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Abstract

We explicitly construct the first nontrivial extractors for degree d ≥ 2 polynomial sources over Fn

2
.

Our extractor requires min-entropy k ≥ n− Ω̃(
√
log n). Previously, no constructions were known, even

for min-entropy k ≥ n − 1. A key ingredient in our construction is an input reduction lemma, which

allows us to assume that any polynomial source with min-entropy k can be generated by O(k) uniformly

random bits.

We also provide strong formal evidence that polynomial sources are unusually challenging to extract

from, by showing that even our most powerful general purpose extractors cannot handle polynomial

sources with min-entropy below k ≥ n − o(n). In more detail, we show that sumset extractors cannot

even disperse from degree 2 polynomial sources with min-entropy k ≥ n−O(n/ log log n). In fact, this

impossibility result even holds for a more specialized family of sources that we introduce, called poly-

nomial non-oblivious bit-fixing (NOBF) sources. Polynomial NOBF sources are a natural new family of

algebraic sources that lie at the intersection of polynomial and variety sources, and thus our impossibility

result applies to both of these classical settings. This is especially surprising, since we do have variety

extractors that slightly beat this barrier - implying that sumset extractors are not a panacea in the world

of seedless extraction.

1 Introduction

Randomness is a very important resource in computation. It is widely used in theoretical and practical

implementations of algorithms, distributed computing protocols, cryptographic protocols, machine learning

algorithms, and much more [MR95]. Unfortunately, the randomness produced in practice is not of the

highest quality and the corresponding distribution over bits is often biased and has various correlations

[HG17]. To overcome this, an extractor is used to convert this biased distribution to a uniform distribution.

The extractors used in practice are based on unproven theoretical assumptions and so the theoretical study

of constructing efficient extractors is important. Extractors usually come in two flavors: seeded and seedless

extractors. We focus here on the latter, and whenever we mention extractor this is what we mean.

Towards this end, let us formally define extractors for a class of distributions.
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Definition 1 (Extractor). A function Ext : {0, 1}n → {0, 1}m is called an ε-extractor for a class X of

distributions over {0, 1}n if for all X ∈ X ,

|Ext(X)−Um| ≤ ε,

where | · | denotes statistical distance and Um is the uniform random variable.

In order for extraction to be possible, the most basic necessary assumption is that each source X ∈ X
contains some randomness. In this paper, as is standard, we use min-entropy as our measure for randomness:

For a source X with support Ω, we define its min-entropy as H∞(X) = − log(maxx∈Ω Pr(X = x)). Note

that for any X ∼ {0, 1}n, it holds that 0 ≤ H∞(X) ≤ n.

Unfortunately, randomness alone is not enough to enable extraction. In particular, it is well-known

that there do not exist extractors for arbitrary distributions, even when they have a lot of randomness (min-

entropy n − 1). To overcome this, a large body of work has been dedicated to extracting randomness from

distributions that not only have some min-entropy, but also exhibit some structure. Two such widely studied

classes of structured sources are: (1) Samplable sources, i.e., sources that are generated by feeding uni-

form random bits into low complexity classes such as AC0 circuits, decision trees, local sources, branching

programs, and more [TV00, KRVZ11, DW12, Vio14, CG21, ACGLR22]; and (2) Recognizable sources,

i.e., sources that are uniform over sets that can be recognized by low complexity classes [Sha11b, KVS12,

LZ19].1 These studies have provided important insight into the structure of such complexity classes. More-

over, there is an argument to be made that in nature, most distributions are likely to be generated by such low

complexity classes [TV00]. In this paper, we study algebraic sources, which are samplable and recogniz-

able sources corresponding to low degree multivariate polynomials over F2 (another natural low-complexity

class).

Algebraic sources Two different flavors of algebraic sources have been studied: variety sources and poly-

nomial sources (corresponding to recognizable and samplable sources, respectively). The task of construct-

ing extractors for these sources has many nice motivations, and can furthermore help us gain important

structural insight into low-degree polynomials.

Extractors for polynomial sources (over F2) with poly(log n) degree would immediately yield extractors

for sources sampled by AC0[⊕] circuits, based on well-known approximations of such circuits by polyno-

mials [Raz87, Smo93].2 To the best of our knowledge, there are no known nontrivial explicit extractors for

sources sampled by such circuits.

Extractors for variety sources (over F2) have important applications in circuit lower bounds. If one

can construct explicit extractors (or even dispersers - Definition 3.3) against degree 2 varieties with min-

entropy 0.01n, or against degree n0.01 varieties with min-entropy 0.99n, then one immediately obtains new

state-of-the-art circuit lower bounds [GK16, GKW21].

With these motivations in hand, let’s proceed to formally define these sources.

Definition 2 (Polynomial sources). A degree d polynomial source X ∼ F
n
q is associated with a polynomial

map P = (p1, . . . , pn) where each pi : F
m
q → Fq is a polynomial of degree at most d. Then, X = P (Um)

where Um is the uniform distribution over Fm
q .

Definition 3 (Variety sources). A degree d variety source X ∼ F
n
q is associated with a polynomial map

P = (p1, . . . , pm) where each pi : F
n
q → Fq is a polynomial of degree at most d. Then, X is uniform over

the set of common zeroes of these polynomials V = {x ∈ F
n
q s.t. ∀i ∈ [m] : pi(x) = 0}.

1A set S is recognized by a class of functions C if there exists some f ∈ C such that S = {x : f(x) = 0}.
2
AC

0[⊕] circuits are constant depth, polynomial sized circuits with unbounded fan-in AND, OR, NOT, and PARITY gates.
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In this paper, we introduce and study a natural class of sources that is a subclass of polynomial sources

and the widely studied NOBF (non-oblivious bit-fixing) sources. Surprisingly, as we will soon see, it is also

a subclass of variety sources (Claim 1).

Definition 4 (Polynomial NOBF sources). A degree d polynomial NOBF source X ∼ F
n
q with min-entropy

k ∈ N has the following structure:

1. There exists a set G ⊆ [n] with |G| = k that we call the good coordinates of X. These good

coordinates in X are sampled uniformly and independently at random.

2. Each coordinate outside G is a deterministic function of the k good coordinates of X. Moreover, each

such deterministic function is a degree d polynomial.

We make a basic observation regarding polynomial NOBF sources, which seems to apply to most classes

of samplable, NOBF, and recognizable sources.

Claim 1. If X ∼ F
n
q is a degree d polynomial NOBF source, then it is also a degree d polynomial source

and a degree d variety source.

Proof. Let H∞(X) = k and the bad positions be specified by polynomials p1, . . . , pn−k. Since the k good

positions are degree 1 polynomials over x1, . . . , xk and the n − k bad positions are degree d polynomials

over x1, . . . , xk, X is indeed a degree d polynomial source.

Now, without loss of generality, assume the first k positions of X are the good positions and last n−k po-

sitions are the bad positions. Consider the following set of polynomial equations over variables y1, . . . , yn:

yk+1 − p1(y1, . . . , yk) = 0

...

yn − pn−k(y1, . . . , yk) = 0

Note X is uniform over the variety defined by these equations, and is thus also a degree d variety source.

Related work Degree 1 polynomial and variety sources are known as affine sources. Affine sources have

been widely studied over both F2 and larger finite fields Fq [Bou07, GR08, Rao09, BKSSW10, DG10, Li11,

Sha11a, Yeh11, BK12, BDL16, Li16, CGL21, GVJZ23]. Recently, [Li23] constructed affine extractors over

F2 with asymptotically optimal dependence on min-entropy.

More generally, [DGW09] initiated the study of extractors for polynomial sources. Their extractors

work for when q is prime and q ≥ poly(n, d, k)O(k). [BG13] used sum product estimates and constructed

extractors for degree 2 polynomial sources with min-entropy cn log q for any constant c > 0 and when

q ≥ O(1). They also constructed dispersers for arbitrary multilinear polynomials over F4 with min-entropy

≥ (n/2 + O(1)) log 4. Extractors for variety sources were first constructed by [Dvi12]. They constructed

extractors for when either q ≥ dpoly(n) or q ≥ poly(d) and min-entropy≥ (1/2+δ) log(q) for any constant

δ > 0. Recently, [GVJZ23] constructed extractors for images of varieties over Fq when q ≥ poly(n, d) with

no min-entropy restrictions (they define the degree parameter d differently). Over F2, [Rem16] constructed

extractors for degree nδ1 varieties with min-entropy ≥ n − nδ2 for arbitrary δ1 + δ2 < 1
2 . [CT15] showed

that, using optimal affine extractors, one can construct extractors for degree d varieties with min-entropy

n − (n1/(d−1)!/ logn)1/e where e =
∑∞

r=0
1
r! ≈ 2.71828. Using correlation bounds against low degree

polynomials, [Dvi12, CT19, LZ19] constructed extractors for constant degree d variety sources over F2

with min-entropy ≥ n− Ωd(n).
We reiterate that before our work, no extractors were constructed for polynomial sources over F2, even

for min-entropy k ≥ n− 1!
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1.1 Our results

In our main theorem, we construct the first nontrivial extractors for polynomial sources over F2.

Theorem 1 (Explicit extractor for polynomial sources, informal version of Theorem 4.10). Let ε > 0 be an

arbitrary constant. For all constant d ∈ N, there exists an explicit ε-extractor Ext : Fn
2 → F

Ω(log logn)
2 for

degree d polynomial sources over F2 with min-entropy k ≥ n− Ω
( √

logn
(log logn/d)d/2

)

.

Prior to our work, there were no known constructions of extractors for polynomial sources over F2 that

worked for degree d > 1 and min-entropy k = n− 1. Indeed, all prior constructions required the field size

q to be large, or the degree d to be 1.

As polynomial sources can have arbitrarily large input length, it’s not clear what is the size of the class

of degree d polynomial sources. Therefore, it is unclear if an extractor should even exist for this class. To

get around this problem, we come up with an input reduction technique that allows us to bound the number

of inputs to the polynomial source by the min-entropy of the source. We view this as our main technical

contribution, and it is the key ingredient behind our explicit extractor in Theorem 1.

Lemma 1 (Input reduction, informal version of Theorem 4.1). Every degree d polynomial source with min-

entropy k (and an arbitrary number of input variables) is 2−k-close to a convex combination of polynomial

sources with min-entropy k − 1 and O(k) input variables.

Recall that X is a convex combination of distributions {Yi} if there exist probabilities {pi} summing

up to 1 such that X =
∑

i piYi. It is well known that an ε-extractor for {Yi} will also be an ε-extractor for

X. Hence, this lemma reduces the task of extracting from polynomial sources with an arbitrary number of

input variables to the task of extracting from polynomial sources with O(k) input variables.

We also show negative results for polynomial NOBF sources against sumset extractors. Sumset ex-

tractors are extremely powerful and can be used to extract not only from sumset sources but also, using

reductions to sumset sources, from many well studied models of weak sources such as degree 1 polyno-

mial / variety sources (affine sources), two independent sources, sources generated by branching programs,

sources generated by AC0 circuits, and many more [CL22]. Let’s first define sumset sources:

Definition 5. A source X is a (k, k) sumset source if X = A+B, where A,B are independent distributions

over {0, 1}n with H∞(A) ≥ k,H∞(B) ≥ k, and + denotes bitwise xor.

Note that k ≤ H∞(X) ≤ 2k and so, H∞(X) = Θ(k). When we write X is a sumset source of min-

entropy k, we actually mean X = A + B where H∞(A) ≥ k,H∞(B) ≥ k. Recently, sumset extractors

with an asymptotically optimal dependence on min-entropy (O(logn)) were constructed by Li [Li23]. A

natural question is whether various algebraic sources can be reduced to sumset sources. We show here that

sumset extractors cannot even disperse (let alone extract) from quadratic NOBF sources with very high

min-entropy.

Theorem 2 (Sumset extractor lower bound, informal version of Theorem 5.16). Sumset extractors cannot

be used to disperse from degree 2 polynomial NOBF sources with min-entropy n−O
(

n
log logn

)

.

As polynomial NOBF sources are both variety and polynomial sources, this also implies that sumset

extractors cannot be used to extract from degree 2 variety sources or degree 2 polynomial sources over F2

with min-entropy n−O
(

n
log logn

)

. For degree 2 variety sources over F2, one can use a sumset extractor to

extractor above min-entropy n−Ω
(

n
logn

)1/e
[CT15]. On the other hand, using correlation bounds, one can
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construct explicit extractors against degree 2 varieties with min-entropy (1 − c)n for some small constant

c > 0 [Dvi12, CT19, LZ19]. Thus, the above result shows that sumset extractors cannot be used to get

better extractors than what we get using correlation bounds against low degree polynomials. We find this

surprising as it implies that the generalized inner product function is a better extractor for degree 2 variety

sources than any optimal (blackbox) sumset extractor.

Organization The rest of the paper is organized as follows. In Section 2, we give an overview of our

proofs. In Section 3, we provide basic definitions and useful properties that we will use later. In Section 4,

we prove our input reduction lemma (Lemma 1), and use it to obtain our explicit extractor for polynomial

sources (Theorem 1). In Section 5, we prove our result on the limitations of sumset extractors for extracting

from quadratic NOBF sources (Theorem 2). In Section 6, we conclude with various open problems.

2 Overview of our techniques

In this section, we sketch the proofs of all our main results.

2.1 Existential results

To warm up, it is not clear whether a random function is a good extractor for degree d polynomial sources.

Usually, such proofs proceed by arguing that for a fixed source of min-entropy k, a random function is an

ε-extractor with probability at least 1 − 2−2kε2 . Then, one can do a union bound over the total number

of sources in the class to obtain that a random function is a good extractor. The main issue that arises for

the class of polynomial sources is that the number of input variables to the polynomials can be arbitrary.

Thus, the exact size of this class is not clear. To overcome this difficulty, we use our input reduction lemma

(Lemma 1). Using this, it suffices to consider degree d polynomial sources with O(k) inputs. This class of

polynomial sources has size 2O(k)d·n. Thus, the the earlier union bound-based argument now works out:

Lemma 2.1 (Informal version of Lemma 4.6). A random function is a 2−Ω(k)-extractor for the class of

degree d polynomial sources over F2 with min-entropy k ≥ O(d+ log n).

2.2 Input reduction

We will now sketch the proof for the input reduction lemma that was used in the existential result, above.

(In fact, it will also be crucially used in our explicit construction.) We begin by showing that for any

polynomial map f(Um), there exists a full rank linear function L and a fixing b of L such that f(Um) ≈ε

f(Um)|L(Um) = b. In fact, we show the stronger claim that most such fixings b work:

Lemma 2.2 (Existence of affine white-box PRGs). For any polynomial map f : Fm
2 → F

n
2 and 0 < ε < 1/4,

there exists a full rank linear function L : Fm
2 → F

m−ℓ
2 with ℓ = n+ 3 log(1/ε) such that

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| ≤ 2ε,

where Um and Um−ℓ are independent.

Proof sketch. We show a random L works. Indeed, by definition of statistical distance, note that

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| = Ez∼f(Um) [|(L(Um) | f(Um) = z)−Um−ℓ|] .

5



We now apply the min-entropy chain rule (Lemma 3.2) to infer that with high probability over fixings

of f to z, the input distribution to L will have high min-entropy. Indeed, there will exist some distribution

X with min-entropy at least k = m− n− log(1/ε) = m− ℓ+ 2 log(1/ε) such that

Ez∼f(Um) [|(L(Um) | f(Um) = z)−Um−ℓ|] ≤ ε+ |L(X)−Um−ℓ|
As L was initially chosen as a random function, we apply the leftover hash lemma (see Corollary 3.6) to

infer that |L(X) − Um−ℓ| ≤ ε as desired. Furthermore, this implies that L will have full rank because

otherwise, |L(Um)−Um−ℓ| ≥ 1
2 , which contradicts the fact that 2ε < 1/2.

Note that this lemma already yields an input reduction to a single polynomial source with O(n) variables.

This can be done by fixing the output of L to some b such that |(f(Um) | L(Um) = b) − f(Um)| ≤ 2ε.

Once we fix the output of L, we induce m − ℓ affine constraints on the input variables. As polynomial

sources are closed under affine restrictions, the resulting polynomial map is still a degree d polynomial map

and the resulting distribution is still close enough to the original one, as desired. However, we can do better.

We will first prove the following helpful claim. This claim shows there exists a way to map every source

X ∼ {0, 1}n with min-entropy k source to a source over k + 1 bits without decreasing the min-entropy.

Claim 2.3. Let X ∼ {0, 1}n be a polynomial source with min-entropy at least k > 0. Then there exists a

function S : {0, 1}n → {0, 1}k+1 such that S(X) has min-entropy at least k.

This claim is actually true for arbitrary sources X and we prove it by a simple case analysis on probabil-

ities of the smallest two elements in support of X (see Claim 4.3 for further details). Using this claim, we

are ready to sketch the proof of our main lemma that will help us achieve the input reduction:

Lemma 2.4. For any polynomial source f : Fm
2 → F

n
2 where f(Um) has min-entropy at least k, there

exists a linear function L : Fm
2 → F

m−O(k)
2 such that

Pr
b∼L(Um)

[

H∞(f(Um) | L(Um) = b) ≥ k − 1

]

≥ 1− 2−k.

Proof sketch. Let S : Fn
2 → F

k+1
2 be a function guaranteed to exist by above claim so that S(f(Um)) has

min-entropy at least k. Using data processing inequality (see Claim 4.4), it suffices to show that S(f(Um))
has high enough min-entropy with high probability over fixing L(Um). Let Y = Um. By Lemma 2.2,

there exists L : Fm
2 → F

m−ℓ
2 with ℓ = k + 4 + 3 log(1/ε) such that:

|S(f(Y)) ◦ L(Y)− S(f(Y)) ◦Um−ℓ| ≤ ε

This implies

Eb∼L(Um) [|(S(f(Y)) | L(Y) = b)− S(f(Um))|] ≤ ε

By Markov’s inequality, we infer that

Pr
b∼L(Um)

[

|(S(f(Y)) | L(Y) = b)− S(f(Um))| ≥ √ε
]

≤ √ε

Setting ε = 2−2k, every element in support of the distribution S(f(Y | L(Y) = b)) must occur with

probability at most 2−k +
√
ε ≤ 2−k+1, and thus has min-entropy at least k − 1. The result follows.

Using this, we are ready to prove our input reduction lemma:

Proof of Lemma 1. Using Lemma 2.4, most fixings of L leave f with min-entropy at least k−1. These good

fixings form a convex combination of such sources f . As argued earlier, such L induces m − O(k) linear

fixings on the input variables and hence the resulting polynomial map in each of these convex combinations

is over O(k) variables and has degree d, as desired.
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2.3 Explicit construction

We sketch here the proof of a slightly weaker result that illustrates our main idea.

Theorem 2.5 (Weaker version of Theorem 1). For all constant degree d ∈ N, there exists an explicit extrac-

tor Ext : Fn
2 → F2 for polynomial sources with min-entropy k ≥ n− Ω(log log n).

Proof sketch. Let X be a degree d polynomial source with m inputs, n outputs, and min-entropy n − g
where g = O(log logn). Consider a small length t = 2g prefix of the output bits, and let this source

be Xpre. We observe that Xpre has min-entropy at least t − g = t/2 (see Claim 4.11). We now use our

input reduction lemma (Lemma 1) over Xpre to infer that it is close to a convex combination of degree d
polynomial sources with O(t) inputs and min-entropy t/2 − 1. Hence, it suffices to construct an extractor

for min-entropy t/2− 1 degree d polynomial sources with O(t) inputs and t outputs.

By our existential results (Lemma 2.1), a random function over t bits will be an extractor for such

sources. We exhaustively try all the 22
t

functions from t bits to 1 bits as our candidate extractor. We brute

force search over all the 2O(t)d·t degree d polynomial sources with O(t) inputs and t outputs. Then, for each

of them, we check if it has enough min-entropy. If it does, we input the source into our candidate extractor

and check if the output is close to uniform. We will eventually find a candidate extractor that will work for

all such sources, and we output that function as our extractor.

The time required by the above procedure is 22
t+O(t). As t = O(log log n), the above procedure indeed

runs in poly(n) time.

In our actual construction, we achieve better parameters by brute forcing over all r-wise independent

functions (for very large r) as our candidate extractor instead of all functions. We again take advantage of

the fact that the input reduction lemma actually reduces number of input variables to O(k), making the class

of polynomial sources that we have to brute force over even smaller. Together, these optimizations allow us

to handle smaller min-entropy. See Theorem 4.10 for further details.

2.4 Impossibility results

All our impossibility results are against polynomial NOBF sources and hence apply (via Claim 1) to both

polynomial sources and variety sources. We show that sumset extractors, arguably the most powerful general

purpose extractors, cannot be used to even disperse from degree 2 polynomial NOBF sources below min-

entropy n−O
(

n
log logn

)

(Theorem 2). These results are formally proven in Section 5.3 and Section 5.4. We

will use the following useful theorem to show this. This theorem states there exists some quadratic NOBF

source which does not contain any sumset source of small min-entropy.

Theorem 2.6 (Informal version of Theorem 5.11). There exists a degree 2 polynomial NOBF source X ∼
F
n
2 with H∞(X) = n − O

(

n
log logn

)

such that for all A,B ∼ F
n
2 , H∞(A) ≥ Ω(log logn), H∞(B) ≥

Ω(log log n), it holds that support(A) + support(B) 6⊂ support(X).

Proof sketch. We take the n− k bad bits in X to be random degree 2 polynomials. Say such A,B exist and

let C,D be projections of support(A), support(B) respectively onto the good bits of X. Let P : Fk
2 → F

n−k
2

be the polynomial map of the bad bits. Then, it holds that P (C)+P (D) = P (C+D)+y for some y ∈ F
n−k
2 .

To simplify presentation, assume for this proof sketch that y = 0n−k. We first observe the following:

Claim 2.7 (Informal version of Claim 5.14). There exist affine subspaces U, V such that P (U) + P (V ) =
P (U + V ) and |U | ≥ |C|, |V | ≥ |D|.
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Hence, without loss of generality, we can assume that C and D are affine subspaces. We now use a

probabilistic argument to show there exists a quadratic map where such large affine subspaces C and D
cannot exist.

Claim 2.8 (Informal version of Claim 5.13). There exists a degree 2 polynomial map P : Fk
2 → F

n−k
2 such

that for every pair of affine subspaces U, V , both of dimensions ≥ Ω(log log n), there exist u ∈ U, v ∈ V
such that P (u) + P (v) 6= P (u+ v).

Hence, the sumset property is violated and we get a contradiction.

Using these, we finally present the proof of our lower bound result:

Proof sketch of Theorem 2. Let X be the degree 2 polynomial NOBF source with min-entropy

n − O
(

n
log logn

)

that doesn’t contain any sumset of min-entropy O(log log n). We apply a bipartite

Ramsey bound (Corollary 5.20), to show that if a quadratic NOBF source doesn’t contain sumsets where

each of the two sets has size s, then it has small intersection with sumsets where each of the two sets

has size O(2s) (see Lemma 5.17 for details). Setting s = O(log log n), we infer that X has very small

intersection with sumset sources of min-entropy Ω(log n). From this, we infer X is far away from

any convex combination (see Definition 3.7) of sumset sources with min-entropy Ω(log n). As sumset

extractors below min-entropy O(logn) cannot exist (every function is constant on Ω(log n) dimensional

affine subspace), this shows we cannot use sumset extractors to even disperse against quadratic NOBF

sources. See Theorem 5.16 for further details.

3 Preliminaries

To simplify notation, we will use ◦ to mean concatenation. Also, all logs in this paper are base 2.

3.1 Basic probability lemmas

Given two random variables X,Y, we let |X−Y| denote their statistical distance, defined as

|X−Y| := max
S

[Pr[X ∈ S]− Pr[Y ∈ S]] =
1

2

∑

z

|Pr[X = z]− Pr[Y = z]| .

We write X ≈ε Y and say that X,Y are ε-close if |X−Y| ≤ ε, and we write X ≡ Y if |X−Y| = 0.

We will often use the fact that applying a function can only decrease the distance between two distribu-

tions:

Fact 3.1 (Data-processing inequality). For any random variables X,X′ ∼ X and function f : X → Y ,

|X−X
′| ≥ |f(X)− f(X′)|.

We will utilize the well known fact that for any two distributions X,Y, with high probability, fixings of

Y decrease min entropy of X by about log(|support(Y)|):

Lemma 3.2 (Min-entropy chain rule). For any random variables X ∼ X and Y ∼ Y and ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |support(Y)| − log(1/ε)] ≥ 1− ε.
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3.2 Extractors

We start by defining dispersers, which are a weaker version of extractors. While the output of an extractor

must look nearly uniform, the output of a disperser only needs to be non-constant.

Definition 3.3 (Disperser). A function Disp : {0, 1}n → {0, 1} is a disperser for a class of distributions X
if for all X ∈ X , the set {Disp(X)} = {0, 1}.

While the main purpose of this paper is to construct seedless extractors (for polynomial sources), it turns

out that seeded extractors will also be useful in our arguments. We define them, below.

Definition 3.4 (Seeded extractor). We say that a deterministic function sExt : {0, 1}m × {0, 1}s → {0, 1}r
is a (k, ε)-strong seeded extractor if for any X ∼ {0, 1}m with min-entropy at least k,

sExt(X,Y) ◦Y ≈ε Ur ◦Y,

where Y ∼ {0, 1}s and Ur ∼ {0, 1}r are independent uniform random variables. We say sExt is linear if

the function sExt(·, y) : {0, 1}m → {0, 1}r is a degree 1 polynomial, for all y ∈ {0, 1}s.

One classic way to construct seeded extractors is via the following theorem.

Theorem 3.5 (Leftover Hash Lemma [HILL99]). LetH = {H : {0, 1}n → {0, 1}m} be a 2-universal hash

family with output length m = k−2 log(1/ε), meaning that for any x 6= y, PrH∼H[H(x) = H(y)] ≤ 2−m.
Then the function sExt : {0, 1}n ×H → {0, 1}m defined as

sExt(x, h) := h(x)

is a (k, ε)-strong seeded extractor.

Corollary 3.6. For any ε > 0 and m = k − 2 log(1/ε), the function sExt : {0, 1}n × F
m×n
2 → {0, 1}m

defined as

sExt(x, L) := Lx

is a linear (k, ε)-strong seeded extractor.

Proof. It suffices to show that the family of all linear functions L : Fn
2 → F

m
2 , which correspond to matrices

F
m×n
2 , is a 2-universal hash family. That is, we must show that for any distinct x, y,

Pr
L∼F

m×n
2

[L(x) = L(y)] = Pr
L
[L(x+ y) = 0] ≤ 2−m.

This is equivalent to showing that PrL[Lx = 0] ≤ 2−m for any nonzero x. This is clearly true (in fact,

equality holds), since the rows of L are exactly m independent uniform parity checks on a nonzero x.

Next, we define the notion of reductions for extractors.

Definition 3.7 (Convex combination). We say X is a convex combination of distributions {Yi} if there exist

probabilities {pi} summing up to 1 such that X =
∑

i piYi.

Fact 3.8. Let Ext : {0, 1}n → {0, 1} be an ε-extractor for a class of distributions X . Let X ∼ {0, 1}n be a

distribution that can be written as convex combination of distributions in X . Then, Ext is also an ε-extractor

for X.

Finally, the following proposition shows that for a fixed source, a random function is a good extractor.

Proposition 3.9 (Implicit in [Rao07, Theorem 2.5.1]). For every n,m ∈ N, every k ∈ [0, n], every ε > 0,

and every X ∼ {0, 1}n with H∞(X) = k, if we choose a random function Ext : {0, 1}n → {0, 1}m with

m ≤ k − 2 log(1/ε)−O(1), then Ext(X) ≈ε Um with probability 1− 2−Ω(Kε2) where K = 2k.
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4 Constructing extractors

In this section we construct extractors for polynomial sources, both existentially and explicitly.

4.1 Input reduction

As mentioned earlier, the key ingredient behind our constructions is an input reduction lemma, which allows

us to assume that the number of inputs to a polynomial source is small. More formally, we prove the

following, which shows that any polynomial source is close to a convex combination of polynomial sources

which have roughly the same min-entropy, but a much shorter input length.

Theorem 4.1 (Input reduction). Let X ∼ F
n
2 be a degree d polynomial source with min-entropy at least

k. Then X is 2−k-close to a convex combination of degree d polynomial sources with min-entropy at least

k − 1 and input length at most 11k.

It is well-known that any extractor that works for a family of sources X also works for a convex com-

bination of sources from X . Thus, the above input reduction lemma allows us to just focus on constructing

extractors for polynomial sources with input length that is linear in the min-entropy of the source. Now, in

order to prove Theorem 4.1, we begin with the following useful lemma.

Lemma 4.2 (Existence of affine white-box PRGs). For any function f : Fm
2 → F

n
2 and 0 < ε < 1

4 , there

exists a full rank linear function L : Fm
2 → F

m−ℓ
2 with ℓ = n+ 3 log(1/ε) such that

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| ≤ 2ε,

where Um and Um−ℓ are independent uniform distributions.

Proof. We show a random choice of L works. Indeed, given an independent uniformly random L, we obtain:

|f(Um) ◦ L(Um)− f(Um) ◦Um−ℓ| = Ez∼f(Um) [|(L(Um) | f(Um) = z)−Um−ℓ|]
≤ ε+ |L(X)−Um−ℓ|
≤ 2ε.

Above, X has min-entropy at least k = m− n− log(1/ε) = m− ℓ+ 2 log(1/ε) by the min-entropy chain

rule (Lemma 3.2), and the last inequality follows by the leftover hash lemma (Corollary 3.6). We claim that

such a linear function L has full rank. Indeed if not, then |L(Um)−Um−ℓ| ≥ 1
2 > 2ε, a contradiction.

The above lemma can easily be used to show that the input length of a polynomial source can be reduced

to O(n). To prove the more challenging result that the input length can be reduced to O(k) (Theorem 4.1),

we need a few more tools, starting with the following claim.

Claim 4.3 (Entropy smoothing). For every random variable X ∼ {0, 1}n with min-entropy at least k, there

exists a function S : {0, 1}n → {0, 1}k+1 such that S(X) has min-entropy at least k.

Proof. We may assume that k > 0, because otherwise any constant function S : {0, 1}n → {0, 1} works.

Now, consider the two least probable elements x1, x2 ∈ support(X) that occur with probabilities 0 < p1 ≤
p2 < 1, respectively. We consider two cases.

Case 1. p1 + p2 > 2−k. In this case, we know that each x ∈ support(X) \ {x1} occurs with probability

> 2−k−1, and thus |support(X) \ {x1}| < 2k+1. As a result, we have |support(X)| ≤ 2k+1, and we are

done.
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Case 2. p1 + p2 ≤ 2−k. In this case, we merge x1, x2 into a single support element that gets hit with

probability at most 2−k. This yields a new random variable that still has min-entropy at least k, but whose

support has one less element than support(X). At this point, the support either has size at most 2k+1 (and we

are done), or we can recurse on this same argument until we eventually hit the first case (which is guaranteed

to eventually happen, since the support is shrinking at each step).

We will also use the data processing inequality for min-entropy. We provide its proof, for completeness.

Claim 4.4 ([Vad12, Lemma 6.8]). For any random variable X and function f ,

H∞(f(X)) ≤ H∞(X).

Proof. For any given x, we of course have Pr[f(X) = f(x)] ≥ Pr[X = x]. The result follows immediately

by considering the element x ∈ support(X) that is hit with the highest probability.

Equipped with these, we prove our main lemma:

Lemma 4.5 (Existence of affine white-box PEGs). For any function f : Fm
2 → F

n
2 such that f(Um) has

min-entropy at least k > 1, there exists a full rank linear function L : Fm
2 → F

m−11k
2 such that

Pr
b∼L(Um)

[

H∞(f(Um) | L(Um) = b) ≥ k − 1

]

≥ 1− 2−k.

Proof. If m ≤ 11k, then we are trivially done. Otherwise, let S : Fn
2 → F

k+1
2 be a function, guaranteed

to exist by Claim 4.3, such that S(f(Um)) has min-entropy at least k. By Claim 4.4, it suffices to show

that S(f(Um)) ∼ {0, 1}k+1 has high enough min-entropy with high probability over fixing L(Um). Let

Y = Um. By Lemma 4.2, there exists a full rank function L : Fm
2 → F

m−ℓ
2 with ℓ = k + 4 + 3 log(1/ε)

such that:

|S(f(Y)) ◦ L(Y)− S(f(Y)) ◦Um−ℓ| ≤ ε

This implies

Eb∼L(Y) [|(S(f(Y)) | L(Y) = b)− S(f(Um))|] ≤ ε

By Markov’s inequality, we infer that

Pr
b∼L(Y)

[

|(S(f(Y)) | L(Y) = b)− S(f(Um))| ≥ √ε
]

≤ √ε

Setting ε = 2−2k, we infer that the for every ‘good’ fixing b, and z ∈ {0, 1}k+1, it holds that the

probability S(f(Y | L(Y) = b)) outputs z is at most 2−k +
√
ε ≤ 2−k+1. Hence, S(f(Y | L(Y) = b))

has min-entropy at least k − 1. The result follows, since ℓ = k + 4 + 3 log(1/ε) = k + 4 + 6k ≤ 11k.

Using this main lemma, our theorem easily follows:

Proof of Theorem 4.1. Let P : F
m
2 → F

n
2 be the degree d polynomial map such that X = P (Um). If

m ≤ 11k, then we are done. Otherwise, we apply Lemma 4.5 to P and infer that there exists a full rank

linear function L : Fm
2 → F

m−11k
2 such that

Pr
b∼F

m−11k
2

[

H∞(P (Um) | L(Um) = b) ≥ k − 1

]

≥ 1− 2−k. (1)
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For any b ∈ F
m−11k
2 , we can find a degree d polynomial map Qb : F11k

2 → F
n
2 such that Qb(U11k) =

(P (Um) | L(Um) = b). Let G = {b ∈ F
m−11k
2 : H∞(Qb(U11k)) ≥ k − 1}. By Equation (1), we know

that |G|2−(m−11k) ≥ 1− 2−k. We see that:

P (Um) =
∑

b∈Fm−11k
2

2−(m−11k)Qb(U11k) =
∑

b∈G
2−(m−11k)Qb(U11k) + (1− |G|2−(m−11k))Y

where Y =
∑

b∈Fm−11k
2 \G 2−(m−11k)Qb(U11k). The claim now follows.

4.2 Existential results

We first show that with high probability, a random function is a good extractor. We will then improve upon it

to show that for large enough t, a function sampled using a t-wise independent distribution is a good enough

extractor.

Lemma 4.6. Let n, d, k, ε be such that k ≥ O(d+ log(n/ε)), and m = k− 2 log(1/ε)−O(1). Then, there

exists a function Ext : Fn
2 → F

m
2 that is an ε-extractor for the class of degree d polynomial sources over Fn

2

with min-entropy at least k.

Proof. By Theorem 4.1 and Fact 3.8, it suffices to extract from degree d polynomial sources X′ ∼ F
n
2 with

O(k) inputs and H∞(X) ≥ k − 1. By Fact 3.1, we infer that an extractor with error ε for X′ is also an

extractor for X with error ε+ 2−k.

By Proposition 3.9, for a fixed source Y with H∞(Y) = k, a random function r : Fn
2 → F

m
2 satisfies

r(Y) ≈ε Um with probability 1 − 2−Ω(2k)ε2 where m = k − 2 log(1/ε) − O(1). We now do a union

bound over all the 2(
ℓ

≤d)·n degree d sources with ℓ inputs and n outputs. As ε ≥ 2−Ω(k), k ≥ O(logn), k ≥
O(d), ℓ = O(k), the union bound indeed succeeds and we infer the claim.

We will use t-wise independent hash functions to help construct extractors for polynomial sources. We

will show a random function from a family of such functions will be an extractor. Let us first define them:

Definition 4.7 ([Vad12, Definition 3.3.1]). For any n,m, t ∈ N such that t ≤ 2n, we say that a family of

functions H = {h : {0, 1}n → {0, 1}m} is t-wise independent if for all fixed distinct x1, . . . , xt ∈ {0, 1}n,

it holds that the random variables h(x1), . . . , h(xt) are independently and uniformly distributed in {0, 1}m
when h is a randomly chosen function fromH.

We will rely on the following property of t-wise independent hash functions in our construction:

Lemma 4.8 (Implicit in [TV00, Proposition A.1]). Let X be an arbitrary class of distributions over n bits

that have min-entropy at least k. Let H be a class of t-wise independent hash functions from n bits to m
bits, where t = 2 log(k + |X |) and m = k − 2 log(1/ε)− log(t)− 2. Then, there exists some h ∈ H such

that h is a (k, ε) extractor against all sources in the class X .

Using this, we extend our existential result for t-wise independent hash functions.

Corollary 4.9. Let n, d, k, t, ε be such that t = 2 log
(

k + 2(
O(k)
d )·n

)

,m = k− log(t)−2 log(1/ε)−O(1).

Then, there exists a function Ext : F
n
2 → F

m
2 from a family of t-wise independent functions that is an

ε-extractor for the class of degree d polynomial sources over Fn
2 with min-entropy at least k.

12



Proof. As earlier, by Theorem 4.1 and Fact 3.8, it suffices to extract from degree d polynomial sources

X
′ ∼ F

n
2 with O(k) inputs and H∞(X) ≥ k − 1. By Fact 3.1, we infer that an extractor with error ε for X′

is also an extractor for X with error ε+ 2−k ≤ 2ε. Using naive bounds on the number of such polynomial

sources, there are at most 2(
O(k)
≤d )·n such sources. We apply Lemma 4.8 for our choice of parameters and

infer the claim.

4.3 Explicit construction

We use the input reduction trick and the existential results to construct non-trivial extractors for polynomial

sources and prove the following, which is a formal version of our main result, i.e., Theorem 1.

Theorem 4.10. Let d, n, k be such that d ≤ O(log log n/ log log log n) and k ≥ n−
√
logn

(C log logn/d)d/2
where

C > 0 is some large universal constant. Let X be the class of degree d polynomial sources that output n
bits and have min-entropy at least k. Then we can construct an extractor for X in time poly(n) that extracts

Ω(log log n) bits and has error at most 2−Ω(log logn).

Towards proving the theorem, we first need the following simple observation that the entropy gap of a

source cannot get worse by projecting onto a few bits:

Claim 4.11. Let X ∼ F
n
2 be an arbitrary source such that H∞(X) = k. Let X0 be projection of X onto

arbitrary n0 bits. Then, H∞(X0) ≥ n0 − (n− k).

Proof. Let x0 ∈ F
n0
2 be arbitrary and p0 = Pr(X0 = x0). Then by an averaging argument, there exists

x ∈ F
n
2 such that the projection of x onto coordinates corresponding to X0 equals x0. Then, Pr(X = x) ≥

p0 · 2−(n−n0). Hence, if p0 > 2−(n0−(n−k)), then Pr(X = x) > 2−k, a contradiction.

We will use the following lemma to efficiently construct a t-wise independent hash function family:

Lemma 4.12 (Follows from [Vad12, Corollary 3.3.4]). For every n,m, t ∈ N, there exists a family of t-
wise independent functions H = {h : {0, 1}n → {0, 1}m} such that we can enumerate the family in time

2t·max(n,m) · poly(n,m, t) time and evaluate each function in poly(n,m, t) time.

Using these, we prove Algorithm 1 yields an extractor for polynomial sources.

Lemma 4.13. Let d, g, n, k, r be such that 0 ≤ g ≤ n, k ≥ n−g, d ≤ Ω
(

g
log g

)

, O(d+log g) ≤ r ≤ Ω(g).

Let X be the class of degree d polynomial sources that output n bits and have min-entropy at least k. Then

we can construct an extractor for X in time 2
O
(

(Θ(r)
≤d )·g2

)

that extracts r bits and has error 2−Ω(r).

Proof. Let X ∈ X be arbitrary. Consider the first n0 = 1.01g bits of X and let this source be X0. Then,

by Claim 4.11, it holds that H∞(X0) ≥ n0 − g ≥ Ω(n0). We use Theorem 4.1 with min-entropy k0 =
Ω(r) to infer that it suffices to construct extractors polynomial sources with input length ℓ = Θ(k0). By

Corollary 4.9, there exists a function f : Fn0
2 → F

r
2 such that for all polynomial sources Y, |f(Y)−Ur| ≤

2−Θ(k0). Moreover, such f will be one of the functions in family of t-wise independent functions where

t = 2 log(Θ(k0) + |X |). By setting these input parameters to Algorithm 1, we will indeed find such an f .

Let us analyze the runtime of Algorithm 1. The number of degree d sources with input length ℓ and

output length n0 is 2(
ℓ

≤d)·n0 . The time to enumerate the t-wise independent family is 2tn0 poly(t, n0) ≤
2
2( ℓ

≤d)·n2
0 poly(ℓ, d, n0) (Lemma 4.12). Computing entropy and checking if the function is an extractor

takes O
(

2O(ℓ+n0) · poly(n0)
)

. As ℓ = Θ(r) and d ≤ O(n0/ log n0), the overall runtime of this algorithm

is 2
O
(

(Θ(r)
≤d )·n2

0

)

. As n0 = 1.01g, the runtime is as desired.
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Algorithm 1: Extractor from t-wise independent family

input : degree d, input source length ℓ, output source length n0, min-entropy k0 = n0 − g,

extractor output length r, target error ε, the parameter t for t-wise independence

output: An extractor f from n0 bits to r bits with error ε for degree d polynomial sources from ℓ
bits to n0 bits if it exists from some t-wise independent family

Let F be some fixed family of t-wise independent functions from n0 bits to r bits.

for every function f ∈ F do
flag← True.

for every degree d polynomial map P from ℓ bits to n0 bits do

Brute force over all 2ℓ assignments to compute min-entropy of P(Uℓ) and let it be kP .

if kP ≥ k0 then

Brute force over all 2ℓ assignments to compute εf,P = |Um − f(P(Uℓ))|.
if εf,P > ε then

flag← False.

end

end

end

if flag = True then
return f

end

end

return Fail

We specialize lemma Lemma 4.13 to obtain Theorem 4.10.

Proof of Theorem 4.10. Set g =
√
logn

(C log log n/d)d/2
for some large constant C, and r = Θ(log g + d log log g)

in Lemma 4.13.

5 Impossibility results

In this section, we show various impossibility results for polynomial NOBF sources and hence, these results

apply to both polynomial sources and variety sources. We first show a sampling result that demonstrates

power of the quadratic NOBF sources: they can sample optimal sized Sidon sets. This directly yields an

impossibility result against sumset extractors, albeit with weaker parameters than in Theorem 2. We then

show affine dispersers cannot be used to disperse from degree d polynomial NOBF sources below certain

min-entropy (this is tight). We finally will prove Theorem 2, that sumset extractors cannot be used to even

disperse against quadratic NOBF sources below certain min-entropy.

5.1 A warm-up via Sidon sets

To start things off, let us recall the definition of Sidon sets.

Definition 5.1 (Sidon sets). We say S ⊆ F
n
2 is a Sidon set if for all a, b, c, d ∈ S such that a 6= b, c 6=

d, {a, b} 6= {c, d}, it holds that a+ b 6= c+ d.
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We show that quadratic NOBF sources can uniformly sample the largest possible Sidon sets over Fn
2 , and

thus we cannot use sumset extractors below min-entropy n/2 to extract from polynomial NOBF sources.

Later, we will obtain a much stronger version of the latter claim.

We consider the correspondence between F2t and F
t
2:

Definition 5.2. For a finite field F2t , we define the function φ : F2t → F
t
2 that sends the field element to its

vector representation.

We observe that φ is additive:

Fact 5.3. For all x, y ∈ F2t , it holds that φ(x+ y) = φ(x) + φ(y). Moreover, φ is a bijection.

We will use the following nice lemma involving φ:

Lemma 5.4 ([Kop10, Lemma 2.3.1]). Let p : F2t → F2t be a degree d polynomial, and let the Hamming

weight of d (when expressed in binary) be w. Then, there exists a degree w multilinear polynomial q : Ft
2 →

F
t
2 such that for all x ∈ F2t , it holds that φ(p(x)) = q(φ(x)).

Using these, we show there exists a quadratic NOBF source that uniformly sample largest possible Sidon

set over Fn
2 :

Claim 5.5. There exists a degree 2 polynomial NOBF source Y with H∞(Y) = n/2 such that Y uniformly

samples a Sidon set.

Proof. Consider the set S = {(x, x3) : x ∈ F2n/2}. It’s well known that this set is a Sidon set [RRW22].

Let φ : F2n/2 → F
n/2
2 be the function that sends the field element to their vector representation. Using

Lemma 5.4, we infer that there exists a degree 2 polynomial map q : F
n/2
2 → F

n/2
2 such that for all x ∈ F

n/2
2 ,

φ(x3) = q(φ(x)). Applying Fact 5.3, we infer that T = {(y, q(y)) : y ∈ F
n/2
2 } is also a Sidon set. We

define Y ∼ F
n
2 to be the degree 2 polynomial NOBF source that is uniform over the set T . Then, Y

uniformly samples a Sidon set and H∞(Y) = n/2.

We show the following towards our impossibility result:

Claim 5.6. Let S ⊂ F
n
2 be a Sidon set. Then, for all A,B ⊂ F

n
2 , |A| ≥ 2, |B| ≥ 3 : A+B 6⊂ S.

Proof. Say such A,B existed. Then, pick a1, a2 ∈ A and b1, b2 ∈ B such that a1 + a2 6= b1 + b2. Let

C = {a1 + b1, a1 + b2, a2 + b1, a2 + b2}. Then, |C| = 4 and C ⊂ S. However, (a1 + b1) + (a1 + b2) =
(a2 + b1) + (a2 + b2) which contradicts the fact that S is a Sidon set.

From these, we infer an impossibility result as a corollary:

Corollary 5.7. There exists a degree 2 polynomial NOBF source Y with H∞(Y) = n/2 such that for all

A,B ⊂ F
n
2 , |A| ≥ 2, |B| ≥ 3 : A+B 6⊂ support(Y).

Looking ahead, we can apply Lemma 5.17 and Lemma 5.18 to infer that we cannot use a sumset extrac-

tor in a blackbox way to extract from polynomial NOBF sources of min-entropy n/2.
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5.2 Affine dispersers cannot disperse from polynomial NOBF sources

We show that one cannot use affine dispersers to disperse from degree d polynomial NOBF sources below

min-entropy n − n
(logn)d−1 . By [CT15, Theorem 5], we know that that an affine disperser for dimension

O(logn) is a disperser for degree d polynomial NOBF sources with min entropy n − ndd−1

(logn)d−1 . As poly-

nomial NOBF sources are also variety sources, and affine dispersers below min-entropy log n cannot exist,

this result is indeed tight for any constant d.

Theorem 5.8. Let c1 > 0 be an arbitrary constant. Then, there exists another constant c2 > 0 such that the

following holds: There exists a degree d polynomial NOBF source X with H∞(X) = n− c2
n

(logn)d−1 such

that support(X) does not contain any affine subspace of dimension c1 log n.

As affine dispersers with min-entropy requirement logn can’t exist, it indeed follows that we can’t use

affine dispersers to disperse from polynomial NOBF sources with the stated min-entropy bound.

We first show that there exists a degree d polynomial map that will not become a linear map over any

small affine subspace.

Claim 5.9. There exists a universal constant c such that the following holds. Let d, n, t be such that 2 ≤
d < n/2 and t < n. Then, there exist degree d polynomials p1, . . . , pt such that on every affine subspace U
of dimension k ≥ cd · (n/t)1/(d−1), there exists at least one i such that pi has degree ≥ 2.

Proof. We will show such a polynomial map exists using the probabilistic method. Let p1, . . . , pt : F
n
2 → F2

be random polynomials of degree d. Let U be arbitrary but fixed affine subspace of dimension k. Then,

p1|U , . . . , pt|U are also uniform polynomials over k variables of degree d. Hence, it must be that:

Pr
p1,...,pt





∧

1≤i≤t

deg(f |U ) ≤ 1



 ≤ 2
−
(

( k
≤d)−(

k
≤1)

)

t

We union bound over all ≤ 2n
(

2n

k

)

affine subspaces of dimension k and see that the probability that there

exists some affine subspace of dimension k over which all these polynomials have degree at most 1 is at

most

2
−
(

( k
≤d)−(

k
≤1)

)

t · 2n ·
(

2n

k

)

We set c to a large constant so that the above probability less than 1.

We now show there exists a polynomial NOBF source that does not contain any small affine subspace.

Claim 5.10. There exists a universal constant c such that the following holds: Let d, k be such that 2 ≤
d < k/2. For any 0 < t < k, there exists a degree d polynomial NOBF source X over k + t bits with

H∞(X) = k such that support(X) does not contain any affine subspace of dimension cd · (k/t)1/(d−1).

Proof. Let s = cd · (k/t)1/(d−1). Let (p1, . . . , pt) : Fk
2 → F

t
2 be the t polynomials from Claim 5.9. Let

X be the polynomial NOBF source over k + t bits where first k bits are x1, . . . , xk and last t bits are

p1(x1, . . . , xk), . . . , pt(x1, . . . , xk).
Assume that there exists an affine subspace U ⊂ support(X) such that dim(U) = s. Observe that once

the first k bits of X are fixed, the last t bits are also fixed. As U ⊂ support(X), U must also have this

property. Let P ⊂ F
k
2 be the projection of U over the first k bits. Then, dim(P ) = dim(U) = s. Moreover,

as U is an affine subspace, the last t bits of U are linear functions of the first k bits. However, this implies

that for each 1 ≤ i ≤ t, deg(pi|P ) ≤ 1, which is a contradiction.
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Proof of Theorem 5.8. Let C be a large enough constant. We apply Claim 5.10 and choose an integer t such

that t ≈ k
(

Cd
log(k+t)

)d−1
to infer the claim.

5.3 Sumset dispersers cannot disperse from polynomial NOBF sources

We show that we cannot use sumset dispersers to disperse from quadratic NOBF sources below min-entropy

n− n/ logn.

Theorem 5.11. Let c1 > 0 be an arbitrary constant. Then, there exists another constant c2 > 0 such that

the following holds: There exists a degree 2 polynomial NOBF source X with H∞(X) = n − c2
n

logn such

that support(X) does not contain any sumset A+B where |A| ≥ nc1 , |B| ≥ nc1 .

In fact, we will prove the following, more fine-grained, version of Theorem 5.11.

Claim 5.12. There exists a universal constant c such that the following holds. For any 0 < t < k, there

exists a degree 2 polynomial NOBF source X over n = k + t bits with H∞(X) = k such that support(X)
does not contain any sumset A+B where |A| ≥ 2cn/t, |B| ≥ 2cn/t.

Given the above claim, it is easy to prove Theorem 5.11.

Proof of Theorem 5.11. The theorem follows by setting t = O(n/ logn) in Claim 5.12.

The rest of this section is devoted to proving Claim 5.12. To do so, we prove the following two claims.

Claim 5.13. There exists a universal constant c such that the following holds. Let t, n ∈ N be such that t <
n. There exist degree 2 polynomials p1, . . . , pt : F

n
2 → F2 such that for every pair of affine subspaces U, V

of dimensions r ≥ cn/t each, and for all y ∈ F
n
2 , there exists at least one i and at least one u ∈ U, v ∈ V

such that pi(u+ v) 6= pi(u) + pi(v) + yi.

Claim 5.14. Let P = (p1, . . . , pt) : F
n
2 → F

t
2 be a degree 2 polynomial map. Let y ∈ F

t
2 be arbitrary. Let

A,B ⊂ F
n
2 be such that for all a ∈ A, b ∈ B, it holds that P (a) + P (b) = P (a+ b) + y. Then, there exist

affine subspaces U, V ⊂ F
n
2 such that for all u ∈ U, v ∈ V , it holds that P (u) + P (v) = P (u+ v) + y and

|U | ≥ |A|, |V | ≥ |B|.

Using these claims, we can indeed get a general trade-off for quadratic NOBF sources not containing

any sumset:

Proof of Claim 5.12. Let X be the polynomial NOBF source where the first k bits are independent and

uniform and the last t bits are outputs of polynomial map P from Claim 5.13 with input variables as the first

k bits (set c to the universal constant from there). We now proceed by contradiction and assume there exist

A,B ⊂ F
n
2 such that |A| ≥ 2cn/t, |B| ≥ 2cn/t, and A+B ⊂ support(X). Let a0 ∈ A, b0 ∈ B be arbitrary.

Let A′ = a0 +A,B′ = b0 +B,X′ = X+ (a0 + b0). Then, A′ +B′ ⊂ support(X′). Observe that 0n ∈ A′

and 0n ∈ B′. So, A′ ⊂ support(X′), and B′ ⊂ support(X′). Moreover, X′ is a degree 2 polynomial NOBF

source with H∞(X′) = H∞(X).
Let the last n− k bits of X′ be the output of the degree 2 polynomial map P ′. Let A′

0, B
′
0 ⊂ F

k
2 be the

projections of A′, B′ respectively onto the first k bits. As A′ ⊂ support(X′), B′ ⊂ support(X′), and the last

n−k bits are deterministic functions of the first k bits, it must be that |A′
0| = |A′| and |B′

0| = |B′|. Similarly,

as A′ + B′ ⊂ support(X′), it must be that P ′(A′
0) + P ′(B′

0) = P ′(A′
0 + B′

0). By Claim 5.14, there exist
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affine subspaces U ′, V ′ ⊂ F
k
2 such that for all u′ ∈ U ′, v′ ∈ V ′, it holds that P ′(u′) + P ′(v′) = P ′(u′ + v′)

where |U ′| ≥ |A′
0| = |A′|, |V ′| ≥ |B′

0| = |B′|.
Observe that P ′(x) = P (g + x) + h where g ∈ F

k
2, h ∈ F

t
2 are some fixed strings. Then, P (g + U ′) +

P (g + V ′) = P (g + U ′ + V ′) + h. Let U, V ⊂ F
k
2 be such that U = g + U ′, V = g + V ′. Then U, V are

affine subspaces, P (U) +P (V ) = P (U + V ) + h, and |U | = |U ′| ≥ |A′| = |A|, |V | = |V ′| ≥ |B′| = |B|.
However, this is a contradiction to the choice of P .

We now prove the helpful claim that there exists a quadratic map P that has the property that for every

pair of high dimension affine subspaces (U, V ), there exist u ∈ U, v ∈ V such that P (u)+P (v) 6= P (u+v).

Proof of Claim 5.13. We will show such a map exists using the probabilistic method. Let P = (p1, . . . , pt) :
F
n
2 → F

t
2 be a random degree 2 polynomial map. Fix y ∈ F

t
2. At the end, we will union bound over these

2t distinct y. Without loss of generality assume that y = 0t. Indeed, we can define P ′(x) = P (x) + y so

that for all a ∈ A, b ∈ B, it holds that P ′(a) + P ′(b) = P ′(a + b). Moreover, if there exist U, V such

that for all u ∈ U, v ∈ V : P ′(u) + P ′(v) = P ′(u + v), then we will recover that for all u ∈ U, v ∈ V :

P (u)+P (v) = P (u+v)+y as desired. Moreover, P ′ as defined will be distributed as a uniformly random

degree 2 polynomial map.

Call a degree 2 polynomial map P ‘bad’ if there exist affine subspaces C,D of dimensions r each such

that for all c ∈ C, d ∈ D it holds that P (c) + P (d) = P (c + d). Call such C,D the affine subspaces that

‘witness’ the badness of P . We will go over each pair of affine subspaces C,D and show that the fraction

of bad maps witnessed by the pair (C,D) are very small.

Let U, V be arbitrary dimension r subspaces. Let u0, v0 ∈ F
n
2 be arbitrary. Then, we fix pair of

dimension r affine subspaces (u0 + U, v0 + V ) and bound the fraction of bad maps witnessed by the pair.

We consider two cases:

Case 1. dim(U ∩ V ) ≥ r/2.

Let W = (U ∩V ). Let P be a bad map witnessed by u0+U, v0+V , i.e., for all u ∈ (u0+U), v ∈ (v0+V ),
it holds that P (u) + P (v) = P (u + v). We claim that P |(u0+W ) is a degree 1 polynomial map. Indeed,

above condition guarantees that ∀w1, w2 ∈W : P (u0 +w1) +P (v0 +w2) = P (u0 + v0 +w1 +w2). This

also implies that ∀w ∈ W : P (u0 + w) + P (v0 + w) = P (u0 + v0). Repeatedly applying these, we infer

that:

P (u0 + (w1 + w2)) = P (u0 + v0) + P (v0 + (w1 + w2))

= P (u0 + v0) + (P (u0 + w1) + P (u0 + v0 + w2))

= P (u0 + w1) + P (u0 + v0) + P (v0 + (u0 + w2))

= P (u0 + w1) + (P (u0) + P (v0)) + (P (v0) + P (u0 + w2)))

= P (u0 + w1) + P (u0 + w2) + P (u0)

Hence, P restricted to u0 + W is indeed an affine map. We observe that p1|u0+W , . . . , pt|u0+W are dis-

tributed as uniform degree at most 2 polynomials over r/2 variables. The probability that each of these

polynomials has degree at most 1 is at most 2−(
r/2
2 )t.

Case 2. dim(U ∩ V ) < r/2.

Let u0 + S be the largest affine subspace inside u0 +U such that S ∩ (U ∩ V ) = {0}. Similarly, let v0 + T
be the largest affine subspace inside V such that T ∩ (U ∩V ) = {0}. It must be that dim(S), dim(T ) ≥ r/2
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and S ∩ T = {0}. By considering appropriate subsets of S and T , we without loss of generality assume

dim(S) = dim(T ) = r/3, (u0 + S) ∩ (T ∪ (v0 + T )) = (v0 + T ) ∩ (S ∪ (u0 + S)) = ∅. Let basis

vectors of S and T be (s1, . . . , sr/3), and (t1, . . . , tr/3) respectively. Without loss of generality, let it be that

u0 + s1, . . . , u0 + sr/3 are linearly independent and v0 + t1, . . . , v0 + tr/3 are also linearly independent.

Then, by using the various empty intersection conditions above, the vectors u0 + s1, . . . , u0 + sr/3, v0 +
t1, . . . , v0 + rr/3 are also linearly independent. Let b1, . . . , bn−r/3 be linearly independent vectors such that

u0 + s1, . . . , u0 + sr/3, v0 + t1, . . . , v0 + rr/3, b1, . . . , bn−r/3 are all linearly independent. Let’s rename

these vectors to be c1, . . . , cn.

Now, we choose the random quadratic polynomials p1, . . . , pt by randomly sampling monomials of degree

at most 2 over these ci. As the ci are linearly independent, P will still be a uniformly random quadratic

map. Let P be a bad map witnessed by u0+U, v0+V . We claim there does not exist i such that pi contains

the monomial cjck where cj ∈ {u0 + s1, . . . , u0 + sr/3} and ck ∈ {v0 + t1, . . . , v0 + tr/3}. By way of

contradiction, assume there exists i such that pi contains the monomial cjck where cj ∈ {u0 + s1, . . . , u0 +
sr/3} and ck ∈ {v0+ t1, . . . , v0+ tr/3}. Without loss of generality we assume that the singleton monomials

cj and ck are not present in pi and the degree 0 monomial is also absent (if any of them are present, then

we can easily change assignments α1, α2 and their outcomes below and get the same claim). Consider the

following two assignments:

1. Assignment α1 where cj = 1, and remaining variables are set to 0.

2. Assignment α2 where ck = 1, and remaining variables set to 0.

Then, pi(α1) = pi(α2) = 0. As monomial cjck is present in pi, it must be that pi(α1 + α2) = 1. However,

this implies we found α1 ∈ (u0 + U) and α2 ∈ (v0 + V ) such that P (α1) + P (α2) 6= P (α1 + α2),
contradicting the fact that u0 + U, v0 + V witnessed badness of P . Hence, for this not to happen, all such

‘cross’ monomials must not occur in any pi. As each pi is a random quadratic polynomial, the probability

that all ‘cross’ monomials are absent in all pi is at most 2−(r/3)2t.

We union bound over all pairs of affine subspaces of dimension r and consider whether they fall into the

first case or the second case. If they fall into the first case, then we only union bound over≤ 2n ·
(

2n

r/2

)

affine

subspaces of dimension r/2 and consider the probability that a bad map P that they witness becomes linear

over that affine subspace. If they fall into the second case, then we union bound over all ≤
(

2n ·
(

2n

r/3

)

)2

disjoint pairs of affine subspaces of dimension r/3 and consider the probability that any bad map they

witness won’t have such cross monomials. We finally add both these probabilities to get our final bound.

For the first case, the expression will be

2−(
r/2
2 )t · 2n ·

(

2n

r/2

)

For the second case, the expression will be:

2−(r/3)2t ·
(

2n ·
(

2n

r/3

))2

We set r = cn/t where c is a large universal constant so that the sum of the above probabilities is much

smaller than than 2−t. Finally, we union bound over all 2t of the y ∈ F
t
2 to get the desired claim.
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We lastly prove the useful claim that for a quadratic map P , if there exist sets A,B such that for all

a ∈ A, b ∈ B it holds that P (a) + P (b) = P (a + b), then we can also find affine subspaces U, V with the

same property and of larger sizes. We first need the notion of directional derivatives:

Definition 5.15 (Directional derivative). For a polynomial p : Fn
2 → F2 and a ∈ F

n
2 , we define its directional

derivative in direction a, i.e., Da(p)(·) : Fn
2 → F2 as

Da(p)(x) = p(x) + p(x+ a)

Clearly Da(p) is a polynomial. It’s well known that deg(Da(p)) ≤ deg(p) − 1. We also extend the

definition of directional derivatives to apply to a polynomial map P : F
n
2 → F

t
2. For a fixed direction

a ∈ F
n
2 , we define Da(P )(·) : Fn

2 → F
m
2 as Da(P )(x) = (Da(p1)(x), . . . , Da(pm)(x)). Using these, we

present our proof:

Proof of Claim 5.14. Without loss of generality assume that y = 0t. Indeed, let P ′(x) = P (x) + y so that

for all a ∈ A, b ∈ B: P ′(a) + P ′(b) = P ′(a + b). Moreover, if there exist such affine subspaces U, V so

that for all u ∈ U, v ∈ V : P ′(u) + P ′(v) = P ′(u + v), then we will indeed recover the fact that for all

u ∈ U, v ∈ V : P (u) + P (v) = P (u+ v) + y as desired. Let C,D be such that A ⊂ C, B ⊂ D, and for all

c ∈ C, d ∈ D it holds that P (c) + P (d) = P (c + d). Moreover, let C and D be the largest such sets. To

prove the claim, it suffices to show that C and D are affine subspaces.

For a ∈ F
n
2 , define Da(P )(x) = (Da(p1)(x), . . . , Da(pt)(x)) = P (x) + P (x + a), the map of direc-

tional derivatives in direction a. Let Sa = {z ∈ F
n
2 : Da(P )(z) = P (a)}. We claim that y ∈ Sa ⇐⇒

P (y) + P (a) = P (a+ y). Indeed,

Da(P )(y) = P (a) ⇐⇒ P (y) + P (y + a) = P (a)

Let SC =
⋂

c∈C Sc. Then, it must be that B ⊂ SC . As D is maximal such set and for all c ∈ C, s ∈ SC :

P (c) + P (s) = P (c + s), it must be that D = SC . By a symmetric argument, C = SD. Observe that

for arbitrary a ∈ F
n
2 , Sa is an affine subspace. As intersection of affine subspaces is an affine subspace,

SC = D as well as SD = C are affine subspaces as desired.

5.4 Sumset extractors cannot disperse from polynomial NOBF sources

We show that we cannot use sumset extractors to disperse from quadratic NOBF sources below min-entropy

n− n/ log log n.

Theorem 5.16. Let 0 < ε < 1, 0 < c1 be arbitrary constants. Then, there exists another constant c2 > 0
such that the following holds: There exists a degree 2 polynomial NOBF source X with H∞(X) = n −
c2

n
log log n such that X is (1− ε)-far from a convex combination of sumset sources of min-entropy c1 log n.

Note that if a distribution is distance 1
2 away from any convex combination of sumset sources, then a

sumset extractor cannot be used in a blackbox way as a disperser for that distribution. Also, as no sumset

extractor can exist for min-entropy below log n, this result indeed shows that we can’t use sumset extractors

in a blackbox way to disperse from degree 2 polynomial NOBF sources.

We first prove a worst case to average case type reduction for sumsets.

Lemma 5.17. Let 0 < δ < 1 be a fixed constant. Let X ∼ F
n
2 be such that for all flat sources A,B ∼ F

n
2

with H∞(A) = H∞(B) = t, it holds that (A + B) 6⊂ support(X). Then, for all flat sources R,S ∼ F
n
2

such that H∞(R) = H∞(S) = c · 2t, it holds that Prr∼R,s∼S[r + s ∈ support(X)] ≤ δ. Here, c > 0 is a

constant depending only on δ.
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We will show that if a source is far from all sumset sources, then it is also far from all convex combination

of sumset sources:

Lemma 5.18 (Similar to [ACGLR22, Theorem 14]). Let 0 ≤ δ ≤ 1, 0 ≤ k, and X ∼ F
n
2 be such that for

all flat sources R,S ∼ F
n
2 with H∞(R), H∞(S) ≥ k, it holds that Prr∼R,s∼S[r + s ∈ support(X)] ≤ δ.

Then, for all Y such that Y is a convex combination of sumset sources of min-entropy at least k, it holds

that |X−Y| ≥ 1− δ.

Using these, and Claim 5.12 from Section 5.3, we show that sumset extractors cannot even disperse

from degree 2 polynomial NOBF sources:

Proof of Theorem 5.16. Let X be source guaranteed by Claim 5.12 with H∞(X) ≥ n− c2
n

log logn such that

for all A,B ⊂ F
n
2 with |A| = |B| = c3 logn, it holds that (A + B) 6⊂ support(X) (we specify c3 later,

depending on c1). Using Lemma 5.17 and by choice of c3, we infer that for all flat sources R,S ∼ F
n
2 with

H∞(R) = H∞(S) = c1 logn, it holds that Pr(R+S) ∈ support(X) ≤ ε. Let Y ∼ F
n
2 be arbitrary convex

combination of sumset sources {(R(i) + S
(i))}i, each with min-entropy c1 log n. Applying Lemma 5.18,

we infer that |X−Y| ≥ 1− ε as desired.

We use a bipartite Ramsey bound to get a worst case to average case type reduction for sumset sources:

Lemma 5.19 ([Zná63]). The maximum number of edges in a bipartite graph over [n]× [n] without inducing

a complete bipartite t× t subgraph is at most (t− 1)1/t · n2−1/t + 1
2 · (t− 1) · n.

We will utilize the following corollary of this statement:

Corollary 5.20. Fix 0 < δ ≤ 1. Let G be a bipartite graph over [n] × [n] with at δ · n2 edges. Then, G
induces a complete bipartite subgraph H over [ε · log n] × [ε · log n] where 0 < ε is a constant depending

only on δ.

Equipped with this, we prove our main lemma:

Proof of Lemma 5.17. Assume this is not the case and there exist such R and S. Let H∞(R) = H∞(S) =
k. Consider a bipartite graph G over support(R) × support(S) with an edge between r ∈ support(R) and

s ∈ support(S) if r + s ∈ support(X). By assumption, G has at least δ · 22k edges. Using Corollary 5.20,

we infer that G induces a complete bipartite subgraph where where each part has size ε · k (ε depends only

on δ). Equivalently, there exist sets C ⊂ support(R), D ⊂ support(S) such that |C| = |D| = ε · k and

(C +D) ⊂ support(X). Let A be the uniform distribution over C and B be the uniform distribution over

D. Then, H∞(A) = H∞(B) = log(ε · k). Setting c = 1/ε, we get a contradiction.

Finally, we show that if a distribution is far from every sumset source, then it’s far from every convex

combination of sumset sources.

Proof of Lemma 5.18. Let Y ∼ F
n
2 be arbitrary convex combination of sumset sources {(R(i) + S

(i))}i,
each with min-entropy at least k. Let T = support(X). Then,

|X−Y| ≥ Pr[Y ∈ T ]− Pr[X ∈ T ] = Pr[Y ∈ T ]

≥ min
i

Pr[Y(i) ∈ T ] = 1−max
i

Pr[Y(i) ∈ T ]

≥ 1− δ.
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6 Open problems

The problem of constructing extractors for sources sampled by F2-polynomials is a natural one, and we view

our results as initial progress on this question. We leave open a number of interesting open directions:

1. Construct extractors or dispersers for polynomial sources with better min-entropy dependence than

what we constructed here. For instance, some interesting potential candidates to explore are the

MAJORITY function, or the generalized inner product function.

2. It will be interesting to make progress on the easier question of extracting from constant degree poly-

nomial NOBF sources below min-entropy 0.999n. Extracting from constant degree variety sources

below min-entropy 0.999n is an important open problem and here, we introduced an interesting sub-

class of variety sources - polynomial NOBF sources - for which we also don’t have better extractors.

An even simpler question is to construct dispersers for constant degree polynomial NOBF sources

below min-entropy n/2. Note that for any NOBF source with > n/2 good bits, the MAJORITY

function is a disperser.

3. Construct extractors or dispersers for polynomial sources with degree poly(log n). Such an extractor

will also extract from sources sampled by AC0[⊕] circuits, a model for which no non-trivial extractors

are known. Our constructions work for degree up to O(log log n), and thus fall short of achieving this.
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[Zná63] S Znám. “On a combinatorical problem of K. Zarankiewicz”. In: Colloquium Mathematicum.

Vol. 11. Instytut Matematyczny Polskiej Akademii Nauk. 1963, pp. 81–84 (cit. on p. 21).

25

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il

https://doi.org/10.1109/CCC.2009.36
https://doi.org/10.1137/21m1454663
https://doi.org/10.1109/FOCS.2016.29
https://doi.org/10.1109/FOCS.2011.37
https://doi.org/10.1007/S00037-011-0006-4
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/SFCS.2000.892063
https://doi.org/10.1561/0400000010
https://doi.org/10.1137/11085983X
https://doi.org/10.1007/s00493-011-2604-9

