
Symmetric Exponential Time Requires Near-Maximum Circuit Size

Lijie Chen
UC Berkeley

lijiechen@berkeley.edu

Shuichi Hirahara
National Institute of Informatics

s_hirahara@nii.ac.jp

Hanlin Ren
University of Oxford

hanlin.ren@cs.ox.ac.uk

September 22, 2023

Abstract
We show that there is a language in S2E/1 (symmetric exponential time with one bit of ad-

vice) with circuit complexity at least 2n/n. In particular, the above also implies the same near-
maximum circuit lower bounds for the classes Σ2E, (Σ2E∩Π2E)/1, and ZPENP/1. Previously, only
“half-exponential” circuit lower bounds for these complexity classes were known, and the small-
est complexity class known to require exponential circuit complexity was ∆3E = EΣ2P (Miltersen,
Vinodchandran, and Watanabe COCOON’99).

Our circuit lower bounds are corollaries of an unconditional zero-error pseudodeterministic al-
gorithm with an NP oracle and one bit of advice (FZPPNP/1) that solves the range avoidance
problem infinitely often. This algorithm also implies unconditional infinitely-often pseudodeter-
ministic FZPPNP/1 constructions for Ramsey graphs, rigid matrices, two-source extractors, linear
codes, and Kpoly-random strings with nearly optimal parameters.

Our proofs relativize. The two main technical ingredients are (1) Korten’s PNP reduction from
the range avoidance problem to constructing hard truth tables (FOCS’21), which was in turn in-
spired by a result of Jeřábek on provability in Bounded Arithmetic (Ann. Pure Appl. Log. 2004); and
(2) the recent iterative win-win paradigm of Chen, Lu, Oliveira, Ren, and Santhanam (FOCS’23).

Contents
1 Introduction 1

1.1 Our Results . 2
1.2 Intuitions . 3
1.3 Proof Overview . 8
1.4 Discussions . 12

2 Preliminaries 14
2.1 Complexity Classes . 14
2.2 Single-valued FΣ2P and FS2P Algorithms . 14
2.3 The Range Avoidance Problem . 16

3 Korten’s Reduction 16
3.1 GGM Tree and the Reduction . 16
3.2 Π1 Verification of the History of Korten(C, f) . 18

4 Circuit Lower Bounds for Σ2E 20

5 Circuit Lower Bounds for S2E 22
5.1 Reed–Muller Codes . 22
5.2 Encoded History and S2BPP Verification . 24
5.3 Lower Bounds for S2E . 27
5.4 Infinitely Often Single-Valued FS2P Algorithm for Arbitrary Input Range Avoidance 32

References 33

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 144 (2023)

mailto:lijiechen@berkeley.edu
mailto:s_hirahara@nii.ac.jp
mailto:hanlin.ren@cs.ox.ac.uk

1 Introduction

Proving lower bounds against non-uniform computation (i.e., circuit lower bounds) is one of
the most important challenges in theoretical computer science. From Shannon’s counting argument
[Sha49,FM05], we know that almost all n-bit Boolean functions have near-maximum (2n/n) circuit
complexity.1 Therefore, the task of proving circuit lower bounds is simply to pinpoint one such hard
function. More formally, one fundamental question is:

What is the smallest complexity class that contains a language of exponential (2Ω(n))
circuit complexity?

Compared with super-polynomial lower bounds, exponential lower bounds are interesting in
their own right for the following reasons. First, an exponential lower bound would make Shannon’s
argument fully constructive. Second, exponential lower bounds have more applications than super-
polynomial lower bounds: For example, if one can show that E has no 2o(n)-size circuits, then we
would have prP = prBPP [NW94,IW97], while super-polynomial lower bounds such as EXP ̸⊂ P/poly
only imply sub-exponential time derandomization of prBPP.2

Unfortunately, despite its importance, our knowledge about exponential lower bounds is quite
limited. Kannan [Kan82] showed that there is a function in Σ3E∩Π3E that requires maximum circuit
complexity; the complexity of the hard function was later improved to ∆3E = EΣ2P by Miltersen,
Vinodchandran, and Watanabe [MVW99], via a simple binary search argument. This is essentially
all we know regarding exponential circuit lower bounds.3

We remark that Kannan [Kan82, Theorem 4] claimed that Σ2E∩Π2E requires exponential circuit
complexity, but [MVW99] pointed out a gap in Kannan’s proof, and suggested that exponential
lower bounds for Σ2E ∩Π2E were “reopened and considered an open problem.” Recently, Vyas and
Williams [VW23] emphasized our lack of knowledge regarding the circuit complexity of Σ2EXP,
even with respect to relativizing proof techniques. In particular, the following question has been
open for at least 20 years (indeed, if we count from [Kan82], it would be at least 40 years):

Open Problem 1.1. Can we prove that Σ2EXP ̸⊂ SIZE[2εn] for some absolute constant ε > 0, or
at least show a relativization barrier for proving such a lower bound?

The half-exponential barrier. There is a richer literature regarding super-polynomial lower
bounds than exponential lower bounds. Kannan [Kan82] proved that the class Σ2E∩Π2E does not
have polynomial-size circuits. Subsequent works proved super-polynomial circuit lower bounds for
exponential-time complexity classes such as ZPEXPNP [KW98,BCG+96], S2EXP [CCHO05,Cai07],
PEXP [Vin05,Aar06], and MAEXP [BFT98,San09].

1All n-input Boolean functions can be computed by a circuit of size (1+ 3 logn
n

+O(1
n
))2n/n [Lup58,FM05], while

most Boolean functions require circuits of size (1 + logn
n

−O(1
n
))2n/n [FM05]. Hence, in this paper, we say an n-bit

Boolean function has near-maximum circuit complexity if its circuit complexity is at least 2n/n.
2E = DTIME[2O(n)] denotes single-exponential time and EXP = DTIME[2n

O(1)

] denotes exponential time; classes
such as ENP and EXPNP are defined analogously. Exponential time and single-exponential time are basically inter-
changeable in the context of super-polynomial lower bounds (by a padding argument); the exponential lower bounds
proven in this paper will be stated for single-exponential time classes since this makes our results stronger. Below,
Σ3E and Π3E denote the exponential-time versions of Σ3P = NPNPNP

and Π3P = coNPNPNP

, respectively.
3We also mention that Hirahara, Lu, and Ren [HLR23] recently proved that for every constant ε > 0, BPEMCSP/2εn

requires near-maximum circuit complexity, where MCSP is the Minimum Circuit Size Problem [KC00]. However, the
hard function they constructed requires subexponentially (2εn) many advice bits to describe.

1

Unfortunately, all these works fail to prove exponential lower bounds. All of their proofs go
through certain Karp–Lipton collapses [KL80]; such a proof strategy runs into a so-called “half-
exponential barrier”, preventing us from getting exponential lower bounds. See Section 1.4.1 for a
detailed discussion.

1.1 Our Results

1.1.1 New near-maximum circuit lower bounds

In this work, we overcome the half-exponential barrier mentioned above and resolve Open Prob-
lem 1.1 by showing that both Σ2E and (Σ2E ∩ Π2E)/1 require near-maximum (2n/n) circuit com-
plexity. Moreover, our proof indeed relativizes:

Theorem 1.2. Σ2E ̸⊂ SIZE[2n/n] and (Σ2E ∩ Π2E)/1 ̸⊂ SIZE[2n/n]. Moreover, they hold in every
relativized world.

Up to one bit of advice, we finally provide a proof of Kannan’s original claim in [Kan82, The-
orem 4]. Moreover, with some more work, we extend our lower bounds to the smaller complexity
class S2E/1 (see Definition 2.1 for a formal definition), again with a relativizing proof:

Theorem 1.3. S2E/1 ̸⊂ SIZE[2n/n]. Moreover, this holds in every relativized world.

The symmetric time class S2E. S2E can be seen as a “randomized” version of ENP since it is
sandwiched between ENP and ZPENP: it is easy to show that ENP ⊆ S2E [RS98], and it is also known
that S2E ⊆ ZPENP [Cai07]. We also note that under plausible derandomization assumptions (e.g.,
ENP requires 2Ω(n)-size SAT-oracle circuits), all three classes simply collapse to ENP [KvM02].

Hence, our results also imply a near-maximum circuit lower bound for the class ZPENP/1 ⊆
(Σ2E ∩Π2E)/1. This vastly improves the previous lower bound for ∆3E = EΣ2P.

Corollary 1.4. ZPENP/1 ̸⊂ SIZE[2n/n]. Moreover, this holds in every relativized world.

1.1.2 New algorithms for the range avoidance problem

Background on Avoid. Actually, our circuit lower bounds are implied by our new algorithms
for solving the range avoidance problem (Avoid) [KKMP21, Kor21, RSW22], which is defined as
follows: given a circuit C : {0, 1}n → {0, 1}n+1 as input, find a string outside the range of C (we
define Range(C) := {C(z) : z ∈ {0, 1}n}). That is, output any string y ∈ {0, 1}n+1 such that for
every x ∈ {0, 1}n, C(x) ̸= y.

There is a trivial FZPPNP algorithm solving Avoid: randomly generate strings y ∈ {0, 1}n+1

and output the first y that is outside the range of C (note that we need an NP oracle to verify if
y /∈ Range(C)). The class APEPP (Abundant Polynomial Empty Pigeonhole Principle) [KKMP21]
is the class of total search problems reducible to Avoid.

As demonstrated by Korten [Kor21, Section 3], APEPP captures the complexity of explicit
construction problems whose solutions are guaranteed to exist by the probabilistic method (more
precisely, the dual weak pigeonhole principle [Kra01,Jeř04]), in the sense that constructing such ob-
jects reduces to the range avoidance problem. This includes many important objects in mathematics
and theoretical computer science, including Ramsey graphs [Erd59], rigid matrices [Val77,GLW22,
GGNS23], two-source extractors [CZ19,Li23], linear codes [GLW22], hard truth tables [Kor21], and
strings with maximum time-bounded Kolmogorov complexity (i.e., Kpoly-random strings) [RSW22].
Hence, derandomizing the trivial FZPPNP algorithm for Avoid would imply explicit constructions
for all these important objects.

2

Our results: new pseudodeterministic algorithms for Avoid. We show that, uncondition-
ally, the trivial FZPPNP algorithm for Avoid can be made pseudodeterministic on infinitely many
input lengths. A pseudodeterministic algorithm [GG11] is a randomized algorithm that outputs the
same canonical answer on most computational paths. In particular, we have:

Theorem 1.5. For every constant d ≥ 1, there is a randomized algorithm A with an NP oracle such
that the following holds for infinitely many integers n. For every circuit C : {0, 1}n → {0, 1}n+1 of
size at most nd, there is a string yC ∈ {0, 1}n \ Range(C) such that A(C) either outputs yC or
⊥, and the probability (over the internal randomness of A) that A(C) outputs yC is at least 2/3.
Moreover, this theorem holds in every relativized world.

As a corollary, for every problem in APEPP, we obtain zero-error pseudodeterministic construc-
tions with an NP oracle and one bit of advice (FZPPNP/1) that works infinitely often4:

Corollary 1.6 (Informal). There are infinitely-often zero-error pseudodeterministic constructions
for the following objects with an NP oracle and one-bit of advice: Ramsey graphs, rigid matrices,
two-source extractors, linear codes, hard truth tables, and Kpoly-random strings.

Actually, we obtain single-valued FS2P/1 algorithms for the explicit construction problems above
(see Definition 2.2), and the pseudodeterministic FZPPNP/1 algorithms follow from Cai’s theorem
that S2P ⊆ ZPPNP [Cai07]. We stated them as pseudodeterministic FZPPNP/1 algorithms since this
notion is better known than the notion of single-valued FS2P/1 algorithms.

Theorem 1.5 is tantalizingly close to an infinitely-often FPNP algorithm for Avoid (with the
only caveat of being zero-error instead of being completely deterministic). However, since an FPNP

algorithm for range avoidance would imply near-maximum circuit lower bounds for ENP, we expect
that it would require fundamentally new ideas to completely derandomize our algorithm. Previously,
Hirahara, Lu, and Ren [HLR23, Theorem 36] presented an infinitely-often pseudodeterministic
FZPPNP algorithm for the range avoidance problem using nε bits of advice, for any small constant
ε > 0. Our result improves the above in two aspects: first, we reduce the number of advice bits to
1; second, our techniques relativize but their techniques do not.

Lower bounds against non-uniform computation with maximum advice length. Finally,
our results also imply lower bounds against non-uniform computation with maximum advice length.
We mention this corollary because it is a stronger statement than circuit lower bounds, and similar
lower bounds appeared recently in the literature of super-fast derandomization [CT21b].

Corollary 1.7. For every α(n) ≥ ω(1) and any constant k ≥ 1, S2E/1 ̸⊂ TIME[2kn]/2n−α(n). The
same holds for Σ2E, (Σ2E ∩Π2E)/1, and ZPENP/1 in place of S2E/1. Moreover, this holds in every
relativized world.

1.2 Intuitions

In the following, we present some high-level intuitions for our new circuit lower bounds.
4The one-bit advice encodes whether our algorithm succeeds on a given input length; it is needed since on bad

input lengths, our algorithm might not be pseudodeterministic (i.e., there may not be a canonical answer that is
outputted with high probability).

3

1.2.1 Perspective: single-valued constructions

A key perspective in this paper is to view circuit lower bounds (for exponential-time classes) as
single-valued constructions of hard truth tables. This perspective is folklore; it was also emphasized
in recent papers on the range avoidance problem [Kor21,RSW22].

Let Π ⊆ {0, 1}⋆ be an ε-dense property, i.e., for every integer N ∈ N, |ΠN | ≥ ε · 2N . (In what
follows, we use ΠN := Π ∩ {0, 1}N to denote the length-N slice of Π.) As a concrete example, let
Πhard be the set of hard truth tables, i.e., a string tt ∈ Πhard if and only if it is the truth table of
a function f : {0, 1}n → {0, 1} whose circuit complexity is at least 2n/n, where n := logN . (We
assume that n := logN is an integer.) Shannon’s argument [Sha49, FM05] shows that Πhard is a
1/2-dense property. We are interested in the following question:

What is the complexity of single-valued constructions for any string in Πhard?

Here, informally speaking, a computation is single-valued if each of its computational paths either
fails or outputs the same value. For example, an NP machine M is a single-valued construction for
Π if there is a “canonical” string y ∈ Π such that (1) M outputs y on every accepting computational
path; (2) M has at least one accepting computational path. (That is, it is an NPSV construction
in the sense of [BLS85,FHOS93, Sel94,HNOS96].) Similarly, a BPP machine M is a single-valued
construction for Π if there is a “canonical” string y ∈ Π such that M outputs y on most (say ≥ 2/3
fraction of) computational paths. (In other words, single-valued ZPP and BPP constructions are
another name for pseudodeterministic constructions [GG11].)5

Hence, the task of proving circuit lower bounds is equivalent to the task of defining, i.e., single-
value constructing, a hard function, in the smallest possible complexity class. For example, a
single-valued BPP construction (i.e., pseudodeterministic construction) for Πhard is equivalent to
the circuit lower bound BPE ̸⊂ i.o.-SIZE[2n/n].6 In this regard, the previous near-maximum circuit
lower bound for ∆3E := EΣ2P [MVW99] can be summarized in one sentence: The lexicographically
first string in Πhard can be constructed in ∆3P := PΣ2P (which is necessarily single-valued).

Reduction to Avoid. It was observed in [KKMP21,Kor21] that explicit construction of elements
from Πhard is a special case of range avoidance: Let TT : {0, 1}N−1 → {0, 1}N (here N = 2n) be a
circuit that maps the description of a 2n/n-size circuit into its 2n-length truth table (by [FM05],
this circuit can be encoded by N − 1 bits). Hence, a single-valued algorithm solving Avoid for TT
is equivalent to a single-valued construction for Πhard. This explains how our new range avoidance
algorithms imply our new circuit lower bounds (as mentioned in Section 1.1.2).

In the rest of Section 1.2, we will only consider the special case of Avoid where the input circuit
for range avoidance is a P-uniform circuit family. Specifically, let {Cn : {0, 1}n → {0, 1}2n}n∈N be a
P-uniform family of circuits, where |Cn| ≤ poly(n).7 Our goal is to find an algorithm A such that
for infinitely many n, A(1n) ∈ {0, 1}2n \Range(Cn); see Section 5.3 and Section 5.4 for how to turn

5Note that the trivial construction algorithms are not single-valued in general. For example, a trivial Σ2P = NPNP

construction algorithm for Πhard is to guess a hard truth table tt and use the NP oracle to verify that tt does not have
size-N/ logN circuits; however, different accepting computational paths of this computation would output different
hard truth tables. Similarly, a trivial BPP construction algorithm for every dense property Π is to output a random
string, but there is no canonical answer that is outputted with high probability. In other words, these construction
algorithms do not define anything; instead, a single-valued construction algorithm should define some particular
string in Π.

6To see this, note that (1) BPE ̸⊂ i.o.-SIZE[2n/n] implies a simple single-valued BPP construction for Πhard: given
N = 2n, output the truth table of Ln (L restricted to n-bit inputs), where L ∈ BPE is the hard language not in
SIZE[2n/n]; and (2) assuming a single-valued BPP construction A for Πhard, one can define a hard language L such
that the truth table of Ln is the output of A(12

n

), and observe that L ∈ BPE.
7We assume that Cn stretches n bits to 2n bits instead of n + 1 bits for simplicity; Korten [Kor21] showed that

4

this into an algorithm that works for arbitrary input circuit with a single bit of stretch. Also, since
from now on we will not talk about truth tables anymore, we will use n instead of N to denote the
input length of Avoid instances.

1.2.2 The iterative win-win paradigm of [CLO+23]

In a recent work, Chen, Lu, Oliveira, Ren, and Santhanam [CLO+23] introduced the iterative
win-win paradigm for explicit constructions, and used that to obtain a polynomial-time pseudo-
deterministic construction of primes that works infinitely often. Since our construction algorithm
closely follows their paradigm, it is instructive to take a detour and give a high-level overview of
how the construction from [CLO+23] works.8

In this paradigm, for a (starting) input length n0 and some t = O(log n0), we will consider an
increasing sequence of input lengths n0, n1, . . . , nt (jumping ahead, we will set ni+1 = nβi for a large
constant β), and show that our construction algorithm succeeds on at least one of the input lengths.
By varying n0, we can construct infinitely many such sequences of input lengths that are pairwise
disjoint, and therefore our algorithm succeeds on infinitely many input lengths.

In more detail, fixing a sequence of input lengths n0, n1, . . . , nt and letting Π be an ε-dense
property, for each i ∈ {0, 1, . . . , t}, we specify a (deterministic) algorithm ALGi that takes 1ni as
input and aims to construct an explicit element from Πni . We let ALG0 be the simple brute-force
algorithm that enumerates all length-n0 strings and finds the lexicographically first string in Πn0 ;
it is easy to see that ALG0 runs in T0 := 2O(n0) time.

The win-or-improve mechanism. The core of [CLO+23] is a novel win-or-improve mechanism,
which is described by a (randomized) algorithm R. Roughly speaking, for input lengths ni and
ni+1, R(1ni) attempts to simulate ALGi faster by using the oracle Πni+1 (hence it runs in poly(ni+1)
time). The crucial property is the following win-win argument:

(Win) Either R(1ni) outputs ALGi(1
ni) with probability at least 2/3 over its internal randomness,

(Improve) or, from the failure of R(1ni), we can construct an algorithm ALGi+1 that outputs an
explicit element from Πni+1 and runs in Ti+1 = poly(Ti) time.

We call the above (Win-or-Improve), since either we have a pseudodeterministic algorithmR(1ni)
that constructs an explicit element from Πni in poly(ni+1) ≤ poly(ni) time (since it simulates ALGi),
or we have an improved algorithm ALGi+1 at the input length ni+1 (for example, on input length

n1, the running time of ALG1 is 2
O
(
n
1/β
1

)
≪ 2O(n1)). The (Win-or-Improve) part in [CLO+23] is

implemented via the Chen–Tell targeted hitting set generator [CT21a] (we omit the details here).
Jumping ahead, in this paper, we will implement a similar mechanism using Korten’s PNP reduction
from the range avoidance problem to constructing hard truth tables [Kor21].

Getting polynomial time. Now we briefly explain why (Win-or-Improve) implies a polynomial-
time construction algorithm. Let α be an absolute constant such that we always have Ti+1 ≤ Tα

i ;
we now set β := 2α. Recall that ni = nβi−1 for every i. The crucial observation is the following:

there is a PNP reduction from the range avoidance problem with stretch n + 1 to the range avoidance problem with
stretch 2n.

8Indeed, for every 1/poly(n)-dense property Π ∈ P, they obtained a polynomial-time algorithm A such that for
infinitely many n ∈ N, there exists yn ∈ Πn such that A(1n) outputs yn with probability at least 2/3. By [AKS04]
and the prime number theorem, the set of n-bit primes is such a property.

5

Although T0 is much larger than n0, the sequence {Ti} grows slower than {ni}.

Indeed, a simple calculation shows that when t = O(log n0), we will have Tt ≤ poly(nt); see
[CLO+23, Section 1.3.1].

For each 0 ≤ i < t, if R(1ni) successfully simulates ALGi, then we obtain an algorithm for input
length ni running in poly(ni+1) ≤ poly(ni) time. Otherwise, we have an algorithm ALGi+1 running
in Ti+1 time on input length ni+1. Eventually, we will hit t such that Tt ≤ poly(nt), in which
case ALGt itself gives a polynomial-time construction on input length nt. Therefore, we obtain a
polynomial-time algorithm on at least one of the input lengths n0, n1, . . . , nt.

1.2.3 Algorithms for range-avoidance via Korten’s reduction

Now we are ready to describe our new algorithms for Avoid. Roughly speaking, our new
algorithm makes use of the iterative win-win argument introduced above, together with an easy-
witness style argument [IKW02] and Korten’s reduction [Kor21].9 In the following, we introduce
the latter two ingredients and show how to chain them together via the iterative win-win argument.

An easy-witness style argument. Let BF be the 2O(n)-time brute-force algorithm outputting
the lexicographically first non-output of Cn. Our first idea is to consider its computational history,
a unique 2O(n)-length string hBF (that can be computed in 2O(n) time), and branch on whether hBF
has a small circuit or not. Suppose hBF admits a, say, nα-size circuit for some large α, then we
apply an easy-witness-style argument [IKW02] to simulate BF by a single-valued FΣ2P algorithm
running in poly(nα) = poly(n) time (see Section 1.3.2). Hence, we obtained the desired algorithm
when hBF is easy.

However, it is less clear how to deal with the other case (when hBF is hard) directly. The crucial
observation is that we have gained the following ability: we can generate a string hBF ∈ {0, 1}2

O(n)

that has circuit complexity at least nα, in only 2O(n) time.

Korten’s reduction. We will apply Korten’s recent work [Kor21] to make use of the “gain” above.
So it is worth taking a detour to review the main result of [Kor21]. Roughly speaking, [Kor21] gives
an algorithm that uses a hard truth table f to solve a derandomization task: finding a
non-output of the given circuit (that has more output bits than input bits).10

Formally, [Kor21] gives a PNP-computable algorithm Korten(C, f) that takes as inputs a circuit
C : {0, 1}n → {0, 1}2n and a string f ∈ {0, 1}T (think of n≪ T), and outputs a string y ∈ {0, 1}2n.
The guarantee is that if the circuit complexity of f is sufficiently larger than the size of C, then the
output y is not in the range of C.

This fits perfectly with our “gain” above: for β ≪ α and m = nβ , Korten(Cm, hBF) solves Avoid
for Cm since the circuit complexity of hBF, nα, is sufficiently larger than the size of Cm. Moreover,
Korten(Cm, hBF) runs in only 2O(n) time, which is much less than the brute-force running time
2O(m). Therefore, we obtain an improved algorithm for Avoid on input length m.

9Korten’s result was inspired by [Jeř04], which proved that the dual weak pigeonhole principle is equivalent to the
statement asserting the existence of Boolean functions with exponential circuit complexity in a certain fragment of
Bounded Arithmetic.

10This is very similar to the classical hardness-vs-randomness connection [NW94, IW97], which can be understood
as an algorithm that uses a hard truth table f (i.e., a truth table without small circuits) to solve another deran-
domization task: estimating the acceptance probability of the given circuit. This explains why one may want to use
Korten’s algorithm to replace the Chen–Tell targeted generator construction [CT21a] from [CLO+23], as they are
both hardness-vs-randomness connections.

6

The iterative win-win argument. What we described above is essentially the first stage of an
win-or-improve mechanism similar to that from Section 1.2.2. Therefore, we only need to iterate
the argument above to obtain a polynomial-time algorithm.

For this purpose, we need to consider the computational history of not only BF, but also algo-
rithms of the form Korten(C, f).11 For any circuit C and “hard” truth table f , there is a unique
“computational history” h of Korten(C, f), and the length of h is upper bounded by poly(|f |). We
are able to prove the following statement akin to the easy witness lemma [IKW02]: if h admits
a size-s circuit (think of s ≪ T), then Korten(C, f) can be simulated by a single-valued FΣ2P
algorithm in time poly(s); see Section 1.3.2 for details on this argument.12

Now, following the iterative win-win paradigm of [CLO+23], for a (starting) input length n0 and
some t = O(log n0), we consider an increasing sequence of input lengths n0, n1, . . . , nt, and show that
our algorithm A succeeds on at least one of the input lengths (i.e., A(1ni) ∈ {0, 1}2ni \Range(Cni)
for some i ∈ {0, 1, . . . , t}). For each i ∈ {0, 1, . . . , t}, we specify an algorithm ALGi of the form
Korten(Cni ,−) that aims to solve Avoid for Cni ; in other words, we specify a string fi ∈ {0, 1}Ti

for some Ti and let ALGi := Korten(Cni , fi).
The algorithm ALG0 is simply the brute force algorithm BF at input length n0. (A convenient ob-

servation is that we can specify an exponentially long string f0 ∈ {0, 1}2
O(n0) so that Korten(Cn0 , f0)

is equivalent to BF = ALG0; see Fact 3.4.) For each 0 ≤ i < t, to specify ALGi+1, let fi+1 denote
the history of the algorithm ALGi, and consider the following win-or-improve mechanism.

(Win) If fi+1 admits an nαi -size circuit (for some large constant α), by our easy-witness argument,
we can simulate ALGi by a poly(ni)-time single-valued FΣ2P algorithm.

(Improve) Otherwise fi+1 has circuit complexity at least nαi , we plug it into Korten’s reduction to
solve Avoid for Cni+1 . That is, we take ALGi+1 := Korten(Cni+1 , fi+1) as our new algorithm
on input length ni+1.

Let Ti = |fi|, then Ti+1 ≤ poly(Ti). By setting ni+1 = nβi for a sufficiently large β, a similar
analysis as [CLO+23] shows that for some t = O(log n0) we would have Tt ≤ poly(nt), meaning
that ALGt would be a poly(nt)-time FPNP algorithm (thus also a single-valued FΣ2P algorithm)
solving Avoid for Cnt . Putting everything together, we obtain a polynomial-time single-valued
FΣ2P algorithm that solves Avoid for at least one of the Cni .

The hardness condenser perspective. Below we present another perspective on the construc-
tion above which may help the reader understand it better. In the following, we fix Cn : {0, 1}n →
{0, 1}2n to be the truth table generator TTn,2n that maps an n-bit description of a log(2n)-input
circuit into its length-2n truth table. Hence, instead of solving Avoid in general, our goal here is
simply constructing hard truth tables (or equivalently, proving circuit lower bounds).

We note that Korten(TTn,2n, f) can then be interpreted as a hardness condenser [BS06]:13 Given
a truth table f ∈ {0, 1}T whose circuit complexity is sufficiently larger than n, it outputs a length-
2n truth table that is maximally hard (i.e., without n/ log n-size circuits). The win-or-improve
mechanism can be interpreted as an iterative application of this hardness condenser.

11Actually, we need to consider all algorithms ALGi defined below and prove the properties of computational history
for these algorithms. It turns out that all of ALGi are of the form Korten(C, f) (including ALG0), so in what follows
we only consider the computational history of Korten(C, f).

12With an “encoded” version of history and more effort, we are able to simulate Korten(C, f) by a single-valued
FS2P algorithm in time poly(s), and that is how our S2E lower bound is proved; see Section 1.3.3 for details.

13A hardness condenser takes a long truth table f with certain hardness and outputs a shorter truth table with
similar hardness.

7

At the stage i, we consider the algorithm ALGi := Korten(TTni,2ni , fi), which runs in Ti ≈ |fi|
time and creates (roughly) ni bits of hardness. (That is, the circuit complexity of the output
of ALGi is roughly ni.) In the (Win) case above, ALGi admits an nαi -size history fi+1 (with
length approximately |fi|) and can therefore be simulated in FΣ2P. The magic is that in the
(Improve) case, we actually have access to much more hardness than ni: the history string fi+1

has nαi ≫ ni bits of hardness. So we can distill these hardness by applying the condenser to
fi+1 to obtain a maximally hard truth tables of length 2ni+1 = 2nβi , establish the next algorithm
ALGi+1 := Korten(TTni+1,2ni+1 , fi+1), and keep iterating.

Observe that the string fi+1 above has nαi > nβi = ni+1 bits of hardness. Since |fi+1| ≈ |fi| and
ni+1 = nβi , the process above creates harder and harder strings, until |fi+1| ≤ ni+1 ≤ nαi , so the
(Win) case must happen at some point.

1.3 Proof Overview

In this section, we elaborate on the computational history of Korten and how the easy-witness-
style argument gives us FΣ2P and FS2P algorithms.

1.3.1 Korten’s reduction

We first review the key concepts and results from [Kor21] that are needed for us. Given a circuit
C : {0, 1}n → {0, 1}2n and a parameter T ≥ 2n, Korten builds another circuit GGMT [C] stretching
n bits to T bits as follows:14

• On input x ∈ {0, 1}n, we set v0,0 = x. For simplicity, we assume that T/n = 2k for some
k ∈ N. We build a full binary tree with k + 1 layers; see Figure 1 for an example with k = 3.

• For every i ∈ {0, 1, . . . , k− 1} and j ∈ {0, 1, . . . , 2i − 1}, we set vi+1,2j and vi+1,2j+1 to be the
first n bits and the last n bits of C(vi,j), respectively.

• The output of GGMT [C](x) is defined to be the concatenation of vk,0, vk,1, . . . , vk,2k−1.

v0,0

v1,0

v2,0

v3,0 v3,1

v2,1

v3,2 v3,3

v1,1

v2,2

v3,4 v3,5

v2,3

v3,6 v3,7

Figure 1: An illustration of the GGM Tree, in which, for instance, it holds that (v3,4, v3,5) = C(v2,2).

The following two properties of GGMT [C] are established in [Kor21], which will be useful for us:
14We use the name GGM because the construction is similar to the pseudorandom function generator of Goldreich,

Goldwasser, and Micali [GGM86].

8

1. Given i ∈ [T], C and x ∈ {0, 1}n, by traversing the tree from the root towards the leaf
with the i-th bit, one can compute the i-th bit of GGMT [C](x) in poly(SIZE(C), log T) time.
Consequently, for every x, GGMT [C](x) has circuit complexity at most poly(SIZE(C), log T).

2. There is a PNP algorithm Korten(C, f) that takes an input f ∈ {0, 1}T \Range(GGMT [C]) and
outputs a string u ∈ {0, 1}2n \ Range(C). Note that this is a reduction from solving Avoid
for C to solving Avoid for GGMT [C].

In particular, letting f be a truth table whose circuit complexity is sufficiently larger than
SIZE(C), by the first property above, it is not in Range(GGMT [C]), and therefore Korten(C, f)
solves Avoid for C. This confirms our description of Korten in Section 1.1.2.

1.3.2 Computational history of Korten and an easy-witness argument for FΣ2P algo-
rithms

The algorithm Korten(C, f) works as follows: we first view f as the labels of the last layer of the
binary tree, and try to reconstruct the whole binary tree, layer by layer (start from the bottom layer
to the top layer, within each layer, start from the rightmost node to the leftmost one), by filling
the labels of the intermediate nodes. To fill vi,j , we use an NP oracle to find the lexicographically
first string u ∈ {0, 1}n such that C(u) = vi+1,2j ◦ vi+1,2j+1, and set vi,j = u. If no such u exists,
the algorithm stops and report vi+1,2j ◦ vi+1,2j+1 as the solution to Avoid for C. Observe that this
reconstruction procedure must stop somewhere, since if it successfully reproduces all the labels in the
binary tree, we would have f = GGMT [C](v0,0) ∈ Range(GGMT [C]), contradicting the assumption.
See Lemma 3.3 for details.

The computational history of Korten. The algorithm described above induces a natural de-
scription of the computational history of Korten, denoted as History(C, f), as follows: the index
(i⋆, j⋆) when the algorithm stops (i.e., the algorithm fails to fill in vi⋆,j⋆) concatenated with the
labels of all the nodes generated by Korten(C, f) (for the intermediate nodes with no label assigned,
we set their labels to a special symbol ⊥); see Figure 2 for an illustration. This history has length at
most 5T , and for convenience, we pad additional zeros at the end of it so that its length is exactly
5T .

⊥

⊥

⊥

v3,0 v3,1

⊥

v3,2 v3,3

⊥

v2,2

v3,4 v3,5

v2,3

v3,6 v3,7

(i⋆, j⋆) = (2, 1)

Figure 2: An illustration of the history of Korten(C, f). Here we have History(C, f) = (2, 1) ◦
⊥⊥⊥⊥⊥ ◦ v2,2 ◦ v2,3 ◦ v3,0 ◦ . . . ◦ v3,7 and Korten(C, f) = v3,2 ◦ v3,3.

9

A local characterization of History(C, f). The crucial observation we make on History(C, f) is
that it admits a local characterization in the following sense: there is a family of local constraints
{ψx}x∈{0,1}poly(n) , where each ψx : {0, 1}5T × {0, 1}T → {0, 1} reads only poly(n) many bits of
its input (we think about it as a local constraint since usually n ≪ T), such that for fixed f ,
History(C, f) ◦ f is the unique string making all the ψx outputting 1.

The constraints are follows: (1) for every leaf node vk,i, its content is consistent with the
corresponding block in f ; (2) all labels at or before node (i⋆, j⋆) are ⊥;15 (3) for every z ∈ {0, 1}n,
C(z) ̸= vi⋆+1,2j⋆ ◦ vi⋆+1,2j⋆+1 (meaning the algorithm fails at vi⋆,j⋆); (4) for every (i, j) after (i⋆, j⋆),
C(vi,j) = vi+1,2j ◦ vi+1,2j+1 (vi,j is the correct label); (5) for every (i, j) after (i⋆, j⋆) and for every
v′ < vi,j , C(v′) ̸= vi+1,2j ◦ vi+1,2j+1 (vi,j is the lexicographically first correct label). It is clear
that each of these constraints above only reads poly(n) many bits from the input and a careful
examination shows they precisely define the string History(C, f).

A more intuitive way to look at these local constraints is to treat them as a poly(n)-time
oracle algorithm VHistory that takes a string x ∈ poly(n) as input and two strings h ∈ {0, 1}5T and
f ∈ {0, 1}T as oracles, and we simply let V h,f

History(x) = ψx(h ◦ f). Since the constraints above are all
very simple and only read poly(n) bits of h ◦ f , VHistory runs in poly(n) time. In some sense, VHistory

is a local Π1 verifier: it is local in the sense that it only queries poly(n) bits from its oracles, and it
is Π1 since it needs a universal quantifier over x ∈ {0, 1}poly(n) to perform all the checks.

FΣ2P algorithms. Before we proceed, we give a formal definition of a single-valued FΣ2P algo-
rithm A. Here A is implemented by an algorithm VA taking an input x and two poly(|x|)-length
witnesses π1 and π2. We say A(x) outputs a string z ∈ {0, 1}ℓ (we assume ℓ = ℓ(x) can be computed
in polynomial time from x) if z is the unique length-ℓ string such that the following hold:

• there exists π1 such that for every π2, VHistory(x, π1, π2, z) = 1.16

We can view VHistory as a verifier that checks whether z is the desired output using another
universal quantifier: given a proof π1 and a string z ∈ {0, 1}ℓ. A accepts z if and only if for every
π2, VHistory(x, π1, π2, z) = 1. That is, A can perform exponentially many checks on π1 and z, each
taking poly(|x|) time.

The easy-witness argument. Now we are ready to elaborate on the easy-witness argument
mentioned in Section 1.1.2. Recall that at stage i, we have ALGi = Korten(Cni , fi) and fi+1 =
History(Cni , fi) (the history of ALGi). Assuming that fi+1 admits a poly(ni)-size circuit, we want
to show that Korten(Cni , fi) can be simulated by a poly(ni)-time single-valued FΣ2P algorithm.

Observe that for every t ∈ [i+1], ft−1 is simply a substring of ft since ft = History(Cnt−1 , ft−1).
Therefore, fi+1 admitting a poly(ni)-size circuit implies that all ft admit poly(ni)-size circuits for
t ∈ [i]. We can then implement A as follows: the proof π1 is a poly(ni)-size circuit Ci+1 supposed
to compute fi+1, from which one can obtain in polynomial time a sequence of circuits C1, . . . , Ci

that are supposed to compute f1, . . . , fi, respectively. (Also, from Fact 3.4, one can easily construct
a poly(n0)-size circuit C0 computing f0.) Next, for every t ∈ {0, 1, . . . , i}, A checks whether
tt(Ct+1)◦tt(Ct) satisfies all the local constraints ψx’s from the characterization of History(Cnt , ft).
In other words, A checks whether V Ct+1,Ct

History (x) = 1 for all x ∈ {0, 1}poly(nt).

15We say that (i, j) is before (after) (i⋆, j⋆) if the pair (i, j) is lexicographically smaller (greater) than (i⋆, j⋆).
16Note that our definition here is different from the formal definition we used in Definition 2.2. But from this

definition, it is easier to see why FΣ2P algorithms for constructing hard truth tables imply circuit lower bounds for
Σ2E.

10

The crucial observation is that since all the Ct have size poly(ni), each check above can be
implemented in poly(ni) time as they only read at most poly(ni) bits from their input, despite that
tt(Ct+1) ◦ tt(Ct) itself can be much longer than poly(ni). Assuming that all the checks of A above
are passed, by induction we know that ft+1 = History(Cnt , ft) for every t ∈ {0, 1, . . . , i}. Finally, A
checks whether z corresponds to the answer described in tt(Ci+1) = fi+1.

1.3.3 Selectors and an easy-witness argument for FS2P algorithms

Finally, we discuss how to implement the easy-witness argument above with a single-valued
FS2P algorithm. It is known that any single-valued FS2BPP algorithm can be converted into an
equivalent single-valued FS2P algorithm outputting the same string [Can96, RS98] (see also the
proof of Theorem 5.7 for a self-contained argument). Therefore, in the following we aim to give a
single-valued FS2BPP algorithm for solving range avoidance, which is easier to achieve.

FS2BPP algorithms and randomized selectors. Before we proceed, we give a formal definition
of a single-valued FS2BPP algorithm A. We implement A by a randomized algorithm VA that takes
an input x and two poly(|x|)-length witnesses π1 and π2.17 We say that A(x) outputs a string
z ∈ {0, 1}ℓ (we assume ℓ = ℓ(x) can be computed in polynomial time from x) if the following hold:

• there exists a string h such that for every π, both VA(x, h, π) and VA(x, π, h) output z with
probability at least 2/3. (Note that such z must be unique if it exists.)

Actually, our algorithm A will be implemented as a randomized selector : given two potential
proofs π1 and π2, it first selects the correct one and then outputs the string z induced by the correct
proof.18

Recap. Revising the algorithm in Section 1.2.3, our goal now is to give an FS2BPP simulation of
Korten(Cni , fi), assuming that History(Cni , fi) admits a small circuit. Similar to the local Π1 verifier
used in the case of FΣ2P algorithms, now we consider a local randomized selector Vselect which takes
oracles π1, π2 ∈ {0, 1}5T and f ∈ {0, 1}T such that if exactly one of the π1 and π2 is History(C, f),
Vselect outputs its index with high probability.

Assuming that fi+1 = History(Cni , fi) admits a small circuit, one can similarly turn Vselect into
a single-valued FS2BPP algorithms A computing Korten(Cni , fi): treat two proofs π1 and π2 as two
small circuits C and D both supposed to compute fi+1, from C and D we can obtain a sequence of
circuits {Ct} and {Dt} supposed to compute the ft for t ∈ [i]. Then we can use the selector Vselect
to decide for each t ∈ [i+ 1] which of the Ct and Dt is the correct circuit for ft. Finally, we output
the answer encoded in the selected circuit for fi+1; see the proof of Theorem 5.7 for details.19

Observation: it suffices to find the first differing node label. Ignore the (i⋆, j⋆) part of
the history for now. Let {v1i,j} and {v2i,j} be the node labels encoded in π1 and π2, respectively.
We also assume that exactly one of them corresponds to the correct node labels in History(C, f).
The crucial observation here is that, since the correct node labels are generated by a deterministic
procedure node by node (from bottom to top and from rightmost to leftmost), it is possible to tell
which of the {v1i,j} and {v2i,j} is correct given the largest (i′, j′) such that v1i′,j′ ̸= v2i′,j′ . (Note that

17FS2P algorithms are the special case of FS2BPP algorithms where the algorithm VA is deterministic.
18If both proofs are correct or neither proofs are correct, it can select an arbitrary one. The condition only applies

when exactly one of the proofs is correct.
19However, for the reasons to be explained below, we will actually work with the encoded history instead of the

history, which entails a lot of technical challenges in the actual proof.

11

since all (i, j) are processed by Korten(C, f) in reverse lexicographic order, this (i′, j′) corresponds
to the first node label that the wrong process differs from the correct process, so we call this the
first differing point.)

In more detail, assuming we know this (i′, j′), we proceed by discussing several cases. First of all,
if (i′, j′) corresponds to a leaf, then one can query f to figure out which of v1i′,j′ and v2i′,j′ is consistent
with the corresponding block in f . Now we can assume (i′, j′) corresponds to an intermediate node.
Since (i′, j′) is the first differing point, we know that v1i′+1,2j′ ◦ v1i′+1,2j′+1 = v2i′+1,2j′ ◦ v2i′+1,2j′+1 (we
let this string to be α for convenience). By the definition of History(C, f), it follows that the correct
vi′,j′ should be uniquely determined by α, which means the selector only needs to read α, v1i′,j′ , and
v2i′,j′ , and can then be implemented by a somewhat tedious case analysis (so it is local). We refer
readers to the proof of Lemma 5.5 for the details and only highlight the most illuminating case here:
if both of v1i′,j′ and v2i′,j′ are good (we say a string γ is good, if γ ̸= ⊥ and C(γ) = α), we select the
lexicographically smaller one. To handle the (i⋆, j⋆) part, one needs some additional case analysis.
We omit the details here and refer the reader to the proof of Lemma 5.5.

The takeaway here is that if we can find the first differing label (i′, j′), then we can construct
the selector Vselect and hence the desired single-valued FS2BPP algorithm.

Encoded history. However, the above assumes the knowledge of (i′, j′). In general, if one is only
given oracle access to {v1i,j} and {v2i,j}, there is no poly(n)-time oracle algorithm computing (i′, j′)

because there might be exponentially many nodes. To resolve this issue, we will encode {v1i,j} and
{v2i,j} via Reed–Muller codes.

Formally, recall that History(C, f) is the concatenation of (i⋆, j⋆) and the string S, where S is the
concatenation of all the labels on the binary tree. We now define the encoded history, denoted as
H̃istory(C, f), as the concatenation of (i⋆, j⋆) and a Reed–Muller encoding of S. The new selector is
given oracle access to two candidate encoded histories together with f . By applying low-degree tests
and self-correction of polynomials, we can assume that the Reed–Muller parts of the two candidates
are indeed low-degree polynomials. Then we can use a reduction to polynomial identity testing to
compute the first differing point between {v1i,j} and {v2i,j} in randomized polynomial time. See the
proof of Lemma 5.3 for the details. This part is similar to the selector construction from [Hir15].

1.4 Discussions

We conclude the introduction by discussing some related works.

1.4.1 Previous approach: Karp–Lipton collapses and the half-exponential barrier

In the following, we elaborate on the half-exponential barrier mentioned earlier in the introduc-
tion.20 Let C be a “typical” uniform complexity class containing P, a Karp–Lipton collapse to C
states that if a large class (say EXP) has polynomial-size circuits, then this class collapses to C. For
example, there is a Karp–Lipton collapse to C = Σ2P:

Suppose EXP ⊆ P/poly, then EXP = Σ2P. ([KL80], attributed to Albert Meyer)

Now, assuming that EXP ⊆ P/poly =⇒ EXP = C, the following win-win analysis implies
that C-EXP, the exponential-time version of C, is not in P/poly: (1) if EXP ̸⊂ P/poly, then of

20A function f : N → N is sub-half-exponential if f(f(n)c) = 2o(n) for every constant c ≥ 1, i.e., composing f
twice yields a sub-exponential function. For example, for constants c ≥ 1 and ε > 0, the functions f(n) = nc and
f(n) = 2log

c n are sub-half-exponential, but the functions f(n) = 2n
ε

and f(n) = 2εn are not.

12

course C-EXP ⊇ EXP does not have polynomial-size circuits; (2) otherwise EXP ⊆ P/poly. We have
EXP = C and by padding EEXP = C-EXP. Since EEXP contains a function of maximum circuit
complexity by direct diagonalization, it follows that C-EXP does not have polynomial-size circuits.

Karp–Lipton collapses are known for the classes Σ2P [KL80], ZPPNP [BCG+96], S2P [Cai07]
(attributed to Samik Sengupta), PP, MA [LFKN92,BFNW93], and ZPPMCSP [IKV18]. All the afore-
mentioned super-polynomial circuit lower bounds for Σ2EXP, ZPEXPNP, S2EXP, PEXP, MAEXP,
and ZPEXPMCSP are proven in this way.21

The half-exponential barrier. The above argument is very successful at proving various super-
polynomial lower bounds. However, a closer look shows that it is only capable of proving sub-
half-exponential circuit lower bounds. Indeed, suppose we want to show that C-EXP does not have
circuits of size f(n). We will have to perform the following win-win analysis:

• if EXP ̸⊂ SIZE[f(n)], then of course C-EXP ⊇ EXP does not have circuits of size f(n);

• if EXP ⊆ SIZE[f(n)], then (a scaled-up version of) the Karp–Lipton collapse implies that
EXP can be computed by a C machine of poly(f(n)) time. Note that TIME[2poly(f(n))] does
not have circuits of size f(n) by direct diagonalization. By padding, TIME[2poly(f(n))] can be
computed by a C machine of poly(f(poly(f(n)))) time. Therefore, if f is sub-half-exponential
(meaning f(poly(f(n))) = 2o(n)), then C-EXP does not have circuits of size f(n).

Intuitively speaking, the two cases above are competing with each other : we cannot get expo-
nential lower bounds in both cases.

1.4.2 Implications for the Missing-String problem?

In the Missing-String problem, we are given a list of m strings x1, x2, . . . , xm ∈ {0, 1}n where
m < 2n, and the goal is to output any length-n string y that does not appear in {x1, x2, . . . , xm}.
Vyas and Williams [VW23] connected the circuit complexity of Missing-String with the (rela-
tivized) circuit complexity of Σ2E:

Theorem 1.8 ([VW23, Theorem 32], Informal). The following are equivalent:

• Σ2E
A ̸⊂ i.o.-SIZEA[2Ω(n)] for every oracle A;

• for m = 2Ω(n), the Missing-String problem can be solved by a uniform family of size-2O(n)

depth-3 AC0 circuits.

The intuition behind Theorem 1.8 is roughly as follows. For every oracle A, the set of truth
tables with low A-oracle circuit complexity induces an instance for Missing-String, and solving
this instance gives us a hard truth table relative to A. If the algorithm for Missing-String is a
uniform AC0 circuit of depth 3, then the hard function is inside Σ2E

A.
However, despite our Theorem 1.2 being completely relativizing, it does not seem to imply any

non-trivial depth-3 AC0 circuit for Missing-String. The reason is the heavy win-win analysis
across multiple input lengths: for each 0 ≤ i < t, we have a single-valued FΣ2P construction
algorithm for hard truth tables relative to oracle A on input length ni, but this algorithm needs
access to Ani+1 , a higher input length of A. Translating this into the language of Missing-String,
we obtain a weird-looking depth-3 AC0 circuit that takes as input a sequence of Missing-String
instances In0 , In1 , . . . , Int (where each Ini ⊆ {0, 1}ni is a set of strings), looks at all of the instances

21There are some evidences that Karp–Lipton collapses are essential for proving circuit lower bounds [CMMW19].

13

(or, at least Ini and Ini+1), and outputs a purportedly missing string of Ini . It is guaranteed that
for at least one input length i, the output string is indeed a missing string of Ini . However, if our
algorithm is only given one instance I ⊆ {0, 1}n, without assistance from a larger input length, it
does not know how to find any missing string of I.

It remains an intriguing open problem whether the bullets in Theorem 1.8 are true or not. In
other words, is there an oracle A relative to which Σ2E has small circuits on infinitely many input
lengths?

Organization

In Section 2, we introduce the necessary technical preliminaries for this paper. In Section 3,
we review Korten’s reduction from solving range avoidance to generating hard truth tables [Kor21],
together with some new properties required by our new results. In Section 4, we prove the near-
maximum circuit lower bound for Σ2E; although this lower bound is superseded by the later S2E/1
lower bound, we nonetheless include it in the paper since its proof is much more elementary. In Sec-
tion 5, we extend the near-maximum circuit lower bound to S2E/1, and also present our new
algorithms for solving the range avoidance problem.

2 Preliminaries

Notation. We use [n] to denote {1, 2, . . . , n}. A search problem Π maps every input x ∈ {0, 1}∗
into a solution set Πx ⊆ {0, 1}∗. We say an algorithm A solves the search problem Π on input x if
A(x) ∈ Πx.

2.1 Complexity Classes

We assume basic familiarity with computation complexity theory (see, e.g., [AB09, Gol08] for
references). Below we recall the definition of S2TIME[T (n)] [RS98,Can96].

Definition 2.1. Let T : N→ N. We say a language L ∈ S2TIME[T (n)], if there exists an O(T (n))-
time verifier V (x, π1, π2) that takes x ∈ {0, 1}n and π1, π2 ∈ {0, 1}T (n) as input, satisfying that

• if x ∈ L, then there exists π1 such that for every π2, V (x, π1, π2) = 1, and

• if x ̸∈ L, then there exists π2 such that for every π1, V (x, π1, π2) = 0.

Moreover, we say L ∈ S2E if L ∈ S2TIME[T (n)] for some T (n) ≤ 2O(n), and L ∈ S2P if
L ∈ S2TIME[p(n)] for some polynomial p.

It is known that S2P contains MA and PNP [RS98], and S2P is contained in ZPPNP [Cai07].
From its definition, it is also clear that S2P ⊆ Σ2P ∩Π2P.

2.2 Single-valued FΣ2P and FS2P Algorithms

We consider the following definitions of single-valued algorithms which correspond to circuit
lower bounds for Σ2E and S2E.

Definition 2.2 (Single-valued FΣ2P and FS2P algorithms). A single-valued FΣ2P algorithm A
is specified by a polynomial ℓ(·) together with a polynomial-time algorithm VA(x, π1, π2). On an
input x ∈ {0, 1}∗, we say that A outputs yx ∈ {0, 1}∗, if the following hold:

14

(a) There is a π1 ∈ {0, 1}ℓ(|x|) such that for every π2 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

(b) For every π1 ∈ {0, 1}ℓ(|x|), there is a π2 ∈ {0, 1}ℓ(|x|) such that the output of VA(x, π1, π2) is
either yx or ⊥ (where ⊥ indicates “I don’t know”).

A single-valued FS2P algorithm A is specified similarly, except that we replace the second con-
dition above with the following:

(b’) There is a π2 ∈ {0, 1}ℓ(|x|) such that for every π1 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

Now, we say that a single-valued FΣ2P (FS2P) algorithm A solves a search problem Π on input
x if it outputs a string yx and yx ∈ Πx. Note that from Definition 2.2, if A outputs a string yx,
then yx is unique.

For convenience, we mostly only consider single-valued algorithms A(x) with fixed output
lengths, meaning that the output length |A(x)| only depends on |x| and can be computed in poly-
nomial time given 1|x|.22

2.2.1 Single-Valued FS2P and FΣ2P algorithms with FPNP post-processing

We also need the fact that single-valued FS2P or FΣ2P algorithms with FPNP post-processing
can still be implemented by single-valued FS2P or FΣ2P algorithms, respectively. More specifically,
we have:

Theorem 2.3. Let A(x) be a single-valued FS2P (resp. FΣ2P) algorithm and B(x, y) be an FPNP

algorithm, both with fixed output length. The function f(x) := B(x,A(x)) also admits an FS2P
(resp. FΣ2P) algorithm.

Proof. We only provide a proof for the case of single-valued FS2P algorithms. Recall that the
Lexicographically Maximum Satisfying Assignment problem (LMSAP) is defined as follows: given
an n-variable formula ϕ together with an integer k ∈ [n], one needs to decide whether ak = 1, where
a1, . . . , an ∈ {0, 1}n is the lexicographically largest assignment satisfies ϕ. By [Kre88], LMSAP is
PNP-complete.

Let VA(x, π1, π2) be the corresponding verifier for the single-valued FS2P algorithm A. Let
L(x, y, i) be the PNP language such that L(x, y, i) = 1 if and only if B(x, y)i = 1. Let ℓ = |B(x, y)|
be the output length of B. We now define a single-valued FS2P algorithm Ã by defining the following
verifier V

Ã
, and argue that Ã computes f .

The verifier V
Ã

takes an input x and two proofs π⃗1 and π⃗2, where π⃗1 consists of ω1, acting as
the second argument to VA, and ℓ assignments z11 , z12 , . . . , z1ℓ ∈ {0, 1}m. Similarly, π⃗2 consists of ω2

and z21 , z22 , . . . , z2ℓ ∈ {0, 1}m.
First, V

Ã
runs VA(x, ω1, ω2) to get y ∈ {0, 1}|A(x)|. Then it runs the reduction from L(x, y, i)

to LMSAP for every i ∈ [ℓ] to obtain ℓ instances {(ϕi, ki)}i∈[ℓ], where ϕi is an m-variable formula
and ki ∈ [m]. (Without loss of generality by padding dummy variables, we may assume that the
number of variables in ϕi is the same for each i, i.e., m; and that m only depends on |x| and |y|.)
Now, for every µ ∈ [2], we can define an answer wµ ∈ {0, 1}ℓ by (wµ)i = (zµi)ki (i.e., the value of
B(x, y), assuming that π⃗µ consists of the lexicographically largest assignments for all the LMSAP
instances).

In what follows, when we say that V
Ã

selects the proof µ ∈ [2], we mean that V
Ã

outputs wµ

and terminates. Then, V
Ã

works as follows:

22If A takes multiple inputs like x, y, z, then the output length A(x, y, z) only depends on |x|, |y|, |z| and can be
computed in polynomial time given 1|x|, 1|y|, and 1|z|.

15

1. For each µ ∈ [2], it first checks whether for every i ∈ [ℓ], zµi satisfies ϕi. If only one of the µ
passes all the checks, V

Ã
selects that µ. If none of them passes all the checks, V

Ã
selects 1.

Otherwise, it continues to the next step.

2. Now, letting Zµ = zµ1 ◦z
µ
2 ◦ . . .◦z

µ
ℓ for each µ ∈ [2]. V

Ã
selects the µ with the lexicographically

larger Zµ. If Z1 = Z2, then V
Ã

selects 1.

Now we claim that Ã computes f(x), which can be established by setting π⃗1 or π⃗2 be the
corresponding proof for VA concatenated with all lexicographically largest assignments for the
{ϕi}i∈[ℓ].

2.3 The Range Avoidance Problem

The range avoidance problem [KKMP21, Kor21, RSW22] is the following problem: Given as
input a circuit C : {0, 1}n → {0, 1}ℓ where ℓ > n, find any string y ∈ {0, 1}ℓ \ Range(C). Proving
circuit lower bounds (for exponential-time classes) is equivalent to solving the range avoidance
problem on the truth table generator TTn,s, defined as follows. It was shown in [FM05] that for
n, s ∈ N, any s-size n-input circuit C can be encoded as a stack program with description size
Ln,s := (s+1)(7+log(n+s)). The precise definition of stack programs does not matter (see [FM05]
for a formal definition); the only property we need is that given s and n such that n ≤ s ≤ 2n,
in poly(2n) time one can construct a circuit TTn,s : {0, 1}Ln,s → {0, 1}2n mapping the description
of a stack program into its truth table. By the equivalence between stack programs and circuits,
it follows that any f ∈ {0, 1}2n \ Range(TTn,s) satisfies SIZE(f) > s. Also, we note that for large
enough n ∈ N and s = 2n/n, we have Ln,s < 2n.

Fact 2.4. Let s(n) : N → N. Suppose that there is a single-valued FS2P algorithm A such that
for infinitely many n ∈ N, A(12n) takes α(n) bits of advice and outputs a string fn ∈ {0, 1}2

n \
Range(TTn,s(n)). Then S2E/α(n) ̸⊂ SIZE[s(n)].

Proof sketch. We define a language L such that the truth table of the characteristic function of
L ∩ {0, 1}n is A(12n). It is easy to see that L /∈ SIZE[s(n)] and L ∈ S2E/α(n).

3 Korten’s Reduction

Our results crucially rely on a reduction in [Kor21] showing that proving circuit lower bounds
is “the hardest explicit construction” under PNP reductions.

Notation. Let s be a string of length n. We will always use 0-index (i.e., the first bit of s is s0
and the last bit of s is sn−1). Let i < j, we use s[i,j] to denote the substring of s from the i-th bit to
the j-th bit, and s[i,j) to denote the substring of s from the i-th bit to the (j − 1)-th bit. (Actually,
we will use the notation s[i,j) more often than s[i,j] as it is convenient when we describe the GGM
tree.) We also use s1 ◦ s2 ◦ · · · ◦ sk to denote the concatenation of k strings.

3.1 GGM Tree and the Reduction

We first recall the GGM tree construction from [GGM86], which is used in a crucial way
by [Kor21].

16

Definition 3.1 (The GGM tree construction [GGM86]). Let C : {0, 1}n → {0, 1}2n be a circuit.
Let n, T ∈ N be such that T ≥ 4n and let k be the smallest integer such that 2kn ≥ T . The function
GGMT [C] : {0, 1}n → {0, 1}T is defined as follows.

Consider a perfect binary tree with 2k leaves, where the root is on level 0 and the leaves are on
level k. Each node is assigned a binary string of length n, and for 0 ≤ j < 2i, denote vi,j ∈ {0, 1}n the
value assigned to the j-th node on level i. Let x ∈ {0, 1}n. We perform the following computation to
obtain GGMT [C](x): we set v0,0 := x, and for each 0 ≤ i < k, 0 ≤ j < 2i, we set vi+1,2j := C(vi,j)[0,n)
(i.e., the first half of C(vi,j)) and vi+1,2j+1 := C(vi,j)[n,2n) (i.e., the second half of C(vi,j)). (We say
the nodes (i+ 1, 2j) and (i+ 1, 2j + 1) are “children” of (i, j).)

Finally, we concatenate all values of the leaves and take the first T bits as the output:

GGMT [C](x) := (vk,0 ◦ vk,1 ◦ · · · ◦ vk,2k−1)[0,T).

Lemma 3.2 (The output of GGM tree has a small circuit). Let GGMEval(C, T, x, i) denote the
i-th bit of GGMT [C](x). There is an algorithm running in Õ(|C| · log T) time that, given C, T, x, i,
outputs GGMEval(C, T, x, i).

Proof Sketch. We first note that to compute the i-th bit of GGMT [C](x) := (vk,0 ◦ vk,1 ◦ · · · ◦
vk,2k−1)[0,T), it suffices to compute vk,⌊i/n⌋. Computing vk,⌊i/n⌋ can be done by descending from the
root of the GGM tree to the leave (k, ⌊i/n⌋), which takes Õ(|C| · log T) time.

It is shown in [Kor21] that the range avoidance problem for C reduces to the range avoidance
problem for GGMT [C]. In what follows, we review this proof, during which we also define the
computational history of “solving range avoidance of C from GGMT [C]”, which will be crucial in our
main proof.

Algorithm 3.1: Korten(C, f): Korten’s reduction
Input: C : {0, 1}n → {0, 1}2n denotes the input circuit, and f ∈ {0, 1}T \Range(GGMT [C])

denotes the input “hard” truth table
Output: A non-output of C
Data: The computational history of Korten(C, f): a pair (i⋆, j⋆) and an array {vi,j}i,j

where i ∈ {0, 1 . . . , k} and j ∈ {0, 1, . . . , 2i}.
1 Let k ← ⌈log2(T/n)⌉;
2 Append f with 2kn− |f | zeros at the end;
3 for j ← 0 to 2k − 1 do
4 vk,j ← f[jn,(j+1)n);

/* the j-th “block” of f */

5 for i← k − 1 downto 0 do
6 for j ← 2i − 1 downto 0 do
7 Let vi,j be the lexicographically smallest string in C−1(vi+1,2j ◦ vi+1,2j+1);

/* Note that this step needs to invoke the NP oracle */
8 if vi,j does not exist then
9 For every (i′, j′) such that vi′,j′ is not set yet, set vi′,j′ ← ⊥;

10 Set i⋆ := i, and j⋆ := j;
11 return vi+1,2j ◦ vi+1,2j+1;

12 return ⊥

17

Lemma 3.3 (Reduction from solving range avoidance of C to solving range avoidance of GGMT [C]).
Let C : {0, 1}n → {0, 1}2n be a circuit. Let f be a non-output of GGMT [C], i.e., f ∈ {0, 1}T \
Range(GGMT [C]). Then, Korten(C, f) (as defined in Algorithm 3.1) outputs a non-output of C in
deterministic poly(T, n) time with an NP oracle.

Proof Sketch. The running time of Korten(C, f) follows directly from its description. Also, note
that whenever Korten(C, f) outputs a string vi+1,2j ◦ vi+1,2j+1 ∈ {0, 1}2n, it holds that this string
is not in the range of C. Therefore, it suffices to show that when f ∈ {0, 1}T \ Range(GGMT [C]),
Korten(C, f) does not return ⊥.

Assume, towards a contradiction, that Korten(C, f) returns ⊥. This means that all the {vi,j}i,j
values are set. It follows from the algorithm description that f = GGMT [C](v0,0), which contradicts
the assumption that f ∈ {0, 1}T \ Range(GGMT [C]).

In addition, we observe the following trivial fact:

Fact 3.4. Let C : {0, 1}n → {0, 1}2n be a circuit, T := 22n · 2n, and f be the concatenation of all
length-2n strings (which has length T). Then f ̸∈ Range(GGMT [C]).

One can combine Fact 3.4 with Lemma 3.3 to obtain a brute force algorithm that solves the
range avoidance problem in 2O(n) time with an NP oracle. Essentially, this brute force algorithm
tests every possible length-2n string against the range of the circuit. It will be the basis of our
win-win analysis in Section 4.

Finally, we give the following remark, showing that Korten’s reduction relativizes.

Remark 3.5. Algorithm 3.1 and Lemma 3.3 relativizes, in the sense that if the input is actually an
oracle circuit CO for some arbitrary oracle, the algorithm still works except now it needs to call an
NPO oracle to find the lexicographically smallest string in C−1(vi+1,2j ◦ vi+1,2j+1).

3.2 Π1 Verification of the History of Korten(C, f)

In what follows, we say that (i, j) < (i′, j′) if either i < i′ or (i = i′ and j < j′) (that is, we
consider the lexicographical order of pairs). Observe that Algorithm 3.1 processes all the pairs (i, j)
in the reverse lexicographic order.

Definition 3.6 (The computational history of Korten(C, f)). Let n, T ∈ N be such that log T ≤
n ≤ T . Let C : {0, 1}n → {0, 1}2n be a circuit, and f ∈ {0, 1}T be a “hard truth table” in the sense
that f ̸∈ Range(GGMT [C]). The computational history of Korten(C, f), denoted as

History(C, f),

consists of (i⋆, j⋆), as well as the concatenation of vi,j for every 0 ≤ i < k and 0 ≤ j < 2i, in
the lexicographical order of (i, j) ((i⋆, j⋆) and the vi,j are defined in Algorithm 3.1). Each vi,j is
encoded by n+ 1 bits enc(vi,j), where if vi,j ∈ {0, 1}n then enc(vi,j) = 0 ◦ vi,j , and if vi,j = ⊥ then
enc(vi,j) = 1n+1. The length of this history is at most (2k+1 − 1)(n + 1) + 2 log T ≤ 5T , and for
convenience we always pad zeros at the end so that its length becomes exactly 5T .

The following lemma summarizes the properties of the computational history construction above
required for the Σ2E lower bound in the next section.

Lemma 3.7. Let n, T ∈ N be such that log T ≤ n ≤ T . Let C : {0, 1}n → {0, 1}2n be a circuit and
f ∈ {0, 1}T \ Range(GGMT [C]). Let h := History(C, f) and z := Korten(C, f).

18

1. (history contains input/output) There is a poly(log T)-time one-query oracle algorithm
Input and an O(n)-time oracle algorithm Output, both having input parameters T, n and taking
a string h̃ ∈ {0, 1}5T as oracle, such that the following hold:

(a) When given h as the oracle, InputT,n takes an additional input i ∈ {0, 1, . . . , 5T − 1} and
outputs fi.

(b) When given h as the oracle, OutputT,n outputs z = Korten(C, f).

2. (Π1 verification of the history) There is an oracle algorithm V with input parameters T, n
such that the following holds:

(a) V takes f̃ ∈ {0, 1}T , h̃ ∈ {0, 1}5T as oracles and C and w ∈ {0, 1}5·(log T+n) as inputs. It
runs in poly(n) time.

(b) h = History(C, f) is the unique string from {0, 1}5T satisfying the following:

V f,h(C,w) = 1 for every w ∈ {0, 1}5·(log T+n).

Proof. From the definition of History(C, f), the construction of InputT,n and OutputT,n are straight-
forward. Now we describe the verifier V f,h̃, where f ∈ {0, 1}T and h̃ ∈ {0, 1}5T . Note that here we
fix the first oracle of V to be the input truth table f , while the second oracle h̃ can be any string
from {0, 1}5T .

First, V reads (i⋆, j⋆) from h̃. Note that the rest of h̃ can be parsed as an array {vi,j}i,j where
i ∈ {0, 1 . . . , k} and j ∈ {0, 1, . . . , 2i}. We will think of V as performing at most 2|w| checks, each of
which passes or fails. To show the second item of the lemma, we need to show that (1) if a string
h̃ passes all the checks, then it must be the case that h̃ = h; and (2) h passes all the checks.

Specifically, V checks h̃ as follows:

• The values written on the leaves of {vi,j} are indeed f . That is, for every j ∈ {0, 1, . . . , 2k−1},
check that vk,j is consistent with the corresponding block in f .

• For every (i, j) > (i⋆, j⋆) such that i < k, C(vi,j) = vi+1,2j ◦ vi+1,2j+1. (That is, the value vi,j
is consistent with its two children.)

• For every (i, j) > (i⋆, j⋆) such that i < k, for every x ∈ {0, 1}n that is lexicographically
smaller than vi,j , C(x) ̸= vi+1,2j ◦ vi+1,2j+1. (That is, the value vi,j is the lexicographically
first preimage of its two children.)

• For every x ∈ {0, 1}n, C(x) ̸= vi⋆+1,2j⋆ ◦ vi⋆+1,2j⋆+1. (That is, the two children of (i⋆, j⋆) form
a non-output of C; by the previous checks, (i⋆, j⋆) is the lexicographically largest such pair.)

• For every (i, j) ≤ (i⋆, j⋆), vi,j = ⊥.

Note that the above can be implemented with a universal (∀) quantification over at most 5 ·
(log T + n) bits. First, one can see that by the definition of the correct history h (Definition 3.6),
h passes all the checks above. Second, one can indeed see that all the conditions above uniquely
determine h, and therefore any h̃ passing all the checks must equal h.

Again, it is easy to observe that Definition 3.6 and Lemma 3.7 relativize.
Remark 3.8. Definition 3.6 and Lemma 3.7 relativize, in the sense that if C is an oracle circuit
CO for some arbitrary oracle, Definition 3.6 needs no modification since Algorithm 3.1 relativizes,
and Lemma 3.7 holds with the only modification that V now also need to take O as an oracle (since
it needs to evaluate C).

19

4 Circuit Lower Bounds for Σ2E

In this section, we prove our near-maximum circuit lower bounds for Σ2E by providing a new
single-valued FΣ2P algorithm for Avoid.

Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. We show that there is a
single-valued FΣ2P algorithm A that, on input 1n, outputs a canonical string that is outside the
range of Cn for infinitely many n ∈ N.

Theorem 4.1. Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. There is a
single-valued FΣ2P algorithm A with one bit of advice such that for infinitely many n ∈ N, A(1n)
outputs yn ∈ {0, 1}2n \ Range(Cn).

Proof. We begin with some notation.

Notation. Let n(1) be a large enough power of 2, n(ℓ) = 22
n(ℓ−1)

for each integer ℓ > 1. Let
n
(ℓ)
0 = n(ℓ) and t(ℓ) = O

(
log n

(ℓ)
0

)
be parameters that we set later. For each 1 ≤ i ≤ t(ℓ), let

n
(ℓ)
i :=

(
n
(ℓ)
i−1

)10
. To show our algorithm A works on infinitely many input lengths, we will show

that for every ℓ ∈ N, there is an input length n(ℓ)i for some i ∈ {0, 1, . . . , t(ℓ)} such that A works.
Fix ℓ ∈ N. From now on, for convenience, we will use ni and t to denote n(ℓ)i and t(ℓ), respectively.

Specifying Ti and fi. For each input length ni, we will specify a parameter Ti ∈ N and a
string fi ∈ {0, 1}Ti . Our win-win analysis is based on whether fi ∈ Range(GGMTi [Cni]) for each
i ∈ {0, 1, . . . , t}.

Let T0 := 22n0 · 2n0 and f0 be the concatenation of all length-2n0 strings (which has length T0).
From Fact 3.4, we have that f0 ̸∈ Range(GGMT0 [Cn0]). For every i ∈ [t], we define

fi := History(Cni−1 , fi−1).

From Definition 3.6, this also means that we have set Ti = 5 · Ti−1 for every i ∈ [t].
Let t be the first integer such that Tt+1 ≤ 4nt+1. Note that we have Ti = 5i · T0 ≤ 23n0+i·log 5

and ni = (n0)
10i = 2logn0·10i . Hence, we have that t ≤ O(log n0). (Also note that n(ℓ)t < n

(ℓ+1)
0 .)

Description of our FΣ2P algorithm A. Now, let k ∈ {0, 1, . . . , t} be the largest integer such
that fk ̸∈ Range(GGMTk

[Cnk
]). Since f0 ̸∈ Range(GGMT0 [Cn0]), such a k must exist. Let z :=

Korten(Cnk
, fk). It follows from Lemma 3.3 that z is not in the range of Cnk

. Our single-valued
FΣ2P algorithm A computes z on input 1nk (see Definition 2.2). That is, for some ℓ1, ℓ2 ≤ poly(nk):

• There exists π1 ∈ {0, 1}ℓ1 such that for every π2 ∈ {0, 1}ℓ2 , VA(1nk , π1, π2) prints z, and

• For every π1 ∈ {0, 1}ℓ1 , there exists some π2 ∈ {0, 1}ℓ2 such that VA(1nk , π1, π2) prints either
z or ⊥.

In more details, if k < t, then VA treats π1 as an input to the circuit GGMTk+1
[Cnk+1

], and let

f̂k+1 := GGMTk+1
[Cnk+1

](π1).

Here, the length of π1 is ℓ1 := nk+1 ≤ poly(nk). If k = t, then VA defines f̂k+1 := π1 and
ℓ1 := Tt+1 ≤ poly(nk). It is intended that f̂k+1 = fk+1 = History(Cnk

, fk) (which VA needs to

20

verify). Note that in the case where k < t, since fk+1 ∈ Range(GGMTk+1
[Cnk+1

]), there indeed
exists some π1 such that f̂k+1 = fk+1.

We note that Lemma 3.2 provides us “random access” to the (potentially very long) string
f̂k+1: given π1 and j ∈ [Tk+1], one can compute the j-th bit of f̂k+1 in poly(nk) time. Also recall
from Lemma 3.7 that for each i, fi+1 = History(Cni , fi) contains the string fi, which can be retrieved
by the oracle algorithm Input described in Item 1 of Lemma 3.7. Therefore, for each i from k downto
1, we can recursively define f̂i such that (f̂i)j = Input

f̂i+1

Ti,ni
(j). We define f̂0 to be the concatenation

of all length-(2n0) strings in the lexicographical order, so f̂0 = f0. Applying the algorithm Input
recursively, we obtain an algorithm that given i ∈ {0, 1, . . . , k} and j ∈ {0, 1, . . . , Ti − 1}, outputs
the j-th bit of f̂i. Since Input only makes one oracle query, this algorithm runs in poly(nk) time.23

Then, VA parses the second proof π2 into π2 = (i, w) where i ∈ {0, 1, . . . , k} and w ∈ {0, 1}5(log Ti+ni).
Clearly, the length of π2 is at most ℓ2 := log(k + 1) + 5(log Tk + nk) ≤ poly(nk). Now, let VHistory

be the oracle algorithm in Item 2 of Lemma 3.7, we let VA(1nk , π1, π2) check whether the following
holds:

V
f̂i,f̂i+1

History (Cni , w) = 1.24 (1)

If this is true, then VA outputs the string z := Output
f̂k+1

Tk,nk
, where Output is the output oracle

algorithm defined in Item 1 of Lemma 3.7. Otherwise, VA outputs ⊥.

The correctness of A. Before establishing the correctness of A, we need the following claim:

Claim 4.2. fk+1 = f̂k+1 if and only if the following holds:

• V
f̂i,f̂i+1

History (Cni , w) = 1 for every i ∈ {0, 1, . . . , k} and for every w ∈ {0, 1}5(log Ti+ni).

Proof. First, assume that fk+1 = f̂k+1. By Item 1a of Lemma 3.7, we have that f̂i = fi for every
i ∈ {0, 1, . . . , k + 1}. Recall that by definition, fi+1 = History(Cni , fi) for every i ∈ {0, 1, . . . , k}.
Hence, by Item 2b of Lemma 3.7, we have that for every i ∈ {0, 1, . . . , k}, and for every w ∈
{0, 1}5(log Ti+ni), V f̂i,f̂i+1

History (Cni , w) = 1 holds.
For the other direction, suppose that for every i ∈ {0, 1, . . . , k} and w ∈ {0, 1}5(log Ti+ni), we

have that V f̂i,f̂i+1

History (Cni , w) = 1 holds. First recall that f0 = f̂0 by definition. By an induction on
i ∈ [k + 1] and (the uniqueness part of) Item 2b of Lemma 3.7, it follows that fi = f̂i for every
i ∈ {0, 1, . . . , k + 1}. In particular, fk+1 = f̂k+1. ⋄

Now we are ready to establish that A is a single-valued FΣ2P algorithm computing z on in-
put 1nk . We first prove the completeness of A; i.e., there is a proof π1 such that for every π2,
VA(1

nk , π1, π2) outputs z = Korten(Cnk
, fk). We set π1 to be the following proof: If k < t,

then fk+1 ∈ Range(GGMTk+1
[Cnk+1

]), and we can set π1 ∈ {0, 1}nk+1 to be the input such that
fk+1 = GGMTk+1

[Cnk+1
](π1); if k = t, then we simply set π1 = fk+1. Then, we have fk+1 = f̂k+1,

and by Claim 4.2, we know that VA will output z = Korten(Cnk
, fk) on every proof π2.

Next, we show that for every π1, there is some π2 that makes VA output either z or ⊥. It
suffices to consider π1 such that for every π2, VA(1nk , π1, π2) ̸= ⊥. In this case, every invocation of
Equation 1 holds, and thus by Claim 4.2 we know that fk+1 = f̂k+1. It follows that Korten(Cnk

, fk) =
z and VA will output z regardless of π2.

23Note that the definition of f0 is so simple that one can directly compute the j-th bit of f0 in poly(n0) time.
24Here VHistory also takes input parameters Ti and ni. We omit them in the subscript for notational convenience.

21

Finally, we generalize A and VA to work on all inputs 1n. On input 1n, VA calculates the largest
ℓ such that n(ℓ) ≤ n, and also calculates the largest k′ such that n(ℓ)k′ ≤ n. If n(ℓ)k′ ̸= n, then VA
immediately outputs ⊥ and halts. Otherwise, VA receives an advice bit indicating whether k′ = k(ℓ)

where k(ℓ) is the largest integer such that f (ℓ)
k(ℓ)
̸∈ Range(GGM

T
(ℓ)
k

[C
n
(ℓ)
k

]). If this is the case, then
VA runs the verification procedure above; otherwise, it immediately outputs ⊥ and halts. It is easy
to see that VA runs in poly(n) time, and is an infinitely-often single-valued FΣ2P algorithm solving
the range avoidance problem of {Cn}n∈N.

From Remark 3.5 and Remark 3.8, one can obverse that the proof above also relativizes. Hence
we have the following as well.

Theorem 4.3 (Relativized version of Theorem 4.1). Let O : {0, 1}∗ → {0, 1} be any oracle. Let
{COn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of O-oracle circuits. There is a single-valued
FΣ2P

O algorithm AO with one bit of advice such that for infinitely many n ∈ N, AO(1n) outputs
yn ∈ {0, 1}2n \ Range(COn).

We omit the proof of the following corollary since it is superseded by the results in the next
section.

Corollary 4.4. Σ2E ̸⊆ SIZE[2n/n] and (Σ2E ∩ Π2E)/1 ̸⊆ SIZE[2n/n]. Moreover, these results
relativize: for every oracle O, Σ2E

O ̸⊆ SIZEO[2n/n] and (Σ2E
O ∩Π2E

O)/1 ̸⊆ SIZEO[2n/n].

5 Circuit Lower Bounds for S2E

In this section, we prove our near-maximum circuit lower bounds for S2E/1 by giving a new
single-valued FS2P algorithm for Avoid.

5.1 Reed–Muller Codes

To prove maximum circuit lower bounds for S2E/1, we will need several standard tools for
manipulating Reed–Muller (RM) codes (i.e., low-degree multi-variate polynomials).

For a polynomial P : Fm
p → Fp, where Fp is the finite field of p elements, we use degmax(P)

to denote the maximum individual degree of variables in P . Let p be a prime, ∆,m ∈ N. For a
string S ∈ {0, 1}∆m , we use RMFp,∆,m(S) to denote its Reed–Muller encoding by extension: letting
H = {0, 1, . . . ,∆ − 1} and w1, . . . , w∆m ∈ Hm be the enumeration of all elements in Hm in the
lexicographical order, RMFp,∆,m(S) is the unique polynomial P : Fm

p → Fp such that (1) P (wi) = Si
for every i ∈ [∆m] and (2) degmax(P) ≤ ∆− 1.25

We also fix a Boolean encoding of Fp denoted as EncFp : Fp → {0, 1}⌈log p⌉. For simplicity, we
can just map z ∈ {0, 1, . . . , p − 1} to its binary encoding. In particular, EncFp(0) = 0⌈log p⌉ and
EncFp(1) = 0⌈log p⌉−1 ◦ 1.26 Now we further define BRMFp,∆,m(S) by concatenating RMFp,∆,m(S)
with EncFp , thus obtaining a Boolean encoding again. Formally, letting P = RMFp,∆,m(S) and
w1, . . . , wpm ∈ Fm

p be the enumeration of all elements from Fm
p in the lexicographic order, we

define BRMFp,∆,m(S) = EncFp(P (w1)) ◦ EncFp(P (w2)) ◦ . . . ◦ EncFp(P (wpm)). We remark that for
every i ∈ [∆m], in poly(m, log p) time one can compute an index i′ ∈ [pm · ⌈log p⌉] such that
BRMFp,∆,m(S)i′ = Si.

We need three properties of Reed–Muller codes, which we explain below.
25To see the uniqueness of P , note that for every P : Fm

p → Fp with degmax(P) ≤ ∆ − 1, the restriction of P to
Hm uniquely determines the polynomial P . Also, such P can be constructed by standard interpolation.

26This fact is useful because if we know a string m ∈ {0, 1}⌈log p⌉ encodes either 0 or 1, then we can decode it by
only querying the last bit of m.

22

Self-correction for polynomials. We first need the following self-corrector for polynomials,
which efficiently computes the value of P on any input given an oracle that is close to a low-degree
polynomial P . (In other words, it is a local decoder for the Reed–Muller code.)

Lemma 5.1 (A self-corrector for polynomials, cf. [GS92, Sud95]). There is a probabilistic oracle
algorithm PCorr such that the following holds. Let p be a prime, m,∆ ∈ N such that ∆ < p/3. Let
g : Fm

p → Fp be a function such that for some polynomial P of total degree at most ∆,

Pr
x⃗←Fm

p

[g(x⃗) ̸= P (x⃗)] ≤ 1/4.

Then for all x⃗ ∈ Fm
p , PCorrg(p,m,∆, x⃗) runs in time poly(∆, log p,m) and outputs P (x⃗) with

probability at least 2/3.

Low-max-degree test. We also need the following efficient tester, which checks whether a given
polynomial has maximum individual degree at most ∆ or is far from such polynomials.27

Lemma 5.2 (Low-max-degree tester [BFL91, Remark 5.15]). Let n,∆, p ∈ N be such that p ≥
20 · (∆ + 1)2 · n2 and p is a prime. There is a probabilistic non-adaptive oracle machine LDT such
that the following holds. Let g : Fn

p → Fp. Then for δ = 3n2 · (∆ + 1)/p, it holds that

1. if degmax(g) ≤ ∆, then LDTg(p, n,∆) accepts with probability 1,

2. if g is at least δ-far from every polynomial with maximum individual degree at most ∆, then
LDTg(p, n,∆) rejects with probability at least 2/3, and

3. LDT runs in poly(p) time.

Comparing two RM codewords. Lastly, we show an efficient algorithm that, given oracle
access to two codewords of RMFp,∆,m, computes the lexicographically first differing point between
the respective messages of the two codewords.

Lemma 5.3 (Comparing two RM codewords). Let p be a prime. Let m,∆ ∈ N be such that
m·∆ < p/2. There is a probabilistic oracle algorithm Comp that takes two polynomials f, g : Fm

p → Fp

as oracles, such that if both degmax(f) and degmax(g) are at most ∆, then the following holds with
probability at least 9/10:

• If f ̸= g, then Compf,g(p,m,∆) outputs the lexicographically smallest element w in Hm such
that f(w) ̸= g(w), where H = {0, 1, . . . ,∆− 1}.28

• If f = g, then Compf,g(p,m,∆) outputs ⊥.

• Comp makes at most poly(m ·∆) queries to both f and g, and runs in poly(m ·∆ · log p) time.

Proof. Our proof is similar to the proof from [Hir15], which only considers multi-linear polynomials.
Our algorithm Compf,g(p,m,∆) works as follows:

1. The algorithm has m stages, where the i-th stage aims to find the i-th entry of w. At the end
of the i-th stage, the algorithm obtains a length-i prefix of w.

27To obtain the theorem below, we set the parameter δ and ε from [BFL91, Remark 5.15] to be
min

(
1

200n2(∆+1)
, 1/2p

)
and min

(
1

400n3(∆+1)
, 1/2p

)
, respectively.

28Since both f and g have max degree at most ∆, their values are completely determined by their restrictions on
Hm. Hence, if f ̸= g, then such w must exist.

23

2. For every i ∈ [m]:

(a) Let w<i ∈ H i−1 be the current prefix. For every h ∈ {0, 1, . . . ,∆− 1}, we run a random-
ized polynomial identity test to check whether the restricted polynomial f(w<i, h, ·) and
g(w<i, h, ·) are the same, with error at most 1

10m|H| .
29

(b) We set wi to be the smallest h such that our test above reports that f(w<i, h, ·) and
g(w<i, h, ·) are distinct. If there is no such h, we immediately return ⊥.

By a union bound, all mH polynomial identity testings are correct with probability at least
9/10. In this case, if f = g, then the algorithm outputs ⊥ in the first stage. If f ̸= g, by induction
on i, we can show that for every i ∈ [m], w≤i is the lexicographically smallest element from Hm such
that f(w≤i, ·) and g(w≤i, ·) are distinct, which implies that the output w is also the lexicographically
smallest element w in Hm such that f(w) ̸= g(w).

5.2 Encoded History and S2BPP Verification

Next, we define the following encoded history.

Definition 5.4. Let C : {0, 1}n → {0, 1}2n be a circuit, and f ∈ {0, 1}T be a “hard truth table” in
the sense that f ̸∈ Range(GGMT [C]). Let k, (i⋆, j⋆), and {vi,j}i,j be defined as in Algorithm 3.1.
Let S be the concatenation of enc(vi,j) for every i ∈ {0, 1, . . . , k − 1}, j ∈ {0, 1, . . . , 2i − 1}, in the
reserve lexicographical order of (i, j), padded with zeros at the end to length exactly 5T . (Recall
that enc(vi,j) was defined in Definition 3.6.) Let p be the smallest prime that is at least 20 · log5 T ,
and m be the smallest integer such that (log T)m ≥ 5 · T .

The encoded computational history of Korten(C, f), denoted as

H̃istory(C, f),

consists of (i⋆, j⋆), concatenated with BRMFp,log T,m(S).
The length of the encoded history is at most⌈

log(40 · log5 T)
⌉
· (40 · log5 T)log(5T)/ log log T+1 + 2 log T ≤ T 6

for all sufficiently large T , and for convenience we always pad zeros at the end so that its length
becomes exactly T 6.30

Recall that the original computational history History(C, f) is simply the concatenation of (i⋆, j⋆)
and S. In the encoded version, we encode its S part by the Reed–Muller code instead. In the rest
of this section, when we say history, we always mean the encoded history H̃istory(C, f) instead of
the vanilla history History(C, f).

We need the following lemma.

Lemma 5.5. Let n, T ∈ N be such that log T ≤ n ≤ T . Let C : {0, 1}n → {0, 1}2n be a circuit and
f ∈ {0, 1}T \ Range(GGMT [C]). Let h := H̃istory(C, f) and z := Korten(C, f).

29Note that these two polynomials have total degree at most m ·∆ < p/2. Hence if they are different, their values
on a random element from Fm−i

p are different with probability at least 1/2. Hence the desired error level can be
achieved by sampling O(logm+ log∆) random points from Fm−i and checking whether f(w<i, h, ·) and g(w<i, h, ·)
have the same values.

30For simplicity even for T such that the length of the encoded history is longer than T 6, we will pretend its length
is exactly T 6 throughout this section. This does not affect the analysis in our main theorem Theorem 5.7 since there
we only care about sufficiently large T .

24

1. (history contains input/output) There is a poly(log T)-time oracle algorithm Input and
an O(n)-time oracle algorithm Output, both of which have input parameters T, n and take a
string h̃ ∈ {0, 1}T 6 as oracle, such that the following hold:

(a) InputT,n makes a single query to its oracle; when given h as the oracle, InputT,n takes an
additional input i ∈ {0, 1, . . . , T 6 − 1} and outputs fi.

(b) OutputT,n makes at most 4n queries to its oracle; when given h as the oracle, OutputT,n
outputs z = Korten(C, f).

2. (S2BPP verification of the history) There is a randomized oracle algorithm V with input
parameters T, n such that the following hold:

(a) V takes strings f̃ ∈ {0, 1}T , π1, π2 ∈ {0, 1}T
6 as oracles, the circuit C, an integer i ∈[

T 6
]
, and ε ∈ (0, 1) as input, and runs in poly(n, log ε−1) time.

(b) For every π ∈ {0, 1}T 6 and every i ∈ {0, 1, . . . , T 6 − 1}, we have that

Pr
[
V f,π,h
T,n (C, i, ε) = hi

]
≥ 1− ε and Pr

[
V f,h,π
T,n (C, i, ε) = hi

]
≥ 1− ε.

Proof. Again, the algorithms InputT,n and OutputT,n can be constructed in a straightforward way.31

So we focus on the construction of V . Let p,m, k ∈ N be as in Definition 5.4. We also set F = Fp

and ∆ = log T in the rest of the proof.
Our V always first selects one of the oracles π1 and π2 (say πµ for µ ∈ {1, 2}), and then

outputs πµ(i). Hence, in the following, we say that V selects πµ to mean that V outputs πµ(i)
and terminates. Given π1 and π2, let g1, g2 : Fm → F be the (potential) RM codewords encoded in
π1 and π2, respectively.32 From now on, we will assume that i points to an entry in the encoded
history g1 or g2 instead of the encoded pair of integers (i⋆, j⋆). We will discuss the other case at the
end of the proof.

Low-max-degree test and self-correction. We first run LDTg1(p,m,∆−1) and LDTg2(p,m,∆−
1) for c1 times, where c1 is a sufficiently large constant. Recall that p ≥ 20 · log5 T , m =
⌈log(5T)/ log log T ⌉, and ∆ = log T . It follows that p ≥ 20 · ((∆− 1) + 1)2 ·m2, which satisfies the
condition of Lemma 5.2. We also note that 3m2 ·((∆−1)+1)/p < 1/4. Hence, by Lemma 5.2, if g1 is
1/4-far from all polynomials with maximum individual degree at most ∆−1, then LDTg1(p,m,∆−1)
rejects with probability 2/3, and similarly for g2.

Now, if any of the runs on LDTg1(p,m,∆ − 1) rejects, V selects π2, and if any of the runs on
LDTg2(p,m,∆−1) rejects, V selects π1.33 In other words, V first disqualifies the oracles that do not
pass the low-max-degree test. We set c1 to be large enough so that conditioning on the event that V
does not terminate yet, with probability at least 0.99, both g1 and g2 are 1/4-close to polynomials
g̃1 : Fm

p → F and g̃2 : Fm
p → F, respectively, where degmax(g̃1) and degmax(g̃2) are at most ∆− 1.

We can then use PCorrg1(p,m,m · (∆ − 1), ·) and PCorrg2(p,m,m · (∆ − 1), ·) to access the
polynomials g̃1 and g̃2. (Note that m · (∆− 1) < p/3, which satisfies the condition of Lemma 5.1).
We repeat them each O(log T+logm) times to make sure that on a single invocation, they return the
correct values of g̃1 and g̃2 respectively with probability at least 1−1/(mT)c2 for a sufficiently large
constant c2. By Lemma 5.1, each call to PCorrg1(p,m,m · (∆− 1), ·) or PCorrg2(p,m,m · (∆− 1), ·)
takes polylog(T) time.

31To see that OutputT,n makes at most 4n queries: Note that Output first reads the pair (i⋆, j⋆) from h, and then
reads two corresponding blocks from vi,j encoded in h. In total, it reads at most 2 log T + 2n ≤ 4n bits from h.

32Technically π1 and π2 are supposed to contain the RM codewords concatenated with EncFp : Fp → {0, 1}⌈log p⌉.
33As a minor detail, if both g1 and g2 are rejected by some runs, V selects π2.

25

Selecting the better polynomial. From now on, we refine what it means when V selects πµ:
now it means that V outputs the bit corresponding to i in g̃µ (recall that we are assuming that i
points to an entry in the encoded history g1 or g2).

Let {v1i,j} and {v2i,j} be the encoded histories in g̃1 and g̃2. Then V uses Compg̃1,g̃2(p,m,∆− 1)

to find the lexicographically largest (i′, j′) such that v1i′,j′ ̸= v2i′,j′ .
34 Note that Compg̃1,g̃2(p,m,∆−1)

makes at most poly(m ·∆) queries to both g̃1 and g̃2. By making c2 large enough, we know that
Comp operates correctly with probability at least 0.8. By operating correctly, we mean that (1) if
g̃1 ̸= g̃2, Comp finds the correct (i′, j′) and (2) If g̃1 = g̃2, Comp returns ⊥.35

In what follows, we assume that Comp operates correctly. If Comp returns ⊥, then V simply
selects π1. Otherwise, there are several cases:

1. i′ = k. In this case, g̃1 and g̃2 disagree on their leaf values, which intend to encode f . V
queries f to figure out which one has the correct value, and selects the corresponding oracle.
(Note that at most one of them can be consistent with f . If none of them are consistent, then
V selects π1.)

From now on, assume i′ < k and set α = v1i′+1,2j′ ◦ v1i′+1,2j′+1. Note that by the definition of
(i′, j′), it holds that α = v2i′+1,2j′ ◦ v2i′+1,2j′+1 as well.

2. i′ < k and both v1i′,j′ and v2i′,j′ are not ⊥. In this case, V first checks whether both of them
are in C−1(α) (it can be checked by testing whether C(v1i′,j′) = α and C(v2i′,j′) = α). If
only one of them is contained in C−1(α), V selects the corresponding oracle. If none of them
are contained, V selects π1. Finally, if both are contained in C−1(α), V checks which one is
lexicographically smaller, and selects the corresponding oracle.

3. i′ < k, and one of the v1i′,j′ and v2i′,j′ is ⊥. Say that vbi′,j′ = ⊥ for some b ∈ {1, 2}, and denote
b̄ := 3−b as the index of the other proof. In this case, let (i◦, j◦) denote the predecessor of (i′, j′)
in terms of the reverse lexicographical order (that is, the smallest pair that is lexicographically
greater than (i′, j′)). Since Comp operates correctly, we have that v1i◦,j◦ = v2i◦,j◦ . If v1i◦,j◦ = ⊥,
then πb̄ has to be incorrect (since by Definition 3.6, ⊥’s form a contiguous suffix of the
history), and V selects πb. Otherwise, if vb̄i′,j′ ∈ C−1(α), then πb is incorrect (as it claims that
C−1(α) = ∅), and V selects πb̄. Otherwise, V selects πb.

Analysis. Now we show that Pr
[
V f,h,π
T,n (i) = h(i)

]
≥ 2/3. (The proof for Pr

[
V f,π,h
T,n (i) = h(i)

]
≥

2/3 is symmetric.) To get the desired ε error probability, one can simply repeat the above procedure
O(log 1/ε) times and output the majority.

First, by Lemma 5.2, LDTg1(p,m,∆ − 1) passes with probability 1. If some of the runs of
LDTg2(p,m,∆ − 1) rejects, then V selects h. Otherwise, we know that with probability at least
0.99, PCorrg1(p,m,m · (∆− 1), ·) and PCorrg2(p,m,m · (∆− 1), ·) provide access to polynomials g̃1
and g̃2 with maximum individual degree at most ∆− 1, where g̃1 encodes the correct history values
{vi,j}i,j of Korten(C, f).

Then, assuming Comp operates correctly (which happens with probability at least 0.8), if g̃1 = g̃2,
then the selection of V does not matter. Now we assume g̃1 ̸= g̃2.

34Recall that the {vi,j} is encoded in the reverse lexicographic order (Definition 5.4).
35From Lemma 5.3, Compg̃1,g̃2(p,m,∆ − 1) itself operates correctly with probability at least 0.9. But the access

to g̃1 (similarly to g̃2) is provided by PCorrg1(p,m,m · (∆− 1), ·), which may err with probability at most 1/(mT)c2 .
So we also need to take a union bound over all the bad events that a query from Comp to g̃1 or g̃2 is incorrectly
answered.

26

We will verify that in all three cases above, h (as the first oracle) is selected by V . In the first
case, by definition, all leaf values in h are consistent with f , and hence h is selected. In the second
case, since h contains the correct history values, we know that v1i′,j′ must be the smallest element
from C−1(α), so again h is selected. In the last case: (1) if v1i◦,j◦ = ⊥, then v1i′,j′ has to be ⊥ as
well, thus h is selected; (2) if v1i◦,j◦ ̸= ⊥ and v1i′,j′ = ⊥, then C−1(α) = ∅, and since the other proof
π claims some element v2i′,j′ ∈ C−1(α), h is selected; and (3) if v1i◦,j◦ ̸= ⊥ and v1i′,j′ ̸= ⊥, then π

claims that C−1(α) = ∅ and we can check that v1i′,j′ ∈ C−1(α), therefore h is selected as well.

The remaining case: i points to the location of (i⋆, j⋆). In this case, V still runs the algorithm
described above to make a selection. Indeed, if Comp does not return ⊥, V operates exactly the
same. But when Comp returns ⊥, V cannot simply select π1 since we need to make sure that V
selects the oracle corresponding to h (it can be either π1 or π2). Hence, in this case, V first reads
(i1⋆, j

1
⋆) and (i2⋆, j

2
⋆) from π1 and π2. If they are the same, V simply selects π1. Otherwise, for b ∈ [2],

V checks whether vb
ib⋆,j

b
⋆
= ⊥, and select the one that satisfies this condition. (If none of the vb

ib⋆,j
b
⋆

are, then V selects π1). If both of vb
ib⋆,j

b
⋆

are ⊥, V selects the µ ∈ [2] such that (iµ⋆ , j
µ
⋆) is larger.

Now, we can verify that V f,h,π
T,n selects h with high probability as well. (To see this, note that in

the correct history, (i⋆, j⋆) points to the lexicographically largest all-zero block.)
Finally, the running time bound follows directly from the description of V .

5.2.1 A remark on relativization

Perhaps surprisingly, although Lemma 5.5 heavily relies on arithmetization tools such as Reed–
Muller encoding and low-degree tests, it in fact also relativizes. To see this, the crucial observation
is that, similarly to Lemma 3.7, the verifier V from Lemma 5.5 only needs black-box access to the
input circuit C, meaning that it only needs to evaluate C on certain chosen input. Hence, when C
is actually an oracle circuit CO for some arbitrary oracle O, the only modification we need is that
V now also takes O as an oracle.

Remark 5.6. Definition 5.4 and Lemma 5.5 relativize, in the sense that if C is an oracle circuit
CO for some arbitrary oracle, Definition 5.4 needs no modification since Definition 3.6 relativizes,
and Lemma 5.5 holds with the only modification that V now also needs to take O as an oracle
(since it needs to evaluate C).

Indeed, the remark above might sound strange at first glance: arguments that involve PCPs
often do not relativize, and the encoded history H̃istory(C, f) looks similar to a PCP since it enables
V to perform a probabilistic local verification. However, a closer inspection reveals a key difference:
the circuit C is always treated as a black box—both in the construction of history (Definition 3.6)
and in the construction of the encoded history (Definition 5.4). That is, the arithmetization in the
encoded history does not arithmetize the circuit C itself.

5.3 Lower Bounds for S2E

Let {Cn : {0, 1}n → {0, 1}2n} be a P-uniform family of circuits. We show that there is a
single-valued FS2P algorithm A such that for infinitely many n ∈ N, on input 1n, A(1n) outputs a
canonical string that is outside the range of Cn.

Theorem 5.7. Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. There is a
sequence of valid outputs {yn ∈ {0, 1}2n \ Range(Cn)}n∈N and a single-valued FS2P algorithm A
with one bit of advice, such that for infinitely many n ∈ N, A(1n) outputs yn.

27

Proof. Our proof proceeds similarly to the proof of the previous Theorem 4.1. We will follow the
same notation.

Notation. Let n(1) be a large enough power of 2, n(ℓ) = 22
n(ℓ−1)

for each integer ℓ > 1. Let
n
(ℓ)
0 = n(ℓ) and t(ℓ) = O

(
log n

(ℓ)
0

)
be parameters that we set later. For each 1 ≤ i ≤ t(ℓ), let

n
(ℓ)
i :=

(
n
(ℓ)
i−1

)10
. To show our algorithm A works on infinitely many input lengths, we will show

that for every ℓ ∈ N, there is an input length n(ℓ)i for some i ∈
[
t(ℓ)
]

such that A works.
Fix ℓ ∈ N. From now on, for convenience, we will use ni and t to denote n(ℓ)i and t(ℓ), respectively.

Specifying Ti and fi. For each input length ni, we will specify a parameter Ti ∈ N and a
string fi ∈ {0, 1}Ti . Our win-win analysis is based on whether fi ∈ Range(GGMTi [Cni]) for each
i ∈ {0, 1, . . . , t}.

Let T0 := 22n0 · 2n0 and f0 be the concatenation of all length-2n0 strings (which has length T0).
From Fact 3.4, we have that f0 ̸∈ Range(GGMT0 [Cn0]). For every i ∈ [t], we define

fi = H̃istory(Cni−1 , fi−1).

From Definition 5.4, this also means that we have set Ti = T 6
i−1 for every i ∈ [t].

Let t be the first integer such that Tt+1 ≤ nt+1. Note that we have Ti = (T0)
6i ≤ 23n0·6i and

ni = (n0)
10i = 2logn0·10i . Hence, we have that t ≤ O(log n0). (Also note that n(ℓ)t < n

(ℓ+1)
0 .)

Description of our FS2P algorithm A. Now, let k ∈ {0, 1, . . . , t} be the largest integer such
that fk ̸∈ Range(GGMTk

[Cnk
]). Since f0 ̸∈ Range(GGMT0 [Cn0]), such a k must exist. Let z :=

Korten(Cnk
, fk), it follows from Lemma 3.3 that z is not in the range of Cnk

(i.e., z ∈ {0, 1}2nk \
Range(Cnk

)). Our single-valued FS2P algorithm A computes z on input 1nk (see Definition 2.2).
We will first construct an S2BPP verifier V that computes z in polynomial time on input 1nk ,

and then use the fact that all S2BPP verifiers can be turned into equivalent S2P verifiers with a
polynomial-time blow-up [Can96,RS98], from which we can obtain the desired verifier VA for A.

Description of an S2BPP verifier V computing z. Formally, V is a randomized polynomial-
time algorithm that takes 1nk and two witnesses π1, π2 ∈ {0, 1}nk+1 as input, and we aim to establish
the following:

There exists ω ∈ {0, 1}nk+1 such that for every π ∈ {0, 1}nk+1 , we have

Pr[V (1nk , ω, π) = z] ≥ 2/3 and Pr[V (1nk , π, ω) = z] ≥ 2/3,

where the probabilities are over the internal randomness of V .

In more detail, if k < t, then V treats π1 and π2 as inputs to the circuit GGMTk+1
[Cnk+1

], and
let

f̂k+1 := GGMTk+1
[Cnk+1

](π1) and ĝk+1 := GGMTk+1
[Cnk+1

](π2).

Here, the lengths of π1 and π2 are ℓ := nk+1 ≤ poly(nk). If k = t, then V defines f̂k+1 := π1,
ĝk+1 := π2, and their lengths are ℓ := Tt+1 ≤ nk+1 ≤ poly(nk). It is intended that one of the f̂k+1

and ĝk+1 is fk+1 = H̃istory(Cnk
, fk) (V needs to figure out which one).

28

We now specify the intended proof ω ∈ {0, 1}nk+1 . When k < t, since fk+1 ∈ Range(GGMTk+1
[Cnk+1

]),
we can set ω so that GGMTk+1

[Cnk+1
](ω) = fk+1. When k = t, we simply set ω = fk+1.

Note that Lemma 3.2 provides us “random access” to the (potentially very long) strings f̂k+1 and
ĝk+1: (take f̂k+1 as an example) given π1 and j ∈ {0, 1, . . . , Tk+1−1}, one can compute the j-th bit
of f̂k+1 in poly(nk) time. Also recall from Lemma 5.5 that for each i, fi+1 = H̃istory(Cni , fi) contains
the string fi, which can be retrieved by the oracle algorithm Input described in Item 1 of Lemma 5.5.
Therefore, for each i from k downto 1, we can recursively define f̂i such that (f̂i)j = Input

f̂i+1

Ti,ni
(j)

(similarly for ĝi). We also define f̂0 and ĝ0 to be the concatenation of all length-(2n0) strings in the
lexicographical order, so f̂0 = ĝ0 = f0.

Applying the algorithm Input recursively, we obtain two algorithms F and G (depending on π1
and π2, respectively) that given i ∈ {0, 1, . . . , k + 1} and j ∈ {0, 1, . . . , Ti − 1}, output the j-th bit
of f̂i or ĝi, respectively. Since Input only makes one oracle query, these algorithms run in poly(nk)
time.

We are now ready to formally construct V . We first recursively define a series of procedures
V0, . . . , Vk+1, where each Vi takes an input j and outputs (with high probability) the j-th bit of fi.
Let V0 be the simple algorithm that, on input j, computes the j-th bit of f0. For every i ∈ [k + 1],
we define

Vi(α) := Select
Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi)

for some εi ∈ [0, 1) to be specified later, where Select is the algorithm in Item 2 of Lemma 5.5.
We note that since Vi−1 is a randomized algorithm, when Vi calls Vi−1, it also draws independent
random coins used by the execution of Vi−1. Moreover, all calls to f̂i and ĝi in Vi can be simulated
by calling our algorithms F and G. Jumping ahead, we remark that Vi is supposed to compute fi
when at least one of f̂i or ĝi is fi. We then set

V (1nk , π1, π2) := Output
Vk+1

Tk,nk

(note that Vk+1 is defined from f̂k+1 and ĝk+1, which are in turn constructed from π1 and π2), where
OutputTk,nk

is the algorithm from Item 1 of Lemma 5.5.

Correctness of V . Let τ ∈ N be a large constant such that SelectT,n runs in (n · log 1/ε)τ time. In

particular, on any input α, SelectVi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes at most (ni−1 · log 1/εi)τ many queries
to Vi−1.

We say Selectf,π1,π2

T,n (C,α, εi) makes an error if the following statements hold (h = H̃istory(C, f)

from Lemma 5.5):36

[π1 = h OR π2 = h] AND
[
Selectf,π1,π2

T,n (Cni−1 , α, εi) ̸= hα

]
.

Similarly, we say that Select
Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes an error if either (1) one of the queries
to Vi−1 are incorrectly answered (i.e., the answer is not consistent with fi−1) or (2) all queries
are correctly answered but Select

fi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes an error. Note that (2) happens with
probability at most εi from Item 2 of Lemma 5.5.

Now we are ready to specify the parameter εi. We set εk+1 = 1/(100 · nk+1), and for every
i ∈ {0, 1, . . . , k}, we set

εi =
εi+1

4 · (ni · log 1/εi+1)τ
.

36The condition below only applies when at least one of π1 and π2 is h. If neither of them are h, then Select by
definition never errs.

29

To show the correctness of V , we prove the following claim by induction.

Claim 5.8. Assume either f̂k+1 = fk+1 or ĝk+1 = fk+1. For every i ∈ {0, 1, . . . , k + 1} and
α ∈ [|fi|], Vi(α) outputs fi(α) with probability at least 1− 2εi.

Proof. The claim certainly holds for V0. Now, for i ∈ [k + 1], assuming it holds for Vi−1, it follows
that Select

Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes an error with probability at most

εi + (ni−1 · log 1/εi)τ · 2εi−1 ≤ 2εi.

By the definition of making an error and our assumption that either f̂k+1 = fk+1 or ĝk+1 = fk+1

(from which we know either f̂i = fi or ĝi = fi), it follows that Vi(α) outputs fi(α) with probability
at least 1− 2εi. ⋄

Note that Output
Vk+1

Tk,nk
makes at most 4nk queries to Vk+1. It follows from Claim 5.8 that when

either f̂k+1 = fk+1 or ĝk+1 = fk+1, we have that V (1nk , π1, π2) outputs z with probability at least
1− (4nk) · 1/(100nk+1) ≥ 2/3. The correctness of V then follows from our choice of ω.

Running time of V . Finally, we analyze the running time of V , for which we first need to bound
log ε−1i . First, we have

log ε−1k+1 = log nk+1 + log 100.

By our definition of εi and the fact that τ is a constant, we have

log ε−1i = log ε−1i+1 + log 4 + τ ·
(
log ni + log log ε−1i+1

)
≤ 2 log ε−1i+1 +O(log ni).

Expanding the above and noting that k ≤ t ≤ O(log n0), for every i ∈ [k + 1] we have that

log ε−1i ≤ 2k ·O

(
k∑

ℓ=0

log nℓ

)
≤ poly(n0) · log nk.

Now we are ready to bound the running time of the Vi. First V0 runs in T0 = poly(n0) time.
For every i ∈ [k + 1], by the definition of Vi, we know that Vi runs in time

Ti = O
(
(ni−1 · log 1/εi)τ

)
· (Ti−1 + nβk + 1),

where β is a sufficiently large constant and nβk bounds the running time of answering each query

Select
Vi−1,f̂i,ĝi
Ti−1,ni−1

(Cni−1 , α, εi) makes to f̂i or ĝi, by running F or G, respectively.
Expanding out the bound for Tk, we know that Vk+1 runs in time

2O(k) · (poly(n0) · log nk)O(k·τ) · nβk ·
k+1∏
i=1

nτi−1.

Since nk = n10
k

0 and k ≤ O(log n0), the above can be bounded by poly(nk). This also implies that
V runs in poly(nk) time as well, which completes the analysis of the S2BPP verifier V .

30

Derandomization of the S2BPP verifier V into the desired S2P verifier VA. Finally, we use
the underlying proof technique of S2BPP = S2P [Can96,RS98] to derandomize V into a deterministic
S2P verifier VA that outputs z.

By repeating V poly(nk) times and outputs the majority among all the outputs, we can obtain
a new S2BPP verifier Ṽ such that

• There exists ω ∈ {0, 1}nk+1 such that for every π ∈ {0, 1}nk+1 , we have

Pr[Ṽ (1nk , ω, π) = z] ≥ 1− 2−nk and Pr[Ṽ (1nk , π, ω) = z] ≥ 1− 2−nk . (2)

Let ℓ = poly(nk) be an upper bound on the number of random coins used by Ṽ . We also let
m := poly(ℓ, nk+1) ≤ poly(nk) and use Ṽ (1nk , π1, π2; r) to denote the output of Ṽ given randomness
r. Now, we define VA as follows: It takes two vectors π⃗1, π⃗2 ∈ {0, 1}nk+1 ×

(
{0, 1}ℓ

)m as proofs. For
π⃗1 = (α, u1, u2, . . . , um) and π⃗2 = (β, v1, v2, . . . , vm), VA outputs the majority of the multi-set

{Ṽ (1nk , α, β;ui ⊕ vj)}(i,j)∈[m]2 ,

where ui ⊕ vj denotes the bit-wise XOR of ui and vj (if no strings occur more than m2/2 times in
the set above, then VA simply outputs ⊥).

We will show there exists ω⃗ = (γ, r1, . . . , rm) such that for every π⃗ ∈ {0, 1}nk+1 ×
(
{0, 1}ℓ

)m,

Pr[VA(1
nk , ω⃗, π⃗) = z] and Pr[VA(1

nk , π⃗, ω⃗) = z].

We first claim that there exist r1, . . . , rm ∈ {0, 1}ℓ such that for every u ∈ {0, 1}ℓ and for every
π ∈ {0, 1}nk+1 , it holds that (1) for at least a 2/3 fraction of i ∈ [m], we have Ṽ (1nk , ω, π; ri⊕u) = z
and (2) for at least a 2/3 fraction of i ∈ [m], we have Ṽ (1nk , π, ω; ri ⊕ u) = z.

To see this, for every fixed u ∈ {0, 1}ℓ and π ∈ {0, 1}nk+1 , by a simple Chernoff bound, the
probability, over m independently uniformly drawn r1, . . . , rm, that more than a 1/3 fraction of
i ∈ [m] satisfies Ṽ (1nk , ω, π; ri ⊕ u) ̸= z is at most 2−Ω(m), and the same probability upper bound
holds for the corresponding case of Ṽ (1nk , π, ω; ri⊕u) ̸= z as well. Our claim then just follows from
a simple union bound over all u ∈ {0, 1}ℓ and π ∈ {0, 1}nk+1 .

Now, let γ be the proof ω such that the condition (2) holds. We simply set ω⃗ = (γ, r1, . . . , rm).
From our choice of γ and r1, . . . , rm, it then follows that for every v1, . . . , vm ∈ {0, 1}ℓ and π ∈
{0, 1}nk+1 , at least a 2/3 fraction of Ṽ (1nk , γ, π; ri⊕vj) equals z, and similarly for Ṽ (1nk , π, γ; ri⊕vj).
This completes the proof.

Wrapping up. Finally, we generalize A and VA to work on all inputs 1n. On input 1n, VA
calculates the largest ℓ such that n(ℓ) ≤ n, and also calculates the largest k′ such that n(ℓ)k′ ≤ n. If
n
(ℓ)
k′ ̸= n, then VA immediately outputs ⊥ and halts. Otherwise, VA receives an advice bit indicating

whether k′ = k(ℓ), where k(ℓ) is the largest integer such that f (ℓ)
k(ℓ)
̸∈ Range(GGM

T
(ℓ)
k

[C
n
(ℓ)
k

]). If this
is the case, then VA runs the verification procedure above; otherwise, it immediately outputs ⊥ and
halts. It is easy to see that VA runs in poly(n) time, and is an infinitely-often single-valued FS2P
algorithm solving the range avoidance problem of {Cn}.

Moreover, observe that in the proof of Lemma 5.5, all considered input lengths (the n(ℓ)i) are
indeed powers of 2. So we indeed have the following slightly stronger result.

Corollary 5.9. Let {Cn : {0, 1}n → {0, 1}2n}n∈N be a P-uniform family of circuits. There is a
single-valued FS2P algorithm A with one bit of advice such that for infinitely many r ∈ N, letting
n = 2r, A(1n) outputs yn ∈ {0, 1}2n \ Range(Cn).

31

We need the following reduction from Korten which reduces solving range avoidance with one-bit
stretch to solving range avoidance with doubling stretch.

Lemma 5.10 ([Kor21, Lemma 3]). Let n ∈ N. There is a polynomial time algorithm A and an
FPNP algorithm B such that the following hold:

1. Given a circuit C : {0, 1}n → {0, 1}n+1, A(C) outputs a circuit D : {0, 1}n → {0, 1}2n.

2. Given any y ∈ {0, 1}2n \ Range(D), B(C, y) outputs a string z ∈ {0, 1}n+1 \ Range(C).

The following corollary then follows by combining Lemma 5.10 and Theorem 2.3.

Corollary 5.11. Let {Cn : {0, 1}n → {0, 1}n+1}n∈N be a P-uniform family of circuits. There is a
single-valued FS2P algorithm A with one bit of advice such that for infinitely many r ∈ N, letting
n = 2r, A(1n) outputs yn ∈ {0, 1}n+1 \ Range(Cn).

The following corollary follows from Fact 2.4 and Corollary 5.11.

Corollary 5.12. S2E/1 ̸⊂ SIZE[2n/n].

Finally, we also note that by letting Cn be a universal Turing machine mapping n bits to n+ 1
bits in poly(n) time, we have the following strong lower bounds for S2E/1 against non-uniform time
complexity classes with maximum advice.

Corollary 5.13. For every α(n) ≥ ω(1) and any constant k ≥ 1, S2E/1 ̸⊂ TIME[2kn]/2n−α(n).

From Remark 5.6 and noting that the derandomization of S2BPP verifier V to S2P verifier AV

also relativizes, we can see that all the results above relativize as well.

5.4 Infinitely Often Single-Valued FS2P Algorithm for Arbitrary Input Range
Avoidance

Theorem 5.7 and Corollary 5.11 only give single-valued FS2P algorithms for solving range avoid-
ance for P-uniform families of circuits. Applying Korten’s reduction [Kor21], we show that it can
be strengthened into a single-valued infinitely-often FS2P algorithm solving range avoidance given
an arbitrary input circuit.

We need the following reduction from [Kor21].

Lemma 5.14 ([Kor21, Theorem 7]). There is an FPNP algorithm AKorten satisfying the following:

1. AKorten takes an s-size circuit C : {0, 1}n → {0, 1}n+1 and a truth table f ∈ {0, 1}2m such that
2m ≥ s3 and n ≤ s as input.

2. If the circuit complexity of f is at least c1 · m · s for a sufficiently large universal constant
c1 ∈ N, then AKorten(C, f) outputs a string y ∈ {0, 1}n+1 \ Range(C).

Theorem 5.15. There is a single-valued FS2P algorithm A with one bit of advice such that for
infinitely many s ∈ N, for all s-size circuits C : {0, 1}n → {0, 1}n+1 where n ≤ s, A(C) outputs
yC ∈ {0, 1}n+1 \ Range(C).

Proof Sketch. By Corollary 5.11, there is a single-valued FS2P algorithm W with one bit of advice
such that for infinitely many n ∈ N, W (12

n
) outputs a string fn ∈ {0, 1}2

n with SIZE(fn) ≥ 2n/n.
Now we construct our single-valued FS2P algorithm A with one bit of advice as follows: given

an s-size circuit C : {0, 1}n → {0, 1}n+1 with n ≤ s as input; let m = ⌈log s3⌉ and fm = W (12
m
);

output AKorten(C, fm). It follows from Theorem 2.3 that A is a single-valued FS2P algorithm with
one bit of advice (the advice of A is given to W).

32

Finally, S2P ⊆ ZPPNP [Cai07] implies that every single-valued FS2P algorithm can also be
implemented as a single-valued FZPPNP algorithm with polynomial overhead. Therefore, the above
theorem also implies an infinitely often FZPPNP algorithm for range avoidance.

Reminder of Theorem 1.5. There is a single-valued FZPPNP algorithm A with one bit of advice
such that for infinitely many s ∈ N, for all s-size circuits C : {0, 1}n → {0, 1}n+1 where n ≤ s,
A(C) outputs yC ∈ {0, 1}n+1 \Range(C). That is, for all those s, there is a string yC ∈ {0, 1}n+1 \
Range(C) such that A(C) either outputs yC or ⊥, and the probability (over the inner randomness
of A) that A(C) outputs yC is at least 2/3.

Acknowledgments

Part of the work was done when all authors were participating in the Meta-Complexity program
at the Simons Institute. Lijie Chen is supported by a Miller Research Fellowship. Shuichi Hirahara
is supported by JST, PRESTO Grant Number JPMJPR2024, Japan. Hanlin Ren received support
from DIMACS through grant number CCF-1836666 from the National Science Foundation. We
thank Oliver Korten, Zhenjian Lu, Igor C. Oliveira, Rahul Santhanam, Roei Tell, and Ryan Williams
for helpful discussions. We also want to thank Jiatu Li, Igor C. Oliveira, and Roei Tell for comments
on an early draft of the paper.

References
[Aar06] Scott Aaronson. Oracles are subtle but not malicious. In CCC, pages 340–354. IEEE Computer

Society, 2006. doi:10.1109/CCC.2006.32. 1

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. 14

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004. doi:10.4007/annals.2004.160.781. 5

[BCG+96] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino Tamon.
Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433,
1996. doi:10.1006/jcss.1996.0032. 1, 13

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1:3–40, 1991. doi:10.1007/
BF01200056. 23

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993. doi:10.1007/BF01275486. 13

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In CCC,
pages 8–12, 1998. doi:10.1109/CCC.1998.694585. 1

[BLS85] Ronald V. Book, Timothy J. Long, and Alan L. Selman. Qualitative relativizations of complex-
ity classes. J. Comput. Syst. Sci., 30(3):395–413, 1985. doi:10.1016/0022-0000(85)90053-4.
4

[BS06] Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems harder. In CCC,
pages 73–87. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.26. 7

[Cai07] Jin-yi Cai. Sp2 ⊆ ZPPNP. J. Comput. Syst. Sci., 73(1):25–35, 2007. doi:10.1016/j.jcss.
2003.07.015. 1, 2, 3, 13, 14, 33

33

https://doi.org/10.1109/CCC.2006.32
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1006/jcss.1996.0032
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01275486
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1016/0022-0000(85)90053-4
https://doi.org/10.1109/CCC.2006.26
https://doi.org/10.1016/j.jcss.2003.07.015
https://doi.org/10.1016/j.jcss.2003.07.015

[Can96] Ran Canetti. More on BPP and the polynomial-time hierarchy. Inf. Process. Lett., 57(5):237–
241, 1996. doi:10.1016/0020-0190(96)00016-6. 11, 14, 28, 31

[CCHO05] Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara.
Competing provers yield improved Karp–Lipton collapse results. Inf. Comput., 198(1):1–23,
2005. doi:10.1016/j.ic.2005.01.002. 1

[CLO+23] Lijie Chen, Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam. Polynomial-time
pseudodeterministic construction of primes. In FOCS, 2023. To appear. doi:10.48550/arXiv.
2305.15140. 5, 6, 7

[CMMW19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and
equivalences between circuit lower bounds and Karp–Lipton theorems. In CCC, volume
137 of LIPIcs, pages 30:1–30:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.CCC.2019.30. 13

[CT21a] Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In FOCS, pages 125–136, 2021. doi:10.1109/FOCS52979.2021.00021. 5, 6

[CT21b] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions: eliminating
randomness at almost no cost. In STOC, pages 283–291, 2021. doi:10.1145/3406325.3451059.
3

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient func-
tions. Annals of Mathematics, 189(3):653–705, 2019. doi:10.4007/annals.2019.189.3.1.
2

[Erd59] Paul Erdős. Graph theory and probability. Canadian Journal of Mathematics, 11:34–38, 1959.
doi:10.4153/CJM-1959-003-9. 2

[FHOS93] Stephen A. Fenner, Steven Homer, Mitsunori Ogiwara, and Alan L. Selman. On using oracles
that compute values. In STACS, volume 665 of Lecture Notes in Computer Science, pages
398–407. Springer, 1993. doi:10.1007/3-540-56503-5_40. 4

[FM05] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit size
of the hardest functions. Information Processing Letters, 95(2):354–357, 2005. doi:10.1016/
j.ipl.2005.03.009. 1, 4, 16

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their
cryptographic applications. Electron. Colloquium Comput. Complex., TR11-136, 2011. URL:
https://eccc.weizmann.ac.il/report/2011/136. 3, 4

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986. doi:10.1145/6490.6503. 8, 16, 17

[GGNS23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. Range
avoidance for constant depth circuits: Hardness and algorithms. In APPROX/RANDOM,
volume 275 of LIPIcs, pages 65:1–65:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.65. 2

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-depth circuits
and connections to pseudorandomness. In APPROX/RANDOM, volume 245 of LIPIcs, pages
20:1–20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
APPROX/RANDOM.2022.20. 2

[Gol08] Oded Goldreich. Computational complexity: a conceptual perspective. Cambridge University
Press, 2008. doi:10.1017/CBO9780511804106. 14

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf. Process.
Lett., 43(4):169–174, 1992. doi:10.1016/0020-0190(92)90195-2. 23

34

https://doi.org/10.1016/0020-0190(96)00016-6
https://doi.org/10.1016/j.ic.2005.01.002
https://doi.org/10.48550/arXiv.2305.15140
https://doi.org/10.48550/arXiv.2305.15140
https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1145/3406325.3451059
https://doi.org/10.4007/annals.2019.189.3.1
https://doi.org/10.4153/CJM-1959-003-9
https://doi.org/10.1007/3-540-56503-5_40
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/j.ipl.2005.03.009
https://eccc.weizmann.ac.il/report/2011/136
https://doi.org/10.1145/6490.6503
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1016/0020-0190(92)90195-2

[Hir15] Shuichi Hirahara. Identifying an honest EXPNP oracle among many. In CCC, volume 33 of
LIPIcs, pages 244–263. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.
4230/LIPIcs.CCC.2015.244. 12, 23

[HLR23] Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren. Bounded relativization. In CCC, volume
264 of LIPIcs, pages 6:1–6:45. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.CCC.2023.6. 1, 3

[HNOS96] Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman. Computing
solutions uniquely collapses the polynomial hierarchy. SIAM J. Comput., 25(4):697–708, 1996.
doi:10.1137/S0097539794268315. 4

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties
as oracles. In CCC, volume 102 of LIPIcs, pages 7:1–7:20, 2018. doi:10.4230/LIPIcs.CCC.
2018.7. 13

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.
doi:10.1016/S0022-0000(02)00024-7. 6, 7

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In STOC, pages 220–229. ACM, 1997. doi:10.1145/258533.258590.
1, 6

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization. Ann.
Pure Appl. Log., 129(1-3):1–37, 2004. doi:10.1016/j.apal.2003.12.003. 2, 6

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control.,
55(1-3):40–56, 1982. doi:10.1016/S0019-9958(82)90382-5. 1, 2

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In STOC, pages 73–79,
2000. doi:10.1145/335305.335314. 1

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total func-
tions in the polynomial hierarchy. In ITCS, volume 185 of LIPIcs, pages 44:1–44:18, 2021.
doi:10.4230/LIPIcs.ITCS.2021.44. 2, 4, 16

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In STOC, pages 302–309, 1980. doi:10.1145/800141.804678. 2, 12, 13

[Kor21] Oliver Korten. The hardest explicit construction. In FOCS, pages 433–444. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00051. 2, 4, 5, 6, 8, 14, 16, 17, 32

[Kra01] Jan Krajíček. Tautologies from pseudo-random generators. Bull. Symb. Log., 7(2):197–212,
2001. doi:10.2307/2687774. 2

[Kre88] Mark W. Krentel. The complexity of optimization problems. J. Comput. Syst. Sci., 36(3):490–
509, 1988. doi:10.1016/0022-0000(88)90039-6. 15

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002. doi:10.1137/S0097539700389652. 2

[KW98] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having small circuits.
SIAM J. Comput., 28(1):311–324, 1998. doi:10.1137/S0097539795296206. 1

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859–868, 1992. doi:10.1145/146585.
146605. 13

[Li23] Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. In FOCS,
2023. To appear. doi:10.48550/arXiv.2303.06802. 2

35

https://doi.org/10.4230/LIPIcs.CCC.2015.244
https://doi.org/10.4230/LIPIcs.CCC.2015.244
https://doi.org/10.4230/LIPIcs.CCC.2023.6
https://doi.org/10.4230/LIPIcs.CCC.2023.6
https://doi.org/10.1137/S0097539794268315
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1145/258533.258590
https://doi.org/10.1016/j.apal.2003.12.003
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1145/335305.335314
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1145/800141.804678
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.2307/2687774
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1137/S0097539795296206
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.48550/arXiv.2303.06802

[Lup58] Oleg B Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk SSSR,
119(1):23–26, 1958. 1

[MVW99] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In COCOON, volume 1627 of Lecture
Notes in Computer Science, pages 210–220. Springer, 1999. doi:10.1007/3-540-48686-0_21.
1, 4

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1. 1, 6

[RS98] Alexander Russell and Ravi Sundaram. Symmetric alternation captures BPP. Comput. Com-
plex., 7(2):152–162, 1998. doi:10.1007/s000370050007. 2, 11, 14, 28, 31

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits.
In FOCS, pages 640–650. IEEE, 2022. doi:10.1109/FOCS54457.2022.00067. 2, 4, 16

[San09] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009. doi:10.1137/070702680. 1

[Sel94] Alan L. Selman. A taxonomy of complexity classes of functions. J. Comput. Syst. Sci.,
48(2):357–381, 1994. doi:10.1016/S0022-0000(05)80009-1. 4

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System technical
journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x. 1, 4

[Sud95] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of Approximation
Problems, volume 1001 of Lecture Notes in Computer Science. Springer, 1995. doi:10.1007/
3-540-60615-7. 23

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, volume 53 of
Lecture Notes in Computer Science, pages 162–176, 1977. doi:10.1007/3-540-08353-7_135.
2

[Vin05] N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415–418, 2005. doi:10.1016/j.tcs.2005.07.032. 1

[VW23] Nikhil Vyas and Ryan Williams. On oracles and algorithmic methods for proving lower bounds.
In ITCS, volume 251 of LIPIcs, pages 99:1–99:26. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.99. 1, 13

36
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1007/s000370050007
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1137/070702680
https://doi.org/10.1016/S0022-0000(05)80009-1
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1007/3-540-60615-7
https://doi.org/10.1007/3-540-60615-7
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1016/j.tcs.2005.07.032
https://doi.org/10.4230/LIPIcs.ITCS.2023.99

