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Abstract

Rational Identity Testing (RIT) is the decision problem of determining whether or not a

noncommutative rational formula computes zero in the free skew field. It admits a deter-

ministic polynomial-time white-box algorithm [GGdOW16, IQS18, HH21], and a randomized

polynomial-time algorithm [DM17] in the black-box setting, via singularity testing of linear

matrices over the free skew field. Indeed, a randomized NC algorithm for RIT in the white-box

setting follows from the result of Derksen and Makam [DM17].

Designing an efficient deterministic black-box algorithm for RIT and understanding the

parallel complexity of RIT are major open problems in this area. Despite being open since

the work of Garg, Gurvits, Oliveira, and Wigderson [GGdOW16], these questions have seen

limited progress. In fact, the only known result in this direction is the construction of a

quasipolynomial-size hitting set for rational formulas of only inversion height two [ACM22].

In this paper, we significantly improve the black-box complexity of this problem and obtain

the first quasipolynomial-size hitting set for all rational formulas of polynomial size. Our

construction also yields the first deterministic quasi-NC upper bound for RIT in the white-box

setting.
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1 Introduction

The goal of algebraic circuit complexity is to understand the complexity of computing multivariate

polynomials and rational expressions using basic arithmetic operations, such as additions, mul-

tiplications, and inverses. Algebraic formulas and algebraic circuits are some of the well-studied

computational models.

In the commutative setting, the role of inverses is well understood, but in noncommutative

computation it is quite subtle. To elaborate, it is known that any commutative rational expression

can be expressed as 𝑓 𝑔−1
where 𝑓 and 𝑔 are two commutative polynomials [Str73]. However,

noncommutative rational expression such as 𝑥−1 + 𝑦−1
or 𝑥𝑦−1𝑥 cannot be represented as 𝑓 𝑔−1

or 𝑓 −1𝑔 for any noncommutative polynomials 𝑓 and 𝑔. Therefore, the presence of nested inverses
makes a rational expression more complicated, for example (𝑧 + 𝑥𝑦−1𝑥)−1 − 𝑧−1

.

A noncommutative rational expression is not always defined on a matrix substitution. For a

noncommutative rational expression Φ, its domain of definition is the set of matrix tuples (of any

dimension) where Φ is defined. Two rational expressions Φ1 and Φ2 are equivalent if they agree on

every matrix substitution in the intersection of their domain of definition. This induces an equiv-

alence relation on the set of all noncommutative rational expressions (with nonempty domain of

definition). Interestingly, this computational definition was used by Amitsur in the characteri-

zation of the universal free skew field [Ami66]. The free skew field consists of these equivalence

classes, called noncommutative rational functions. One can think of the free skew fieldF⦓𝑥1 , . . . , 𝑥𝑛⦔
as the smallest field that contains the noncommutative polynomial ring F⟨𝑥1 , . . . , 𝑥𝑛⟩. It has been

extensively studied in mathematics [Ami66, Coh71, Coh95, FR04].

The complexity-theoretic study of noncommutative rational functions was initiated by Hrubeš

and Wigderson [HW15]. Computationally (and in this paper), noncommutative rational functions

are represented by algebraic formulas using addition, multiplication, and inverse gates over a set

of noncommuting variables, and they are called noncommutative rational formulas. Hrubeš and

Wigderson [HW15] also addressed the rational identity testing problem (RIT): decide efficiently

whether a given noncommutative rational formula Φ computes the zero function in the free skew

field. Equivalently, the problem is to decide whether Φ is zero on its domain of definition, follows

from Amitsur’s characterization [Ami66]. For example, the rational expression (𝑥 + 𝑥𝑦−1𝑥)−1 +
(𝑥+ 𝑦)−1− 𝑥−1

is a rational identity, known as Hua’s identity [Hua49]. Rational expressions exhibit

peculiar properties which seem to make the RIT problem quite different from the noncommutative

polynomial identity testing. For example, Bergman has constructed an explicit rational formula,

of inversion height two, which is an identity for 3× 3 matrices but not an identity for 2× 2 matrices

[Ber76]. Also, the apparent lack of canonical representations, like a sum of monomials representation

for polynomials, and the use of nested inverses in noncommutative rational expressions complicate

the problem. This motivates the definition of inversion height of a rational formula which is the

maximum number of inverse gates in a path from an input gate to the output gate. The inversion
height of a rational function is the minimum over the inversion heights of the formulas representing

the function. For example, consider the rational expression (𝑥 + 𝑥𝑦−1𝑥)−1
. Even though it has a

nested inverse, it follows from Hua’s identity that it represents a rational function of inversion

height one. In fact, Hrubeš and Wigderson obtain the following interesting bound on the inversion

height of any rational function [HW15]. This is obtained by adapting Brent’s depth reduction for

the commutative formulas [Bre74].
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Fact 1. For any noncommutative 𝑛-variate rational formulaΦ1 of size 𝑠, one can construct a rational formula
Φ2 of size 𝑠 with the following properties:

1. Both Φ1 and Φ2 compute the same rational function.

2. The domain of definition of Φ1 and Φ2 are exactly same.

3. The inversion height of Φ2 is at most 𝑂(log 𝑠).

Consequently, to design a black-box RIT algorithm for rational formulas of size at most 𝑠, it

suffices to construct a hitting set for rational formulas of inversion height at most 𝑂(log 𝑠). This

bound plays a crucial role in our proof.

Hrubeš and Wigderson have given an efficient reduction from the RIT problem to the sin-

gularity testing problem of linear matrices in noncommuting variables over the free skew field

(NSingular). Equivalently, given a linear matrix 𝑇 = 𝐴1𝑥1 + . . . + 𝐴𝑛𝑥𝑛 over noncommuting vari-

ables {𝑥1 , 𝑥2 , . . . , 𝑥𝑛}, the problem NSingular asks to decide whether there exists a matrix substitu-

tion (𝑝1 , . . . , 𝑝𝑛) such that det

(∑𝑛
𝑖=1
𝐴𝑖 ⊗ 𝑝𝑖

)
≠ 0 [IQS18]. It is the noncommutative analogue of Ed-

monds’ problem of symbolic determinant identity testing (Singular). While Singular can be easily

solved in randomized polynomial time using Polynomial Identity Lemma [DL78, Zip79, Sch80],

finding a deterministic algorithm remains completely elusive [KI04].

Remarkably, NSingular ∈ P thanks to two independent breakthrough results [GGdOW16,

IQS18]. In particular, the algorithm of Garg, Gurvits, Oliveira, and Wigderson [GGdOW16] is ana-

lytic in nature and based on operator scaling which works overQ. The algorithm of Ivanyos, Qiao,

and Subrahmanyam [IQS18] is purely algebraic. Moreover, the algorithm in their paper [IQS18]

works over Q and fields with positive characteristics. Subsequently, a third algorithm based

on convex optimization is also developed by Hamada and Hirai [HH21]. Not only are these

beautiful results, but they have also enriched the field of computational invariant theory greatly

[BFG
+
19, DM20, MW19]. As an immediate consequence, RIT can also be solved in deterministic

polynomial time in the white-box setting. Both the problems admit a randomized polynomial-time

black-box algorithm due to Derksen and Makam [DM17]. Essentially, the result of [DM17] shows

that to test whether a rational formula of size 𝑠 is zero or not (more generally, whether a linear

matrix of size 2𝑠 is invertible or not over the free skew field), it is enough to evaluate the formula

(resp. the linear matrix) on random 2𝑠 × 2𝑠 matrices.

Two central open problems in this area are to design faster deterministic algorithms for the

NSingular problem and RIT problem in the black-box setting, raised in [GGdOW16, GGdOW20].

The algorithms in [GGdOW16] and [IQS18] are inherently sequential and they are unlikely to

be helpful for designing a subexponential-time black-box algorithm. Even for the RIT problem

(which could be easier than the NSingular problem), the progress towards designing an efficient

deterministic black-box algorithm is very limited. In fact, only very recently a deterministic

quasipolynomial-time black-box algorithm for identity testing of rational formulas of inversion

height two has been designed [ACM22]. Another very recent result shows that certain ABP

(algebraic branching program)-hardness of polynomial identities (PI) for matrix algebras will lead

to a black-box subexponential-time derandomization of RIT in almost general setting [ACG
+
23].

However, such a hardness result has not established so far. It is interesting to note that in the

literature of identity testing, the NSingular problem and the RIT problem stand among rare

examples where deterministic polynomial-time white-box algorithms are designed but for the

black-box case no deterministic subexponential-time algorithm is known.
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It is well-known [GGdOW16] that an efficient black-box algorithm (via a hitting set construction)

for NSingular would generalize the celebrated quasi-NC algorithm for bipartite perfect matching

significantly [FGT21]. This motivates the study of the parallel complexity of NSingular and

RIT. From the result of Derksen and Makam [DM17], one can observe that RIT in the white-box

setting can be solved in randomized NC which involve formula evaluation, and matrix operations

(addition, multiplication, and inverse computation) [Bre74, Csa76, Ber84, HW15].1 Designing a

hitting set in quasi-NC for this problem would therefore yield a deterministic quasi-NC algorithm

for this problem.

1.1 Our Results

In this paper, we focus on the RIT problem and improve the black-box complexity significantly by

showing the following result.

Theorem 2. For the class of 𝑛-variate noncommutative rational formulas of size 𝑠 and inversion height 𝜃,
we can construct a hitting setℋ𝑛,𝑠,𝜃 ⊆ Matℓ𝜃 (Q)𝑛 of size (𝑛𝑠)𝜃𝑂(1) log

2(𝑛𝑠) in deterministic (𝑛𝑠)𝜃𝑂(1) log
2(𝑛𝑠)

time where ℓ𝜃 = (𝑛𝑠)𝜃𝑂(1) .

Here Matℓ𝜃 (Q) represents ℓ𝜃 dimensional matrix algebra over Q. As an immediate corollary of

Theorem 2 and Fact 1, we obtain the following.

Corollary 3 (black-box RIT). In the black-box setting, RIT can be solved in deterministic quasipolynomial
time via an explicit hitting set construction.

Note that even for noncommutative formulas i.e. when the inversion height 𝜃 = 0, the best

known hitting set is of quasipolynomial-size and improving it to a polynomial-size hitting set is a

long standing open problem [FS13]. In this light, Theorem 2 is nearly the best result one can hope

for, albeit improving the logarithmic factors on the exponent further.

We further show that our hitting set construction can in fact be performed in quasi-NC. In the

white-box setting, we can evaluate a given rational formula on the hitting set points in parallel. This

involves the evaluation of the formula in parallel, and supporting matrix addition, multiplication,

and inverse computation. It is already observed that Brent’s formula evaluation [Bre74] can be

adapted to the setting of noncommuatative rational formulas [HW15], and such matrix operations

can be performed in NC [Csa76, Ber84]. Combining these results with the quasi-NC construction

of the hitting set, we obtain the following corollary.

Corollary 4 (white-box RIT). In the white-box setting RIT is in deterministic quasi-NC.

1.2 Proof Idea

The main idea of our proof is to construct a hitting set for rational formulas of every inversion

height inductively. Our goal is now to construct a hitting set for rational formulas of inversion

height 𝜃 given a hitting set for formulas of height 𝜃 − 1. To design a black-box RIT algorithm for

rational formulas of size at most 𝑠 as it suffices to construct a hitting set for rational formulas of

inversion height at most 𝑂(log 𝑠), we can stop the induction at that stage. As we have already

1Similarly NSingular is also in randomized NC via the determinant computation [Ber84, DM17].
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defined, a noncommutative rational formula is nonzero in the free skew field if there exists a

nonzero matrix substitution. However, the difficulty is that unlike a noncommutative polynomial,

a rational formula may be undefined for a matrix substitution. It happens if there is an inverse on

top of a subformula evaluated to a singular matrix. Informally speaking, it is somewhat easier to

maintain that subformulas evaluate to nonzero matrices, but it is much harder to maintain that

they evaluate to non-singular matrices. Therefore, a rational formula of height 𝜃 may not even be

defined on any of the matrix tuple in the hitting set of formulas of height 𝜃 − 1.

One of the possible ways to tackle this problem is to evaluate rational formulas on some

division algebra elements. Finite dimensional division algebras are associative algebras where

every nonzero elements are invertible. This idea of embedding inside a division algebra is proved

to be very useful for us. Let us formally define the notion of hitting set for rational formulas (of

any arbitrary inversion height) inside a division algebra.

Definition 5 (Division algebra hitting set). For a class of rational formulas, a division algebra

hitting set is a hitting set over some division algebra where every point in the hitting set is a

division algebra tuple.

The advantage of such a hitting set is that, whenever a rational formula evaluates to some

nonzero value (over a tuple in the hitting set), the output is invertible.2 Therefore every rational

formula of height 𝜃 is defined on some tuple in the division algebra hitting set for rational

formulas of inversion height 𝜃 − 1. Can we now efficiently construct a division algebra hitting set

for rational formulas of inversion height 𝜃? In that case, we could inductively build a division

algebra hitting set for rational formulas of every inversion height. For the base case of the induction,

we want to construct a division algebra hitting set for noncommutative formulas. One of the key

developments in [ACM22] was to embed the hitting set obtained by Forbes and Shpilka [FS13]

for noncommutative polynomials computed by algebraic branching programs (ABPs) in a cyclic

division algebra (see Section 2.3 for the definition of a cyclic division algebra) of suitably small

index i.e. the dimension of its matrix representation. This inductive construction of the division

algebra hitting set is the main technical step we implement here using several conceptual and

technical ideas.

At this point, we take a detour and carefully examine the connection between the RIT and

NSingular problems. It is known that RIT is polynomial-time reducible to NSingular [HW15].

But do we need the full power of NSingular to solve the RIT problem for rational formulas of

height 𝜃 given a hitting set for formulas of height 𝜃 − 1? Consider the following promised version

of NSingular. The input is a linear matrix 𝑇(𝑥1 , . . . , 𝑥𝑛) and a matrix tuple (𝑝1 , . . . , 𝑝𝑛) ∈ 𝐷𝑛
1

for a

cyclic division algebra 𝐷1. The promise is that there is a submatrix 𝑇′ of size 𝑠 − 1 (removing the

𝑖𝑡ℎ row and 𝑗𝑡ℎ column, for some 𝑖 , 𝑗 ∈ [𝑠]) such that 𝑇′(𝑝1 , . . . , 𝑝𝑛) is invertible. It is easier to think

such a tuple (𝑝1 , . . . , 𝑝𝑛) as a witness. The question is now to check the singularity of 𝑇 over the

free skew field. We show that the construction of a hitting set for rational formulas of inversion

height 𝜃 inductively reduces to this special case where the witness is some tuple in the hitting set

for height 𝜃 − 1.

2Division algebras also come up in [IQS18] as part of the regularity lemma and their noncommutative rank algorithm.

Roughly speaking, after each rank-increment step, if the matrix substitutions are 𝑑-dimensional these are replaced by

𝑑-dimensional division algebra elements. This is a rank rounding step which ensures that the rank is always a multiple

of 𝑑 after each increment. This is a white-box process as it crucially uses the structure of the linear matrix. In contrast,

our paper deals with the black-box setting where we do not have an explicit description of the rational formula (and the

corresponding linear matrix).
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We then consider the shifted matrix 𝑇(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛). Using Gaussian elimination, we

could convert the shifted matrix of form:

𝑈 · 𝑇(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) ·𝑉 =

[
𝐼𝑠−1 − 𝐿 𝐴 𝑗

𝐵𝑖 𝐶𝑖 𝑗

]
, (1)

where the entries of 𝐿, 𝐴𝑗 , 𝐵𝑖 , 𝐶𝑖 𝑗 are homogeneous 𝐷1-linear forms. Here 𝐵𝑖 is a row vector and

𝐴 𝑗 is a column vector. At a high level, it has a conceptual similarity with the idea used in [BBJP19]

in approximating commutative rank. It is not too difficult to prove that 𝑇 is invertible, if and only

if, 𝐶𝑖 𝑗 − 𝐵𝑖(𝐼𝑠−1 − 𝐿)−1𝐴 𝑗 = 𝐶𝑖 𝑗 − 𝐵𝑖(
∑
𝑘⩾0

𝐿𝑘)𝐴 𝑗 is a nonzero series. Using a standard result of

noncommutative formal series [Eil74, Corollary 8.3], this is equivalent in saying that the truncated

polynomial 𝐶𝑖 𝑗 − 𝐵𝑖(
∑
𝑘⩽(𝑠−1)ℓ 𝐿

𝑘)𝐴 𝑗 is nonzero where ℓ is the index of 𝐷1. However, the series and

the polynomial will have division algebra elements interleaving in between the variables. Such

a series (resp. polynomial) is called a generalized series (resp. generalized polynomial) and has

been studied extensively in the work of Volčič (see [Vol18] for more details). We can also define

a notion of generalized ABP similarly and show that the truncated generalized polynomial of

our interest is indeed computable by a polynomial-size generalized ABP. Finally, (up to a certain

scaling by scalars) the upshot is that the division algebra hitting set construction for rational

formulas inductively reduces to the division algebra hitting set construction for such generalized

ABPs.

We now consider such generalized ABPs where the coefficients lie inside a cyclic division

algebra 𝐷1 of index ℓ1, call such ABPs as 𝐷1-ABPs. Our goal is to construct a division algebra

hitting set for such ABPs. To do so, a key conceptual idea that we use is to introduce new

noncommuting indeterminates for every variable and use the following mapping:

𝑥𝑖 ↦→
ℓ1∑

𝑗 ,𝑘=1

𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 ,

where {𝐶 𝑗𝑘} is the basis of𝐷1. The idea is to overcome the problem of interleaving division algebra

elements using the property of tensor products. This substitution reduces the problem to identity

testing of a noncommutative ABP in the {𝑦𝑖 𝑗𝑘} variables. Luckily, a division algebra hitting set

construction for noncommutative ABPs is already known [ACM22]. For our purpose, we need to

build the hitting set inside a division algebra that contains 𝐷1 as a subalgebra. A natural thought

could be to take the tensor product of 𝐷1 and the division algebra in which the hitting set for the

noncommutative ABP in the {𝑦𝑖 𝑗𝑘} variables rests. However, in general, the tensor product of two

division algebras is not a division algebra. At this point, we use a result of [Pie82] that states that

the tensor product of two cyclic division algebras of index ℓ1 and ℓ2 is a cyclic division algebra of

index ℓ1ℓ2 if ℓ1 and ℓ2 are relatively prime. However, the division algebra hitting set construction

for noncommutative ABPs is known for division algebras whose index is only a power of two

[ACM22]. To use the result of [Pie82] in several stages recursively, we need a division algebra

hitting set construction whose index is a power of any arbitrary prime p.

We now informally describe how to find a hitting set for noncommutative formulas (more

generally for noncommutative ABPs) in a division algebra of arbitrary prime power index. For

simplicity, suppose the prime is p and the ABP degree is p𝑑. In [FS13], it is assumed that the

degree of the ABP is 2
𝑑

and the construction has a recursive structure. In particular, it is by a

reduction to the hitting set construction for ROABPs (read-once algebraic branching programs)
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over the commutative variables 𝑢1 , 𝑢2 , . . . , 𝑢2
𝑑 . The recursive step in their construction is by

combining hitting sets (via hitting set generator 𝒢𝑑−1) for two halves of degree 2
𝑑−1

[FS13] with a

rank preserving step of matrix products to obtain the generator 𝒢𝑑 at the 𝑑𝑡ℎ step. More precisely,

𝒢𝑑 is a map from F𝑑+1 → F2
𝑑

that stretches the seed (𝛼1 , . . . , 𝛼𝑑+1) to a 2
𝑑

tuple for the read-once

variables.

For our case, the main high-level idea is to decompose the ABP of degree p𝑑 in p consecutive

windows each of length p𝑑−1
. One can adapt the rank preserving step for two matrix products in

[FS13] even for the case of p many matrix products. However, the main difficulty is to ensure that the

hitting set points lie inside a division algebra. For our purpose, we take a classical construction of

cyclic division algebras [Lam01, Chapter 5]. The cyclic division algebra 𝐷 = (𝐾/𝐹, 𝜎, 𝑧) is defined

using a indeterminate 𝑥 as the ℓ -dimensional vector space:

𝐷 = 𝐾 ⊕ 𝐾𝑥 ⊕ · · · ⊕ 𝐾𝑥ℓ−1 ,

where the (noncommutative) multiplication for 𝐷 is defined by 𝑥ℓ = 𝑧 and 𝑥𝑏 = 𝜎(𝑏)𝑥 for all

𝑏 ∈ 𝐾. Here 𝜎 : 𝐾 → 𝐾 is an automorphism of the Galois group Gal(𝐾/𝐹). The field 𝐹 = Q(𝑧)
and 𝐾 = 𝐹(𝜔), where 𝑧 is an indeterminate and 𝜔 is an ℓ 𝑡ℎ primitive root of unity. The matrix

representation of a general element in 𝐷 is of the following form:
0 𝑏 0 · · · 0

0 0 𝜎(𝑏) · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 𝜎ℓ−2(𝑏)
𝑧𝜎ℓ−1(𝑏) 0 · · · 0 0


.

Roughly, the plan will be to (inductively) assume that the construction follows the 𝜎-automorphism

in each window of length p𝑑−1
, and then we need to satisfy the 𝜎-action at each p − 1 boundaries.

More technically, to embed the hitting set of [FS13], we need to choose ℓ = p𝐿 appropriately larger

than p𝑑. As it turns out the construction of the division algebra requires a tower of extension fields

of 𝐹, with a higher-order root of unity at each stage.

Specifically, let 𝜔𝑖 = 𝜔p𝑎𝑖
for 𝑎1 > 𝑎2 > · · · > 𝑎𝑑 > 𝑎𝑑+1 > 0, where 𝑎𝑖 are positive integers

suitably chosen. Let 𝐾𝑖 = 𝐹(𝜔𝑖) be the cyclic Galois extension for 1 ⩽ 𝑖 ⩽ 𝑑 + 1 giving a tower of

extension fields

𝐹 ⊂ 𝐹(𝜔1) ⊂ 𝐹(𝜔2) ⊂ · · · ⊂ 𝐹(𝜔𝑑) ⊂ 𝐹(𝜔𝑑+1) ⊂ 𝐹(𝜔).

We require two properties of 𝜔𝑖 , 1 ⩽ 𝑖 ⩽ 𝑑 + 1. Firstly, for the hitting set generator 𝒢𝑖 we will

choose the root of unity as 𝜔𝑖 and the variable 𝛼𝑖 will take values only in the set 𝑊𝑖 = {𝜔 𝑗

𝑖
| 1 ⩽

𝑗 ⩽ p𝐿−𝑎𝑖 }. We also require that the 𝐾-automorphism 𝜎 has the property that for all 1 ⩽ 𝑖 ⩽ 𝑑 + 1

the map 𝜎p𝑖
fixes 𝜔𝑖 . In fact we will ensure that 𝜎p𝑖

has 𝐹(𝜔𝑖) as its fixed field. The construction of

matrix tuples in 𝐷 satisfying the above properties is the main technical step in Theorem 19.

It turns out that implementing all these ideas leads to a quasipolynomial-size hitting set for

rational formulas of any constant inversion height. More precisely, for rational formulas of inversion

height 𝜃, the size of the hitting set would be (𝑛𝑠)2𝑂(𝜃
2)

log(𝑛𝑠)
and the final division algebra index

will be (𝑛𝑠)2𝑂(𝜃
2)

. But to get the quasipolynomial-size hitting set for arbitrary rational formulas

(where 𝜃 = 𝑂(log 𝑠)) several further technical and conceptual ideas are required.
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We first need to analyze the source of the blow-up of 2
𝑂(𝜃2)

in the exponent of the dimension.

Let the indices at the (𝜃 − 1)𝑡ℎ and 𝜃𝑡ℎ stages are ℓ𝜃−1 and ℓ𝜃 respectively. It turns out that

ℓ𝜃 = ℓ𝜃−1ℓ where ℓ is the dimension of each matrix tuple in the hitting set construction of a 𝐷𝜃−1-

ABP (recursively) which has the number of variables ℓ 2

𝜃−1
𝑛, width 2ℓ𝜃−1𝑠, and degree ℓ𝜃−1(2𝑠 + 1).

From our proof technique, it reveals that ℓ = (ℓ𝜃−1𝑠𝑛)𝑂(𝑝𝜃). Here p𝜃 is the prime selected at the 𝜃𝑡ℎ

level of the construction. Using the prime number theorem p𝜃 is bounded by 𝜃2
. Substituting all

the parameters and unfolding the recursion leads to ℓ𝜃 ⩾ ℓ 2
𝜃

0
. The main source of this blow-up

is the polynomial dependence on ℓ𝜃−1 in the expression for ℓ . Thus it is important to control the

dependence of ℓ𝜃−1 in all three parameters: number of variables, width, and the degree.

The degree parameter appears from the truncation of 𝐷𝜃−1-series at degree ℓ𝜃−1(2𝑠 + 1). This

can be easily managed down to 2𝑠 + 1, if we use a generalization of [Eil74, Theorem 8.3] over

division algebra [DK21, Example 8.2].3 The dependence of the size of the hitting set on the number

of variables can be improved by a log-product trick over two variables {𝑦0 , 𝑦1} that replaces 𝑥𝑖 by

𝑦𝑏1
𝑦𝑏2
· · · 𝑦𝑏

log 𝑛
where 𝑏log 𝑛 · · · 𝑏1 is the binary representation of 𝑖. This trick will increase the degree

by a factor of log 𝑛, but we will be fine since in the hitting set size, the dependence on the degree

is only logarithmic. The more conceptual part of the argument, is to improve the dependence on

the width. Here somewhat surprisingly, we give a construction such that the index of the division

algebra has no dependence on the width in the exponent. This is achieved by adjoining the base

field 𝐹 by a complex root of unity 𝜔0 of a sufficiently large order of a prime power. Moreover, this

prime is different from all the other primes used in the recursive process. Informally, enlarging

the base field by 𝜔0 creates enough room to choose the substitution for the variable 𝛼𝑖 in a way

independent of the width.

Implementing all these steps we get a quasipolynomial-size hitting set over Q(𝜔0 , ¯
𝜔,
¯
𝑧) where

¯
𝜔 and

¯
𝑧 are 𝜃-dimensional vectors of the complex roots of unity and 𝑧 variables respectively, used

in different stages of the recursion. It is more desirable to obtain a hitting set whose matrix entries

are over Q. We show how to transfer the hitting set over Q by a relatively standard idea that

treats the parameters 𝜔0,

¯
𝜔 and

¯
𝑧 as fresh indeterminates 𝑡1 , ¯

𝑡2 , ¯
𝑡3 and vary them over a suitably

chosen quasipolynomial-size set over Q. Finally, the matrices in the hitting set may not be from

any division algebra (due to substitution of 𝑡1 , ¯
𝑡2 , ¯
𝑡3 from Q). However it suffices for the purpose

of rational identity testing. This completes the proof sketch of Theorem 2.

As already outlined in Section 1.1, the proof of Corollary 4 follows from the proof of Theorem 2

in the expected way. It has two main steps. Firstly, by analyzing the recursive structure of our

hitting set construction, we notice that the matrix tuples in hitting set can be constructed in quasi-

NC. The second step is to evaluate the given rational formula on the hitting set in parallel which

we already explained in Section 1.1 using the earlier results [Bre74, HW15, Csa76, Ber84]. It is well-

known that the identity testing of noncommutative formulas (more generally, noncommutative

ABPs) can be done in NC [AJS09, For14].

We now conclude this section with a summary of the key steps involved in the hitting set

construction.

3We give a self-contained proof of this result in Fact 15.

9



Informal summary.

1. Division algebra hitting set construction for generalized ABPs defined over cyclic division

algebras (Section 3).

(a) Given any prime p, we build hitting set for noncommutative ABPs inside a cyclic division

algebra whose index is a power of p (Theorem 19).

(b) We reduce the hitting set problem for generalized ABPs to that of noncommutative

ABPs using the map 𝑥𝑖 ↦→
∑
𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 (the key idea in Theorem 23).

2. We construct the hitting set for NSingular problem given a witness. This uses the construc-

tion of division algebra hitting set for generalized ABPs in Step 1 (Theorem 26).

3. Hitting set construction for rational formulas.

(a) We construct it inductively on the inversion height 𝜃. While going from 𝜃 − 1 to 𝜃, we

use the hitting set construction for NSingular problem under witness in Step 2. This

suffices for the case of constant inversion heights (Theorem 29).

(b) To construct the hitting set for all rational formulas, we improve the dependency of

the index parameter of the cyclic division algebra on the hitting set construction by

carefully analyzing the effect on degree, width, and the number of variables. The proof

is developed in Section 5.2. The final result is presented in Section 5.3.

1.3 Related results

At a high level, this approach is inspired by the framework introduced in [ACM22, ACG
+
23]. In

[ACM22], the authors construct a hitting set for rational formulas of inversion height two. One of

the main ingredients of their proof is a division algebra hitting set construction for noncommutative

formulas (more generally, for noncommutative ABPs). Additionally, they proposed the idea of

building a hitting set inductively for every height as a possible approach to derandomize RIT in

the black-box setting. Unfortunately they could not obtain a division algebra hitting set even for

rational formulas of inversion height one. In [ACG
+
23], the authors use a conjecture on hardness

of polynomial identities [BW05] to inductively build a hitting set for every inversion height. A

crucial bottleneck of this approach is that even assuming such a strong hardness conjecture, it

yields a quasipolynomial-size hitting set only for rational formulas of inversion height barely up

to constant. In this paper, we are able to overcome both the difficulties as we unconditionally build

the quasipolynomial-size hitting set for all polynomial-size rational formulas.

As already mentioned, the results of [GGdOW20, IQS18, HH21] solve the more general

NSingular problem in order to solve the RIT problem in the white-box setting. In contrast,

our hitting set construction crucially uses the inversion height of the input rational formula in-

ductively. Furthermore, the hitting set construction for the NSingular problem is known for the

following special cases: when the input matrix is a symbolic matrix (for which bipartite perfect

matching is a special case) [FGT21], or more generally, when the input matrix consists of rank-1

coefficient matrices (for which linear matroid intersection is a special case) [GT20].4 An exponential

4In the following cases, invertibility over the (commutative) function field and invertibility over the (noncommutative)

free skew field coincide.
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lower bound on the size of the rational formula computed as an entry of the inverse of a symbolic

matrix is known [HW15]. Therefore, our hitting set construction does not subsume these results.

Similarly, it is quite unlikely to reduce the RIT problem (in the general setting) to any of these

special cases of NSingular problem. Thus it seems that these results are incomparable.

1.4 Organization

In Section 2, we provide a background on algebraic complexity theory, cyclic division algebras,

and noncommutative formal power series. The result of Section 3 is the construction of a hitting

set for generalized ABPs defined over cyclic division algebras. In Section 4, we construct a hitting

set for NSingular problem given a witness. The main result is proved in Section 5 in two parts:

Section 5.1 gives the proof for rational formulas of constant inversion height and Section 5.2 gives

the proof of our main result : a hitting set for arbitrary rational formulas (Theorem 2). Section 5.4

contains the proof of Corollary 4. Finally, we raise a few questions for further research in Section 6.

2 Preliminaries

2.1 Notation

Throughout the paper, we use F, 𝐹, 𝐾 to denote fields, and Mat𝑚(F) (resp. Mat𝑚(𝐹),Mat𝑚(𝐾))
to denote 𝑚-dimensional matrix algebra over F (resp. over 𝐹, 𝐾). Similarly, Mat𝑚(F)𝑛 (resp.

Mat𝑚(𝐹)𝑛 ,Mat𝑚(𝐾)𝑛) denote the set of 𝑛-tuples over Mat𝑚(F) (resp. Mat𝑚(𝐹),Mat𝑚(𝐾)), respec-

tively. 𝐷 is used to denote finite-dimensional division algebras. We use p to denote an arbitrary

prime number. Let

¯
𝑥 denote the set of variables {𝑥1 , . . . , 𝑥𝑛}. Sometimes we use

¯
𝑝 = (𝑝1 , . . . , 𝑝𝑛)

and

¯
𝑞 = (𝑞1 , . . . , 𝑞𝑛) to denote the matrix tuples in suitable matrix algebras where 𝑛 is clear from

the context. The free noncommutative ring of polynomials over a field F is denoted by F⟨
¯
𝑥⟩. For

matrices 𝐴 and 𝐵, their usual tensor product is denoted by 𝐴 ⊗ 𝐵. For a polynomial 𝑓 and a

monomial 𝑚, we use [𝑚] 𝑓 to denote the coefficient of 𝑚 in 𝑓 .

2.2 Algebraic Complexity Theory

Definition 6 (Algebraic Branching Program). An algebraic branching program (ABP) is a layered

directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , 𝑑, with directed edges only

between adjacent layers (𝑖 to 𝑖 + 1). There is a source vertex of in-degree 0 in the layer 0, and one

out-degree 0 sink vertex in layer 𝑑. Each edge is labeled by an affine F-linear form in variables, say,

𝑥1 , 𝑥2 , . . . , 𝑥𝑛 . The polynomial computed by the ABP is the sum over all source-to-sink directed

paths of the ordered product of affine forms labeling the path edges.

The size of the ABP is defined as the total number of nodes and the width is the maximum

number of nodes in a layer, and the depth or length is the number of layers in the ABP. An ABP can

compute a commutative or a noncommutative polynomial, depending on whether the variables

𝑥1 , 𝑥2 , . . . , 𝑥𝑛 occurring in the F-linear forms are commuting or noncommuting. ABPs of width 𝑤

can also be defined as an iterated matrix multiplication

¯
𝑢𝑡 ·𝑀1𝑀2 · · ·𝑀ℓ · ¯

𝑣, where

¯
𝑢,
¯
𝑣 ∈ F𝑛 and

each 𝑀𝑖 is of form

∑𝑛
𝑖=1
𝐴𝑖𝑥𝑖 for matrices 𝐴𝑖 ∈ Mat𝑤(F), assuming without loss of generality that

all matrices 𝑀 𝑗 , 1 ⩽ 𝑗 ⩽ ℓ are 𝑤 × 𝑤. Here,

¯
𝑢𝑡 is the transpose of

¯
𝑢.
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We say a set ℋ ⊆ F𝑛 is a hitting set for a (commutative) algebraic circuit class 𝒞 if for every

𝑛-variate polynomial 𝑓 in 𝒞, 𝑓 . 0 if and only if 𝑓 (
¯
𝑎) ≠ 0 for some

¯
𝑎 ∈ ℋ .

A special class of ABPs in commuting variables are the read-once ABPs (in short, ROABPs).

In ROABPs a different variable is used for each layer, and the edge labels are univariate polyno-

mials over that variable. For the class of ROABPs, Forbes and Shpilka [FS13] obtained the first

quasipolynomial-time black-box algorithm by constructing a hitting set of quasipolynomial size.

Theorem 7. [FS13] For the class of polynomials computable by a width 𝑟, depth 𝑑, individual degree < 𝑛

ROABPs of known order, if |F| ⩾ (2𝑑𝑛𝑟3)2, there is a 𝑝𝑜𝑙𝑦(𝑑, 𝑛, 𝑟)-explicit hitting set of size at most
(2𝑑𝑛2𝑟4)⌈log 𝑑+1⌉ .

Indeed, they proved a more general result.

Definition 8 (Hitting Set Generator). A polynomial map 𝒢 : F𝑡 → F𝑛 is a generator for a circuit

class 𝒞 if for every 𝑛-variate polynomial 𝑓 in 𝒞, 𝑓 ≡ 0 if and only if 𝑓 ◦ 𝒢 ≡ 0.

Theorem 9. [FS13, Construction 3.13, Lemma 3.21] For the class of polynomials computable by a
width 𝑟, depth 𝑑, individual degree < 𝑛 ROABPs of known order, one can construct a hitting set generator
𝒢 : F⌈log 𝑑+1⌉ → F𝑑 of degree 𝑑𝑛𝑟4 efficiently.

As a consequence, Forbes and Shpilka [FS13], obtain an efficient construction of

quasipolynomial-size hitting set for noncommutative ABPs as well. Consider the class of non-

commutative ABPs of width 𝑟, and depth 𝑑 computing polynomials in F⟨
¯
𝑥⟩. The result of Forbes

and Shpilka provide an explicit construction (in quasipolynomial-time) of a set Mat𝑑+1(F), such

that for any ABP (with parameters 𝑟 and 𝑑) computing a nonzero polynomial 𝑓 , there always exists

(𝑝1 , . . . , 𝑝𝑛) ∈ℋ𝑛,𝑟,𝑑, 𝑓 (
¯
𝑝) ≠ 0.

Theorem 10 (Forbes and Shpilka [FS13]). For all 𝑛, 𝑟, 𝑑 ∈ N, if |F| ⩾ poly(𝑑, 𝑛, 𝑟), then there is a
hitting setℋ𝑛,𝑟,𝑑 ⊂ Mat𝑑+1(F) for noncommutative ABPs of parameters |ℋ𝑛,𝑟,𝑑 |⩽ (𝑟𝑑𝑛)𝑂(log 𝑑) and there
is a deterministic algorithm to output the setℋ𝑛,𝑟,𝑑 in time (𝑟𝑑𝑛)𝑂(log 𝑑).

2.3 Cyclic Division Algebras

A division algebra 𝐷 is an associative algebra over a (commutative) field F such that all nonzero

elements in 𝐷 are units (they have a multiplicative inverse). In this paper, we are interested in

finite-dimensional division algebras. Specifically, we focus on cyclic division algebras and their

construction [Lam01, Chapter 5]. Let 𝐹 = Q(𝑧), where 𝑧 is a commuting indeterminate. Let 𝜔 be

an ℓ 𝑡ℎ primitive root of unity. To be specific, let 𝜔 = 𝑒2𝜋𝜄/ℓ
. Let 𝐾 = 𝐹(𝜔) = Q(𝜔, 𝑧) be the cyclic

Galois extension of 𝐹 obtained by adjoining 𝜔. So, [𝐾 : 𝐹] = ℓ is the degree of the extension. The

elements of 𝐾 are polynomials in 𝜔 (of degree at most ℓ − 1) with coefficients from 𝐹.

Define 𝜎 : 𝐾 → 𝐾 by letting 𝜎(𝜔) = 𝜔𝑘
for some 𝑘 relatively prime to ℓ and stipulating that

𝜎(𝑎) = 𝑎 for all 𝑎 ∈ 𝐹. Then 𝜎 is an automorphism of 𝐾 with 𝐹 as fixed field and it generates the

Galois group Gal(𝐾/𝐹).
The division algebra 𝐷 = (𝐾/𝐹, 𝜎, 𝑧) is defined using a new indeterminate 𝑥 as the ℓ -

dimensional vector space:

𝐷 = 𝐾 ⊕ 𝐾𝑥 ⊕ · · · ⊕ 𝐾𝑥ℓ−1 ,
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where the (noncommutative) multiplication for𝐷 is defined by 𝑥ℓ = 𝑧 and 𝑥𝑏 = 𝜎(𝑏)𝑥 for all 𝑏 ∈ 𝐾.

The parameter ℓ is called the index of 𝐷 [Lam01, Theorem 14.9].

The elements of 𝐷 has matrix representation in 𝐾ℓ×ℓ from its action on the basis 𝒳 =

{1, 𝑥, . . . , 𝑥ℓ−1}. I.e., for 𝑎 ∈ 𝐷 and 𝑥 𝑗 ∈ 𝒳, the 𝑗𝑡ℎ row of the matrix representation is obtained by

writing 𝑥 𝑗𝑎 in the 𝒳-basis.

For example, the matrix representation 𝑀(𝑥) of 𝑥 is:

𝑀(𝑥)[𝑖 , 𝑗] =


1 if 𝑗 = 𝑖 + 1, 𝑖 ⩽ ℓ − 1

𝑧 if 𝑖 = ℓ , 𝑗 = 1

0 otherwise.

𝑀(𝑥) =


0 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 1

𝑧 0 · · · 0 0


.

For each 𝑏 ∈ 𝐾 its matrix representation 𝑀(𝑏) is:

𝑀(𝑏)[𝑖 , 𝑗] =


𝑏 if 𝑖 = 𝑗 = 1

𝜎𝑖−1(𝑏) if 𝑖 = 𝑗 , 𝑖 ⩾ 2

0 otherwise.

𝑀(𝑏) =



𝑏 0 0 0 0 0

0 𝜎(𝑏) 0 0 0 0

0 0 𝜎2(𝑏) 0 0 0

0 0 0

. . . 0 0

0 0 0 0 𝜎ℓ−2(𝑏) 0

0 0 0 0 0 𝜎ℓ−1(𝑏)


Proposition 11. For all 𝑏 ∈ 𝐾, 𝑀(𝑏𝑥) = 𝑀(𝑏) ·𝑀(𝑥)

Also, the matrix representation of 𝑥𝑏 = 𝜎(𝑏)𝑥 is easy to see in the basis {1, 𝑥, . . . , 𝑥ℓ−1}:

𝑀(𝜎(𝑏)𝑥) =



0 𝜎(𝑏) 0 0 0 0

0 0 𝜎2(𝑏) 0 0 0

0 0 0 𝜎3(𝑏) 0 0

0 0 0 0

. . . 0

0 0 0 0 0 𝜎ℓ−1(𝑏)
𝜎ℓ (𝑏)𝑧 0 0 0 0 0


Define𝐶𝑖 𝑗 = 𝑀(𝜔 𝑗−1)·𝑀(𝑥 𝑖−1) for 1 ⩽ 𝑖 , 𝑗 ⩽ ℓ . Observe that𝔅 = {𝐶𝑖 𝑗 , 𝑖 , 𝑗 ∈ [ℓ ]} is a 𝐹-generating

set for the division algebra 𝐷.

Fact 12. The 𝐹-linear span of 𝔅 is the cyclic division algebra 𝐷 in the matrix algebra Matℓ (𝐾).
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The following proposition is a standard fact.

Proposition 13. [Lam01, Section 14(14.13)] The 𝐾-linear span of 𝔅 is the entire matrix algebra Matℓ (𝐾).

The following theorem gives us a way of constructing new division algebras using tensor

products. This construction plays an important role in our main result.

Theorem 14. [Pie82, Proposition, Page 292] Let 𝐾, 𝐿 be cyclic extensions of the field 𝐹 such that their
extension degrees, [𝐾 : 𝐹] and [𝐿 : 𝐹], are relatively prime. Let 𝐷1 = (𝐾/𝐹, 𝜎1 , 𝑧), and 𝐷2 = (𝐿/𝐹, 𝜎2 , 𝑧)
be the corresponding cyclic division algebras as defined above. Then their tensor product 𝐷1 ⊗ 𝐷2 is also a
cyclic division algebra.

2.4 Noncommutative Rational Series

Let 𝐷 be a division algebra and 𝑃 be a series over the noncommuting variables 𝑥1 , 𝑥2 , . . . , 𝑥𝑛
defined as follows:

𝑃 = 𝑐 − 𝐵
(∑
𝑘⩾0

𝐿𝑘

)
𝐴,

where 𝑐 is a 𝐷-linear form (over 𝑥1 , . . . , 𝑥𝑛), 𝐵 (resp. 𝐴) is a 1 × 𝑠 (resp. 𝑠 × 1) dimensional vector,

and 𝐿 is a 𝑠 × 𝑠 matrix. The entries of 𝐵, 𝐿, 𝐴 are 𝐷-linear forms over 𝑥1 , . . . , 𝑥𝑛 . Furthermore, the

variables 𝑥𝑖 : 1 ⩽ 𝑖 ⩽ 𝑛 commute with the elements in 𝐷. Define the truncated polynomial 𝑃 as

follows:

𝑃 = 𝑐 − 𝐵
( ∑
𝑘⩽𝑠−1

𝐿𝑘

)
𝐴. (2)

The next statement shows that the infinite series 𝑃 ≠ 0 is equivalent in saying that 𝑃 is nonzero.

The proof of the fact is standard when 𝐷 is a (commutative) field [Eil74, Corollary 8.3, Page 145].

For the case of division algebras, the proof can be found in [DK21, Example 8.2, Page 23]. However,

we include a self-contained proof.

Fact 15. The infinite series 𝑃 ≠ 0 if and only if its truncation 𝑃 ≠ 0.

Proof. If 𝑃 = 0, then obviously 𝑃 = 0, since the degrees in different homogeneous components do

not match. Now, suppose 𝑃 = 0. Notice that the terms in 𝑐 are linear forms and the degree of any

term in 𝐵
(∑

𝑘⩾0
𝐿𝑘

)
𝐴 is at least two. Hence, 𝑐 must be zero. Write the row and column vectors 𝐵

and 𝐴 as 𝐵 =
∑
ℓ 𝐵ℓ 𝑥ℓ , 𝐴 =

∑
ℓ 𝐴ℓ 𝑥ℓ . Similarly, write 𝐿 =

∑
ℓ 𝐿ℓ 𝑥ℓ .

Suppose 𝐵𝐿𝑠𝐴 contributes a nonzero monomial (word) 𝑤 = 𝑥𝑖1𝑥𝑖2 . . . 𝑥𝑖𝑠+2
. Clearly the coeffi-

cient of 𝑤 is 𝐵𝑖1𝐿𝑖2 . . . 𝐿𝑖𝑠+1
𝐴𝑖𝑠+2

. Consider the vectors 𝑣1 = 𝐵𝑖1 , 𝑣2 = 𝐵𝑖1𝐿𝑖2 , . . . , 𝑣𝑠+1 = 𝐵𝑖1𝐿𝑖2 . . . 𝐿𝑖𝑠+1

corresponding to the prefixes 𝑤1 = 𝑥𝑖1 , 𝑤2 = 𝑥𝑖1𝑥𝑖2 , . . . , 𝑤𝑠+1 = 𝑥𝑖1 . . . 𝑥𝑖𝑠+1
. These vectors

𝑣𝑖 , 1 ⩽ 𝑖 ⩽ 𝑠 + 1 all lie in the (left) 𝐷-module 𝐷𝑠
which has rank 𝑠. As 𝐷 is a division alge-

bra, these vectors cannot all be 𝐷-linearly independent. Hence, there are elements 𝜆1 , . . . ,𝜆𝑠+1 in

𝐷, not all zero, such that the linear combination 𝜆1𝑣1 + . . . + 𝜆𝑠+1𝑣𝑠+1 = 0. However, 𝑣𝑠+1𝐴𝑖𝑠+2
≠ 0

by the assumption. Hence, there is at least one vector 𝑣ℓ : 1 ⩽ ℓ ⩽ 𝑠 such that 𝑣ℓ𝐴𝑖𝑠+2
≠ 0. This

means that the coefficient of the word 𝑤ℓ 𝑥𝑖𝑠+2
, which is of length at most 𝑠 + 1, is nonzero in 𝑃,

which is not possible by assumption.

Now, with 𝑘 = 𝑠 as the base case, we can inductively apply the above argument to show that

𝐵𝐿𝑘𝐴 is zero for each 𝑘 ⩾ 𝑠. ■
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2.5 Generalized Formal Power Series

We now define the notion of generalized series first introduced by Volčič. For a detailed exposition,

see [Vol18].

A generalized word or a generalized monomial in 𝑥1 , . . . , 𝑥𝑛 over the matrix algebra Mat𝑚(F) allows

the matrices to interleave between variables. That is to say, a generalized monomial is of the form:

𝑎0𝑥𝑘1
𝑎2 · · · 𝑎𝑑−1𝑥𝑘𝑑 𝑎𝑑, where 𝑎𝑖 ∈ Mat𝑚(F), and its degree is the number of variables 𝑑 occurring

in it. A finite sum of generalized monomials is a generalized polynomial in the ring Mat𝑚(F)⟨¯
𝑥⟩.

A generalized formal power series over Mat𝑚(F) is an infinite sum of generalized monomials such

that the sum has finitely many generalized monomials of degree 𝑑 for any 𝑑 ∈ N. The ring of

generalized series over Mat𝑚(F) is denoted Mat𝑚(F)⟪¯𝑥⟫.
A generalized series (resp. polynomial) 𝑆 over Mat𝑚(F) admits the following canonical de-

scription. Let 𝐸 = {𝑒𝑖 , 𝑗 , 1 ⩽ 𝑖 , 𝑗 ⩽ 𝑚} be the set of elementary matrices. Express each coefficient

matrix 𝑎 in 𝑆 in the 𝐸 basis by a F-linear combination and then expand 𝑆. Naturally each mono-

mial of degree-𝑑 in the expansion looks like 𝑒𝑖0 , 𝑗0𝑥𝑘1
𝑒𝑖1 , 𝑗1𝑥𝑘2

· · · 𝑒𝑖𝑑−1
, 𝑗𝑑−1

𝑥𝑘𝑑 𝑒𝑖𝑑 , 𝑗𝑑 where 𝑒𝑖𝑙 , 𝑗𝑙 ∈ 𝐸 and

𝑥𝑘𝑙 ∈ ¯
𝑥. We say the series 𝑆 (resp. polynomial) is identically zero if and only if it is zero under

such expansion i.e. the coefficient associated with each generalized monomial is zero.

The evaluation of a generalized series over Mat𝑚(F) is defined on any 𝑘′𝑚× 𝑘′𝑚 matrix algebra

for some integer 𝑘′ ⩾ 1 [Vol18]. To match the dimension of the coefficient matrices with the matrix

substitution, we use an inclusion map 𝜄 : Mat𝑚(F) → Mat𝑘′𝑚(F), for example, 𝜄 can be defined as

𝜄(𝑎) = 𝑎 ⊗ 𝐼𝑘′ or 𝜄(𝑎) = 𝐼𝑘′ ⊗ 𝑎. Now, a generalized monomial 𝑎0𝑥𝑘1
𝑎1 · · · 𝑎𝑑−1𝑥𝑘𝑑 𝑎𝑑 over Mat𝑚(F) on

matrix substitution (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑘′𝑚(F)𝑛 evaluates to

𝜄(𝑎0)𝑝𝑘1
𝜄(𝑎1) · · · 𝜄(𝑎𝑑−1)𝑝𝑘𝑑 𝜄(𝑎𝑑)

under some inclusion map 𝜄 : Mat𝑚(F) → Mat𝑘′𝑚(F). All such inclusion maps are known to be

compatible by the Skolem-Noether theorem [Row80, Theorem 3.1.2]. Therefore, if a series 𝑆 is

zero with respect to some inclusion map 𝜄 : Mat𝑚(F) → Mat𝑘′𝑚(F), then it is zero w.r.t. any such

inclusion map.

We naturally extend the definition of usual ABPs (Definition 6) to the generalized ABPs.

Definition 16 (Generalized Algebraic Branching Program). A generalized algebraic branching program
is a layered directed acyclic graph. The vertex set is partitioned into layers 0, 1, . . . , 𝑑, with directed

edges only between adjacent layers (𝑖 to 𝑖 + 1). There is a source vertex of in-degree 0 in the

layer 0, and one out-degree 0 sink vertex in layer 𝑑. Each edge is labeled by a generalized linear

form of

∑𝑛
𝑖=1

𝑎𝑖𝑥𝑖𝑏𝑖 where 𝑎𝑖 , 𝑏𝑖 ∈ Mat𝑚(F) for some integer 𝑚. As usual, width is the maximum

number of vertices in a layer. The generalized polynomial computed by the ABP is the sum over

all source-to-sink directed paths of the ordered product of generalized linear forms labeling the

path edges.

Remark 17. It is clear from the definition above that such generalized ABPs with 𝑑 layers compute

homogeneous generalized polynomials of degree-𝑑.
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3 Division Algebra Hitting Set for Generalized ABPs over Cyclic Divi-

sion Algebras

In this section, we consider generalized ABPs where the coefficients are from a cyclic division

algebra. We will construct hitting set for such ABPs inside another cyclic division algebra.

Definition 18 (𝐷1-ABP). Let 𝐷1 = (𝐾1/𝐹, 𝜎1 , 𝑧) be a cyclic division algebra of index ℓ1. We define

a 𝐷1-ABP as a generalized ABP𝒜 in {𝑥1 , 𝑥2 , . . . , 𝑥𝑛} variables (as defined in Definition 16) where

each edge is labeled by

∑𝑛
𝑖=1

𝑎𝑖𝑥𝑖𝑏𝑖 : 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷1. The ABP 𝒜 computes a generalized polynomial

over 𝐷1.

One of the key ingredients of the proof is the following theorem which we prove in Ap-

pendix A.1. Given any prime p, the theorem shows a construction of hitting set for noncommutative

ABPs in a cyclic division algebra whose index is a power of p.

Theorem 19. Let p be any prime number. For the class of 𝑛-variate degree �̃� noncommutative polynomials
computed by homogeneous ABPs of width 𝑟, we can construct a hitting set ℋ̂𝑛,𝑟,�̃� ⊆ 𝐷𝑛

2
of size (𝑛𝑟�̃�)𝑂(p log �̃�)

in (𝑛𝑟�̃�)𝑂(p log �̃�) time. Here 𝐷2 is a cyclic division algebra of index ℓ2 = p𝐿 where 𝐿 = 𝑂(p logp(𝑛𝑟�̃�)).

In [ACM22], a similar theorem is proved only for the case p = 2. The main technical difference

is that, to maintain the hitting set points inside a cyclic division algebra, the recursive structure of

the construction tackles several boundary conditions together. In [ACM22], the recursive structure

takes care of one such boundary condition.

3.1 Hitting set for generalized ABPs

To use the result of Theorem 19 for the case of generalized ABPs, we develop a method that reduces

the hitting set construction problem for generalized ABPs to that of noncommutative ABPs. This

is an important conceptual part of the proof.

Informally, the combined effect of Claim 20, Claim 21, and Lemma 22 show that a 𝐷1-ABP can

be evaluated to nonzero on a point in a cyclic division algebra𝐷1⊗𝐷2 where the index of the cyclic

division algebra 𝐷2 is relatively prime to the index of 𝐷1.

Claim 20. For any nonzero 𝑛-variate degree-𝑑 𝐷1-ABP𝒜 of width 𝑟, for every 𝑑′ ⩾ ℓ1𝑑, there is a 𝑑′ × 𝑑′
matrix tuple such that the 𝐷1-ABP is nonzero evaluated on that tuple. Here ℓ1 is the index of 𝐷1.

Proof. Fix an edge of 𝒜 and let its label be

∑𝑛
𝑖=1

𝑎𝑖𝑥𝑖𝑏𝑖 , for 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷1. Replace each 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷1 by

its matrix representation in Matℓ1(𝐾1) and the variable 𝑥𝑖 by 𝑍𝑖 , an ℓ1 × ℓ1 matrix whose (𝑗 , 𝑘)𝑡ℎ
entry is a new noncommuting indeterminate 𝑧𝑖 𝑗𝑘 . Therefore, each edge is now labeled by an

ℓ1 × ℓ1 matrix whose entries are 𝐾1-linear terms in {𝑧𝑖 𝑗𝑘} variables. After the substitution, 𝒜 is

now computing a matrix 𝑀 of degree-𝑑 noncommutative polynomials. Clearly, it is an identity-

preserving substitution. I.e.,𝒜 is nonzero if and only if 𝑀 is nonzero. Therefore, if𝒜 is nonzero,

we can find a 𝑑 × 𝑑 matrix substitution for the {𝑧𝑖 𝑗𝑘} variables such that 𝑀 evaluated on that

substitution is nonzero.5 Hence, we obtain an ℓ1𝑑 × ℓ1𝑑 matrix tuple for the

¯
𝑥 variables such that

𝒜 is nonzero on that substitution. ■

5In fact, ⌈𝑑/2⌉ + 1-dimensional matrix substitutions will suffice [AL50].
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Claim 21. Suppose for a nonzero 𝑛-variate degree-𝑑 𝐷1-ABP 𝒜 of width 𝑟, there is a matrix tuple
(𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑑′(𝐾1)𝑛 such that the ABP is nonzero evaluated on that tuple. Let 𝐷1 =

(
𝐾1/𝐹, �̃�, 𝑧

)
be a cyclic division algebra of index 𝑑′, where 𝐾1 is a subfield of 𝐾1. Then there is a tuple in 𝐷𝑛

1
such that

the 𝐷1-ABP𝒜 is nonzero evaluated on that tuple as well.

Proof. Let

{
𝐶 𝑗 ,𝑘

}
1⩽ 𝑗 ,𝑘⩽ℓ1ℓ2

be the basis of the division algebra 𝐷1 as defined in Section 2.3. By

Proposition 13, we can write each matrix 𝑝𝑖 =
∑
𝑗 ,𝑘 𝜆𝑖 𝑗𝑘𝐶 𝑗𝑘 where each 𝜆𝑖 𝑗𝑘 ∈ 𝐾1. Define new

commuting indeterminates {𝑢𝑖 𝑗𝑘} and let �̃�𝑖 =
∑
𝑢𝑖 𝑗𝑘𝐶 𝑗𝑘 . Evaluating 𝒜 on (�̃�1 , . . . , �̃�𝑛) then gives

a nonzero matrix of commutative polynomials, as it is nonzero if 𝑢𝑖 𝑗𝑘 ← 𝜆𝑖 𝑗𝑘 . We can now find a

substitution for each 𝑢𝑖 𝑗𝑘 ← 𝛾𝑖 𝑗𝑘 ∈ Q such that such a nonzero polynomial evaluates to nonzero.

Hence, we can define a tuple (𝑞1 , . . . , 𝑞𝑛) where each 𝑞𝑖 =
∑

𝛾𝑖 𝑗𝑘𝐶 𝑗𝑘 such that 𝒜 is nonzero on

(𝑞1 , . . . , 𝑞𝑛). Now the proof follows since each 𝑞𝑖 ∈ 𝐷1. ■

Lemma 22. For any nonzero 𝑛-variate degree-𝑑 𝐷1-ABP 𝒜 of width 𝑟, there is a cyclic division algebra
𝐷1 of index ℓ1ℓ2 (where ℓ2 ⩾ 𝑑 and ℓ2 is relatively prime to ℓ1) and a tuple in 𝐷𝑛

1
such that 𝒜 is nonzero

evaluated on that tuple.

Proof. Consider a cyclic division algebra 𝐷2 of index ℓ2. Define 𝐷1 = 𝐷1 ⊗ 𝐷2. By assumption,

ℓ2(⩾ 𝑑) is relatively prime to ℓ1. Therefore, 𝐷1 is also a cyclic division algebra by Theorem 14. Now

the proof follows from Claim 20 and Claim 21. ■

We are now ready to prove the main result of this section.

Theorem 23 (Division algebra hitting set for 𝐷1-ABPs). Let 𝐷1 be a cyclic division algebra of index
ℓ1 and p

2
be any prime that is not a divisor of ℓ1. For the class of 𝑛-variate degree-𝑑 𝐷1-ABPs of width 𝑟,

we can construct a hitting set ℋ̂𝐷1

𝑛,𝑟,𝑑
⊆ 𝐷𝑛

1
of size (ℓ1𝑛𝑟𝑑)𝑂(p2

log 𝑑) in deterministic (ℓ1𝑛𝑟𝑑)𝑂(p2
log 𝑑)-time

where 𝐷1 is a cyclic division algebra of index ℓ1ℓ2. Here ℓ2 = p𝐿2

2
and 𝐿2 = 𝑂(p

2
logp

2

(ℓ1𝑛𝑟𝑑)) . Moreover,
𝐷1 is a subalgebra of 𝐷1.

Proof. Let

{
𝐶 𝑗𝑘

}
1⩽ 𝑗 ,𝑘⩽ℓ1

be the basis of 𝐷1. Introduce a set of noncommuting indeterminates{
𝑦𝑖 𝑗𝑘

}
𝑖∈[𝑛], 𝑗 ,𝑘∈[ℓ1]. Consider the following mapping:

𝑥𝑖 ↦→
∑
𝑗 ,𝑘

𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 .

Equivalently, each 𝑥𝑖 is substituted by an ℓ1 × ℓ1 matrix. Fix a 𝐷1-ABP 𝒜. Consider each edge of

𝒜 labeled as

∑𝑛
𝑖=1

𝑎𝑖𝑥𝑖𝑏𝑖 where 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷1. Replace each 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷1 by its matrix representation

in Matℓ1(𝐾1) and 𝑥𝑖 by the ℓ1 × ℓ1 matrix

∑
𝑗 ,𝑘 𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 . Therefore, each edge is now labeled by

an ℓ1 × ℓ1 matrix whose entries are 𝐾1-linear terms in {𝑦𝑖 𝑗𝑘} variables. After the substitution,𝒜 is

now computing a matrix 𝑀 of degree-𝑑 noncommutative polynomials in {𝑦𝑖 𝑗𝑘} variables.

Claim 24. If the 𝐷1-ABP𝒜(
¯
𝑥) is nonzero then the matrix 𝑀 ∈ Matℓ1(F⟨

¯
𝑦⟩) is nonzero.
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Proof. If 𝒜(
¯
𝑥) is nonzero, then it is nonzero evaluated at some (𝑝1 , . . . , 𝑝𝑛) ∈ 𝐷𝑛

1
where 𝐷1 =

𝐷1 ⊗ 𝐷2 (Lemma 22). We can therefore expand the 𝐷1 component in the {𝐶 𝑗𝑘} basis and write

each 𝑝𝑖 =
∑
𝐶 𝑗𝑘 ⊗ 𝑞𝑖 𝑗𝑘 for some 𝑞𝑖 𝑗𝑘 ∈ 𝐷2. Therefore 𝑀 is nonzero under the substitution each

𝑦𝑖 𝑗𝑘 ← 𝑞𝑖 𝑗𝑘 . ■

We now claim that each entry of 𝑀 is computable by a small ABP.

Claim 25. For each 1 ⩽ 𝑗 , 𝑘 ⩽ ℓ1, the (𝑗 , 𝑘)𝑡ℎ entry of the matrix 𝑀 ∈ Matℓ1(F⟨
¯
𝑦⟩) is computable by an

ℓ 2

1
𝑛-variate degree-𝑑 noncommutative homogeneous ABP of width ℓ1𝑟.

Proof. For each vertex 𝑣 in the 𝐷1-ABP𝒜, make ℓ1 copies of 𝑣 (including the source 𝑆 and sink 𝑇),

let us call it (𝑣, 1), . . . , (𝑣, ℓ1). For any two vertices 𝑢 and 𝑣, suppose the edge is labeled by

∑𝑛
𝑖=1

𝑎𝑖𝑥𝑖𝑏𝑖

and 𝑀𝑢,𝑣 be the corresponding ℓ1× ℓ1 matrix after substitution. Then for each 1 ⩽ 𝑗 , 𝑘 ⩽ ℓ1, we add

an edge ((𝑢, 𝑗), (𝑣, 𝑘)) labeled by the (𝑗 , 𝑘)𝑡ℎ entry of 𝑀𝑢,𝑣 . Note that product of the edge labels of a

path exactly captures the corresponding matrix product. Therefore, if we consider the ABP with

source (𝑆, 𝑗) and sink (𝑇, 𝑘), it is computing the (𝑗 , 𝑘)𝑡ℎ entry of the matrix 𝑀. Note that the width

of the new ABP is ℓ1𝑟. ■

We now consider a nonzero entry of the matrix 𝑀 which is computable by an ℓ 2

1
𝑛-variate

degree-𝑑 noncommutative homogeneous ABP of width ℓ1𝑟. Our goal is now to get a division

algebra hitting set for this ABP inside a cyclic division algebra 𝐷2 of index ℓ2 = p𝐿2

2
. Define

𝐷1 = 𝐷1 ⊗ 𝐷2 which is a cyclic division algebra of index ℓ1ℓ2 by Theorem 14.

Finally, ℋ̂𝐷1

𝑛,𝑟,𝑑
=

(𝑞1 , . . . , 𝑞𝑛) : 𝑞𝑖 =
∑
𝑗 ,𝑘

𝐶 𝑗𝑘 ⊗ 𝑞𝑖 𝑗𝑘 where (𝑞111 , . . . , 𝑞𝑛ℓ1ℓ1) ∈ ℋ̂ℓ2

1
𝑛,ℓ1𝑟,𝑑

 . (3)

■

By Theorem 19, the size of ℋ̂ℓ2

1
𝑛,ℓ1𝑟,𝑑

is (ℓ1𝑛𝑟𝑑)𝑂(p2
log 𝑑)

and 𝐿2 is 𝑂(p
2

logp
2

(ℓ1𝑛𝑟𝑑)).

4 Hitting Set for Nsingular given a Witness

In this section, we consider the NSingular problem for linear matrices of size 𝑠 × 𝑠 under the

promise that we already have a witness matrix tuple such that a submatrix of size 𝑠−1 is invertible

on that tuple. The result of this section is crucial for the hitting set construction for rational

formulas in Section 5.

More precisely, we construct the hitting set for rational formulas inductively on the inversion

height. To construct a hitting set for inversion height 𝜃 from inversion height 𝜃 − 1, we will use

the promised version of the NSingular problem.

Theorem 26. Let 𝑇(
¯
𝑥) be a linear matrix of size 𝑠 in {𝑥1 , . . . , 𝑥𝑛} variables and 𝐷1 be a cyclic division

algebra of index ℓ1. Let p
2

be any prime which is not a divisor of ℓ1. Then, given a tuple (𝑝1 , . . . , 𝑝𝑛) ∈ 𝐷𝑛
1

such that there is a submatrix 𝑇′ of 𝑇 of size 𝑠 − 1 such that 𝑇′(
¯
𝑝) is invertible, we can construct a hitting set

ℋ̃ ¯
𝑝

𝑛,𝑠,ℓ1
⊆ 𝐷𝑛

1
of size (ℓ1𝑛𝑠)𝑂(p2

log(ℓ1𝑠)) in deterministic (ℓ1𝑛𝑠)𝑂(p2
log(ℓ1𝑠))-time such that if 𝑇(

¯
𝑥) is invertible
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over the free skew field then for some (𝑞1 , . . . , 𝑞𝑛) ∈ ℋ̃ ¯
𝑝

𝑛,𝑠,ℓ1
, 𝑇(
¯
𝑞) is invertible. Here 𝐷1 is a cyclic division

algebra of index ℓ1p
2

𝑂(p
2

logp
2

(ℓ1𝑛𝑠)).

Proof. We can find two invertible transformations𝑈,𝑉 in Mat𝑠(𝐷1) such that

𝑈 · 𝑇(𝑝1 , 𝑝2 , . . . , 𝑝𝑛) ·𝑉 =

[
𝐼𝑠−1 0

0 0

]
,

where 𝐼𝑠−1 is the identity matrix whose diagonal elements are the identity element of 𝐷1. This is

possible since one can do Gaussian elimination over division algebras.

Notice that 𝑇(
¯
𝑥 +
¯
𝑝) = 𝑇(

¯
𝑝) + 𝑇(

¯
𝑥). Hence, we can write

𝑇(
¯
𝑥 +
¯
𝑝) = 𝑈−1 ·

( [
𝐼𝑠−1 0

0 0

]
+𝑈 · 𝑇(

¯
𝑥) ·𝑉

)
·𝑉−1.

Let the invertible submatrix𝑇′ of𝑇 of size 𝑠−1 is obtained by removing the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column,

for some 𝑖 , 𝑗 ∈ [𝑠]. We can therefore write,

𝑇(
¯
𝑥 +
¯
𝑝) = 𝑈−1 ·

[
𝐼𝑠−1 − 𝐿 𝐴 𝑗

𝐵𝑖 𝐶𝑖 𝑗

]
·𝑉−1 ,

where each entry of 𝐿, 𝐴𝑗 , 𝐵𝑖 , 𝐶𝑖 𝑗 are 𝐷1-linear forms in

¯
𝑥 variables with no constant term. We can

simplify it further by multiplying both sides by invertible matrices and writing,

𝑇(
¯
𝑥 +
¯
𝑝) = 𝑈−1𝑈′

[
𝐼𝑠−1 − 𝐿 0

0 𝐶𝑖 𝑗 − 𝐵𝑖(𝐼𝑠−1 − 𝐿)−1𝐴 𝑗

]
𝑉′𝑉−1. (4)

where,𝑈′ =

[
𝐼𝑠−1 0

𝐵𝑖(𝐼𝑠−1 − 𝐿)−1
1

]
, 𝑉′ =

[
𝐼𝑠−1 (𝐼𝑠−1 − 𝐿)−1𝐴 𝑗

0 1

]
.

Let, 𝑃𝑖 𝑗(¯
𝑥) = 𝐶𝑖 𝑗 − 𝐵𝑖(𝐼𝑠−1 − 𝐿)−1𝐴 𝑗 . (5)

We can also represent 𝑃𝑖 𝑗 as a series:

𝑃𝑖 𝑗(¯
𝑥) = 𝐶𝑖 𝑗 − 𝐵𝑖

(∑
𝑘⩾0

𝐿𝑘

)
𝐴 𝑗 .

This is a generalized series (in

¯
𝑥 variables) over the division algebra 𝐷1 where the division algebra

elements can interleave in between the variables.

Claim 27.

Define, 𝑃𝑖 𝑗(¯
𝑥) = 𝐶𝑖 𝑗 − 𝐵𝑖 ©«

∑
0⩽𝑘⩽(𝑠−1)ℓ1

𝐿𝑘
ª®¬𝐴 𝑗 .

Then, 𝑃𝑖 𝑗(¯
𝑥) = 0⇐⇒ 𝑃𝑖 𝑗(¯

𝑥) = 0.
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Proof. If we substitute each 𝑥𝑖′ by the generic ℓ1 × ℓ1 matrix of noncommuting indeterminates

𝑍𝑖′ = (𝑧𝑖′ 𝑗′𝑘′)1⩽ 𝑗′,𝑘′⩽ℓ1 , the generalized series 𝑃𝑖 𝑗 then computes a matrix of recognizable series over

the variables {𝑧𝑖′ 𝑗′𝑘′}1⩽𝑖′⩽𝑛,1⩽ 𝑗′,𝑘′⩽ℓ1 (the proof is similar to Claim 25). Then Fact 15 implies that if

we truncate 𝑃𝑖 𝑗( ¯
𝑍) within degree (𝑠 − 1)ℓ1, we get a nonzero matrix of polynomials computed by

ABPs. Note that, substituting each 𝑥𝑖′ by the generic ℓ1 × ℓ1 matrix 𝑍𝑖′ = (𝑧𝑖′ 𝑗′𝑘′)𝑗′,𝑘′ in 𝑃𝑖 𝑗 will have

the same effect. Therefore,

𝑃𝑖 𝑗(¯
𝑥) = 0⇐⇒ 𝑃𝑖 𝑗(¯

𝑥) = 0. ■

We can now write, 𝑃𝑖 𝑗 = 0⇐⇒
(
𝐶𝑖 𝑗 = 0 and for each 0 ⩽ 𝑘 ⩽ (𝑠 − 1)ℓ1 , 𝐵𝑖𝐿

𝑘𝐴 𝑗 = 0

)
,

where each 𝐵𝑖𝐿
𝑘𝐴 𝑗 is a generalized polynomial over 𝐷1, indeed it is a 𝐷1-ABP.

The following statement now reduces the singularity testing to identity testing of a 𝐷1-ABP.6

Claim 28. 𝑇(
¯
𝑥) is invertible over the free skew field if and only if 𝑃𝑖 𝑗 ≠ 0.

Proof. Let 𝑃𝑖 𝑗 be zero, therefore 𝑃𝑖 𝑗 is also zero by Claim 27. Assume to the contrary, 𝑇(
¯
𝑥) is

invertible over the free skew field. Then, there exists a matrix tuple (𝑝′
1
, . . . , 𝑝′𝑛) ∈ Mat𝑘ℓ1(𝐾)𝑛

for some large enough integer 𝑘 and an extension field 𝐾, such that 𝑇(
¯
𝑝′) is invertible. We now

evaluate Equation (4) substituting each 𝑥𝑖′ ↦→ 𝑝′
𝑖′ − 𝑝𝑖′ ⊗ 𝐼𝑘 . Clearly, 𝑃𝑖 𝑗 must be nonzero on that

substitution which leads to a contradiction.

For the other direction, if 𝑃𝑖 𝑗 ≠ 0, then there exists a matrix tuple (𝑞1 , . . . , 𝑞𝑛) ∈ 𝐷𝑛
1

where𝐷1 is a

cyclic division algebra of index ℓ1ℓ2 (see Lemma 22), such that 𝑃𝑖 𝑗(
¯
𝑞) ≠ 0. We then evaluate 𝑇(

¯
𝑥+
¯
𝑝)

on (𝑡𝑞1 , . . . , 𝑡𝑞𝑛) where 𝑡 is a commutative variable. Clearly, the infinite series 𝑃𝑖 𝑗 is nonzero at 𝑡
¯
𝑞

since the different degree-𝑡 parts do not cancel each other. Also, (𝐼𝑠−1 − 𝐿)(𝑡
¯
𝑞) is invertible.

However, this also shows that 𝑃𝑖 𝑗(𝑡
¯
𝑞) is a nonzero matrix of rational expressions in 𝑡, and the

determinant of (𝐼𝑠−1 − 𝐿)(𝑡
¯
𝑞) is a nonzero polynomial. Since the degrees of the polynomials in the

rational expressions and the determinant are bounded by a polynomial, we can vary the parameter

𝑡 over a polynomial-size set Γ ⊂ Q such that 𝑃𝑖 𝑗(𝑡
¯
𝑞) and det(𝐼𝑠−1 − 𝐿)(𝑡

¯
𝑞) are nonzero, for some

𝑡 ∈ Γ. As we need to only avoid the roots of the numerator and the denominator polynomials

present in 𝑃𝑖 𝑗(𝑡
¯
𝑞), and the roots of det(𝐼𝑠−1 − 𝐿)(𝑡

¯
𝑞), it suffices to choose Γ ⊂ Q of size poly(𝑠, ℓ1 , ℓ2).

Therefore, 𝑇(𝑡
¯
𝑞 +
¯
𝑝 ⊗ 𝐼ℓ2) is invertible for some 𝑡 ∈ Γ by Equation (4). ■

Let 𝑘0 be the minimum 𝑘 such that 𝐵𝑖𝐿
𝑘𝐴 𝑗 ≠ 0. Now apply Theorem 23 on 𝐵𝑖𝐿

𝑘0𝐴 𝑗 to construct

a hitting set ℋ̂𝐷1

𝑛,𝑠−1,ℓ1(𝑠−1) of size ⩽ (𝑛𝑠ℓ1)𝑂(p2
log(𝑠ℓ1))

inside a division algebra𝐷1 of index ℓ1ℓ2, where

ℓ2 = p𝐿2

2
for a prime p

2
that does not divide ℓ1. Moreover, 𝐿2 = 𝑂(p

2
logp

2

(ℓ1𝑛𝑠)). Hence the set Γ

can be chosen to be of size (𝑛𝑠ℓ1)𝑂(p2
)
.

This gives the final hitting set,

ℋ̃ ¯
𝑝

𝑛,𝑠,ℓ1
=

{
(𝑡𝑞1 + 𝑝1 ⊗ 𝐼ℓ2 , . . . , 𝑡𝑞𝑛 + 𝑝𝑛 ⊗ 𝐼ℓ2) :

¯
𝑞 ∈ ℋ̂𝐷1

𝑛,𝑠−1,ℓ1(𝑠−1) and 𝑡 ∈ Γ
}
. (6)

■
6In a recent work [CM23], a similar idea is used to show a polynomial-time reduction form NSingular to identity

testing of noncommutative ABPs in the white-box setting.
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5 Derandomizing Black-box RIT

In this section, we prove Theorem 2. For clarity, we divide the proof into two subsections. In

the first subsection, we prove a weaker statement that yields a quasipolynomial-size hitting set for

rational formulas of constant inversion heights. Building on this, in the next subsection, we explain

the steps to strengthen the result and obtain a quasipolynomial-size hitting set for the general case

i.e. for all rational formulas of polynomial size.

5.1 Hitting set for rational formulas of constant inversion height

Theorem 29 (Black-box RIT for constant inversion height). For the class of 𝑛-variate noncommutative
rational formulas of size 𝑠 and inversion height 𝜃, we can construct a hitting set ℋ ′

𝑛,𝑠,𝜃 ⊆ Matℓ𝜃 (Q)𝑛 of

size (𝑛𝑠)2𝑂(𝜃
2)

log(𝑛𝑠) in deterministic time (𝑛𝑠)2𝑂(𝜃
2)

log(𝑛𝑠), where ℓ𝜃 = (𝑛𝑠)2𝑂(𝜃
2) .

Proof. The proof is by induction on the inversion height of a rational formula. We will show that

for every inversion height 𝜃 we can construct a hitting set ℋ𝑛,𝑠,𝜃 ⊆ 𝐷𝑛
𝜃 as claimed, where 𝐷𝜃 is a

cyclic division algebra. The base case 𝜃 = 0 is for noncommutative formulas (which have inversion

height 0). Such a hitting set construction of size (𝑛𝑠)𝑂(log(𝑛𝑠))
is given for noncommutative formulas

without inversions, in fact even for noncommutative ABPs [ACM22].

Inductively assume that we have such a construction for rational formulas of size 𝑠 and inversion

height 𝜃 − 1. Let Φ(
¯
𝑥) be any rational formula of inversion height 𝜃 in Q⦓

¯
𝑥⦔ of size 𝑠. We first

show the following.

Claim 30. For every rational formula Φ of inversion height 𝜃 inQ⦓
¯
𝑥⦔ of size 𝑠, there exists a

¯
𝑝 ∈ ℋ𝑛,𝑠,𝜃−1

such that Φ(
¯
𝑝) is defined.

Proof. Let ℱ be the collection of all those inverse gates in the formula such that for every 𝔤 ∈ ℱ , the

path from the root to 𝔤 does not contain any inverse gate. For each 𝔤𝑖 ∈ ℱ , let ℎ𝑖 be the subformula

input to 𝔤𝑖 . Consider the formula ℎ = ℎ1ℎ2 · · · ℎ𝑘 (where 𝑘 = |ℱ |) which is of size at most 𝑠 since

for each 𝑖 , 𝑗, ℎ𝑖 and ℎ 𝑗 are disjoint. Note that ℎ is of inversion height 𝜃 − 1. Therefore, for some

¯
𝑝 ∈ ℋ𝑛,𝑠,𝜃−1, ℎ(

¯
𝑝) is nonzero and hence invertible as it is a division algebra hitting set. Therefore,

each ℎ𝑖 is also invertible at

¯
𝑝. By definition, the path from the root to each 𝔤 does not contain any

inverse gate. Hence, Φ(
¯
𝑥) is defined at

¯
𝑝. ■

If the rational formulaΦhas size 𝑠, it is shown in [HW15, Theorem 2.6] thatΦ can be represented

as the top right corner of the inverse of a linear matrix of size at most 2𝑠. More precisely,

Φ(
¯
𝑥) = 𝑢𝑡𝐿−1𝑣 where 𝐿 is a linear matrix of size at most 2𝑠 and 𝑢, 𝑣 ∈ Q2𝑠

are 2𝑠-dimensional

column vectors whose first (resp. last) entry is 1 and others are zero.7 Therefore, Φ−1
can be

written as the following [HW15, Equation 6.3]:

Φ−1(
¯
𝑥) = [1 0 . . . 0] · 𝐿−1 ·


0

0

...

1

 where 𝐿 =

[
𝑣 𝐿

0 −𝑢𝑡
]
.

7𝑢𝑡 denotes the transpose of 𝑢.

21



By Claim 30 the formula Φ is defined for some

¯
𝑝 ∈ ℋ𝑛,𝑠,𝜃−1. Therefore, 𝐿 is invertible at

¯
𝑝 (see

[HW15, Proposition 7.1]).

Our goal is to find a division algebra tuple such that Φ is nonzero and hence invertible.

Equivalently, the goal is to find a division algebra tuple such that Φ−1
is defined, and therefore 𝐿

is invertible on that tuple [HW15, Proposition 7.1].

Notice that 𝐿 is of size at most 2𝑠 + 1. Moreover, we know a tuple

¯
𝑝 ∈ ℋ𝑛,𝑠,𝜃−1 such that a

submatrix 𝐿 of 𝐿 of size 2𝑠 is invertible on

¯
𝑝. We can now use the construction of ℋ̃ ¯

𝑝

𝑛,2𝑠+1,ℓ𝜃−1

(where

ℓ𝜃−1 is the index of the cyclic division algebra 𝐷𝜃−1), as described in Theorem 26, to find a tuple

¯
𝑞

inside a division algebra of dimension ℓ𝜃 such that 𝐿(
¯
𝑞) is invertible, therefore Φ(

¯
𝑞) is nonzero.

We now obtain the following hitting set:

ℋ𝑛,𝑠,𝜃 =
⋃

¯
𝑝∈ℋ𝑛,𝑠,𝜃−1⊆𝐷𝑛

𝜃−1

ℋ̃ ¯
𝑝

𝑛,2𝑠+1,ℓ𝜃−1

where ℋ̃ ¯
𝑝

𝑛,2𝑠+1,ℓ𝜃−1

=

{
(𝑡𝑞1 + 𝑝1 ⊗ 𝐼ℓ2 , . . . , 𝑡𝑞𝑛 + 𝑝𝑛 ⊗ 𝐼ℓ2) :

¯
𝑞 ∈ ℋ̂𝐷𝜃−1

𝑛,2𝑠,ℓ𝜃−1(2𝑠+1) and 𝑡 ∈ Γ
}

and ℋ̂𝐷𝜃−1

𝑛,2𝑠,ℓ𝜃−1(2𝑠+1) =

(𝑞1 , . . . , 𝑞𝑛) : 𝑞𝑖 =
∑
𝑗 ,𝑘

𝐶 𝑗𝑘 ⊗ 𝑞𝑖 𝑗𝑘 : (𝑞111 , . . . , 𝑞𝑛ℓ𝜃−1ℓ𝜃−1
) ∈ ℋ̂ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,ℓ𝜃−1(2𝑠+1)

 .
Using our construction, we get that ℓ𝜃 = ℓ𝜃−1p𝜃

𝑂(p𝜃 logp𝜃
(ℓ𝜃−1𝑠𝑛)) = ℓ𝜃−1(ℓ𝜃−1𝑠𝑛)𝑂(p𝜃). We choose p𝜃 to

be the (𝜃 + 1)𝑡ℎ prime selected at the 𝜃𝑡ℎ stage. By prime number theorem, we can bound p𝜃 ⩽ 𝜃2
.

Now we want to argue that ℓ𝜃 ⩽ (𝑛𝑠)𝑐
𝜃2

for sufficiently large constant 𝑐.

To see that, note that ℓ𝜃 ⩽ (ℓ𝜃−1)1+𝑂(𝜃
2)(𝑛𝑠)𝑂(𝜃2)

. Inductively, ℓ𝜃−1 ⩽ (𝑛𝑠)𝑐
(𝜃−1)2

. Therefore,

ℓ𝜃 ⩽ (𝑛𝑠)𝑐
(𝜃−1)2 (1+𝑂(𝜃2)) · (𝑛𝑠)𝑂(𝜃2) ⩽ (𝑛𝑠)𝑐𝜃

2

,

for sufficiently large constant 𝑐. Note that at the base case, ℓ0 = (𝑛𝑠)𝑂(1) [ACM22]. Similarly, by

unfolding the recursion, we get

|ℋ𝑛,𝑠,𝜃 | = |ℋ𝑛,𝑠,𝜃−1 | · |ℋ̃ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,2𝑠+1

| · |Γ|.

Solving it, we get that |ℋ𝑛,𝑠,𝜃 | = (𝑛𝑠)2
𝑂(𝜃2)

log(𝑛𝑠)
.

Note thatℋ𝑛,𝑠,𝜃 ⊆ 𝐷𝑛
𝜃 . From our construction, the entry of each matrix in the hitting set is in

Q(
¯
𝑧,
¯
𝜔) where

¯
𝜔 is a complex (pℓ𝜃𝜃 )𝜃 roots of unity and

¯
𝑧 = (𝑧𝜃)𝜃. We now discuss how to obtain

a hitting set over Q itself. In the hitting set points suppose we replace

¯
𝜔 and

¯
𝑧 by commuting

indeterminates

¯
𝑡1 , ¯
𝑡2 of degree bounded by ℓ𝜃. Then, for any nonzero rational formula Φ of size

𝑠 there is a matrix tuple in the hitting set on which Φ evaluates to a nonzero matrix 𝑀(
¯
𝑡1 , ¯
𝑡2) of

dimension (𝑛𝑠)2𝑂(𝜃
2)

over the commutative function fieldQ(
¯
𝑡1 , ¯
𝑡2). It is easy to show that each entry

of 𝑀(
¯
𝑡1 , ¯
𝑡2) is a commutative rational function of the form 𝑎/𝑏, where 𝑎 and 𝑏 are polynomials in

¯
𝑡1

and

¯
𝑡2 and the degrees of both 𝑎 and 𝑏 are bounded by (𝑛𝑠)2𝑂(𝜃

2)
. We can now vary the parameters

in

¯
𝑡1 , ¯
𝑡2 over a sufficiently large set 𝑇 ⊆ Q of size (𝑛𝑠)2𝑂(𝜃

2)
such that we avoid the roots of the
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numerator and denominator polynomials involved in the computation. This gives our final hitting

setℋ ′
𝑛,𝑠,𝜃 ⊆ Mat

𝑛
ℓ𝜃
(Q) defined as:

ℋ ′𝑛,𝑠,𝜃 =

{
¯
𝑞′(
¯
𝛼1 , ¯

𝛼2) :

¯
𝑞′(
¯
𝜔,
¯
𝑧) ∈ ℋ𝑛,𝑠,𝜃 ⊆ 𝐷𝑛

𝜃 , ( ¯
𝛼1 , ¯

𝛼2) ∈ 𝑇 × · · · × 𝑇
}
. ■

5.2 Hitting set construction for all rational formulas

In this section, our goal is to improve the upper bound of Theorem 29 and obtain a quasipolynomial-

size hitting set for the general case. We first analyze the source of blow-up (incurred by the inversion

height 𝜃) and then figure out the means to control it.

Recall from the last theorem that, ℋ𝑛,𝑠,𝜃 ⊆ 𝐷𝑛
𝜃 is the hitting set for 𝑛-variate size-𝑠 rational

formulas of inversion height 𝜃 where 𝐷𝜃 is a cyclic division algebra of index ℓ𝜃. From the hitting

set construction of Theorem 29, ℓ𝜃 = ℓ𝜃−1 · ℓ where ℓ is the dimension of the matrices used in the

hitting set ℋ̂ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,ℓ𝜃−1(2𝑠+1).

What is the value of ℓ? Recall from the proof of Theorem 29 that ℓ = p𝑂(p𝜃 log(ℓ𝜃−1𝑠𝑛))
𝜃 =

(ℓ𝜃−1𝑠𝑛)𝑂(p𝜃 log p𝜃), where 𝑝𝜃 is the (𝜃 + 1)𝑡ℎ prime selected for the hitting set construction for

formulas of inversion height 𝜃. This shows that the growth of ℓ𝜃 is at least ℓ 2
𝜃

0
. To control this

blow-up (up to quasipolynomial), it suffices to construct a hitting set at the 𝜃𝑡ℎ level, in which the

dependence of ℓ𝜃−1 in ℓ is only logarithmic. Now look at the parameters in ℋ̂ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,ℓ𝜃−1(2𝑠+1).

Recall from Theorem 19 that ℓ has at least polynomial dependence in all the parameters (i.e. the

number of variables, width, degree) contain ℓ𝜃−1. Thus it is important to control their dependence

in ℓ . More precisely, these three parameters enter from the following sources:

1. The degree of the truncated generalized ABP in Claim 27.

2. Dependency on width in the hitting set dimension in Theorem 19.

3. Dependency on the number of variables in the hitting set dimension in Theorem 19.

We now explain how to modify the hitting set construction to deal with each of these.

5.2.1 Degree Improvement

First we analyze the degree bound of the truncated generalized ABP as obtained in Claim 27 and

show how it can be improved.

Claim 31. Consider a generalized 𝐷1-series 𝑃 as defined in Equation (5) (with a slight abuse in notation
for simplicity) where 𝐷1 = (𝐾1/𝐹, 𝜎1 , 𝑧).

𝑃(
¯
𝑥) = 𝐶 − 𝐵

(∑
𝑘⩾0

𝐿𝑘

)
𝐴,

Define its truncation: 𝑃(
¯
𝑥) = 𝐶 − 𝐵

( ∑
0⩽𝑘⩽𝑠−1

𝐿𝑘

)
𝐴.

Then 𝑃(
¯
𝑥) = 0⇐⇒ 𝑃(

¯
𝑥) = 0.
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Proof. Suppose 𝑃 is nonzero. Substitute each {𝑥𝑖 : 1 ⩽ 𝑖 ⩽ 𝑛} by the following map used in the

proof of Theorem 23:

𝑥𝑖 ↦→
∑
𝑗 ,𝑘

𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 .

Consider an entry of 𝐿 which is of form

∑𝑛
𝑖=1

𝑎𝑖𝑥𝑖𝑏𝑖 for some 𝑎𝑖 , 𝑏𝑖 ∈ 𝐷1. Since 𝐶 𝑗𝑘 , 1 ⩽ 𝑗 , 𝑘 ⩽ ℓ1 is

a basis for the division algebra 𝐷1, we can write each entry of 𝐿 as

∑
𝛽𝑖 𝑗𝑘𝛽′𝑖 𝑗′𝑘′𝐶 𝑗𝑘𝑥𝑖𝐶 𝑗′𝑘′ for some

𝛽𝑖 𝑗𝑘 , 𝛽𝑖 𝑗′𝑘′ ∈ 𝐹. Substituting each 𝑥𝑖 as above and identifying each 𝐶 𝑗𝑘 with 𝐶 𝑗𝑘 ⊗ 1, it follows that

each entry of 𝐿 can be expressed as

∑
𝑗 ,𝑘(𝐶 𝑗𝑘 ⊗

∑
𝑖 𝛼𝑖 𝑗𝑘𝑦𝑖 𝑗𝑘), where each 𝛼𝑖 𝑗𝑘 ∈ 𝐹. Therefore, it now

computes a series

∑
𝐶 𝑗𝑘 ⊗ 𝑓𝑗𝑘 ∈ 𝐷1 ⊗𝐹 𝐹⟪

¯
𝑦⟫ . We first observe the following claim. Its proof is

omitted as it is a straightforward generalization of the proof of Claim 24.

Claim 32. 𝑃(
¯
𝑥) = 0⇐⇒ ∑

𝐶 𝑗𝑘 ⊗ 𝑓𝑗𝑘 = 0.

Recall that, 𝐷1⟪𝑦⟫ denotes the formal power series in noncommuting

¯
𝑦 variables where the

coefficients are in 𝐷1 and

¯
𝑦 variables commute with the elements in 𝐷1. We now define the

following map:

𝜓 : 𝐷1 ⊗𝐹 𝐹⟪𝑦⟫→ 𝐷1⟪𝑦⟫,
𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 ↦→ 𝐶 𝑗𝑘𝑦𝑖 𝑗𝑘 .

Note that, 𝜓 is an isomorphism. Each entry of the matrix 𝐿 is now of form

∑
𝑖 , 𝑗 ,𝑘 𝛾𝑖 𝑗𝑘𝑦𝑖 𝑗𝑘 (where

𝛾𝑖 𝑗𝑘 ∈ 𝐷1). Therefore, substituting each 𝑥𝑖 ↦→
∑
𝑗 ,𝑘 𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 and then applying 𝜓-map on 𝑃

computes a series in 𝐷1⟪𝑦⟫. We can now apply Fact 15 and truncate it to degree 𝑠 − 1 preserving

the nonzeroness.

Clearly, applying the substitution 𝑥𝑖 ↦→
∑
𝑗 ,𝑘 𝐶 𝑗𝑘 ⊗ 𝑦𝑖 𝑗𝑘 and then the 𝜓-map on 𝑃 will have the

same effect. Therefore, 𝑃 is also nonzero. ■

5.2.2 Improving the dependency of dimension on the width

In this section, we modify the hitting set construction of Theorem 19 and make the dimension of

the hitting set independent of the ABP width. More precisely, we show the following.

Theorem 33. Let p be any prime number. For the class of 𝑛-variate degree �̃� noncommutative polynomials
computed by homogeneous ABPs of width 𝑟, we can construct a hitting set ℋ̂𝑛,𝑟,�̃� ⊆ 𝐷𝑛

2
of size (𝑛𝑟�̃�)𝑂(p log �̃�)

in (𝑛𝑟�̃�)𝑂(p log �̃�) time. Here 𝐷2 is a cyclic division algebra of index ℓ2 = p𝐿 where 𝐿 = 𝑂(p logp(𝑛�̃�)).

Proof. The proof is along the same lines as the proof of Theorem 19 with a few crucial modifications.

For the sake of reading, we give the complete proof in a self-contained way (and independent to

Theorem 19) Let Λ = 2
𝜏
, the order of the root of unity 𝜔0, be sufficiently large (indeed, it suffices

to choose 𝜏 such that Λ is larger than all the values of 𝑟3p
that will arise in the recursive hitting set

construction. The actual value of Λ, that will turn out to be quasipolynomially bounded, we shall

fix later in the analysis). Define 𝜔0 as the primitive Λ𝑡ℎ
root of unity. We set the base field for the

cyclic division algebra constructions as 𝐹 = Q(𝑧, 𝜔0).
The following lemma is, mutatis mutandis, the same as Lemma 40 except the value of 𝜇 we set.
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Lemma 34. Consider p many families of 𝑟 × 𝑟 matrices ℳ1 = {𝑀1,1 , 𝑀1,2 , . . . , 𝑀1,p𝑑−1}, . . . ,ℳp =

{𝑀p,1 , 𝑀p,2 , . . . , 𝑀p,p𝑑−1} where for the 𝑗𝑡ℎ family the entries are univariate polynomials over 𝐹[𝑢𝑗] of
degree less than 𝑛. Let ( 𝑓1(𝑢), 𝑓2(𝑢), . . . , 𝑓p𝑑−1(𝑢)) ∈ 𝐹[𝑢] be polynomials of degree at most 𝑚. Let 𝜔 ∈ 𝐹
be a root of unity of order more than (p𝑑−1𝑛𝑚)p, and let 𝐾 = 𝐹(𝜔). Define polynomials in indeterminate 𝑣:

𝑓 ′𝑖 (𝑣) =

𝑟2∑
ℓ=1

𝑓𝑖((𝜔ℓ𝛼𝑑)𝜇1)𝑞ℓ (𝑣), 1 ⩽ 𝑖 ⩽ p𝑑−1

𝑓 ′
𝑖+p𝑑−1

(𝑣) =

𝑟2∑
ℓ=1

𝑓𝑖((𝜔ℓ𝛼𝑑)𝜇2)𝑞ℓ (𝑣), 1 ⩽ 𝑖 ⩽ p𝑑−1

...

𝑓 ′
𝑖+(p−1)p𝑑−1

(𝑣) =

𝑟2∑
ℓ=1

𝑓𝑖((𝜔ℓ𝛼𝑑)𝜇p)𝑞ℓ (𝑣), 1 ⩽ 𝑖 ⩽ p𝑑−1

where 𝜇𝑗 = 𝜇𝑗−1, 𝜇 = 1 +Λp𝑑−1𝑛𝑚, and 𝑞ℓ (𝑣) is the corresponding Lagrange interpolation polynomial.
Then, for all but (p𝑑−1𝑛𝑚𝑟)p many values of 𝛼𝑑, the 𝐾-linear span of the matrix coefficients of the matrix

product
∏p

𝑗=1

∏p𝑑−1

𝑖=1
𝑀 𝑗 ,𝑖( 𝑓𝑖(𝑢𝑗)) is contained in the 𝐾-linear span of the matrix coefficients of the product∏p

𝑗=1

∏p𝑑−1

𝑖=1
𝑀 𝑗 ,𝑖( 𝑓 ′𝑖 (𝑣)).

Now we are ready to prove Theorem 33. We will set ℓ2 = p𝐿 as the index of the division algebra

𝐷2, where p ≠ 2 is the given prime and 𝐿 will be determined in the analysis below. One of the

necessary conditions is that p𝐿 > �̃�.

As mentioned before, an important step in [FS13] is to convert the given ABP into a set-

multilinear form and eventually a read-once form. More specifically, they replace the noncommu-

tative variable 𝑥𝑖 by the matrix 𝑀(𝑥𝑖) :

𝑀(𝑥𝑖) =


0 𝑥𝑖1 0 · · · 0

0 0 𝑥𝑖2 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 𝑥𝑖 �̃�
0 0 · · · 0 0


.

and the variables 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖 �̃� will be replaced by 𝑢 𝑖
1
, 𝑢 𝑖

2
, . . . , 𝑢 𝑖

�̃�
. Obviously, these matrices are

nilpotent matrices and they are not elements of any division algebra. These variables will be

finally substituted by the output of a generator 𝒢
log �̃� that stretches a seed (𝛼1 , 𝛼2 , . . . , 𝛼log �̃�+1

) to

( 𝑓1( ¯
𝛼), 𝑓2( ¯

𝛼), . . . , 𝑓�̃�( ¯
𝛼)).
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Here, our plan will be to replace 𝑥𝑖 by the following matrix 𝑀(𝑥𝑖) :

𝑀(𝑥𝑖) =



0 𝑓 𝑖
1
(
¯
𝛼) 0 · · · 0 0 · · · 0

0 0 𝑓 𝑖
2
(
¯
𝛼) · · · 0 0 · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · 𝑓 𝑖
�̃�
(
¯
𝛼) 0 · · · 0

0 0 0 · · · 0 𝑓 𝑖
�̃�+1

(
¯
𝛼) · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · 𝑓 𝑖
ℓ2−1
(
¯
𝛼)

𝑧 𝑓 𝑖
ℓ2
(
¯
𝛼) 0 0 · · · 0 0 · · · 0


,

where the tuple ( 𝑓1( ¯
𝛼), . . . , 𝑓ℓ2( ¯

𝛼)) will be the output of a generator of seed length 𝑂(log ℓ2).
Additionally, if we can maintain the property that each such matrix is a circulant matrix that

represent a cyclic division algebra element of the form shown in Proposition 11, we will be in good

shape. Now we discuss the implementation of these ideas.

Choose 𝜔 = 𝑒
2𝜋𝜄
p𝐿

, a primitive root of unity of order p𝐿. Let 𝐹 = Q(𝑧, 𝜔0) and 𝐾 = 𝐹(𝜔) be its

(finite) extension by 𝜔. Using the construction described in Section 2.3, we consider the cyclic

division algebra 𝐷2 = (𝐾/𝐹, 𝜎, 𝑧). We fix the 𝐾-automorphism 𝜎 as

𝜎(𝜔) = 𝜔Λp𝜅+1 ,

where the positive integer 𝜅 will be suitably chosen in the following analysis, fulfilling the con-

straints of Lemma 34 and some additional requirements. Note that, as 𝜎 fixes 𝐹 pointwise,

𝜎(𝜔0) = 𝜔0.

Let 𝑑 = logp �̃�, where we assume (without loss of generality) that �̃� is a power of p. Let 𝜔𝑖 = 𝜔p𝑎𝑖

for 𝑎1 > 𝑎2 > · · · > 𝑎𝑑 > 𝑎𝑑+1 > 0, where 𝑎𝑖 are positive integers to be chosen. We denote by 𝐾𝑖
the cyclic Galois extension 𝐾𝑖 = 𝐹(𝜔𝑖) of 𝐹 by 𝜔𝑖 , for 1 ⩽ 𝑖 ⩽ 𝑑 + 1. This gives a tower of field

extensions

𝐹 ⊂ 𝐹(𝜔1) ⊂ 𝐹(𝜔2) ⊂ · · · ⊂ 𝐹(𝜔𝑑) ⊂ 𝐹(𝜔𝑑+1) ⊂ 𝐹(𝜔) = 𝐾.

We require two properties of 𝜔𝑖 , 1 ⩽ 𝑖 ⩽ 𝑑 + 1.

1. For the hitting set generator 𝒢𝑖 we will choose the root of unity as 𝜔𝑖 and the variable 𝛼𝑖 will

take values only in the set

𝑊𝑖 = {𝜔 𝑗

0
𝜔
𝑗

𝑖
| 1 ⩽ 𝑗 ⩽ Λ, 1 ⩽ 𝑗 ⩽ p𝐿−𝑎𝑖 }.

2. We require that the 𝐾-automorphism 𝜎 has the property that for all 1 ⩽ 𝑖 ⩽ 𝑑 + 1 the map

𝜎p𝑖
fixes 𝜔𝑖 . It is enough to ensure that 𝜎p𝑖

has 𝐹(𝜔𝑖) as its fixed field.

We take up the second property. As 𝜎(𝜔) = 𝜔Λp𝜅+1
, we have 𝜎(𝜔𝑖) = 𝜔p𝑎𝑖 (Λp𝜅+1)

. Therefore,

𝜎p𝑖 (𝜔𝑖) = 𝜔p𝑎𝑖 (Λp𝜅+1)p𝑖 .

Now, (Λp𝜅 + 1)p𝑖 = ∑p𝑖
𝑗=0

(p𝑖
𝑗

)
Λ𝑗p𝜅 𝑗

. Choosing 𝜅 = 𝐿/2, we have 𝜔p𝜅 𝑗 = 1 for 𝑗 ⩾ 2. Therefore,

𝜎p𝑖 (𝜔𝑖) = 𝜔p𝑎𝑖 (Λp𝑖+𝜅+1) = 𝜔𝑖 · 𝜔Λp𝑎𝑖+𝑖+𝜅 .
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We can set 𝑎𝑖 + 𝑖 + 𝜅 = 𝐿 for 1 ⩽ 𝑖 ⩽ 𝑑 + 1 to ensure that 𝜎p𝑖
fixes 𝜔𝑖 . Putting 𝐿 = 2𝜅, we obtain

𝑎𝑖 = 𝜅 − 𝑖 for 1 ⩽ 𝑖 ⩽ 𝑑 + 1. (7)

It remains to choose 𝜅. In the construction of our hitting set generator 𝒢𝑖 , the parameter 𝛼𝑖 will

take values only in𝑊𝑖 defined above. We note that |𝑊𝑖 | = Λp𝐿−𝑎𝑖 = Λp𝜅+𝑖
(because for two different

pairs (𝑗1 , 𝑗2) and (𝑗′
1
, 𝑗′

2
), 𝜔 𝑗1

0
𝜔
𝑗2
𝑖

≠ 𝜔
𝑗′
1

0
𝜔
𝑗′
2

𝑖
since the orders of 𝜔𝑖 and 𝜔0 are relatively prime). By

Lemma 34 there are at most (p𝑑𝑛𝑚𝑟)p many bad values of 𝛼𝑖 for any 𝑖. Thus, it suffices to choose

𝜅 such that Λp𝜅 > (p𝑑𝑛𝑚𝑟)p. As 𝑚 ⩽ 𝑟2
and Λ > 𝑟3p

, it suffices to set

𝜅 = p𝑑 + ⌈p logp 𝑛⌉ + 1.

Remark 35. This is precisely the place where the theorem gains the quantitative advantage over

Theorem 19, by making 𝜅 independent of 𝑟.

The choice of 𝜅 determines the value of parameter 𝜇 in Lemma 34. Since 𝐿 = 2𝜅, notice that

p𝐿 > �̃� is satisfied.

Coming back to the modified construction of 𝒢𝑑, inductively, we can assume that we have

already constructed hitting set generators for each window of length p𝑑−1
. More precisely, let

𝒢𝑑−1 : (𝛼1 , . . . , 𝛼𝑑−1 , 𝑢) ↦→ ( 𝑓1(𝑢), 𝑓2(𝑢), . . . , 𝑓p𝑑−1(𝑢)) (where the polynomial 𝑓𝑖(𝑢) ∈ 𝐾𝑑−1[𝑢], for

1 ⩽ 𝑖 ⩽ p𝑑−1
) with the above two properties has already been constructed. Namely, for each

window suppose 𝑓𝑖+1(𝑢) = 𝜎( 𝑓𝑖(𝑢)) holds for all 𝑖 ⩽ p𝑑−1 − 1. Now define 𝒢𝑑 : (𝛼1 , . . . , 𝛼𝑑 , 𝑣) ↦→
( 𝑓 ′

1
(𝑣), 𝑓 ′

2
(𝑣), . . . , 𝑓 ′p𝑑 (𝑣)) using Lemma 34.

Since the Lagrange interpolation polynomial 𝑞ℓ (𝑣)has only integer coefficients, 𝜎(𝑞ℓ (𝑣)) = 𝑞ℓ (𝑣).
Therefore, for every 𝑗𝑡ℎ window (where 𝑗 ∈ {1, 2, . . . , p}) we have that 1+(𝑗−1)p𝑑−1 ⩽ 𝑖 ⩽ 𝑗p𝑑−1−1,

we have 𝑓 ′
𝑖+1
(𝑣) = 𝜎( 𝑓 ′

𝑖
(𝑣)).

Now, consider each boundary condition, i.e. 𝑖 = 𝑗p𝑑−1
. We need to ensure that 𝜎( 𝑓 ′

𝑗p𝑑−1
(𝑣)) =

𝑓 ′
1+𝑗p𝑑−1

(𝑣). Equivalently, we need to ensure that

𝜎
©«
𝑟2∑
ℓ=1

𝑓p𝑑−1((𝜔ℓ𝑑𝛼𝑑)
𝜇𝑗−1)𝑞ℓ (𝑣)ª®¬ =

𝑟2∑
ℓ=1

𝑓1((𝜔ℓ𝑑𝛼𝑑)
𝜇𝑗 )𝑞ℓ (𝑣).

We prove it by induction on 𝑗. Inductively, we can enforce it by requiring that

𝜎(𝑗−1)p𝑑−1 ©«
𝑟2∑
ℓ=1

𝑓1(𝜔ℓ𝑑𝛼𝑑)𝑞ℓ (𝑣)
ª®¬ =

𝑟2∑
ℓ=1

𝑓1((𝜔ℓ𝑑𝛼𝑑)
𝜇𝑗 )𝑞ℓ (𝑣).

Since 𝛼𝑑 will be chosen from 𝑊𝑑, we can write 𝜔ℓ
𝑑
𝛼𝑑 = 𝜔

𝑗1
0
𝜔
𝑗2
𝑑

for some 𝑗1 , 𝑗2. Now,

𝜎(𝑗−1)p𝑑−1( 𝑓1(𝜔 𝑗1
0
𝜔
𝑗2
𝑑
)) = 𝑓1(𝜎(𝑗−1)p𝑑−1(𝜔 𝑗1

0
𝜔
𝑗2
𝑑
)) as 𝜎p𝑑−1

fixes all coefficients of 𝑓1 (because 𝑓1(𝑢) ∈
𝐾𝑑−1[𝑢]). Now,

𝜎(𝑗−1)p𝑑−1(𝜔 𝑗1
0
𝜔
𝑗2
𝑑
) = 𝜔

𝑗1
0
· 𝜔 𝑗2·(Λp𝜅+1)(𝑗−1)p𝑑−1

𝑑
= 𝜔

𝑗1
0
𝜔
𝑗2(1+Λp𝑑−1+𝜅)𝑗−1

𝑑
= (𝜔 𝑗1

0
𝜔
𝑗2
𝑑
)𝜇𝑗−1

,

since 𝜔
𝜇𝑗−1

0
= 𝜔0. It verifies that the choice of 𝜇 in Lemma 34 is 1 +Λp𝑑−1+𝜅

.
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As already discussed, the parameter 𝑣 (whose place holder is 𝛼𝑑+1 in the description of 𝒢𝑑)
should vary over a set of size 𝑂((p𝑑𝑛𝑚𝑟)p). This way we ensure that 𝑓𝑖+1 = 𝜎( 𝑓𝑖) for 1 ⩽ 𝑖 ⩽ p𝑑 − 1.

Now define 𝑓p𝑑+𝑗 = 𝜎( 𝑓p𝑑+𝑗−1
) for 1 ⩽ 𝑗 ⩽ ℓ2−p𝑑. The fact that 𝒢𝑑 is indeed a generator follows from

the span preserving property and the proof is identical to the proof given in of [FS13]. For our

case it uses Lemma 34. To see the final hitting set size, we note that the seed (𝛼1 , . . . , 𝛼𝑑 , 𝛼𝑑+1) ∈
𝑆1 × 𝑆2 × · · · × 𝑆𝑑+1, where 𝑆𝑖 ⊆ 𝑊𝑖 and |𝑆𝑖 | = (p𝑑𝑛𝑚𝑟)𝑂(𝑑p)

. Each seed (𝛼1 , . . . , 𝛼𝑑+1) defines a

𝑛-tuple over𝐷𝑛
2

in the hitting set. So the size of the hitting set is (p𝑑𝑛𝑚𝑟)𝑂(𝑑p)
. After simplification,

|𝐻𝑛,𝑟,�̃� | ⩽ (𝑛𝑟�̃�)𝑂(p log �̃�)
. ■

5.2.3 Improving the dependency on the number of variables

In the hitting set construction of Theorem 33, we ensure that the dimension of the hitting set is

independent of the width of the input ABP. Recall that, the number of variables is now the only

source of dependency of ℓ𝜃−1 on ℓ . In this subsection, we fix this by modifying the hitting set

construction further which improves the dimension of the hitting set sacrificing in the hitting set

size slightly.

Theorem 36. Let p be any prime number. For the class of 𝑛-variate degree �̃� noncommutative polyno-
mials computed by homogeneous ABPs of width 𝑟, we can construct a hitting set ℋ̂𝑛,𝑟,�̃� ⊆ 𝐷𝑛

2
of size

(𝑛𝑟�̃�)𝑂(p log(�̃� log 𝑛)) in (𝑛𝑟�̃�)𝑂(p log(�̃� log 𝑛)) time. Here 𝐷2 is a cyclic division algebra of index ℓ2 = p𝐿 where
𝐿 = 𝑂(p logp(�̃� log 𝑛)).

Proof. The proof is exactly same as the proof of Theorem 33 with an additional trick to reduce the

number of variables in the ABP. Introduce two new noncommuting variables 𝑦0 and 𝑦1. Now use

the following mapping:

For each 1 ⩽ 𝑖 ⩽ 𝑛 : 𝑥𝑖 ↦→
log 𝑛∏
𝑗=1

𝑦𝑏 𝑗 ,

where 𝑏log 𝑛 · · · 𝑏2𝑏1 is the binary representation of 𝑖. This modification will increase the degree

(and hence the ABP depth) to �̃� log 𝑛. The width of the resulting ABP increases to 𝑛𝑟2
. We now

apply Theorem 33 on this bivariate degree �̃� log 𝑛 ABP of width 𝑛𝑟2
to obtain the desired bounded

on the dimension ℓ2 of the division algebra. ■

5.3 Final hitting set

We now explicitly define the final hitting set where the base field 𝐹 = Q(𝜔0 , 𝑧). As before, we can

express it as:

ℋ𝑛,𝑠,𝜃 =
⋃

¯
𝑝∈ℋ𝑛,𝑠,𝜃−1⊆𝐷𝑛

𝜃−1

ℋ̃ ¯
𝑝

𝑛,2𝑠+1,ℓ𝜃−1

, (8)

ℋ̃ ¯
𝑝

𝑛,2𝑠+1,ℓ𝜃−1

=

{
(𝑡𝑞1 + 𝑝1 ⊗ 𝐼ℓ2 , . . . , 𝑡𝑞𝑛 + 𝑝𝑛 ⊗ 𝐼ℓ2) :

¯
𝑞 ∈ ℋ̂𝐷𝜃−1

𝑛,2𝑠,2𝑠+1
and 𝑡 ∈ Γ

}
, (9)

ℋ̂𝐷𝜃−1

𝑛,2𝑠,2𝑠+1
=

(𝑞1 , . . . , 𝑞𝑛) : 𝑞𝑖 =
∑
𝑗 ,𝑘

𝐶 𝑗𝑘 ⊗ 𝑞𝑖 𝑗𝑘 : (𝑞111 , . . . , 𝑞𝑛ℓ𝜃−1ℓ𝜃−1
) ∈ ℋ̂ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,2𝑠+1

 , (10)
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where we recall thatℋ𝑛,𝑠,𝜃 is the hitting set for 𝑛-variate rational formulas of size 𝑠 and inversion

height 𝜃, ℋ̃ ¯
𝑝

𝑛,2𝑠+1,ℓ𝜃−1

is the hitting set, as defined in Equation (6), for 𝑛-variate linear matrices

of dimension 2𝑠 + 1 with witness tuple

¯
𝑝 from an ℓ𝜃−1 dimensional cyclic division algebra, and

ℋ̂𝐷𝜃−1

𝑛,2𝑠,2𝑠+1
, as defined in Equation (3), is the hitting set for 𝑛-variate 𝐷𝜃−1-ABP of width 2𝑠 and

degree 2𝑠 + 1.

Let ℓ be the dimension of the matrices in ℋ̂ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,2𝑠+1

. By Theorem 36 we obtain ℓ =

(𝑠 log(𝑛ℓ𝜃−1))𝑂(p) where p is the prime number used for the construction for the inversion height

𝜃. As we can choose p to be the (𝜃 + 2)𝑡ℎ prime for this stage which is bounded by 𝜃2
, noting that

ℓ𝜃 = ℓ · ℓ𝜃−1, we have the bound

ℓ𝜃 ⩽ ℓ𝜃−1(𝑠 log 𝑛 + 𝑠 log ℓ𝜃−1)𝑂(𝜃
2).

We claim ℓ𝜃 = (𝑛𝑠)𝑂(𝜃3)
. The base case holds as ℓ0 = (𝑛𝑠)𝑂(1). Now ℓ𝜃−1 = (𝑛𝑠)𝑐(𝜃−1)3

for some

sufficiently large constant 𝑐, from the inductive hypothesis. Therefore,

ℓ𝜃 ⩽ ℓ𝜃−1(𝑠 log 𝑛 + (𝜃 − 1)3𝑠 log(𝑛𝑠))𝑂(𝜃2)

⩽ ℓ𝜃−1(𝑛𝑠)𝑂(𝜃
2) ⩽ (𝑛𝑠)𝑐𝜃3

.

We also have from Equation (8), Equation (9), Equation (10) that,

|ℋ𝑛,𝑠,𝜃 | = |ℋ𝑛,𝑠,𝜃−1 | · |ℋ̂ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,2𝑠+1

| · |Γ|.

Inductively (on 𝜃), we prove that |ℋ𝑛,𝑠,𝜃 | ⩽ (𝑛𝑠)𝑂(𝜃
6

log
2(𝑛𝑠))

.

Recall that in Theorem 26 we bounded |Γ| by (𝑛𝑠ℓ𝜃−1)𝑂(p). Combined with Theorem 36, we

obtain

|ℋ̂ℓ2

𝜃−1
𝑛,2ℓ𝜃−1𝑠,2𝑠+1

| · |Γ| ⩽ (𝑛𝑠ℓ𝜃−1)𝑂(𝜃
2

log 𝑠 log log(ℓ𝜃−1𝑛))

⩽ (𝑛𝑠)𝑂(𝜃5
log 𝑠 log(𝑐𝜃3+log(𝑛𝑠)))

⩽ (𝑛𝑠)𝑂(𝜃5
log

2(𝑛𝑠)).

Unfolding the recursion and using the fact thatℋ𝑛,𝑠,𝜃 ⩽ (𝑛𝑠)𝑂((𝜃−1)6 log
2(𝑛𝑠))

, we now obtain,

ℋ𝑛,𝑠,𝜃 ⩽ (𝑛𝑠)𝑂(𝜃
6

log
2(𝑛𝑠)).

Final steps Finally, as done in the proof of Theorem 29, we can use the same trick to obtain a

hitting set over Q itself. Firstly, we need to bound the parameter Λ = 2
𝜏

which is the order of the

root of unity 𝜔0 (as described in the construction of Theorem 33). As observed there, it suffices to

choose Λ > 𝑟3p
for all the ABP widths 𝑟 and primes p that arise in the recursive construction. For

rational formulas of inversion height 𝜃, we have 𝑟 = 𝑂(𝑠ℓ𝜃) ⩽ (𝑛𝑠)𝑂(𝜃
3)

. As p ⩽ 𝜃2
, it suffices to

choose Λ ⩾ (𝑛𝑠)𝑂(𝜃5)
.

In the hitting set points we replace (as discussed in Section 1.2) 𝜔0 , ¯
𝜔 and

¯
𝑧 by commuting

indeterminates 𝑡1 , ¯
𝑡2 , ¯
𝑡3. Notice that all these are of degree ⩽ (𝑛𝑠)𝑂(𝜃5)

. Then, for any nonzero

rational formula Φ of size 𝑠 there is a matrix tuple in the hitting set on which Φ evaluates to a
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nonzero matrix 𝑀(𝑡1 , ¯
𝑡2 , ¯
𝑡3) of dimension quasipolynomial over the commutative function field

Q(𝑡1 , ¯
𝑡2 , ¯
𝑡3). Each entry of 𝑀(𝑡1 , ¯

𝑡2 , ¯
𝑡3) is a commutative rational expression of the form 𝑎/𝑏, where

𝑎 and 𝑏 are polynomials in 𝑡1 , ¯
𝑡2 and

¯
𝑡3 and the degrees of both 𝑎 and 𝑏 are quasipolynomial. We

can now vary the parameters in 𝑡1 , ¯
𝑡2 , ¯
𝑡3 over a (𝑛𝑠)𝑂(𝜃5)

large set 𝑇 ⊆ Q such that we avoid the

roots of the numerator and denominator polynomials involved in the computation. Therefore,

finally we obtain the hitting setℋ𝑛,𝑠,𝜃 ⊆ Matℓ𝜃 (Q) (with a slight abuse of notation) where

ℓ𝜃 ⩽ (𝑛𝑠)𝑂(𝜃
3)

and, |ℋ𝑛,𝑠,𝜃 | ⩽ (𝑛𝑠)𝑂(𝜃
6

log
2(𝑛𝑠)).

It completes the proof of Theorem 2.

5.4 RIT is in quasi-NC

Recall that, NC is the class of problems which can be solved in poly-logarithmic time using

polynomially many processors in parallel. Similarly, quasi-NC is the class of problems which can

be solved in poly-logarithmic time using quasipolynomially many processors in parallel. We now

prove Corollary 4, a quasi-NC RIT algorithm in the white-box setting. The proof consists of two

steps. Firstly we show that the hitting set presented in the last section can be constructed in quasi-

NC. We then show that given a matrix tuple, a noncommutative rational formula can be evaluated

in NC. We now describe each step.

Step 1. Quasi-NC hitting set construction: Firstly, note that the matrix operations like additions,

and tensor products are trivially inside NC. Now from the description of the hitting setℋ𝑛,𝑠,𝜃

given in Section 5.3 via Equation (8), Equation (9), Equation (10), it is easy to observe that

to build the hitting set in quasi-NC by induction on 𝜃, it suffices to show (independently)

such a quasi-NC construction for the hitting set 𝐻�̂� ,𝑟 ,�̂� for �̂�-variate noncommutative ABPs of

width 𝑟 and �̂� many layers. As before, we can assume that �̂� = p𝑑 for a prime p. Moreover,

observe that the modifications in the hitting set construction in Theorem 36 over Theorem 33

do not change the parallel complexity of the construction, since the binary encoding for the

variables can be trivially implemented in NC. Thus it suffices to notice that the hitting set

construction in Theorem 33 can be carried out in quasi-NC.

Now the main idea behind the hitting set construction for noncommutative ABPs is that,

at the 𝑗𝑡ℎ level, the hitting set generator 𝒢𝑗 combines and extends partially computed hitting

set tuples by satisfying 𝑝 − 1 boundary conditions (to embed in the division algebra). Such

partial computations can be done inductively (and in parallel) in quasi-NC using 𝒢𝑗−1.

Moreover, to carry out the extensions, it is sufficient to vary the parameter 𝛼 𝑗 (for each

boundary condition) over a set of size (p𝑑 �̂�𝑟)𝑂(p). Here, 𝛼 𝑗 is the variable that the generator

substitutes at the 𝑗𝑡ℎ level of the recursion. This is explained in Lemma 34 and Theorem 33.

Clearly, using quasipolynomial number of processors, such extensions can be performed in

quasi-NC to build the generator at the 𝑗𝑡ℎ level. Since 𝑗 ⩽ 𝑑, the height of the recursion

is 𝑂(log �̂�). Since 𝜃 = 𝑂(log 𝑠) and �̂� ⩽ 𝑠ℓ𝜃 = (𝑛𝑠)𝑂(log
3 𝑠)

, the entire computation can be

performed within quasi-NC.

Step 2. Parallel evaluation of rational formulas:
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Let Φ(𝑥1 , 𝑥2 , . . . , 𝑥𝑛) be a rational formula of size 𝑠 in the noncommuting variables 𝑥𝑖 . Given

a matrix tuple (𝑝1 , 𝑝2 , . . . , 𝑝𝑛) of ℓ × ℓ matrices over Q, our aim is to give an NC algorithm for

evaluating Φ(𝑝1 , 𝑝2 , . . . , 𝑝𝑛) if Φ is defined at this matrix tuple and otherwise detecting that it is

undefined.

We first note that if the formula Φ has depth 𝑂(log 𝑠) then it is amenable to parallel evaluation

on the input (𝑝1 , 𝑝2 , . . . , 𝑝𝑛) using the formula structure. Matrix multiplication, addition, and

matrix inversion are all in NC
2

[Csa76, Ber84]. Hence evaluation of Φ(𝑝1 , 𝑝2 , . . . , 𝑝𝑛) is in NC
3

in

this case.

In general, the formula Φ may have depth 𝑂(𝑠). Hrubes and Wigderson, in [HW15], have

described a polynomial-time algorithm for depth reduction that transforms Φ into an equivalent

rational formula Φ̂ that has size poly(𝑠) and depth𝑂(log 𝑠). Their algorithm is essentially based on

Brent’s classical result [Bre74] on depth reduction for commutative arithmetic formulas.8 However,

there are some new aspects. It turns out that if Ψ is a rational formula in noncommuting variables

𝑧, 𝑦1 , 𝑦2 , . . . , 𝑦𝑚 with 𝑧 occurring exactly once as input then Ψ has a 𝑧-normal form expression:

Ψ = (𝐴𝑧 + 𝐵)(𝐶𝑧 + 𝐷)−1

where 𝐴, 𝐵, 𝐶, 𝐷 are small rational formulas with no occurrence of 𝑧. They exploit this structure

in their divide and conquer algorithm for constructing the equivalent formula Φ̂ in polynomial

time.

Following the construction in [HW15], it is also possible to parallelize it and obtain an NC

algorithm for computing the depth-reduced formula Φ̂ [Jog23]. We can use that to evaluate Φ̂, and

hence Φ, on (𝑝1 , 𝑝2 , . . . , 𝑝𝑛). However, we sketch a simpler self-contained NC algorithm [Jog23] for

evaluation of Φ(𝑝1 , 𝑝2 , . . . , 𝑝𝑛).

1. The input rational formula Φ is a binary tree. Let 𝑟 denote its root. By standard NC

computation we can find a gate 𝑣 in Φ such that the size of the subformula Φ𝑣 rooted at 𝑣 has

size between 𝑠/3 and 2𝑠/3.

2. We compute the path 𝑃 = (𝑣, 𝑣1 , 𝑣2 , . . . , 𝑣𝑡 = 𝑟) of all gates from 𝑣 to 𝑟 in Φ. Then we find all

the gates 𝑢 in Φ such that 𝑢 ∉ 𝑃 and 𝑢 is input to some gate 𝑣𝑖 ∈ 𝑃. Notice that for 𝑣𝑖 ∈ 𝑃
such that 𝑣𝑖 ∈ {+,×} has exactly one such input 𝑢. The inversion gates 𝑣𝑖 are unary.

3. Recursively evaluate Φ𝑣 and each such Φ𝑢 on the input (𝑝1 , 𝑝2 , . . . , 𝑝𝑛).

4. We are left with the problem of evaluation a skew rational formula Φ′ consisting of the

gates along path 𝑃 with the already computed Φ𝑢 and Φ𝑣 as inputs. Using 𝑧-normal forms

[HW15] (defined above) it is easy to obtain a simple divide-and-conquer parallel algorithm

for evaluating skew rational formulas (in particular, evaluating Φ′).

We sketch an analysis of the running time of the above parallel algorithm. Let 𝑇(𝑠) bound the

number of rounds of parallel matrix multiplications, additions, inversions required to evaluate a

size 𝑠 rational formula. Then, the above algorithm yields the bound

𝑇(𝑠) ⩽ 𝑇(2𝑠/3) + 𝑂(log 𝑠),

8We note that Brent actually describes a detailed parallel algorithm for carrying out the depth reduction.
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which implies𝑇(𝑠) ⩽ 𝑂(log
2 𝑠). Notice that the term𝑇(2𝑠/3) bounds the running time for recursive

evaluation of Φ𝑣 and each Φ𝑢 , all in parallel, because each of these subformulas have size at most

2𝑠/3. The term 𝑂(log 𝑠) is the bound9 for the separate parallel algorithm, mentioned above, for

evaluating the skew rational formula Φ′.10

As each matrix operation can be performed in NC
2
, it follows that rational formula evaluation

is in NC
4
. We obtain the following.

Lemma 37. There is an NC
4 algorithm for evaluating a noncommutative rational formula Φ on a given

matrix input (𝑝1 , 𝑝2 , . . . , 𝑝𝑛).

Remark 38. Notice that the NC algorithm described above, with minor changes, will yield an

𝑂(log
2 𝑠) depth, poly(𝑠) size rational formula equivalent to Φ.

The size of our final hitting set is (𝑛𝑠)𝑂(𝜃6
log

2(𝑛𝑠)) = (𝑛𝑠)𝑂(log
8(𝑛𝑠))

and the dimension of the ma-

trices in the hitting set is (𝑛𝑠)𝑂(𝜃3) = (𝑛𝑠)𝑂(log
3 𝑠)

. Using the rational formula evaluation procedure,

on each such matrix tuple, it can be evaluated within quasi-NC. This is in parallel repeated for

(𝑛𝑠)𝑂(log
8(𝑛𝑠))

points in the hitting set. This completes the proof of Corollary 4.

6 Conclusion

In this paper, we nearly settle the black-box complexity of the RIT problem. However, designing

a black-box algorithm for the NSingular problem remains wide open. The connection of this

problem to the parallel algorithm for bipartite matching [FGT21] is already discussed in Section 1.

We believe that the techniques introduced in this paper might be useful in designing efficient

hitting sets for the NSingular problem.

Recall that, the result of Derksen and Makam [DM17] implies that for a nonzero rational

formula of size 𝑠, there is a 2𝑠 × 2𝑠 matrix tuple such that the evaluation is nonzero. Therefore,

the quasipolynomial bound on the dimension of the hitting set point obtained in Theorem 2 is far

from the optimal bound known. An interesting open problem is to construct a hitting set where

the dimension is polynomially bounded in the size of the formula.

Another interesting problem is to show that, in the white-box setting RIT can be solved in

NC. Recall that, the identity testing of noncommutative formulas can be performed in NC in the

white-box setting [AJS09, For14].

Acknowledgment. We thank Pushkar S. Joglekar for discussions concerning depth reduction of

rational formulas in parallel, and for sharing his observation [Jog23].
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A Appendix

A.1 Division algebra hitting set for noncommutative ABPs

Fix a prime number p. In particular, p is independent of the input ABP. The main result of this

section shows that the quasipolynomial-size hitting set construction for noncommutative ABPs by
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Forbes and Shpilka [FS13] can be adapted to a more general setting where the hitting set points

lie in a finite-dimensional cyclic division algebra whose index is a power of p. We note that such

construction is already known when the index is a power of 2 [ACM22].

Let 𝐹 be a characteristic zero field. Let {𝑢1 , 𝑢2 , . . . , 𝑢p} be commuting indeterminates. The

ring Mat𝑟(𝐹[𝑢𝑖]) consists of 𝑟 × 𝑟 matrices whose entries are univariate polynomials in 𝑢𝑖 over 𝐹.

Equivalently, an element 𝑀 ∈ Mat𝑟(𝐹[𝑢𝑖]) can be seen as a univariate polynomial with matrix

coefficients in Mat𝑟(𝐹). Its degree deg(𝑀) is the largest integer such that the matrix coefficient

of 𝑢
deg(𝑀)
𝑖

in 𝑀 is nonzero. Let 𝐹 denote the algebraic closure of 𝐹. The following lemma is a

straightforward generalization of [FS13, Lemma 3.5].

Lemma 39. For each 𝑖 ∈ [p], let 𝑀𝑖 ∈ Mat𝑟(𝐹[𝑢𝑖]) be of degree < 𝑛 and 𝜔 ∈ 𝐹 be a root of unity whose
(finite) order is at least 𝑛p. Let 𝐾 = 𝐹(𝜔) be the field extension by 𝜔. Then for any 𝛼 ∈ 𝐹 and any 𝜇 ⩾ 𝑛,

span𝐾

{
[𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp ]

p∏
𝑖=1

𝑀𝑖(𝑢𝑖)
}
⊇ span𝐾

{
𝑀1(𝜔ℓ𝛼)𝑀2((𝜔ℓ𝛼)𝜇) · · ·𝑀p((𝜔ℓ𝛼)𝜇

𝑝−1)
}
.

Moreover, except for < 𝑛𝑝𝑟2 many values of 𝛼 in 𝐹,

span𝐾

{
[𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp ]

p∏
𝑖=1

𝑀𝑖(𝑢𝑖)
}
= span𝐾

{
{𝑀1(𝜔ℓ𝛼)𝑀2((𝜔ℓ𝛼)𝜇) · · ·𝑀p((𝜔ℓ𝛼)𝜇

𝑝−1)
}
.

Here ℓ varies from {0, 1, . . . , 𝑟2 − 1}.

Proof. By span we will always mean the 𝐾-linear span.

p∏
𝑖=1

𝑀𝑖(𝑢𝑖) =
∑

𝑗1 , 𝑗2 ,..., 𝑗p

(
[𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp ]

p∏
𝑖=1

𝑀𝑖(𝑢𝑖)
)
· 𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp .

Therefore,

p∏
𝑖=1

𝑀𝑖((𝜔ℓ𝛼)𝜇
𝑖−1) =

∑
𝑗1 , 𝑗2 ,..., 𝑗p

(
[𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp ]

p∏
𝑖=1

𝑀𝑖(𝑢𝑖)
)
· (𝜔ℓ𝛼)𝑗1+𝑗2𝜇+...+𝑗p𝜇p−1

, (11)

which proves the first part of the lemma.

We now define a rectangular matrix 𝐶 ∈ Mat𝑛p ,𝑟2(𝐹) as follows. Each row of 𝐶 is indexed

by a tuple (𝑗1 , 𝑗2 , . . . , 𝑗p) ∈ {0, 1, . . . , 𝑛 − 1}p. For each such tuple (𝑗1 , 𝑗2 , . . . , 𝑗p), treating the 𝑟 × 𝑟
matrix [𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp ]

∏p
𝑖=1

𝑀𝑖(𝑢𝑖) as an 𝑟2
-dimensional vector, we define it as the corresponding

row 𝐶(𝑗1 , 𝑗2 ,..., 𝑗p). By definition,

row-span(𝐶) = span

{
[𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp ]

p∏
𝑖=1

𝑀𝑖(𝑢𝑖)
}
.

Now consider the matrix 𝐴𝛼 ∈ Mat𝑟2 ,𝑛p(𝐾) whose columns are indexed by tuples (𝑗1 , 𝑗2 , . . . , 𝑗p) ∈
{0, 1, . . . , 𝑛 − 1}p and let

(𝐴𝛼)ℓ ,(𝑗1 , 𝑗2 ,..., 𝑗p) = (𝜔ℓ𝛼)𝑗1+𝑗2𝜇+...+𝑗p𝜇
p−1

.
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We note that this is used in the rank extractor construction by Gabizon and Raz [GR08]. Applying

their result it follows that, except for at most 𝑛p𝑟2
values of 𝛼, the rank of the product matrix

rank(𝐴𝛼𝐶) = rank(𝐶). Multiplying the ℓ 𝑡ℎ row of 𝐴𝛼 with 𝐶 we get

(𝐴𝛼)ℓ𝐶 =
∑

𝑗1 , 𝑗2 ,..., 𝑗p

(
[𝑢 𝑗1

1
𝑢
𝑗2
2
· · · 𝑢 𝑗pp ]

p∏
𝑖=1

𝑀𝑖(𝑢𝑖)
)
· (𝜔ℓ𝛼)𝑗1+𝑗2𝜇+...+𝑗p𝜇p−1

=

p∏
𝑖=1

𝑀𝑖((𝜔ℓ𝛼)𝜇
𝑖−1).

Therefore, row-span(𝐴𝛼𝐶) = span{𝑀1(𝜔ℓ𝛼)𝑀2((𝜔ℓ𝛼)𝜇) · · ·𝑀p((𝜔ℓ𝛼)𝜇
p−1)}.

As row-span(𝐶) contains row-span(𝐴𝛼𝐶), if rank(𝐶) = rank(𝐴𝛼𝐶) then we have row-span(𝐶) =
row-span(𝐴𝛼𝐶). Therefore, barring at most 𝑛p𝑟2

values of 𝛼, row-span(𝐶) = row-span(𝐴𝛼𝐶). ■

Now we informally discuss how Lemma 39 is used for the hitting set construction. W.l.o.g, we

can assume that the degree of the ABP is p𝑑 for some integer 𝑑. We group the ABP layers into p
sets where each set has p𝑑−1

consecutive matrix products (over different variables for each of the

sets). Then, roughly speaking, the next lemma gives a method to show that the span of the full

matrix product can be captured by span of the matrix products over a single variable. A crucial

component will be Lemma 39. The next lemma is again a straightforward generalization of [FS13,

Lemma 3.7].

Lemma 40. Consider p many families of 𝑟 × 𝑟 matrices ℳ1 = {𝑀1,1 , 𝑀1,2 , . . . , 𝑀1,p𝑑−1}, . . . ,ℳp =

{𝑀p,1 , 𝑀p,2 , . . . , 𝑀p,p𝑑−1} where for the 𝑗𝑡ℎ family the entries are univariate polynomials over 𝐹[𝑢𝑗] of
degree less than 𝑛. Let ( 𝑓1(𝑢), 𝑓2(𝑢), . . . , 𝑓p𝑑−1(𝑢)) ∈ 𝐹[𝑢] be polynomials of degree at most 𝑚. Let 𝜔 ∈ 𝐹
be a root of unity of order more than (p𝑑−1𝑛𝑚)p and 𝐾 = 𝐹(𝜔). Define polynomials in indeterminate 𝑣:

𝑓 ′𝑖 (𝑣) =

𝑟2∑
ℓ=1

𝑓𝑖((𝜔ℓ𝛼𝑑)𝜇1)𝑞ℓ (𝑣), 1 ⩽ 𝑖 ⩽ p𝑑−1

𝑓 ′
𝑖+p𝑑−1

(𝑣) =

𝑟2∑
ℓ=1

𝑓𝑖((𝜔ℓ𝛼𝑑)𝜇2)𝑞ℓ (𝑣), 1 ⩽ 𝑖 ⩽ p𝑑−1

...

𝑓 ′
𝑖+(p−1)p𝑑−1

(𝑣) =

𝑟2∑
ℓ=1

𝑓𝑖((𝜔ℓ𝛼𝑑)𝜇p)𝑞ℓ (𝑣), 1 ⩽ 𝑖 ⩽ p𝑑−1

where 𝜇𝑗 = 𝜇𝑗−1, 𝜇 = 1 + p𝑑−1𝑛𝑚, and 𝑞ℓ (𝑣) is the corresponding Lagrange interpolation polynomial.
Then, for all but (p𝑑−1𝑛𝑚𝑟)p many values of 𝛼𝑑, the 𝐾-linear span of the matrix coefficients of the matrix

product
∏p

𝑗=1

∏p𝑑−1

𝑖=1
𝑀 𝑗 ,𝑖( 𝑓𝑖(𝑢𝑗)) is contained in the 𝐾-linear span of the matrix coefficients of the product∏p

𝑗=1

∏p𝑑−1

𝑖=1
𝑀 𝑗 ,𝑖( 𝑓 ′𝑖 (𝑣)).

Proof. As before, all spans are 𝐾-linear spans. Let 𝛾 = p𝑑−1
and for each 𝑗, let 𝑅 𝑗(𝑢𝑗) =∏p𝑑−1

𝑖=1
𝑀 𝑗 ,𝑖( 𝑓𝑖(𝑢𝑗)). Note that 𝑅 𝑗(𝑢𝑗) is a matrix of univariate polynomials in 𝑢𝑗 of degree less
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than 𝛾𝑛𝑚. By definition,

p∏
𝑗=1

p𝑑−1∏
𝑖=1

𝑀 𝑗 ,𝑖( 𝑓𝑖(𝑢𝑗)) =
p∏
𝑗=1

𝑅 𝑗(𝑢𝑗).

Lemma 39 implies that the span of the coefficients of

∏p
𝑗=1
𝑅 𝑗(𝑢𝑗) is contained in the span of∏p

𝑗=1
𝑅 𝑗((𝜔ℓ𝛼)𝜇𝑗 ), where 𝜇𝑗 = 𝜇𝑗−1

for 𝜇 > p𝑑−1𝑛𝑚.

For each 𝑗, let 𝑇𝑗(𝑣) =
∏p𝑑−1

𝑖=1
𝑀 𝑗 ,𝑖( 𝑓 ′𝑖+(𝑗−1)𝑝𝑑−1

(𝑣)). By the definition of the Lagrange interpolation

polynomials, letting 𝑞ℓ (𝛽𝑘) = 𝛿ℓ 𝑘 where each 𝛽𝑘 is distinct, we have

𝑇𝑗(𝛽ℓ ) =
p𝑑−1∏
𝑖=1

𝑀 𝑗 ,𝑖( 𝑓𝑖((𝜔ℓ𝛼𝑑)𝜇𝑗 )) = 𝑅 𝑗((𝜔ℓ𝛼𝑑)𝜇𝑗 ).

Hence, span


p∏
𝑗=1

𝑅 𝑗(𝑢𝑗)
 ⊆ span


p∏
𝑗=1

𝑇𝑗(𝑣)
𝑣∈𝐾 . ■

Now we are ready to prove the main theorem of the section which is a restatement of Theo-

rem 19.

Theorem 41. Let p be any prime number. For the class of 𝑛-variate degree �̃� noncommutative polynomials
computed by homogeneous ABPs of width 𝑟, we can construct a hitting set ℋ̂𝑛,𝑟,�̃� ⊆ 𝐷𝑛

2
of size (𝑛𝑟�̃�)𝑂(p log �̃�)

in (𝑛𝑟�̃�)𝑂(p log �̃�) time. Here 𝐷2 is a cyclic division algebra of index ℓ2 = p𝐿 where 𝐿 = 𝑂(p logp(𝑛𝑟�̃�)).

Proof. We will set ℓ2 = p𝐿 as the index of the division algebra 𝐷2, where p is the given prime and 𝐿

will be determined in the analysis below. One of the necessary conditions is that p𝐿 > �̃�.

One of the key ideas in [FS13] is to convert the given ABP into a set-multilinear form and

eventually a read-once form. More specifically, they replace the noncommutative variable 𝑥𝑖 by

the matrix 𝑀(𝑥𝑖) :

𝑀(𝑥𝑖) =


0 𝑥𝑖1 0 · · · 0

0 0 𝑥𝑖2 · · · 0

...
...

. . .
. . .

...

0 0 · · · 0 𝑥𝑖 �̃�
0 0 · · · 0 0


.

and the variables 𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖 �̃� will be replaced by 𝑢 𝑖
1
, 𝑢 𝑖

2
, . . . , 𝑢 𝑖

�̃�
. Obviously, these matrices are

nilpotent matrices and they are not elements of any division algebra. These variables will be

finally substituted by the output of a generator 𝒢
log �̃� that streches a seed (𝛼1 , 𝛼2 , . . . , 𝛼log �̃�+1

) to

( 𝑓1( ¯
𝛼), 𝑓2( ¯

𝛼), . . . , 𝑓�̃�( ¯
𝛼)).
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Here, our plan will be to replace 𝑥𝑖 by the following matrix 𝑀(𝑥𝑖) :

𝑀(𝑥𝑖) =



0 𝑓 𝑖
1
(
¯
𝛼) 0 · · · 0 0 · · · 0

0 0 𝑓 𝑖
2
(
¯
𝛼) · · · 0 0 · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · 𝑓 𝑖
�̃�
(
¯
𝛼) 0 · · · 0

0 0 0 · · · 0 𝑓 𝑖
�̃�+1

(
¯
𝛼) · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · 𝑓 𝑖
ℓ2−1
(
¯
𝛼)

𝑧 𝑓 𝑖
ℓ2
(
¯
𝛼) 0 0 · · · 0 0 · · · 0


,

where the tuple ( 𝑓1( ¯
𝛼), . . . , 𝑓ℓ2( ¯

𝛼)) will be the output of a generator of seed length 𝑂(log ℓ2).
Additionally, if we can maintain the property that each such matrix is a circulant matrix that

represent a cyclic division algebra element of the form shown in Proposition 11, we will be able to

implement the construction. Now we discuss the implementation of these ideas.

Choose 𝜔 = 𝑒
2𝜋𝜄
p𝐿

, a primitive root of unity of order p𝐿. Let 𝐹 = Q(𝑧) and 𝐾 = 𝐹(𝜔) be its (finite)

extension by 𝜔. Using the construction described in Section 2.3, we consider the cyclic division

algebra 𝐷2 = (𝐾/𝐹, 𝜎, 𝑧). We fix the 𝐾-automorphism 𝜎 as

𝜎(𝜔) = 𝜔p𝜅+1 ,

where the positive integer 𝜅 will be suitably chosen in the following analysis, fulfilling the con-

straints of Lemma 40 and some additional requirements.

Let 𝑑 = logp �̃�, where we assume (without loss of generality) that �̃� is a power of p. Let 𝜔𝑖 = 𝜔p𝑎𝑖

for 𝑎1 > 𝑎2 > · · · > 𝑎𝑑 > 𝑎𝑑+1 > 0, where 𝑎𝑖 are positive integers to be chosen. We denote by 𝐾𝑖
the cyclic Galois extension 𝐾𝑖 = 𝐹(𝜔𝑖) of 𝐹 by 𝜔𝑖 , for 1 ⩽ 𝑖 ⩽ 𝑑 + 1. This gives a tower of field

extensions

𝐹 ⊂ 𝐹(𝜔1) ⊂ 𝐹(𝜔2) ⊂ · · · ⊂ 𝐹(𝜔𝑑) ⊂ 𝐹(𝜔𝑑+1) ⊂ 𝐹(𝜔) = 𝐾.

We require two properties of 𝜔𝑖 , 1 ⩽ 𝑖 ⩽ 𝑑 + 1.

1. For the hitting set generator 𝒢𝑖 we will choose the root of unity as 𝜔𝑖 and the variable 𝛼𝑖 will

take values only in the set

𝑊𝑖 = {𝜔 𝑗

𝑖
| 1 ⩽ 𝑗 ⩽ p𝐿−𝑎𝑖 }.

2. We require that the 𝐾-automorphism 𝜎 has the property that for all 1 ⩽ 𝑖 ⩽ 𝑑 + 1 the map

𝜎p𝑖
fixes 𝜔𝑖 . It is enough to ensure that 𝜎p𝑖

has 𝐹(𝜔𝑖) as its fixed field.

We take up the second property. As 𝜎(𝜔) = 𝜔p𝜅+1
, we have 𝜎(𝜔𝑖) = 𝜔p𝑎𝑖 (p𝜅+1)

. Therefore,

𝜎p𝑖 (𝜔𝑖) = 𝜔p𝑎𝑖 (p𝜅+1)p𝑖 .

Now, (p𝜅 + 1)p𝑖 = ∑p𝑖
𝑗=0

(p𝑖
𝑗

)
p𝜅 𝑗

. Choosing 𝜅 = 𝐿/2, we have 𝜔p𝜅 𝑗 = 1 for 𝑗 ⩾ 2. Therefore,

𝜎p𝑖 (𝜔𝑖) = 𝜔p𝑎𝑖 (p𝑖+𝜅+1) = 𝜔𝑖 · 𝜔p𝑎𝑖+𝑖+𝜅 .
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We can set 𝑎𝑖 + 𝑖 + 𝜅 = 𝐿 for 1 ⩽ 𝑖 ⩽ 𝑑 + 1 to ensure that 𝜎p𝑖
fixes 𝜔𝑖 . Putting 𝐿 = 2𝜅, we obtain

𝑎𝑖 = 𝜅 − 𝑖 for 1 ⩽ 𝑖 ⩽ 𝑑 + 1. (12)

It remains to choose 𝜅. In the construction of our hitting set generator 𝒢𝑖 , the parameter 𝛼𝑖
will take values only in 𝑊𝑖 defined above. We note that |𝑊𝑖 | = p𝐿−𝑎𝑖 = p𝜅+𝑖

. By Lemma 40 there

are at most (p𝑑𝑛𝑚𝑟)p many bad values of 𝛼𝑖 for any 𝑖. Thus, it suffices to choose 𝜅 such that

p𝜅 > (p𝑑𝑛𝑚𝑟)p. It suffices to set

𝜅 = p𝑑 + ⌈p logp(𝑛𝑚𝑟)⌉ + 1.

The choice of 𝜅 determines the value of parameter 𝜇 in Lemma 34. Since 𝐿 = 2𝜅, it follows that

p𝐿 > �̃� holds.

Coming back to the modified construction of 𝒢𝑑, inductively, we can assume that we have

already constructed hitting set generators for each window of length p𝑑−1
. More precisely, let

𝒢𝑑−1 : (𝛼1 , . . . , 𝛼𝑑−1 , 𝑢) ↦→ ( 𝑓1(𝑢), 𝑓2(𝑢), . . . , 𝑓p𝑑−1(𝑢)) (where the polynomial 𝑓𝑖(𝑢) ∈ 𝐾𝑑−1[𝑢], for

1 ⩽ 𝑖 ⩽ p𝑑−1
) with the above two properties has already been constructed. Namely for each

window, suppose 𝑓𝑖+1(𝑢) = 𝜎( 𝑓𝑖(𝑢)) holds for all 𝑖 ⩽ p𝑑−1 − 1. Now define 𝒢𝑑 : (𝛼1 , . . . , 𝛼𝑑 , 𝑣) ↦→
( 𝑓 ′

1
(𝑣), 𝑓 ′

2
(𝑣), . . . , 𝑓 ′p𝑑 (𝑣)) using Lemma 40.

Since the Lagrange interpolation polynomial 𝑞ℓ (𝑣)has only integer coefficients, 𝜎(𝑞ℓ (𝑣)) = 𝑞ℓ (𝑣).
Therefore, for every 𝑗𝑡ℎ window (where 𝑗 ∈ {1, 2, . . . , p}) we have that 1+(𝑗−1)p𝑑−1 ⩽ 𝑖 ⩽ 𝑗p𝑑−1−1,

we have 𝑓 ′
𝑖+1
(𝑣) = 𝜎( 𝑓 ′

𝑖
(𝑣)).

Now, consider each boundary condition, i.e. 𝑖 = 𝑗p𝑑−1
. We need to ensure that 𝜎( 𝑓 ′

𝑗p𝑑−1
(𝑣)) =

𝑓 ′
1+𝑗p𝑑−1

(𝑣). Equivalently, we need to ensure that

𝜎
©«
𝑟2∑
ℓ=1

𝑓p𝑑−1((𝜔ℓ𝑑𝛼𝑑)
𝜇𝑗−1)𝑞ℓ (𝑣)ª®¬ =

𝑟2∑
ℓ=1

𝑓1((𝜔ℓ𝑑𝛼𝑑)
𝜇𝑗 )𝑞ℓ (𝑣).

We prove it by induction on 𝑗. Inductively, we can enforce it by requiring that

𝜎(𝑗−1)p𝑑−1 ©«
𝑟2∑
ℓ=1

𝑓1(𝜔ℓ𝑑𝛼𝑑)𝑞ℓ (𝑣)
ª®¬ =

𝑟2∑
ℓ=1

𝑓1((𝜔ℓ𝑑𝛼𝑑)
𝜇𝑗 )𝑞ℓ (𝑣).

Since 𝛼𝑑 will be chosen from𝑊𝑑 (all powers of 𝜔𝑑), we can write 𝜔ℓ
𝑑
𝛼𝑑 = 𝜔

𝑗′

𝑑
for some 𝑗′. Now,

𝜎(𝑗−1)p𝑑−1( 𝑓1(𝜔 𝑗′

𝑑
)) = 𝑓1(𝜎(𝑗−1)p𝑑−1(𝜔 𝑗′

𝑑
)) as 𝜎p𝑑−1

fixes all coefficients of 𝑓1 (because 𝑓1(𝑢) ∈ 𝐾𝑑−1[𝑢]).
Now,

𝜎(𝑗−1)p𝑑−1(𝜔 𝑗′

𝑑
) = 𝜔

𝑗′·(p𝜅+1)(𝑗−1)p𝑑−1

𝑑
= 𝜔

𝑗′(1+p𝑑−1+𝜅)𝑗−1

𝑑
= (𝜔ℓ

𝑑
𝛼𝑑)𝜇

𝑗−1

,

which verifies that the choice of 𝜇 in Lemma 40 is 1 + p𝑑−1+𝜅
.

This way we ensure that 𝑓𝑖+1 = 𝜎( 𝑓𝑖) for 1 ⩽ 𝑖 ⩽ p𝑑 − 1. Now define 𝑓p𝑑+𝑗 = 𝜎( 𝑓p𝑑+𝑗−1
) for

1 ⩽ 𝑗 ⩽ ℓ2 − p𝑑. The fact that 𝒢𝑑 is indeed a generator follows from the span preserving property

and the proof is identical to the proof given in [FS13]. For our case, it uses Lemma 40. To see

the final hitting set size, we note that the seed (𝛼1 , . . . , 𝛼𝑑 , 𝛼𝑑+1) ∈ 𝑆1 × 𝑆2 × · · · × 𝑆𝑑+1, where

40



𝑆𝑖 ⊆ 𝑊𝑖 and |𝑆𝑖 | = p𝜅
. Each seed (𝛼1 , . . . , 𝛼𝑑+1) defines a 𝑛-tuple over 𝐷𝑛

2
in the hitting set. So

the size of the hitting set is (p𝑑𝑛𝑚𝑟)𝑂(𝑑p)
. Since 𝑚 is the degree of the generators at every stage

which is bounded by the degree of the Lagrange interpolation polynomial 𝑟2
, we can simplify,

|𝐻𝑛,𝑟,�̃� | ⩽ (𝑛𝑟�̃�)𝑂(p log �̃�)
. ■
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