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Abstract

We revisit the problem of characterising the complexity of Quantum PAC learning, as
introduced by Bshouty and Jackson [SIAM J. Comput. 1998, 28, 1136–1153]. Several
quantum advantages have been demonstrated in this setting, however, none are generic:
they apply to particular concept classes and typically only work when the distribution that
generates the data is known. In the general case, it was recently shown by Arunachalam
and de Wolf [JMLR, 19 (2018) 1-36] that quantum PAC learners can only achieve constant
factor advantages over classical PAC learners.

We show that with a natural extension of the definition of quantum PAC learning used
by Arunachalam and de Wolf, we can achieve a generic advantage in quantum learning. To
be precise, for any concept class C of VC dimension d, we show there is an (ϵ, δ)-quantum
PAC learner with sample complexity

O

(
1√
ϵ

[
d+ log

(
1

δ

)]
log9(1/ϵ)

)
.

Up to polylogarithmic factors, this is a square root improvement over the classical learning
sample complexity. We show the tightness of our result by proving an Ω(d/

√
ϵ) lower bound

that matches our upper bound up to polylogarithmic factors.

1. Introduction

Probably approximately correct (PAC) learning Valiant (1984) is a fundamental model of
machine learning. One is given a set of functions C ⊆ {0, 1}X = {f : X → {0, 1}}, called
a concept class, that encodes the structure of a learning problem (for example, functions
that only depend on the hamming weight of their input). Given labelled examples from an
unknown concept c ∈ C, we are tasked with learning an approximation to c.

We model the data that the learning algorithm receives by an unknown probability
distribution D on X , and say that a hypothesis h : X → {0, 1} is ϵ-approximately correct if
the probability that it differs from c is at most ϵ. To be precise, a hypothesis h ∈ {0, 1}X
is said to be ϵ-approximately correct if PX∼D [h(X) ̸= c(X)] ≤ ϵ.

A learning algorithm A draws independent samples (X, c(X)), where X is distributed
according to D, and then outputs a hypothesis h. The algorithm A is an (ϵ, δ)-learner if,
with probability at least 1−δ over the random samples, it outputs a ϵ-approximately correct
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hypothesis.

The amount of “structure” possessed by C is characterised by its Valiant-Chapernikis
(VC) dimension Vapnik and Chervonenkis (1971), denoted d. For a subset Y ⊆ X, we
define C|Y := {c|Y : c ∈ C} as the restriction of the concept class to Y . We say that C
shatters Y if C|Y = {0, 1}Y , i.e., if all possible labellings of Y appear in concepts in C.
Then, d is the maximum size of a shattered set, that is d = max{|Y | : Y is shattered by C}.

Over a period of 27 years Blumer et al. (1989); Hanneke (2016), the exact asymptotic
scaling of the minimum number of samples required by an (ϵ, δ)-learner was found to be

Θ

[
1

ϵ

(
d+ log

(
1

δ

))]
, (1)

thereby characterising the complexity of classical PAC learning.

In 1995, Bshouty and Jackson Bshouty and Jackson (1995) considered a generalisation
of PAC learning to the quantum setting Arunachalam and de Wolf (2017). Here, instead of
receiving independent identically distributed samples (X,C(X)), one receives independent
copies of a quantum state

|ψc⟩ =
∑
x∈X

√
D(x) |x c(x)⟩ , (2)

known as a quantum sample. In particular, measuring such a state in the computational
basis gives a sample (X,C(X)). In turn, instead of counting the number of samples, the
quantum sample complexity is the number of copies of the state given to the quantum
learning algorithm.

The Quantum PAC model is instrumental in understanding the limits of other quan-
tum cryptographic and computational tasks. For instance, in Arunachalam et al. (2021), a
connection between differential privacy and PAC learnability of quantum states was estab-
lished, and recently Cai et al. (2022) used the PAC framework to investigate the complexity
of learning parameterised quantum circuits, which are ubiquitous in variational quantum
algorithms where they are used for quantum state preparation.

In the special case of quantum PAC learning under the uniform distribution, it has
been shown that one can obtain quantum sample complexity advantages in specific learning
tasks, such as learning Fourier basis functions Bernstein and Vazirani (1997), DNF formulae
Bshouty and Jackson (1995), and k-juntas Atici and Servedio (2007). These advantages rely
on Fourier sampling, in which one applies the Hadamard transform on every qubit followed
by a measurement of the resulting state in the computational basis. One observes a bit
string s with probability given by its squared Fourier coefficient |ĉs|2 and can thus directly
infer properties of the Fourier spectrum of the unknown function. However, such advantages
rely on the distributions D being (approximately) uniform.

The general quantum PAC learning model, with an arbitrary and unknown distribution
D, was studied by Arunachalam and de Wolf Arunachalam and de Wolf (2017, 2018),
who showed that the quantum sample complexity has exactly the same asymptotic scaling
as the classical learning complexity, ruling out everything but constant factor prospective
advantages.
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Thus, most recent literature has focused identifying advantages only in suitably re-
stricted versions of the quantum PAC model Atici and Servedio (2007); Pirnay et al. (2023).
Nevertheless, such models have demonstrated remarkable utility when assessing the com-
plexity of learning quantum states, channels Aaronson (2007); Chung and Lin (2018); Roc-
chetto (2018), and measurements Padakandla and Magner (2022); Cheng et al. (2015) in
quantum theory with lower bounds on query complexity established in Zhang (2010).

Here, we consider a natural and less restrictive version of the quantum PAC learning
model. Instead of access to copies of the state |ψc⟩, we assume that we have access to
the quantum circuit that generates it, similarly in spirit to Kothari and O’Donnell (2023);
van Apeldoorn et al. (2023). That is, we assume one has access to a quantum circuit Qc
that generates a quantum sample |ψc⟩ (for example, as a decomposition into one and two-

qubit gates) and thus can implement Qc and Q†
c. Given this natural adjustment to the

input access of quantum PAC learning algorithms, we can revisit the question of whether
strong generic (beyond constant-factor) quantum advantages are possible for quantum PAC
learning.

1.1. Our results

In this paper, we show that there is a square root advantage (up to polylogarithmic factors)
for quantum PAC learning over classical PAC learning in the full, general model. Our main
result (see section 5) is summarised by the following theorem.

Theorem 1: Let C be a concept class with VC dimension d. Then, for every
ϵ, δ > 0, there exists a (ϵ, δ)-quantum PAC learner for C that makes at most

O

(
1√
ϵ

[
d+ log

(
1

δ

)]
log9(1/ϵ)

)
, (3)

calls to an oracle that generates a quantum sample (Qc), or its inverse (Q†
c).

In comparison, the optimal classical PAC learning complexity (and quantum PAC com-
plexity given access to copies of |ψc⟩ Arunachalam and de Wolf (2018)) is given in equation
(5). Thus, our upper bound is a square root improvement (up to polylogarithmic factors)
over the best possible classical learning algorithm. In fact, we show that this upper bound
is essentially tight, up to polylogarithmic factors, as captured by the following theorem.

Theorem 2: Let C be a concept class with VC dimension d. Then, for a sufficiently
small constant δ > 0 and for all ϵ > 0, any quantum (ϵ, δ)-learner for C makes at least

Ω

(
d√
ϵ

)
(4)

calls to an oracle that generates a quantum sample (Qc), or its inverse (Q†
c).
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1.2. Technical overview

Our starting point is the observation that the lower bound of Arunachalam and de Wolf
Arunachalam and de Wolf (2018) implicitly rests on the assumption that a quantum learning
algorithm must not depend on the underlying concept, and it can thus be represented by
a (concept independent) POVM. They then reduce the problem of PAC learning to that
of state discrimination (where the POVM is state-independent). However, if we allow for
the common assumption that the algorithm has access to an oracle Qc generating |ψc⟩, the
proof of the lower bound no longer holds1. If the POVM describing the algorithm calls the
oracle, it, by definition, depends on the underlying concept. Thus, one cannot reduce the
problem to that of state discrimination, where it is assumed that the POVM is independent
of the input state.

If one implements Qc on some physical device (for example, as a series of one and two-

qubit gates), it is natural to assume that one can also implement the inverse process Q†
c (for

example, by reversing the order of the gates and replacing each by its inverse). Thus, we
argue that if one has access to the state |ψc⟩ it is natural to also consider the situation in

which one also has access to Qc and Q
†
c. Indeed, this setting has recently received significant

attention van Apeldoorn et al. (2023); Haah et al. (2023).

Given access to Qc and Q
†
c, it is tempting to attempt techniques such as Grover search

and amplitude amplification, which often achieve quadratic quantum advantages. Consider,
for example, the simplest possible concept class C = {0, 1}X : the set of all possible classifiers.
It is known that a classical worst-case distribution for this class is a “perturbed” delta-
function Arunachalam and de Wolf (2018), where there is a marked element x0 ∈ X with
probability D(x0) = 1−4ϵ, and all other elements have equal probability. Roughly speaking,
to (ϵ, δ)-learn C, one must learn a fraction of 3/4 of the values of c. However, it takes on
average O(1/ϵ) samples to return an x that isn’t x0 and thus the classical learning query
complexity is Ω(|X |/ϵ). In this case, one could repeatedly run Grover’s search, marking any
state |x b⟩ as good if we have not yet learnt c(x). With Grover search, it only takes O(1/

√
ϵ)

oracle calls to return an x that is not x0 and thus we see the quantum query complexity
is O(|X |/

√
ϵ), the desired quadratic improvement. Therefore, we already outperform the

lower bound of Arunachalam and de Wolf Arunachalam and de Wolf (2018).

Note that the method above does not immediately generalise to other concept classes.
For example, consider the concept class C = {c ∈ {0, 1}X : |c−1({1})| = d}, the class of
classifiers with exactly d inputs that map to 1, and take D to be the uniform distribution
on X . If |X | is very large, then most unseen x’s will have c(x) = 0 and thus the above
approach is uninformative. Instead, one should mark a state |x b⟩ as good if b = 1. In this
way, one can search for the inputs x ∈ X that have c(x) = 1 and hence deduce c. This will
also lead to a quadratic quantum advantage.

However, for general concept classes, it is less clear what to search for. One could run
the Halving algorithm, where we mark a state |x y⟩ as good if the majority of the concepts
h ∈ C that are consistent with the data so far have h(x) = 1−y. In this case, every time the
Grover algorithm succeeds, one would eliminate at least half of the concepts in C. However,
this leads to a log |C| factor in the learning complexity, which can be as large as d log |X |,
i.e., arbitrarily larger than d (the VC dimension of C). Thus, even under the simplifying

1. Since the state |ψc⟩ must be produced by some process, this assumption is quite minimal.
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assumption of the uniform distribution, it is unclear how to attempt to use Grover’s search
to obtain a quantum advantage.

Nevertheless, we show that one can achieve a square root quantum advantage in the
general case. As a first step, we use the technique of equivalence queries Gluch and Urbanke
(2021) (also known as random counterexamples). An equivalence query is an alternative
learning oracle to the traditional PAC oracle, in which one submits a candidate hypothesis
h ∈ {0, 1}X . If h = c, then the oracle outputs Y ES, otherwise it produces a labelled
counterexample (X, c(X)) where

(i) h(X) ̸= c(X).

(ii) X is distributed according to P(y) = D(y)/D({x : c(x) ̸= h(x)}).

Observe that by marking a state |x y⟩ as good if h(x) = 1 − y, we can see how to
implement an equivalence query using Grover search, and thus one can hope to use this
tool from classical learning theory to achieve an advantage. However, when one removes
the simplifying assumption of a known distribution, further problems arise.

For a generic distribution, we do not know D(x) for any x ∈ X and therefore one cannot
run exact Grover search. Instead, we consider a well-studied technique Boyer et al. (1998), in
which one makes a random number ofM queries to the Grover oracle, whereM is uniformly
distributed between 0 and a chosen threshold TG. This search succeeds with non-negligible
probability if the amplitude of the projection of the initial state onto the subspace spanned
by the “good” states (the “good” subspace) is Ω(1/TG). For an equivalence query h, this
amplitude is

√
D({x : c(x) ̸= h(x)}), which could be arbitrarily small (as D is arbitrary).

Hence, it may take an arbitrarily large (expected) number of iterations of Grover’s search
(and hence oracle calls) to run a classical equivalence query learning algorithm.

To solve this issue, we show how to use equivalence queries that succeed with a constant
probability, called imperfect equivalence queries, to PAC learn a concept. We can then run
these imperfect equivalence queries using Grover search. We use a classical (ideal) equiv-
alence query algorithm, replacing equivalence queries with repeated imperfect equivalence
queries, but with a maximum imperfect equivalence query budget R. Suppose that the
algorithm requires equivalence queries to hypotheses h1, . . . hk. If all of the successfully run
an equivalence query for every hypothesis, then the classical algorithm succeeds, and we use
its output. Otherwise, we hit the imperfect equivalence query budget R and must terminate
the classical algorithm early. By choosing R sufficiently large, we can be sure that if we
hit the budget, most of the imperfect equivalence queries were spent on hypotheses hi that
are “close” to c (and hence have a low chance of the Grover search succeeding). Thus if we
take the “average” of the hypotheses hi weighted by the number of imperfect equivalence
queries spent on each hypothesis, we also output a classifier close to c.

To conclude the section, we sketch a proof of our lower bound. We consider an arbitrary
concept class C of VC dimension d. We note that there is a shattered set Y ⊆ X of size
d, and take D to be a “perturbed” delta-function distribution on Y . We can thus think of
concepts c in C as bit strings of length d, where the bit string describes c’s action on Y .
Since Y is shattered by C, all possible bit strings will appear. Any candidate PAC algorithm
must be able to recover most of the bit string with high probability. We reduce to a known
problem by introducing a weak phase-kickback oracle for the bit string, which we use to
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implement the PAC oracle. We can then use a standard lower bound van Apeldoorn et al.
(2023) on recovering a bit string with high probability using a weak phase kickback oracle.

1.3. Discussion of access models

Since Valiant introduced PAC learning, a plethora of access models have been put for-
ward, inspired by different real-world scenarios. We provide a brief discussion of the access
model considered in this paper (access to Qc and Q†

c), and its relationship to three other
popular models. We compare to labelled examples (X, c(X)), quantum samples |ψc⟩, and
membership queries - where a learner submits an x ∈ X and receives c(x) in return.

Labelled examples are the most commonly considered access model in the machine
learning literature. Even if learning complexity is polynomial, there may be no (time)
efficient learner Pitt and Valiant (1988). Some classes have time-efficient learners with
labelled examples and membership queries, but not with only labelled examples Angluin and
Kharitonov (1991). Curiously, we are not aware of a work that gives a learning complexity
lower bound on labelled examples and membership queries, but we believe that the standard
labelled examples lower bound setup (see Arunachalam and de Wolf (2017)) should give the
same lower bound as only labelled examples. We note that membership queries can be
much stronger than either labelled examples, quantum samples or our model; given labelled
examples or quantum samples, it takes on average 1/D(x) queries to find c(x). Given our
access model, one can perform amplitude amplification such that only 1/

√
D(x) samples

are required, but this may still be large. Indeed, if D(x) = 0, then a membership query of x
is impossible using labelled examples, membership queries or our model. Thus, membership
queries are incomparable with our model; they provide some advantage, but this is in time
complexity, and they do not, in general, provide an information theoretic advantage.

Quantum samples were introduced as the natural quantum generalisation of labelled
examples. As noted, for specific concept classes and distributions, they are known to give
learning (and time) complexity advantages over labelled examples. However, in general,
quantum samples and labelled examples have the same asymptotic learning complexity.
Furthermore, in practice it is unclear how to prepare |ψc⟩, given that it depends on c and
D. Whether or not this is reasonable depends on how the labelled examples are classically
generated - if they are completely “black-box”, then it seems unlikely that quantum samples
will be an appropriate resource without very strong quantum data loading subroutines, such
as QRAM. If c and D are “white-box”, i.e. there is some circuit producing them, then an
appropriate quantisation procedure will lead to Qc. Given a circuit description of Qc, one
can theoretically perform Q†

c. Thus, in most scenarios where quantum samples are sensible
for learning classical data, our model is also reasonable.

A more promising case for quantum samples is when data is inherently quantum. Sup-

pose a quantum process produces
∣∣∣ψ̃c〉 =

∑
x

√
D(x) |x, c(x), g(x)⟩, where g(x) is some

extraneous function. In this case, learning c allows us to make physical predictions of the
c(x) register given the x register, without knowledge of g(x). This is useful, e.g., in learning
far-range behaviour/correlations. By the Stinespring dilation theorem, the quantum pro-
cess has some unitary representation Qc, which can be taken as our oracle. Note that our
algorithm is insensitive to the addition of the g(x) register (or extraneous phases).
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1.4. Open problems

This work leaves several interesting avenues for further research. Firstly, one could attempt
to tighten the upper bound (3) to remove polylogarithmic factors and prove a tight matching
lower bound. The removal of a log(1/ϵ) factor in the query complexity for classical PAC
learning took 27 years Blumer et al. (1989); Hanneke (2016); we hope that the quantum
case will be simpler. Moreover, in order to achieve 1/

√
ϵ scaling with our method, one would

require the optimal classical equivalence query learning complexity to have no ϵ dependence
and thus, a different approach is likely to be required.

It is interesting to consider the power of quantum learning algorithms with access to the
oracle Qc, but not its inverse Q†

c. The inverse oracle seems necessary for Grover’s search,
and thus it is unclear if a quantum advantage is possible. The lack of such an advantage
would have interesting implications for understanding what makes quantum computing
more powerful than classical computation.

Finally, one could consider the implications of this work to generic advantages in more
practical models of quantum machine learning, such as quantum neural networks.

1.5. Organisation

We first cover all required technical preliminaries in section 2. In section 3, we cover our
Grover subroutine that leads to the quadratic advantage. Equivalence queries and how to
use imperfect equivalence queries in a classical learning algorithm are both described in
section 4. Using the results of these two sections, we derive the upper bound (3) in section
5; we prove an almost matching lower bound on our quantum model in section 6, using a
reduction to a phase oracle problem. Finally, we consider the application of our algorithm
to learning k-juntas in appendix D.

2. Preliminaries

We will only consider functions defined on finite sets. We first introduce the standard,
classical model of PAC learning Valiant (1984). For a finite set X , let {0, 1}X = {f : X →
{0, 1}}, an element f ∈ {0, 1}X is called a classifier. We wish to approximately learn an
unknown classifier c from a known subset of classifiers C ⊆ {0, 1}X , where C is called a
concept class.

There is an unknown distribution D on X , where D(x) denotes the probability of drawing
x from X . The distance between two classifiers is defined as the probability they disagree:
d(h1, h2) := PX∼D [h1(X) ̸= h2(X)]. For a fixed tolerance ϵ > 0 we say a classifier h ∈
{0, 1}X is ϵ-approximately correct if d(h, c) ≤ ϵ.

A learning algorithm A has access to some oracle that gives information about c. Tra-
ditionally, one assumes that the oracle generates a labelled example (X, c(X)) at random,
where X is distributed according to D. We will consider an additional type of oracle in
section 4. The sample complexity of A is the number of labelled examples it receives.

For a fixed error probability δ, we say that an algorithm A is an (ϵ, δ) learner if, with
probability at least 1− δ (over the randomness of the algorithm), the algorithm outputs an
ϵ-approximately correct hypothesis, for every possible c and D.
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For a fixed concept class C and ϵ, δ > 0, one wishes to find an (ϵ, δ)-learner with minimum
sample complexity. The optimal sample complexity will depend on ϵ, δ and some measure of
complexity of the class C, which we now define. For a subset Y ⊆ X , we define C|Y := {c|Y :
c ∈ C} as the restriction of the concept class to Y . We say that C shatters Y if C|Y = {0, 1}Y ,
i.e., if all possible labellings of Y appear in concepts in C. The Valiant-Chapernikis (VC)
dimension Vapnik and Chervonenkis (1971) of C, denoted d, is the maximum size of a
shattered set, that is d = max{|Y | : Y is shattered by C}.

In Blumer et al. (1989); Hanneke (2016), it was shown that the optimal sample com-
plexity using labelled examples, denoted TC(ϵ, δ, d) scales as

TC = Θ

[
1

ϵ

(
d+ log

(
1

δ

))]
. (5)

In the quantum PAC setting Bshouty and Jackson (1995), one assumes that the data is
stored coherently, i.e., one considers the state

|ψc⟩ :=
∑
x∈X

√
D(x) |x c(x)⟩ , (6)

chosen so that measuring |ψc⟩ in the computational basis gives a random labelled example.
Instead of the classical sample complexity, one considers the minimum number of copies
TS(ϵ, δ, d) of |ψc⟩ required to PAC learn C. Since one can always measure the state in place
of a call to a classical oracle, TS is, at worst, the optimal sample complexity of a classical
algorithm. In fact, Arunachalam and de Wolf Arunachalam and de Wolf (2018) showed
that there is no (asymptotic) quantum advantage from using states instead of oracle calls -
the optimal TS grows exactly as in equation (5).

We assume a stronger model, in which one has access to an oracle Qc (which depends on
the underlying concept), defined by its action on a fixed known input state |IN⟩ (independent
of the underlying concept):

Qc |IN⟩ = |ψc⟩ =
∑
x∈X

√
D(x) |x c(x)⟩ . (7)

This is similar in spirit to the recent work van Apeldoorn et al. (2023), which deals with
state tomography with a state preparation unitary. We also assume that the algorithm
has access to the inverse of the oracle, Q†

c. This is relevant if, for example, Qc is given
as a quantum circuit of one or two-qubit gates; in this case, Q†

c may be constructed by
reversing the order of the gates and replacing each with its inverse. We define the learning
complexity of any algorithm as the total number of queries to Qc or Q†

c. The minimum
learning complexity of any (ϵ, δ)-learner is denoted TO(ϵ, δ, C).

The lower bound of Arunachalam and de Wolf (2018) does not apply to a model with ac-
cess to Qc, as it assumes the quantum algorithm is described by a POVM that is independent
of the underlying concept c. However, Qc explicitly depends on c and thus, any algorithm
(or POVM) that calls Qc will violate the assumptions in Arunachalam and de Wolf (2018).
Hence, one can hope for quantum advantage in this setting.

We recap all of the different learning models considered in Table 1.
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Model
Quantum

or
Classical

Learning
resource

Optimal (ϵ, δ)
learner

complexity

Bounds on optimal
learner complexity

Labelled
examples

Classical
Sample

(X,C(X))
where X ∼ D

TC Θ
[
1
ϵ

(
d+ log

(
1
δ

))]
Equivalence

queries
Classical See section 4 TE O

([
d+ log

(
1
δ

)]
log9

(
1
ϵ

))
Imperfect
equivalence
queries

Classical See section 4 TIE O(TE + log
(
1
δ

)
)

Quantum
samples

Quantum Copy of |ψc⟩ TS Θ(TC)

Quantum oracle
calls

Quantum
Application of
Qc or Q

†
c

TO O( 1√
ϵ
TIE), Ω(

d√
ϵ
)

Table 1: Different learning models considered in our work. TM corresponds to the
minimum number of resources needed by any (ϵ, δ)-learner in model M . The models

introduced by this work have grey rows.

We end the preliminaries section with a recap of Grover’s algorithm. For a subspace V
of a Hilbert space H, let ΠV be the orthogonal projection map onto V. Furthermore, let IV
be the reflection operator in V⊥, given by IV = 1 − 2ΠV . For a state |ψ⟩, let I|ψ⟩ be the
reflection operator when V = span{|ψ⟩}.

Grover search takes as its input a “good” subspace G ⊆ H, and an input state |ψ⟩.
One then implements the Grover operator D = −I|ψ⟩IG . The state |ψ⟩ can be decom-
posed as |ψ⟩ = sin(θ) |g⟩ + cos(θ) |b⟩, where |g⟩ , |b⟩ are orthonormal, θ ∈ [0, π/2], |g⟩ ∈
G, |b⟩ ∈ G⊥. It is well-known Nielsen and Chuang (2010) that Dn |ψ⟩ = sin((2n+ 1)θ) |g⟩+
cos((2n+ 1)θ) |b⟩ and thus if one knows θ exactly, one can applyDn such that sin((2n+ 1)θ) ≈
1.

3. Grover Subroutine

An essential subroutine for our quantum advantage is to use calls to Qc and Q†
c to run a

Grover search Nielsen and Chuang (2010); Grover (1996). This leads to a quadratic improve-
ment in learning complexity (up to polylogarithmic factors) over classical PAC learning. In
this section, we describe our Grover subroutine.

Our Grover subroutine takes as an input a “good” subset G ⊆ {(x, b) : x ∈ X , b ∈
{0, 1}}, where we wish to find an x such that (x, c(x)) ∈ G. We define a corresponding
“good” subspace by G = span{|x b⟩ : (x, b) ∈ G}. In order to implement Grover’s search,
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we need to implement the Grover operator, as defined above. We show that implementing
D requires a constant number of queries.

Lemma 3: One can implement the Grover operator D with one call to Qc and one
to Q†

c.

Proof Sketch: We use that I|ψc⟩ = Qc(1 − 2 |IN⟩⟨IN|)Q†
c, see appendix A for details.

□

We decompose |ψc⟩ = sin(θ) |g⟩+cos(θ) |b⟩ , where |g⟩ , |b⟩ are orthonormal, θ ∈ [0, π/2],
|g⟩ ∈ G, |b⟩ ∈ G⊥. If we knew θ exactly, we could apply Dn such that sin((2n+ 1)θ) ≈ 1.
However, since θ depends on D, which is unknown, this is impossible. Instead, we use the
well-established Boyer et al. (1998) version of Grover’s search for an unknown number of
items. Our exact subroutine is given below; algorithm 1. The properties of algorithm 1 are
summarised in the following theorem:

Theorem 4: Let G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}} be a good subset, ϵ > 0 be a fixed
tolerance. Suppose that we run algorithm 1 with these inputs, then

(i) In the worst case, the algorithm makes O(1/
√
ϵ) oracle (or inverse oracle) calls

(ii) If PX∼D [(X, c(X)) ∈ G] ≥ ϵ then the algorithm succeeds, i.e., returns (x, c(x)) ∈
G, with probability at least p = 0.09.

(iii) Conditional on succeeding, the output of the algorithm (X, c(X)) is distributed
according to

P [(X, c(X))| algorithm succeeds ] =
PX∼D [X]

PX∼D [(X, c(X)) ∈ G]
. (8)

Proof Sketch: Part (i): This follows from the definition of the algorithm and Lemma
3.

Part (ii): Let M = ⌈2/
√
ϵ⌉, let θ be as above and let ps(θ) be the probability that

the algorithm succeeds. We use Lemma 2 (section 6) from Boyer et al. (1998), which
claims

ps(θ) =
1

2
− 1

4M

sin(4Mθ)

sin(2θ)
. (9)

We relegate the technical details of boudning this function to appendix A.

Part (iii). This follows from the form of Dn |ψc⟩. □

Algorithm 1:
Input: G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}} a good subspace, ϵ > 0 a tolerance
Output: labelled example (x, c(x)). Succeeds if (x, c(x)) ∈ G

1. Produce |ψc⟩ = Qc |IN⟩

10
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2. Pick N from 0, 1 . . . , ⌈2/
√
ϵ⌉ − 1 uniformly at random

3. Apply D, the Grover operator, N times to |ψc⟩

4. Measure the resulting state in the computational basis

We discuss how to combine the Grover subroutine with the algorithm of section 4 to
achieve a quantum learning complexity of equation (3) in section 5.

4. Learning with imperfect equivalence queries

Equivalence queries are an alternative learning model for PAC learning. It was recently
shown Gluch and Urbanke (2021) that PAC learning with equivalence queries gives an
exponential advantage over learning with labelled examples. In this section, we show how
to use imperfect equivalence queries to PAC learn a concept class.

Definition 5: An (ideal) equivalence query consists of submitting a candidate hy-
pothesis h for an underlying true concept c. If h = c then we are told YES. Otherwise,
we receive a labelled example (x, c(x)) where c(x) ̸= h(x) at random, according to
the distribution P(y) = D(y)/D({x : c(x) ̸= h(x)}). Such a labelled example where
h(x) ̸= c(x) is called a counterexample.

Equivalence queries are a very strong learning model, which is perhaps unrealistic. Thus,
we assume we can only implement them probabilistically:

Definition 6: An imperfect equivalence query consists of submitting a candidate
hypothesis h for the underlying concept c. In return we receive some labelled example
(x, c(x)) with the following promises

• The distribution of (X, c(X)) conditional on being a counterexample is the same
as an ideal equivalence query.

• If d(h, c) ≥ ϵ then with some constant probability p we receive a counterexample.

Note that we can tell whether our imperfect equivalence query failed or not - we can
look at the result (x, c(x)) and check whether h(x) = c(x). If they are equal, the equiv-
alence query failed. Otherwise, it succeeded. Classically, we can implement an imperfect
equivalence query using 1/ϵ random labelled examples - we just sample 1/ϵ times and see
whether c(x) ̸= h(x) for any of our samples. On a quantum computer we can do this in
1/

√
ϵ time using Grover’s algorithm, as described in section 3 in Theorem 4.
We need one additional tool from classical learning theory to run our algorithm:

Definition 7: Suppose we have a set of classifiers H ⊆ {0, 1}X and a distribution
ρ on H. Then the weighted majority vote Masegosa et al. (2020), WMVH, ρ ∈ {0, 1}X
is defined such that it maximises

Ph∼ρ [WMVH, ρ(x) = h(x)] , (10)

11
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for every x (ties can be broken arbitrarily).

Suppose we have a classical algorithm A that uses TE(ϵ, δ, d) (ideal) equivalence queries
to PAC learn a concept class C. We show how to use O(TE+log(1/δ)) imperfect equivalence
queries to PAC learn the same concept class.

The full detail of the algorithm is given below in algorithm 2. We give some rough
intuition for why the algorithm works - the technical proof is given by 2 lemmas - see
appendix B. If A terminates, then with high probability, it outputs an approximately correct
hypothesis. If we pick R large enough, then with high probability TE ideal queries to
hypotheses hi with d(hi, c) ≥ ϵ would all succeed in < R/3 imperfect equivalence queries.
Thus, if the algorithm A does not terminate and we make R total imperfect equivalence
queries, with high probability, we spent > 2/3 of our imperfect equivalence queries on
hypotheses hi with d(hi, c) < ϵ. Hence, if we take the weighted majority vote of all of
the hypotheses we queried, weighted by the number of imperfect equivalence queries spent
on each hypothesis, most of the vote will be decided by hypotheses that are close to the
concept c. Thus, the weighted majority vote will also be close to c. We formally describe
the performance of our algorithm in the following theorem:

Theorem 8: Let the maximum number of imperfect equivalence queries of algorithm
2 be

R(TE(ϵ, δ, d), δ) = 6TE(ϵ, δ, d)/p+ (3/2p2) log(1/δ), (11)

where p is the constant appearing in theorem 4. Then algorithm 2 produces a hypoth-
esis h with d(h, c) ≤ 4ϵ with probability at least 1− 2δ.

Algorithm 2:
Input: δ > 0, ϵ > 0 (the usual PAC parameters) and A, a classical equivalence query
learning algorithm with worst case query complexity TE > 0
Output: Hypothesis h ∈ {0, 1}X

1. Set the maximum imperfect equivalence query budget as
R = 6TE/p+(3/2p2) log(1/δ). If R total imperfect equivalence queries have ever
been made, go to step 3

2. Run A, whenever it requires an equivalence query to a hypothesis h, repeatedly
make imperfect equivalence queries until one succeeds. If A terminates, output
the output of A

3. Let H = {h1, . . . , hk} be the set of hypothesis we ran imperfect equivalence
queries on (so that k ≤ TE). Suppose we spent ni imperfect equivalence queries
on hi (so that

∑
ni = R). Let ρ(hi) = ni/N and output h = WMVH, ρ

5. Upper bound on quantum learning complexity

Here, we combine the results of sections 3 and 4 to give an upper bound on TO, the learning
complexity of PAC learning with a state preparation oracle Qc (and its inverse).

12
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Suppose that it takes E(ϵ) queries to perform an imperfect equivalence query for a
hypothesis h. If we have a classical equivalence learning algorithm A with a query com-
plexity of TE(ϵ, δ, d), then we can use algorithm 2 of section 4 to get a quantum PAC
learning algorithm with learning complexity E(ϵ/4)R(TE(ϵ/4, δ/2, d), δ/2). The current
best known TE Gluch and Urbanke (2021) has a worst-case query complexity of TE =
O
([
d+ log

(
1
δ

)]
log9

(
1
ϵ

))
.

If we use the Grover subroutine (section 3 algorithm 1) with G = {(x, 1−h(x)) : x ∈ X}
to implement the imperfect equivalence queries, we find E(ϵ) = O(1/

√
ϵ). Substituting these

TE and E into the bound above, we get an upper bound of TO = O
(

1√
ϵ

[
d+ log

(
1
δ

)]
log9

(
1
ϵ

))
,

which is a square-root improvement (up to polylogarithmic factors) over the classical PAC
learning sample complexity of equation (5).

6. Lower bound on quantum learning complexity

In this section, we prove a lower bound on quantum PAC learning with a state preparation
oracle (and its inverse). We show that Ω(d/

√
ϵ) oracle calls are necessary.

Suppose we have a concept class C with VC dimension d+1. Then there is a set Z of size
d+1 in X which is shattered by C. We pick a marked element x0 ∈ Z and let Y = Z \{x0}.
We define our distribution D as a perturbed delta-function, the standard distribution used
to prove lower bounds in learning: D(x0) = 1− 4ϵ, D(y) = 4ϵ/d, for y ∈ Y , and D(x) = 0,
otherwise.

We also restrict our concept class to C̃ = {c ∈ C : c(x0) = 0}. If our PAC algorithm
works on C, it will certainly work on C̃. Since our distribution is restricted to Z we need only
identify the behaviour of our concept on Z. Thus, we can index our concepts by bit-strings
u ∈ {0, 1}d and index them with elements of Y . To be precise, we identify a concept c ∈ C̃
with a bit-string u ∈ {0, 1}d, where uy = c(y).

For a given bit-string u ∈ {0, 1}d, the state preparation oracle acts as

Qu |IN⟩ =
√
1− 4ϵ |x0 0⟩+

√
4ϵ

d

∑
x∈Y

|x ux⟩ . (12)

Our main approach is to reduce to the following fact from Lemma 51 in van Apeldoorn
et al. (2023).

Lemma 9: Let u ∈ {0, 1}d be a bit string, and let Ou be a weak phase-kickback
oracle, that is

Ou |x⟩ = e2iηux |x⟩ . (13)

Then recovering more than 3/4 of the bits of u with high probability requires at least
Ω(d/η) calls to Ou, its inverse or controlled versions of these.

13
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Proof: See van Apeldoorn et al. (2023) □

We will use calls to controlled versions of Ou (denoted c-Ou) to implement the PAC
state generation oracle Qu. We fix η ∈ [0, π/2] such that sin(η) =

√
4ϵ.

Lemma 10: One can implement Qu using one call to c-Ou, one to c-O†
u and two

qubit-ancillae.

Proof Sketch: One can use several H gates to transform the phase oracle into an
amplitude oracle. For a detailed proof, see appendix C. □

We thus deduce our bound

Theorem 11: TO = Ω
(
d√
ϵ

)
Proof Sketch: This follows by combining lemma 9 and lemma 10, see appendix C for
details. □

Note that our lower bound matches our upper bound (equation (3)), up to polylogarith-
mic factors.
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Appendix A. Proofs for Grover’s subroutine

We give full proofs for Lemma 3 and Theorem 4 below:

Lemma 12: One can implement the Grover operator D with one call to Qc and
one to Q†

c.

Proof: Note that IG is independent of c and, therefore, may be implemented by a
(possibly exponentially sized circuit) without any queries. To implement I|ψc⟩, note
that

I|ψc⟩ = 1− 2 |ψc⟩⟨ψc| , (14)

= Qc(1− 2 |IN⟩⟨IN|)Q†
c, (15)

= QcI|IN⟩Q
†
c. (16)

Note that I|IN⟩ is independent of c and, therefore, may be implemented by a (possibly
exponentially sized circuit) without any queries. □

Theorem 13: Let G ⊆ {(x, b) : x ∈ X , b ∈ {0, 1}} be a good subset, ϵ > 0 be a
fixed tolerance. Suppose that we run algorithm 1 with these inputs, then

(i) In the worst case, the algorithm makes O(1/
√
ϵ) oracle (or inverse oracle) calls

(ii) If PX∼D [(X, c(X)) ∈ G] ≥ ϵ then the algorithm succeeds, i.e., returns (x, c(x)) ∈
G, with probability at least p = 0.09.

(iii) Conditional on succeeding, the output of the algorithm (X, c(X)) is distributed
according to

P [(X, c(X))| algorithm succeeds ] =
PX∼D [X]

PX∼D [(X, c(X)) ∈ G]
. (8)

Proof:
Part (i): From the definition of the algorithm and Lemma 3, the worst case number of
oracle calls is 1 + 2(⌈2/

√
ϵ⌉ − 1) = O(1/

√
ϵ).

Part (ii): Let M = ⌈2/
√
ϵ⌉, let θ be as above and let ps(θ) be the probability that

the algorithm succeeds. Note that PX∼D [(X, c(X)) ∈ G] ≥ ϵ ⇔ sin(θ) ≥
√
ϵ. We use

Lemma 2 (section 6) from Boyer et al. (1998), which claims

ps(θ) =
1

2
− 1

4M

sin(4Mθ)

sin(2θ)
. (17)
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For sin(θ) ∈ [
√
ϵ, 1/

√
2]:

M ≥ 2

sin(θ)
, (18)

≥ 1

sin(2θ)
, (19)

and thus

ps(θ) ≥
1

2
− 1

4
=

1

4
> 0.09. (20)

Note that for θ ∈ [π/4, π/2],

sin(2θ) ≥ π/2− θ

π/4
, (21)

Thus for θ ∈ [π/4, (1/2− 1/4M)π], we have that

ps(θ) ≥
1

2
− 1

4M
· 4/π

π/2− (1/2− 1/4M)π
, (22)

=
1

2
− 4

π2
> 0.09. (23)

Finally, for θ ∈ [(1/2− 1/4M)π, π/2], note that sin(2θ) ≥ 0 and sin(4Mθ) ≤ 0 so that
ps(θ) ≥ 1/2 > 0.09.

Part (iii). This follows from the form of Dn |ψc⟩; the relative magnitude of the
amplitudes in |g⟩ is unchanged by the Grover operator D. □

Appendix B. Proofs for learning with imperfect equivalence queries

We give full proofs of the performance of algorithm 2 below. Before proving two technical
lemmas, we introduce some terminology:

Definition 14: A transcript of a run of algorithm 2 is given by the list of hypotheses
H = {hi} that the algorithm queried along with a corresponding collection of natural
numbers ni > 0, where ni is the number of imperfect equivalence queries spent on hi.

The time-spent distribution ρ is the probability distribution on H given by ρ(hi) =
ni/
∑

i ni.

Finally, F = {i : d(hi, c) ≥ ϵ} is called the “feasible” set, where our imperfect
equivalence query succeeds with probability at least p. Correspondingly I = {i :
d(hi, c) < ϵ} is the “infeasible” set, where there is no promise on the probability of
success.

Firstly, we show that with high probability that a bounded number of queries is spent
on the feasible set
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Lemma 15: With probability ≥ 1 − δ the total number of imperfect equivalence
queries to feasible hypotheses is at most

2TE/p+ (1/2p2) log(1/δ). (24)

Proof: A imperfect equivalence query of a feasible hypothesis has (by definition) a
chance ≥ p of succeeding, and the individual imperfect equivalence queries are inde-
pendent. Additionally, there are at most TE feasible hypotheses to query (since the
classical algorithm makes at most TE total equivalence queries). Thus, the probability
that we succeed on all the feasible hypotheses using at most m imperfect queries fea-
sible hypotheses is lower bounded by the probability of getting at least TE successes
from a binomial distribution B(m, p). Thus, the chance of failure is lower bounded by
the chance of fewer than TE successes from B(m, p).

Let X ∼ B(m, p). Applying Hoeffding’s inequality Hoeffding (1963), for m ≥ TE/p
we see that

P [X < t] ≤ e−2m(p−TE/m)2 . (25)

Thus it is sufficient for

2m

(
p− TE

m

)2

≥ log(1/δ). (26)

In turn, it is sufficient that

2mp2 − 4pTE ≥ log(1/δ), (27)

whence we deduce our bound.
□

Next we prove that if we make enough imperfect equivalence queries on infeasible hy-
potheses, the weighted majority vote of the transcript must be close to the underlying
concept c

Lemma 16: Suppose we spend at least 2R/3 imperfect equivalence queries on
infeasible hypotheses. Then the weighted majority vote M of the transcript with the
time-spent distribution has d(M, c) < 4ϵ.

Proof: Fix the transcript h1, . . . hk. Let ρ be the time-spent distribution and let ρ′

be the time-spent distribution conditioned on the infeasible set. That is, for i ∈ I,
ρ′(hi) = ρ(hi)/ρ(I). Similarly let ρ̃ the the time-spent distribution conditioned on the
feasible set. We first show that if the infeasible set overwhelmingly votes for a bit
y, then the whole transcript must also vote for that y. To be precise, suppose that
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Ph∼ρ′ [h(x) = y] > 3/4, then

Ph∼ρ [h(x) = y] = Ph∼ρ′ [h(x) = y]Ph∼ρ [h ∈ I] + Ph∼ρ̃ [h(x) = y]Ph∼ρ [h ∈ F ] , (28)

>
3

4
· 2
3
, (29)

=
1

2
. (30)

Let M = WMVH, ρ. By the above, if Ph∼ρ′ [h(x) = c(x)] > 3
4 , then M(x) = c(x). We

deduce (inspired by Masegosa et al. (2020)) that

PX∼D [M(X) ̸= c(X)] ≤ PX∼D

[
Ph∼ρ′ [h(X) ̸= c(X)] ≥ 1

4

]
, (31)

Markov’s inequality, ≤ 4EX∼DEh∼ρ′ [1{h(X )̸=c(X)}], (32)

= 4Eh∼ρ′ [d(h, c)], (33)

definition of infeasible set, < 4ϵ (34)

□

We can now prove the performance of our algorithm

Theorem 17: Let the maximum number of imperfect equivalence queries of algo-
rithm 2 be

R(TE(ϵ, δ, d), δ) = 6TE(ϵ, δ, d)/p+ (3/2p2) log(1/δ), (11)

where p is the constant appearing in theorem 4. Then algorithm 2 produces a hypoth-
esis h with d(h, c) ≤ 4ϵ with probability at least 1− 2δ.

Proof: By Lemma 15, with probability ≥ 1 − δ we spend at most R/3 imperfect
equivalence queries on feasible hypotheses - suppose this happens. If we succeed in an
equivalence query for every hypothesis required byA then with probability at least 1−δ,
A outputs a hypothesis h with d(h, c) ≤ ϵ. Otherwise, we spend at least 2R/3 imperfect
equivalence queries on infeasible hypotheses (as we assumed the feasible ones took at
most R/3 imperfect equivalence queries) and then by Lemma 16 the weighted majority
vote WMVH, ρ has d(WMVH, ρ, c) < 4ϵ. Thus algorithm 2 outputs a 4ϵ-approximately
correct hypothesis with probability at least (1− δ)2 ≥ 1− 2δ. □

Appendix C. Proofs for lower bound on quantum learning complexity

We provide full proofs of lemma 10 and Theorem 11 below:

Lemma 18: One can implement Qu using one call to c-Ou, one to c-O†
u and two

qubit-ancillae.
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Proof: First, it is convenient to shift the phase to have a ± symmetry. Define a constant
phase gate as

Pα |x⟩ = eiα |x⟩ . (35)

Then let
Õu = PηO

†
u, (36)

so that
Õu |x⟩ = eiηûx |x⟩ , (37)

where
ûx = (−1)ux . (38)

We start by generating a uniform superposition of indices with the two-qubit ancillae
in the |+⟩ state:

1

2
√
d

∑
x∈Y

|x⟩ [|00⟩+ |01⟩+ |10⟩+ |11⟩]. (39)

We next apply 4 controlled gates - either c-Pη, c-P−η c-Õu and c-Õ†
u, such that each

term in the superposition in equation (39) picks up a different phase:

7→ 1

2
√
d

∑
x∈Y

|x⟩
[
eiη |00⟩+ e−iη |01⟩+ eiηûx |10⟩+ e−iηûx |11⟩

]
. (40)

Note that this requires two calls to singly controlled versions of the oracle - we can
implement a double-controlled version by using a CCNOT (Toffoli) gate followed by a
controlled oracle. Next, we apply a Hadamard gate to the second qubit register

7→ 1√
2d

∑
x∈Y

|x⟩ [|0⟩ (cos(η) |0⟩+ i sin(η) |1⟩) + |1⟩ (cos(ηûx) |0⟩+ i sin(ηûx) |1⟩)] . (41)

We then apply S† to the second qubit register (to remove the factors of i). We also use
the even/odd ness of cos/sin to regroup the terms:

7→ 1√
2d

∑
x∈Y

|x⟩ [cos(η)(|0⟩+ |1⟩) |0⟩+ sin(η)(|0⟩+ ûx |1⟩) |1⟩] . (42)

We then apply a Hadamard gate to the first qubit register:

7→ cos(η)

(
1√
d

∑
x∈Y

|x⟩

)
|00⟩+ sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)
|1⟩ (43)
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Conditional on the final qubit being in the state |0⟩, we apply a unitary to the first
register that maps the uniform superposition over Y into the state |x0⟩:

7→ cos(η) |x0 0 0⟩+ sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)
|1⟩ (44)

Finally, conditional on the first register not being in the state |x0⟩, we apply an X gate
to the second qubit register, followed by an H gate on the second qubit register:

7→

[
cos(η) |x0 0⟩+ sin(η)

(
1√
d

∑
x∈Y

|x ux⟩

)]
|+⟩ (45)

But by the definition of η, we see that this is exactly equal to the action of the PAC
oracle:

(Qu |IN⟩) |+⟩ (46)

□

Theorem 19: TO = Ω
(
d√
ϵ

)

Proof: We can replace every call to Qu (or its inverse) in our PAC algorithm with the
unitary process described in Lemma 10, which requires a constant number of calls to
(a controlled) Ou (or its inverse). If the PAC algorithm outputs a correct hypothesis,
then by construction of our distribution, it must agree on at least 3/4 of the bits of u.
Thus, the algorithm replaced with calls to Ou (and its inverse) satisfies the conditions
of Lemma 9, and thus it must use at least Ω(d/η) calls to Ou. Hence, we reach a lower
bound of

TO = Ω

(
d

arcsin
√
4ϵ

)
= Ω

(
d√
ϵ

)
. (47)

□

Appendix D. Application to learning k-juntas

A k-junta is a function f : {0, 1}n → 0, 1 that only depends on a subset of k bits. Letting
X = {0, 1}n, we can consider the concept class C = {f ∈ {0, 1}X : f is a k junta}. The
exact VC dimension of C is unknown, but we can bound it using the inequalities

2d ≤ |C| ≤ |X |d + 1. (48)

The first of these comes from noting that if C shatters a set of size ℓ, it must contain at
least 2ℓ elements; the second is called Sauer’s lemma Anstee et al. (2002). We can bound

|C| ≤
(
n

k

)
2(2

k), (49)
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since there are
(
n
k

)
ways to choose the k bits determining the junta, and then 2(2

k) choices
for the underlying function. We deduce that

d ≤ log

[(
n

k

)]
+ 2k ≤ k log(en/k) + 2k. (50)

Thus, our learning algorithm can PAC learn a k-junta with

O

(
1√
ϵ

[
k log

(n
k

)
+ 2k + log

(
1

δ

)]
log9(1/ϵ)

)
, (51)

oracle calls. This has a worse scaling in n than algorithms presented in Atici and Servedio
(2007), but has a better scaling in ϵ and works for any underlying distribution, whereas
previous work has focused on the uniform distribution.
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