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Abstract

In this paper, we establish a novel connection between total variation (TV) distance
estimation and probabilistic inference. In particular, we present an efficient, structure-
preserving reduction from relative approximation of TV distance to probabilistic inference
over directed graphical models. This reduction leads to a fully polynomial randomized
approximation scheme (FPRAS) for estimating TV distances between distributions over
any class of Bayes nets for which there is an efficient probabilistic inference algorithm. In
particular, it leads to an FPRAS for estimating TV distances between distributions that are
defined by Bayes nets of bounded treewidth. Prior to this work, such approximation schemes
only existed for estimating TV distances between product distributions. Our approach
employs a new notion of partial couplings of high-dimensional distributions, which might be
of independent interest.

1 Introduction

Machine learning and data science heavily rely on probability distributions that are widely used
to capture dependencies among large number of variables. Such high-dimensional distributions
naturally appear in various domains including neuroscience [ROL02, CTY06], bioinformatics
[BB01], text and image processing [Mur22], and causal inference [Pea09]. Substantial research
has been devoted to developing models that represent high-dimensional probability distributions
succinctly. One prevalent approach is through graphical models. In a graphical model, a
graph describes the conditional dependencies among variables and the probability distribution
is factorized according to the adjacency relationships in the graph [KF09]. When the underlying
graph is a directed graph, the model is known as a Bayesian network or Bayes net.

Two fundamental computational tasks on distributions are distance computation and prob-
abilistic inference. In this work, we establish a novel connection between these two seemingly
different computational tasks. Using this connection, we design new relative error approxi-
mation algorithms for estimating the statistical distance between Bayes net distributions with
bounded treewidth.

∗The author list has been sorted alphabetically by last name; this should not be used to determine the extent
of authors’ contributions.
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Distance computation. The distance computation problem is the following: Given descrip-
tions of two probability distributions P and Q, compute ρ(P, Q) for a distance measure ρ. A
distance measure of central importance is the total variation (TV) distance (also known as sta-
tistical distance or statistical difference). Let P and Q are distributions over a finite domain D.
The total variation distance between P and Q, denoted by dTV(P, Q), is defined as

dTV(P, Q) = max
S⊆D

(P (S)−Q(S)) .

The total variation distance satisfies many basic properties which makes it a versatile and
fundamental measure for quantifying the dissimilarity between probability distributions. First,
it has an explicit probabilistic interpretation: The TV distance between two distributions is
the maximum gap between the probabilities assigned to a single event by the two distributions.
Second, it satisfies many mathematically desirable properties: It is bounded in [0, 1], it is a
metric, and it is invariant with respect to bijections. Total variation distance also measures the
minimum probability that X 6= Y among all couplings (X, Y ) between P and Q. Because of
these reasons, the total variation distance is a central distance measure employed in a wide range
of areas including probability and statistics, machine learning, information theory, cryptography,
data privacy, and pseudorandomness.

Probabilistic inference. There are several related computational tasks that fall under the
umbrella of the term probabilistic inference. We use the following: Given (a representation of)
random variables X1, . . . , Xn and (a representation of) sets S1, . . . , Sn such that for all i the set
Si is a subset of the range of Xi, compute the probability Pr[X1 ∈ S1, . . . , Xn ∈ Sn].

Probabilistic inference in graphical models is a fundamental computational task with a
wide range of applications that spans disciplines including statistics, machine learning, and
artificial intelligence (e.g., [WJ+08]). Various algorithms have been proposed for this problem,
encompassing both exact approaches like message passing [Pea88], variable elimination [Dec99],
and junction-tree propagation [LS88], as well as approximate techniques such as loopy belief
propagation, variational inference-based methods [WJ+08], and particle-based algorithms (refer
to Chapter 13 of [KF09] and the references therein). Computational hardness results have also
been established in several works [Coo90, LMP01, Rot96, KBvdG10].

1.1 Our contributions

Our main contribution is a structure-preserving reduction from the TV distance estimation
problem to the probabilistic inference problem over Bayes nets. In particular, we exhibit an
efficient probabilistic reduction such that for two Bayes nets P and Q defined over a directed
acyclic graph (DAG) G, the reduction makes probabilistic inference queries to a Bayes net L
defined over the same DAG G and returns a relative approximation of the dTV(P, Q).

Theorem 1 (Informal). There is a polynomial-time randomized algorithm that takes a DAG
G, two Bayes nets P and Q over G, and parameters ε, δ as inputs and behaves as follows. The
algorithm makes probabilistic inference oracle queries to a Bayes net over the same DAG G and
outputs an (1 + ε)-relative approximation of dTV(P, Q) with probability at least 1− δ.

Remark 2. It is known that probabilistic inference computation over Bayes nets is a #P-
hard problem and hence exact dTV computation reduces to probabilistic inference over Bayes
nets [Coo90]. A salient feature of our reduction is that it preserves the structure of the Bayes
net. This leads to efficient dTV estimation algorithms for any class of Bayes nets that admits
efficient probabilistic inference algorithms. Note that exact dTV computation is #P-complete
even for product distributions for which inference computation is straightforward [BGM+23].
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As a corollary, we obtain a fully polynomial time randomized approximation scheme (FPRAS)
for relatively approximating the TV distance between Bayes nets over any class of DAGs for
which an efficient probabilistic inference algorithm exists. The well-known variable elimina-
tion algorithm can be used for efficient probabilistic inference for Bayes nets over DAGs with
treewidth O(log n). This leads to a new FPRAS for TV distance estimation for Bayes nets over
DAGs with logarithmic treewidth.

Corollary 3 (Informal). There is an FPRAS for estimating the TV distance between two Bayes
nets of treewidth O(log n) that are defined over the same DAG of n nodes.

Prior to our work, such approximation schemes were known only for product distributions,
which are Bayes nets over a graph with no edges [FGJW23]. In particular, designing an FPRAS
for estimating TV distance between Bayes nets over trees (which are graphs with treewidth 1)
was an open question. Our result resolves this question. It is known that for Bayes nets over
general DAGs we cannot hope to have an FPRAS for relatively approximating TV distance. In
particular, [BGM+23] shows that it is NP-hard to decide whether dTV(P, Q) is zero or not when
P and Q are arbitrary Bayes nets over DAGs of in-degree 2. In spite of this impossibility result,
Corollary 3 shows that it is indeed possible to obtain an FPRAS for a large class of Bayes nets,
namely Bayes nets of O(log n) treewidth.

Our next set of results focuses on the case when one of the distributions is the uniform
distribution. We first prove that the exact computation of the TV distance between a Bayes
net distribution and the uniform distribution is #P-complete. To complement this result, we
show that there is an FPRAS that estimates the TV distance between the uniform distribution
and any Bayes net distribution.

Theorem 4. It is #P-complete to compute the TV distance between a Bayes net that has
bounded in-degree and the uniform distribution.

Theorem 5 (Informal). There is an FPRAS for estimating the TV distance between a Bayes
net and the uniform distribution.

1.2 Related work

Koller and Friedman [KF09] provide a comprehensive overview of probabilistic graphical mod-
els. They discuss the general principles and philosophies behind graphical models, including
Bayesian networks and Markov networks.

Distance computation. Recently, Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, and Vin-
odchandran [BGM+23] initiated the study of the computational complexity aspects of TV dis-
tance over graphical models. In that work, they proved that exactly computing the TV distance
between product distributions is #P-complete, that it is NP-hard to decide whether the TV dis-
tance between two Bayes nets of in-degree 2 is equal to 0 or not, and also gave an FPTAS
for approximating the TV distance between an arbitrary product distribution and the uniform
distribution. In a subsequent work, Feng, Guo, Jerrum and Wang [FGJW23] gave an FPRAS
for approximating the TV distance between two arbitrary product distributions.

TV distance estimation was also studied previously from a more complexity-theoretic and
cryptographic viewpoint. Sahai and Vadhan [SV03] established in a seminal work that additively
approximating the TV distance between two distributions that are samplable by Boolean circuits
is hard for SZK (Statistical Zero Knowledge). Goldreich, Sahai, and Vadhan [GSV99] showed
that the problem of deciding whether a distribution samplable by a Boolean circuit is close or
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far from the uniform distribution is complete for the complexity class NISZK (Non-Interactive
Statistical Zero Knowledge).

Additive approximation of TV distance is much easier. Canonne and Rubinfeld [CR14]
showed how to additively estimate TV distance between distributions that can be efficiently
sampled and whose probability mass functions can be efficiently evaluated. Clearly, Bayes
nets satisfy both conditions (where “efficient” means as usual polynomial in the number of
parameters). Bhattacharyya, Gayen, Meel and Vinodchandran [BGMV20] extended this idea
to develop polynomial-time algorithms for additively approximating the TV distance between
two bounded in-degree Bayes nets using a polynomial number of samples from each.

Probabilistic inference. There is a significant body of work dedicated to exact probabilis-
tic inference. As we mentioned earlier, some algorithmic paradigms that have been devel-
oped for the task of probabilistic inference are message passing [Pea88], variable elimination
[Dec99], and junction-tree propagation [LS88]. Recently, Klinkenberg, Blumenthal, Chen, and
Katoen [KBCK23] presented an exact Bayesian inference method for inferring posterior dis-
tributions encoded by probabilistic programs featuring possibly unbounded looping behaviors.
Similarly, Klinkenberg, Winkler, Chen, and Katoen [KWCK23], explore the theory of gener-
ating functions and investigate its usage in the exact quantitative reasoning of probabilistic
programs.

With the advent of big data and the increasing complexity of models, traditional exact
inference methods may become computationally infeasible. Approximate inference techniques,
such as variational inference and sampling methods like Markov Chain Monte Carlo, provide
efficient and scalable alternatives to tackle these challenges. Minka [Min01] introduces the ex-
pectation propagation algorithm for approximate Bayesian inference. This method unifies two
previous techniques: Assumed-density filtering, an extension of the Kalman filter, and loopy
belief propagation. Murphy, Weiss, and Jordan [MWJ13] investigate the effectiveness of loopy
belief propagation. They present empirical results showing the performance of the algorithm
and discuss its limitations and trade-offs. Ranganath, Gerrish, and Blei [RGB14] introduce
black box variational inference, a flexible and scalable approach for approximate Bayesian in-
ference. Their paper presents a general framework for approximating posterior distributions
and discusses applications in latent variable models. Blei, Kucukelbir, and McAuliffe [BKM17]
provide a comprehensive review of variational inference, a family of methods for approximate
Bayesian inference. They cover the principles of variational inference, present different algorith-
mic approaches, and discuss its applications in machine learning.

1.3 Organization

The rest of the paper is organized as follows. We provide a technical overview of our results in
Section 2 and some background material in Section 3. We prove the main results as follows: We
show Theorem 1 in Section 4; Corollary 3 in Section 4.3; Theorem 4 in Section 5.1; Theorem 5
in Section 5.2. We conclude in Section 6.

2 Technical overview

We present in this section some intuition regarding the technical aspects of our results.
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2.1 Proof of Theorem 1

Our approach is to carefully define an estimator function f and a distribution π so that
Eπ[f ] = dTV(P, Q)/Z where Z is an efficiently computable normalization constant. The al-
gorithm proceeds by estimating Eπ[f ], multiplies it by Z, and returns the value. Probabilistic
inference queries are used to compute Z and to sample from the distribution π.

There are several challenges in this approach, including setting up the estimator function f
and the distribution π so that: (i) Eπ[f ] is large enough for an empirical estimate to be a good
relative approximation and (ii) probabilistic inference queries can be used to efficiently sample
from π and to compute Z.

Our starting point is a well-known connection between the TV distance and couplings.

Definition 6. Suppose P and Q are two arbitrary distributions on a common finite set [ℓ]
(where ℓ > 0). A coupling of P and Q is a distribution on pairs (X, Y ) such that X ∼ P and
Y ∼ Q. An optimal coupling of P and Q is a distribution on pairs (X, Y ) such that (1) X ∼ P ,
Y ∼ Q, and (2) for any w ∈ [ℓ], Pr[X = Y = w] = min(P (w) , Q(w)).

Couplings are closely related to TV distance. For any coupling (X, Y ) between P and Q,
dTV(P, Q) ≤ Pr[X 6= Y ]. Additionally, for an optimal coupling as defined above, Pr[X 6= Y ]
exactly equals dTV(P, Q).

Therefore, a natural strategy to compute dTV(P, Q) is to use the probabilistic inference
oracle to compute PrO[X 6= Y ] over an optimal coupling O of P and Q. Indeed, assuming for
simplicity that the alphabet size ℓ = 2,

Pr[X 6= Y ] = 1−Pr[(Xi, Yi) ∈ {(1, 1), (2, 2)} for all i] ,

and so, if O was also a Bayes net over the same DAG as P and Q, we could use the given
probabilistic inference oracle to exactly compute PrO[X 6= Y ].

Perhaps surprisingly at first glance, optimal couplings generally do not have the same struc-
ture as the base distributions. In fact, even for n-variate product distributions P and Q, optimal
couplings do not factorize. A natural candidate for an optimal coupling of product distribu-
tions is a local coupling, a joint distribution L on (X, Y ) = (X1, . . . , Xn, Y1, . . . , Yn) where each
(Xi, Yi) is independently sampled from an optimal coupling of the i-th marginals of P and Q.
However, local couplings are generally1 not optimal.

In a very recent work, Feng, Guo, Jerrum, and Wang [FGJW23] showed that, when P and
Q are product distributions, approximating PrL[X 6= Y ] nevertheless always leads to a good
approximation for PrO[X 6= Y ] where L and O are local and optimal couplings respectively of
P and Q. More precisely, denoting by α the ratio PrO[X 6= Y ]/ PrL[X 6= Y ], what [FGJW23]
showed are that for any two n-dimensional product distributions P and Q:

(i) α is at least Ω(1/n);

(ii) there is an unbiased estimator α̂ ∈ [0, 1] of α that can be efficiently evaluated.

The Chernoff bound then implies that averaging O(n) independent copies of α̂ gives a relative
approximation of α. Since PrL[X 6= Y ] = 1 −

∏n
i=1(1 − dTV(Pi, Qi)) is easy to compute, an

FPRAS for dTV(P, Q) = α ·PrL[X 6= Y ] follows for product distributions.
Generalizing this approach to Bayes nets over general DAGs poses several challenges. The

main issues arise even when we consider very simple Bayes nets—directed path graphs. Let P

1For example, say P = Ber(2/3) ⊗ Ber(2/3), while Q = Ber(1/3) ⊗ Ber(1/3). Here, if O is optimal,
PrO[(X1, X2) 6= (Y1, Y2)] = dTV(P, Q) = 1/3, while if L is local, PrL[(X1, X2) 6= (Y1, Y2)] = 1 − PrL[X1 =
Y1] · PrL[X2 = Y2] = 1 − (1 − dTV(Ber(2/3), Ber(1/3)))2 = 5/9.
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and Q be Bayes nets over a directed path of length n. That is, for both P and Q, the i-th and
(i − 2)-th marginals are conditionally independent given the (i − 1)-th marginal. In terms of
factorizations, for all w ∈ [ℓ]n:

P (w) =
n∏

i=1

Pr
P

[wi|wi−1] and Q(w) =
n∏

i=1

Pr
Q

[wi|wi−1].

The inputs to the distance estimation problem are the conditional probability distributions
Pi|i−1(b|c) = PrP [wi = b|wi−1 = c] and Qi|i−1(b|c) = PrQ[wi = b|wi−1 = c] for all i ∈ [n] and
c ∈ [ℓ]. The goal is to output an (1 + ε)-approximation of dTV(P, Q) with probability at least
1− δ.

As in the case of product distributions, suppose we seek a coupling L of P and Q that also
forms a Bayes net over the directed path. In other words, we would like a coupling L generating
(X1, . . . , Xn, Y1, . . . , Yn) such that each (Xi, Yi) is independent of (Xi−2, Yi−2) conditioned on
(Xi−1, Yi−1). However, there is an immediate problem: Namely, Xi and Xi−2 may be dependent
given Xi−1 through the path Xi−2 → Yi−1 → Xi, and similarly Yi and Yi−2 may be dependent
given Yi−1 through the path Yi−2 → Xi−1 → Yi. Hence, it may not be possible2 to ensure that
(X1, . . . , Xn) form a copy of P and (Y1, . . . , Yn) form a copy of Q, as is required for a coupling.

Our main conceptual innovation is that we drop the requirement that L forms a coupling
and allow L to be a local partial coupling. A local partial coupling of P and Q is a distribution
L over (X, Y ) ∈ [ℓ]n × [ℓ]n satisfying the following three properties:

(i) L is a Bayes net over a directed path of length n with marginals (Xi, Yi) at node i;

(ii) X ∼ P ;

(iii) for any b, c1, c2 ∈ [ℓ], it is the case that

Pr[Xi = Yi = b|Xi−1 = c1, Yi−1 = c2] = min(Pi|i−1(b|c1), Qi|i−1(b|c2)).

Note that the above conditions do not place a condition on the distribution of Y . When P and
Q are arbitrary Bayes net distributions described via DAGs, these conditions can be generalized
from the path to general DAGs in a straightforward manner.

Such an L can always be constructed by using (iii) to define the conditional probability of
Xi = Yi = b and by adjusting the rest of the probability mass to ensure that for all b, c1, c2:

Pr[Xi = b|Xi−1 = c1, Yi−1 = c2] = Pi|i−1(b|c1).

The fact that P is a Bayes net on a path then implies that X ∼ P .
Define Z = PrL[X 6= Y ] for L as above. Since L is a path Bayes net, as mentioned earlier,

we can use probabilistic inference over the path (by classic variable elimination) to efficiently
compute Z exactly. The main technical result we establish about Z is that

Z ≤ 2n · dTV(P, Q).

Our proof of this inequality is elementary but crucially uses properties (ii) and (iii) in the
definition of L above. Now we can follow the same strategy as [FGJW23] by defining an
unbiased estimator α̂ for α = dTV(P, Q)/Z and empirically estimating the expectation of α̂.

To define this estimator, we observe that we can define dTV(P, Q) =
∑

w g∗(w) while Z =
∑

w g(w), where

g∗(w) = P (w)−min(P (w), Q(w)), g(w) = P (w)−
∏

i

min(Pi|i−1(wi|wi−1), Qi|i−1(wi|wi−1)).

2Note that this issue does not arise for product distributions as there are no paths to speak of.
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Here, 0 ≤ g∗(w) ≤ g(w) for all w. We then use a classic importance sampling technique
(mentioned, e.g., in [CS97]) to estimate ratios of sums:

∑

w g∗(w)
∑

w g(w)
= E

w∼π

[
g∗(w)

g(w)

]

where the distribution π has mass function π(w) = g(w)/
∑

w g(w). Using the fact that
g∗(w)/g(w) lies in the interval [0, 1] and has expectation over π equal to α ≥ 1/2n, we can
conclude our analysis by the Chernoff bound. This approach requires that we are able to sam-
ple efficiently from π, which we show is possible using calls to a probabilistic inference oracle.

2.2 Proofs of the rest of the results

We outline here the main proof ideas of the rest of our results.

Proof of Corollary 3. The proof of Corollary 3 is an application of Theorem 1. To make use
of Theorem 1, we establish that probabilistic inference (i.e., computing Pr[X1 ∈ S1, . . . , Xn ∈ Sn])
can be efficiently implemented for Bayes nets of constant alphabet size and logarithmic treewidth
(Lemma 26). It is known that a tree decomposition of graphs that have logarithmic treewidth
can be computed in polynomial time [RS84]. The variable elimination algorithm of [ZP94]
shows that inference can be done in polynomial time given a tree decomposition, provided that
the treewidth of the Bayes net is logarithmic.

Proof of Theorem 4. Theorem 4 is proved by showing a reduction from #SAT to computing
the TV distance between an appropriately defined Bayes net and the uniform distribution. This
is achieved by creating a Bayes net that captures the circuit structure of a Boolean formula F
of which we want to compute its number of satisfying assignments. The CPTs of this Bayes net
mimic the function of the logical gates (AND, OR, NOT) of F .

Proof of Theorem 5. Theorem 5 is proved by giving an algorithm that exploits the following
property of TV distance. Let P be a Bayes net over n variables that has maximum in-degree d
and alphabet size ℓ. In this case dTV(P,U) is equal to

1

2

∑

x

|P (x)− U(x)| =
∑

x

max(0, P (x)− U(x)) =
∑

x

U(x) max

(

0,
P (x)

U(x)
− 1

)

= E
x∼U

[

max

(

0,
P (x)

U(x)
− 1

)]

= E
x∼U

[max(0, P (x) ℓn − 1)] .

This yields a natural estimator for dTV(P,U), whereby we draw samples x1, . . . , xm ∼ U and
then compute and output

1

m

m∑

i=1

max(0, P (xi) ℓn − 1) .

The crux of our analysis is to show that the quantity max(0, P (x) ℓn − 1) is between 0 and 1 +

O
(

dTV(P,U) ℓd+1n
)

. This enables us to use a value of m that is in O
(

poly
(

nℓd, 1/ε, log(1/δ)
))

,

whereby ε is the accuracy error and δ is the confidence error of the FPRAS. Note that the
running time is polynomial in the input length, as any description of the Bayes net P has size
at least n + ℓd+1.
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3 Preliminaries

We use [n] to denote the set {1, . . . , n} and log to denote log2. Throughout the paper, we shall
assume that all probabilities are represented as rational numbers of the form a/b. We denote
the uniform distribution by U.

The following concentration inequality will be useful in our proofs.

Lemma 7 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that
ai ≤ Xi ≤ bi for all 1 ≤ i ≤ n. Then

Pr

[∣
∣
∣
∣
∣

n∑

i=1

Xi −E

[
n∑

i=1

Xi

]∣
∣
∣
∣
∣
≥ t

]

≤ 2 exp

(

−
2t2

∑n
i=1(bi − ai)2

)

.

We shall use the following notion of an approximation algorithm.

Definition 8 (FPRAS). A function f : {0, 1}∗ → R admits a fully polynomial-time randomized
approximation scheme (FPRAS) if there is a randomized algorithm A such that for all n and all
inputs x ∈ {0, 1}n, ε > 0, and δ > 0, A outputs a (1 + ε)-relative approximation of f(x), i.e., a
value v that lies in the interval [f(x)/(1 + ε), (1 + ε)f(x)], with probability 1− δ. The running
time of A is polynomial in n, 1/ε, 1/δ.

3.1 Bayes nets

For a directed acyclic graph (DAG) G and a node v in G, let Π(v) denote the set of parents of
v.

Definition 9 (Bayes nets). A Bayes net is specified by a directed acyclic graph (DAG) over a
vertex set [n] and a collection of probability distributions over symbols in [ℓ], as follows. Each
vertex i is associated with a random variable Xi whose range is [ℓ]. Let Π(Xi) denote the set of
random variables associated with Π(i) (by overloading the notation Π). Each node i of G has a
CPT (Conditional Probability Table) that describes the following: For every x ∈ [ℓ] and every
y ∈ [ℓ]k, where k is the size of Π(i), the CPT has the value of Pr[Xi = x|Π(Xi) = y] stored.
Given such a Bayes net, its associated probability distribution P is given by the following: For
all x ∈ [ℓ]n,

P (x) = Pr
P

[X = x] =
n∏

i=1

Pr
P

[

Xi = xi|XΠ(Xi) = xΠ(Xi)

]

.

Here X is the joint distribution (X1, . . . , Xn) and xΠ(Xi) is the projection of x to the indices in
Π(i).

Note that P (x) can be computed in linear time by using the CPTs of P to retrieve the

probabilities PrP

[

Xi = xi|XΠ(Xi) = xΠ(Xi)

]

.

An important and useful notion is that of the moralization of a Bayes net.

Definition 10 (Moralization of Bayes nets). Let B be a Bayes net over a DAG G. The
moralization of B is the undirected graph that is obtained from G as follows. For every node
u of G and any pair (v, w) of its parents Π(u) if v and w are not connected by some edge in
G, then add the edge (v, w). (Note that after this step the parents of every node of G form a
clique.) Finally, make all edges of G undirected.

We shall require the following simple observation.

Lemma 11. Given a Bayes net over n nodes, its moralization can be computed in time
O(poly(n)).
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Proof. Let B be a Bayes net over a DAG G that has n nodes. Let v be a node of G and let
Π(v) be the set of the parents of v. We can construct a clique among the nodes of Π(v) in
time O

(
n2
)
, since |Π(v)| ≤ n. Therefore we can construct all of the required cliques in time

n ·O
(
n2
)

= O
(
n3
)
. Finally, we can make all directed edges of G undirected in time O

(
n2
)
. This

yields a total running time of O
(
n3
)
.

3.2 Total variation distance

The following notion of distance is central in this work.

Definition 12 (Total variation distance). For probability distributions P, Q over a finite sample
space D, the total variation distance of P and Q is

dTV(P, Q) = max
S⊆D

(P (S)−Q(S)) .

Note that dTV(P, Q) also equals 1
2

∑

w∈D |P (w)−Q(w)| =
∑

w∈D max(0, P (w)−Q(w)).

3.3 Probabilistic inference

The notions of probabilistic inference and probabilistic inference oracle (for Bayes nets) are
central in this work.

For us, probabilistic inference is the following computational task: Given (a representation
of) random variables X1, . . . , Xn and (a representation of) sets S1, . . . , Sn such that for all i the
set Si is a subset of the range of Xi, compute the probability Pr[X1 ∈ S1, . . . , Xn ∈ Sn].3

Let us now define probabilistic inference (oracle) queries.

Definition 13 (Probabilistic inference query over Bayes nets). A probabilistic inference query
takes a description of a Bayes net distribution P over n nodes and alphabet size ℓ and descrip-
tions of sets S1, . . . , Sn, where for all 1 ≤ i ≤ n, Si ⊆ [ℓ], and returns in time O(1) the value of
PrP [X1 ∈ S1, . . . , Xn ∈ Sn].

3.4 Treewidth and tree decompositions

We require the definition of treewidth.

Definition 14. A tree decomposition of an undirected graph G = (V, E) is a tree T with nodes
X1, . . . , Xn, where each Xi is a subset of V , satisfying the following properties (the term node
is used to refer to a vertex of T to avoid confusion with vertices of G):

1. The union of all sets Xi equals V . That is, each graph vertex is contained in at least one
tree node.

2. If Xi and Xj both contain a vertex v, then all nodes Xk of T in the (unique) path
between Xi and Xj contain v as well. Equivalently, the tree nodes containing vertex v
form a connected subtree of T .

3. For every edge (v1, v2) in the graph, there is a subset Xi that contains both v1 and v2.
That is, vertices are adjacent in the graph only when the corresponding subtrees have a
node in common.

3Note that a notion of probabilistic inference that has previously been considered [KBvdG10] is the following:
Given random variables X1, . . . , Xn, a set I = {i1, · · · , ik} ⊆ [n], values xi1

, . . . , xik
that belong to the ranges of

Xi1
, . . . , Xik

, respectively, and an event E, compute the probability Pr[(Xi1
, . . . , Xik

) = (xi1
, . . . , xik

) |E].
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The width of a tree decomposition is the size of its largest set Xi minus one. The treewidth
tw(G) of a graph G is the minimum width among all possible tree decompositions of G.

We shall also extend the notion of treewidth to Bayes nets, as follows.

Definition 15. The treewidth of a Bayes net is defined to be equal to the treewidth of its
moralization.

We require the following two theorems, Theorem 16 and Theorem 17, respectively; Theo-
rem 16 is about a tree decomposition algorithm and Theorem 17 is about the variable elimination
algorithm.

Theorem 16 (Tree decomposition [RS84]). There is a O
(
w33wn2

)
-time algorithm that finds a

tree decomposition of width 4w + 1, if the treewidth of the input graph is at most w.

We will make use of the variable elimination algorithm to efficiently implement probabilistic
inference queries for bounded treewidth Bayes nets.

Theorem 17 (Variable elimination; following Zhang and Poole [ZP94]). There is an algorithm,
called the variable elimination algorithm, for the following task: Given a Bayes net B over
variables X1, . . . , Xn ∈ [ℓ], sets S1, . . . , Sn ⊆ [ℓ], the moralization MB of B, and a tree decompo-
sition T of width w of MB, compute the probability PrB[X1 ∈ S1, . . . , Xn ∈ Sn]. The running
time of this algorithm is O(nℓw).

4 Structure-preserving reduction from TV distance estimation

to probabilistic inference

In this section, we prove Theorem 1 and Corollary 3. In the following, let T (G, ℓ) be the running
time of some implementation of a probabilistic inference oracle for a Bayes net over a DAG G
that has alphabet size ℓ.

Theorem 1 (Formal). There is a polynomial-time randomized algorithm that takes a DAG G,
two Bayes nets P and Q over G (as CPTs) that have alphabet size ℓ, and parameters ε, δ as
inputs and behaves as follows.

The algorithm makes probabilistic inference queries for a Bayes net over the same DAG
G that has alphabet size ℓ2 and outputs an (1 + ε)-relative approximation of dTV(P, Q) with
probability at least 1− δ. The running time of this algorithm is T

(
G, ℓ2

)
·O
(
n3ε−2ℓ log δ−1

)
and

the number of its probabilistic inference queries is O
(
n3ε−2ℓ log δ−1

)
.

The rest of the section is devoted to proving Theorem 1 and is organized as follows. We
first introduce the ingredients that are necessary for describing the algorithm. In Section 4.1,
we show how the algorithm can be implemented using probabilistic inference queries. Finally,
in Section 4.2 we establish its correctness.

Let P and Q be two Bayes net distributions defined over a DAG G with n nodes and
alphabet [ℓ]. Without loss of generality, assume that the nodes are topologically ordered as in
the sequence 1, 2, . . . , n.

Our approach is to define an estimator function f and a distribution π so that Eπ[f ] =
dTV(P, Q)/Z where Z is a normalization constant. The algorithm proceeds by estimating Eπ[f ],
multiplies it by Z, and returns the value. The algorithm uses probabilistic inference queries to
compute Z and to sample from the distribution π.

10



Let w be an element of the sample space, i.e, a n-symbol string over [ℓ]. Given 1 ≤ i ≤ n,
Π(i) denotes the set of parents of i in G and let wΠ(i) denote the projection w at the parents of
node i in G. We first define a function h over [ℓ]n × [n] as follows:

h(w, i) := min
(

Pi|Π(i)

(

wi|wΠ(i)

)

, Qi|Π(i)

(

wi|wΠ(i)

))

.

Descriptions of f , Z, and π. The estimator function f is defined as follows:

f(w) :=
max(0, P (w)−Q(w))

g(w)
where g(w) := P (w)−

n∏

i=1

h(w, i)

for all w. It is straightforward to show that f is computable in time O(n). We define Z :=
∑

w∈[ℓ]n g(w) to be a normalization constant. Finally, the distribution π is specified by the
probability function π(w) := g(w)/Z for all w.

Description of L. We now define a Bayes net distribution L over the graph G which is used
to make inference queries by the algorithm. The distribution L is over the alphabet [ℓ]2 and is a
joint distribution (X, Y ) where X and Y take value over [ℓ]n. We specify a CPT for (X, Y ). For
this, we need to specify for every i and b, z ∈ [ℓ] the probability Pr[(Xi, Yi) = (b, z)] conditioned
on the values Π(i) take. We will first describe the probability where both Xi and Yi take the
same value b. For every c1, c2 ∈ [ℓ],

Pr
[

(Xi, Yi) = (b, b) |
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

= min
(

Pi|Π(i)(b|c1) , Qi|Π(i)(b|c2)
)

.

Define the remaining probabilities to ensure that the marginal X is distributed according to

P . That is, for every z 6= b assign Pr
[

(Xi, Yi) = (b, z) |
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

so that the

following holds:

∑

z:z 6=b

Pr
[

(Xi, Yi) = (b, z) |
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

= Pi|Π(i)(b|c1)−min
(

Pi|Π(i)(b|c1) , Qi|Π(i)(b|c2)
)

Now we are ready to describe the algorithm (see Algorithm 1).

Algorithm 1 FPRAS for dTV estimation using a probabilistic inference oracle.

Require: Bayes nets P, Q over DAG G with n nodes, parameters ε, δ.
Ensure: The output Est is an (1 + ε)-approximation of dTV(P, Q), with probability at least

1− δ.
1: Construct the Bayes net distribution L over G
2: Compute Z by making one probabilistic inference query using L
3: m← Cn2ε−2 log δ−1 (for some sufficiently large C > 0)
4: F ← 0
5: for i← 1 to m do

6: Sample wi ∼ π by making probabilistic inference queries using L
7: F ← F + f

(
wi
)

8: end for

9: Est← ZF/m
10: return Est

11



4.1 Implementing the algorithm with probabilistic inference queries

This subsection is devoted to showing that the sampling from the distribution π and the com-
putation of the normalization constant Z can be done by making probabilistic inference queries.
Recall that L is joint distribution (X, Y ). We start with the following crucial observation which
states that the marginal X (in L) is distributed according to the distribution P .

Observation 18. For every b, c1, c2 ∈ [ℓ],

Pr
[

Xi = b|
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

= Pi|Π(i)(b|c1) .

Proof. We have

Pr
[

Xi = b|
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

=
∑

z∈[ℓ]

Pr
[

(Xi, Yi) = (b, z) |
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

= Pr
[

(Xi, Yi) = (b, b) |
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

+
∑

z:z 6=b

Pr
[

(Xi, Yi) = (b, z) |
(

XΠ(i), YΠ(i)

)

= (c1, c2)
]

= min
(

Pi|Π(i)(b|c1) , Qi|Π(i)(b|c2)
)

+ Pi|Π(i)(b|c1)−min
(

Pi|Π(i)(b|c1) , Qi|Π(i)(b|c2)
)

= Pi|Π(i)(b|c1) .

Therefore, X factorizes like P with its conditional probabilities matching that of P and hence
X ∼ P . This realizes the notion of a local partial coupling as was earlier discussed in Section 2.1
and satisfies all three properties: (i) L is a Bayes net distribution over the same DAG G (that
is used to describe distributions P and Q), (ii) X ∼ P , and (iii) in the joint distribution (X, Y ),
the conditional probabilities are equal to the minimum of the two conditional probabilities
associated to P and Q as it is the case in standard couplings.

In Claim 19 we relate the normalization constant Z of the distribution π to the marginals
X and Y of the distribution L. Moreover, we also relate the generalized normalization constant

Zb1,...,bk
:=

∑

w:(w1,...,wk)=(b1,...,bk)

g(w) ,

for b1, . . . , bk ∈ [ℓ], to the marginals X and Y of the distribution L. We need this general-
ized normalization constant to show that sampling from the distribution π (Claim 21) can be
efficiently done via probabilistic inference queries.

Claim 19. It is the case that

Z = Pr[X 6= Y ] and Zb1,...,bk
= Pr[X 6= Y, X1 = b1, . . . , Xk = bk]

for any b1, . . . , bk ∈ [ℓ].

Proof. Since X ∼ P and for that matter P (w) = Pr[X = w], we have

g(w) = P (w)−
n∏

i=1

min
(

Pi|Π(i)

(

wi|wΠ(i)

)

, Qi|Π(i)

(

wi|wΠ(i)

))

= P (w)−
n∏

i=1

Pr
[

(Xi, Yi) = (wi, wi) |
(

XΠ(i), YΠ(i)

)

=
(

wΠ(i), wΠ(i)

)]
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= P (w)−Pr[X = Y = w]

= Pr[X = w]−Pr[X = Y = w]

= Pr[X = w]−Pr[Y = w|X = w] ·Pr[X = w]

= Pr[X = w]
(

1−Pr[Y = w|X = w]
)

= Pr[X = w] Pr[Y 6= w|X = w]

= Pr[X = w, Y 6= w] .

Therefore, we have that
Z =

∑

w

g(w) = Pr[X 6= Y ]

and

Zb1,...,bk
=

∑

w:(w1,...,wk)=(b1,...,bk)

g(w)

=
∑

w:(w1,...,wk)=(b1,...,bk)

Pr[X = w, Y 6= w]

= Pr[X 6= Y, X1 = b1, . . . , Xk = bk] .

The following claim says that Z and Zb1,...,bk
can be easily computed given access to a

probabilistic inference oracle for L.

Claim 20. It is the case that Z and Zb1,...,bk
(for any b1, . . . , bk ∈ [ℓ]) can be computed in time

O(1) by making O(1) probabilistic inference queries to the Bayes net distribution L.

Proof. Note that Z = Pr[X 6= Y ] is equal to 1 −Pr[X = Y ]. Therefore it suffices to compute
Pr[X = Y ] by using a probabilistic inference oracle. This can done by observing that Pr[X = Y ]
is equal to Pr[(X1, Y1) ∈ S1, . . . , (Xn, Yn) ∈ Sn] for S1 = · · · = Sn = {(1, 1) , . . . , (ℓ, ℓ)}.

Now note that Zb1,...,bk
= Pr[X 6= Y, X1 = b1, . . . , Xk = bk] is equal to

Pr[X1 = b1, . . . , Xk = bk]−Pr[X = Y, X1 = b1, . . . , Xk = bk] .

What is left is to show how to compute these two probabilities by using a probabilistic inference
oracle. We have that Pr[X1 = b1, . . . , Xk = bk] is equal to Pr[(X1, Y1) ∈ S1, . . . , (Xn, Yn) ∈ Sn]
for Si = {(bi, 1) , . . . , (bi, ℓ)} for all 1 ≤ i ≤ k and Sk+1 = · · · = Sn = [ℓ]2.

Similarly, we have that

Pr[X = Y, X1 = b1, . . . , Xk = bk] = Pr[(X1, Y1) ∈ S1, . . . , (Xn, Yn) ∈ Sn]

for Si = {(bi, bi)} for all 1 ≤ i ≤ k and Sk+1 = · · · = Sn = {(1, 1) , . . . , (ℓ, ℓ)}.

We will now show that probabilistic inference queries allow for efficient sampling from π.

Claim 21. Sampling from the distribution π can be implemented in time O(nℓ) by making O(nℓ)
probabilistic inference queries.

Proof. We describe how to sample from π iteratively, symbol by symbol. Assume that we have
sampled the first k − 1 symbols, that is, assume that we have already sampled w1, . . . , wk−1 to
be equal to b1, . . . , bk−1 ∈ [ℓ]. We describe now how to sample wk. For every possible value
b ∈ [ℓ] of wk, we compute the marginal

µb := π(b1, . . . , bk−1, b) =

∑

w:(w1···wk)=(b1···bk−1b) g(w)

Z
=

Zb1···bk−1b

Z

13



by two invocations of Claim 20. Then, we sample wk based on the values {µb}
ℓ
b=1.

Let S(n) be the number of steps to sample n symbols from π. The above procedure gives
the recurrence relation S(n) = O(ℓ) + S(n − 1) which yields S(n) = O(nℓ). Since we perform
at most two probabilistic inference queries for every coordinate and every symbol, the total
number of probabilistic inference queries is equal to S(n) = O(nℓ).

4.2 Analysis of the algorithm

Next, we establish some useful properties of the function f and the distribution π.

Claim 22. For any w, it is the case that 0 ≤ f(w) ≤ 1.

Proof. We separately show 0 ≤ f(w) and f(w) ≤ 1. To establish 0 ≤ f(w), since the numerator
is non-negative, it suffices to show that g(w) = P (w)−

∏n
i=1 h(w, i) ≥ 0 or equivalently P (w) ≥

∏n
i=1 h(w, i).

We have

P (w) =
n∏

i=1

Pi|Π(i)

(

wi|wΠ(i)

)

≥
n∏

i=1

min
(

Pi|Π(i)

(

wi|wΠ(i)

)

, Qi|Π(i)

(

wi|wΠ(i)

))

=
n∏

i=1

h(w, i)

by the definition of h.
For showing f(w) ≤ 1, it suffices to show that P (w)−Q(w) ≤ g(w) (since 0/g(w) = 0 ≤ 1).

Since g(w) = P (w) −
∏n

i−1 h(w, i), it suffices to show that Q(w) ≥
∏n

i=1 h(w, i). An argument
identical to the above, where we showed that P (w) ≥

∏n
i=1 h(w, i), will show this.

We next relate the expected value of the function f with respect to the distribution π to
dTV(P, Q).

Claim 23. It is the case that Eπ[f(w)] = dTV(P, Q)/Z.

Proof. We have that Eπ[f(w)] is equal to

E
π

[
max(0, P (w)−Q(w))

g(w)

]

=
∑

w

π(w)
max(0, P (w)−Q(w))

g(w)

=
∑

w

g(w)

Z

max(0, P (w)−Q(w))

g(w)

=
1

Z

∑

w

max(0, P (w)−Q(w))

=
dTV(P, Q)

Z
.

We need the following claim that ensures the estimand is large enough to facilitate Monte
Carlo sampling.

Lemma 24. It is the case that Z ≤ 2n · dTV(P, Q).

Proof. By Claim 19, it suffices to show that Pr[X 6= Y ] ≤ 2n · dTV(P, Q). We split the event
(X 6= Y ) into n disjoint events {Ei}

n
i=1. Without loss of generality, assume that 1, 2, . . . , n is the

14



topological ordering of the vertices of G. Event Ei is defined as (
∧

1≤j≤i−1 Xj = Yj)∧ (Xi 6= Yi).
Note that the Ei’s are disjoint. Thus Pr [X 6= Y ] =

∑

i Pr [Ei]. We have that

Pr [Ei] ≤ Pr
[

(Xi 6= Yi) ∧ (XΠ(i) = YΠ(i))
]

=
∑

σ

Pr
[

(Xi 6= Yi) ∧ (XΠ(i), YΠ(i)) = (σ, σ)
]

where σ is an assignment for Π(i) (note that the length of σ is equal to the in-degree of i).
Henceforth, for notational brevity, we shall omit the dependence on i. Thus,

Pr[X 6= Y ] =
∑

i

Pr [Ei]

≤
∑

i

∑

σ

Pr
[

Xi 6= Yi ∧
(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

=
∑

i

∑

σ

Pr
[

Xi 6= Yi|
(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

Pr
[(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

.

We require the following claim.

Claim 25. For any σ, we have

Pr
[

Xi 6= Yi|
(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

= dTV

(

Pi|Π(i)(·|σ) , Qi|Π(i)(·|σ)
)

.

Proof. We have that Pr
[

Xi 6= Yi|
(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

is equal to

1−Pr
[

Xi = Yi|
(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

= 1−
∑

c∈[ℓ]

Pr
[

(Xi, Yi) = (c, c) |
(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

= 1−
∑

c∈[ℓ]

min
(

Pi|Π(i)(c|σ) , Qi|Π(i)(c|σ)
)

=
∑

c∈[ℓ]

Pi|Π(i)(c|σ)−
∑

c∈[ℓ]

min
(

Pi|Π(i)(c|σ) , Qi|Π(i)(c|σ)
)

=
∑

c∈[ℓ]

(

Pi|Π(i)(c|σ)−min
(

Pi|Π(i)(c|σ) , Qi|Π(i)(c|σ)
))

=
∑

c∈[ℓ]

max
(

0, Pi|Π(i)(c|σ)−Qi|Π(i)(c|σ)
)

= dTV

(

Pi|Π(i)(·|σ) , Qi|Π(i)(·|σ)
)

.

By Claim 25 we have that Pr[X 6= Y ] is at most

∑

i

∑

σ

Pr
[(

XΠ(i), YΠ(i)

)

= (σ, σ)
]

dTV

(

Pi|Π(i)(·|σ) , Qi|Π(i)(·|σ)
)

≤
∑

i

∑

σ

Pr
[

XΠ(i) = σ
] 1

2

∑

c

∣
∣
∣Pi|Π(i)(c|b)−Qi|Π(i)(c|σ)

∣
∣
∣

≤
∑

i

∑

σ

PΠ(i)(σ)
1

2

∑

c

∣
∣
∣Pi|Π(i)(c|σ)−Qi|Π(i)(c|σ)

∣
∣
∣ (since X ∼ P by Observation 18)

=
∑

i

∑

σ

1

2

∑

c

∣
∣
∣PΠ(i)(σ) Pi|Π(i)(c|σ)− PΠ(i)(σ) Qi|Π(i)(c|σ)

∣
∣
∣

=
∑

i

∑

σ

1

2

∑

c

∣
∣
∣PΠ(i)(σ) Pi|Π(i)(c|σ)−QΠ(i)(σ) Qi|Π(i)(c|σ)
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+QΠ(i)(σ) Qi|Π(i)(c|σ)− PΠ(i)(σ) Qi|Π(i)(c|σ)
∣
∣
∣

≤
∑

i

∑

σ

1

2

∑

c

∣
∣
∣PΠ(i)(σ) Pi|Π(i)(c|σ)−QΠ(i)(σ) Qi|Π(i)(c|σ)

∣
∣
∣

+
∑

i

∑

σ

1

2

∑

c

∣
∣
∣QΠ(i)(σ) Qi|Π(i)(c|σ)− PΠ(i)(σ) Qi|Π(i)(c|σ)

∣
∣
∣

=
∑

i

∑

σ

1

2

∑

c

∣
∣
∣Pi,Π(i)(c, σ)−Qi,Π(i)(c, σ)

∣
∣
∣

+
∑

i

∑

σ

1

2

∣
∣
∣QΠ(i)(σ)− PΠ(i)(σ)

∣
∣
∣

∑

c

Qi|Π(i)(c|σ)

=
∑

i

1

2

∑

σ

∑

c

∣
∣
∣Pi,Π(i)(c, σ)−Qi,Π(i)(c, σ)

∣
∣
∣

+
∑

i

∑

σ

1

2

∣
∣
∣QΠ(i)(σ)− PΠ(i)(σ)

∣
∣
∣

=
∑

i

dTV

(

Pi,Π(i), Qi,Π(i)

)

+
∑

i

dTV(Pi, Qi)

≤ 2n · dTV(P, Q).

The last inequality follows because the inequalities dTV

(

Pi,Π(i), Qi,Π(i)

)

≤ dTV(P, Q) and dTV(Pi, Qi) ≤

dTV(P, Q) hold.

We are now ready to prove the correctness and provide a running time bound for Algorithm 1.
We have, from Hoeffding’s inequality (Lemma 7), that

Pr[|Est− dTV(P, Q)| > εdTV(P, Q)] = Pr

[∣
∣
∣
∣
∣

Z

m

m∑

i=1

f
(

wi
)

− Z E
π

[f(w)]

∣
∣
∣
∣
∣

> εdTV(P, Q)

]

= Pr

[∣
∣
∣
∣
∣

m∑

i=1

f
(

wi
)

−m E
π

[f(w)]

∣
∣
∣
∣
∣

>
mε

Z
dTV(P, Q)

]

≤ 2 exp

(

−
2m2ε2d2

TV(P, Q)

Z2
∑m

i=1 (0− 1)2

)

≤ 2 exp

(

−
2m2ε2d2

TV(P, Q)

4n2d2
TV(P, Q) m

)

= 2 exp

(

−
mε2

2n2

)

which is at most δ whenever m = Ω
(
n2ε−2 log δ−1

)
. The second inequality follows from

Lemma 24.
Thus the running time of Algorithm 1 is O(mnℓ) = O

(
n3ε−2ℓ log δ−1

)
, since we draw m

samples from π, we can sample from π in time O(nℓ), and evaluate f in time O(n). Finally, the
number of probabilistic inference queries is at most O

(
n3ε−2ℓ log δ−1

)
.

4.3 Application: An FPRAS for estimating the TV distance between Bayes

nets of bounded treewidth

In this subsection we prove Corollary 3.
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Corollary 3 (Formal). There is an FPRAS for estimating the TV distance between two Bayes
nets of treewidth w = O(log n) and alphabet size ℓ = O(1), which are defined over the same
DAG of n nodes. In particular, if ε and δ are the accuracy and confidence errors of the FPRAS,
respectively, the FPRAS runs in time poly(n) ·O

(
ε−2 log δ−1

)
.

The proof of Corollary 3 will follow from the lemma below, Lemma 26, and an application
of Theorem 1. We first prove Lemma 26.

Lemma 26. Probabilistic inference is efficient for all Bayes nets over n variables which have
alphabet size ℓ = O(1) and treewidth O(log n).

Proof. Let B be a Bayes net over variables X1, . . . , Xn that has alphabet size ℓ = O(1) and
treewidth w = O(log n). Let S1, . . . , Sn ⊆ [ℓ] be sets. The probabilistic inference task that we
want to perform is to compute the probability PrB[X1 ∈ S1, . . . , Xn ∈ Sn].

First, we construct the moralization of B (see Definition 10), namely MB, in time O(poly(n))
by invoking Lemma 11. Then, we use Theorem 16 to compute a tree decomposition T of MB

of width at most 4w + 1 ≤ 5w in time O
(
w33wn2

)
. Finally, we use the variable elimination

algorithm of Theorem 17 on B, S1, . . . , Sn, MB, and T to compute PrB[X1 ∈ S1, . . . , Xn ∈ Sn]
in time O

(
nℓ5w

)
.

The running time of this procedure is O(poly(n)) + O
(
w33wn2

)
+ O

(
nℓ5w

)
= O(poly(n)),

whereby we have used the facts that ℓ = O(1) and w = O(log n). This concludes the proof.

The proof of Corollary 3 now follows by invoking Theorem 1 for ℓ = O(1) and T
(
G, ℓ2

)
=

O(poly(n)).

5 TV distance between a Bayes net and the uniform distribu-

tion

5.1 #P-completeness

The main result of this subsection is Theorem 4. Recall that a function f from {0, 1}∗ to
non-negative integers is in the class #P if there is a polynomial time non-deterministic Turing
machine M so that for any x, it is the case that f(x) is equal to the number of accepting paths
of M(x).

We now prove Theorem 4.

Proof of Theorem 4. In what follows, we separately show membership in #P and #P-
hardness.

Membership in #P. Let P be a Bayes net distribution over the Boolean domain {0, 1}n.
The goal is to design a nondeterministic machine N so that the number of accepting paths of N
(normalized by an appropriate quantity) equals dTV(P,U). We will assume that the probabilities
specified in the CPTs of the Bayes net for P are fractions. Let M be equal to 2n times the product
of the denominators of all the probabilities in the CPTs. The non-deterministic machine N first
guesses an element i ∈ {0, 1}n in the sample space of P , computes |P (i)−1/2| by using the CPTs,
then guesses an integer 0 ≤ z ≤ M , and finally accepts if and only if 1 ≤ z ≤ M |P (i) − 1/2|.
(Note that M |P (i)− 1/2| = |M · P (i)−M/2| is an integer.) It follows that

dTV(P,U) =
1

2

∑

i∈{0,1}n

∣
∣
∣
∣P (i)−

1

2

∣
∣
∣
∣ =

number of accepting paths of N

2M
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since the number of accepting paths of N is equal to
∑

i∈{0,1}n (M |P (i)− 1/2|) which is equal
to M

∑

i∈{0,1}n |P (i)− 1/2| or 2MdTV(P, Q).

#P-hardness. For the #P-hardness part, the proof gives a Turing reduction from the
problem of counting the satisfying assignments of a CNF formula (which is #P-hard to compute)
to computing the total variation distance between a Bayes net distribution and the uniform
distribution. In what follows, by a graph of a formula we mean the DAG that captures the
circuit structure of F , whereby the nodes are either AND, OR, NOT, or variable gates, and the
edges correspond to wires connecting the gates.

Let F be a CNF formula viewed as a Boolean circuit. Assume F has n input variables
x1, . . . , xn and m gates Γ = {y1, . . . , ym}, where Γ is topologically sorted with ym being the
output gate. We will define a Bayes net distribution on some DAG G which, intuitively, is the
graph of F .

The vertex set of G is split into two sets X and Y, and a node Z. The set X = {Xi}
n
i=1

contains n nodes with node Xi corresponding to variable xi and the set Y = {Yi}
m
i=1 contains m

nodes with each node Yi corresponding to gate yi. So totally there are n + m + 1 nodes. There
is a directed edge from node Vi to node Vj if the gate/variable corresponding to Vi is an input
to Vj .

The distribution P on G is given by a CPT defined as follows. Each Xi is a uniformly
random bit. For each Yi, its CPT is deterministic: For each of the setting of the parents Yj , Yk,
namely yj , yk, the variable Yi takes the value of the gate yi for that setting of its inputs yj , yk.
Finally, let Z be the value of Ym OR-ed with a random bit.

Note that the formula F computes a Boolean function on the input variables. Let f :
{0, 1}n → {0, 1} be this function. We extend f to {0, 1}m (i.e., f : {0, 1}n → {0, 1}m) to also
include the values of the intermediate gates.

With this notation in mind, for any binary string XY Z of length n + m + 1 it is the case
that P has a probability 0 if Y 6= f(X). Let A := {x | F (x) = 1} and R := {x | F (x) = 0}.

To finish the proof, we will write the number of satisfying assignments of F , namely |A|, as
a polynomial-time computable function of dTV(P,U): We have

2 · dTV(P,U) =
∑

X,Y,Z

|P − U| =
∑

X,Y,Z
Y 6=f(X)

|P − U|

︸ ︷︷ ︸

(1)

+
∑

X,Y,Z
Y =f(X)

|P − U|

︸ ︷︷ ︸

(2)

where we have abused the notation P,U to denote the probabilities P (X, Y, Z) ,U(X, Y, Z). We
will calculate (1) and (2) separately. For (1) we have:

∑

X,Y,Z
Y 6=f(X)

|P − U| =
∑

X,Y,Z
Y 6=f(X)

∣
∣
∣
∣0−

1

2n+m+1

∣
∣
∣
∣ =

2n+1(2m − 1)

2n+m+1
= 1−

1

2m
.

For (2), we have

∑

X,Y,Z
Y =f(X)

|P − U| =
∑

X,f(X),Z
X∈A

|P − U|

︸ ︷︷ ︸

(3)

+
∑

X,f(X),Z
X∈R

|P − U|

︸ ︷︷ ︸

(4)

and now we calculate the terms (3) and (4) separately. For (3), we have:
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∑

X,f(X),Z
X∈A

|P − U| =
∑

X,f(X),0
X∈A

|P − U|+
∑

X,f(X),1
X∈A

|P − U|

=
∑

X,f(X),0
X∈A

∣
∣
∣
∣0−

1

2n+m+1

∣
∣
∣
∣+

∑

X,f(X),1
X∈A

∣
∣
∣
∣

1

2n
−

1

2n+m+1

∣
∣
∣
∣ =

|A|

2n+m+1
+
|A| · (2m+1 − 1)

2n+m+1
=
|A|

2n

and for (4) we have
∑

X,f(X),Z
X∈R

|P − U| =
∑

X,f(X),0
X∈R

|P − U|+
∑

X,f(X),1
X∈R

|P − U|

=
∑

X,f(X),0
X∈R

∣
∣
∣
∣

1

2n+1
−

1

2n+m+1

∣
∣
∣
∣+

∑

X,f(X),1
X∈R

∣
∣
∣
∣

1

2n+1
−

1

2n+m+1

∣
∣
∣
∣ =
|R| · (2m − 1) · 2

2n+m+1
.

Thus

2 · dTV(P,U) = (1) + (2) = (1) + (3) + (4)

= 1−
1

2m
+
|A|

2n
+
|R| · (2m − 1) · 2

2n+m+1
= 2

(

1−
1

2m
+

|A|

2m+n+1

)

since |A|+ |R| = 2n. For that matter, dTV(P,U) = |A|
2n+m+1 +

(

1− 1
2m

)

or

|A| = 2n+m+1
(

dTV(P,U)−

(

1−
1

2m

))

.

That concludes the proof.

5.2 Estimation in fully polynomial time

We prove Theorem 5.

Theorem 5 (Formal). There is an FPRAS for estimating the TV distance between a Bayes
net P and the uniform distribution. Let n be the number of nodes of P , let ℓ be the size of
its alphabet, and let d be its maximum in-degree. Then the running time of this FPRAS is

O
(

n3ℓ2d+2ε−2 log δ−1
)

whereby ε is the accuracy error and δ is the confidence error of the

FPRAS.

Remark 27. Note that the running time of the FPRAS of Theorem 5 is polynomial in the input
length, as the description of the Bayes net P in terms of the CPTs has size at least n + ℓd+1.

We shall now prove Theorem 5. We require the following lemma (which we will prove later).

Lemma 28. For all x, it is the case that

1−O
(

dTV(P,U) ℓd+1n
)

≤ P (x) ℓn ≤ 1 + O
(

dTV(P,U) ℓd+1n
)

whenever dTV(P,U) ≤ 1
16ℓd+1 .

The proof of Theorem 5 now resumes as follows. First, let us assume that dTV(P,U) ≤ 1
16ℓd+1

so that Lemma 28 holds. We have that dTV(P,U) is equal to

1

2

∑

x

|P (x)− U(x)| =
∑

x

max(0, P (x)− U(x))
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=
∑

x

U(x) max

(

0,
P (x)

U(x)
− 1

)

= E
x∼U

[

max

(

0,
P (x)

U(x)
− 1

)]

= E
x∼U

[max(0, P (x) ℓn − 1)] .

This yields a natural estimator for dTV(P,U), namely Est, as follows:

1. Sample x1, . . . , xm ∼ U for some value of m that we will fix later;

2. compute max(0, P (xi) ℓn − 1) for all 1 ≤ i ≤ m;

3. output (1/m)
∑m

i=1 max(0, P (xi) ℓn − 1).

We will now prove the correctness and upper bound the running time of this procedure. We
have from Hoeffding’s inequality (Lemma 7) and Lemma 28 that

Pr[|Est− dTV(P,U)| > εdTV(P,U)]

= Pr

[∣
∣
∣
∣
∣

1

m

m∑

i=1

max(0, P (xi) ℓn − 1)− E
x∼U

[max(0, P (x) ℓn − 1)]

∣
∣
∣
∣
∣

> εdTV(P,U)

]

= Pr

[∣
∣
∣
∣
∣

m∑

i=1

max(0, P (xi) ℓn − 1)−m E
x∼U

[max(0, P (x) ℓn − 1)]

∣
∣
∣
∣
∣

> mεdTV(P,U)

]

≤ 2 exp

(

−
2m2ε2d2

TV(P,U)
∑m

i=1 (0−O(dTV(P,U) ℓd+1n))
2

)

= 2 exp

(

−
2m2ε2d2

TV(P,U)

m ·O(d2
TV(P,U) ℓ2d+2n2)

)

= 2 exp

(

−
mε2

O(ℓ2d+2n2)

)

which is at most δ whenever m = Ω
(

n2ℓ2d+2ε−2 log δ−1
)

.

The running time of this procedure is O(mn) = O
(

n3ℓ2d+2ε−2 log δ−1
)

, since we draw m

samples and P can be evaluated on any sample in time O(n).
If dTV (P,U) > 1

16ℓd+1 , then it suffices to additively approximate dTV (P,U) up to error

ε/
(

16ℓd+1
)

. This can be done by Monte Carlo sampling using m = Ω
(

ℓ2d+2ε−2 log δ−1
)

samples

and O(mn) = O
(

nℓ2d+2ε−2 log δ−1
)

time.

We now prove Lemma 28.

Proof of Lemma 28. Let us denote the maximum in-degree of P by d. Let X0 be an arbitrary
node with its parents as X1, . . . , Xd.

We have that γ := dTV(P,U) is at least

dTV((X0, . . . , Xd) , (Y0, . . . , Yd))

=
1

2

∑

v0

· · ·
∑

vd

|Pr[(X0, . . . , Xd) = (v0, . . . , vd)]−Pr[(Y0, . . . , Yd) = (v0, . . . , vd)]|

=
1

2

∑

v0

· · ·
∑

vd

∣
∣
∣
∣Pr[X0 = v0|X1 = v1, . . . , Xd = vd] Pr[X1 = v1, . . . , Xd = vd]−

1

ℓd+1

∣
∣
∣
∣
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or

1

2

∑

v0

· · ·
∑

vd

∣
∣
∣
∣Pr[X0 = v0|X1 = v1, . . . , Xd = vd] Pr[X1 = v1, . . . , Xd = vd]−

1

ℓd+1

∣
∣
∣
∣ = γ

or
∣
∣
∣
∣Pr[X0 = v0|X1 = v1, . . . , Xd = vd] Pr[X1 = v1, . . . , Xd = vd]−

1

ℓd+1

∣
∣
∣
∣ ≤ 2γ (1)

for any v0, . . . , vd. We observe the following.

Claim 29. We have that 1/ℓd − γ ≤ Pr[X1 = v1, . . . , Xd = vd] ≤ 1/ℓd + γ.

Proof. Since dTV(P,U) = γ and Pr[Y1 = v1, . . . , Yd = vd] = 1/ℓd, the claim is immediate.

By Equation (1) and Claim 29 we have the following.

Corollary 30. For γ < 1/
(

2ℓd
)

we have that

|Pr[X0 = v0|X1 = v1, . . . , Xd = vd]− 1/ℓ| ≤ 8γℓd.

Proof. By Equation (1) we have

1

ℓd+1
− 2γ ≤ Pr[X0 = v0|X1 = v1, . . . , Xd = vd] Pr[X1 = v1, . . . , Xd = vd] ≤

1

ℓd+1
+ 2γ

or

1
ℓd+1 − 2γ

Pr[X1 = v1, . . . , Xd = vd]
≤ Pr[X0 = v0|X1 = v1, . . . , Xd = vd]

≤
1

ℓd+1 + 2γ

Pr[X1 = v1, . . . , Xd = vd]

or, by making use of Claim 29,

1
ℓd+1 − 2γ

1
ℓd + γ

≤ Pr[X0 = v0|X1 = v1, . . . , Xd = vd] ≤
1

ℓd+1 + 2γ
1
ℓd − γ

or
1
ℓ
− 2ℓdγ

1 + ℓdγ
≤ Pr[X0 = v0|X1 = v1, . . . , Xd = vd] ≤

1
ℓ

+ 2ℓdγ

1− ℓdγ
.

We now have

Pr[X0 = v0|X1 = v1, . . . , Xd = vd] ≤
1
ℓ

+ 2ℓdγ

1− ℓdγ

≤

(
1

ℓ
+ 2ℓdγ

)(

1 + 2ℓdγ
)

=
1

ℓ
+ 2ℓd−1γ + 2ℓdγ + 4ℓ2dγ2

≤
1

ℓ
+ 2ℓdγ + 2ℓdγ + 4ℓdγ

=
1

ℓ
+ 8ℓdγ
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since 1/ (1− x) ≤ 1 + 2x for x < 1/2 (here x = ℓdγ < 1/2), and

Pr[X0 = v0|X1 = v1, . . . , Xd = vd] ≥
1
ℓ
− 2ℓdγ

1 + ℓdγ

≥

(
1

ℓ
− 2ℓdγ

)(

1− ℓdγ
)

=
1

ℓ
− ℓd−1γ − 2ℓdγ + 2ℓ2dγ2

≥
1

ℓ
− ℓdγ − 2ℓdγ

≥
1

ℓ
− 8γℓd

since 1/ (1 + x) ≥ 1− x for x < 1/2 (here x = ℓdγ < 1/2).

The result now follows from the observation that

(

1/ℓ− 8γℓd
)n
≤ P (x) =

n∏

i=1

Pr
[

Xi = xi|XΠ(Xi) = xΠ(Xi)

]

≤
(

1/ℓ + 8γℓd
)n

or (

1− 8γℓd+1
)n
≤ P (x) ℓn ≤

(

1 + 8γℓd+1
)n

or
1− 16γℓd+1n ≤ P (x) ℓn ≤ 1 + 16γℓd+1n,

whereby we used the facts that (1−α)k ≥ (1−2αk) and (1+α)k ≤ (1+2αk) whenever α < 1/2

and k > 0, and the fact that γ < 1/
(

16ℓd+1
)

or 8γℓd+1 < 1/2.

Finally, we have

1− 16dTV(P,U) ℓd+1n ≤ P (x) ℓn ≤ 1 + 16dTV(P,U) ℓd+1n

as desired.

6 Conclusion

We have established a general connection between probabilistic inference and TV distance com-
putation. In particular, we proved that TV distance estimation can be reduced to probabilistic
inference. This enables us to prove the existence of a novel FPRAS for estimating the TV
distance between Bayes nets of small treewidth.

Moreover, we made some significant progress in understanding the complexity of computing
the TV distance between an arbitrary Bayes net and the uniform distribution: We showed that
the exact computation is #P-hard, while there is an FPRAS for the same task.

We outline the following open problems: Can we prove similar results for TV distance
estimation between undirected graphical models? Another problem of interest is to study other
notions of distance, such as Wasserstein metrics.
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