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Abstract

We revisit the problem of characterising the complexity of Quantum PAC learning, as introduced by
Bshouty and Jackson [SIAM J. Comput. 1998, 28, 1136–1153]. Several quantum advantages have been
demonstrated in this setting, however, none are generic: they apply to particular concept classes and typically
only work when the distribution that generates the data is known. In the general case, it was recently shown
by Arunachalam and de Wolf [JMLR, 19 (2018) 1-36] that quantum PAC learners can only achieve constant
factor advantages over classical PAC learners.

We show that with a natural extension of the definition of quantum PAC learning used by Arunachalam
and de Wolf, we can achieve a generic advantage in quantum learning. To be precise, for any concept class
C of VC dimension d, we show there is an (ϵ, δ)-quantum PAC learner with sample complexity

O

(
1√
ϵ

[
d+ log

(
1

δ

)]
log9(1/ϵ)

)
.

Up to polylogarithmic factors, this is a square root improvement over the classical learning sample complexity.
We show the tightness of our result by proving an Ω(d/

√
ϵ) lower bound that matches our upper bound up

to polylogarithmic factors.

1 Introduction

Probably approximately correct (PAC) learning [1] is a fundamental model of machine learning. One is given
a set of functions C ⊆ {0, 1}X = {f : X → {0, 1}}, called a concept class, that encodes the structure of a learn-
ing problem (for example, functions that only depend on the hamming weight of their input). Given labelled
examples from an unknown concept c ∈ C, we are tasked with learning an approximation to c.

We model the data that the learning algorithm receives by an unknown probability distribution D on X , and
say that a hypothesis h : X → {0, 1} is ϵ-approximately correct if the probability that it differs from c is at
most ϵ. To be precise, A hypothesis h ∈ {0, 1}X is said to be ϵ-approximately correct if

PX∼D [h(X) ̸= c(X)] ≤ ϵ. (1)

A learning algorithm A draws independent samples (X, c(X)), where X is distributed according to D, and then
outputs a hypothesis h. The algorithm A is an (ϵ, δ)-learner if, with probability at least 1− δ over the random
samples, it outputs a ϵ-approximately correct hypothesis.

The amount of “structure” possessed by C is characterised by its Valiant-Chapernikis (VC) dimension [2],
denoted d. For a subset Y ⊆ X, we define C|Y := {c|Y : c ∈ C} as the restriction of the concept class to Y . We
say that C shatters Y if C|Y = {0, 1}Y , i.e., if all possible labellings of Y appear in concepts in C. Then, d is
the maximum size of a shattered set, that is

d = max{|Y | : Y is shattered by C}. (2)

Over a period of 27 years [3, 4], the exact asymptotic scaling of the minimum number of samples required by
an (ϵ, δ)-learner was found to be

Θ

[
1

ϵ

(
d+ log

(
1

δ

))]
, (3)

thereby characterising the complexity of classical PAC learning.
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In 1995, Bshouty and Jackson [5] considered a generalisation of PAC learning to the quantum setting [6]. Here,
instead of receiving independent identically distributed samples (X,C(X)), one receives independent copies of
a quantum state

|ψc⟩ =
∑
x∈X

√
D(x) |x c(x)⟩ , (4)

known as a quantum sample. In particular, measuring such a state in the computational basis gives a sample
(X,C(X)). In turn, instead of counting the number of samples, the quantum sample complexity is the number
of copies of the state given to the quantum learning algorithm.

The Quantum PAC model is instrumental in understanding the limits of other quantum cryptographic and
computational tasks. For instance, in [7], a connection between differential privacy and PAC learnability of
quantum states was established, and recently [8] used the PAC framework to investigate the complexity of
learning parameterised quantum circuits, which are ubiquitous in variational quantum algorithms where they
are used for quantum state preparation.

In the special case of quantum PAC learning under the uniform distribution, it has been shown that one can
obtain quantum sample complexity advantages in specific learning tasks, such as learning Fourier basis functions
[9], DNF formulae [5], and k-juntas [10]. These advantages rely on Fourier sampling, in which one applies the
Hadamard transform on every qubit followed by a measurement of the resulting state in the computational
basis. One observes a bit string s with probability given by its squared Fourier coefficient |ĉs|2 and can thus
directly infer properties of the Fourier spectrum of the unknown function. However, such advantages rely on
the distributions D being (approximately) uniform.

The general quantum PAC learning model, with an arbitrary and unknown distribution D, was studied by
Arunachalam and de Wolf [6, 11], who showed that the quantum sample complexity has exactly the same
asymptotic scaling as the classical learning complexity, ruling out everything but constant factor prospective
advantages.

Thus, most recent literature has focused identifying advantages only in suitably restricted versions of the quan-
tum PAC model [10, 12]. Nevertheless, such models have demonstrated remarkable utility when assessing the
complexity of learning quantum states, channels [13–15], and measurements [16, 17] in quantum theory with
lower bounds on query complexity established in [18].

Here, we consider a natural and less restrictive version of the quantum PAC learning model. Instead of access
to copies of the state |ψc⟩, we assume that we have access to the quantum circuit that generates it, similarly in
spirit to [19, 20]. That is, we assume one has access to a quantum circuit Qc that generates a quantum sample
|ψc⟩ (for example, as a decomposition into one and two-qubit gates) and thus can implement Qc and Q

†
c. Given

this natural adjustment to the input access of quantum PAC learning algorithms, we can revisit the question
of whether strong generic (beyond constant-factor) quantum advantages are possible for quantum PAC learning.

1.1 Our results

In this paper, we show that there is a square root advantage (up to polylogarithmic factors) for quantum PAC
learning over classical PAC learning in the full, general model. Our main result (see Section 5) is summarised
by the following theorem.

Theorem 1.1 Let C be a concept class with VC dimension d. Then, for every ϵ, δ > 0, there exists a
(ϵ, δ)-quantum PAC learner for C that makes at most

O

(
1√
ϵ

[
d+ log

(
1

δ

)]
log9(1/ϵ)

)
, (5)

calls to an oracle that generates a quantum sample (Qc) or its inverse (Q†
c).

In comparison, the optimal classical PAC learning complexity (and quantum PAC complexity given access to
copies of |ψc⟩ [11]) is given in equation (8). Thus, our upper bound is a square root improvement (up to
polylogarithmic factors) over the best possible classical learning algorithm. In fact, we show that this upper
bound is essentially tight, up to polylogarithmic factors, as captured by the following theorem.
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Theorem 1.2 Let C be a concept class with VC dimension d. Then, for a sufficiently small constant δ > 0
and for all ϵ > 0, any quantum (ϵ, δ)-learner for C makes at least

Ω

(
d√
ϵ

)
(6)

calls to an oracle that generates a quantum sample (Qc) or its inverse (Q†
c).

1.2 Technical overview

Our starting point is the observation that the lower bound of Arunachalam and de Wolf [11] implicitly rests on
the assumption that a quantum learning algorithm must not depend on the underlying concept, and it can thus
be represented by a (concept independent) POVM. They then reduce the problem of PAC learning to that of
state discrimination (where the POVM is state-independent). However, if we allow for the common assumption
that the algorithm has access to an oracle Qc generating |ψc⟩, the proof of the lower bound no longer holds1.
If the POVM describing the algorithm calls the oracle, it, by definition, depends on the underlying concept.
Thus, one cannot reduce the problem to that of state discrimination, where it is assumed that the POVM is
independent of the input state.

If one implements Qc on some physical device (for example, as a series of one and two-qubit gates), it is natural
to assume that one can also implement the inverse process Q†

c (for example, by reversing the order of the gates
and replacing each by its inverse). Thus, we argue that if one has access to the state |ψc⟩ it is natural to also
consider the situation in which one also has access to Qc and Q†

c. Indeed, this setting has recently received
significant attention [20, 21].

Given access to Qc and Q†
c, it is tempting to attempt techniques such as Grover search and amplitude am-

plification, which often achieve quadratic quantum advantages. Consider, for example, the simplest possible
concept class C = {0, 1}X : the set of all possible classifiers. It is known that a classical worst-case distribution
for this class is a “perturbed” delta-function [11], where there is a marked element x0 ∈ X with probability
D(x0) = 1 − 4ϵ, and all other elements have equal probability. Roughly speaking, to (ϵ, δ)-learn C, one must
learn a fraction of 3/4 of the values of c. However, it takes on average O(1/ϵ) samples to return an x that
isn’t x0 and thus the classical learning query complexity is Ω(|X |/ϵ). In this case, one could repeatedly run
Grover’s search, marking any state |x b⟩ as good if we have not yet learnt c(x). With Grover search, it only takes
O(1/

√
ϵ) oracle calls to return an x that is not x0 and thus we see the quantum query complexity is O(|X |/

√
ϵ),

the desired quadratic improvement. Therefore, we already outperform the lower bound of Arunachalam and de
Wolf [11].

Note that the method above does not immediately generalise to other concept classes. For example, consider
the concept class

C = {c ∈ {0, 1}X : |c−1({1})| = d} ,

the class of classifiers with exactly d inputs that map to 1, and take D to be the uniform distribution on X .
If |X | is very large, then most unseen x’s will have c(x) = 0 and thus the above approach is uninformative.
Instead, instead, one should mark a state |x b⟩ as good if b = 1. In this way, one can search for the inputs x ∈ X
that have c(x) = 1 and hence deduce c. This will also lead to a quadratic quantum advantage.

However, for general concept classes, it is less clear what to search for. One could run the Halving algorithm,
where we mark a state |x y⟩ as good if the majority of the concepts h ∈ C that are consistent with the data so
far have h(x) = 1− y. In this case, every time the Grover algorithm succeeds, one would eliminate at least half
of the concepts in C. However, this leads to a log |C| factor in the learning complexity, which can be as large as
d log |X |, i.e., arbitrarily larger than d (the VC dimension of C). Thus, even under the simplifying assumption
of the uniform distribution, it is unclear how to attempt to use Grover’s search to obtain a quantum advantage.

Nevertheless, we show that one can achieve a square root quantum advantage in the general case. As a first step,
we use the technique of equivalence queries [22] (also known as random counterexamples). An equivalence query
is an alternative learning oracle to the traditional PAC oracle, in which one submits a candidate hypothesis
h ∈ {0, 1}X . If h = c, then the oracle outputs Y ES, otherwise it produces a labelled counterexample (X, c(X))
where

(i) h(X) ̸= c(X).

1Since the state |ψc⟩ must be produced by some process, this assumption is quite minimal.
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(ii) X is distributed according to P(y) = D(y)/D({x : c(x) ̸= h(x)}).

Observe that by marking a state |x y⟩ as good if h(x) = 1−y, we can see how to implement an equivalence query
using Grover search, and thus one can hope to use this tool from classical learning theory to achieve an ad-
vantage. However, when one removes the simplifying assumption of a known distribution, further problems arise.

For a generic distribution, we do not know D(x) for any x ∈ X and therefore one cannot run exact Grover
search. Instead, we consider a well-studied technique [23], in which one makes a random number of M queries
to the Grover oracle, where M is uniformly distributed between 0 and a chosen threshold TG. This search
succeeds with non-negligible probability if the amplitude of the projection of the initial state onto the subspace
spanned by the “good” states (the “good” subspace) is Ω(1/TG). For an equivalence query h, this amplitude is√

D({x : c(x) ̸= h(x)}), which could be arbitrarily small (as D is arbitrary). Hence, it may take an arbitrarily
large (expected) number of iterations of Grover’s search (and hence oracle calls) to run a classical equivalence
query learning algorithm.

To solve this issue, we show how to use equivalence queries that succeed with a constant probability, called
imperfect equivalence queries, to PAC learn a concept. We can then run these imperfect equivalence queries
using Grover search. We use a classical (ideal) equivalence query algorithm, replacing equivalence queries with
repeated imperfect equivalence queries, but with a maximum imperfect equivalence query budget R. Suppose
that the algorithm requires equivalence queries to hypotheses h1, . . . hk. If all of the successfully run an equiv-
alence query for every hypothesis, then the classical algorithm succeeds, and we use its output. Otherwise, we
hit the imperfect equivalence query budget R and must terminate the classical algorithm early. By choosing R
sufficiently large, we can be sure that if we hit the budget, most of the imperfect equivalence queries were spent
on hypotheses hi that are “close” to c (and hence have a low chance of the Grover search succeeding). Thus if
we take the “average” of the hypotheses hi weighted by the number of imperfect equivalence queries spent on
each hypothesis, we also output a classifier close to c.

To conclude the section, we sketch a proof of our lower bound. We consider an arbitrary concept class C of
VC dimension d. We note that there is a shattered set Y ⊆ X of size d, and take D to be a “perturbed”
delta-function distribution on Y . We can thus think of concepts c in C as bit strings of length d, where the bit
string describes c’s action on Y . Since Y is shattered by C, all possible bit strings will appear. Any candidate
PAC algorithm must be able to recover most of the bit string with high probability. We reduce to a known
problem by introducing a weak phase-kickback oracle for the bit string, which we use to implement the PAC
oracle. We can then use a standard lower bound [20] on recovering a bit string with high probability using a
weak phase kickback oracle.

1.3 Open problems

This work leaves several interesting avenues for further research. Firstly, one could attempt to tighten the upper
bound (5) to remove polylogarithmic factors and prove a tight matching lower bound. The removal of a log(1/ϵ)
factor in the query complexity for classical PAC learning took 27 years [3, 4]; we hope that the quantum case
will be simpler. Moreover, in order to achieve 1/

√
ϵ scaling with our method, one would require the optimal

classical equivalence query learning complexity to have no ϵ dependence and thus, a different approach is likely
to be required.

It is interesting to consider the power of quantum learning algorithms with access to the oracle Qc, but not its
inverse Q†

c. The inverse oracle seems necessary for Grover’s search, and thus it is unclear if a quantum advantage
is possible. The lack of such an advantage would have interesting implications for understanding what makes
quantum computing more powerful than classical computation.

Finally, one could consider the implications of this work to generic advantages in more practical models of
quantum machine learning, such as quantum neural networks.

1.4 Organisation

We first cover all required technical preliminaries in Section 2. In Section 3, we cover our Grover subroutine
that leads to the quadratic advantage. Equivalence queries and how to use imperfect equivalence queries in a
classical learning algorithm are both described in Section 4. Using the results of these two sections, we derive
the upper bound (5) in Section 5; we prove an almost matching lower bound on our quantum model in Section
6, using a reduction to a phase oracle problem. Finally, we consider the application of our algorithm to learning
k−juntas in Section 7.
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2 Preliminaries

We will only consider functions defined on finite sets. We first introduce the standard, classical model of PAC
learning [1]. For a finite set X , let {0, 1}X = {f : X → {0, 1}}, an element f ∈ {0, 1}X is called a classifier. We
wish to approximately learn an unknown classifier c from a known subset of classifiers C ⊆ {0, 1}X , where C is
called a concept class.

There is an unknown distribution D on X , where D(x) denotes the probability of drawing x from X . The
distance between two classifiers is defined as the probability they disagree: d(h1, h2) := PX∼D [h1(X) ̸= h2(X)].
For a fixed tolerance ϵ > 0 we say a classifier h ∈ {0, 1}X is ϵ-approximately correct if d(h, c) ≤ ϵ.

A learning algorithm A has access to some oracle that gives information about c. Traditionally, one assumes
that the oracle generates a labelled example (X, c(X)) at random, where X is distributed according to D. We
will consider an additional type of oracle in section 4. The sample complexity of A is the number of labelled
examples it receives.

For a fixed error probability δ, we say that an algorithm A is an (ϵ, δ) learner if, with probability at least 1− δ
(over the randomness of the algorithm), the algorithm outputs an ϵ-approximately correct hypothesis, for every
possible c and D.

For a fixed concept class C and ϵ, δ > 0, one wishes to find an (ϵ, δ)-learner with minimum sample complexity.
The optimal sample complexity will depend on ϵ, δ and some measure of complexity of the class C, which we
now define. For a subset Y ⊆ X , we define C|Y := {c|Y : c ∈ C} as the restriction of the concept class to Y .
We say that C shatters Y if C|Y = {0, 1}Y , i.e., if all possible labellings of Y appear in concepts in C. The
Valiant-Chapernikis (VC) dimension [2] of C, denoted d, is the maximum size of a shattered set, that is

d = max{|Y | : Y is shattered by C}. (7)

In [3, 4], it was shown that the optimal sample complexity using labelled examples, denoted TC(ϵ, δ, d) scales as

TC = Θ

[
1

ϵ

(
d+ log

(
1

δ

))]
. (8)

In the quantum PAC setting [5], one assumes that the data is stored coherently, i.e., one considers the state

|ψc⟩ :=
∑
x∈X

√
D(x) |x c(x)⟩ , (9)

chosen so that measuring |ψc⟩ in the computational basis gives a random labelled example. Instead of the
classical sample complexity, one considers the minimum number of copies TS(ϵ, δ, d) of |ψc⟩ required to PAC
learn C. Since one can always measure the state in place of a call to a classical oracle, TS is, at worst, the
optimal sample complexity of a classical algorithm. In fact, Arunachalam and de Wolf [11] showed that there
is no (asymptotic) quantum advantage from using states instead of oracle calls - the optimal TS grows exactly
as in equation (8).

We assume a stronger model, in which one has access to an oracle Qc (which depends on the underlying concept),
defined by its action on a fixed known input state |IN⟩ (independent of the underlying concept):

Qc |IN⟩ = |ψc⟩ =
∑
x∈X

√
D(x) |x c(x)⟩ . (10)

This is similar in spirit to the recent work [20], which deals with state tomography with a state preparation
unitary. We also assume that the algorithm has access to the inverse of the oracle, Q†

c. This is relevant if, for
example, Qc is given as a quantum circuit of one or two-qubit gates; in this case, Q†

c may be constructed by
reversing the order of the gates and replacing each with its inverse. We define the learning complexity of any
algorithm as the total number of queries to Qc or Q†

c. The minimum learning complexity of any (ϵ, δ)-learner
is denoted TO(ϵ, δ, C).

The lower bound of [11] does not apply to a model with access to Qc, as it assumes the quantum algorithm
is described by a POVM that is independent of the underlying concept c. However, Qc explicitly depends on c
and thus, any algorithm (or POVM) that calls Qc will violate the assumptions in [11]. Hence, one can hope for
quantum advantage in this setting.
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Model
Quantum

or
Classical

Learning resource
Optimal (ϵ, δ)

learner complexity
Bounds on optimal learner

complexity

Labelled examples Classical
Sample (X,C(X))

where X ∼ D TC Θ
[
1
ϵ

(
d+ log

(
1
δ

))]
Equivalence queries Classical See Section 4 TE O

([
d+ log

(
1
δ

)]
log9

(
1
ϵ

))
Imperfect

equivalence queries
Classical See Section 4 TIE O(TE)

Quantum samples Quantum Copy of |ψc⟩ TS Θ(TC)

Quantum oracle
calls

Quantum
Application of Qc

or Q†
c

TO O( 1√
ϵ
TIE), Ω(

d√
ϵ
)

Table 1: Different learning models considered in our work. TM corresponds to the minimum number of
resources needed by any (ϵ, δ)-learner in model M .

We recap all of the different learning models considered in Table 1.

We end the preliminaries section with a recap of Grover’s algorithm. For a subspace V of a Hilbert space H, let
ΠV be the orthogonal projection map onto V. Furthermore, let IV be the reflection operator in V⊥, given by

IV = 1− 2ΠV . (11)

For a state |ψ⟩, let I|ψ⟩ be the reflection operator when V = span{|ψ⟩}.

Grover search takes as its input a “good” subspace G ⊆ H, and an input state |ψ⟩. One then implements the
Grover operator:

D = −I|ψ⟩IG . (12)

The state |ψ⟩ can be decomposed as
|ψ⟩ = sin(θ) |g⟩+ cos(θ) |b⟩ , (13)

where |g⟩ , |b⟩ are orthonormal, θ ∈ [0, π/2], |g⟩ ∈ G, |b⟩ ∈ G⊥. It is well-known [24] that

Dn |ψ⟩ = sin((2n+ 1)θ) |g⟩+ cos((2n+ 1)θ) |b⟩ . (14)

and thus if one knows θ exactly, one can apply Dn such that sin((2n+ 1)θ) ≈ 1.

3 Grover Subroutine

An essential subroutine for our quantum advantage is to use calls to Qc and Q†
c to run a Grover search [24,

25]. This leads to a quadratic improvement in learning complexity (up to polylogarithmic factors) over classical
PAC learning. In this section, we describe our Grover subroutine.

Our Grover subroutine takes as an input a “good” subset G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}}, where we wish to
find an x such that (x, c(x)) ∈ G. We define a corresponding “good” subspace by

G = span{|x b⟩ : (x, b) ∈ G}. (15)

In order to implement Grover’s search, we need to implement the Grover operator, as defined in equation (12).
We show that implementing D requires a constant number of queries.

Lemma 3.1 One can implement the Grover operator D with one call to Qc and one to Q†
c.

Proof: Note that IG is independent of c and, therefore, may be implemented by a (possibly exponentially
sized circuit) without any queries. To implement I|ψc⟩, note that
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I|ψc⟩ = 1− 2 |ψc⟩⟨ψc| , (16)

= Qc(1− 2 |IN⟩⟨IN|)Q†
c, (17)

= QcI|IN⟩Q
†
c. (18)

Note that I|IN⟩ is independent of c and, therefore, may be implemented by a (possibly exponentially sized
circuit) without any queries.

We decompose
|ψc⟩ = sin(θ) |g⟩+ cos(θ) |b⟩ , (19)

where |g⟩ , |b⟩ are orthonormal, θ ∈ [0, π/2], |g⟩ ∈ G, |b⟩ ∈ G⊥. If we knew θ exactly, we could apply Dn such
that sin((2n+ 1)θ) ≈ 1. However, since θ depends on D, which is unknown, this is impossible. Instead, we use
the well-established [23] version of Grover’s search for an unknown number of items. Our exact subroutine is
given below; Algorithm 1.

Algorithm 1:

Input: G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}} a good subspace, ϵ > 0 a tolerance
Output: labelled example (x, c(x)). Succeeds if (x, c(x)) ∈ G

1. Produce |ψc⟩ = Qc |IN⟩

2. Pick N from 0, 1 . . . , ⌈2/
√
ϵ⌉ − 1 uniformly at random

3. Apply D, the Grover operator, N times to |ψc⟩

4. Measure the resulting state in the computational basis

The properties of our algorithm are summarised in the following theorem

Theorem 3.2 Let G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}} be a good subset, ϵ > 0 be a fixed tolerance. Suppose
that we run Algorithm 1 with these inputs, then

(i) In the worst case, the algorithm makes O(1/
√
ϵ) oracle (or inverse oracle) calls

(ii) If PX∼D [(X, c(X)) ∈ G] ≥ ϵ then the algorithm succeeds, i.e., returns (x, c(x)) ∈ G, with probability
at least p = 0.09.

(iii) Conditional on succeeding, the output of the algorithm (X, c(X)) is distributed according to

P [(X, c(X))|algorithm succeeds] =
PX∼D [X]

PX∼D [(X, c(X)) ∈ G]
. (20)

Proof:
Part (i): From the definition of the algorithm and Lemma 3.1, the worst case number of oracle calls is
1 + 2(⌈2/

√
ϵ⌉ − 1) = O(1/

√
ϵ).

Part (ii): Let M = ⌈2/
√
ϵ⌉, let θ be as in equation (19) and let ps(θ) be the probability that the algorithm

succeeds. Note that PX∼D [(X, c(X)) ∈ G] ≥ ϵ ⇔ sin(θ) ≥
√
ϵ. We use Lemma 2 (section 6) from [23],

which claims

ps(θ) =
1

2
− 1

4M

sin(4Mθ)

sin(2θ)
. (21)

For sin(θ) ∈ [
√
ϵ, 1/

√
2]:

M ≥ 2

sin(θ)
, (22)

≥ 1

sin(2θ)
, (23)
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and thus

ps(θ) ≥
1

2
− 1

4
=

1

4
> 0.09. (24)

Note that for θ ∈ [π/4, π/2],

sin(2θ) ≥ π/2− θ

π/4
, (25)

Thus for θ ∈ [π/4, (1/2− 1/4M)π], we have that

ps(θ) ≥
1

2
− 1

4M
· 4/π

π/2− (1/2− 1/4M)π
, (26)

=
1

2
− 4

π2
> 0.09. (27)

Finally, for θ ∈ [(1/2− 1/4M)π, π/2], note that sin(2θ) ≥ 0 and sin(4Mθ) ≤ 0 so that ps(θ) ≥ 1/2 > 0.09.

Part (iii). This follows from the form of Dn |ψc⟩; the relative magnitude of the amplitudes in |g⟩ is
unchanged by the Grover operator D.

We discuss how to combine the Grover subroutine with the algorithm of section 4 to achieve a quantum learning
complexity of equation (5) in section 5.

4 Learning with imperfect equivalence queries

Equivalence queries are an alternative learning model for PAC learning. It was recently shown [22] that PAC
learning with equivalence queries gives an exponential advantage over learning with labelled examples. In this
section, we show how to use imperfect equivalence queries to PAC learn a concept class.

Definition 4.1 An (ideal) equivalence query consists of submitting a candidate hypothesis h for an un-
derlying true concept c. If h = c then we are told YES. Otherwise, we receive a labelled example (x, c(x))
where c(x) ̸= h(x) at random according to the distribution P(y) = D(y)/D({x : c(x) ̸= h(x)}). Such a
labelled example where h(x) ̸= c(x) is called a counterexample.

Equivalence queries are a very strong learning model, which is perhaps unrealistic. Thus, we assume we can
only implement them probabilistically:

Definition 4.2 An imperfect equivalence query consists of submitting a candidate hypothesis h for the
underlying concept c. In return we receive some labelled example (x, c(x)) with the following promises

• The distribution of (X, c(X)) conditional on being a counterexample is the same as an ideal equiva-
lence query.

• If d(h, c) ≥ ϵ then with some constant probability p we receive a counterexample.

Note that we can tell whether our imperfect equivalence query failed or not - we can look at the result (x, c(x))
and check whether h(x) = c(x). If they are equal, the equivalence query failed. Otherwise, it succeeded. Clas-
sically, we can implement an imperfect equivalence query using 1/ϵ random labelled examples - we just sample
1/ϵ times and see whether c(x) ̸= h(x) for any of our samples. On a quantum computer we can do this in 1/

√
ϵ

time using Grover’s algorithm, as described in section 3 in Theorem 3.2.

We need one additional tool from classical learning theory to run our algorithm:

Definition 4.3 Suppose we have a set of classifiers H ⊆ {0, 1}X and a distribution ρ on H. Then the
weighted majority vote [26], WMVH, ρ ∈ {0, 1}X is defined such that it maximises

Ph∼ρ [WMVH, ρ(x) = h(x)] , (28)

for every x (ties can be broken arbitrarily).

Suppose we have a classical algorithm A that uses TE(ϵ, δ, d) (ideal) equivalence queries to PAC learn a concept
class C. We show how to use O(TE+log(1/δ)) imperfect equivalence queries to PAC learn the same concept class.
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The full detail of the algorithm is given below in algorithm 2. It works by running A, replacing every equivalence
query with repeated imperfect equivalence queries until one succeeds. We terminate if the learning algorithm
A terminates or if we make a total of R(TE , δ) imperfect equivalence queries.

We give some rough intuition for why the algorithm works before moving to prove so. If A terminates, then
with high probability, it outputs an approximately correct hypothesis. If we pick R large enough, then with high
probability TE ideal queries to hypotheses hi with d(hi, c) ≥ ϵ would all succeed in < R/3 imperfect equivalence
queries. Thus, if the algorithm A does not terminate and we make R total imperfect equivalence queries, with
high probability, we spent > 2/3 of our imperfect equivalence queries on hypotheses hi with d(hi, c) < ϵ. Hence,
if we take the weighted majority vote of all of the hypotheses we queried, weighted by the number of imperfect
equivalence queries spent on each hypothesis, most of the vote will be decided by hypotheses that are close to
the concept c. Thus, the weighted majority vote will also be close to c.

The full proof of why algorithm 2 works is given as two lemmas. Before these, we introduce some terminology.

Definition 4.4 A transcript of a run of algorithm 2 is given by the list of hypotheses H = {hi} that
the algorithm queried along with a corresponding collection of natural numbers ni > 0, where ni is the
number of imperfect equivalence queries spent on hi.

The time-spent distribution ρ is the probability distribution on H given by ρ(hi) = ni/
∑
i ni.

Finally, F = {i : d(hi, c) ≥ ϵ} is called the “feasible” set, where our imperfect equivalence query succeeds
with probability at least p. Correspondingly I = {i : d(hi, c) < ϵ} is the “infeasible” set, where there is no
promise on the probability of success.

Firstly, we show that with high probability that a bounded number of queries is spent on the feasible set

Lemma 4.5 With probability ≥ 1−δ the total number of imperfect equivalence queries to feasible hypotheses
is at most

2TE/p+ (1/2p2) log(1/δ). (29)

Proof: A imperfect equivalence query of a feasible hypothesis has (by definition) a chance ≥ p of succeed-
ing, and the individual imperfect equivalence queries are independent. Additionally, there are at most TE
feasible hypotheses to query (since the classical algorithm makes at most TE total equivalence queries).
Thus, the probability that we succeed on all the feasible hypotheses using at most m imperfect queries
feasible hypotheses is lower bounded by the probability of getting at least TE successes from a binomial
distribution B(m, p). Thus, the chance of failure is lower bounded by the chance of fewer than TE successes
from B(m, p).

Let X ∼ B(m, p). Applying Hoeffding’s inequality [27], for m ≥ TE/p we see that

P [X < t] ≤ e−2m(p−TE/m)2 . (30)

Thus it is sufficient for

2m

(
p− TE

m

)2

≥ log(1/δ). (31)

In turn, it is sufficient that
2mp2 − 4pTE ≥ log(1/δ), (32)

whence we deduce our bound.

Next we prove that if we make enough imperfect equivalence queries on infeasible hypotheses, the weighted
majority vote of the transcript must be close to the underlying concept c

Lemma 4.6 Suppose we spend at least 2R/3 imperfect equivalence queries on infeasible hypotheses. Then
the weighted majority vote M of the transcript with the time-spent distribution has d(M, c) < 4ϵ.

Proof: Fix the transcript h1, . . . hk. Let ρ be the time-spent distribution and let ρ′ be the time-spent
distribution conditioned on the infeasible set. That is, for i ∈ I, ρ′(hi) = ρ(hi)/ρ(I). Similarly let ρ̃
the the time-spent distribution conditioned on the feasible set. We first show that if the infeasible set
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overwhelmingly votes for a bit y, then the whole transcript must also vote for that y. To be precise,
suppose that Ph∼ρ′ [h(x) = y] > 3/4, then

Ph∼ρ [h(x) = y] = Ph∼ρ′ [h(x) = y]Ph∼ρ [h ∈ I] + Ph∼ρ̃ [h(x) = y]Ph∼ρ [h ∈ F ] , (33)

>
3

4
· 2
3
, (34)

=
1

2
. (35)

Letting M = WMVH, ρ, we deduce (inspired by [26]) that

PX∼D [M(X) ̸= c(X)] ≤ PX∼D

[
Ph∼ρ′ [h(X) ̸= c(X)] ≥ 1

4

]
, (36)

Markov’s inequality, ≤ 4EX∼DEh∼ρ′ [1{h(X )̸=c(X)}], (37)

= 4Eh∼ρ′ [d(h, c)], (38)

definition of infeasible set, < 4ϵ (39)

We can now prove the performance of our algorithm

Theorem 4.7 Let the maximum number of imperfect equivalence queries of algorithm 2 be

R(TE(ϵ, δ, d), δ) = 6TE(ϵ, δ, d)/p++(3/2p2) log(1/δ), (40)

then algorithm 2 produces a hypothesis h with d(h, c) ≤ 4ϵ with probability at least 1− 2δ.

Proof: By Lemma 4.5, with probability ≥ 1 − δ we spend at most R/3 imperfect equivalence queries on
feasible hypotheses - suppose this happens. If we succeed in an equivalence query for every hypothesis
required by A then with probability at least 1− δ, A outputs a hypothesis h with d(h, c) ≤ ϵ. Otherwise,
we spend at least 2R/3 imperfect equivalence queries on infeasible hypotheses (as we assumed the feasible
ones took at most R/3 imperfect equivalence queries) and then by Lemma 4.6 the weighted majority vote
WMVH, ρ has d(WMVH, ρ, c) < 4ϵ. Thus algorithm 2 outputs a 4ϵ-approximately correct hypothesis with
probability at least (1− δ)2 ≥ 1− 2δ.

Algorithm 2:

Input: δ > 0, ϵ > 0 (the usual PAC parameters) and A a classical equivalence query learning algorithm
with worst case query complexity TE > 0
Output: Hypothesis h ∈ {0, 1}X

1. Set the maximum imperfect equivalence query budget as R = 6TE/p + (3/2p2) log(1/δ). If R total
imperfect equivalence queries have ever been made, go to step 3

2. Run A, whenever it requires an equivalence query to a hypothesis h, repeatedly make imperfect
equivalence queries until one succeeds. If A terminates, output the output of A

3. Let H = {h1, . . . , hk} be the set of hypothesis we ran imperfect equivalence queries on (so that
k ≤ TE). Suppose we spent ni imperfect equivalence queries on hi (so that

∑
ni = R). Let

ρ(hi) = ni/N and output h = WMVH, ρ

5 Upper bound on quantum learning complexity

Here, we combine the results of sections 3 and 4 to give an upper bound on TO, the learning complexity of PAC
learning with a state preparation oracle Qc (and its inverse).

Suppose that it takes E(ϵ) queries to perform an imperfect equivalence query for a hypothesis h. If we have a
classical equivalence learning algorithm A with a query complexity of TE(ϵ, δ, d), then we can use algorithm 2
of section 4 to get a quantum PAC learning algorithm with learning complexity

E(ϵ/4)R(TE(ϵ/4, δ/2, d), δ/2). (41)

10



The current best known TE [22] has a worst-case query complexity of

TE = O

([
d+ log

(
1

δ

)]
log9

(
1

ϵ

))
. (42)

If we use the Grover subroutine (section 3 algorithm 1) with G = {(x, 1 − h(x)) : x ∈ X} to implement the
imperfect equivalence queries, we find E(ϵ) = O(1/

√
ϵ). Substituting these TE and E into the bound from

equation (41), we get an upper bound of

TO = O

(
1√
ϵ

[
d+ log

(
1

δ

)]
log9

(
1

ϵ

))
, (43)

which is a square-root improvement (up to polylogarithmic factors) over the classical PAC learning sample
complexity of equation (8).

6 Lower bound on quantum learning complexity

In this section, we prove a lower bound on quantum PAC learning with a state preparation oracle (and its
inverse). We show that Ω(d/

√
ϵ) oracle calls are necessary.

Suppose we have a concept class C with VC dimension d + 1. Then there is a set Z of size d + 1 in X which
is shattered by C. We pick a marked element x0 ∈ Z and let Y = Z \ {x0}. We define our distribution D as a
perturbed delta-function, the standard distribution used to prove lower bounds in learning:

D(x) =


0, if x /∈ Z,

1− 4ϵ, if x = x0,

4ϵ/d, if x ∈ Y.

(44)

We also restrict our concept class to C̃ = {c ∈ C : c(x0) = 0}. If our PAC algorithm works on C, it will certainly
work on C̃. Since our distribution is restricted to Z we need only identify the behaviour of our concept on Z.
Thus, we can index our concepts by bit-strings u ∈ {0, 1}d and index them with elements of Y . To be precise,

we identify a concept c ∈ C̃ with a bit-string u ∈ {0, 1}d, where uy = c(y).

For a given bit-string u ∈ {0, 1}d, the state preparation oracle acts as

Qu |IN⟩ =
√
1− 4ϵ |x0 0⟩+

√
4ϵ

d

∑
x∈Y

|x ux⟩ . (45)

Our main approach is to reduce to the following fact from Lemma 51 in [20].

Lemma 6.1 Let u ∈ {0, 1}d be a bit string, and let Ou be a weak phase-kickback oracle, that is

Ou |x⟩ = e2iηux |x⟩ . (46)

Then recovering more than 3/4 of the bits of u with high probability requires at least Ω(d/η) calls to Ou,
its inverse or controlled versions of these.

Proof: See [20]

We will use calls to controlled versions of Ou (denoted c − Ou) to implement the PAC state generation oracle
Qu. We fix η ∈ [0, π/2] such that sin(η) =

√
4ϵ.

Lemma 6.2 One can implement Qu using one call to c−Ou, one to c−O†
u and two qubit-ancillae.

Proof: First, it is convenient to shift the phase to have a ± symmetry. Define a constant phase gate as

Pα |x⟩ = eiα |x⟩ . (47)
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Then let
Õu = PηO

†
u, (48)

so that
Õu |x⟩ = eiηûx |x⟩ , (49)

where
ûx = (−1)ux . (50)

We start by generating a uniform superposition of indices with the two-qubit ancillae in the |+⟩ state:

1

2
√
d

∑
x∈Y

|x⟩ [|00⟩+ |01⟩+ |10⟩+ |11⟩]. (51)

We next apply 4 controlled gates - either c − Pη, c − P−η c − Õu and c − Õ†
u, such that each term in the

superposition in equation (51) picks up a different phase:

7→ 1

2
√
d

∑
x∈Y

|x⟩
[
eiη |00⟩+ e−iη |01⟩+ eiηûx |10⟩+ e−iηûx |11⟩

]
. (52)

Note that this requires two calls to singly controlled versions of the oracle - we can implement a double-
controlled version by using a CCNOT (Toffoli) gate followed by a controlled oracle. Next, we apply a
Hadamard gate to the second qubit register

7→ 1√
2d

∑
x∈Y

|x⟩ [|0⟩ (cos(η) |0⟩+ i sin(η) |1⟩) + |1⟩ (cos(ηûx) |0⟩+ i sin(ηûx) |1⟩)] . (53)

We then apply S† to the second qubit register (to remove the factors of i). We also use the even/odd ness
of cos/sin to regroup the terms:

7→ 1√
2d

∑
x∈Y

|x⟩ [cos(η)(|0⟩+ |1⟩) |0⟩+ sin(η)(|0⟩+ ûx |1⟩) |1⟩] . (54)

We then apply a Hadamard gate to the first qubit register:

7→ cos(η)

(
1√
d

∑
x∈Y

|x⟩

)
|00⟩+ sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)
|1⟩ (55)

Conditional on the final qubit being in the state |0⟩, we apply a unitary to the first register that maps the
uniform superposition over Y into the state |x0⟩:

7→ cos(η) |x0 0 0⟩+ sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)
|1⟩ (56)

Finally, conditional on the first register not being in the state |x0⟩, we apply an X gate to the second qubit
register,followed by an H gate on the second qubit register:

7→

[
cos(η) |x0 0⟩+ sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)]
|+⟩ (57)

But by the definition of η, we see that this is exactly equal to the action of the PAC oracle:

(Qu |IN⟩) |+⟩ (58)

We thus deduce our bound

Theorem 6.3 TO = Ω
(
d√
ϵ

)
Proof: We can replace every call to Qu (or its inverse) in our PAC algorithm with the unitary process
described in Lemma 6.2, which requires a constant number of calls to (a controlled) Ou (or its inverse). If
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the PAC algorithm outputs a correct hypothesis, then by construction of our distribution, it must agree
on at least 3/4 of the bits of u. Thus, the algorithm replaced with calls to Ou (and its inverse) satisfies the
conditions of Lemma 6.1, and thus it must use at least Ω(d/η) calls to Ou. Hence, we reach a lower bound
of

TO = Ω

(
d

arcsin
√
4ϵ

)
= Ω

(
d√
ϵ

)
. (59)

Note that our lower bound matches our upper bound (equation (5)), up to polylogarithmic factors.

7 Application to learning k−juntas

A k-junta is a function f : {0, 1}n → 0, 1 that only depends on a subset of k bits. Letting X = {0, 1}n, we can
consider the concept class C = {f ∈ {0, 1}X : f is a k junta}. The exact VC dimension of C is unknown, but
we can bound it using the inequalities

2d ≤ |C| ≤ |X |d + 1. (60)

The first of these comes from noting that if C shatters a set of size ℓ, it must contain at least 2ℓ elements; the
second is called Sauer’s lemma [28]. We can bound

|C| ≤
(
n

k

)
2(2

k), (61)

since there are
(
n
k

)
ways to choose the k bits determining the junta, and then 2(2

k) choices for the underlying
function. We deduce that

d ≤ log

[(
n

k

)]
+ 2k ≤ k log(en/k) + 2k. (62)

Thus, our learning algorithm can PAC learn a k−junta with

O

(
1√
ϵ

[
k log

(n
k

)
+ 2k + log

(
1

δ

)]
log9(1/ϵ)

)
, (63)

oracle calls. This has a worse scaling in n than algorihtms presented in [10, 29], but has a better scaling in ϵ
and works for any underlying distribution, whereas previous work has focused on the uniform distribution.
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