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Abstract

A central result in the theory of Cryptography, by H̊astad, Imagliazzo, Luby and Levin
[SICOMP’99], demonstrates that the existence one-way functions (OWF) implies the existence
of pseudo-random generators (PRGs). Despite the fundamental importance of this result, and
several elegant improvements/simplifications, analyses of constructions of PRGs from OWFs
remain complex (both conceptually and technically).

Our goal is to provide a construction of a PRG from OWFs with a simple proof of security ;
we thus focus on the setting of non-uniform security (i.e., we start off with a OWF secure
against non-uniform PPT, and we aim to get a PRG secure against non-uniform PPT).

Our main result is a construction of a PRG from OWFs with a self-contained, simple, proof of
security, relying only on the Goldreich-Levin Theorem (and the Chernoff bound). Although our
main goal is simplicity, the construction, and a variant there-of, also improves the efficiency—in
terms of invocations and seed lengths—of the state-of-the-art constructions due to [Haitner-
Reingold-Vadhan, STOC’10] and [Vadhan-Zheng, STOC’12], by a factor O(log2 n).

The key novelty in our analysis is a generalization of the Blum-Micali [FOCS’82] notion
of unpredictabilty—rather than requiring that every bit in the output of a function is unpre-
dictable, we count how many unpredictable bits a function has, and we show that any OWF on n
input bits (after hashing the input and the output) has n+O(log n) unpredictable output bits.
Such unpredictable bits can next be “extracted” into a pseudorandom string using standard
techniques.

Keywords: Pseudorandom generator; one-way function; next-bit unpredictability

1 Introduction

Pseudorandom generators (PRGs) are one of the most fundamental cryptographic building blocks
[BM82]. Roughly speaking, a PRG is a function taking a seed of length n and expanding it into a
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longer string, of say, length 2n, such that the output string is indistinguishable from random. While
the existence of PRGs almost immediately implies the existence of one-way functions (OWF), it is
significantly harder to show that OWFs imply the existence of PRGs. Indeed, the first construc-
tion of PRGs from OWFs was obtained in the seminal work by H̊astad, Impagliazzo, Luby and
Levin (HILL) [HILL99]. This beautiful work introduced a host of new notions and techniques and
is a technical tour-de-force. To understand the importance of this result, let us remark that still
today, known constructions of e.g., secure private-key encryption [GM84], commitment schemes
[Nao91], zero-knowledge [GMW87], pseudorandom functions [GGM84] from the minimal assump-
tion of OWFs, all pass through the notion of a PRG and the result of [HILL99].

Consequently, it would be desirable to come up with simpler constructions/proofs of the exis-
tence of PRGs from OWFs. Additionally, the PRGs construction of HILL, while asymptotically
efficient, has a large polynomial running time. In particular, the PRG requires invoking the under-
lying OWFs O(n11) times, where n is the security parameter. Since then, several simplifications
and improvements (in terms of the efficiency of the construction) were obtained by Holenstein
[Hol06a], Haitner, Harnik and Reingold [HHR06], Haitner, Reingold and Vadhan [HRV13], Vadhan
and Zheng [VZ12], leading up to constructions of PRGs from OWFs using only ω(n3)1 non-adaptive
invocations of the underlying OWF, and using a seed of length ω(n4); additionally, Vadhan and
Zheng [VZ12] show how to improve the seed length to ω(n3 log n), but at the price of using an
adaptive construction. Finally, Haitner and Vadhan [HV17] obtained a construction with a simpler
security proof (focusing only on the setting on non-uniform security), but which required ω(n6 log n)
invocations of the OWF. But despite these beautiful works—and the intriguing new notions that
they introduce—the security proofs involved remain quite complicated (even the simplest one with
looser parameters in [HV17]).

Our Results The goal of this paper is to provide a simple, self-contained, proof of the existence
of PRGs from any OWFs. Our proof relies only on standard results such as the Goldreich-Levin
(GL) Theorem [GL89] and the Chernoff bound (and in case we want to optimize the seed-length
using an adaptive construction, also the Leftover-hash Lemma (LHL) [HILL99]). The hope is that
our proof will enable teaching the construction of a PRG from any OWF in graduate course in
Cryptography.

Following Haitner and Vadhan [HV17], as our (main) goal is to present a security proof that
is as easy as possible, we focus on the setting of non-uniform security (i.e., we start off with a
OWF that is secure against non-uniform poly-time algorithms, and obtain a PRG secure against
non-uniform polytime algorithms). (As we note in Appedix A, our proof of security also readily
adapts to the uniform setting if we rely on Holenstein’s Uniform Hard-core Lemma [Hol06b].)

Perhaps surprisingly, along the way, we manage to also improve the concrete efficiency of the
PRG, obtaining a construction that only requires invoking the underlying OWF ω(n3/ log2 n) num-
ber of times, shaving a factor log2 n from the best constructions [HRV13; VZ12], both in terms of
number of invocations and seed length. (On a very high level, this improvement comes from the
fact that we are relying on a simpler notion of “pseudo-entropy” and can next rely on a simpler
0-1 Chernoff bound instead of a “multi-valued” Chernoff bound as in [HRV13], which results in a
tighter bound.)

1More formally, for any function q(n) = ω(n3), there exists a construction of a PRG from OWFs that uses q calls.
HRV [HRV13] state their result with additional logn factor in both the seed length and the number of calls. However,
the improved parameters can be easily deduced from their main theorem.
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Our main result is a non-adaptive construction of a PRG from any OWFs, with a simple proof
of security.

Theorem 1.1 (Non-adaptive Construction of a PRG from OWFs). Assume the existence of a
one-way function secure against non-uniform polynomial-time algorithms. Then there exists a PRG
secure against non-uniform polynomial-time algorithms that non-adaptively invokes the underlying
OWF ω(n3/ log2 n) times, and that has a seed of length ω(n4/ log2 n).

As mentioned above, Vadhan and Zheng [VZ12] showed how to use adaptive calls to the un-
derlying OWF to improve the seed length in the construction of [HRV13]; we note that the same
method applies also to our construction enabling us again to shave log2 n in the number of invoca-
tions of f and the seed length; this time, however, we need to also rely also on the standard LHL
of [HILL99].

Theorem 1.2 (Adaptive PRG Construction from OWF with improved seed length). Assume the
existence of a one-way function secure against non-uniform polynomial-time algorithms. Then
there exist a PRG secure against non-uniform polynomial-time algorithms that adaptively invokes
the underlying OWF ω(n3/ log2 n) times, and that has a seed of length ω(n3/ log n).

On Concrete Efficiency (Exponentially-hard OWFs). While shaving a log2 n factor may
not seem significant (when the running time is O(n3), this does make a significant difference in the
regime of exponential security, or in the regime of concrete security. In particular, if we start off
with an exponentially-secure OWF (i.e., a OWF secure against circuits of size 2Ω(n)), then we can
get a PRG that only invokes the OWF ω(log n) times. This matches the bound of the best PRG
from exponentially-secure OWFs from Haitner, Harnik and Reingold [HHR06], but only uses non-
adaptive calls to the underlying OWF, whereas [HHR06] required adaptive calls, and may make
the construction more feasible in practice. On the downside, our construction uses a seed of length
O(n2), while [HHR06] uses seed of length ω(n log n). We believe we can get a similar seed length
using a better hash function, but we defer the details to a future version.

Theorem 1.3. Assume the existence of a one-way function secure against circuits of size 2Ω(n).
Then there exists a PRG secure against non-uniform polynomial-time algorithms that non-adaptively
invokes the underlying OWF ω(log n) times.

We remark that the final PRG is also secure against exponential-size attackers, but only achieves
negligible indisitinguishability gap.

The Key Insight: Counting Unpredictable Bits Starting with the work of HILL, the key
method for constructing a PRG from OWFs is to start with a OWF and turning it into a generator
of some “weak” form of pseudorandomness. Later these weak forms of pseudorandomness can be
gradually amplified to achieve full pseudorandomness. Towards this, HILL introduced the notion
of pseudo-entropy—roughly speaking, which requires a distribution to be indistinguishable from
a distribution with some entropy. Haitner, Reingold and Vadhan [HRV13](HRV) improved and
simplified the HILL construction by introducing and working with a relaxed notion of next-block
pseudo-entropy, where following earlier notions of pseudorandomness by Shamir [Sha83] and Blum-
Micali [BM82], we focus on the ability of a distinguisher to learn something about the next “block”
in a sequence—and in more detail, this next block is required to have “high” pseudo-entropy in
expectation over random blocks (see Appendix B for the formal definition).
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In this work, we consider a strengthening of the HRV notion (which is incomparable to HILL
notion): We start by going back to the “plain” notion of unpredictability from Blum-Micali [BM82]:
Recall that we say that a function satisfies unpredictability for the i-th bit, if no non-uniform PPT
attacker can guess the i-th bit of the output of the function on a random input given the first i− 1
bits. We are interesting in counting how many unpredictable bits a function has. The simplest
way to do this would be to say that a function has k unpredictable bits if there exists a set S of
indexes, with |S| ≥ k, such that for each i ∈ S, the i-th bit is unpredictable for f .

Such a notion will be a bit too strong for our needs—we want to allow the indexes of the
unpredictable bits to depend on the inputs. We do this by allowing the set S(x) of “unpredictable
bits” to be a function of the input x, and we require that for each bit i in the union of the support
of S(Un), we have that unpredictability of the i-th bit holds conditioned on sampling an input x
such that i ∈ S(x) (That is, unpredictability of bit i holds whenever i is in the set of “unpredictable
bits”). To measure the number of such unpredictable bits, we simply consider the expected size of
S(Un): Roughly speaking, we say that a function has k(·) unpredictable bits if for every inverse
polynomial ϵ, there exists function S such that (1) the expected size of S(Un) is at least k(n), and
(2) the bits specified by S are ϵ-unpredictable. More formally,

Definition 1.4. We say that a function g : {0, 1}m(n) → {0, 1}ℓ(n) has k(·)-unpredictable bits if for
every inverse polynomial ϵ(·), there exists some S such that (1) for all n ∈ N, E

[∣∣S(Um(n))
∣∣] ≥ k(n),

and (2) for all nonuniform PPT A, every sufficiently large n, every i ∈
⋃

x∈{0,1}m(n) Supp(S(x)),
A distinguishes between

• {x← {0, 1}m(n)|i ∈ S(x) : g(x)<i, g(x)i}

• {x← {0, 1}m(n)|i ∈ S(x) : g(x)<i, U}

with probability at most ϵ(n).

For our purposes, we will need to generalize this definition to also apply to families of functions
{gh}h∈ {0,1}∗ , where the above conditions hold for gh for a randomly sampled “key” h (looking
forward, for us, this key, will just be the description of a hash function based on inner-products
mod 2).

2 Proof Overview

We present here our whole construction and provide a detailed proof overview—in essence, the below
description provides the whole proof except that it omits standard hybrid arguments/reductions.
(The formal proof in Sections 4 to 7 of course provides those details). We note that our construction
closely follows the construction paradigm of HRV but due to the use of our notion of unpredictabil-
ity, as opposed to next-bit pseudoentropy, we are able to simplify the analysis in the non-uniform
setting (and improve its parameters).

Let M be an n× n binary matrix, and we define the hash function M(x) = Mx mod 2, where
x is interpreted as a binary vector. A simple form of the Leftover-hash Leamm (LHL) [HILL99]
states that {M,M(X)k)} is 1/poly(n)-close to {M,Uk}, if X has min-entropy k + c log n for a
sufficiently large c, and when M is sampled at random from the set of n× n binary matrices.2

2As an additional didactic contribution, we show that this simple form of the LHL follows as a direct corollary of
the GL-theorem; while this observation may already be folklore, as far as we know, it has not been explicitly stated
anywhere (more than for the case of extracting 1, or O(logn) bits).
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• Step 1: Unpredictability Generators from Regular OWF. We start by showing how
to turn any regular OWF—recall that for a r(·)-regular OWF, each element in the support of
the function on inputs of length n has between 2r(n)−1 and 2r(n) pre-images—into a function
family that has n+O(log n) unpredictable bits; we refer to such function as an “unpredictability
generator”.

For inputs of length n, the construction is defined as:

gM (x) = M(f(x))||M(x),

where the “hash function” M is described by an n × n binary matrix. In other words, we are
applying n GL-predicates to f(x), and then the same n GL predicates to x.3

First, note that the since f(·) is r(·)-regular, f(Un) has min-entropy n − r(n) − 1 and thus by
the (simple) LHL the first n − r(n) − O(log n) bits of M(f(x)) are 1/poly(n)-close to uniform,
and thus unpredictable. Next, we want to argue that bits n + 1, . . . , n + r(n) + c log n, for any
c, also are unpredictable. Assume not; that is, there exists some efficient algorithm P and some
index i such that

P (f(x),M,M(x)<i) = M(x)i

with inverse polynomial advantage. By the GL theorem, this means that there exists some
PPT algorithm E such that E(f(x),M,M(x)<i) = x with inverse polynomial probability,
which in turn means that there exists some E′ that computes x with probability 2−i/poly(n) ≥
2−r(n)−O(logn) given just f(x) (by guessing M(x)<i). But since f(x) has at least 2r(n)−1 pre-
images, and all of which are equally likely, we have that the probability that Pr[E′(f(x)) = x] =
Pr

[
E′(f(x)) ∈ f−1(f(x))

]
/2r(n)−1, and thus E′ inverts f with inverse polynomial probability,

which is a contradiction.

Thus, we conclude that for every inverse polynomial ϵ, there exists a set S of ϵ-unpredictable
indexes of size [n− r(n)−O(log n)] + [r(n) + c log n] = n+ (c−O(1)) log n (and which contains
indexes 1, . . . n− r(n)−O(log n), as well as n+ 1, . . . n+ r(n) + c log n).

(Note that the set S depends on the unpredictability advantage ϵ, but so far does not depend on
the input x.)

• Step 2: Unpredictability Generators from Any OWF. We next show that the same
construction actually works also for any (not necessarily regular) OWF. This directly follows
from the observation that any OWF can be essentially split into regular OWFs on a partition of
the input domain. In more detail, we can partition the input domain of the OWF into domains
D1, D2, . . ., such that (1) for each r, f is r-regular when restricted to Dr—refer to this function
as f r, and (2) for each r such that Dr has inverse polynomial density in {0, 1}n,4 we have that f
is one-way also on Dj . The set Dj is simply the inputs x ∈ {0, 1}n such that f(x) has between

3We note that this step differs from the next-bit pseudo-entropy generator of HRV where H is only applied to x
and not f(x); this is the crucial difference that allows us to get unpredictability as opposed to next-bit pseudo-entropy.
Additionally, we note that HRV has to work with a specially constructed hash function H (based on concatenation
of a Reed-Solomon Code and the Hadamard code); Haitner and Vadhan [HV17] showed how to just use the standard
GL predicate, but this gave a final PRG construction with significantly worse parameters. Finally, Vadhan and
Zheng [VZ12] show how to analyze also the construction without any hash function (achieving the same parameters
as HRV), but this requires a much more complicated proof.

4Formally, r = r(n) is a function of the input length n, and we here require the density condition to hold for all
n ∈ N
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2j−1 and 2j pre-images, and note that condition 2 follows directly from the assumption that f is
one-way.

Now, consider the set of “common” r’s such that Dr has inverse polynomial density (and thus
f r is one-way). By Step 1, we have shown that there exists some (appropriately large) set Sr
of unpredictable indexes for every f r such that r is “common”, and for every such x ∈ Dr we
define S(x) = Sr. For the remaining x’s (that correspond to rare regularities), let S(x) simply
be the empty set. By a union bound over the n possible regularities, it follows that S(x) is set
to the empty set only for a small fraction of inputs, and thus the expected size of S(Un) is still
n+O(log n).

To show that unpredictability holds, assume for contradiction that there exists some i in the
(union) of the support of S(Un) such that bit i can be predicted with inverse polynomial prob-
ability conditioned on i ∈ S(x) for infinitely many input lengths n. Then, note that i ∈ S(x)
implies that x ∈ Dr for some “common” regularity r, so we can always find some common r
(for each input length n) such that prediction also succeeds conditioned on x ∈ Dr (for infinitely
many input lengths), but this contradicts the unpredictability of bit i for the function f r.

• Step 3: From Unpredictability to Random-Index Unpredictability. In the next step,
we consider a slightly stronger notion of unpredictability. Rather than bounding the expected
size of the unpredictable set, the notion of k(·)-random bits unpredictability requires that
for each index i, we have that Pr[i ∈ S(Un)] ≥ k(n)/ℓ(n), where ℓ(·) denotes the output length
of the function. Note that by the linearity of expectation, this directly implies “plain” k-bits
unpredictability (so this notion is a strengthening of “plain” unpredictability).

To turn an unpredictability generator into a random-bit unpredictability generator, we rely on
the same transformation as Haitner et al [HRV13] used in their “entropy equalization step” (and
which was first used by [HRVW09]).

Given a function g : {0, 1}n → {0, 1}ℓ(n) that has k-bit unpredictability, consider the “shifted”
direct-product function g′:

g′(i, x1, . . . , xr) = g(x1)≥i||g(x2)|| . . . ||g(xr−1)||g(xr)<i

where i ∈ [ℓ(n)], xj ∈ {0, 1}n (see Figure 1). That is, we apply the function g on r random inputs,
output the concatenation (i.e., the direct product) and then simply truncate the i− 1 bits from
the beginning and the ℓ− (i− 1) bits from the end, for a random i (specified by the inputs).

Note that each bit of g′ is part of the unpredictable set for f with probability k(n)/ℓ(n). To see
this, note that clearly a random index into g is part of the unpredictable set for g with probability
k(n)/ℓ(n); but each bit of g′ has exactly the same distribution as a random bit of g. Thus, g′

has (r − 1)k(n) random unpredictable bits (while using a seed of length n · r + log ℓ(n)).

i− 1 ℓ− i+ 1

g(x1) g(x2) g(x3) . . . g(xr−1) g(xr)

Figure 1: The construction of a function with random-bits-unpredictability from a function

g : {0, 1}n → {0, 1}ℓ(n) with bits-unpredictability. We take r copies of g, and truncate the i − 1 first
bits and ℓ− i+ 1 last bits, such that the output, marked in white, is of length (r − 1)ℓ.
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Finally, recall that the function obtained in Step 2 has a seed of length n, outputs 2n bits and has
(n+ c log n)-bit unpredictability, for any c. If we plug in this function into g, we get a function
with seed length nr+O(log n), output length 2(r−1)n and satisfying (r−1)(n+c log n)-random
bit unpredictability. To get “expansion” (i.e., more unpredictable bits than the seed length), we
set r = n/ log n, which results in a function g : {0, 1}n2/ logn+O(logn) → {0, 1}2n2/ logn−2n that has
n2/ log n+ c · n) random unpredictable bits, for any c.

• Step 4: Pseudorandomness from Random-Bit Unpredictability. In the final step, we
show how to turn any generator of random-bit unpredictability into a standard PRG. The trans-
formation is simple and goes back to HILL; it was also used by HRV to turn next-bit pseudo-
entropy into pseudorandomness, but for us, it will be even simpler (and due to this reason we
can also improve the parameters from HRV).

The transformation consists of doing a t-wise direct product of a function g : {0, 1}m(n) →
{0, 1}ℓ(n) that has k(n) random unpredictable bits, and then applying any (seeded) extrac-
tor coordinate-wise to the outputs of g. In more details, the ith block of the output will be
H(g(x1)i, g(x

2)i, . . . g(x
t)i), where H is an appropriate hash function, selected as part of the seed

(and which also can be included in the output). (See Figure 2).

g(x1)

g(x2)
...

g(xt)

output bits

H : {0, 1}t → {0, 1}q

Figure 2: Extracting pseudoentropy from a function g with random-bits unpredictability. We take t
copies of g and apply a hash function (random matrix) on every column.

To analyze this construction, first note that by a standard hybrid argument, we simply need
to show that each such output block i is indistinguishable from uniform given the prefix up to
block i. Next—and this is the key step—note that we can furthermore move to a hybrid where
for each j ∈ [t], we replace g(xj)i with a random bit whenever i is in the unpredictable set
for xj . Indistinguishability of the real experiment and this hybrid follows from the definition
of unpredictability through an essentially standard hybrid argument, but there is an important
subtlety: The set S(x) is not efficiently computable, so in the hybrid argument it is not clear
how to efficiently emulate the hybrids (and in particular, in Hybrid j, how to simulate all other
“rows” j′ ̸= j). Since we are in the non-uniform setting, this issue, however, is easy to deal with:
we can simply non-uniformly pick the best choices for those values.5

5In Appendix A, we explain how to also deal with this issue in the uniform setting, but this time we need to
rely on Holenstein’s uniform hard-core lemma[Hol06b]. In essence, using the hard-core lemma, we can argue that
unpredictability also hold when getting access to an oracle for the set S(x). Then the hybrids can be efficiently
simulated given such an oracle.
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Finally, by the Chernoff bound, we have that except with negligible probability, the number of
“rows” j such bit i is unpredictable for g is at least t · k(n)/ℓ(n)−

√
tω(log n), and thus all those

bits will be uniform in the above hybrid. It follows that the min-entropy of the string on which
we apply the extractor is t · k(n)/ℓ(n) −

√
tω(log n) and thus roughly this many bits may be

extracted from each block; thus in total, we get t · k(n)− ℓ
√
tω(log n) pseudorandom bits.

The input is of length t ·m(n), so we need to choose t such that t · k(n)− ℓ
√
tω(log n) > t ·m(n),

which yields t ≥ ω(log n)ℓ2/(k −m)2. Plugging in the construction from Step 3, we have that
k(n) = m(n) +O(n), ℓ(n) = O(n2/ log n) which yields t ≥ ω(log nℓ2/n2) = ω(n2/ log n).

Note that the total seed length becomes t ·m(n) + |H| = ω(n4/ log2 n) + |H|. If we rely on a
random matrix as a hash function (and the above simplified LHL), its description length will be
t(n)2 = n4/ log2 n (see Figure 3 for the complete construction).6

output bits

H : {0, 1}t → {0, 1}q

gA(x
1
1) gA(x

2
1) gA(x

3
1) . . . gA(x

r−1
1 ) gA(x

r
1)

gA(x
1
2) gA(x

2
2) gA(x

3
2) . . . gA(x

r−1
2 ) gA(x

r
2)

gA(x
1
3) gA(x

2
3) gA(x

3
3) . . . gA(x

r−1
3 ) gA(x

r
3)...

gA(x
1
t ) gA(x

2
t ) gA(x

3
t )

. . .
gA(x

r−1
t ) gA(x

r
t )

Figure 3: The non-adaptive PRG construction. There are t ≈ n2/ log n rows, each row has r ≈ n/ log n
i.i.d copies of gA(x) = (A(f(x)), A(x)), shifted by a random offset. Every fully populated column,
marked in white, is hashed by H.

Further improving the seed length: Vadhan and Zheng [VZ12] presented an elegant approach
for shaving a factor n/ log n in terms of the seed length in the construction of HRV. Their idea is
to note that to compute “coordinate” j, we do not actually need to know the “seed” xj

′
to earlier

coordinates j′ < j, and thus we can take the input to coordinate j − 1 from coordinate j (while
additionally outputting O(log n) bits). The same method can be applied to our construction and
can be analyzed in a modular way. (We note that we do not claim any original contributions w.r.t.
this step on top of [VZ12]; the only “novelty” here is the modular analysis of their construction.)
Doing this yields an (adaptive) construction with seed length ω(n3/ log n) + |H|. So, to take
advantage of this saving, we also need to have a hash function with a better description length.
This is easily obtain by using a standard constructions of pair-wise independent hash functions (e.g.,
ha,b(x) = ax+ b where the operations are over F2n) and appealing to the standard LHL [HILL99]
(instead of the above simplified form), which yields a description length of O(t(n)) = O(n2/ log2 n),
and thus a total seed length of ω(n3/ log n)

6In this step we save log2 n factor over HRV. The reason is that we apply the Chernoff bound on a random variable
that can only take zero-one values, while HRV consider the sample entropy of the next bit, which can take larger
values.
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3 Preliminaries

3.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand for the set
of all polynomials. Let ppt stand for probabilistic poly-time, and n.u.-poly-time stand for non-
uniform poly-time. An n.u.-poly-time algorithm A is equipped with a (fixed) poly-size advice string
set {zn}n∈N (that we typically omit from the notation). Let neg stand for a negligible function. For
n ∈ N, let [n] := {1, . . . , n}. Given a vector s ∈ {0, 1}n, let si denote its i-th entry, and s1,...,i denote
its first i entries. For a function f : D → R, and an image y ∈ R, let f−1(y) = {x ∈ D : f(x) = y}.

The support of a distribution P over a finite set S is defined by Supp(P) := {x ∈ S : P(x) > 0}.
Let d ← P denote that d was sampled according to P. Similarly, for a set S, let s ← S denote
that s is drawn uniformly from S. For n ∈ N, we denote by Un the uniform distribution over
{0, 1}n, and by U the uniform distribution over {0, 1}. The statistical distance (also known as, vari-
ation distance) of two distributions P and Q over a discrete domain X is defined by SD(P,Q) :=
maxS⊆X |P(S)−Q(S)| = 1

2

∑
x∈S |P(x)−Q(x)|. For distribution ensembles P = {Pn}n∈N and

Q = {Qn}n∈N we write P
c
≈ϵ Q if for every n.u.-poly-time A, for all but finitely many n’s,

|Pr[A(Pn) = 1]− Pr[A(Qn) = 1]| ≤ ϵ(n). We write P
c
≈ Q if |Pr[A(Pn) = 1]− Pr[A(Qn) = 1]| =

neg(n) for every such A.
Lastly, we identify a matrix M ∈ {0, 1}n×m with a function M : {0, 1}n → {0, 1}m by M(x) :=

x ·M mod 2, thinking of x ∈ {0, 1}n as a vector with dimension n.

3.2 One-Way Functions and Pseudorandom Generators

We now formally define basic cryptographic primitives. We start with the definition of one-way
function.

Definition 3.1 (One-way function). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is called a n.u-one-way function if for every n.u.-poly-time algorithm A, there is a negligible function
ν : N→ [0, 1] such that for every n ∈ N

Prx←{0,1}n
[
A(f(x)) ∈ f−1(f(x))

]
≤ ν(n)

For simplicity, we assume that the one-way function f is length-preserving. That is, |f(x)| = |x|
for every x ∈ {0, 1}∗. This can be assumed without loss of generality, and is not crucial for our
constructions.

In Section 4 we use one-way functions to construct PRGs. The latter is formally defined below.

Definition 3.2 (Pseudorandom generator). Let n be a security parameter. A polynomial-time
computable function G : {0, 1}n → {0, 1}m(n) is called a n.u-pseudorandom generator if for every
n > 0 it holds that m(n) > n and, for every n.u.-poly-time algorithm D, there is a negligible
function ν : N→ [0, 1] such that for every n > 0,∣∣∣Prx←{0,1}n [D(G(x)) = 1]− Pr

x←{0,1}m(n) [D(x) = 1]
∣∣∣ ≤ ν(n).

As in this paper we are focusing on the non-uniform setting, we will refer to n.u-one-way
functions and n.u-PRGs simply by one-way functions and PRGs.
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A key ingredient in the construction of PRG from one-way function is the Goldreich-Levin
hardcore predicate. We will use the following version, which is a combination between Goldreich-
Levin and Yao’s distinguishing to prediction lemma ([Yao82]).

Lemma 3.3 (Goldreich-Levin [GL89; Yao82]). There exists an oracle-aided PPT A such that the
following holds. Let n ∈ N be a number, and Q a distribution over {0, 1}n × {0, 1}∗, and let D be
an algorithm such that

Pr(x,z)←Q,r←{0,1}n [D(z, r,GL(x, r)) = 1]− Pr(x,z)←Q,r←{0,1}n [D(z, r, U) = 1] ≥ α

for some α, where GL(x, r) := ⟨x, r⟩ is the Goldreich-Levin predicate. Then

Pr(x,z)←Q

[
AD(1n, 1⌈1/α⌉, z) = x

]
≥ α3/8n.

3.3 Min-Entropy and Extraction

The min-entropy of a distribution Q, denoted by H∞(Q) is defined by

H∞(Q) := − log( max
q∈Supp(Q)

{Pr[Q = q]}).

We will use the following simplified version of the leftover hash lemma, which shows that a
random matrix is a strong extractor.

Lemma 3.4 (Leftover hash lemma, simplified version). Let n ∈ N, ε ∈ [0, 1], and let X be a random
variable over {0, 1}n. Let M ← {0, 1}n×ℓ be a random matrix for ℓ ≤ H∞(X)−3 log 1/ε−4 log n−4.
Then,

SD((M,M(X)), (M,Uℓ)) ≤ ε

for Uℓ being the uniform distribution over {0, 1}ℓ.
The above (simplified) version of the leftover hash lemma can be proven using GL. (The proof

may be folklore, but we have not previously seen it in the literature.)

Proof. Let ℓ ≤ H∞(X)− 3 log(1/ϵ)− 4 log n− 4 < n, and let M ← {0, 1}n×ℓ be a random matrix.
Assume there exists an (inefficient) algorithm that distinguishes M,M(X) from M,Uℓ with ad-
vantage ϵ. By a simple hybrid argument, there exists an (inefficent) distinguisher D and an index
i ∈ [ℓ], such that

Pr[D(M,M(X)<i,M(X)i) = 1]− Pr[D(M,M(X)<i, U) = 1] ≥ ϵ/ℓ ≥ ϵ/n.

Observe that M(X)i = ⟨Mi, X⟩ is the GL hard-core predicate, and thus we get that there exists
algorithm A such that Pr[A(M,M(X)<i) = X] ≥ ϵ3/8n4. Consider the algorithm A′ that given
M , guess M(X)<i and runs A. Clearly,

Pr
[
A′(M) = X

]
≥ 2−i · ϵ3/8n4 ≥ 2−ℓ · ϵ3/8n4 > 2−H∞(X),

which is a contradiction, since M is independent from X. □

We will also use the well-known Chernoff bound in our proof.

Fact 3.5 (Chernoff bound). Let A1, ..., An be independent random variables s.t. Ai ∈ {0, 1}. Let

Â = Σn
i=1Ai and µ = E

[
Â
]
. For every ϵ ∈ [0, 1] It holds that:

Pr
[∣∣∣Â− µ

∣∣∣ ≥ ϵ · µ
]
≤ 2 · e−ϵ2·µ/3.
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4 Unpredictable Bits

In this section we define bits-unpredictability, which is the main building block in the construction.
We will consider such a notion of unpredictability for families of functions.

Definition 4.1 (Unpredictable bits). Let m = m(n), ℓ = ℓ(n), λ = λ(n) and k = k(n) be integer

functions, and let ϵ = ϵ(n) ∈ [0, 1]. We say that a function family g =
{
ga : {0, 1}m(n) → {0, 1}ℓ(n)

}
a∈{0,1}λ(n)

has (k, ϵ)-bits-unpredictability if for every n ∈ N and x ∈ {0, 1}m(n), there exists a set S(x) ⊆ [ℓ(n)],

such that, for Xn ← {0, 1}m(n) and A← {0, 1}λ(n):

1. For every n, E[|S(Xn)|] ≥ k(n), and,

2. for every sequence {in}n∈N such that in ∈
⋃

x∈{0,1}m(n) S(x),

{
(A, gA(Xn)<in , gA(Xn)in)|in∈S(Xn)

}
n∈N

c
≈ϵ

{
(A, gA(Xn)<in , U)|in∈S(Xn)

}
n∈N.

We say that g has k-bits-unpredictability if it has (k, n−c)-bits-unpredictability for every c ∈ N.

We will also consider a stronger notion of unpredictability—called k-random-bit unpredictability,
that requires each individual bit to be unpredictable with probability k/ℓ where ℓ is the output
length.

Definition 4.2 (Random bits unpredictability). Let m = m(n), ℓ = ℓ(n) and k = k(n) be integer

functions, and let ϵ = ϵ(n) ∈ [0, 1]. We say that a function family g =
{
ga : {0, 1}m(n) → {0, 1}ℓ(n)

}
a∈{0,1}λ(n)

has (k, ϵ)-random-bits-unpredictability if it satisfies Definition 4.1 except that condition (1) is replaced
by:

1. For every i ∈ [ℓ(n)], Pr[i ∈ S(Xn)] ≥ k(n)/ℓ(n).

We say that g has k-random-bits-unpredictability if it has (k, n−c)-bits-unpredictability for every
c ∈ N.

5 OWFs ⇒ Unpredictable Bits

In this section, we prove the next theorem, which shows how to construct a function family with
non-trivial bits-unpredictability from one-way functions.

Theorem 5.1 (OWFs imply unpredictability). Let f : {0, 1}n → {0, 1}n be a one-way function and

let Mn = {0, 1}n×n be the family of all n × n matrices. Let g =
{
gM : {0, 1}n → {0, 1}2n

}
M∈Mn

defined by
gM (x) = M(f(x)),M(x).

Then g has (n+ log n)-bits-unpredictability.

We start with proving Theorem 5.1 for the case that f is a regular one-way function on a partial
domain. We later show how Theorem 5.1 follows from this case.
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Definition 5.2 (Regular one-way function, partial domain). For every n ∈ N, let Ωn ⊆ {0, 1}n
be a set. An efficiently computable function f : Ωn → {0, 1}n is a one-way function if for every
n.u.-poly-time algorithm E,

Pr
[
E(f(Wn)) ∈ f−1(f(Wn))

]
= neg(n)

for Wn ← Ωn. Such a function is r = r(n) regular if for every n and x ∈ Ωn,

2r >
∣∣f−1(f(x))∣∣ ≥ 2r−1.

Lemma 5.3. Let ϵ = ϵ(n) ∈ [0, 1] and r = r(n) ∈ N be functions. Let Ωn ⊆ {0, 1}n be a set such
that |Ωn| = ϵ(n) · 2n, and let f : Ωn → {0, 1}n be a r-regular one-way function. Let Mn ←Mn be a
random matrix, and Yn = (Mn(f(Wn),Mn(Wn)) for Wn ← Ωn. Then the following holds for every
c ∈ N:

For every n ∈ N there exists a set Sn ⊆ [2n] such that |Sn| = n + 4c log n − log(1/ϵ), and for
every sequence {in}n∈N with in ∈ Sn it holds that

{(Mn, (Yn)≤in)}n∈N
c
≈n−c {(Mn, (Yn)<in , U)}n∈N.

In the following, fix c ∈ N, and let r, ϵ,Ωn,Mn,Wn and Yn be as defined in Lemma 5.3. For
every n ∈ N, let

Sn = [n− r(n)− 8c log n− log(1/ϵ(n))] ∪ {n < i ≤ n+ r(n) + 12c log n}. (1)

Clearly, the size of S is n + 4c log n − log(1/ϵ), as stated in Lemma 5.3. To prove the lemma, we
use the following two claims.

Claim 5.4. For every n ∈ N and every i ∈ [n− r(n)− 8c log n− log(1/ϵ(n))] it holds that

SD((Mn,Mn(f(Wn))≤i), (Mn,Mn(f(Wn))<i, U)) ≤ n−c,

for M ←Mn.

Proof. To prove the claim we will show that H∞(f(Wn)) ≥ n − r(n) − log(1/ϵ(n)). The proof
is then immediate from the leftover hash lemma (Lemma 3.4) and a simple hybrid argument, as
by Lemma 3.4, Mn(f(Wn))≤i) is statistically close to i uniform bits. To show the bound on the
min-entropy of f , compute,

H∞(f(X)) = − log(max
y

Pr[f(X) = y])

≥ − log(max
y

∣∣f−1(y)∣∣
|Ωn|

) > − log(
2r

ϵ2n
) = n− r − log(1/ϵ)

as stated. □

Claim 5.5. For every sequence {in}n∈N, with in ∈ [r(n) + 12c log n] it holds that

{(Mn, f(Wn),Mn(Wn)≤in)}n∈N
c
≈ {(Mn, f(Wn),Mn(Wn)<in , U)}n∈N.
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Proof. Assume towards a contradiction that the claim does not hold. That is, there exists some
algorithm E and a sequence {in}n∈N, such that

|Pr[E(Mn, f(Wn),Mn(Wn)≤in) = 1]− Pr[E(Mn, f(Wn),Mn(Wn)<in , U) = 1]| ≥ n−d

for some constant d ∈ N and for infinitely many n’s. Fix such n ∈ N, and omit it from the notation.
Let i∗ = in, assume without loss of generality that

Pr[E(M,f(W ),M(W )≤i∗) = 1]− Pr[E(M,f(W ),M(W )<i∗ , U) = 1] ≥ n−d.

By Lemma 3.3 (Goldreich-Levin), the existence of E implies that there exists an algorithm E′

such that
Pr

[
E′(1n

c
,M, f(W ),M(W )<i∗) = W

]
≥ n−2d.

Let Ê be the algorithm that on input f(W ), sample M ← {0, 1}n×n, and guess r ← {0, 1}i
∗−1. It

then outputs E′(1n
c
,M, f(W ), r). Since Pr[M(W )<i∗ = r] = 2−i

∗+1, it holds that

Pr
[
Ê(f(W )) = W

]
≥ n−2d · 2−i∗+1. (2)

Since f has at least 2r−1 ≥ 2i
∗−12c logn pre-images, it holds that

Pr
[
Ê(f(W )) ∈ f−1(f(W ))

]
≥ 2r−1 · Pr

[
Ê(f(W )) = W

]
(3)

≥ 2i
∗−12c logn−1 · Pr

[
Ê(f(W )) = W

]
.

Combining Equations (2) and (3), we get that

Pr
[
Ê(f(W )) = W

]
≥ n−2d−12c−1

which is a contradiction since f is a one-way function. □

5.1 Proving Lemma 5.3.

We are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. Assume towards a contradiction that the lemma does not hold. That is, there
exists a constant c, a n.u.-poly-time algorithm E and a sequence {in}n∈N with in ∈ Sn such that,

|Pr[E(Mn, (Yn)≤in) = 1]− Pr[E(Mn, (Yn)<in , U) = 1]| > n−c

for infinitely many n’s, where Sn is the set defined in Equation (1) with respect to the constant
c. We conclude the proof by the observation that, either for infinitely many such n’s it holds that
in ≤ n, or for infinitely many such n’s in > n. In the first case, E contradicts Claim 5.4. In the
second, E contradicts Claim 5.5 by a simple data-processing argument. □
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5.2 Proving Theorem 5.1.

Proof of Theorem 5.1. Fix c ∈ N. The proof follows by the observation that every one-way function
is a combination of regular one-way functions. Let f : {0, 1}n → {0, 1}n be a one-way function,
and for every x ∈ {0, 1}n, let Df (x) = ⌊log

∣∣f−1(f(x))∣∣⌋. For every n ∈ N and r ∈ [n], let Ωr
n =

{x ∈ {0, 1}n : Df (x) = r}. Let ϵr(n) = |Ωr
n|/2n and let Srn be the set Sn promised by Lemma 5.3

with respect to r. Observe that for every function r = r(n), f r : Ωr
n → {0, 1}

n is r-regular function.
Moreover, for every such r with ϵr(n) ≥ n−2c for every n ∈ N, it holds that the function f r is
one-way. Indeed, an algorithm E that inverts f r with probability α(n) inverts f with probability
at least α(n) · Pr[Df (Xn) = r(n)] ≥ α(n) · n−2c.

For x ∈ {0, 1}n, let S(x) = SDf (x)
n if ϵDf (x)(n) ≥ n−2c or ∅ otherwise. In the following we show

that

Pr[|S(Xn)| < n+ 2c log n] ≤ n−c. (4)

It then follows that
E[|S(Xn)|] ≥ (n+ 2c log n)(1− n−c) ≥ n+ c log n

as stated. To see Equation (4), let Gn =
{
r ∈ [n] : ϵr(n) ≥ n−2c

}
. By definition of S and Gn we get

that for every r ∈ Gn and x with Df (x) = r

|S(x)| ≥ (n+ 4c log n− log(1/n−2c))

= n+ 2c log n.

Thus, Pr[|S(Xn)| < n+ 2c log n] ≤ Pr[Df (Xn) /∈ Gn], and it is enough to bound Pr[Df (Xn) /∈ Gn].
By union bound, asDf (x) can get at most n values, and for every r /∈ Gn it holds that Pr[Df (Xn) = r] ≤
n−2c, we get that Pr[Df (Xn) /∈ Gn] ≤ n−2c · n ≤ n−c, as we wanted to show.

Next, assume toward a contradiction that g has no (n + log n, n−c)-bits-unpredictability with
respect to the above sets S(x). Namely, there exists an algorithm E such that

|Pr[E(Mn, gMn(Xn)≤in) = 1 | in ∈ S(Xn)]Pr[E(Mn, gMn(Xn)<in , U) = 1 | in ∈ S(Xn)]| > n−c

for some sequence {in}n∈N and for infinite many n’s. Below we show how to construct a regular
one-way function on partial domain f r∗ , such that E contradicts Lemma 5.3 with respect to f r∗ .
To do so, fix such n and observe that, by an averaging argument, there exists some r∗ ∈ [n] such
that in ∈ Sr

∗
n , and,

|Pr[E(Mn, gMn(Xn)≤in) = 1 | in ∈ S(Xn), Df (Xn) = r∗]

− Pr[E(Mn, gMn(Xn)<in , U) = 1 | in ∈ S(Xn), Df (Xn) = r∗]| > n−c.

Since S(Xn) is determined by Df (Xn), we get that,

|Pr[E(Mn, gMn(Xn)≤in) = 1 | Df (Xn) = r∗]− Pr[E(Mn, gMn(Xn)<in , U) = 1 | Df (Xn) = r∗]| > n−c.

Lastly, observe that the event Df (Xn) = r does not depend on Mn, and only depend on f(Xn).
Thus, we can write the above as∣∣∣Prx←Ωr∗

n
[E(Mn, gMn(x)≤in) = 1]− Prx←Ωr∗

n
[E(Mn, gMn(x)<in , U) = 1]

∣∣∣ ≥ n−c.
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Moreover, since in ∈ Sr
∗

n , it holds that ϵr
∗
(n) ≥ n−2c. For every n let r∗(n) be as described above

(or, if no such r∗ exists, let r∗(n) be arbitrary r with ϵr(n) ≥ n−2c).7 The above is a contradiction
to Lemma 5.3, as by construction f r∗ : Ωr∗

n → {0, 1}
n is a regular one-way function (note that,

while r∗ may not be an efficiently computable function, f r∗ is). □

6 Bits Unpredictability ⇒ Random Bits Unpredictability

The next theorem, proven below, shows how to convert bits unpredictability to random bits un-
predictability.

Theorem 6.1 (Bits unpredictability to random bits unpredictability). Let m = m(n), ℓ = ℓ(n),

λ = λ(n) and k = k(n) be integer functions and let g =
{
ga : {0, 1}m(n) → {0, 1}ℓ(n)

}
a∈{0,1}λ(n)

be

a function family with k-bits-unpredictability. Then, for every polynomial r = r(n), the function

family gr =
{
gra : [ℓ(n)]× ({0, 1}m(n))r(n) → {0, 1}(r(n)−1)ℓ(n)

}
a∈{0,1}λ(n)

defined by

gra(i, x
1, . . . , xr) = ga(x

1)≥i, ga(x
2), . . . , ga(x

r−1), ga(x
r)<i

has (r(n)− 1)k(n)-random-bits unpredictability.

We get the following corollary, on construction of random-bits unpredictability from a one-way
function.

Corollary 6.2 (OWF to random-bits unpredictability). Let f : {0, 1}n → {0, 1}n be a one-way.

Then there exists an efficiently computable function family g′ =
{
g′a : {0, 1}

m′(n) → {0, 1}ℓ
′(n)

}
a∈{0,1}λ(n)

with k′-random-bits unpredictability, for m′(n) = O(n2/ log n), ℓ′(n) = O(n2/ log n), λ(n) = n2 and
k′(n) ≥ m′(n) + n.

Moreover, the construction uses r(n) non-adaptive calls to f .

Proof. Let g be the function family defined in Theorem 5.1. Let r(n) = ⌈2n/ log n⌉ + 3, and let
g′ = gr, as defined in Theorem 6.1. It holds that m′(n) = ⌈log n⌉ + n · r(n) = O(n2/ log n), and
ℓ′(n) = 2n · (r(n)− 1) = O(n2/ log n). Moreover, by Theorem 6.1,

k′(n) = (r(n)− 1)(n+ log n) = log n+ n · r(n) + log n · (r(n)− 2)− n ≥ m′(n) + 2n− n.

□

6.1 Proving Theorem 6.1

Proof of Theorem 6.1. Let ℓ,m, λ, k and g be as in Theorem 6.1, and fix a polynomial r = r(n) and
a constant c. In the following we prove that gr has ((r − 1)k, n−c)-random bits unpredictability.

For every n ∈ N and x ∈ {0, 1}m(n), let Sg(x) be the set promised by Definition 4.1 with respect
to the (k, n−c)-bits-unpredictability of g.

7That is, for every n for which E distinguishes gMn(Xn)≤in from (gMn(Xn)<in , U) given in ∈ S(Xn), we define
r∗(n) as described, and for all other n’s we define r∗(n) arbitrarily such that Pr[Df (Xn) = r∗(n)] is noticeable.
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For i ∈ [ℓ(n)] and x1, . . . , xr ∈ ({0, 1}m(n))r(n), define the set

S(i, x1, . . . , xr) = (
⋃
j∈[r]

{
z + (j − 1)n− (i− 1) : z ∈ Sg(xj)

}
)
⋂

[ℓ(n) · (r(n)− 1)].

let X1
n, . . . , X

r
n ← {0, 1}

m(n) and In ← [ℓ(n)]. Clearly, for every i ∈ [ℓ(n) · (r(n) − 1)], it holds
that

Pr
[
i ∈ S(In, X1

n, . . . , X
r
n)
]
= Pr[(i+ In mod ℓ(n)) ∈ Sg(Xn)]

=
E[|Sg(Xn)|]

ℓ(n)
≥ k(n)

ℓ(n)
=

(r(n)− 1)k(n)

(r(n)− 1)ℓ(n)
.

Let Sn = S(In, X1
n, . . . , X

r
n). Assume toward a contradiction that gr does not have (r−1)k-random-

bits unpredictability with respect to the above set S. That is, there exists an algorithm E and an
index z = z(n) ∈ [ℓ · (r − 1)], such that, for An ← {0, 1}λ(n),

|Pr
[
E(An, g

r
An

(In, X
1
n, . . . , X

r
n)≤z) = 1 | z ∈ Sn

]
− Pr

[
E(An, g

r
An

(In, X
1
n, . . . , X

r
n)<z, U) = 1

]
| z ∈ Sn| ≥ n−c.

For infinitely many n’s. Fix such n and omit n from the notation. By an averaging argument,
there exists an index i∗ ∈ [ℓ(n)] such that

|Pr
[
E(A, grA(i

∗, X1, . . . , Xr)≤z) = 1 | z ∈ S
]
− Pr

[
E(A, grA(i

∗, X1, . . . , Xr)<z, U) = 1
]
| z ∈ S| ≥ n−c.

Recall that grA is produced by r blocks of the form gA(X
j) (with a random shift). Let s = ⌈ z+(i∗−1)

ℓ ⌉
be the index of the block in which the index z belongs to, and i be the index of z inside the block.
That is, s and i are such that grA(i

∗, X1, . . . , Xr)≤z = gA(X
1)≥i∗ , gA(X

2), . . . , gA(X
s)≤i. Consider

the algorithm E′ that, given a, ga(x)≤i and a bit b, sample X1, . . . , Xs−1 uniformly at random and
executes E(a, ga(X

1)>i∗ , ga(X
2), . . . , ga(x)<i, b).

Observe that,

|Pr
[
E′(A, gA(X)<i, gA(X)i) = 1 | i ∈ Sg(X)

]
− Pr

[
E′(A, gA(X)<i, U) = 1 | i ∈ Sg(X)

]
|

= |Pr
[
E(A, gA(i

∗, X1, . . . , Xr)≤z) = 1 | z ∈ S
]
− Pr

[
E(A, gA(i

∗, X1, . . . , Xr)<z, U) = 1 | z ∈ S
]
|

≥ n−c.

The above is a contradiction to the (k, n−c)-bits unpredictability of g, since by assumption, it holds
for infinitely many n’s □

7 Extracting Pseudorandomness and the Main Theorem

In this section we prove Theorem 7.1, which is the last step in our main construction. Theorem 7.1
shows how to extract pseudorandomness from random bits unpredictability.

Theorem 7.1 (Extracting from random bits unpredictability). Let s = ω(1), m = m(n), ℓ = ℓ(n),

λ = λ(n) and k = k(n) be integer functions, and let g =
{
ga : {0, 1}m(n) → {0, 1}ℓ(n)

}
a∈{0,1}λ(n)

be a function family with k(n)-random-bits-unpredictability. Then the following holds for every
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polynomial t = t(n). Let α(n) = k(n)/ℓ(n), and let Hn ← {0, 1}t(n)×q(n) be a random matrix, for

q = ⌊αt −
√
αt · s log n − s log n⌋. Then for X1

n . . . , X
t(n)
n ← ({0, 1}m(n))t(n) and An ← {0, 1}λ(n),

the distribution ensemble{
Hn, An, Hn(gAn(X

1
n)1, . . . , gAn(X

t(n)
n )1), . . . ,Hn(gAn(X

1
n)ℓ(n), . . . , gAn(X

t(n)
n )ℓ(n))

}
n∈N

is pseudorandom.

We prove Theorem 7.1 below, but first let us deduce our main theorem.

Theorem 7.2 (PRG construction). For any function s(n) = ω(1), there exists a construction of
a PRG from a one-way function, that uses O(s(n) · n3/ log2 n) non-adaptive calls to the one-way
function and a seed of length O(s2(n) · n4/ log2 n)).

Proof of Theorem 7.2. Let f : {0, 1}n → {0, 1}n be a one-way function,

g′ =
{
g′a : {0, 1}

m′(n) → {0, 1}ℓ
′(n)

}
a∈{0,1}λ(n)

be the function family promised by Corollary 6.2, and

let α = k′/ℓ′ ≤ 1.

Let s be as in Theorem 7.2 (assume without loss of generality that s(n) ≤ log n), t = 4⌈ ℓ
′2s logn

(k′−m′)2 ⌉ =

O(s·n2/ log n),m = t·m′ and ℓ = (⌊αt−
√
αts log n−s log n⌋)ℓ′. LetH = {0, 1}t×(⌊αt−

√
αts logn−s logn⌋)

be the set of all matrices of size t× (⌊αt−
√
αts log n−s log n⌋), and let G : H×{0, 1}λ×{0, 1}m →

H× {0, 1}λ × {0, 1}ℓ be the function defined by

G(H,A,W1, . . . ,Wt) := H,A,H(grA(W1)1, . . . g
r
A(Wt)1), . . . ,H(grA(W1)ℓ′ , . . . , g

r
A(Wt)ℓ′).

By Theorem 7.1, the output of G is pseudorandom when H ← H, and W1, . . . ,Wt ← ({0, 1}m2)t.
We need to show that G is expanding. To do so, it is enough to verify that m < ℓ.

Indeed,

ℓ−m = (⌊αt−
√

αts log n− s log n⌋)ℓ′ − tm′

> αtℓ′ − 2ℓ′
√

ts log n− tm′

= tk′ − 2ℓ′
√
ts log n− tm′

= t(k′ −m′)− 2ℓ′
√

ts log n

≥ 0,

where the last inequality holds since m = m′t and since t(k′−m′) ≥ 2ℓ′
√
ts log n by our choice of t.

Moreover, G uses tr = O(s · n3/ log n) calls to f and has seed length log|H| + λ + t · m2 =
log|H|+O(t2 + n2 + s · n4/ log2 n) = O(s2 · n4/ log2 n). □

7.1 Exponentially-hard OWFs

Before proving Theorem 7.1, we state and prove our results for exponentially-hard one-way func-
tions. We start with a formal definition of the latter.

Definition 7.3 (Exponentially hard one-way function). A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is called a T = T (n)-hard one-way function if for every n.u. algorithm A of
size at most T (n), for all but finitely many n ∈ N,

Prx←{0,1}n
[
A(f(x)) ∈ f−1(f(x))

]
≤ 1/T (N).
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f is n.u exponentially-hard one-way function if it is 2cn-hard one-way function for some constant
c > 0.

We get the following theorem:

Theorem 7.4 (PRG construction from exponentially-hard OWFs). For any function s(n) = ω(1),
there exists a construction of a poly-time secure PRG from an exponentially-hard one-way function,
that uses O(s(n) · log n) non-adaptive calls to the one-way function.

Proof. Let f be an 2cn-hard one-way function. We use the well-known fact that we can extract δn
GL hard-core bits from the input of f , for some constant c > δ > 0. Thus, by the construction
in Theorem 5.1, we get a function family g with (n + ϵn)-bits-unpredictability, for some constant
ϵ > 0 (and g only makes one call to f).

Next, by Theorem 6.1, and taking r = ⌈3/ϵ⌉ + 1 = O(1), we get that the function family
g′ = gr has k′(n) = (⌈3/ϵ⌉(1 + ϵ)n)-random-bits-unpredictability. Moreover, gr has input length
m′(n) = O(log n) + n(⌈3/ϵ⌉ + 1), output length ℓ′(n) = 2n(⌈3/ϵ⌉). We get that k′(n) −m′(n) =
Ω(n) = Ω(ℓ′(n)).

Let α = k′(n)/ℓ′(n). Let s be as in Theorem 7.4, t = 4⌈ ℓ
′2s logn

(k′−m′)2 ⌉ = O(s log n), m = t·m′ and ℓ =

(⌊αt−
√
αts log n−s log n⌋)ℓ′. Let H be the set of all matrices of size t×(⌊αt−

√
αts log n−s log n⌋),

and let G : H× {0, 1}λ × {0, 1}m → H× {0, 1}λ × {0, 1}ℓ be the function defined by

G(H,A,W1, . . . ,Wt) := H,A,H(grA(W1)1, . . . g
r
A(Wt)1), . . . ,H(grA(W1)ℓ′ , . . . , g

r
A(Wt)ℓ′).

By Theorem 7.1, the output of G is pseudorandom when H ← H, and W1, . . . ,Wt ← ({0, 1}m2)t.
By the same calculation as in the proof of Theorem 7.2, G is expanding. Moreover, G uses tr =
O(s log n) calls to f . □

7.2 Proving Theorem 7.1

By a simple hybrid argument, it is enough to prove the following claim.

Claim 7.5. Let g, t,Hn, An and X1
n, . . . , X

t
n be as in Theorem 7.1. Then for every sequence {in}n∈N,

and for every n.u.-poly-time algorithm E,

|Pr
[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Hn(gAn(X

1
n)in , . . . , gAn(X

t
n)in)) = 1

]
− Pr

[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Uq(n)) = 1

]
| = neg(n).

Proof of Theorem 7.1. Theorem 7.1 follows from Claim 7.5 by a simple hybrid argument. □

In the following we prove Claim 7.5. Fix c ∈ N, a n.u.-poly-time E and a constant d such that
t(n) ≤ nd for large enough n. We want to show that

|Pr
[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Hn(gAn(X

1
n)in , . . . , gAn(X

t
n)in)) = 1

]
(5)

− Pr
[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Uq(n)) = 1

]
| < n−c.

for all but finitely many n’s. Let c′ = c+d+2. For every n ∈ N and j ∈ [t(n)], let Sjn = Sg(Xj
n) be

the set promised by the assumed (k, n−c
′
)-random-bits-unpredictability property of g. We define

the random variables Q1, . . . , Qt as follows. For every j ∈ t, let Qj = gA(X
j
n)in if in /∈ Sjn, or a
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uniform bit otherwise. By the definition of bits-unpredictability, it holds that for every n.u.-poly-
time algorithm E′,∣∣Pr[E′(gA(Xj

n)<in , gA(X
j
n)in) = 1

]
− Pr

[
E′(gA(X

j
n)<in , Q

j) = 1
]∣∣ ≤ n−c

′
. (6)

The proof of Claim 7.5 follows from the following two claims.

Claim 7.6. For all but infinitely many n’s,

|Pr
[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Hn(Q

1, . . . , Qt)) = 1
]

− Pr
[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Uq(n)) = 1

]
| < n−c/2

Claim 7.7. For all but infinitely many n’s,

|Pr
[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Hn(gAn(X

1
n)in , . . . , gAn(X

t
n)in)) = 1

]
− Pr

[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Hn(Q

1, . . . , Qt)) = 1
]
| < n−c/2

We will prove Claim 7.6 and Claim 7.7 below, but first let us prove Claim 7.5.

Proof of Claim 7.5. Equation (5) holds by Claim 7.6 and Claim 7.7 and the triangle inequality.
The claim follows since Equation (5) holds for every c ∈ N. □

7.3 Proving Claim 7.6

Proof of Claim 7.6. We will show that given gAn(X
1
n)<in , . . . , gAn(X

t
n)<in , the distribution of

(Q1, . . . , Qt) is n−c/3-close to a distribution with min-entropy at least q(n) + ω(log n). The proof
then follows by the leftover hash lemma.

To do so, we start by showing that with probability 1−n−c/3, there are at least q(n)+ω(log n)
indexes j such that in ∈ Sj . To see the above, fix n and omit it from the notation. Let q′ =
q + s log n, and for every j ∈ [t], let δj be an indicator for the event that i ∈ Sj . By construction,
δ1, . . . , δt are independent random variables, and by the definition of k-random-bits-unpredictability,
for each j ∈ [t], it holds that Pr[δj = 1] ≥ k/ℓ = α. Thus, by Chernoff inequality, for large enough
n it holds that

Pr

 t∑
j=1

δj < q′

 = Pr

 t∑
j=1

δj < αt−
√
αts log n

 ≤ 2−s logn/3 < n−c/3,

as we wanted to show. Next, let J =
{
j : in ∈ Sj

}
be the set of j’s for which Qj is uniform

independent bit. By the above Pr[|J | < q′] < n−c/3, and thus the distribution (Q1, . . . , Qt) is
n−c/3 close to the distribution (Q1, . . . , Qt)||J |≥q′ . To bound the min-entropy of the latter, we

want to show that for every q1, . . . , qt, it holds that Pr
[
Q1, . . . , Qt = q1, . . . , qt | |J | ≥ q′

]
≤ 2−q

′
,

which concludes the proof. It holds that,

Pr
[
Q1, . . . , Qt = q1, . . . , qt | |J | ≥ q′

]
= EJ←J ||J |>q′

[
Pr

[
Q1, . . . , Qt = q1, . . . , qt | J = J

]]
≤ EJ←J ||J |>q′

[
2−|J |

]
≤ 2−q

′
,

where the first inequality holds since for every j ∈ J , Qj is a uniform and independent random
bit. □
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7.4 Proving Claim 7.7

Proof of Claim 7.7. Assume towards a contradiction that the claim does not hold. That is,

|Pr
[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Hn(gAn(X

1
n)in , . . . , gAn(X

t
n)in)) = 1

]
− Pr

[
E(Hn, An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Hn(Q

1, . . . , Qt)) = 1
]
| ≥ n−c/2

for some algorithm E and for infinitely many n’s. By data-processing inequality, it holds that for
some n.u.-poly-time Ê and for infinitely many n’s,

|Pr
[
Ê(An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , gAn(X

1
n)in , . . . , gAn(X

t
n)in) = 1

]
− Pr

[
Ê(An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , Q

1, . . . , Qt) = 1
]
| ≥ n−c/2.

Fix such n. By a simple hybrid argument, we get that there exists some j∗ ∈ [t], such that,

|Pr
[
Ê(An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , gAn(X

1
n)in , . . . , gAn(X

j∗
n )in , Q

j∗+1, . . . , Qt) = 1
]

− Pr
[
Ê(An, gAn(X

1
n)<in , . . . , gAn(X

t
n)<in , gAn(X

1
n)in , . . . , gAn(X

j∗−1
n )in , Q

j∗ , . . . , Qt) = 1
]
| ≥ n−c

′
/2.

By a simple averaging argument, there is a fixing x1, . . . , xj
∗−1, xj+1, . . . , xt forX1

n, . . . , X
j∗−1
n , Xj∗+1

n , . . . , Xt
n,

and bj for every Qj with in ∈ Sg(xj), such that the following holds. Let qj(a) = ga(x
j) if

in /∈ Sg(xj), or bj otherwise. Then it holds that

|Pr[Ê(An, gAn(x
1)<in , . . . , gAn(X

j∗
n ), . . . , gAn(x

t)<in , gAn(x
1)in , . . . , gAn(X

j∗
n )in , q

j∗+1(An), . . . , q
t(An)) = 1]

− Pr[Ê(An, gAn(x
1)<in , . . . , gAn(X

j∗
n ), . . . , gAn(x

t)<in , gAn(x
1)in , . . . , Q

j∗ , qj
∗+1(An), . . . , q

t(An)) = 1]|

≥ n−c
′
/2.

The above is a contradiction to the bit-unpredictability property of g. Indeed, Let

E′(a, ga(x)<i, b)

= Ê(An, gAn(x
1)<in , . . . , ga(x)<i, . . . , gAn(x

t)<in , gAn(x
1)in , . . . , gAn(x

j∗−1)in , b, q
j∗+1(An), . . . , q

t(An)).

We get that

|Pr
[
E′(An, gAn(Xn)<in , gAn(Xn)in) = 1

]
− Pr

[
E′(An, gAn(Xn)<in , Q) = 1

]
| ≥ n−c

′
/2.

where Q is equal to gAn(Xn)in) if in /∈ Sg(Xn), or uniform bit otherwise. This is a contradiction
to Equation (6). □

8 Saving Seed Length

In this section we show how to use the transformation from [VZ12] to get the following theorem.

Theorem 8.1 (PRG construction). For any function s = ω(1), there exists a construction of a
PRG from a one-way function, that uses O(s(n) · n3/ log2 n) calls to the one-way function and a
seed of length O(s(n) · n3/ log n).
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To get an improvement in the seed length, we will also need to use a hash function with a shorter
description in the extraction step, described in Section 7. For this, we need to define 2-universal
families.

Definition 8.2 (2-universal family). A family of function

F =
{
f : {0, 1}n → {0, 1}ℓ

}
is 2-universal if for every x ̸= x′ ∈ {0, 1}n it holds that Prf←F [f(x) = f(x′)] =

2−ℓ.
A universal a family is explicit if given a description of a function f ∈ F and x ∈ {0, 1}n, f(x)

can be computed in polynomial time (in n, ℓ).

The family of all matrices of size n ×m is an explicit 2-universal family, but it is well known
that there are explicit 2-universal families with description size O(n+m). An important property
of 2-universal families is that they can be used to construct a strong extractor. This is stated in
the leftover hash lemma:

Lemma 8.3 (Leftover hash lemma, standard version, [ILL89]). Let n ∈ N, ε ∈ [0, 1], and let X be

a random variable over {0, 1}n. Let H =
{
h : {0, 1}n → {0, 1}ℓ

}
be a 2-universal hash family with

ℓ ≤ H∞(X)− 2 log 1/ε. Then,

SD((H,H(X)), (H,Uℓ)) ≤ ε

for Uℓ being the uniform distribution over {0, 1}ℓ and H being the uniform distribution over H.

We are now ready to prove the main result of this section.

Proof. Observe that the significant parts of the seed of the PRG G defined in the proof of Theo-
rem 7.2 are the description of H, and t inputs to the function gr.

More efficient hash function. We start with reducing the description length of H by using
more efficient 2-universal family. Indeed, the proof of Claim 7.5 holds also when Hn is a random
function from a 2-universal family instead of a random matrix. We change the proof of Theorem 7.2,

such that H =
{
h : {0, 1}t(n) → {0, 1}αt−

√
αts logn−s logn

}
is a 2-universal family of description size

log|H| = O(t).

Using the transformation of [VZ12]. Next, we use the transformation of [VZ12] to avoid the
need to get t independent inputs for gr as input to the PRG. Let us first recall the construction
given in Sections 5 to 7. The construction starts with a function family g which has non-trivial
bits-unpredictability. Then, for every j ∈ [t] we compute

Y j = grA(I
j , X1

j , . . . , X
r
j ) = gA(X

j,1)≥Ij , gA(X
j,2), . . . , gA(X

j,r)<Ij .

Finally, we extract pseudorandom bits by applying an extractor on Y 1
i , . . . Y

t
i for every i ∈ [(r−1)ℓ].

We prove that H(Y 1
i , . . . Y

t
i ) is indistinguishable from uniform, given A, Y 1

i<, . . . Y
t
<i. Moreover,

by inspecting the reductions in the proofs of Theorems 6.1 and 7.1, it is not hard to see that
H(Y 1

i , . . . Y
t
i ) is indistinguishable from uniform, even given I1, . . . , It (in addition to A, Y 1

i<, . . . Y
t
<i).

Vadhan and Zheng [VZ12] observed that for computing Y j
i , we only need to know the value

of A, Ij and exactly one (specific) of the values of Xj,1, . . . , Xj,r. In particular, we don’t need to
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know the value of Xj,1, . . . , Xj,α−1, where α is such that i = α · ℓ + β for β ∈ [ℓ], to compute
Y j
i . Thus, we can sample each input to g only when it is used. This gives rise to an algorithm

G′ that computes the output of the PRG in the following way: First, G′ samples A, and for each
j ∈ [t], the G′ samples Ij , and Xj,r, Xj,r−1 uniformly at random. Then, for each i from (r− 1)ℓ to
(r− 2)ℓ+1, the algorithm computes H(Y 1

i , . . . Y
t
i ) (notice that the relevant bits have already been

fixed by A, Ij , Xj,r and Xj,r−1) and outputs the hashed value. The total length of the output of
G′ so far is q = ℓ · t(m/ℓ + Ω(log n/ℓ)) = tm + Ω(t · log n). After finishing, the algorithm samples
Xj,r−2 uniformly at random for every j, and continues this process for another ℓ indexes (i from
(r− 2)ℓ to (r− 3)ℓ+1), and so on. This process of sampling and hashing continues until it gets to
i = 1, where in the k-th iteration, G′ samples Xj,r−k for each j, and the hashes H(Y 1

i , . . . Y
t
i ) for

each i between (r − k)ℓ to (r − k − 1)ℓ+ 1. This results with tm+Ω(t · log n) pseudorandom bits
in every iteration.

Clearly, the output of the described G′ is equal to the output of the PRG. Moreover, the output
in the k-th iteration is indistinguishable from uniform, even given the parts of Y j

<(r−k−1)ℓ that have

already been sampled up to the k-th iteration (that is, A, Ij and

Y j [k] := Y j
(r−k−1)ℓ−(Ij−1), . . . , Y

j
(r−k−1)ℓ−1 = gA(X

j,r−k)<Ij ).

More formally, for every k ∈ [r − 1], let Zk be the output of G′ in the k-th iteration. It follows
from the proof of Theorem 7.1 that for every such k,

(A, I1, . . . , It, Y 1[k], . . . , Y t[k], Zk)
c
≈ (A, I1, . . . , It, Y 1[k], . . . , Y t[k], Uq). (7)

Using an hybrid argument we can also see that

(A, I1, . . . , It, Y 1[k], . . . , Y t[k], Z1, . . . , Zk) (8)
c
≈ (A, I1, . . . , It, Y 1[k], . . . , Y t[k], Uk·q).

The idea in [VZ12] is to output only Ω(t · log n) bits of the above algorithm in each iteration k,
and to use the other tm pseudorandom bits to sample the inputs X1,r−k−1, . . . Xt,r−k−1 of g for
the next iteration. Since the output of G′ in each iteration is indistinguishable from uniform, the
output of this process is pseudorandom by a simple hybrid argument.

Indeed, fix a distinguisher E, a constant c ∈ N and a large enough n ∈ N , and for each
τ ∈ [r − 1] let G′(τ) be the algorithm that samples X1,r−k−1, . . . Xt,r−k−1 uniformly at random
in the beginning of each iteration k ≤ τ , and uses the first tm bits of the output of each iter-
ation k > τ as X1,r−k−1, . . . Xt,r−k−1. That is, G′(r − 1) is simply the algorithm G′ described
above, while G′(1) is the algorithm considered by [VZ12], that only uses randomness to sample
X1,r−1, X1,r, . . . , Xt,r−1, Xt,r. Let Z1(τ), . . . , Zr−1(τ) be the output of G′(τ) in each iteration
respectively, and let Zk(τ)>tm be the last w − tm bits of Zk(τ). Since the output of G′ is pseudo-
random, we get that,

|Pr
[
E(Z1(r − 1)>tm, . . . , Zr−1(r − 1)>tm) = 1

]
− Pr

[
E(U(r−1)·(q−tm)) = 1

]
| < n−c.

We want to show that it also holds that∣∣Pr[E(Z1(1)>tm, . . . , Zr−1(1)>tm) = 1
]
− Pr

[
E(U(r−1)·(q−tm)) = 1

]∣∣ < 2n−c,
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and thus it is enough to show that

|Pr
[
E(Z1(r − 1)>tm, . . . , Zr−1(r − 1)>tm) = 1

]
− Pr

[
E(Z1(1)>tm, . . . , Zr−1(1)>tm) = 1

]
| < n−c.

Assume towards a contradiction that the above does not hold. By an hybrid argument, there
exists some τ ∈ [r − 1] such that E distinguish between (Z1(τ)>tm, . . . , Zr−1(τ)>tm) and (Z1(τ +
1)>tm, . . . , Zr−1(τ + 1)>tm) with advantage n−c/r.

Observing that (Zτ+1(τ)>tm, . . . , Zr−1(τ)>tm) can be computed from Zτ (τ) and
A, I1, . . . , It, Y 1[τ ], . . . , Y t[τ ], while (Zτ+1(τ +1)>tm, . . . , Zr−1(τ +1)>tm) can be computed by the
same function from Uq and A, I1, . . . , It, Y 1[τ ], . . . , Y t[τ ], we get the following by data processing.
E distinguishes between

A, I1, . . . , It, Y 1[τ ], . . . , Y t[τ ], Z1(τ)>tm, . . . , Zτ (τ)>tm, Zτ (τ)≤tm

and
A, I1, . . . , It, Y 1[τ ], . . . , Y t[τ ], Z1(τ + 1)>tm, . . . , Zτ (τ + 1)>tm, Utm

with the same advantage, n−c/r. Since by definition (Z1(τ), . . . , Zτ (τ)) ≡ (Z1(τ + 1), . . . , Zτ (τ +
1)) ≡ (Z1, . . . , Zτ ), we get a contradiction to Equation (8).

To see that G′(1) outputs more pseudorandom bits than the randomness used, observe that
G′(1) uses 2tm random bits to sample X1,r−1, X1,r, . . . , Xt,r−1, Xt,r, and outputs Ω(t · log n) pseu-
dorandom bits in each iteration. Thus, for for r = Ω(m/ log n), G′(1) an expanding function. □
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A A PRG from Uniform One-Way Functions

In this part we explain how to modify our construction and proofs to hold when the one-way
function is only secure against uniform adversaries. We derive the following theorem:

Theorem A.1 (PRG construction, uniform setting). For any function s(n) = ω(1), there exists a
construction of a PRG from a one-way function, that uses O(s(n) · n3/ log2 n) non-adaptive calls
to the one-way function and a seed of length O(s2(n) · n4/ log n)).

Note that the seed length is worse than the seed length in the non-adaptive, non-uniform
construction (Theorem 7.2). We can improve the seed length to be the same as in the non-uniform
setting by using a more efficient hash function in the basic construction of bits unpredictability,
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instead of a random matrix. For example, a log n factor can be saved using Toeplitz matrices (see
for example [GL89; YLW15]).

In the uniform setting we cannot use non-uniformity in the security reductions. However,
the only crucial use of non-uniformity in the security reduction of the PRG construction is in
the last step, of pseudorandomness extraction from random-bits unpredictability. In the proof of
Claim 7.7, we use a hybrid argument, for which the adversary needs to be able to identify which
bits are unpredictable (namely, whether the index in is in the set S(Xj)) and which are not. The
following definition allows the proof to go through also in the uniform setting. There are two main
differences between the following definition to Definition 4.2. First, in Definition A.2 we allow the
set S of unpredictable bits to be dependent on the distinguisher E and on the key a of the function.
Second, the uniform distinguisher E has oracle access to the characteristic function of S.

Definition A.2 (Random bits unpredictability, uniform setting). Let m = m(n), ℓ = ℓ(n)
and k = k(n) be efficiently computable integer functions. We say that a function family g ={
ga : {0, 1}m(n) → {0, 1}ℓ(n)

}
a∈{0,1}λ(n)

has k-random-bits-unpredictability if the following holds for

every oracle-aidded ppt algorithm E and every constant c. For every n ∈ N, x ∈ {0, 1}m(n) and

a ∈ {0, 1}λ(n), there exists a set S(x, a) ⊆ [ℓ(n)], such that the following holds for Xn ← {0, 1}m(n).

1. For every i ∈ [ℓ(n)], Pr[i ∈ S(Xn, An)] ≥ k(n)/ℓ(n).

2. for every sequence {in}n∈N,

|Pr[EχS (An, gA(Xn)<in , gA(Xn)in) = 1 | in ∈ S(Xn, An)]

− Pr[EχS (An, g(Xn)<in , U) = 1 | in ∈ S(Xn, An)]| ≤ n−c.

where χS(a, x, i) is the characteristic function of S(x, a) (namely, χS(x, a, i) = 1 iff i ∈ S(x, a)),
provided that all the queries of E to χL are computed independently of the input An, gA(Xn)<i.

We next explain how to construct a function with uniform random-bits unpredictability from a
one-way functions. In Appendix A.2 we show how to use Definition A.2 to get Theorem A.1.

A.1 OWF to Random Bits Unpredictability

The proof is using Holenstein’s hard-core lemma [Hol06b]. The following version of the lemma is
from [HRV13].

Lemma A.3 (Hard-core lemma). Let n be a security parameter. Let h : {0, 1}n → {0, 1}ℓ(n) and
V : {0, 1}n → {0, 1} be poly-time computable functions. Let δ0 = δ0(n) ∈ [0, 1], δ = δ(n) ∈ [δ0, 1]
and γ = γ(n) ≥ 2−n/3. Assume that

PrX←{0,1}n [E(δ0, γ, h(X)) = V (X)] ≤ 1− δ/2

for every probabilistic Turing machine E running in time T = T (n) and large enough n. Then
for every oracle-aided predictor P running in time T · (γδ0/n)O(1) and all sufficiently large n, there
exists a set L ⊆ {0, 1}n of density at least δ such that

PrX←L[P
χL(h(X)) = V (X)] ≤ 1/2 + γ

where χL is the characteristic function of L, provided that all the queries of P to χL are computed
independently of the input h(X).
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We focus on the setting on polynomial security in which case the hard-core lemma directly
yields the following corollary (setting T (n) = poly(n), δ0 = 1/poly(n) and γ = n−c).

Corollary A.4. Let n be a security parameter. Let h : {0, 1}n → {0, 1}ℓ(n) and V : {0, 1}n → {0, 1}
be poly-time computable functions. Let p = p(n) ∈ poly and δ = δ(n) ∈ [1/p(n), 1]. Assume that
for every ppt E,

PrX←{0,1}n [E(p(n), h(X)) = V (X)] ≤ 1− δ/2

for all but finitely many n. Then for every ppt oracle-aided predictor P , constant c ∈ N and all
sufficiently large n, there exists a set L ⊆ {0, 1}n of density at least δ such that

PrX←L[P
χL(h(X)) = V (X)] ≤ 1/2 + n−c

where χL is the characteristic function of L, provided that all the queries of P to χL are computed
independently of the input h(X).

The result for constructing random-bits unpredictability is stated in the following lemma.

Lemma A.5 (OWF to random-bits unpredictability, uniform setting). Let f : {0, 1}n → {0, 1}n be
a one-way function. Then there exists an efficiently computable function family

g′ =
{
g′a : {0, 1}

m′(n) → {0, 1}ℓ
′(n)

}
a∈{0,1}λ(n)

with k′-uniform-random-bits unpredictability, for m′(n) = O(n2/ log n), ℓ′(n) = O(n2/ log n),
λ(n) = n2 and k′(n) ≥ m′(n) + n.

Moreover, the construction uses O(n/ log n) non-adaptive calls to f .

Proof sketch. Let g be the function family defined in Theorem 5.1, and for r(n) = 2n/ log n+3, let
g′ = gr, as defined in Theorem 6.1.

Fix a ppt algorithm E. We start with bounding the probability

Pr
A←{0,1}λ(n),X←{0,1}n,I←[ℓ(n)]

[E(A, gA(X)<I) = gA(X)I ].

Let c ∈ N be a large enough constant, k = n + log n, and let S be as defined in the proof of
Theorem 5.1. By a similar proof to the proof of Theorem 5.1, it holds that for every large enough
n,

Pr
A←{0,1}λ(n),X←{0,1}n,I←[ℓ(n)]

[E(A, gA(X)<I) = gA(X)I | I ∈ S(X)] ≤ 1/2 + 1/nc.

Thus,

Pr
A←{0,1}λ(n),X←{0,1}n,I←[ℓ(n)]

[E(A, gA(X)<I) = gA(X)I ]

≤ Pr[I /∈ S(X)] + Pr[I ∈ S(X)] · Pr[E(A, gA(X)<I) = gA(X)I | I ∈ S(X)]

≤ Pr[I /∈ S(X)] + Pr[I ∈ S(X)] · (1/2 + 1/nc)

≤ 1− k/2ℓ+ 1/nc
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Let h(A,X, I) = A, gA(X)<I , and V (A,X, I) = gA(X)I . By the hard-core lemma (Corollary A.4),
for every oracle-aided ppt P and all sufficiently large n, there exists a set L of density at least
(k/ℓ− 2/nc) such that

Pr(A,X,I)←L[P
χL(h(A,X, I)) = V (A,X, I)] ≤ 1/2 + n−2c. (9)

By the standard distinguishing to prediction reduction, we get that for every oracle-aided ppt P
and all sufficiently large n, there exists a set L of density at least (k/ℓ− 2/nc) such that

|Pr
A←{0,1}λ(n),X←{0,1}n,I←[ℓ(n)]

[DχL(A, gA(X)<I , gA(X)I) = 1 | (A,X, I) ∈ L] (10)

− Pr
A←{0,1}λ(n),X←{0,1}n,I←[ℓ(n)]

[DχL(A, g(X)<I , U) = 1 | (A,X, I) ∈ L]| ≤ 2n−2c

provided that all the queries of D to χL are computed independently of the input. Let
SD(x, a) = {i : (a, x, i) ∈ L}. We get that E[|SD(Xn, An)|] = k− 2ℓ/nc ≥ k− 1. Equation (10) and
a similar reduction to the one in the proof of Theorem 6.1 (bits unpredictability to random bits
unpredictability) concludes the proof.

In more detail, assume toward a contradiction that g′ does not have k′ random bits unpre-
dictability. By definition, there exists c ∈ N and oracle-aided ppt E that breaks the random bits
unpredictability for infinitely many n’s, and for every sets Sg′(i, x1, . . . , xr, a) that satisfy the first
condition in Definition A.2. We use E to construct a distinguisher D that attempts to contradict
Equation (10). That is, let D be the oracle-aided algorithm that, given an oracle to a characteristic
function χS for some sets {S(x, a)}x,a, and input (a, ga(x)<i, b), do the following:

• Use χS to simulate an oracle χSr , where Sr(i, x1, . . . , xr, a) are the sets defined in Theorem 6.1,
namely,

Sr(i, x1, . . . , xr, a) = (
⋃
j∈[r]

{
z + (j − 1)n− (i− 1) : z ∈ S(a, xj)

}
)
⋂

[ℓ(n) · (r(n)− 1)]. (11)

• Sample random inputs and use χSr to find an index z ∈ [ℓ′(n)] such that E breaks the random
bits unpredictability (with respect to the sets Sr) with advantage n−c/2 on index z, or abort if
no such exists.

• Use a similar reduction to the one in the proof of Theorem 6.1 to distinguish (A, gA(X)<I , gA(X)I)
from (A, gA(X)<I , U), and apply the distinguisher on the input. Namely, let i∗ = ((i − 1) −
(z − 1)) mod ℓ(n) + 1 and s = ⌈ z+(i∗−1)

ℓ ⌉ be such that for g′A(i
∗, X1, . . . , Xr), the index z

belongs to the s-th block, and i be the index of z inside the block. That is, s and i∗ are
such that grA(i

∗, X1, . . . , Xr)≤z = gA(X
1)≥i∗ , gA(X

2), . . . , gA(X
s)≤i. The algorithm D sample

X1, . . . , Xs−1 uniformly at random and executes

E(a, ga(X
1)>i∗ , ga(X

2), . . . , ga(x)<i, b).

By Equation (10), D fails to distinguish (A, gA(X)<I , gA(X)I)|I∈SD from (A, gA(X)<I , U)|I∈SD for
some set SD with E[|SD(Xn, An)|] ≥ k − 1. By the reduction in the proof of Theorem 6.1, E must
fail to break the random bits unpredictability of g′ on (SD)r, as defined in Equation (11). Moreover,
by the proof of Theorem 6.1, (SD)r satisfies the first condition in Definition A.2. □
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A.2 Random Bits Unpredictability to PRG

We now show how to adjust our construction and the proof of Theorem 7.2 to get Theorem A.1.

Proof sketch of Theorem A.1. Let g be the function family promised by Lemma A.5. Using Defi-
nition A.2, we adjust the construction and proof of Theorem 6.1 as follow:

1. In the construction, in each copy of gA(X
j), we will use a different matrix Aj . This adds

t · n2 = ω(n4/ log n) bits to the seed.

2. In the proof of Claim 7.7 (the hybrid argument), instead of defining the function qj(a) and
fixing the inputs xj , we sample gAj (Xj)≤in , and use the oracle χ to sample Qj from the right
distribution. Given an input gA(X)<i, B to the reduction such that i ∈ S(X,A)), we replace a
random row j that satisfy i ∈ S(Xj , Aj) with the input.

□

B Next-Block Pseudoentropy

For completeness, we give here the definitions of Next-Block Pseudoentropy used by Haitner, Rein-
gold, and Vadhan [HRV13] and Haitner and Vadhan [HV17].

B.1 The non-uniform setting

We start with the definition from [HV17] for the non-uniform setting.

Definition B.1 (Next-Block pseudoentropy, non-uniform setting). Let m = m(n) be an integer
function. A distribution ensemble X =

{
Xn = (X1

n, . . . , X
m
n )

}
n∈N is said to have (non-uniform)

next-block (Shannon) pseudoentropy (at least) k = k(n) if there exists a (jointly distributed) random
variable Y =

{
Yn = (Y 1

n , . . . , Y
m
n )

}
n∈N such that, for all but finitely many n ∈ N:

1.
∑m

i=1H(Y i
n | X<i

n ) ≥ k(n), and

2. For every i = i(n) ∈ [m(n)],{
X<i(n)

n , Xi(n)
n

}
n∈N
≈

{
X<i(n)

n , Y i(n)
n

}
n∈N

A function g has next-block pseudoentropy if {g(Un)}n∈N has.

B.2 The unifrom setting

Next, we present the definition from [HRV13] for the uniform setting.

Definition B.2 (Next-Block pseudoentropy, uniform setting). Let m = m(n) be an integer func-
tion. A distribution ensemble X =

{
Xn = (X1

n, . . . , X
m
n )

}
n∈N is said to have (uniform) next-block

(Shannon) pseudoentropy (at least) k = k(n), if for every constant c ∈ N and every oracle-aided
algorithm E that runs in time at most nc, there exists a (jointly distributed) random variable
Y =

{
Yn = (Y 1

n , . . . , Y
m
n )

}
n∈N such that, for all but finitely many n ∈ N:

1.
∑m

i=1H(Y i
n | X<i

n ) ≥ k(n), and
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2. For every i = i(n) ∈ [m(n)],

|Pr
[
DOX,Y (Xn

<i(n), X
n
i(n)) = 1

]
− Pr

[
DOX,Y (Xn

<i(n), Y
n
i(n)) = 1

]
| ≤ n−c · L(n)

where OX,Y (i) for i ∈ [m(n)] samples according to the joint distribution (Xn, Y
i
n), and L = L(n)

is a bound on number of calls made by D to OX,Y (including the challenge itself).

A function g has next-block pseudoentropy if {g(Un)}n∈N has.
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