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Abstract. Let X be a set of items of size n , which may contain some
defective items denoted by I, where I ⊆ X. In group testing, a test refers
to a subset of items Q ⊂ X. The test outcome is 1 (positive) if Q contains
at least one defective item, i.e., Q ∩ I ̸= ∅, and 0 (negative) otherwise.
We give a novel approach to obtaining tight lower bounds in non-adaptive
randomized group testing. Employing this new method, we can prove the
following result.
Any non-adaptive randomized algorithm that, for any set of defective
items I, with probability at least 2/3, returns an estimate of the number
of defective items |I| to within a constant factor requires at least Ω(logn)
tests.
Our result matches the upper bound of O(logn) and solves the open
problem posed by Damaschke and Sheikh Muhammad in [8, 9] and by
Bshouty in [2].

1 Introduction

Let X be a set of n items, among which are defective items denoted by I ⊆ X.
In the context of group testing, a test is a subset Q ⊆ X of items, and its result
is 1 if Q contains at least one defective item (i.e., Q ∩ I ̸= ∅), and 0 otherwise.

Although initially devised as a cost-effective way to conduct mass blood test-
ing [10], group testing has since been shown to have a broad range of applications.
These include DNA library screening [20], quality control in product testing
[22], file searching in storage systems [16], sequential screening of experimental
variables [18], efficient contention resolution algorithms for multiple-access com-
munication [16, 26], data compression [14], and computation in the data stream
model [7]. Additional information about the history and diverse uses of group
testing can be found in [6, 11, 12, 15, 19, 20] and their respective references.
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Adaptive algorithms in group testing employ tests that rely on the outcomes
of previous tests, whereas non-adaptive algorithms use tests independent of the
outcome of previous tests1, allowing all tests to be conducted simultaneously
in a single step. Non-adaptive algorithms are often preferred in various group
testing applications [11, 12].

Estimating the number of defective items d := |I| to within a constant factor
of α is the problem of identifying an integer D that satisfies d ≤ D < αd. This
problem is widely utilized in a variety of applications [4, 23–25, 17].

Estimating the number of defective items in a set X has been extensively
studied, with previous works including [3, 5, 8, 9, 13, 21]. In this paper, we focus
specifically on studying this problem in the non-adaptive setting. Bshouty [1]
showed that deterministic algorithms require at least Ω(n) tests to solve this
problem. For randomized algorithms, Damaschke and Sheikh Muhammad [9]
presented a non-adaptive randomized algorithm that makes O(log n) tests and,
with high probability, returns an integer D such that D ≥ d and E[D] =
O(d). Bshouty [1] proposed a polynomial time randomized algorithm that makes
O(log n) tests and, with probability at least 2/3, returns an estimate of the num-
ber of defective items within a constant factor.

As for lower bounds, Damaschke and Sheikh Muhammad [9] gave the lower
bound of Ω(log n); however, this result holds only for algorithms that select each
item in each test uniformly and independently with some fixed probability. They
conjectured that any randomized algorithm with a constant failure probability
also requires Ω(log n) tests. Ron and Tsur [21]2 and independently Bshouty
[1] prove this conjecture up to a factor of log log n. Recently in [2], Bshouty
established a lower bound of

Ω

(
log n

(c log∗ n)(log
∗ n)+1

)
tests, where c is a constant and log∗ n is the smallest integer k such that log log k. . .
log n < 2. It follows that the lower bound is

Ω

(
log n

log log k. . . log n

)
for any constant k.

In this paper, we close the gap between the lower and upper bound. We prove

Theorem 1. Let α = 1 + Ω(1). Any non-adaptive randomized algorithm that,
with probability at least 2/3, α-estimates the number of defective items must
make at least

Ω

(
log n

logα

)
tests.

1 A test may depend on previous tests but not on the outcomes of the previous tests.
2 The lower bound in [21] pertains to a different model of non-adaptive algorithms,
but their technique implies this lower bound.
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In particular, for algorithms that estimate the number of defective items to
within a constant factor, the bound is Ω(log n).

To prove the Theorem, we first consider any algorithm that makes m =
log n/(c logα) tests, for a sufficiently large constant c, and α-estimates the num-
ber of defective items. Next, we use this algorithm to construct another one that
makes 2m tests and, when given any pair of sets of defective items where one set
is α times the size of the other set, with high probability, can distinguish which
set is the larger of the two. We then use Yao’s principle to turn the algorithm
to a deterministic algorithm that can do the same for a random pair of such
sets. The input pairs are generated with a distribution that is uniform over the
logarithm of the size d of the smaller set and uniformly distributed over pairs of
subsets of X of sizes d and αd.

We then employ a central lemma (Lemma 3) in this paper’s analysis. This
lemma plays a pivotal role in our proof, requiring an innovative approach for
its proof. This Lemma implies that if the number of tests is 2m then for an
input drawn according to the above distribution, with high probability, the
test outcomes for both sets are identical, making them indistinguishable. This
leads to a contradiction and, as a result, establishes the lower bound of m =
Ω(log n/ logα).

The paper is organized as follows: The next section introduces some defini-
tions and notations. In Section 3, we present the main lemma that plays a crucial
role in the proof of Theorem 1. Then in Section 4 we prove Theorem 1.

2 Definitions and Notation

In this section, we introduce some definitions and notation.
We will consider the set of items X = [n] = {1, 2, . . . , n} and the set of

defective items I ⊆ X. The algorithm is provided with knowledge of n and has
access to a test oracle, denoted as OI . The algorithm uses the oracle OI to make
a test Q ⊆ X, and the oracle responds with OI(Q) := 1 if Q ∩ I ̸= ∅, and
OI(Q) := 0 otherwise.

We say that an algorithm A α-estimates the number of defective items with
probability at least 1 − δ if, for every I ⊆ X, A runs in polynomial time in n,
makes tests with the oracle OI , and with probability at least 1 − δ, returns an
integer A(I) such that3 |I| ≤ A(I) < α|I|. If α is constant, then we say that the
algorithm estimates the number of defective items to within a constant factor.

The algorithm is called non-adaptive if the queries are independent of the
answers of previous queries and, therefore, can be executed simultaneously in a
single step. Our objective is to develop a non-adaptive algorithm that minimizes
the number of tests and provides, with a probability of at least 1 − δ, an α
estimation of the number of defective items.

3 Some papers in the literature provide the following alternative definition: |I|/α ≤
A(I) ≤ α|I|. It is worth noting that this alternative definition is equivalent to α2-
estimation, and the results in this paper also hold for this definition.
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Throughout this paper, all logarithms are taken to the base 2 unless stated
otherwise, and bold letters denote random variables.

In the Appendix, we prove the following lemma:

Lemma 1. Let A be an algorithm that makes T tests and, with probability at
least 2/3, α-estimates the number of defective items. Then there is an algorithm
A′ that makes O(T log(1/δ)) tests and, with probability at least 1−δ, α-estimates
the number of defective items.

3 Preliminary Results

In this section, we present the main lemma that plays a crucial role in proving
Theorem 1.

First, we prove the following lemma:

Lemma 2. Let n be an integer. Given s integers 1 = q1 ≤ q2 ≤ · · · ≤ qs−1 ≤
qs = n, define

σℓ :=

ℓ∑
i=1

qi and τℓ :=

s∑
i=ℓ+1

1

qi
.

Then,
s−1∏
ℓ=1

max

(
1,

1

σℓτℓ

)
>

n

4s
.

Proof. First, we have

s−1∏
ℓ=1

(
qℓ

qℓ+1

σℓ+1

σℓ

τℓ−1

τℓ

)
=

q1
qs

· σs

σ1
· τ0
τs−1

= σsτ0 > n.

On the other hand, the left-hand side satisfies

qℓ
qℓ+1

σℓ+1

σℓ

τℓ−1

τℓ
=

qℓ
qℓ+1

(
1 +

qℓ+1

σℓ

)(
1 +

1

qℓτℓ

)
=

qℓ
qℓ+1

+
qℓ
σℓ

+
1

qℓ+1τℓ
+

1

σℓτℓ

≤ 3 +
1

σℓτℓ
≤ 4max

(
1,

1

σℓτℓ

)
.

Hence
s−1∏
ℓ=1

4max

(
1,

1

σℓτℓ

)
> n,

and the result follows. ⊓⊔

We now prove the main Lemma.
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Lemma 3. Let α ≥ 2 and s = (log n)/(2000 logα). Let 1 = q1 ≤ q2 ≤ · · · ≤
qs = n. Let

Z = {2⌊logα⌋+1, 2⌊logα⌋+2, . . . , 2⌊log(n/α)⌋}.
Then:

Prz∈Z

∑
qi≤z

qi ≤
z

100α
and

∑
qi≥z

1

qi
≤ 1

100αz

 ≥ 99

100
,

where z is uniformly drawn from Z.

Proof. Let σℓ and τℓ be as defined in Lemma 2. For each ℓ ∈ [s − 1], consider
the interval4 Iℓ := [100ασℓ, 1/(100ατℓ)]. If z ∈ Iℓ, it satisfies σℓ ≤ z/(100α) and
τℓ ≤ 1/(100αz). Additionally, we have z ≥ 100ασℓ > qℓ and z ≤ 1/(100ατℓ) <
qℓ+1. Therefore,∑

qi≤z

qi = σℓ ≤
z

100α
and

∑
qi≥z

1

qi
= τℓ ≤

1

100αz
.

Furthermore, Iℓ ⊂ (qℓ, qℓ+1) := {q|qℓ < q < qℓ+1}. As a result, these sets Iℓ are
disjoint sets and therefore

Prz∈Z

∑
qi≤z

qi ≤
z

100α
and

∑
qi≥z

1

qi
≤ 1

100αz

 ≥
∑s−1

ℓ=1 |Z ∩ Iℓ|
|Z|

. (1)

Let Z ′ be the set of all the powers of 2. We will now show that all the
powers of 2 that are in Iℓ are also in Z. That is, |Z ∩ Iℓ| = |Z ′ ∩ Iℓ|. This
follows from two facts. First, the largest powers of 2 that are in I := ∪ℓIℓ
are in Is−1 = [100ασs−1, n/(100α)], and maxz∈Z z = 2⌊log(n/α)⌋ > n/(100α).
Second, the smallest power of 2 that are in I are in I1 = [100α, 1/(100ατℓ)], and
minz∈Z z = 2⌊logα⌋+1 < 100α.

Using Lemma 4 from the Appendix, the number of powers of 2 that are in
the interval Iℓ is

|Z ′ ∩ Iℓ| ≥
⌊
logmax

(
1,

1

10000α2σℓτℓ

)⌋
.

Therefore, by Lemma 2,

s−1∑
ℓ=1

|Z ∩ Iℓ| =
s−1∑
ℓ=1

|Z ′ ∩ Iℓ|

≥
s−1∑
ℓ=1

⌊
logmax

(
1,

1

104α2σℓτℓ

)⌋

≥

(
s−1∑
ℓ=1

logmax

(
1,

1

104α2σℓτℓ

))
− s

4 If a > b then [a, b] = ∅.
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= log

(
s−1∏
ℓ=1

max

(
1,

1

104α2σℓτℓ

))
− s

≥ log

(
1

(104α2)s

s−1∏
ℓ=1

max

(
1,

1

σℓτℓ

))
− s

≥ log

(
s−1∏
ℓ=1

max

(
1,

1

σℓτℓ

))
− (15 + 2 logα)s

≥ (log n− 2s)− (15 + 2 logα)s

≥ log n− (17 + 2 logα)
log n

2000 logα

≥ log n− 19

2000
log n

≥ 99

100
log n ≥ 99

100
|Z|. (2)

By (1) and (2) the result follows. ⊓⊔

4 The Lower Bound

In this section, we present the proof of the theorem that establishes the lower
bound on the number of tests required for any non-adaptive randomized algo-
rithm to α-estimate the number of defective items, where α = 1 +Ω(1).

We prove.
Theorem 1. Let α = 1 + Ω(1). Any non-adaptive randomized algorithm that,
with probability at least 2/3, α-estimates the number of defective items must
make at least

Ω

(
log n

logα

)
tests.

In particular, for algorithms that estimate the number of defective items to
within a constant factor, the bound is Ω(log n).

Proof. First, it suffices to prove the lower bound for α ≥ 2, as any α-estimation
where 2 > α = 1+Ω(1) also qualifies as a 2-estimation, and the lower bound for
2-estimation is Ω(log n), which equates to Ω(log n/ logα) when α = 1 +Ω(1).

Second, without loss of generality, we assume that n and α are both powers
of two. This is because the lower bound for n′ = 2⌊logn⌋ and α′ = 2⌈logα⌉ is also
a lower bound for n and α, and Ω(log n′/ logα′) = Ω(log n/ logα).

Furthermore, we will prove the lower bound for algorithms with a success
probability of at least 7/8. To get a success probability of at least 7/8, just run
the algorithm that has a success probability of at least 2/3 three times and take
the median of the outcomes. See the proof of Lemma 1. Therefore, both have
the same asymptotic lower bound.
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Suppose, to the contrary, that a non-adaptive randomized algorithm A exists,
which makes

s :=
log n

2000 logα

tests and, with probability at least 7/8, α-estimates the number of defective
items. In other words, for any set of defective items I ⊆ [n], the algorithm A
makes s random tests (using the oracle OI) and, with probability at least 7/8,
returns A(I) satisfying |I| ≤ A(I) < α|I|.

Now, we construct an algorithm B that, when given two sets of defective
items {I0, I1} where, for some ξ ∈ {0, 1}, Iξ ⊃ I1−ξ and |Iξ| = α|I1−ξ|, makes
2s tests (using the oracles OI0 and OI1), and, with probability at least 3/4, can
determine which of the two sets is larger, effectively outputting ξ.

Algorithm B first runs algorithm A to generate all the tests. This is feasible
since algorithm A is non-adaptive. Then it makes these tests to both I0 and
I1 using OI0 and OI1 , respectively. If A(I0) > A(I1), the algorithm outputs
0; otherwise, it outputs 1. The probability that neither of the following events
occurs: |I0| ≤ A(I0) < α|I0| or |I1| ≤ A(I1) < α|I1|, is at most 1/4. Thus, with
probability of at least 3/4, A(Iξ) ≥ |Iξ| = α|I1−ξ| > A(I1−ξ), and B provides
the correct answer.

We will now define a distribution D over pairs of sets of defective items.
Let D1 be the uniform distribution over N := {2logα, 2logα+1, . . . , 2log(n/α)−1}.
Initially, we select d ∈ N according to the distribution D1. Next, we randomly
and uniformly select ξ from {0, 1}. Finally, we, uniformly at random, draw Iξ ⊆
[n] of size d and I1−ξ ⊆ [n] such that I1−ξ ⊇ Iξ of size αd.

By applying Yao’s Principle, we can conclude the existence of a deterministic,
non-adaptive algorithm C that makes s tests and, when given {I0, I1} drawn ac-
cording to the distribution D, with probability of at least 3/4, correctly identifies
the largest set.

Let Q1, Q2, . . . , Qs ⊆ [n] be the tests that C makes. Note that C is determin-
istic, so Q1, Q2, . . . , Qs are fixed and non-random. Let qi = |Qi| for all i ∈ [s]. We
can assume, without loss of generality, that 1 = q1 ≤ q2 ≤ · · · ≤ qs−1 ≤ qs = n.
In case where q1 ̸= 1 or qn ̸= n, then just add the two tests5 Q0 = {1} and
Qs+1 = [n].

If d ∈ N is drawn according to distribution D1, then z = n/d is uniformly
drawn from {2logα+1, 2logα+2, . . . , 2log(n/α)}. By Lemma 3, with probability at
least 99/100, the chosen z = z (d = d) satisfies∑

qi≤z

qi ≤
z

100α
and

∑
qi≥z

1

qi
≤ 1

100αz
. (3)

Consider {I0, I1} drawn according to distribution D conditioned on d = d
satisfying (3). Without loss of generality, assume that |I1| = αd > d = |I0|.
Now let6 q1 ≤ q2 ≤ · · · ≤ qℓ < z < qℓ+1 ≤ · · · ≤ qs. Define the event A0 as the

5 The lower bound will then be s− 2.
6 z cannot be equal to qℓ for any ℓ ∈ [s] because, otherwise, 1 = qℓ · (1/qℓ) ≤
(
∑

qi≤qℓ
qi)

∑
qi≥qℓ

(1/qi) ≤ (z/(100α))(1/(100αz) = 1/(104α2) < 1.
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situation where the outcomes of all the tests Q1, Q2, . . . , Qℓ in algorithm C are
0. Then

Pr[¬A0|d = d] = PrI0,I1,|I0|=d[(∃i ∈ [ℓ])(OI0
(Qi) = 1 ∨ OI1

(Qi) = 1)]

= PrI0,I1,|I0|=d

[
ℓ∨

i=1

(I0 ∩Qi ̸= ∅ ∨ I1 ∩Qi ̸= ∅)

]

= PrI1,|I1|=αd

[
ℓ∨

i=1

(I1 ∩Qi ̸= ∅)

]
(4)

≤
ℓ∑

i=1

PrI1,|I1|=αd[I1 ∩Qi ̸= ∅] (5)

=

ℓ∑
i=1

1−
αd−1∏
j=0

(
1− qi

n− j

) (6)

≤
ℓ∑

i=1

(
1−

(
1− 2qi

n

)αd
)

(7)

≤
ℓ∑

i=1

2αdqi
n

= 2α
1

z

ℓ∑
i=1

qi =
1

50
. (8)

(4) follows from the fact that since I0 ⊂ I1 we have I0 ∩ Qi ̸= ∅ implies
I1 ∩ Qi ̸= ∅. (5) follows from the union-bound rule. (6) follows from the fact
that I1 is a random uniform subset of [n] of size αd. Therefore, the probability
that I1 ∩ Qi ̸= ∅ is 1 −

(
n−qi
αd

)
/
(
n
αd

)
. Note here that when n − qi < αd then

1 −
(
n−qi
αd

)
/
(
n
αd

)
= 1 ≤ (n − qi + 1)qi/n ≤ αdqi/n < 2αdqi/n (the term in (8)).

In such a case, we can safely disregard the inequality in step (7). Also, for terms
where 2qi/n > 1 we have PrI1 [I1 ∩ Qi ̸= ∅] ≤ 1 < αd(2qi/n) = 2αdqi/n and
again for those terms you can disregard the inequality in step (7). (7) follows
from the fact that n− j ≥ n−αd ≥ n−α2log(n/α)−1 ≥ n/2. (8) follows from the
fact that (1− x)y ≥ 1− yx for x ∈ [0, 1] and y ≥ 1, then from (3) and z = n/d.

Now define the event A1 as the situation where the outcomes of all the tests
Qℓ+1, Qℓ+2, . . . , Qs in algorithm C is 1. Then

Pr[¬A1|d = d] = PrI0,I1,|I0|=d[(∃i ∈ [ℓ])(OI0
(Qi) = 0 ∨ OI1

(Qi) = 0)]

= PrI0,I1,|I0|=d

[
s∨

i=ℓ+1

(I0 ∩Qi = ∅ ∨ I1 ∩Qi = ∅)

]

= PrI0,|I0|=d

[
s∨

i=ℓ+1

(I0 ∩Qi = ∅)

]
(9)

≤
s∑

i=ℓ+1

PrI0,|I0|=d[I0 ∩Qi = ∅]
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=

s∑
i=ℓ+1

d−1∏
j=0

(
1− qi

n− j

)
≤

s∑
i=ℓ+1

(
1− qi

n

)d
≤

s∑
i=ℓ+1

n

dqi
= z

s∑
i=ℓ+1

1

qi
≤ 1

100
. (10)

(9) follows from the fact that I1 ∩ Qi = ∅ implies that I0 ∩ Qi = ∅. (10)
follows from the fact that (1 − x)d ≤ 1/(dx) for any 0 < x ≤ 1 and d > 0
combined with (3) and α ≥ 2.

Therefore, when considering {I0, I1} drawn according to D, with probability
at least 97/100 (since 99/100 − 1/50 − 1/100 = 97/100), algorithm C gets the
same outcomes for both I0 and I1. Consequently, the success probability in this
case is 1/2 (essentially guessing). As a result, the overall success probability of
C cannot be more than 3/100+ (1/2)(97/100) = 103/200 which is less than 3/4.
This leads to a contradiction. ⊓⊔
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Appendix

Lemma 1. Let A be an algorithm that makes T tests and, with probability at
least 2/3, α-estimates the number of defective items. Then there is an algorithm
A′ that makes O(T log(1/δ)) tests and, with probability at least 1−δ, α-estimates
the number of defective items.
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Proof. The algorithm A′ runs A m = O(log(1/δ)) times (m is odd) and takes
the median of the values it outputs. The probability that the median is not in
the interval [|I|, α|I|] is the probability that A fails at least ⌈m/2⌉ times. By
Chernoff’s bound, the result follows. ⊓⊔

Lemma 4. Let a, b > 0. The number of power of 2 that are in the interval [a, b]
is at least ⌊

logmax

(
1,

b

a

)⌋
.

Proof. If b < a then [a, b] = ∅ and the number is 0.
If b ≥ a then let i and j be such that 2i < a ≤ 2i+1 and 2i+j+1 > b ≥ 2i+j .

Then the power of 2 that are in [a, b] are {2i+1, 2i+2, . . . , 2i+j} and their number
is j. Then

j = log
2i+j

2i
> log

b/2

a
= log

b

a
− 1.

This implies j ≥ ⌊log(b/a)⌋. ⊓⊔
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