(d log d). To bound T2
in this case, we note from Corollary 2.19, this divisibility testing instances reduce to PIT instances
for (ΣΠ)(k+1) formula of size and bit-complexity at most poly(s, D, t) and from Theorem 2.13, this
can be done in at most (sDt)O(k(sDt)ε) time for the arbitrary constant ε chosen in the beginning.
Thus, the total time taken is at most (sDt)Oε(kd(sDt)εd).

Lemma 4.2 and Lemma 4.3 together imply our main theorems Theorem 1.1 and Theorem 1.2.

5 Open problems

We conclude with some open problems.

• Perhaps the most natural open problem here is to obtain efficient deterministic algorithms
that completely factor sparse polynomials or more generally, polynomials with constant
depth formulas (and not just obtain low degree factors). In the absence of better structural
guarantees for the factors (for instance, if they are sparse or have small constant depth
formulas), we can seek algorithms that output general algebraic circuits for these factors.

• Obtaining improved structural guarantees on the factors of polynomials that are sparse or
have small constant depth formulas as mentioned in the first open problem is another very
interesting open problem.

• A first step towards obtaining deterministic algorithms for general factorization of polyno-
mials with small constant depth formulas could be to design deterministic algorithms for
computing simple factors of such polynomials. While the notion of simplicity discussed in this
paper is that of low degree factors, there are other natural notions that seem very interesting.

19

For instance, can we design an efficient deterministic algorithm that outputs all the sparse
irreducible factors of a constant depth formula ?

• As alluded to in the introduction, polynomial factorization algorithms have found numerous
applications in computer science. It would be interesting to understand if there are applica-
tions of deterministic factorization algorithms in general, and in particular the algorithms for
computing low degree factors described in this paper.

Acknowledgements

A part of this work was done while the first two authors were at the Workshop on Algebraic
Complexity organised at the University of Warwick in March 2023 by Christian Ikenmeyer. We
thank Christian for the invitation and the delightful and stimulating atmosphere at the workshop.

References

[AS03] Sanjeev Arora and Madhu Sudan. Improved Low-Degree Testing and its Applications.
Comb., 23(3):365–426, 2003.

[BHKS20] Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan. Decoding
Multivariate Multiplicity Codes on Product Sets. Electron. Colloquium Comput. Complex.,
TR20-179, 2020. Pre-print available at arXiv:TR20-179.

[Bog05] Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May
22-24, 2005, pages 21–30. ACM, 2005.

[BSCI+20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf.
Proximity Gaps for Reed–Solomon Codes. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 900–909, 2020.

[BSV18] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic Factorization of
Sparse Polynomials with Bounded Individual Degree. In 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, pages 485–496. IEEE Computer Society,
2018.

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs Randomness for
Bounded Depth Arithmetic Circuits. In 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages 13:1–13:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[DL78] Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Program
Testing. Information Processing Letters, 7(4):193–195, 1978.

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-Randomness Tradeoffs for
Bounded Depth Arithmetic Circuits. SIAM J. Comput., 39(4):1279–1293, 2009.

git info: 4c35035 , (2023-09-18 13:49:13 +0530)

20

http://dx.doi.org/10.1007/s00493-003-0025-0
https://eccc.weizmann.ac.il/report/2020/179
https://eccc.weizmann.ac.il/report/2020/179
http://arxiv.org/abs/TR20-179
http://dx.doi.org/10.1145/1060590.1060594
http://dx.doi.org/10.1109/FOCS46700.2020.00088
http://dx.doi.org/10.1109/FOCS.2018.00053
http://dx.doi.org/10.1109/FOCS.2018.00053
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.13
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.13
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850

[Ell69] W.J. Ellison. A ‘Waring’s Problem’ for homogeneous forms. Proceedings of the Cambridge
Philosophical Society, 65:663–672, 1969.

[Fis94] Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics Magazine,
67(1):59–61, 1994.

[For14] Michael Forbes. Polynomial Identity Testing of Read-Once Oblivious Algebraic Branching
Programs. PhD thesis, Massachusetts Institute of Technology, 2014.

[For15] Michael A. Forbes. Deterministic Divisibility Testing via Shifted Partial Derivatives. In
Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS), FOCS ’15, page 451–465, USA, 2015. IEEE Computer Society.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of Non-
commutative and Read-Once Oblivious Algebraic Branching Programs. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages
243–252, 2013. Full version at arXiv:1209.2408.

[FS15] Michael A. Forbes and Amir Shpilka. Complexity Theory Column 88: Challenges in
Polynomial Factorization1. SIGACT News, 46(4):32–49, dec 2015.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multi-
linear read-once algebraic branching programs, in any order. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing (STOC 2014), pages 867–875, 2014.

[GKS16] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity Testing for Constant-Width,
and Commutative, Read-Once Oblivious ABPs. In Proceedings of the 31st Annual Compu-
tational Complexity Conference (CCC 2016), pages 29:1–29:16, 2016. arXiv:1601.08031.

[GKSS19] Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Derandomiza-
tion from Algebraic Hardness: Treading the Borders. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 147–157. IEEE Computer Society, 2019.

[GKST15] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Identity
Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. In Proceedings
of the 30th Annual Computational Complexity Conference (CCC 2015), pages 323–346, 2015.
arXiv:1411.7341.

[Kal85] Erich Kaltofen. Polynomial-Time Reductions from Multivariate to Bi- and Univariate
Integral Polynomial Factorization. SIAM Journal of Computing, 14(2):469–489, 1985.

[Kal89] Erich Kaltofen. Factorization of Polynomials Given by Straight-Line Programs. In
Randomness and Computation, pages 375–412. JAI Press, 1989.

[Kal92] Erich L. Kaltofen. Polynomial Factorization 1987-1991. In LATIN ’92, 1st Latin American
Symposium on Theoretical Informatics, São Paulo, Brazil, April 6-10, 1992, Proceedings,
volume 583 of Lecture Notes in Computer Science, pages 294–313. Springer, 1992.

21

http://dx.doi.org/10.1017/S0305004100003455
http://dx.doi.org/10.2307/2690560
http://hdl.handle.net/1721.1/89843
http://hdl.handle.net/1721.1/89843
http://dx.doi.org/10.1109/FOCS.2015.35
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://arxiv.org/abs/1209.2408
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1145/2591796.2591816
http://dx.doi.org/10.1145/2591796.2591816
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29
http://arxiv.org/abs/1601.08031
http://dx.doi.org/10.1109/FOCS.2019.00018
http://dx.doi.org/10.1109/FOCS.2019.00018
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323
http://arxiv.org/abs/1411.7341
http://dx.doi.org/10.1137/0214035
http://dx.doi.org/10.1137/0214035
https://users.cs.duke.edu/~elk27/bibliography/89/Ka89_slpfac.pdf
http://dx.doi.org/10.1007/BFb0023837

[Kal03] Erich L. Kaltofen. Polynomial factorization: a success story. In Symbolic and Alge-
braic Computation, International Symposium ISSAC 2003, Drexel University, Philadelphia,
Pennsylvania, USA, August 3-6, 2003, Proceedings, pages 3–4. ACM, 2003.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of mul-
tivariate polynomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of
Computing (STOC 2001), pages 216–223, 2001.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth-3
circuits. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2009), 2009.

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of Polynomial
Identity Testing and Polynomial Factorization. Computational Complexity, 24(2):295–331,
2015. Preliminary version in the 29th Annual IEEE Conference on Computational Complexity
(CCC 2014).

[KT88] Erich L. Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black
Boxes for Their Evaluation: Greatest Common Divisors, Factorization, Separation of
Numerators and Denominators. In 29th Annual Symposium on Foundations of Computer
Science, White Plains, New York, USA, 24-26 October 1988, pages 296–305. IEEE Computer
Society, 1988.

[KY08] Swastik Kopparty and Sergey Yekhanin. Detecting Rational Points on Hypersurfaces
over Finite Fields. In Proceedings of the 23rd Annual IEEE Conference on Computational
Complexity (CCC 2008), pages 311–320, 2008.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial Lower
Bounds Against Low-Depth Algebraic Circuits. In Proceedings of the 62nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2021), pages 804–814. IEEE,
2021. Preliminary version in the Electronic Colloquium on Computational Complexity
(ECCC), Technical Report TR21-081.

[Ore22] Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-Linear Size Holographic Proofs.
In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC
’94, page 194–203, New York, NY, USA, 1994. Association for Computing Machinery.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey, 2015.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities.
Journal of the ACM, 27(4):701–717, 1980.

[Shp02] Amir Shpilka. Affine projections of symmetric polynomials. Journal of Computer and
System Sciences, 65(4):639–659, 2002. Special Issue on Complexity 2001.

22

http://dx.doi.org/10.1145/860854.860857
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1109/FOCS.2009.67
http://dx.doi.org/10.1109/FOCS.2009.67
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1109/SFCS.1988.21946
http://dx.doi.org/10.1109/SFCS.1988.21946
http://dx.doi.org/10.1109/SFCS.1988.21946
http://dx.doi.org/10.1109/CCC.2008.36
http://dx.doi.org/10.1109/CCC.2008.36
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1109/FOCS52979.2021.00083
http://dx.doi.org/10.1109/FOCS52979.2021.00083
http://eccc.hpi-web.de/report/2021/081/
http://eccc.hpi-web.de/report/2021/081/
http://dx.doi.org/10.1145/195058.195132
https://github.com/dasarpmar/lowerbounds-survey/releases/
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/https://doi.org/10.1016/S0022-0000(02)00021-1

[SS09] Nitin Saxena and C. Seshadhri. An Almost Optimal Rank Bound for Depth-3 Identities.
In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC 2009),
pages 137–148, 2009.

[SS10] Nitin Saxena and C. Seshadhri. From Sylvester-Gallai Configurations to Rank Bounds:
Improved Black-Box Identity Test for Depth-3 Circuits. In Proceedings of the 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2010), pages 21–29, 2010.

[ST20] Amit Sinhababu and Thomas Thierauf. Factorization of Polynomials Given By Arith-
metic Branching Programs. In 35th Computational Complexity Conference (CCC 2020),
volume 169 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:19,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[Sud98] Madhu Sudan. Lecture notes for the course ‘Algebra and Computation’, 1998. Available
from http://people.csail.mit.edu/madhu/FT98/.

[SV10] Amir Shpilka and Ilya Volkovich. On the Relation between Polynomial Identity Testing
and Finding Variable Disjoint Factors. In Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I,
volume 6198 of Lecture Notes in Computer Science, pages 408–419. Springer, 2010.

[Vol15] Ilya Volkovich. Deterministically Factoring Sparse Polynomials into Multilinear Factors
and Sums of Univariate Polynomials. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015,
Princeton, NJ, USA, volume 40 of LIPIcs, pages 943–958. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2015.

[Vol17] Ilya Volkovich. On Some Computations on Sparse Polynomials. volume 81 of LIPIcs,
pages 48:1–48:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Compu-
tation of Polynomials Using Few Processors. SIAM Journal of Computing, 12(4):641–644,
1983. Preliminary version in the 6th Internationl Symposium on the Mathematical Founda-
tions of Computer Science (MFCS 1981).

[vzG83] Joachim von zur Gathen. Factoring Sparse Multivariate Polynomials. In Proceedings of
the 24th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1983), pages
172–179, 1983.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 3 edition, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Alge-
braic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,
1979.

23

http://dx.doi.org/10.1109/CCC.2009.20
http://dx.doi.org/10.1145/2528403
http://dx.doi.org/10.1145/2528403
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://dx.doi.org/10.1007/978-3-642-14165-2_35
http://dx.doi.org/10.1007/978-3-642-14165-2_35
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.943
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.943
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.48
http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1109/SFCS.1983.15
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1007/3-540-09519-5_73

A Deferred proofs

Circuit/formula bit-complexity

Proof of Lemma 2.2. We will prove an equivalent statement: the numerator and denominator of f (a)
have absolute value at most 2s·b. We prove this by induction on the size of the formula. We will use
N(·) and D(·) to denote the numerator and denominator of some rational number.

Base case: when size(C) = 1 = s, there is a single leaf node in the formula that reads and
outputs a single rational number of bit-complexity b, thus bit(f (a)) = b ≤ s · b. The induction
hypothesis is that for all formulas C with size(C) ≤ S (for some S ≥ 1), bit(f (a)) ≤ bit(C) · b. For
the induction step, we look at formulas C with size(C) = S + 1, and we consider two cases:

1. When the top gate is a sum gate: f = ∑k
i=1 αigi(x), with Ci being the formula computing gi

and αis being scalars from Q.

f (a) =
k

∑
i=1

αigi(a)

|D(f (a))| =
∣∣∣∣∣ k

∏
i=1

D(αi)D(gi(a))

∣∣∣∣∣
≤

k

∏
i=1

2bit(αi)2bit(gi(a))

≤
k

∏
i=1

2bit(αi)2bit(Ci)·b (induction hypothesis)

= 2∑k
i=1 (bit(αi)+bit(Ci)·b) ≤ 2bit(C)·b

|N(f (a))| ≤
k

∑
i=1

|N(αi)| |N(gi(a))|∏
j ̸=i

∣∣D(αj)
∣∣ ∣∣D(gj(a))

∣∣
≤

k

∑
i=1

2bit(αi)+bit(gi(a))2∑j ̸=i bit(αj)+bit(gj(a))

≤
k

∑
i=1

2bit(αi)+bit(Ci)·b2∑j ̸=i bit(αj)+bit(Cj)·b (induction hypothesis)

≤
k

∑
i=1

2∑k
j=1 bit(αj)+bit(Cj)·b ≤ 2k+∑k

j=1 bit(αj)+bit(Cj)·b ≤ 2bit(C)·b

Thus, bit(f (a)) = max{bit(N(f (a)), D(f (a)))} ≤ bit(C) · b.

2. When the top gate is a product gate: f = ∏k
i=1 αigi(x). The proof for the denominator in the

case of sum gate will work here for both the numerator and the denominator. The required
bound follows.

24

Relevant subclasses of algebraic circuits

Proof of Observation 2.5. We prove the size upper bounds here; the bit-complexity upper bounds
proceed along exactly the same lines. The size upper bound for the sum is immediate and hence
we only need to focus on the product. Let the expression for each Pr be

Pr = ∑
i

P(r)
r,i · gar,i

r,i

=⇒ ∏ Pr = ∑
r1,...,rt

(P1,r1 · · · Pt,rt) ·
(

g
a1,r1
1,r1

· · · g
at,rt
t,rt

)
where each Pi,j is computed by (ΣΠ)(k) formulas of size at most s, and each gi,j is a polynomial of
degree at most d.

Each (P1,r1 · · · Pt,rt) is computed by a (ΣΠ)(k) formula of size at most st. By Lemma 2.9,
g

a1,r1
1,r1

· · · g
at,rt
t,rt

can be expressed as a sum ∑st

ℓ=1 f D
ℓ where D = ∑j aj,rj and each fℓ is a degree polyno-

mial of degree at most d. Thus, ∏r Pr is computable by a Σ
(
(ΣΠ)(k) · (Degd)

∗
)

formula of size at

most sO(t).

Polynomial identity testing

Proof of Lemma 2.12. Since f is a non-zero polynomial of degree at most d, there is a monomial xe

of degree at most d with a non-zero coefficient in f . Let S be the support of the monomial xe, i.e.,
S = {xi : ei ̸= 0}. Clearly, |S| ≤ d. We now consider the polynomial f̃ obtained from f by setting
all the variables xj not in the set S to zero. Since f has a non-zero monomial with support contained
in the set S, f̃ continues to be a non-zero polynomial of degree at most d. Moreover, it is a d variate
polynomial since it only depends on the variables in S. From Lemma 2.10, we get that for any
subset Td of Q of cardinality at least d + 1, there exists a vector b ∈ Td

d such that f̃ (b) ̸= 0. Let
a ∈ Qn to be such that for every i ∈ S, ai = bi and for every i /∈ S, ai = 0. Then, f (a) = f̃ (b) ̸= 0.
Moreover, a is in H(d, n).

Proof of Lemma 2.15. Let Td be the set {0, 1, 2, 3, . . . , d} and let H(d, n) be the set of points defined
in Definition 2.11, i.e.,

H(d, n) =
{
(a1, . . . , an) : S ∈

(
[n]
≤ d

)
, ai ∈ Td for all i ∈ S and aj = 0 for all j /∈ S

}
.

From Lemma 2.12, we know that every non-zero polynomial f of degree at most d must evaluate
to zero on some point of H(d, n). In other words, two distinct degree d polynomials f and g
cannot agree on every point of H(d, n). An immediate consequence of this is that if we are given
the evaluations of an unknown polynomial f on all points of H(d, n), and we view each of these
evaluations as a linear constraint on the unknown coefficients of f , then this linear system has a
unique solution.

Based on this observation, a natural algorithm for computing the coefficient vector of C is the
following, we evaluate the given formula on every input in H(d, n), set up the linear system on the
coefficients of C obtained from these evaluations, and use any standard linear system solver over
Q to solve this system.

25

Note that the size of this linear system is at most nO(d), and from Lemma 2.2, of the con-
stants in this linear system is at most poly(s, b, d). Thus, this linear system can be solved in time
poly(s, b, d, nd) ≤ poly(s, b, nd) time as claimed.

Deterministic divisibility testing and PIT

Proof of Corollary 2.19. The proof essentially follows immediately from Theorem 2.18. From The-
orem 2.18, we have that g divides f if and only if R(x) := f (x)− g(x)Q(x) ≡ 0, where Q is the
pseudo-quotient of f and g. It suffices to show that R(x) has C = Σ

(
(ΣΠ)(k) · (Degd)

∗
)

formulas

of size poly(s, d), and since f (x) ∈ (ΣΠ)(k), it suffices to bound the size of C-formulas computing
g(x) · Q(x).

By Lemma 2.17, the pseudo-quotient Q(x) is computable by C-formulas of size poly(s, d). Let
one such computation be of the form

Q(x) = ∑
i

fi · gei
i where each fi ∈ (ΣΠ)(k) and deg(gi) ≤ d and each ei ≤ s

=⇒ g(x)Q(x) = ∑
i

fi · (g · gei
i)

From Lemma 2.9, note that any term of the form (g · he) can be expressed as

g · he =
poly(e)

∑
i=1

βi · (g + αih)e+1

for field constants αi’s and βi’s. Thus, feeding this in the above expression for g · Q, we have

g(x) · Q(x) = ∑
i

∑
j

fi · g̃
eij
ij

for polynomial g̃ij of degree at most d, and thus is also a C-formula of size at most poly(s, d).
Therefore, R(x) = f (x)− g(x)Q(x) is also computable by C-formulas of size s′ = poly(s, d). Thus,
we can check if g divides f by checking if R(x) ≡ 0 (by Theorem 2.18) which can be done in
T(k, d, s′) time as claimed.

Hensel lifting

Proof sketch of Lemma 2.26. As indicated earlier, the lemma is almost an immediate consequence of
Lemma 3.6 in [KSS15]. The precise statement there gives a circuit C̃k of size and bit-complexity
poly(s, D, 2k) for gk, hk. We notice that without loss of generality, the degree of gk, hk and hence of
C̃k can be assumed to be at most (D + 2k) since the y degree is at most D and the x degree is at
most 2k. This incurs at most a polynomial blow up in the circuit size.

Now, to go from circuits for gk, hk to formulas computing these polynomials, we just invoke the
classic depth reduction result of Valiant, Skyum, Berkowitz and Rackoff [VSBR83], which states
that given an n-variate degree-∆ polynomial f with an arithmetic circuit Φ of size s, there is an
arithmetic circuit Φ′ that computes f , has size poly(s, n, ∆) and depth O(log ∆).

Thus we have a formula of size (and bit-complexity) at most poly(s, D, 2k)log(D+2k) ≤ (sDk)k log D.
Note that a better bound of d on the total degree of gk implies that the size and bit-complexity of
the formula for gk is at most (sDk)O(log d).

26

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

