
Explicit Codes for Poly-Size Circuits and Functions that are Hard to
Sample on Low Entropy Distributions

Ronen Shaltiel* Jad Silbak†

November 13, 2023

Abstract

Codes for poly-size circuits. Guruswami and Smith (J. ACM 2016) considered codes for channels that
are poly-size circuits which modify at most a p-fraction of the bits of the codeword. This class of channels
is significantly stronger than Shannon’s binary symmetric channel (BSC), but weaker than Hamming’s
channels which are computationally unbounded.

The goal of this direction is to construct explicit codes (namely, codes with poly-time encoding and
decoding algorithms) with rate R(p) = 1 − H(p) (matching the capacity of the BSC, and beating the
capacity of codes for Hamming’s channels). This goal implies circuit lower bounds, and specifically that
E = DTIME(2O(n)) does not have poly-size circuits (and therefore explicit constructions need to be based
on hardness assumptions).
We give the first explicit construction of such codes for poly-size channels. Specifically, for every 0 ≤
p < 1

4 , there are explicit codes with rate R(p) = 1 −H(p), assuming E does not have size 2Ω(n) nonde-
terministic circuits. This hardness assumption was introduced in the context of hardness vs. randomness
tradeoffs, and is by now standard in complexity theory.

Our result builds on, and improves the previous work of Guruswami and Smith, and Shaltiel and Silbak
(FOCS 2022). (These works gave a randomized Monte-Carlo construction, rather than explicit codes).
Functions that are hard to sample on low entropy distributions. A key component in our codes (that
may be of independent interest) is a new complexity theoretic notion of hard to sample functions (HTS):
We say that a function f on n bits is an HTS for circuits of size nc, if there exists a constant c′ > c, such
that for every randomized circuitA of size nc that samples a distribution (X,Y) withH∞(X) ≥ c′ · log n,
it holds that Pr[Y = f(X)] ≤ 1

nc .
This is inspired by a related notion introduced by Viola (SICOMP 2012), in which X is the uniform

distribution. Here, we allow A to choose any distribution X (except for distributions X with very low
min-entropy) and note that a circuit A of size nc, may be hardwired with≈ nc outputs of f , and therefore,
can easily produce pairs (X, f(X)) for a distribution X , with H∞(X) ≈ c log n.

Building on classical works on “hardness amplification” (and using many additional tools and ideas
from pseudorandomness) we show that if E does not have size 2Ω(n) nondeterministic circuits, then for
every constant c, there is an HTS that is computable in time poly(nc).

Our codes are obtained by using our HTS (as well as additional tools and ideas) to achieve explicit
constructions (under the hardness assumption) of several components in the code of Shaltiel and Silbak,
replacing previously obtained randomized Monte-Carlo constructions of these components. We then need
to revisit the codes of Shaltiel and Silbak, and significantly modify the construction and analysis, so that
they works with the weaker components that we are able to explicitly construct.

*University of Haifa, Email: ronen@cs.haifa.ac.il.
†Northeastern University, Email: jadsilbak@gmail.com.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 149 (2023)

Contents

1 Introduction 1
1.1 Codes and channels . 1

1.1.1 An explicit construction of stochastic codes for poly-size circuits under hardness as-
sumptions . 2

1.2 Functions that are hard to sample on low entropy distributions (HTS) 4
1.2.1 Definition of HTS using small sets . 4
1.2.2 An explicit construction of HTS under hardness assumptions 5

1.3 Overview of the technique . 6
1.3.1 Overview of a construction of a weak HTS (with small input length, and very large h) 6
1.3.2 Overview of the proof of Theorem 1.2: Reducing h using list-recoverable codes 7
1.3.3 Overview of the proof of Theorem 1.3: Obtaining an HTS with small output length . . 9
1.3.4 Overview of the construction of explicit stochastic codes for poly-size circuits 10
1.3.5 Overview of an explicit construction of evasive BSC codes 10
1.3.6 Overview of an explicit construction of SS-non-malleable codes 12

1.4 More related work on codes for computationally bounded channels 13
1.4.1 Stochastic codes for weaker classes of computationally bounded channels 13
1.4.2 Other scenarios of codes for computationally bounded channels 14

2 Preliminaries and ingredients 15
2.1 Circuits, hardness assumptions and pseudorandom generators 15

2.1.1 Various types of circuits . 15
2.1.2 Hardness assumptions . 16
2.1.3 Pseudorandom generators . 16

2.2 Various kinds of error-correcting codes . 17
2.2.1 Standard notions of error correcting codes . 17
2.2.2 Stochastic codes for a class of channels . 18
2.2.3 Stochastic codes with error-correcting and pseudorandomness properties 18
2.2.4 Reed-Solomon list-decoding . 19

2.3 Standard definitions and classical results from complexity theory 19
2.3.1 Samplable distributions . 19
2.3.2 Approximate counting and uniform sampling of NP witnesses 19

2.4 Extractors, dispersers, samplers and list-recoverable codes 20
2.4.1 Averaging Samplers . 20
2.4.2 Seeded extractors and dispersers . 21
2.4.3 List-recoverable codes . 21
2.4.4 Relative error extractors for weakly recognizable distributions 22

2.5 Pseudorandmly chosen permutations . 23
2.6 Decoding from errors induced by a random permutation . 23

3 Functions that are hard to sample on low entropy distributions (HTS) 24
3.1 Definition of HTS . 24

3.1.1 Any HTS can be made natural at a small cost . 24
3.1.2 What kind of hardness is captured by an HTS? . 25
3.1.3 HTS vs function that is hard to sample on low min-entropy distributions 26

3.2 Explicit constructions of HTS from hardness assumptions . 26

i

3.3 A weak HTS from hardness amplification . 27
3.3.1 Proof of Lemma 3.8 . 28

3.4 Strengthening a weak HTS . 31
3.4.1 Using list-recoverable codes . 31
3.4.2 Using extractors for weakly recognizable distributions 32

3.5 Putting things together . 34
3.5.1 Proof of Theorem 3.4 . 34
3.5.2 A construction of extractors for weakly recognizable distributions with high min-entropy 34
3.5.3 Proof of Theorem 3.5 . 38

4 Evasive BSC codes 39
4.1 Definition of evasive codes . 39
4.2 Explicit constructions of evasive codes for random permutations 39

4.2.1 Proof of Theorem 4.2 . 40

5 SS-non-malleable codes 42
5.1 Definitions of non-malleable and SS-non-malleable codes . 42
5.2 An explicit construction of SS-non-malleable codes under hardness assumptions 44
5.3 The non-malleable codes of Ball, Dachman-Soled and Loss 44
5.4 Using HTS to convert non-malleable codes into SS-non-malleable codes 45

5.4.1 Proof of Lemma 5.9 . 47
5.4.2 Proof of Lemma 5.10 . 48

6 A construction of stochastic codes for poly-size circuits based on hardness assumptions 49
6.1 The construction . 49
6.2 Proof of Theorem 6.1 . 52

6.2.1 Comparison of the construction and analysis to earlier work 57
6.2.2 Using SS-non-malleability: Proof of Lemma 6.6 . 58
6.2.3 Using evasiveness: Proof of Lemma 6.7 . 60
6.2.4 The correct control string is one of the candidates: Proof of Lemma 6.4 65

7 Open problems 68
7.1 Open problems on stochastic codes for poly-size circuits. 68
7.2 Open problems on HTS . 69

ii

1 Introduction
1.1 Codes and channels

Coding theory studies transmission of messages using noisy channels. In this paper we are interested in binary
codes, and prefer to focus on decoding properties of a code, rather than combinatorial properties like minimal
distance. More specifically, given a family C of (possibly randomized) functions C : {0, 1}n → {0, 1}n
(which we call “channels”) the goal is to design a code (namely, a pair (Enc,Dec) of an encoding map
Enc : {0, 1}k → {0, 1}n and a decoding map Dec : {0, 1}n → {0, 1}k) such that for every message
m ∈ {0, 1}k and every channel C ∈ C, decoding is successful when the channel C chooses a “noise vector”
e = C(Enc(m)) as a function of Enc(m). More formally, decoding is successful if:

Dec(Enc(m)⊕ C(Enc(m))) = m.

The rate of a code is R = k
n . For a family C of channels, we use R(C) to denote the capacity of the family,

which is the best possible rate of a code for this family.1 For a family C of channels, there are two main goals:

1. Determine the capacity R(C).
2. Construct explicit codes (namely codes with poly-time encoding and decoding algorithms).

Let us review some coding scenarios and channel families. In all examples below 0 ≤ p < 1
2 is a parameter.

Binary symmetric channels. A binary symmetric channel (denoted by BSCp) is the randomized function
that ignores its input and produces a “noise vector” of n i.i.d. random bits, where each of them is one with
probability p. This is a special case of an extensively studied class of randomized channels (often referred to
as “Shannon channels”). A celebrated theorem of Shannon shows that R(BSCp) = 1 −H(p).2 Later work
on code concatenation [For65] produced codes with explicit and even linear time algorithms [GI05].

Hamming channels. The class of Hamming channels (denoted by Hamp) is the class of all functions such
that for every input x, the relative Hamming weight of C(x) is at most p.3 (This corresponds to a channel
that flips at most a p fraction of the bits). This class is probably the most studied class of channels, and yet,
its capacity R(Hamp) is not precisely understood. It is known that R(Hamp) = 0 for p ≥ 1

4 , and that for
0 < p < 1

4 , R(Hamp) < 1 − H(p).4 The Gilbert-Varshamov bound shows that R(Hamp) ≥ RGV(p) =
1−H(2p), but explicit codes with this rate are unknown. Recently, there has been progress on explicit codes
with rate that is close to the Gilbert-Varshamov bound for p approaching 1

4 [TS17, JST21, BD22].

Poly-size channels. Lipton [Lip94] suggested to consider intermediate families of channels consisting of
Hamming channels that are computationally bounded. Following a seminal paper of Guruswami and Smith
[GS16], we will consider the class of Hamming channels that can be implemented by polynomial size circuits.
More formally, let Cktsp be the class of all C ∈ Hamp such that C is a circuit of size s. We will focus on the
case that s = nc for a constant c, and call this class poly-size channels.

1More formally, R(C) is the largest number R such that for every ϵ > 0, there exist infinitely many n, for which there exists a
code for C, with rate at least R − ϵ. We mostly use the term “rate” for a specific (family of) codes, and “capacity” for a class of
channels, but these terms are interchangeable in this paper.

2Here H(p) = p · log(1/p) + (1− p) · log(1/(1− p)) is Shannon’s entropy function.
3The relative Hamming weight of a string z ∈ {0, 1}n is wt(z) = |{i∈[n]:zi ̸=0}|

n
.

4This follows because by the Elias-Bassalygo bound, which states that R(Hamp) < RElias-Bassalygo(p) where the latter is
strictly smaller than 1 −H(p). We remark that the Elias-Bassalygo bound gives a stronger result, and that later work by McEliece,
Rodemich, Rumsey and Welch [MRRW77] improves this bound in some ranges. We state the bound R < 1 − H(p) to stress that
R(Hamp) < R(BSCp) = 1−H(p).

1

It turns out that with the standard definition of codes, every code for circuits of linear size is also a code
for Hamming channels.5 This means that in order to take advantage of restricted families of channels, one
needs to consider a different scenario. Several such scenarios were considered in the literature. In this paper,
we follow the approach of Guruswami and Smith [GS16] and consider stochastic codes.

Stochastic codes. These are codes where the encoding algorithm is randomized, and decoding only needs
to succeed with high probability. More precisely, an encoding map of a stochastic code, is a function Enc :
{0, 1}k × {0, 1}d → {0, 1}n, and a decoding map is a function Dec : {0, 1}n → {0, 1}k. It is required that
for every m ∈ {0, 1}k, and every channel C in the considered class:

Pr
S←Ud

[Dec(Enc(m,S)⊕ C(Enc(m,S)) = m] ≥ 1− ν,

where ν is an error parameter. (A precise formal definition is given in Definition 2.10). Note that the decoding
algorithm does not need to receive the randomness S chosen by the encoder, and so, these codes can be used
in the standard coding communication scenario. The rate of a stochastic code is R = k

n .
Stochastic codes do not give an improvement in capacity in the case of Hamming channels (as it is easy

to show that a stochastic code for Hamming channels yields a standard code with the same rate) but they
do allow improved capacities for other classes. Such improvements were obtained for weaker sub-classes of
Hamming channels such as “additive channels” [GS16] and “small space channels” [SS21b]. In both cases,
the capacity was shown to be 1−H(p), and this was achieved with polynomial time encoding and decoding
algorithms. (See Section 1.4 for a brief survey).

Summing up, if one allows stochastic codes (instead of standard codes) and restricts the class of Hamming
channels to be computationally bounded, then we may expect to obtain the optimal capacity of the BSC,
beating the capacity of Hamming channels. Furthermore, for some weak classes of channels this was achieved
with explicit stochastic codes.

1.1.1 An explicit construction of stochastic codes for poly-size circuits under hardness assumptions

In this paper we achieve a similar result for the significantly stronger class of poly-size channels. For this
class, we cannot hope for an unconditional explicit code. This is because it is easy to see (see. e.g., [SS21a])
that an explicit stochastic code for a class C, implies that the class E = DTIME(2O(n)) is not contained in
C, and we do not know how to prove such lower bounds against poly-size circuits. Therefore, inspired by
the “hardness vs. randomness tradeoffs” of Nisan and Wigderson [NW94] and Impagliazzo and Wigderson
[IW97], Guruswami and Smith suggested to base explicit constructions of such stochastic codes on circuit
lower bounds (which are often referred to as hardness assumptions).

Hardness assumptions. We say that “E is hard for exponential size circuits of some type”, if there exist a
problem L ∈ E = DTIME(2O(n)) and a constant β > 0, such that for every sufficiently large n, circuits of
size 2β·n (of the specified type) fail to compute the characteristic function of L on inputs of length n. (See
Section 2.1 for a more formal definition).

The assumptions that E is hard for exponential size (deterministic) circuits was used by the celebrated
paper of Impagliazzo and Wigderson [IW97] to imply that BPP = P. The assumption that E is hard for
exponential size nondeterministic circuits (which originated in hardness versus randomness for AM) has also
become standard in complexity theory, and was used in many results [FL97, KvM02, MV05, TV00, SU05,
BOV07, GW02, GST03, SU06, SU09, Dru13, AASY15, BV17, AIKS16, HNY17, DMOZ22, BDL22, CT22].
It can be viewed as a scaled, nonuniform versions of the widely believed assumption that EXP ̸= NP.

5This follows as if there is a message m ∈ {0, 1}k and a channel C ∈ Hamp such that Dec(Enc(m)⊕C(Enc(m))) ̸= m, then
the channel C′(x) = C(Enc(m)) is a channel on which decoding is not successful. Note that the channel C′ computes a constant
function, and therefore has low complexity in any nonuniform model of computation. We discuss the class of Hamming channels that
are constant functions a.k.a. additive channels in Section 1.4.

2

Our result. Assuming a hardness assumption against nondeterministic circuits, we give the first explicit
construction of codes for poly-size circuits, achieving the optimal capacity of R = 1 −H(p) (matching the
capacity of the BSC, and beating the capacity of Hamming channels). This is stated next (a more formal
statement appears as Theorem 6.1).

Theorem 1.1 (Explicit stochastic codes for poly-size channels). If E is hard for exponential size nondeter-
ministic circuits then for every constants 0 ≤ p < 1

4 , c > 1, and for every sufficiently small constant ϵ > 0,
for infinitely many n, there is stochastic code (Enc,Dec) for Cktn

c

p with rate R ≥ 1−H(p)− ϵ, and success
probability 1− 1

nc . Furthermore, the construction is explicit and Enc,Dec are computable in time poly(nc).

Previous work on codes for poly-size circuits. In their seminal paper, Guruswami and Smith [GS16] in-
troduced this problem, and showed that for p > 1

4 , the capacity of CktO(n)
p is zero. For 0 ≤ p < 1

4 , they gave
stochastic codes with rate 1−H(p) for poly-size channels, which are similar to those in Theorem 1.1, except
for two caveats:

1. The stochastic codes are not explicit, and instead, they were achieved by a “Monte-Carlo randomized
construction”. This means that there is a pre-processing stage in which a polynomially long string is
chosen uniformly, and published (so that it is available to the encoding algorithm, decoding algorithm
and the channel) and the correctness of the stochastic code is guaranteed with high-probability over this
choice.6 (See Definition 2.10 for a formal definition).

2. The code is list-decodable rather than uniquely-decodable, meaning that Dec is allowed to output a list
of L(ϵ) candidates (where L(ϵ) is a constant that depends on ϵ) and it is required that w.h.p. the correct
message appears in the list.

Later work by Shaltiel and Silbak [SS21a] showed how to make the construction of list-decodable stochas-
tic codes explicit, under the hardness assumption that E is hard for exponential size circuits. Recently, Shaltiel
and Silbak [SS22] gave a Monte-Carlo randomized construction of uniquely-decodable stochastic codes with
rate 1−H(p). They left the open problem of achieving an explicit construction of a uniquely decodable code,
under hardness assumptions.

Comparison to previous work. In this paper, we obtain a stochastic code that doesn’t suffer from any of
the caveats! We achieve the best possible rate of 1 − H(p) (matching the capacity of the BSC, and beating
the rate of the best possible codes for Hamming channels). This is achieved for every 0 ≤ p < 1

4 , with
polynomial time encoding and decoding algorithms. (As in the case of all the aforementioned previous work,
the polynomial in the running time of Enc,Dec is larger than nc, and it is open whether there exist codes
where Enc,Dec can be simulated by the channel. See Section 7 for a discussion).7

As noted earlier, the assumption that E is hard for exponential size nondeterministic circuits is a standard
hardness assumption that is used in many contexts in complexity theory and cryptography. It is open whether
the assumption can be relaxed to the necessary assumption that E is hard for poly-size circuits.

Explicit conditional constructions vs. randomized Monte-Carlo constructions. An explicit conditional
construction under hardness assumptions (like the one in this paper) immediately implies an (unconditional)
Monte-Carlo randomized construction. This is because by a standard counting argument, a random stringR of
length nd (where d is slightly larger than c) can be interpreted as a truth table of a function f : {0, 1}d logn →
{0, 1} that is hard for circuits of size nc of any type (and indeed, nc is almost exponential in d log n).

6We remark that the random string that is chosen and made public, is of length larger than nc, and so it is arguable in what sense
the size nc channel C can “read” it.

7Note that in contrast to codes for Hamming channels, for poly-size channels, the “list-decoding capacity” and “unique-decoding
capacity” coincide for every 0 ≤ p < 1

4
. We remark that for 1

4
< p < 1

2
, the unique-decoding capacity is zero [GS16], whereas the

list-decoding capacity is 1−H(p), and this was achieved by the list-decodable stochastic codes of [GS16, SS21a]).

3

This means that a conditional explicit construction under hardness assumptions, can always be instantiated
if one has access to an nd bit long random string R (as in the Monte-Carlo setup).

Moreover, this example demonstrates why it is significantly more difficult to obtain explicit constructions
under hardness assumptions, than Monte-Carlo randomized constructions: Unlike Monte-Carlo randomized
constructions (which can make use of any pseudorandom object that can be shown to exist under the proba-
bilistic method), explicit conditional constructions can only rely on pseudorandom objects that we can explic-
itly construct unconditionally, or under hardness assumptions.

Indeed, jumping ahead (see Section 1.3) some of the technical contribution of this paper is giving explicit
conditional constructions of “functions that are hard to sample on low entropy distributions” and using these,
to explicitly construct some of the pseudorandom objects that were used in the Monte-Carlo randomized
construction of Shaltiel and Silbak [SS22].

1.2 Functions that are hard to sample on low entropy distributions (HTS)

We now present a new notion of “hard functions” that is inspired by, and builds on, notions of “hardness of
sampling”. Viola [Vio12] suggests to systematically study functions f : {0, 1}n → {0, 1}n′ that are not only
hard to compute, but also hard to sample, in the sense that no low-complexity sampling algorithm can sample
a pair (X, f(X)) where X is uniform over {0, 1}n.

Previous work on this notion, focused mostly on weak classes (such as constant depth circuits [Vio12],
or ROBPs [EGZ22]) whereas we will be interested in poly-size circuits (and cannot hope for unconditional
results). More significantly, we will want functions such that it is hard to sample a pair (X, f(X)), not only
for the uniform distribution, but also for every low min-entropy samplable X . In the definition below, we
require an even stronger property: that every sampling circuit A is unlikely to produce a pair (x, f(x)) that
wasn’t initially “hardwired to A”.

1.2.1 Definition of HTS using small sets

We say that a function f : {0, 1}n → {0, 1}n′ is an h-HTS for circuits of size nc, if for every size nc circuit
A that samples a distribution Z = (X,Y) over {0, 1}n × {0, 1}n′ , there exists a set H ⊆ {0, 1}n of size at
most h, such that:

Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] ≤ 1

nc
.

(A more formal definition appears in Definition 3.1).
In order to motivate this definition, note that a size nc circuit A can be hardwired with t ≈ nc pairs

(x1, f(x1), . . . , (xt, f(xt)), which enables A to produce the distribution (X, f(X)), for a uniformly chosen
X ← {x1, . . . , xt}. This allowsA to produce a distribution (X,Y) withH∞(X) = log t ≈ c log n, on which
Y = f(X) with probability one.

Loosely speaking, in the case that h = poly(nc), the definition above essentially says that this is the worst
that a size nc circuit A can do: For every circuit A, there is a set H ⊆ {0, 1}n of size comparable to nc of
inputs, such that A is unlikely to sample a pair (X,Y) such that X ̸∈ H and Y = f(X).8

For any value of h, the definition implies that f is hard to sample on every samplable distribution with
min-entropy k ≈ log h. Specifically, it is immediate that if f is an h-HTS for circuits of size nc, then f is:

Hard to sample on low min-entropy distributions: For every circuit A of size nc that samples a distribu-
tion Z = (X,Y) where H∞(X) ≥ log h+ c log n, Pr(X,Y)←A[Y = f(X)] ≤ 2

nc . 9

8This “definitional methodology” of trying to argue that nonuniform adversaries are not able to produce a string that was not
“hardwired to the circuit” has been used recently in several scenarios. Two examples that we are aware of, are definitions of multi-
collision resistance of keyless hash functions [BKP18], and definitions of certain variants of non-malleable codes [FMVW16, SS22].

9While an HTS is hard to sample on low min-entropy distributions (see Section 3.1.2) there does not seem to be an implication

4

We would like to relate an HTS to the more standard notion of functions that are hard to compute. A
function that is hard to sample on some samplable distribution X , is in particular hard to compute when the
input is chosen from X . (This follows, because every circuit C which attempts to computes f on a samplable
distribution X , induces a sampling algorithm A which samples X , and produces Y = C(X)). Specifically
(see Section 3.1.2 for a more formal statement) if f is an h-HTS, then f is also:
Hard to compute on low min-entropy samplable distributions: For every X that is samplable by size nc

circuits, with H∞(X) ≥ log h+ c log n, and for every circuit C of size nc, Pr[C(X) = f(X)] ≤ 2
nc .

In particular, If h ≤ 2n − c log n (that is, if h is only slightly smaller than the trivial 2n) then f is:
Hard to compute on the uniform distribution: For X ← Un, and for every circuit C of size nc,

Pr[C(X) = f(X)] ≤ 2
nc .

HTS vs. functions that are hard to compute on the uniform distribution. Functions that are hard to
compute on the uniform distribution are widely studied in complexity theory, and have many applications. As
we have observed above, an HTS (with say h = poly(nc)) is stronger than such functions in two respects:

1. The function f is hard to compute not just when the input X is chosen according to the uniform distri-
bution, but also for every samplable distribution X with H∞(X) ≥ log h ≈ c log n.

2. This holds even if the circuit attempting to compute f doesn’t receiveX as input, and instead is allowed
to sample X on its own (while potentially also preparing correlated side information).10

Our motivation for defining and constructing HTS is that we use them as a component in our construction of
stochastic codes for poly-size channels. However, it seems to us that functions that are hard to compute/sample
on low min-entropy samplable distributions are interesting regardless of this application.

1.2.2 An explicit construction of HTS under hardness assumptions
In this paper we give explicit constructions of hard to sample functions from standard hardness assumptions.
This is similar in spirit to past work on “hardness amplification” [IW97, STV01] (and many subsequent works)
which show how to construct functions that are hard to compute on the uniform distribution, assuming E is
hard for exponential size circuits. We give two constructions of HTS based on the assumption that E is hard
for exponential size nondeterministic circuits (this assumption has already appeared in constructions of hard
functions [TV00, Dru13]). By the previous discussion this gives functions that are hard to compute on low
min-entropy samplable distributions. To the best of our knowledge, prior to this work, there were no known
constructions of functions that are hard to compute on low min-entropy samplable distributions.11

in the other direction. Loosely speaking, this is because the HTS guarantee applies to every circuit A of size nc (including circuits
that sample distributions X that do not have H∞(X) ≥ log h). To demonstrate this point, consider the case where A samples a
distribution (X,Y) where X is only statistically close to a distribution X ′ that has large min-entropy. Such a distribution X may
have very low min-entropy (and note that X ′ is not necessarily efficiently samplable). The notion of “hard to sample on low min-
entropy samplable distributions” does not seem to imply that Pr(X,Y)←A[Y = f(X)] is small. In contrast, the definition of HTS
that we chose (using the terminology of small sets, rather than the statement with min-entropy that appears in the abstract) applies to
A, and does guarantee that Pr(X,Y)←A[Y = f(X)] is small (see discussion in Section 3.1.3). We highlight this technicality because
this versatility of the definition of HTS will be crucial in our application to codes, and will also make an HTS more “composable”.
This “composability” will be very helpful when constructing an HTS (see Section 1.3.2).

10To demonstrate this point, consider the following example: Let g : {0, 1}n → {0, 1}n be a one-way permutation, and let
f = g−1. It is immediate that an efficient adversary A cannot compute f(X) on X ← Un. However, if we allow A to sample
X ← Un on its own, then A can easily produce pairs of the form (X, f(X)) by sampling Y ← Un and producing (g(Y), Y). This
demonstrates that sampling may be easier than computing, and therefore, proving lower bounds on sampling is harder than proving
lower bounds on computing.

11A boolean function that is “very hard” to compute on low min-entropy distributions, is in particular, an “extractor for samplable
distributions” as defined by Trevisan and Vadhan [TV00]. Current extractors for samplable distributions [TV00, AASY15] (which
are based on similar hardness assumptions) cannot handle distributions with min-entropy smaller than n/2. In contrast, we will be
able to handle much lower min-entropy. Our results do not translate into extractors for samplable distributions, because our functions
have large output length, but Theorem 1.3 can be viewed as a “condenser for low min-entropy samplable distributions”.

5

A parameter that we have not yet discussed is the output length of an HTS. Naturally, shorter output
length is preferable. The two constructions below represent two tradeoffs between the set size h, and the
output length of f . (Jumping ahead, we will use HTS for several tasks in our construction of stochastic codes
for poly-size circuit, and the different tasks will require different tradeoffs).

Theorem 1.2 (HTS with small h and large output length). If E is hard for exponential size nondeterministic
circuits then for every constant c > 1, there exist constants c′, d > c, such that for every sufficiently large n,
there is a function f : {0, 1}n → {0, 1}nc0 such that f is an nc

′
-HTS for circuits of size nc (here, c0 > 1 is a

universal constant). Furthermore, f is computable in time nd.

Theorem 1.2 is stated more formally in Theorem 3.4. This HTS has very low h that is optimal up to a
polynomial. This will be crucial in some of our applications. However, the output length of f is larger than n.
This turns out to be problematic in some other applications (as the ratio between n+n′ and n will sometimes
come into the rate of the codes we construct). This motivates constructing a second HTS with n′ ≪ n. We
are able to do this, for “medium sized h”, namely h = 2δn for a small constant δ > 0. This larger value of h
is good enough for our intended application.

Theorem 1.3 (HTS with medium h and small output length). If E is hard for exponential size nondeterministic
circuits then for every constants c > 1, δ > 0 and 0 < λ < 1, there exists a constant d such that for every
sufficiently large n, there is a function f : {0, 1}n → {0, 1}λ·n that is a 2δn-HTS for circuits of size nc.
Furthermore, f is computable in time nd.

Theorem 1.3 is stated more formally in Theorem 3.5. Our techniques can also give other tradeoffs (as-
suming stronger assumptions) see Section 7 for a discussion and open problems. Recently, Ball, Shaltiel
and Silbak [BSS23] used our constructions of HTS (together with other components of this paper) to give
an improved explicit construction of high rate non-malleable codes for poly-size circuits. We hope that these
constructions of HTS (and functions that are hard to compute on low min-entropy samplable distributions)
will turn out to be useful in other scenarios in complexity theory, cryptography, and pseudorandomness.

1.3 Overview of the technique

In this section we give an overview of the main ideas that we use. For this purpose we will allow ourselves to
be informal. The later technical sections do not build on the content of this section, and the reader can skip
to the technical section if they wish. In Sections 1.3.1, 1.3.2, 1.3.3 we explain our constructions of HTS. In
Sections 1.3.4, 1.3.5, 1.3.6 we explain the construction of stochastic codes (building on our HTS).

1.3.1 Overview of a construction of a weak HTS (with small input length, and very large h)

We would like to construct an HTS based on hardness assumptions. Our starting point is the classical com-
plexity theoretic results on “hardness amplification” due to Impagliazzo and Wigderson [IW97], and Sudan,
Trevisan and Vadhan [STV01]. These show that for every constant c > 1, if E is hard for exponential size cir-
cuits, then the assumption can be “amplified” to give a function f : {0, 1}m=Θ(logn) → {0, 1}m′=Θ(logn) that
is hard to compute on the uniform distribution: For every circuitC of size nc, PrX←Um [C(X) = f(X)] ≤ 1

nc ,
and furthermore, f is computable in time poly(nc). We would like to extend this result in two respects:

• We want this to hold even if X is sampled by the circuit (rather than given to it as input).
• We want this to hold even if X is a low min-entropy distribution (rather than the uniform distribution).

6

Handling the first item: sampling vs. computing. We solve the first issue at the cost of assuming a
stronger assumption against nondeterministic circuits. We will now explain this approach.

When we want to prove that a function f is hard to sample, rather than hard to compute, our adversary
is a sampling circuit A that produces a distribution Z = (X,Y), and we want to bound the probability that
Y = f(X). We are worried that A may sample the input X to f , together with side information, that will
help it to obtain f(X) (as in the example with one-way permutations).

We use classical complexity theoretic results on “approximate counting and uniform sampling of NP
witnesses” [Sto83, Sip83, JVV86, BGP00] (see Section 2.3.2). These results imply that an NP-circuit (this a
circuit that in addition to the standard gates, is also equipped with gates that solve an NP-complete problem,
see Definition 2.1) can “reverse” the sampling of a sampling circuit. More precisely, Let A be a circuit that
samples some distribution Z = (X,Y) (meaning that on a uniform R, A(R) = (X,Y)). These classical
results imply that there is a randomized NP-circuit B of roughly the same size as A, that given an input
x, produces a string R, such that R is uniformly distributed over “random coins” of A that produce output
X = x. This means that given input x, the circuit B can “reverse” the sampling process of A, and obtain
random coins that lead to x. When given x, we can applyB to obtain the random coinsR, and then applyA on
R. This computation is an NP-circuit C of roughly the same size as A that can produce any side information
that A produces, and in particular, it can produce the output string Y .

This gives that there exists an NP-circuit C of roughly the same size of A, that computes f(X) (given
input X) with the same success probability that A achieves. In particular, for the case where X is the uniform
distribution, we obtain that a function f that is hard to compute on the uniform distribution (for NP-circuits)
is also hard to sample (for the case where X is the uniform distribution) for (standard) circuits.

It is standard (see, e.g. [KvM02]) that in the aforementioned hardness amplification result of [IW97,
STV01], if one wants the function f to be hard to compute on the uniform distribution for NP-circuits (rather
than for standard circuits) then it is sufficient that the initial assumption holds against NP-circuits (and in fact,
using more care, and the “downwards collapse theorem of [SU06]) even against nondeterministic circuits.

Consequently, combining these results, under the assumption that E is hard for exponential size non
deterministic circuits, we can get a function f : {0, 1}m=Θ(logn) → {0, 1}m′=Θ(logn) that is hard to compute
on the uniform distribution (for NP circuits) and therefore, hard to sample for standard circuits (in the case
where X is the uniform distribution).12 Using a more delicate argument (that we will not explain in this
overview) we argue that f is an h-HTS (according to the precise definition with small set) with h = 2(1−α)m

for some small constant α > 0. The precise details are given in Section 3.3.

Handling the second item: from uniform to low min-entropy. In the next two subsections we present
several techniques to take a “weak HTS” like the one we already constructed, and convert it to a strong HTS
(like the ones that we promised to construct in Theorems 1.2 and 1.3). More precisely, we start with an h-HTS
f on m = O(log n) bits, with h = 2(1−α)m (note that here h is only slightly smaller than the trivial 2m). We
show how to convert f into an HTS f ′ (on n bits) that is claimed by Theorem 1.2 and Theorem 1.3.

1.3.2 Overview of the proof of Theorem 1.2: Reducing h using list-recoverable codes
By the previous discussion, under the assumption that E is hard for exponential size nondeterministic circuits,
we have obtained a f : {0, 1}m=Θ(logn) → {0, 1}m′=Θ(logn) that is an h-HTS for size nc circuits, with
h = 2(1−α)m, where α > 0 is some constant. We would like to transform f into the function guaranteed in
Theorem 1.2, namely, a function f ′ : {0, 1}n → {0, 1}n′=nO(1)

that is an h′-HTS for h′ = poly(nc).
We will show how to construct f ′ from f using list-recoverable codes. List-recoverable codes are the

following generalization of list-decodable codes: A a function E : {0, 1}n → ({0, 1}m)D is an (h, L)-list

12Note that this already produces a function f that is somewhat hard to sample in a sense that resembles the one considered by
Viola [Vio12].

7

recoverable code if for every collection H1, . . . ,HD of subsets of {0, 1}m of size h, the size of

H = {x : ∀i ∈ [D], E(x)i ∈ Hi} (1)

is at most L (see Definition 2.22 for a more formal definition). Let E : {0, 1}n → ({0, 1}m)D be an (h, L)-
list recoverable code. There are such explicit constructions (which we will elaborate on later) which for our
setting of parameters (namely m = O(log n), and h = 2(1−α)·m) achieve L = poly(h) = poly(nc), and
D = poly(n). We will now show how to use E in order to transform the h-HTS f : {0, 1}m → {0, 1}m′ into
a function f ′ : {0, 1}n → {0, 1}n′=(m+m′)D. We will then show that f ′ is an L-HTS (giving that f ′ has the
parameters guaranteed by Theorem 1.2). For this purpose we define:

f ′(x) = ((E(x)1, f(E(x)1)), . . . , (E(x)D), f(E(x)D)),

In order to show that f ′ is an L-HTS, we will consider an adversary which is a sampling circuitA that samples
(X,Y) ∈ {0, 1}n × {0, 1}n′ and attempts to break f ′. Note that by the definition of f ′, the string Y should
be of the form Y = ((X1, Y1), . . . , (XD, YD)).

The key observation is that for every i ∈ [D], A naturally induces a sampling circuit Āi that first simulates
A, to sample (X,Y), but then discards X , and outputs only (Xi, Yi). As Āi is a potential adversary for our
initial f , the definition of HTS implies that for every i ∈ [D], the circuit Āi has a small set Hi ⊆ {0, 1}m of
size h, such that Pr(Xi,Yi)←Āi

[Xi ̸∈ Hi and Yi = f(Xi)] is small. (Jumping ahead, we mention that here we
crucially rely on the fact that we consider circuits A that try to sample, rather than compute).

We will use the collection H1, . . . ,HD, and the list-recoverability property to define a set H , using (1).
We now argue that H is a suitable small set that can be used against A (as required by the definition in order
to show that f ′ is an HTS). Note that list-recoverability immediately gives that |H| ≤ L as required.

List-recoverability also implies that {X ̸∈ H} ⇒ {∃i : E(X)i ̸∈ Hi}. Furthermore, by the definition of
f ′ we have that {Y = f ′(X)} ⇒ {∀i : (Xi = E(X)i and Yi = f(Xi))}. Together, this gives that:

Pr
(X,Y)∈A

[X ̸∈ H and Y = f ′(X)] ≤ Pr
(X,Y)←A

[∃i : (Xi ̸∈ Hi and Yi = f(Xi))]

≤
∑
i

Pr
(Xi,Yi)←Āi

[Xi ̸∈ Hi and Yi = f(Xi)],

which we can upper bound using the guarantee that f is an HTS (by a union bound). We conclude that f ′ is
indeed an L-HTS. (The formal argument appears in Section 3).13

The use of list-recoverable codes allows us to take an existing HTS f on m = O(log n) bits, and where
h = 2(1−α)m is only a tiny bit smaller than the trivial 2m, and convert it into a function f (on n bits) without
increasing h, so that h is now polynomial in the input length n. The cost of this transformation is that the
output length of f ′ is increased to at least D ·m (which is at least n in any list-recoverable code).

List-recoverable codes from high error dispersers. We obtain our list-recoverable codes, by using explicit
constructions of dispersers (see Section 2.4 for a formal definition) and using the relationship between list-
recoverable codes and dispersers that was discovered by Ta-Shma and Zuckerman [TZ04]. An important
aspect of our transformation from f to f ′ is that it does not require the error parameter of the disperser to be
small, and we can use high error dispersers (where the error parameter ϵ approaches one, rather than zero).14

While this is not crucial for proving Theorem 1.2, the ability to use high error dispersers is crucial in the proof
of Theorem 1.3, as we will explain in the next section.

13The argument sketched above critically relies on the fact that for any adversary Āi for the initial HTS f , we can assign a small
set Hi (regardless of whether the distribution Xi sampled by Āi has large min-entropy or not). This is crucial because we have no
guarantee on the distributions that the various Āi sample. Here we critically rely on the difference between an HTS and a function
that is hard to sample on low min-entropy distributions that was explained in Footnote 9.

14More precisely, the argument of Ta-Shma and Zuckerman [TZ04] can be used to show that a (k, ϵ)-disperser translates into a
(2k, (1− ϵ) · 2m)-list-recoverable code. This allows taking ϵ = 1− 2−αm (which approaches one) in the argument above.

8

1.3.3 Overview of the proof of Theorem 1.3: Obtaining an HTS with small output length

The function f ′ : {0, 1}n → {0, 1}n′ that we achieved in the previous section has output length n′ ≥ n. In
some of our applications of HTS (see Section 1.3.5) it will be crucial to have an HTS with n′ = λ · n for a
small constant 0 < λ < 1, and we indeed promised to construct such an HTS in Theorem 1.3. The approach
we used so far cannot give n′ < n. This is because list-recoverable codes must have a codeword of length
Dm ≥ n bits, just in order not to lose the information in the n bit message (let alone decode).

In order to obtain smaller output length, we will present a different interpretation of the aforementioned
transformation from f to f ′ using extractors rather than list-recoverable codes. This interpretation is tailored
to construct a function that is hard to sample on low min-entropy distributions (and doesn’t quite translate to
construct an HTS). Nevertheless, it will lead us to an approach that we can use to reduce the output length.

Rather than thinking ofE : {0, 1}n → ({0, 1}m)D as a list-recoverable code, let us define Ext : {0, 1}n×
[D] → {0, 1}m by Ext(x, i) = E(x)i and require that Ext is a strong extractor (see Definition 2.21 for a
precise definition). Loosely speaking, this gives that if X has sufficiently large min-entropy, then there exists
an i ∈ [D] such that Ext(X, i) is statistically close to uniform. We can then hope to use the fact that in the i’th
pair of outputs in the definition of f ′, we asked the adversary to produce a pair (Ext(X, i), f(Ext(X, i))),
and this task “resembles” the task of sampling a pair (Um, f(Um)) that intuitively breaks f .15

Continuing with this intuition, we observe that in our scenario, we are only interested in distributions X
that are samplable by a size nc circuit. This suggests that in the construction of f ′ described above, we can
try to replace the extractor Ext (that is designed to work on every distribution X with H∞(X) ≥ k ≈ log h)
with an extractor Extsamp that is only guaranteed to work on samplable distributions X with H∞(X) ≥ k.
Such extractors for samplable distributions were introduced by Trevisan and Vadhan [TV00]. The advantage
of these extractors is that they can be seedless, meaning that D = 1! Loosely speaking, this suggests that we
can hope to get an f ′ with output length n′ = D(m+m′) = m+m′ < n.16

A problem with this approach, is that even under very strong hardness assumptions, the best known
extractors for samplable distributions do not work for low min-entropy distributions. More precisely, the best
known constructions [TV00, AASY15] only achieve k = (1 − α)n for some small constant α > 0. This is
a problem, as for our intended application in Section 1.3.5 (and for proving Theorem 1.3) we will need to be
able to choose h = 2k for k = δn, where δ > 0 is a small constant. This is a significant barrier, as using the
current methodology for constructing extractors for samplable distributions, we cannot expect to get k < n/2.

Using seedless extractors and high-error seeded dispersers. We will prove Theorem 1.3 in two steps.
First we will transform the weak HTS f (that we constructed from hardness amplification) into a function
f2 : {0, 1}n → {0, 1}O(logn) (that has output length that is much shorter than input length). This will be
done by the approach described above, using a suitable seedless extractor ExtSamp (that we construct from
the hardness assumption by adapting an argument of Kinne, van-Melkebeek and Shaltiel [KvMS12]). As this
extractor only works for very large min-entropy, we will obtain that f2 is an h2-HTS for h2 = 2n−O(logn)

which is very large. We will then apply (a variant of) the transformation based on list-recoverable codes
(explained earlier) to reduce h2 at the cost of harming the output length. By using a careful argument, and a
modified transformation, we are able to obtain an h3-HTS f3 where the output length is smaller than the input
length, while obtaining h3 = 2δn, proving Theorem 1.3. This argument appears in Section 3.

15This argument doesn’t quite work as sketched above, and in any case, in the analysis using list-recoverable codes, we did much
better than we are hoping for here: We were able to get an HTS (and not just a function that is hard to sample on low min-entropy
distributions). Furthermore, we were able to use dispersers (which are weaker than extractors) and moreover, we were able to use
dispersers with high error ϵ approaching one, which makes no sense for the argument sketched above with extractors.

16We remark that due to the aforementioned difference between an HTS and a function that is hard to sample on low min-entropy
distributions, in order to make this argument go through, we actually need a stronger object than an extractor for samplable dis-
tributions, called “relative error extractors for distributions that are weakly recognizable by NP-circuits”. These were defined by
Applebaum et al. [AASY15] (See Section 2.4 for a definition). We will ignore this technicality in this high level overview.

9

We stress that in order to make this argument work, it is crucial to use list-recoverable codes that are
equivalent to high-error dispersers. More precisely, we use dispersers with error ϵ = 1 − o(1), and this is
crucial as in contrast to dispersers with small ϵ, high-error dispersers can have D ≪ n for small values of
k. Such dispersers were explicitly constructed by Zuckerman [Zuc07] based on “somewhere condensers”
[BKS+10, Zuc07], and we use this construction in our HTS. (Details are given in Section 3).

1.3.4 Overview of the construction of explicit stochastic codes for poly-size circuits

The randomized Monte-Carlo construction of stochastic codes for poly-size circuits by Shaltiel and Silbak
[SS22] builds on earlier work in the area [GS16, SS21a, SS21b, SS22] and uses many ideas and components.
We will not give a detailed overview of this constructions here (a good overview can be found in [SS22]).

Many of the components used by the construction of [SS22] have explicit constructions (either condi-
tionally or unconditionally). There are however two components for which [SS22] does not have an explicit
construction, and instead settles for a Monte-Carlo randomized construction (that is, a nonexplicit construction
using the probabilistic method). These components are called “evasive BSC codes” and “SS-non-malleable
codes” and we will discuss them below.

In this paper we show how to explicitly construct these two components based on the HTS functions of
Theorems 1.2 and Theorem 1.3. This will allow us to convert the randomized Monte-Carlo construction of
stochastic codes for poly-size circuits of [SS22] into an explicit one (under hardness assumptions).17

The high level idea of [SS22]. Following earlier works [GS16, SS21a, SS21b], the stochastic code con-
struction of Shaltiel and Silbak [SS22] is based on taking a code (EncBSC,DecBSC) for BSCp (and recall that
we have such explicit codes with the desired rate of 1 −H(p)) and a PRG G : {0, 1}O(logn) → {0, 1}n for
circuits of size nc (which we have by the classical results of Impagliazzo and Wigderson [IW97] under the
assumption that E is hard for exponential size circuits).

The construction of stochastic code Enc(m,S) for poly-size circuits, starts by preparingZ = EncBSC(m)⊕
G(S). Intuitively, such a string is pseudorandom from the point of view of a channel C ∈ Cktn

c

p , and this
intuitively means that C does not choose the noise pattern C(Z) as a function of m. Using additional ideas
that we will not explain, it is possible to arrange that C is “forced” to behave like BSCp.

This means that when the decoding algorithm Dec receives the corrupted codeword V = Z ⊕ C(Z), it
can correctly decode by computing DecBSC(V ⊕ G(S)). However, for this, DecBSC must know S (which
is not a part of its input). The seminal work of Guruswami and Smith [GS16] developed techniques to
somehow embed S into the codeword. These techniques were extended in subsequent work, and we will
not try to explain them. What we will say, is that the final codeword is set up to be a function of S and
Z = EncBSC(m)⊕G(S)) (as well as some additional randomness).

Shaltiel and Silbak [SS21b, SS22] introduced two components that make the stochastic codes uniquely-
decodable. We will now describe these two components, and show how to construct them based on an HTS.

1.3.5 Overview of an explicit construction of evasive BSC codes

The first component of [SS22] that we will discuss is an “evasive BSC code” (which emerged out of [SS21b]
which handled “small space channels”) and was tailored for poly-size circuits in [SS22].

Definition of evasive BSC codes. Let (EncBSC,DecBSC) be a code for BSCp, we can assume w.l.o.g.
that DecBSC(v) outputs “fail” if δ(v,EncBSC(DecBSC(v)) is slightly larger than p (as this is unlikely if

17We will not be able to exactly reproduce all the properties of the components used in [SS22] with an explicit conditional construc-
tion, and will have to settle for weaker components. Consequently, we will need to show that it is possible to carry out the approach of
[SS22] with these weaker components. This requires significant work, as well as some new ideas, and the precise argument appears
in Section 6. We will not elaborate on this part in this high level overview. We elaborate on some of these ideas in Section 6.2.1.

10

v = EncBSC(m)⊕ BSCp and DecBSC(v) = m). The code is evasive, if for every channel C ∈ Cktn
c

p ,

Pr
Z←Un

[DecBSC(Z ⊕ C(Z)) ̸= fail] <
1

nc
.

Note that in the experiment considered above, the channel C is applied on a uniform string Z ← Un, rather
than on a codeword. The evasiveness requirement says that C is unable to make Dec decode (rather than fail)
in such a scenario. Loosely speaking, this notion is useful as in the construction described in the previous
section, Z = EncBSC(m)⊕G(S) is pseudorandom (meaning that it is uniformly distributed from the point of
view of C and DecBSC). This intuitively explains why it is natural to be interested in the case where Z ← Un

(as in the evasiveness experiment).

Evasive BSC code from HTS with small output length. We will now show how to take a given explicit
code (EncBSC,DecBSC) for BSCp (for any 0 ≤ p < 1

4) and convert it into one that is also evasive. We will
require the 2δn-HTS f : {0, 1}n → {0, 1}n′=λ·n of Theorem 1.3 (for an arbitrary constant 0 < λ < 1).

We will define a new code (Enc′,Dec′) as follows: Enc′(m) = EncBSC(m ◦ f(m)) (where “◦” is string
concatenation) and Dec′(v) will run DecBSC(v). If DecBSC(v) does not fail, then DecBSC outputs a pair
(x, y), and Dec′(v) will output x, if y = f(x), and will fail otherwise.

Overall, both Enc′,Dec′ run in time poly(nc), and it is obvious that this is a good code for BSCp. The
rate of Enc′ deteriorates (as we are using EncBSC to encode a string of length n + n′ rather than of length
n). This is why we insisted in Theorem 1.3 that n′ = λ · n for an arbitrary constant λ > 0, meaning that by
choosing λ > 0 to be sufficiently small, the rate is not harmed.

We now show that this code is evasive. Let C ∈ Cktn
c

p be some channel. We can consider the sampling
circuit A that choose Z ← Un, and outputs (X,Y) = DecBSC(Z ⊕ C(Z)) (if DecBSC does not fail).
As A cannot break f , we have that there exists a set H ⊆ {0, 1}n, of size h = 2δn such that

Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] ≤ 1

nc
.

However, if Dec′(Z ⊕ C(Z)) does not fail, then it produces a message X ◦ Y , such that Y = f(X), and

δ(EncBSC(X ◦ f(X)), Z) ≤ 2p+ o(1).

(Here, δ(·, ·) is the relative Hamming distance). This follows, because by the triangle inequality:

δ(EncBSC(X ◦ f(X)), Z) ≤ δ(EncBSC(X ◦ f(X)), Z ⊕ C(Z)) + δ(Z ⊕ C(Z), Z),

and both terms are bounded by about p. It follows that:

Pr[Dec′BSC(Z⊕C(Z)) ̸= fail] ≤ Pr[X ̸∈ H and Y = f(X) and δ(EncBSC(X ◦ f(X)), Z) ≤ 2p+ o(1))].

By the HTS property, A is unlikely to output an X ̸∈ H such that Y = f(X). Furthermore, for every x ∈ H ,

Pr[δ(EncBSC(x ◦ f(x)), Z) ≤ 2p+ o(1))] is exponentially small.

This is because p < 1
4 , and a random string Z ← Un is unlikely to have relative distance significantly smaller

than half from the fixed string EncBSC(x ◦ f(x)). We have that |H| ≤ h = 2δn and by choosing the constant
δ > 0 to be sufficiently small (which we are allowed in Theorem 1.3) we can do a union bound over all x ∈ H
and argue that it is unlikely that Dec′BSC(Z ⊕ C(Z)) ̸= fail.

11

1.3.6 Overview of an explicit construction of SS-non-malleable codes

The second component of [SS22] that we will discuss is an “SS-non-malleable code” (introduced in [SS22]).
This notion is related to the well studied notion of non-malleable codes (defined by Dziembowski, Pietrzak
and Wichs [DPW18]) but has a twist that makes it suitable to the application of constructing stochastic codes.

Background on non-malleable codes. Loosely speaking, non-malleable codes are stochastic codes that
are designed to work against channels C : {0, 1}n → {0, 1}n, which when given a codeword z, produce a
“corrupted word” C(z). However, in contrast to earlier settings that we discussed, there will be no bound on
the number of errors that C can induce. This means that C can erase the codeword and replace it with another
string, and we cannot expect the decoding algorithm to produce the original message m. Instead, the goal is
to show that C is unable to make the decoding algorithm produce a message m̄ ̸= m that is “related” to m.

SS-non-malleable codes. The construction of stochastic codes for poly-size circuits of [SS22] considers
a case where the non-malleable stochastic code is used to encode a random seed S ← {0, 1}d for a PRG
G : {0, 1}d → {0, 1}n (as we have already discussed in Section 1.3.4).

Our goal is to design a stochastic code (that is algorithms Encssnm(S,R) and Decssnm(V)) that is “SS-
non-malleable” (here, ”SS” stands for “small set”). This formally means that for every circuit C of size nc,
there exists a small set H ⊆ {0, 1}d such that

Pr
S,R

[Decssnm(C(G(S),Encssnm(S,R))) ̸∈ H ∪ {S}] ≤
1

nc
.

See Section 5 for a more precise definition. In words, it is required that a size nc circuit C that sees G(S)
and Encssnm(S,R) (for uniformly chosen S,R) cannot prepare a string V that makes the decoding output a
seed S̄ that is not in H ∪ {S}. Loosely speaking, this means that w.h.p. either S̄ = S (and the correct seed is
decoded) or the decoded seed S̄ is in some small set H that was known in advance.

Indeed, the “definitional methodology” behind this definition is similar in spirit to our notion of HTS, and
our definition of HTS is inspired by, and based on, this definition from [SS22].

Usefulness of SS-non-malleable codes. Recall that in Section 1.3.4 we explained that the construction of
[SS22] makes use of a random seed S for the PRG, and Z = EncBSC(m)⊕G(S), when preparing a codeword
for the final stochastic code. SS-non-malleable codes guarantee that an adversary that sees the codeword of
the final stochastic code (which will be set up as a function of Encssnm(S,R) and Z = EncBSC(m)⊕G(S))
cannot make the decoding algorithm Decssnm decode to a seed S̄ ̸= S that is “strongly correlated” with S.

On a more technical level, this notion can be used to guarantee that in this experiment, G(S) ⊕ G(S̄)
is w.h.p. either the all zero’s string (in case S̄ = S) or a pseudorandom string (which would follow if S
and S̄ are really uncorrelated in the information theoretic sense).18 Shaltiel and Silbak [SS22] used such SS-
non-malleable codes (in fact, for a somewhat stronger definition) in their construction of stochastic codes for
poly-size circuits.

SS-non-malleable codes from non-malleable codes and an HTS. We start by noting that SS-non-malleable
codes imply some sort of “hardness to sample” (and this observation led us to study HTS). More precisely,
a possible attack on SS-non-malleable codes is to completely ignore the input G(S),Encssnm(S,R), and
sample an encoding Encssnm(S

′, R′) for uniformly chosen S′, R′ that are independent of S,R.

18We remark that to the best of our knowledge, other notions of non-malleable codes in the literature do not have this property.
Loosely speaking, while one can use the pseudorandomness of G (in the case that G is seed extending, meaning that S,G(S) is
pseudorandom) together with the standard notion of non-malleability to argue that in the experiment above, S and S̄ are computa-
tionally close to being independent. This does not give that they are statistically independent, and does not seem to imply that w.h.p.
G(S)⊕G(S̄) is either the all zeros string, or pseudorandom.

12

This breaks the SS-non-malleability property, as it is unlikely that a uniform S′ will land in H ∪ {S}, for
any small set H . This loosely means that Encssnm must be hard to sample on low min-entropy distributions.

We will now show how to construct an SS-non-malleable code using an HTS. We will require a (standard)
non-malleable code for poly-size circuits (See Definition 5.2). Recently, Ball, Dachman-Soled and Loss
[BDL22] gave a construction of non-malleable codes for poly-size circuits that is based on the assumption
that E is hard for exponential size nondeterministic circuits. This means that we can get a non-malleable code
(Encnm,Decnm) for size nc circuits, under this hardness assumption.

We can also use this hardness assumption to instantiate Theorem 1.2 and obtain a dO(1)-HTS f : {0, 1}d →
{0, 1}poly(d) for size nc circuits. (This is not immediately clear from the way Theorem 1.2 is stated, and fol-
lows from a more general statement that appears in Theorem 3.4).

We will now use the same approach that we used in the previous construction of evasive BSC codes.
Namely, we will define Encssnm(S,R) = Encnm(S ◦ f(S), R). (Here, the rate is not that important as we
are encoding a d = O(log n) bit string, and so, we can afford the HTS f of Theorem 1.2 that will have
output length poly(d) > d but still much smaller than n). We will once again define Decssnm(V) by applying
Decnm(V) to obtain X ◦ Y , and outputting X if and only if Y = f(X).

The intuition is that the non-malleable code Encnm is taking care of an adversary C that sees Encnm(S ◦
f(S), R), and prevents such an adversary from leading the decoding to a seed S̄ that is correlated with S.
Furthermore, the HTS is taking care of the attack described earlier (in which C ignores its input).

More formally, we can consider the “simulator” AC of the adversary C (that is promised in the standard
definition of non-malleability). When thinking of AC as a sampling circuit, by the security of the HTS, we
indeed know that this circuit AC has a set H of size h, so that it is unlikely for AC to produce a message
X ◦ Y such that X ̸∈ H and Y = f(X). This argument shows that we obtain SS-non-malleability, in case C
does not see G(S).

We still need to consider adversaries C that in addition to Encssnm(S,R) also see G(S). We argue that
if G is a “seed-extending” PRG, meaning that the distribution (S,G(S)) is computationally indistinguishable
from (S,Un), and if furthermore, G fools circuits that are sufficiently large to run Encnm,Decnm, C and f ,
then seeing the additional string G(S) does not help the adversary C.

For this purpose we consider a circuitD(S,Z) that computes Encssnm(S,R) and feeds (Z,Encssnm(S,R))
to the adversary C. Note that if Z = G(S), then this corresponds to the actual experiment that we are inter-
ested in. In the case that Z = Un, we may as well pretend that C is randomized, and sampled Z ← Un on its
own (and we have already argued SS-non-malleability against such adversaries, and so such an adversary C
has a small set H as guaranteed by the SS-non-malleability definition).

The circuit D will continue to simulate the experiment. It will decode (using Decssnm) to obtain a string
S̄. D will then check whether S̄ ∈ H ∪ {S}. (For this we will hardwire the set H , which is a function of C,
to the circuit D). As D cannot distinguish between (S,G(S)) and (S,Un), we obtain that the set H (defined
for the case that C does not see G(S)) is also suitable for the case that C does see G(S), and we obtain full
fledged SS-non-malleability.19

1.4 More related work on codes for computationally bounded channels

1.4.1 Stochastic codes for weaker classes of computationally bounded channels

Below is a brief survey the state of the art on stochastic codes for some other classes of computationally
bounded channels.

19It is crucial to note that while D is a pretty large circuit, we crucially rely on the fact that D does not need to compute the PRG
G. This is because a circuit D that can compute G can easily distinguish between (S,G(S)) and (S,Un).

13

Additive channels. The seminal paper of Guruswami and Smith [GS16] considered (amongst other classes)
the class of additive channels. This class (denoted by Addp) contains all constant functions C ∈ Hamp. This
means that an additive channel C : {0, 1}n → {0, 1}n has a predetermined noise vector e ∈ {0, 1}n of
Hamming weight at most p, and the channel C uses this noise vector regardless of its input. Guruswami and
Smith [GS16] gave explicit constructions of stochastic codes with rate 1−H(p) for Addp. This result holds
for every 0 ≤ p < 1

2 (and in particular, this shows that the capacity is positive for p > 1
4).

Online channels with small space. The class of space-bounded channels (denoted by Spcsp) is the class of
all C ∈ Hamp, where C reads its input in one pass, using space s, and produces its i’th output bit before
reading the (i+ 1)’th bit. Guruswami and Smith [GS16] showed that there do not exist stochastic codes with
positive rate for Spclognp if p > 1

4 .
Shaltiel and Silbak [SS21b] (building on earlier work [GS16, SS21a, KSS19] that considered list-decoding)

gave explicit stochastic codes for Spcn
Ω(1)

p with rate 1−H(p) for every 0 ≤ p < 1
4 . For 1

4 ≤ p ≤
1
2 , [KSS19]

gave explicit stochastic codes with rate 1−H(p) for Spcn
Ω(1)

p that are list-decodable. In fact, these stochastic
codes work even against channels that are allowed to read the bits of the codeword in an order of their choice,
and the encoding and decoding algorithms run in quasilinear time.

Causal channels. This is the class Spcnp in which there is no space restriction on the channel, but the channel
has to decide whether to flip the i’th bit, based only on the first i bits of the codeword. The works of Dey,
Jaggi, Langberg, and Sarwate [DJLS13] and Chen, Jaggi and Langberg [CJL15], determine the capacity of
such channels. This capacity is 1 − H(p) for p ≤ p0 ≈ 0.0804, and is strictly smaller than 1 − H(p) for
p0 < p < 1

4 . This is achieved by non-explicit constructions, and no explicit constructions are known.

1.4.2 Other scenarios of codes for computationally bounded channels

The notion of computationally bounded channels was also studied in other setups. We mention some of these
works below.

Shared private randomness. We start with the notion of codes with “shared private randomness”. While
this setup was considered before the notion of stochastic codes, in this paper, it is natural to view it as a
version of stochastic codes in which the decoding algorithm does receive the randomness S chosen by the
encoding algorithm. This corresponds to a standard symmetric cryptography setup in which honest parties
(the encoder and decoder) share a uniform private key S, and the bad party (the channel) does not get the key.
Lipton [Lip94] and following work (see [Smi07] for more details) gave explicit constructions of uniquely
decodable codes against computationally bounded channels, in this setup, with rate approaching 1 − H(p),
under cryptographic assumptions.

Note that the setup of stochastic codes is lighter. The encoder and decoder do not need to share a private
random key. Moreover, a fresh key can be chosen on the spot every time the encoder encodes a message.

A related notion of “private codes” was studied by Langberg [Lan04]. This is also in the setup of shared
private randomness. Here channels are computationally unbounded, codes are existential rather than explicit,
and have rate approaching 1−H(p). The focus is on minimizing the length of the shared key. Langberg pro-
vides asymptotically matching upper and lower bounds of Θ(log n+log(1/ν)), on the amount of randomness
that needs to be shared for unique decoding in this setup, where ν is the error parameter.

Public key setup. Micali et al. [MPSW10] considered computationally bounded channels, and a crypto-
graphic “public key setup”. Their focus is to use cryptographic tools to convert a given (standard) explicit
list-decodable code into an explicit uniquely decodable code with the same rate (so that the constructed code
works in this specific public key setup).

14

Organization of this paper

In Section 2 we give preliminaries, and formal definitions. We also state the many results that we use in our
construction. In Section 3 we give a formal definition of HTS, and prove Theorems 1.2 and 1.3. In Section 4
we give a formal definition of evasive BSC codes (defined in [SS21b, SS22]) and give an explicit construction
of such codes under hardness assumptions. In Section 5 we give a formal definition of SS-non-malleable codes
(for a variant that is slightly weaker than the one defined in [SS22]), and give an explicit construction of such
codes under hardness assumptions. In Section 6 we prove Theorem 1.1, giving a construction of stochastic
codes for poly-size circuits under hardness assumptions. In Section 7 we present some open problems.

2 Preliminaries and ingredients

In this section we give formal definitions of the notions and ingredients used in the construction. We also cite
previous results from coding theory and pseudorandomness that are used in the construction.

General notation. We use [n] to denote {1, . . . , n}. We sometimes use the notation Oλ(·) to emphasize
that the constant hidden in the O(·) notation may depend on λ.

Probability distributions. We use Un to define the uniform distribution on n bits. The statistical distance
between two distributions P,Q over Ω is ∆(P,Q) = maxA⊆Ω |P (A) − Q(A)|. Given a distribution P , we
use X ← P to denote the experiment in which the random variable X is chosen according to P . For a set A,
we use X ← A to denote the experiment in which X is chosen uniformly from A. We use X1, . . . , Xn ← A
to denote the experiment in which n variables are chosen uniformly from A with replacement.

Shannon’s entropy function. We use H(p) to denote the Shannon binary entropy function: H(p) =
p · log(1/p) + (1 − p) · log(1/(1 − p)). It is standard that the derivative H ′(p) in the interval (0, 12) is
decreasing, and satisfies H ′(p) ≤ log 1

p . This implies that for 0 < p < 1
2 , if p(1 + δ) < 1

2 then:

H(p(1 + δ)) ≤ H(p) + δ · p ·H ′(p) ≤ H(p) + δ. (2)

We will also rely on the standard fact that H(12 − ϵ) = 1−O(ϵ2).

Hamming distance and weight. The Hamming weight of x ∈ [q]n is WT(x) = | {i : xi ̸= 0} |. The
relative Hamming weight of x is wt(x) = WT(x)

n . The Hamming distance between x, y ∈ [q]n is ∆(x, y) =

| {i : xi ̸= yi} |. The relative Hamming distance between x, y ∈ [q]n is δ(x, y) = ∆(x,y)
n .

Channels. Let BSCp denote the distribution over n bits, where bits are i.i.d., and each bit has probability p
to be one. We will sometimes abuse the notation and think of BSCp as a probabilistic procedure that on input
z ∈ {0, 1}n, produces the distribution BSCp. Let Hamp denote the class of functions C : {0, 1}n → {0, 1}n
such that for every z ∈ {0, 1}n, wt(C(z)) ≤ p. Let Cktsp be the class of all functions in Hamp that can be
computed by size s circuits.

2.1 Circuits, hardness assumptions and pseudorandom generators

2.1.1 Various types of circuits

We formally define the circuit types that will be used in this paper.

15

Definition 2.1 (nondeterministic circuits, oracle circuits and Σi-circuits). A randomized circuit C has ad-
ditional wires that are instantiated with uniform and independent bits. A nondeterministic circuit C has
additional “nondeterministic input wires”. We say that the circuit C evaluates to 1 on x iff there exist an
assignment to the nondeterministic input wires that makes C output 1 on x. An oracle circuit C(·) is a cir-
cuit which in addition to the standard gates uses an additional gate (which may have large fan in). When
instantiated with a specific boolean function A, CA is the circuit in which the additional gate is A. Given a
boolean function A(x), an A-circuit is a circuit that is allowed to use A gates (in addition to the standard
gates). An A||-circuit is a circuit that makes nonadaptive queries to its oracle A. (Namely, on every path from
input to output, there is at most a singleA gate). An NP-circuit is a SAT-circuit (where SAT is the satisfiability
function) a Σi-circuit is an A-circuit where A is the canonical ΣP

i -complete language. We use the notation
NP||-circuit and Σi||-circuit for the case where the queries are nonadaptive. The size of all circuits is the total
number of wires and gates.20

Remark 2.2 (Adding an oracle to relativizing statements). Most results in complexity theory relativize, and
remain true if we add NP or ΣP

i oracles. In such cases we will state the original result and say that the
corollary (with oracles) follows by relativization.

2.1.2 Hardness assumptions

We now define several types of hard functions and hardness assumptions.

Definition 2.3 (hard functions). We say that a function f : {0, 1}m → {0, 1}m′ is ϵ-hard for a class C, if for
every C ∈ C, such that C : {0, 1}m → {0, 1}m′ ,

Pr
X←Um

[C(X) = f(X)] < ϵ.

We say that f is hard for C if f is 1-hard for C.

Assumption 2.4 (E is hard for exponential size circuits). We say that “E is hard for exponential size circuits
of type X” if there exists a language L in E = DTIME(2O(n)) and a constant β > 0, such that for every
sufficiently large n, the characteristic function of L on inputs of length n is hard for circuits of size 2βn of
type X .

Shaltiel and Umans [SU06] showed that certain hardness assumptions against nondeterministic circuits
yield the same hardness against NP||-circuits.

Theorem 2.5 (Downwards collapse theorem [SU06]). If E is hard for exponential size nondeterministic cir-
cuits then E is hard for exponential size NP||-circuits.

2.1.3 Pseudorandom generators

We need the following standard definition of pseudorandom distributions and generators.

Definition 2.6 (Pseudorandom generators). A distribution X on n bits is ϵ-pseudorandom for a class C of
functions, if for every C ∈ C, |Pr[C(X) = 1] − Pr[C(Un)] = 1]| ≤ ϵ. A function G : {0, 1}d → {0, 1}n is
an ϵ-PRG for C if G(Ud) is ϵ-pseudorandom for C. G is seed-extending if the function G′(x) = x ◦G(x) is
an ϵ-PRG for C.

20An alternative approach is to define our model using the Karp-Lipton notation for Turing machines with advice. For s ≥
n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic circuit is equivalent to
NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit is equivalent to DTIMENP(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic NP-circuit is
equivalent to NTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to DTIMEΣP

i (sΘ(1))/sΘ(1).

16

The classical result of Impagliazzo and Wigderson [IW97] gives a PRG for poly-size circuits, under the
assumption that E is hard for exponential size circuits.

Theorem 2.7 (PRGs from hardness assumptions [IW97]). If E is hard for exponential size circuits then
for every constant c > 1, there exists a constant a > 1 such that for every sufficiently large n, there is
a G : {0, 1}a·logn → {0, 1}n that is a seed-extending 1

nc -PRG for circuits of size nc. Furthermore, G is
computable in time poly(nc).

We will also use PRGs for NP||-circuits. Klivans and van-Melkebeek observed that the proof of Im-
pagliazzo and Wigderson relativizes. This means (by Remark 2.2) that one can get PRGs for NP-circuits by
assuming that E is hard form exponential size NP-circuits. A more careful inspection of the argument shows
that one can get PRGs for NP||-circuits by assuming that E is hard form exponential size NP||-circuits, and
the latter assumption can be relaxed using Theorem 2.5. Altogether, this gives the following:

Theorem 2.8 (PRGs for NP|| from hardness assumptions [IW97, KvM02, SU06]). If E is hard for exponential
size nondeterministic circuits then for every constant c > 1, there exists a constant a > 1 such that for every
sufficiently large n, there is a G : {0, 1}a·logn → {0, 1}n that is a seed-extending 1

nc -PRG for NP||-circuits of
size nc. Furthermore, G is computable in time poly(nc).

2.2 Various kinds of error-correcting codes

In this section we give formal definitions of some of the various notions of error correcting codes used in this
paper. A code is a pair (Enc,Dec) of encoding and decoding maps, and different notions are obtained by
considering the requirements on the decoding algorithm.

2.2.1 Standard notions of error correcting codes

We start by giving definitions of error correcting codes that covers the standard cases of Hamming channels
and binary symmetric channels.

Definition 2.9 (Codes for Shannon and Hamming channels). Let k, n be parameters and let Enc : {0, 1}k →
{0, 1}n and Dec : {0, 1}n → {0, 1}k be functions. We say that (Enc,Dec):

• decodes from t errors, if for every m ∈ {0, 1}k and every v ∈ {0, 1}n with ∆(Enc(m), v) ≤ t,
Dec(v) = m.

• decodes from a distribution P , with success probability 1 − ν, if P is a distribution over {0, 1}n,
0 ≤ ν ≤ 1, and for every m ∈ {0, 1}k, Pre←P [Dec(Enc(m)⊕ e) = m] ≥ 1− ν.

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n .
The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this makes sense

only for a family of encoding and decoding functions with varying block length n, message length k(n)).

The notion of “decoding from errors” corresponds to Hamming channels, where the decoding algorithm
needs to decode (or list-decode) from a certain distance. We remark that it is standard that a code is decodable
from t errors if and only if the Hamming distance between every two codewords is at least 2t+ 1.

The notion of decoding from P covers the case of BSC channels, where P is taken to be the distribution
BSCp of n i.i.d. bits where each bit has probability p to be one.

17

2.2.2 Stochastic codes for a class of channels

In this section we give a precise formal definition of the notion of stochastic codes for a class of channels (that
was already explained in the introduction).

Definition 2.10 (Stochastic codes for channels). Let k, n, d be parameters and let Enc : {0, 1}k ×{0, 1}d →
{0, 1}n, and Dec : {0, 1}n → {0, 1}k be functions. Let C be a class of functions from n bits to n bits. We
say that (Enc,Dec) is a stochastic code for “channel class” C, with success probability 1 − ν, if for every
m ∈ {0, 1}k and every C ∈ C, setting X = Enc(m,Ud), we have that

Pr[Dec(X ⊕ C(X)) = m] ≥ 1− ν.

The rate of the code is the ratio of the message length and output length of Enc, where both lengths are
measured in bits. That is the rate R = k

n .
The code is explicit if both encoding and decoding run in polynomial time. (Naturally, this makes sense

only for a family of encoding and decoding functions with varying block length n, message length k(n) and
randomness d(n)).

A Monte-Carlo stochastic code with success 1 − ν for a class C, that uses q bits of Monte-Carlo ran-
domness, with Monte-Carlo error η > 0, is a pair of functions Enc : {0, 1}q × {0, 1}k × {0, 1}d → {0, 1}n
and Dec : {0, 1}q × {0, 1}n → {0, 1}k, such that with probability 1 − η over choosing y ← Uq, the pair of
functions Ency(m, s) = Enc(y,m, s) and Decy(v) = Dec(y, v) form a stochastic-code for C with success
1− ν.

A Monte-carlo stochastic code is explicit if Enc,Dec run in time polynomial in n, and q is a polynomial
in n. (Naturally, this makes sense only for a family of encoding and decoding functions with varying block
length n, message length k(n), seed length d(n) and Monte-Carlo randomness length q(n)).21

2.2.3 Stochastic codes with error-correcting and pseudorandomness properties

A key component in all previous constructions of stochastic codes for computationally bounded channels is
a stochastic code that combines both error-correcting and pseudorandomness properties. This notion was
introduced by Guruswami and Smith [GS16]. The high level approach is that constructing such codes with
very small rate (in our case, the rate will be about log n/n) is helpful in constructing the final code (loosely
speaking, these codes play a role that resembles that of “inner codes” in the final construction). Shaltiel and
Silbak [SS21a] relaxed the notion used by Guruswami and Smith to one that is easier to construct, and is still
sufficient for the approach. For completeness, we include both notions (the original one is termed “strongly”
and the relaxed one is termed “weakly”).

Definition 2.11. Let k, n, d be parameters and let Enc : {0, 1}k × {0, 1}d → {0, 1}n and Dec : {0, 1}n →
{0, 1}k be functions. We say that (Enc,Dec) is a stochastic code that is:

• L-weakly list-decodable with radius p if for every y ∈ {0, 1}n, Dec(y) produces a list of at most
L messages, that contains all messages m ∈ {0, 1}k for which there exists r ∈ {0, 1}d such that
δ(y,Enc(m, r)) ≤ p.

• We replace “weakly” with “strongly” if Dec is required to produce a list of at most L pairs (m, r) that
contains all pairs (m, r) ∈ {0, 1}k × {0, 1}d such that δ(y,Enc(m, r)) ≤ p.

21An alternative view of Monte-Carlo constructions (that is sometimes preferable) is that a Monte-Carlo construction is a random-
ized algorithm that tosses q(n) coins, and produces circuits Enc,Dec, such that with probability 1− η(n), the obtained circuits have
the required property.

18

• ϵ-pseudorandom for a class C′ of functions from n bits to one bit, if for every message m ∈ {0, 1}k,
Enc(m,Ud) is ϵ-pseudorandom for C′.

We will rely on the following Theorem by Shaltiel and Silbak [SS21a].

Theorem 2.12 (inner stochastic code for poly-size circuits [SS21a]). If E is hard for exponential size circuits
then for every constant 0 ≤ p < 1

2 , c > 1 and a > 0 there exist constants L, b, q such that for every sufficiently
large n, there is a stochastic code (Enc,Dec) where Enc : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn is:

• L-weakly list decodable from radius p.

• 1
nc -pseudorandom for size nc circuits.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(nc), where the polyno-
mial depends on p, a and the constant β > 0 hidden in the hardness assumption.

2.2.4 Reed-Solomon list-decoding

We will make use of the celebrated list-decoding algorithm of Sudan [Sud97] and Guruswami and Sudan
[GS99].

Theorem 2.13 (Reed-Solomon list-decoding [Sud97, GS99]). For every q that is a power of 2, and ev-
ery k ≤ n ≤ q, let S = {x1, . . . , xn} be a subset of Fq of size n, and let EncRS : Fk

q → Fn
q be the

Reed-Solomon encoding map (namely EncRS(a0, . . . , ak−1)i =
∑

0≤j<k ajx
j
i). This map can be computed

in time poly(n, log q), and there is a polynomial time algorithm that if a ≥
√
k · t, given t distinct pairs

(i1, y1), . . . , (it, yt) ∈ [n] × Fq, the algorithm produces a list of size at most ≤ 2t
a of all m ∈ Fk

q such that
| {i : EncRS(m)i = yi} | ≥ a. We can view EncRS as a function EncRS : {0, 1}k log q → ({0, 1}log q)n.

2.3 Standard definitions and classical results from complexity theory

2.3.1 Samplable distributions

We will use the following definition and notation for samplable distributions.

Definition 2.14 (Sampling procedures and samplable distributions). For a function A : {0, 1}r → {0, 1}n,
we use Z ← A to denote the experiment in which W ← Ur, and Z = A(W), and say that Z is sampled by
A. We say that the distribution Z is samplable by a class C of functions, if there exists A ∈ C that samples Z.

2.3.2 Approximate counting and uniform sampling of NP witnesses

We use the classical result on approximate counting and uniform sampling of NP-witnesses [Sto83, Sip83,
JVV86, BGP00], which we state below in a way that is convenient for our application.

Definition 2.15 (relative approximation). We say that a number p is an ϵ-relative approximation to q if (1 −
ϵ) · p ≤ q ≤ (1 + ϵ) · p, and an ϵ-additive approximation to q if |p− q| ≤ ϵ.

It is useful to note that if 0 ≤ p ≤ 1 is an ϵ-relative approximation to q, then it is also an additive
approximation to q. For ϵ ≤ 1

2 , we also have the following: If p is an ϵ-relative approximation to q, then q is an
O(ϵ)-relative approximation to p. If p is an ϵ-relative approximation to q and q is an ϵ-relative approximation
to w, then p is an O(ϵ)-relative approximation to w. If p′ is an ϵ-relative approximation to p and q′ is an
ϵ-relative approximation to q, then a p′/q′ is an O(ϵ)-relative approximation to p/q. (The last property does
not hold if we replace relative approximations with additive approximations).

19

Theorem 2.16 (approximate counting [Sto83, Sip83, JVV86]). For every sufficiently large s, and every ϵ > 0,
there is a size poly(s/ϵ) NP||-circuit that given a size s circuit C, outputs an ϵ-relative approximation of
| {x : C(x) = 1} |.

Theorem 2.17 (uniform sampling [JVV86, BGP00]). For every sufficiently large s, and every δ > 0, there is
a size poly(s, log(1/δ)) randomized NP||-circuit A that given a size s circuit C : {0, 1}n → {0, 1}, outputs
a value in {0, 1}n ∪ ⊥ such that Pr[A(C) = ⊥] ≤ δ and the distribution (A(C)|A(C) ̸= ⊥) is uniform over
{x : C(x) = 1}.

Regarding the formulation of Theorems 2.16 and 2.17. The formulation in the two theorems only requires
that the tasks be achieved by (nonuniform) circuits. The classical results in this area, are in fact stronger.
Theorem 2.17 holds for A that is a randomized uniform algorithm with an NP oracle (which is stronger than
the statement we give here). Theorem 2.16 holds for a counting procedure that is a randomized uniform
algorithm with an NP oracle. Here, we state it for a circuit (which is nonuniform, and non-randomized). This
immediately follows by Adleman’s proof proof that extends to BPP is in P/poly) (which extends to show that
BPPNP

|| is in PNP
|| /poly.

Another difference in the our statements of Theorems 2.16 and 2.17 (compared to the way they are usually
stated) is that we state them with NP||-circuits, rather than with NP-circuits. The fact that the queries to the NP
oracle in these classical results can be made nonadaptive follows from a more careful implementation of the
classical algorithms for approximate counting, and uniform sampling, given by Shaltiel and Umans [SU06].

2.4 Extractors, dispersers, samplers and list-recoverable codes

2.4.1 Averaging Samplers

The reader is referred to Goldreich’s survey [Gol97] on averaging samplers.

Definition 2.18 (Averaging Samplers). A function Samp : {0, 1}n → ({0, 1}m)t is an (ϵ, δ)-Sampler if for
every f : {0, 1}m → [0, 1],

Pr
(z1,...,zt)←Samp(Un)

[|1
t

∑
i∈[t]

f(zi)−
1

2m

∑
x∈{0,1}m

f(x)| > ϵ] ≤ δ.

A sampler has distinct samples if for every x ∈ {0, 1}n, the t elements in Samp(x) are distinct.

Zuckerman [Zuc97] showed that extractors can be viewed as samplers. Moreover, “strong extractors”
translate into samplers with distinct samples. Using this connection, and the competitive extractor construc-
tions of Guruswami, Umans and Vadhan [GUV07], we obtain the following sampler. (In fact, the construction
of [GUV07] translates into a sampler with much better parameters than the one cited here).

Theorem 2.19. For every constant c1 ≥ 1 there exist constants c2 > 1 and c3 > 0, such that for every
sufficiently large m, and 20.1·m ≤ t(m) ≤ 2m, there is a (2−c3·m, 2−c1·m)-sampler with distinct samples
Samp : {0, 1}c2·m → ({0, 1}m)t(m). Furthermore, Samp is computable in time t(m) · poly(c2 · logm).

We remark that previous work in this area [GS16, SS21a, KSS19, SS21b] used “expander based samplers”,
rather than “extractor based ones”. We need a sampler with shorter seed than what was used in previous work,
and this is why we choose this sampler.

For technical reasons that we explain in Section 6.2.1, rather than applying samplers on a short seed S,
we will first apply a PRG G against nc circuits. This means that we do not have a shortage of random bits (as
the output of the PRG can be large). Consequently, in this paper it is not crucial that the seed of the sampler
is short.

20

2.4.2 Seeded extractors and dispersers

In this section we define seeded extractors and dispersers.

Definition 2.20 (min-entropy). For a distribution X over {0, 1}n, H∞(X) := minx log
1

Pr[X=x] , where the
minimum is taken over all strings x in the support of X .

Definition 2.21 (Strong extractors and dispersers). A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ϵ)-
strong extractor if for every distributionX over {0, 1}n withH∞(X) ≥ k, the distributionZ = (Y,E(X,Y))
where Y ← Ud is ϵ close toUm+d. E is a (k, ϵ) strong disperser if the support size ofZ is at least (1−ϵ)·2m+d.

2.4.3 List-recoverable codes

We will use the following definition of list-recoverable codes.

Definition 2.22 (List-recoverable codes). A function E : {0, 1}n → ({0, 1}m)D is (ℓ, L)-list-recoverable if
for every S1, . . . , SD ⊆ {0, 1}m, such that for every i ∈ [D], |Sj | ≤ ℓ, the set

ListE(S1, . . . , SD) = {x ∈ {0, 1}n : ∀i ∈ [D] : E(x)i ∈ Si} ,

is of size at most L.

We remark that the definition above is for an “errorless version” of list-recoverable codes. In the more gen-
eral setting, the definition of the set ListE(S1, . . . , SD) has an additional “agreement parameter”, measuring
the fraction of i, for which E(x)i ∈ Si.

Ta-Shma and Zuckerman [TZ04] observed that there is a tight connection between extractors and (the
more general version) of list-recoverable codes. In the proposition below, we state a version of this connection
for errorless list-recoverable codes and strong dispersers.

Proposition 2.23 (Strong dispersers give list-recoverable codes [TZ04]). For a function E : {0, 1}n ×
{0, 1}d → {0, 1}m, we define D = 2d, and E′ : {0, 1}n → ({0, 1}m)D by E′(x)i = E(x, i). If E is a
strong (k, ϵ)-disperser, then E′ is (ℓ, 2k)-list-recoverable for every ℓ < (1− ϵ) · 2m.

Proof. If E′ is not (ℓ, 2k)-list-recoverable, then there exist S1, . . . , SD ⊆ {0, 1}m, such that each of the sets
is of size≤ ℓ, and the set ListE(S1, . . . , SD) is of size at larger than 2k. Let T ⊆ {0, 1}d×{0, 1}m be defined
by: T = {(i, z) : z ̸∈ Si}. In particular, if we set X to be the uniform distribution on ListE(S1, . . . , SD), we
have that:

Pr
Y←Ud

[(Y,E(X,Y)) ∈ T] = 0.

By definition, T is of size larger than 2d · (2m − ℓ). This means that the support of Z = (Y,E(X,Y)) is of
size that is upper bounded by the size of the complement of T . Overall, we obtain that the support of Z is of
size at most 2d · ℓ which is a contradiction to the definition of a strong disperser if ℓ < (1− ϵ) · 2m.

We now cite several explicit constructions of extractors and dispersers.

Theorem 2.24 (strong extractors for small k [LRVW03, GUV07]). There exists a constant c1 > 1 such
that for every sufficiently large n, and every k > c1 log n, there is a strong (k, 1

10)-extractor E : {0, 1}n ×
{0, 1}O(logn) → {0, 1}Ω(k). Furthermore, E can be computed in time poly(n).

Theorem 2.25 (Strong high-error dispersers with constant seed length [Zuc07]). For every constant δ > 0,
there exists a constant b > 1 such that for every sufficiently large n, and every ϵ = ϵ(n) > 0 there is a strong
(δ · n, 1 − ϵ)-disperser E : {0, 1}n × {0, 1}d → {0, 1}m where d = logD for D = bn

log 1
1−ϵ

and m = δn
2 .

Furthermore, E can be computed in time poly(n).

We remark that the result of Zuckerman [Zuc07] is stronger than the one we state here.

21

2.4.4 Relative error extractors for weakly recognizable distributions

We use deterministic (seedless) extractors for various types of distributions. We will use constructions of such
extractors that have relative error.

Definition 2.26 (statistical distance with relative error). We say that a distribution Z on {0, 1}m is ϵ-close
to uniform with relative error if for every event A ⊆ {0, 1}m, |Pr[Z ∈ A] − µ(A)| ≤ ϵ · µ(A) where
µ(A) = |A|/2m.

The following proposition is immediate.

Proposition 2.27. For every distribution Z over {0, 1}m, the following conditions are equivalent:

• Z is ϵ-close to uniform with relative error.

• For every event A ⊆ {0, 1}m, µ(A) is an ϵ-relative approximation to Pr[Z ∈ A].
• for every z ∈ {0, 1}m, 1

2m is an ϵ-relative approximation of Pr[Z = z].

Note that if Z is ϵ-close to uniform with relative error, then it is also ϵ-close to uniform. However, we now
also get that for every event A, Pr[Z ∈ A] ≤ (1 + ϵ) · µ(A) and this implies that even if ϵ is large, events that
are negligible under the uniform distributions cannot become noticeable under Z.

We now introduce a revised definition of deterministic extractors by replacing the requirement that the
output is ϵ-close to uniform by the requirement that the output is close to uniform with relative error.

Definition 2.28 (deterministic extractor with relative error). Let C be a class of distributions over {0, 1}n. A
function E : {0, 1}n → {0, 1}m is a (k, ϵ)-relative-error extractor for C if for every distribution X in the
class C such that H∞(X) ≥ k, E(X) is ϵ-close to uniform with relative error.

We will use extractors for weakly recognizable distributions. Recognizable distributions were defined by
Shaltiel [Sha09], and the notion used here of “weakly recognizable distributions” was defined by Applebaum
et al. [AASY15].

Definition 2.29 (weakly recognizable distributions [AASY15]). We say that a distribution X on n bits is
weakly recognizable by a class C of functions C : {0, 1}n → R, if there exists a function C in C such that
for every x ∈ {0, 1}n, Pr[X = x] = C(x)∑

x∈{0,1}n C(x) .22

The notion of weakly recognizable distribution is helpful as by Theorem 2.16, for every distribution X
that is samplable by circuits of size s, and every ϵ > 0, there is a distributionX ′ that is weakly recognizable by
NP||-circuits of size poly(s, log(1/ϵ)) and is ϵ-close to X in relative statistical distance. (For our application,
we will need the additional power of extracting from distributions that are weakly recognizable by NP||-
circuits, rather than just for samplable distributions.

In Section 3.4 we make use of relative error extractors for distributions that are weakly recognizable
by NP||-circuits. We construct such extractors (based on the assumption that E is hard for exponential size
nondeterministic circuits) in Section 3.5.2. As we explain in that section, our approach is based on a re-
lated construction by Kinne, Shaltiel and van-Melkebeek [KvMS12]. We also mention that there are known
constructions by Applebaum et al. [AASY15] that achieve better parameters, but are based on stronger as-
sumptions.

22In the definition above we don’t set an a-priori bound on length of integers used. In this paper we will always have that C will
be size s circuits (of a certain type) and the size bound implies an upper bound of s on length of integers output by C. Moreover, for
such a choice of C, we may as well assume that C is hardwired with the constant

∑
x∈{0,1}n C(x). This means that by allowing C

to be slightly larger, we can obtain a circuit C′ such that C′(x) = Pr[X = x] (meaning that X is “computable” by C′).

22

2.5 Pseudorandmly chosen permutations

We will use a permutation π : [n] → [n] to “reorder” the bits of a string x ∈ {0, 1}n: The i’th bit in the
rearranged string will be the π(i)’th bit in x. This is captured in the definition below.

Definition 2.30 (Permuting strings). Given a string x ∈ {0, 1}n and a permutation π : [n] → [n]. Let π(x)
denote the string x′ ∈ {0, 1}n with x′i = xπ(i).

As in previous works in this area, we will need to consider a channel that produces its error pattern by
permuting a fixed error pattern e using a random permutation.

Let UniPermn denote the uniform distribution on the set of permutation π : [n] → [n]. We will omit n
when it is clear from the context. Fix some poly-time computable function function F : {0, 1}n2 → Sn such
that F (Un2) is a 2−n-close to UniPermn. (Note that since |Sn| = n! is not a power of 2, there has to be some
statistical error, but using a seed sufficiently larger than log n!, the error can be made small).

We will be interested in the distribution F (G(Ud)) where G is a function (that will later be chosen to be
a PRG).

Definition 2.31 (Pseudorandomly-chosen permutation). Given a function G : {0, 1}d → {0, 1}n2
we define:

πG : {0, 1}d × [n] → [n] by: πG(s, i) = (F (s))(i) (namely, applying the permutation π = F (s) on i). We
use πGs to denote the permutation π, defined by π(i) = πG(s, i). We omit G when it is clear from the context.

We use the term “pseudorandonly-chosen permutation” to differentiate this notion from the cryptographic
notion of “pseudorandom permutation” (which is different).

2.6 Decoding from errors induced by a random permutation

As is the case of earlier work on codes for bounded channels [GS16, SS21a, KSS19, SS21b] we will actually
be interested in evasive codes that decode not just from BSCp, but in a related (and more general) setup that
we now explain. The definition below uses the notion of permuting strings from Definition 2.30.

Definition 2.32 (Noise induced by a distribution on permutations). Let Π be a distribution over permutations
π : [n] → [n]. For every e ∈ {0, 1}n, we can consider the “noise distribution” Π(e), and let PermΠ

p denote
the class of all such distributions over all choices of e ∈ {0, 1}n such that wt(e) ≤ p.

We say that a pair (Enc,Dec) decodes from PermΠ
p if it decodes from every distribution in PermΠ

p .

Recall that we use UniPermn to denote the uniform distribution on permutations on [n] and omit n when
it is clear from the context. Note that for every e ∈ {0, 1}n such that wt(e) = p, the distribution UniPerm(e)
is “somewhat similar” to BSCp. More formally, individual bits of UniPerm(e) are distributed like individual
bits of BSCp, and while bits of UniPerm(e) are not independent, the correlation between “not too many”
of them is “small”. By the same rationale the distributions in PermUniPerm

p are “somewhat similar” to the
distributions in

{
BSCp′ : p

′ ≤ p
}

.
This similarity can be used to show that codes designed to decode from BSCp, often also decode from

PermUniPerm
p . We will be relying on such a code construction, which we now state. These constructions rely

on good “standard codes” with high rate.

Theorem 2.33 ([Smi07, GS16, SS21a, KSS19]). LetR(p) = 1−H(p). For every constant 0 ≤ p < 1
4 , and ev-

ery sufficiently small constant ϵ > 0, there exist infinitely many n, and functions Enc : {0, 1}k(n)=(R(p)−ϵ)·n →
{0, 1}n, Dec : {0, 1}n → {0, 1}k(n) such that:

• (Enc,Dec) decode from PermUniPerm
p with success probability 1− 2−Ω(n0.1).

• (Enc,Dec) are explicit.

23

These constructions are based on concatenating an outer code with rate roughly 1 − ϵ/2 (that decodes
from few errors) with a random inner code of rate 1−H(p)−ϵ/2 that decodes from BSCp. The monotonicity
property (that is not stated explicitly in these results) is a byproduct of this concatenation approach. We also
remark that the result is stated for infinitely many n, but this subset of integers is very dense, and depends on
the density of block lengths n achieved by existing constructions of the outer codes.

Remark 2.34. Theorem 2.33 is stated for infinitely many n, rather than all sufficiently large n. However, it
works for a very dense set of n, as the construction is very simple and essentially concatenates a high-rate
error correcting code that decode from few errors, with an inner code that is found with brute force.

3 Functions that are hard to sample on low entropy distributions (HTS)

In this section we introduce a notion of functions that are hard to sample (HTS) on every low min-entropy
distribution. As we have explained in Section 1.2, this definition is inspired by, and builds on thw work of
Viola [Vio12] on hardness of sampling.

In Section 3.1 we define the new notion in a more general way than was done in Section 1.2, and discuss
its meaning. In Section 3.2 we restate Theorems 1.2 and 1.3 (which are the main results of this section). In
the remainder of the section we prove these theorems. In Section 3.3 we show how to use known hardness
amplification results to obtain a weak HTS. In Section 3.4 we show how to convert a weak HTS to a stronger
HTS. Finally in Section 3.5 we put things together and prove Theorems 1.2 and 1.3.

3.1 Definition of HTS

We would like to define a notion of hard function f , such that no sampling procedure A in some (possibly
nonuniform) class C can sample a pair (X,Y) such that Y = f(X) with large probability. An obvious
difficulty is that (as explained in Section 1.2) A (which is nonuniform) may be hardwired with pairs of the
form (x1, f(x1)), . . . , (xt, f(xt)), and can therefore easily sample a distribution X,Y such that X is uniform
over t elements, and Pr[Y = f(X)] = 1.

The definition below handles this problem by requiring that for every A, there exists a small set H of
inputs, such that A is considered “winning” only on X ̸∈ H .

Definition 3.1 (Hard To Sample (HTS)). A function f : {0, 1}m → {0, 1}m′ is an (h, ρ)-HTS for a class C
of functions, if for every A ∈ C that samples a distribution Z = (X,Y) over {0, 1}m × {0, 1}m′ , there exists
a set H ⊆ {0, 1}m of size at most h, such that:

Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] ≤ ρ.

We say that f is an (h, ρ)-natural-HTS if the set H =
{
x : Pr(X,Y)←A[X = x] ≥ 1

h

}
satisfies the require-

ment above.

In the next three subsections, we elaborate on the choices made in this definition, and its relation to other
notions of hard functions.

3.1.1 Any HTS can be made natural at a small cost

Our definition of HTS does not enforce that f is natural (namely that H is the set of heaviest elements).
Nevertheless, it is easy to observe that this holds w.l.o.g. if 1/ρ is small compared to h (and this will always
be the case in this paper).

24

Proposition 3.2 (Any HTS is w.l.o.g. natural). If f : {0, 1}m → {0, 1}m′ is an (h, ρ)-HTS for a class C,
then f is an (hρ , 2ρ)-natural-HTS for C.

Proof. Let A ∈ C be some function, by Definition 3.1, there exists a set H of size at most h for A. Let
H ′ =

{
x : Pr(X,Y)←A[X = x] ≥ ρ

h

}
. Note that every x ̸∈ H ′ is either in H \ H ′ or in the complement of

H . Therefore:

Pr
(X,Y)←A

[X ̸∈ H ′ and Y = f(X)] ≤ Pr
(X,Y)←A

[X ∈ H \H ′] + Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)]

≤ h · ρ
h
+ ρ

≤ 2ρ,

as required.

The fact that we can essentially assume w.l.o.g. that any HTS is natural is helpful, as it gives that any
x ̸∈ H , does not have high weight according to X .

3.1.2 What kind of hardness is captured by an HTS?

We now observe that an HTS indeed implies several notions of hardness (as discussed in the introduction,
and specifically in Section 1.2). The next proposition confirms he statement made in Section 1.2 that am HTS
is “hard to sample on low min-entropy distributions” which implies “hard to compute on low min-entropy
samplable distributions” which implies “hard to compute on the uniform distribution”.

Proposition 3.3 (HTS implies hard functions). If f : {0, 1}m → {0, 1}m′ is an (h, ρ)-HTS for size s circuits
then:

1. For every circuit A of size s that samples a distribution (X,Y) such that H∞(X) ≥ log h+ log(1/ρ),

Pr
(X,Y)←A

[Y = f(X)] ≤ 2ρ.

2. In particular, for every distribution X over {0, 1}m, such that H∞(X) ≥ log h + log(1/ρ), and X is
samplable by size s/2 circuits, and for every circuit C of size s/2, we have that:

Pr[C(X) = f(X)] ≤ 2ρ.

3. In particular, if h + log(1/ρ) ≤ m and if s ≥ 2m, as X = Um is samplable by size s/2 circuits, we
have that f is 2ρ-hard for circuits of size s/2.

Proof. The first item follows because by the definition of HTS, there exists H ⊆ {0, 1}m of size h such that:

Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] ≤ ρ.

As H∞(X) ≥ log h+ log(1/ρ) we have that

Pr
(X,Y)←A

[X ∈ H] ≤ h

2log h+log(1/ρ)
≤ ρ.

25

Therefore,

Pr
(X,Y)←A

[Y = f(X)] = Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] + Pr
(X,Y)←A

[[X ∈ H and Y = f(X)]

≤ ρ+ Pr
(X,Y)←A

[X ∈ H]

≤ 2ρ.

For the second item, note that if there exists a size s/2 circuit D that samples a distribution X over {0, 1}m
withH∞(X) ≥ log h+log(1/ρ), and there also exists a circuit C of size s/2 such that Pr[C(X) = f(X)] >
2ρ, then we can consider the size s circuit A that samples X using D and computes Y = C(X), and use the
previous item.

The third item follows by the min-entropy requirement on X . This gives a contradiction.

3.1.3 HTS vs function that is hard to sample on low min-entropy distributions

We also comment that the first item in Proposition 3.3 (which we referred to as “hard to sample on low min-
entropy distributions” in the introduction) is in some sense weaker than our definition of an HTS. This is
because Definition 3.1 does not limit A to sample a high min-entropy distribution X , and the restriction holds
for any A (even one that samples a low min-entropy distribution) guaranteeing that:

Pr
(X,Y)←A

[Y = f(X)] = Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] + Pr
(X,Y)←A

[X ∈ H and Y = f(X)]

≤ ρ+ Pr
(X,Y)←A

[X ∈ H],

where H is a small the set of heaviest elements.
We cannot obtain such bounds from the hardness guaranteed in the first item of the proposition. This

is because if A is a size s circuit that samples a pair (X,Y), then while we can expect that the distribution
X ′ = (X|X ̸∈ H) has high min-entropy (as we have removed the heaviest elements) it is not necessarily the
case that X ′ is samplable by circuits of small size. This means that we cannot control an A which samples a
distribution X for which H∞(X) is small, and yet Pr(X,Y)←A[X ̸∈ H] is significant.

Moreover, in our applications, we will have auxiliary arguments showing that we are already winning in
case X ∈ H (regardless of whether Y = f(X) or not, due to auxiliary reasons). However, it will be crucial
to handle all efficient A. This will follow because by our definition every efficient A has a set H , and we are
guaranteed that

Pr
(X,Y)←A

[Y = f(X) and X ̸∈ H] ≤ ρ.

3.2 Explicit constructions of HTS from hardness assumptions

We give two constructions of HTS. Both are based on the hardness assumption that E is hard for exponential
size nondeterministic circuits. The next theorem (which is a formal restatement of Theorem 1.2) gives an
HTS f for circuits of size nc, with very small h = poly(nc). A disadvantage of this theorem is that the output
length of f is polynomially larger than the input length.

Theorem 3.4 is stated in a way that allows one to choose the input length m of f to be any value between
a log n ≤ m ≤ n for a large constant a, and this statement is made, as we would like this flexibility in later
applications.

Theorem 3.4 (HTS with small h). There exists a constant c0 > 1 such that if E is hard for exponential size
nondeterministic circuits then for every constant c > 1, there exist constants a, d > 1, such that for every

26

sufficiently large n, and every m such that a log n ≤ m ≤ n, there is a function f : {0, 1}m → {0, 1}mc0

that is an (h, ρ)-HTS for circuits of size nc, where h = na and ρ = n−c. Furthermore, f is computable in
time nd.

The next theorem (which is a formal restatement of Theorem 1.3 gives an HTS f for circuits of size nc,
with medium sized h = 2δn. It has the advantage that the output length of f can be smaller than the input
length.

Theorem 3.5 (HTS with “medium” h and small output length). If E is hard for exponential size nondeter-
ministic circuits then for every constants c > 1, δ > 0 and 0 < λ < 1, there exists a constant d such that for
every sufficiently large n, there is a function f : {0, 1}n → {0, 1}λ·n that is an (h, ρ)-HTS for circuits of size
nc, where h = 2δn and ρ = n−c. Furthermore, f is computable in time nd.

In the remainder of this section we prove the two theorems. The proof will work in several stages. In Section
3.3 we show how to construct an HTS with weak parameters. In Section 3.4 we show how to transform
a “weak HTS” into one with improved parameters. We give two such methods: The first is based on list-
recoverable codes, and the second is based on extractors for weakly recognizable distributions.

Loosely speaking, the first approach can significantly improve the dependence of h on the input length
(at the cost of harming the output length). The second approach can achieve short output length, but (as the
parameters of known extractors for weakly recognizable distributions are not as good as we’d like) gives an
HTS with rather large h. Our constructions of HTS are obtained in Section 3.5, by using specific constructions
of list-recoverable codes and relative error extractors for weakly recognizable distributions. Along the way,
we also give a construction of relative-error extractors for weakly-recognizable distributions, with parameters
that are suitable for our application.

3.3 A weak HTS from hardness amplification

In this section we show how to construct an HTS that is weak (in the sense that it has h very close to 2m)
using the classical results on hardness amplification by [IW97, STV01]. We will prove the following:

Theorem 3.6 (HTS from hardness amplification). If E is hard for exponential size nondeterministic circuits
then for every constant c > 1, there exist constants a > 1 and 0 < γ, δ < 1, such that for every sufficiently
large n, there is a function f : {0, 1}m → {0, 1}δm that is an (h, ρ)-natural HTS for circuits of size nc, where
m = a log n, h = 2(1−γ)m, ρ = n−c, and h ≤ ρ·2m

2 . Furthermore, f is computable in time poly(nc).

We start by stating the classical hardness amplification results of [IW97, STV01]. The next theorem
is stated for deterministic circuits in [IW97, STV01], but it was already observed before by Klivans and
van-Melkebeek [KvM02] that the proof relativizes, and furthermore that the oracle queries are non-adaptive.
Therefore, as explained in Remark 2.2 it immediately extends to NP||-circuits.

Theorem 3.7 (Hardness amplification for NP||-circuits [IW97, STV01, KvM02]). If E is hard for exponential
size NP||-circuits then for every constant c > 1, there exist constants a > 1 and 0 < δ < 1, such that for
every sufficiently large n, there is a function f : {0, 1}m → {0, 1}δm that is n−c-hard for NP||-circuits of size
nc, where m = a log n. Furthermore, f is computable in time poly(nc).

Theorem 3.6 follows from Theorem 3.7, Theorem 2.5 (which weakens the hardness assumption in Theo-
rem 3.7) and the next lemma, which states that a function that is ϵ-hard for size s NP||-circuits, gives a weak
HTS with h ≈ ϵ · 2m and ρ ≈ ϵ.

27

Lemma 3.8 (HTS from functions that are average-case hard for NP||-circuits). If f : {0, 1}m → {0, 1}m′

is ϵ-hard for size s NP||-circuits, then f is an (h, ρ)-natural-HTS for circuits of size s′ = sΩ(1)

log(1/ρ) , where

h = ϵ
1
2 · 2m, and ρ = 32 · ϵ

1
4 .

We conclude this subsection with the proof of Lemma 3.8.

3.3.1 Proof of Lemma 3.8

In the next definition we consider a “hybrid distribution” where given a sampling algorithm A that samples a
pair (x, y), the first input x is chosen according to some other specified distribution X ′ and then y is chosen
by the sampling algorithm conditioned on the first element being x

Definition 3.9. For a function A : {0, 1}r → {0, 1}m × {0, 1}m′ , we say that x ∈ {0, 1}m is possible for A,
if Pr(X,Y)←A[X = x] > 0.

For a string x′ ∈ {0, 1}m that is possible for A, we use Ax′ to denote the experiment which produces
a pair (x, y) where x = x′ and y is chosen from in the experiment (X,Y) ← A conditioned on the event
{X = x′}.

For a distribution X ′ over strings that are possible for A, we use AX′ to denote the experiment where
after x′ ← X ′ is chosen and fixed, Y is chosen according to Ax′ .

The next lemma shows that if f is not a natural-HTS, and is “broken” by some sampling algorithm A,
then there exists a large subset T such that for X ′ = UT (the uniform distribution overt T), if we sample
(x, y) ← AX′ , then the probability that y = f(x) is large. This means that the function f is in some sense
“easy” on the uniform distribution over some large set T .

Lemma 3.10. Let f : {0, 1}m → {0, 1}m′ be a function. If f is not an (h, ρ)-natural-HTS for A, then there
exists a subset T ⊆ {0, 1}m of size at least ρ·h

4 such that every x ∈ T is possible for A, and if we denote the
uniform distribution over T by UT , we have that:

Pr
(X,Y)←AUT

[Y = f(X)] ≥ ρ

4
.

Proof. We have that for H =
{
x : Pr(X,Y)←A[X = x] ≥ 1

h

}
it holds that:

Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] > ρ.

For every i ≥ 0, we define

Wi =

{
x :

1

h · 2i+1
≤ Pr

(X,Y)←A
[X = x] <

1

h · 2i

}
.

Note that the sets {Wi}∞i=0 form a partition of {0, 1}m \H . Let t = ρ · h/4. We partition the set of integers
intoB = {i ≥ 0 : |Wi| < t} andG = {i ≥ 0 : |Wi| ≥ t}. LetWB = ∪i∈BWi andWG = ∪i∈GWi. Our plan
is to show that there exists i ∈ G, such that we can take T = Wi. Towards this goal we start by observing

28

that the probability of WB is small:

Pr
(X,Y)←A

[X ∈WB] =
∑
i∈B

Pr
(X,Y)←A

[X ∈Wi]

<

∞∑
i=0

t

h · 2i

≤ 2 · t
h

≤ ρ

2
.

As WG,WB and H form a partition of {0, 1}m, we have that:

Pr
(X,Y)←A

[X ∈WG and Y = f(X)] ≥ Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)]− Pr
(X,Y)←A

[X ∈WB]

≥ ρ− ρ

2

≥ ρ

2
.

By averaging, this can be used to argue that there exists i ∈ G, such that

Pr
(X,Y)←A

[X ∈Wi and Y = f(X)|X ∈Wi] ≥
ρ

2
.

Note that the distribution of X under the condition above is “roughly uniform” over Wi, as all elements in Wi

have roughly the same weight, and so for T =Wi, the distribution of X is “roughly” AUT .
We will now make this argument precise by first “rounding” the weights of all elements in each Wi, so

that the weights will be exactly the same in a distribution X ′ (that is not very different from X) and then we
apply the argument sketched above on X ′. Details follow.

For every x ∈ {0, 1}m we define:

px =

{
Pr(X,Y)←A[X = x], x ∈ H

1
h·2i+1 , x ∈Wi

Note that this is well defined, and for every x ∈ {0, 1}m,

px ≤ Pr
(X,Y)←A

[X = x] ≤ 2px.

For every x ∈ {0, 1}m, we define p′x = px∑
x∈{0,1}m px

, and let X ′ be the distribution such that Pr[X ′ = x] =

p′x. We have that
∑

x∈{0,1}m px ≥
1
2 , and this gives that for every x,

1

2
· Pr
(X,Y)←A

[X = x] ≤ Pr[X ′ = x] ≤ 2 · Pr
(X,Y)←A

[X = x].

It follows that for every event E,

1

2
· Pr
(X,Y)←A

[E] ≤ Pr
(X,Y)←AX′

[E] ≤ 2 · Pr
(X,Y)←A

[E].

In particular, we can conclude that:

Pr
(X,Y)←AX′

[X ∈WG and Y = f(X)] ≥ ρ

4
.

29

This gives that:

ρ

4
≤ Pr

(X,Y)←AX′
[X ∈WG and Y = f(X)]

=

∞∑
i=0

Pr
(X,Y)←AX′

[X ∈WG and Y = f(X)|X ′ ∈Wi] · Pr[X ′ ∈Wi]

=
∑
i∈G

Pr
(X,Y)←AX′

[X ∈WG and Y = f(X)|X ′ ∈Wi] · Pr[X ′ ∈Wi]

≤ max
i∈G

Pr
(X,Y)←AX′

[X ∈WG and Y = f(X)|X ′ ∈Wi]

= max
i∈G

Pr
(X,Y)←AX′

[Y = f(X)|X ′ ∈Wi].

Let i∗ be the index that maximizes the expression above. Let T =Wi∗ and note that the distribution (X ′|X ′ ∈
T) is the distribution UT (that is the uniform distribution over T). This is because all elements in Wi were
rounded to the same weight. We conclude that

Pr
(X,Y)←AUT

[Y = f(X)] ≥ ρ

4
,

and as i ∈ G, we have that |T | = |Wi| ≥ t = ρ·h
4 .

We are now ready to prove Lemma 3.8.

Proof. (of Lemma 3.8) By lemma 3.10 if f is not an (h, ρ)-natural-HTS for circuits of size s′, then there
exists a circuit A of size s′ and a set T ⊆ {0, 1}m of size ρ·h

4 such that

Pr
(X,Y)←AUT

[Y = f(X)] ≥ ρ

4
.

We now show that an NP||-circuit of size slightly larger than s′ can (when given x) sample from Ax and
therefore compute the function f too well on X ← UT . Details follow.

For every x ∈ {0, 1}m we define a circuit Dx which on input w ∈ {0, 1}r (where r is the input length of
A) performs the following: It computes A(w) to produce strings (x′, y′) ∈ {0, 1}m × {0, 1}m′ and outputs
one iff x′ = x.

Note that for every x that is possible for A, a uniform w such that Dx(w) = 1 is distributed exactly like
Ax. By Theorem 2.17, there exists a randomized NP||-circuit T of size poly(s′, log(1/ρ)) which when given
x, outputs a value W ∈ {0, 1}r ∪ {⊥}, such that:

• If there does not exist w, such that Dx(w) = 1, then T (x) outputs ⊥ with probability one.

• If there exists w such that Dx(w) = 1, then:

– The probability that T (x) outputs ⊥ is at most ρ/8.
– The distribution T (x) conditioned on the event {T (x) ̸= ⊥} is uniform over {w : Dx(w) = 1}.

This means that for x that is possible for w, conditioned on not answering⊥, T (x) outputs a uniform W such
that the first output of A(W) is x, which means that A(W) is distributed like Ax.

We consider the randomized NP||-circuit C which on input x:

• Computes w = T (x), and outputs an arbitrary value if w = ⊥.

30

• Computes (x, y) = A(w) and outputs y.

It follows that for every x that is possible for A,

Pr[C(x) = f(x)] = Pr
(X,Y)←Ax

[Y = f(X)]− ρ

8
.

Overall, we get that C is a circuit of size poly(s · log(1/ρ)) such that

Pr
X←Um

[C(X) = f(X)] ≥ Pr
X←Um

[C(X) = f(X) and X ∈ T]

≥ Pr
X←UT

[C(X) = f(X)] · Pr
X←Um

[X ∈ T]

≥

(
Pr

(X,Y)←AUT

[C(X) = f(X)]− ρ

8

)
· ρh

4 · 2m

≥
(ρ
4
− ρ

8

)
· ρh

4 · 2m

=
ρ2h

32 · 2m
≥ ϵ,

where the last inequality follows because we have chosen h = ϵ
1
2 · 2m, and ρ = 32 · ϵ

1
4 . (Note that any choice

of h and ρ satisfying the inequality will do).
We can fix the random coins ofC to their “best value”, removing the randomization and obtaining an NP||-

circuit of size s = poly(s · log(1/ρ)) with the same success probability. and this gives a contradiction.

3.4 Strengthening a weak HTS

In this section we will show how to take an HTS onm bits with large h (that may be close to 2m) and transform
it into one over n > m bits without increasing h by much (so that the ratio of h to input length is improved).
We will use the following definition (which considers two transformations).

Definition 3.11 (HTS amplification). Given a function f : {0, 1}m → {0, 1}m′ and a functionE : {0, 1}n →
({0, 1}m)D, we define functions TE,f : {0, 1}n → {0, 1}D(m+m′) and T ′E,f : {0, 1}n → {0, 1}Dm′ as
follows: Given x ∈ {0, 1}n, we set zi = E(x)i, for every i ∈ [D], and define:

• TE,f (x) = ((z1, f(z1)), . . . , (zD, f(zD))).

• T ′E,f (x) = (f(z1), . . . , f(zD)).

3.4.1 Using list-recoverable codes

We show that if we takeE to be a list-recoverable code than the transformations indeed provide an HTS where
the ratio of h to input length can be improved.

Lemma 3.12 (Transformation using list-recoverable codes). If f is an (h, ρ)-HTS for size s circuits, and
E : {0, 1}n → ({0, 1}m)D is (h, L)-list-recoverable, then TE,f is an (L, ρ · D)-HTS for size s circuits. If
furthermore, E can be computed by size t circuits, then T ′E,f is an (L, ρ ·D)-HTS for size s− t circuits.

Proof. Let A be a sampling circuit of size s that samples a pair (x, y) ∈ {0, 1}n × {0, 1}D(m+m′). We think
of y as a sequence y = ((x1, y1), . . . , (xd, yd)) where for every i ∈ [D], (xi, yi) ∈ {0, 1}m × {0, 1}m

′
. For

31

every i ∈ [D], we can define a sampling circuit Ai of the same size, which simulates A and outputs (xi, yi)
(discarding the other outputs). As f is an (h, ρ)-HTS for size s circuits, it follows that for every i ∈ [D], the
sampling circuit Ai has a set Hi ⊆ {0, 1}m of size at most h such that:

Pr
(Xi,Yi)←Ai

[Xi ̸∈ Hi and Yi = f(Xi)] ≤ ρ.

By the list-recoverability of E, we have that the set H = ListE(H1, . . . ,HD) is of size at most L. It follows
that if x ̸∈ H , then there exists i ∈ [D] such that zi = E(x)i ̸∈ Hi.

We will show that H satisfies the definition of an HTS for A. For this purpose, we will consider the
probability space where

(X,Y) = (X, (X1, Y1), . . . , (XD, YD)))← A,

and for every i ∈ D, we set Zi = E(X)i. We have that:

Pr[X ̸∈ H and Y = f(X)] = Pr[X ̸∈ H and ∀i ∈ [D] : (Xi = Zi and Yi = f(Xi))]

≤ Pr[∃i ∈ [D] : Zi ̸∈ Hi and ∀i ∈ [D] : (Xi = Zi and Yi = f(Xi))]

≤ Pr[∃i ∈ [D] : (Zi ̸∈ Hi and Xi = Zi and Yi = f(Xi))]

≤ Pr[∃i ∈ [D] : (Xi ̸∈ Hi and Yi = f(Xi))]

≤
∑
i∈[D]

Pr[Xi ̸∈ Hi and Yi = f(Xi)]

≤ D · ρ.

Here, the last inequality follows because the distribution of (Xi, Yi) in our probability space is identical to
(Xi, Yi)← Ai.

We now turn our attention to the “furthermore part”. Note that if A of size s′ samples (x, (y1, . . . , yD)),
then by applying E on x (producing (z1, . . . , zD)) we can convert A to a sampling algorithm A′ of size s′+ t
that runs A, and outputs (x, (z1, y1), . . . , (xD, yD)). The previous argument now works for A′, proving the
“furthermore part”.

3.4.2 Using extractors for weakly recognizable distributions

We can view a function E : {0, 1}n → {0, 1}m as a function E : {0, 1}n → ({0, 1}m)D for D = 1, and
apply the transformation of Definition 3.11 using such a function E. The next lemma shows that this can be
used to strengthen an HTS using extractor for distributions that are weakly recognizable by NP||-circuits.

Lemma 3.13 (Transformation using extractors for recognizable distributions). There exists a constant c0 > 1
such that if f is an (h, ρ)-HTS for size s circuits,E : {0, 1}n×{0, 1}m is a (k, 1

10)-relative-error extractor for
distributions that are weakly-recognizable by size sc0 NP||-circuits, and h ≤ ρ·2m

2 , then TE,f is a (2
k+2

ρ , 2ρ)-
HTS for size s circuits.

Proof. Let A be a sampling circuit of size s that samples a pair (x, y) ∈ {0, 1}n × {0, 1}m+m′ . We think of
y as a pair y = (x1, y1) ∈ {0, 1}m × {0, 1}m

′
. For every x ∈ {0, 1}n, let px = Pr(X,Y)←A[X = x]. Let

ϵ > 0 be small constant that will be chosen later. By Theorem 2.16 there is an NP||-circuit C of size poly(s)

such that for every x ∈ {0, 1}n, p′x = C(x) is an ϵ-relative approximation of px. Let t = 2k+1

ρ and define
H =

{
x : p′x ≥ 1

t

}
. We can use C to construct a size poly(s) NP||-circuit C ′ such that for every x ∈ {0, 1}n,

C ′(x) =

{
C(x), x ̸∈ H
0, x ∈ H

By choosing ϵ > 0 to be sufficiently small, it immediately follows that:

32

• For every x ∈ H , Pr[X = x] ≥ 1
2t .

• For every x ̸∈ H , Pr[X = x] ≤ 2
t .

In particular, we have that |H| ≤ 2t = 2k+2

ρ . We plan to show that H can serve as a good set for A. If
Pr[X ̸∈ H] ≤ 2ρ then this trivially follows. Therefore, we will assume that Pr[X ̸∈ H] > 2ρ. We define
X ′ = (X|X ̸∈ H), and note that it follows that for every x ̸∈ H:

Pr[X ′ = x] = Pr[X = x|X ̸∈ H] =
Pr[X = x]

Pr[X ̸∈ H]
≤ 2/t

2ρ
=

1

tρ
.

It follows that:
H∞(X ′) ≥ 1

tρ
= log t− log

1

ρ
.

Let X ′′ be the distribution that is weakly recognized by C ′. It follows that for every x ∈ {0, 1}n, Pr[X ′′ = x]
is an O(ϵ)-relative approximation of Pr[X ′ = x], and in particular, for sufficiently small ϵ, we have that

H∞(X ′′) ≥ H∞(X ′)− 1 ≥ log t− log
1

ρ
− 1 ≥ k.

Overall, we have that X ′′ is a distribution that is a high-min-entropy distribution that is recognizable by size
poly(s) NP||-circuits, and by choosing the constant c0 such that this size is bounded by sc0 , it follows that
E(X ′′) is 1/10-close in relative distance to the uniform distribution. We now consider the sampling circuitA′

which acts exactly likeA, but instead of outputting (x, (x1, y1)) it only outputs (x1, y1) ∈ {0, 1}m×{0, 1}m
′
.

By definition 3.1, this sampling circuit A′ has a set S ⊆ {0, 1}m of size h such that:

Pr
(X1,Y1)←A′

[X1 ̸∈ S and Y1 = f(X1)] ≤ ρ.

By the properties of the extractor we have that:

Pr[E(X ′′) ∈ S] ≤ (1 +
1

10
) · Pr[Um ∈ S] ≤ (1 +

1

10
) · h

2m
.

By the connection that we have already established between X ′ and X ′′ it follows that for every event F ,
Pr[X ′′ ∈ F] is an O(ϵ)-relative approximation to Pr[X ′ ∈ F]. In particular, we can conclude that:

Pr[E(X ′) ∈ S] ≤ (1 +O(ϵ)) · Pr[E(X ′′) ∈ S] ≤ 2h

2m
,

for sufficiently small ϵ > 0. It also follows that:

Pr[X ̸∈ H and E(X) ∈ S] = Pr[X ̸∈ H] · Pr[E(X) ∈ S|X ̸∈ H]

≤ Pr[E(X ′) ∈ S]

≤ 2h

2m

≤ ρ,

where the last step follows from the requirements of the lemma. We are finally ready to show that H can
serve as the required set for the sampling circuit A. In the calculation below, we consider the experiment

33

(X,Y)← A, and the notation Y = (X1, Y1).

Pr[X ̸∈ H and Y = TE,f (X)] = Pr[X ̸∈ H and X1 = E(X) and Y1 = f(X1)]

≤ Pr[X ̸∈ H and X1 = E(X) and Y1 = f(X1) and E(X) ∈ S]
+ Pr[X ̸∈ H and X1 = E(X) and Y1 = f(X1) and E(X) ̸∈ S]
≤ Pr[X ̸∈ H and E(X) ∈ S] + Pr[Y1 = f(X1) and X1 ̸∈ S]
≤ ρ+ Pr

(X1,Y1)←A1

[X1 ̸∈ S and Y1 = f(X1)]

≤ ρ+ ρ

= 2ρ.

Here, the fourth line follows because the distribution (X1, Y1) ← A1 is identical to that of taking only
(X1, Y1) when sampling (X, (X1, Y1))← A.

3.5 Putting things together

We are finally ready to prove Theorems 3.4 and Theorem 3.5.

3.5.1 Proof of Theorem 3.4

We use the assumption to apply Theorem 3.6 and obtain an (h, ρ)-HTS f : {0, 1}m → {0, 1}m′ for circuits of
size nc with the parameters specified in the theorem. We plan to use the transformation TE,f of Definition 3.11
to obtain a function TE,f with input length m̄ that is between a log n and n (for a constant a that will be slightly
larger than the constant a guaranteed in Theorem 3.6). We will use Proposition 2.23 to interpret the strong
extractor of Theorem 2.24 as a list-recoverable code. More specifically, let E : {0, 1}m̄ × {0, 1}O(log m̄) →
{0, 1}m be an (O(m), 1

10)-extractor (as is guaranteed by Theorem 2.24). By Proposition 2.23, this translates
into a function E : {0, 1}m̄ → ({0, 1}m)D that is (2m̄−1, L)-list-recoverable for D = m̄O(1), and L =
2O(m) = nO(1). We then apply the transformation TE,f of Definition 3.11, using Lemma 3.12. We indeed
meet the condition of Lemma 3.12 and conclude that TE,f : {0, 1}m̄ → {0, 1}D(m+m′) is an (h′, ρ′)-HTS for
circuits of size nc. We have that h′ = L = nO(1) and ρ′ = ρ · D = n−(c−O(1)) (and we could have gotten
ρ′ = n−c by choosing the constant c with which we apply Theorem 3.6 to be sufficiently larger). Overall, we
indeed obtain that there exists a constant a > 1 (that is possibly larger than the constant guaranteed in Theorem
3.6) such that for every m̄ such that a log n ≤ m̄ ≤ n, there is a function TE,f : {0, 1}m̄ → {0, 1}m̄c0 (where
c0 is a universal constant determined by the constant hidden in the O(·) notation in the parameter d) that is
an (h′, ρ′)-HTS as required. Note that as f can be computed in time nc and the extractor can be computed in
time m̄O(1) = poly(nc) we indeed have that the function TE,f can be computed in time poly(nc) where this
polynomial does not depend on the input length of TE,f .

3.5.2 A construction of extractors for weakly recognizable distributions with high min-entropy

In Section 3.4.2 we have shown how to improve the quality of an HTS using relative-error extractors for
distributions which are weakly recognizable by NP||-circuits. In this subsection we give a construction of
such extractors (for the k = n − O(log n)) based on the assumption that E is hard for exponential size
nondeterministic circuits.

Theorem 3.14 (Extractors for weakly recognizable large min-entropy distributions by NP||-circuits). If E is
hard for exponential size nondeterministic circuits then for every constants a, c, c1, and for every sufficiently
large n, there is an (n − a · log n, 1

nc)-relative-error extractor E : {0, 1}n → {0, 1}c1·logn for distributions
weakly recognizable by size nc NP||-circuits. Furthermore, E is computable in time poly(na+c+c1).

34

We remark that using a construction of Applebaum et al. [AASY15], it is possible to obtain a relative
error extractor for smaller k. More specifically, for k = (1− α) · n where α > 0 is some constant. However,
this approach would need to assume the stronger assumption that E is hard for exponential size Σ4-circuits.
Here, we assume a weaker assumption and get a weaker conclusion.

The approach we use for proving Theorem 3.14 is similar to an approach of Kinne, Shaltiel and van
Melkebeek [KvMS12] (see also [LZ19]). However, we need to analyze the construction more carefully,
and also obtain that it gives “relative error” rather than just “additive error”, and that it applies to “weakly
recognizable distributions” and not just to “recognizable distributions”.

The proof of Theorem 3.14 proceeds in two steps. In the first step (stated in Lemma 3.15) we argue that
any seed extending PRG with small error, yields an extractor with the properties we require. In the second
step (stated in Corollary 3.18) we use Theorem 2.8 to obtain a suitable PRG under the hardness assumption
of Theorem 3.14.

Lemma 3.15 (PRG to extractor for recognizable distributions (adaptation of the argument of [KvMS12])).
There exists a constant c0, such that for every constant c, for every sufficiently large n, and every m ≤ n,
ϵ > 0 and ∆ > 0

• If E : {0, 1}n → {0, 1}m satisfies that the function G : {0, 1}n → {0, 1}n+m defined by G(x) =
(x,E(x)) is an ϵ

2m+∆ -PRG for NP||-circuits of size nc·c0 ,

• Then E is an (n −∆, ϵ)-relative error extractor for distributions that are weakly recognizable by size
nc NP||-circuits.

Remark 3.16. This Lemma improves upon a similar Lemma from [KvMS12], in that it achieves a stronger
conclusion under the same assumption. While we state the lemma for the class of NP||-circuits, as in
[KvMS12], it applies to many other circuit classes, including standard deterministic circuits, NP-circuit,
and essentially any reasonable circuit class that is closed under composition.

Proof. (of Lemma 3.15) Assume (for the purpose of contradiction) that X ′ is a distribution over {0, 1}n such
that H∞(X ′) ≥ n − ∆, where X ′ is weakly-recognizable by an NP||-circuit C of size nc, and that E(X ′)

is not ϵ-close to uniform with relative error. It follows that there exists z ∈ {0, 1}m such that 1
2m is not an

ϵ-relative approximation of Pr[E(X ′) = z], meaning that:

| 1
2m
− Pr[E(X ′) = z]| > ϵ · 1

2m

We have that X ′ is weakly recognizable by an NP-||-circuit C. This formally means that for every x ∈
{0, 1}n, Pr[X ′ = x] = C(x)∑

x∈{0,1}n C(x) . Furthermore, for every x, C(x) is an integer, and its bit-length is

obviously bounded by the size of C (which is nc). This means that N0 =
∑

x∈{0,1}n C(x) is an integer
constant of bit-length at most nc+1.

We plan to use C to construct a circuit Tz that distinguishes the PRG G from uniform. We will construct
this circuit in stages.

Let A be an NP||-circuit that is hardwired with N0, and given x ∈ {0, 1}n, outputs R(x)
N0

= Pr[X ′ = x].
Note that A is an NP||-circuit of size nc+O(1).

Let τ = 2−(n−∆), and let B(x) be the randomized NP||-circuit that on input x, computes α(x) = A(x)
τ ,

tosses a coin V according to the distribution (α(x), 1− α(x)), and outputs V . (Note that this is well defined
as 0 ≤ α(x) ≤ 1, because A(x) = Pr[X ′ = x] ≤ τ for every x ∈ {0, 1}n).

We now define a randomized NP||-circuit Tz : {0, 1}n×{0, 1}m → {0, 1} as follows: Let Tz(x, r) be the
randomized NP||-circuit, which answers one iff B(x) = 1 and r = z. Note that Tz is of size nc+O(1).

35

We plan to show that Tz distinguishes the output of G from the uniform distribution. More formally, let
(X,R) be uniform over {0, 1}n × {0, 1}m, we will get a contradiction if we show that

|Pr[Tz(X,R) = 1]− Pr[Tz(X,G(X))] >
ϵ

2m+∆
.

We now proceed towards this goal. The definition of B was made so that:

Claim 3.17.

• Pr[B(X) = 1] = 2−∆.

• Pr[E(X ′) = z] = Pr[E(X) = z|B(X) = 1].

Proof. (of claim 3.17) For the first item, we observe that:

Pr[B(X) = 1] =
∑

x∈{0,1}n
Pr[B(X) = 1 and X = x]

=
∑

x∈{0,1}n
Pr[X = x] · Pr[B(X) = 1|X = x]

=
∑

x∈{0,1}n
Pr[X = x] · Pr[B(x) = 1]

=
∑

x∈{0,1}n
2−n · A(x)

τ

=
2−n

τ
·
∑

x∈{0,1}n
A(x)

= 2−∆.

Here, the last equality follows because τ = 2−(n−∆) and
∑

x∈{0,1}n A(x) =
∑

x∈{0,1}n Pr[X
′ = x] = 1.

For the second item, we observe that it is sufficient to prove that for every x ∈ {0, 1}n:

Pr[X = x|B(X) = 1] = Pr[X ′ = x].

This is because, this implies that X ′ is distributed like (X|B(X) = 1), and then it follows that

Pr[E(X) = z|B(X) = 1] = Pr[E(X ′) = z].

We now observe that for every x ∈ {0, 1}n,

Pr[X = x|B(X) = 1] =
Pr[X = x and B(X) = 1]

Pr[B(X) = 1]

=
Pr[X = x and B(x) = 1]

2−∆

= 2∆ · Pr[X = x] · Pr[B(x) = 1]

= 2∆ · 2−n · A(x)
τ

= Pr[X ′ = x].

Here, the last inequality follows because τ = 2−(n−∆) and A(x) = Pr[X ′ = x].

36

We proceed to compute the probability that Tz outputs one on (X,R) and on X,E(X).

Pr[Tz(X,R) = 1] = Pr[B(X) = 1 and R = z]

= Pr[B(X) = 1] · Pr[R = z]

= 2−∆ · 2−m.

Here, the last equality follows by the first item in Claim 3.17.

Pr[Tz(X,E(X)) = 1] = Pr[B(X) = 1 and E(X) = z]

= Pr[B(X) = 1] · Pr[E(X) = z|B(X) = 1]

= 2−∆ · Pr[E(X ′) = z].

Here, the last equality follows by the first and second items in Claim 3.17. Altogether,

|Pr[Tz(X,R) = 1]− Pr[Tz(X,E(X)) = 1]| = |2−∆ · 2−m − 2−∆ · Pr[E(X ′) = z]|
= 2−∆ · |2−m − Pr[E(X ′) = z]|

> 2−∆ · ϵ · 1

2m

=
ϵ

2m+∆
,

By fixing the random coins of Tz to some fixed value, we can obtain a (non-randomized) NP ||-circuit of the
same size that distinguishes the two distribution, and as this size is nc+O(1) we indeed get a contradiction.

Lemma 3.15 requires a PRG with unusual parameters. Loosely speaking, such a PRG is “less competitive”
than that of Theorem 2.8, and so it is easy to obtain such a PRG from Theorem 2.8. This is done in the next
corollary.

Corollary 3.18. If E is hard for exponential size nondeterministic circuits then for every constant c1, c2 > 1,
and for every sufficiently large n, there is a G : {0, 1}n → {0, 1}c1·logn that is a seed-extending 1

nc2 -PRG for
NP||-circuits of size nc2 . Furthermore, G is computable in time poly(nc2).

Proof. We use the PRG that follows from Theorem 2.8, using c2 as the constant c. The seed extending PRG
that we obtain stretches a log n bits to n bits. We can chop the output length from n to the required c1 · log n
bits, and obtain a seed extending n−c2-PRG G : {0, 1}a logn → {0, 1}c1·logn for NP||-circuits of size nc2 .
We can then increase the seed length from a log n to n (without harming the seed-extending property) by
taking G′ : {0, 1}n → {0, 1}c1·logn to be G′(x) = G(x|[a1·logn]) (that is, by artificially increasing the seed
length).

Together, Lemma 3.15 and Corollary 3.18 give Theorem 3.14.

Proof. (of Theorem 3.14) Given constants a, c, c1 as in Theorem 3.14, let c0 be the universal constant from
Lemma 3.15, and set c2 = max(c + a + c1, c0 · c). We apply Corollary 3.18 to obtain an E : {0, 1}n →
{0, 1}c1·logn that is a seed-extending 1

nc2 -PRG for NP||-circuits of size nc2 . We have that G(x) is seed
extending, and so by Lemma 3.15 we obtain that taking ∆ = a · log n, G is an (n− a log n, ϵ)-relative error
extractor for distributions that are weakly recognizable by size nc2/c0 NP||-circuits, for

ϵ =
2a logn+c1 logn

nc2
= 2(a+c1−c2) logn ≤ n−c.

By our choices we also have that c2/c0 > c as required.

37

3.5.3 Proof of Theorem 3.5

We will construct the required HTS in two steps, we first construct a shrinking HTS with very large h of
h = 2n−O(logn). This is done by taking the HTS from Theorem 3.6 and applying Lemma 3.13 using the
suitable extractor for recognizable distributions from Theorem 3.14.

Lemma 3.19. if E is hard for exponential size nondeterministic circuits then for every constant c > 1, there
exists a constant c1 > 1 such that for every constants a > 1 and η > 0, there exists a constant d such that
for every sufficiently large n, there is a function f : {0, 1}η·n → {0, 1}2·c1·logn that is an (h′, ρ′)-HTS for
circuits of size nc, where h′ = 2η·n−a logn+c logn+O(1) and ρ′ = 2 · n−c. Furthermore, f is computable in
time poly(nd).

Proof. We use the hardness assumption to apply Theorem 3.6 and obtain an (h, ρ)-HTS f1 : {0, 1}m →
{0, 1}m′ for circuits of size nc with the parameters specified in the theorem. In particular, we have that
m′ ≤ m = c1 · log n for some constant c1 > 1, and there exists a constant γ > 0 such that h = 2(1−γ)·m and
ρ = n−c. Theorem 3.6 also guarantees that h ≤ ρ·2m

2 .
Let c′ = c · c0, where c0 is the universal constant from Lemma 3.13. We will use the assumption to apply

Theorem 3.14 and obtain a function E : {0, 1}η·n → {0, 1}m that is a (η · n − a · log n, 1
nc′)-relative-error

extractor for distributions recognizable by size nc
′

NP||-circuits. We will use the transformation TE,f1 of
Definition 3.11 (with D = 1) to obtain a function f2 = TE,f1 . We plan to apply Lemma 3.13, and have
chosen the constant c′ to be sufficiently large, so that we meet the conditions of the lemma, and obtain a
function f2 : {0, 1}ηn → {0, 1}m+m′ that is an (h′, ρ′)-HTS with h′ = 2ηn−a logn+2

n−c and ρ′ = 2n−c. Note that
as m′ ≤ m we have that the output length m+m′ ≤ 2 · c1 · log n. We also have that f2 can be computed in
polynomial time, where the polynomial nd depends on the choices of the constants.

We now prove that Theorem 3.5 follows from Lemma 3.19.

Proof. (of Theorem 3.5) Given c > 1, δ > 0 and 0 < λ < 1, we set η = δ/2. At this point, the constant δ
determines a constant b (that is guranteed in Theorem 2.25). We now choose a large constant a (that will be
determined later) and apply Lemma 3.19 to obtain the function f2 : {0, 1}ηn → {0, 1}2c1 logn that is guaran-
teed by the lemma. This function is an (h′, ρ′)-HTS for circuits of size nc, where h′ = 2η·n−a logn+c logn+O(1)

and ρ′ = 2 · n−c.
We will use the strong disperser of Theorem 2.25 with the constant δ > 0 from the theorem statement,

and ϵ(n) = 1− 2−a logn. We obtain a function E : {0, 1}n × {0, 1}d → {0, 1}m that is a (δ · n, ϵ(n))-strong
disperser with m = ηn, and d = logD for

D =
bn

log 1
1−ϵ

=
bn

a log n
.

The key observation is that as c1, b and λ are already fixed, we are allowed to choose a to be sufficiently
large so that:

D =
bn

a log n
≤ λ · n

2 · c1 log n
.

By Proposition 2.23 we can interpret E as a function E : {0, 1}n → ({0, 1}m)D that is (ℓ, 2δn)-list
recoverable for every

ℓ < (1− ϵ) · 2m = 2−a logn · 2ηn = 2ηn−a logn ≤ h′.

In particular, we get that E is (h′, 2δn)-list recoverable.
We now apply the transformation T ′E,f2

of Definition 3.11 on the function f2 from Lemma 3.19, using
Lemma 3.12. The running time of E (as a list-recoverable code) is D times its running time (as a disperser),

38

and as D ≤ n, using Theorem 2.25, this is bounded by some fixed polynomial in n, and we can assume
w.l.o.g. that nc is larger than this polynomial. We use Lemma 3.12 to conclude that f3 = T ′E,f2

: {0, 1}n →
{0, 1}D·2·c1·logn is an (h, ρ)-HTS for circuits of size nc for h = 2δn and ρ = D ·ρ′ ≤ 2n−(c−1) (and we could
have gotten n−c had we increased the c we intially used). The output length of f3 is indeed

D · 2 · c1 · log n ≤ λn.

Finally, by the efficiency of f and E, we conclude that f3 = T ′E,f can be computed in time polynomial
in n.

4 Evasive BSC codes

As explained in Section 1.3.5, evasive BSC codes were introduced in [SS21b] (for a different class of channels,
namely space bounded channels) and in [SS22] for poly-size channels. In [SS22], the existence of such codes
was proven using the probabilistic method (to yield a Monte-Carlo randomized construction). In this section
we give an explicit construction of such codes under hardness assumptions. These codes will be used as a
component in the construction of stochastic codes for poly-size circuits that is presented in Section 6.

4.1 Definition of evasive codes

We will be interested in codes that in additional to certain decoding properties, also have an evasiveness
property that we now define.

Definition 4.1 (Evasive codes [SS22]). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {fail}.
We say that (Enc,Dec) are ρ-evasive for a function C : {0, 1}n → {0, 1}n if:

Pr
Z←Un

[Dec(Z ⊕ C(Z)) ̸= fail] ≤ ρ.

We say that (Enc,Dec) are ρ-evasive for a class C if (Enc,Dec) are ρ-evasive for every C in C.

As in [SS22] we will be interested in constructing evasive code for a variant of the BSC that emerges in
this line of work. More specifically, we will be interested in codes for errors induced by a random permutation
(defined in Section 2.6).

4.2 Explicit constructions of evasive codes for random permutations

The next theorem gives a conditional explicit construction of codes for random permutations that are evasive
for poly-size channels. These codes are constructed under hardness assumptions, and have the optimal rate of
1−H(p).

Theorem 4.2. If E is hard for exponential size nondeterministic circuits then for every constant c > 1, every
constant 0 < p < 1

4 , and every sufficiently small constant ϵ > 0, there exists a constant d > 1 such that
for R = 1 − H(p) − ϵ, and for infinitely many n, there are functions Enc : {0, 1}Rn → {0, 1}n and
Dec : {0, 1}n → {0, 1}Rn ∪ {fail}, such that:

• (Enc,Dec) decode from PermUniPerm
p with success probability 1− 2−Ω(n0.1).

• (Enc,Dec) are 1
nc -evasive for Cktn

c

p .

39

• There exists a universal constant a0, such that for every m ∈ {0, 1}k, there exists a circuit Am of size
na0 , and for every e ∈ {0, 1}n,

Am(e) =

{
1, Dec(Enc(m)⊕ e) = m
0, Dec(Enc(m)⊕ e) ̸= m

Furthermore, Enc and Dec can be computed in time nd.

Theorem 4.2 is proven in Section 4.2.1. The proof of Theorem 4.2 works by applying Theorem 2.33
(which gives a code with the first property) and the second property is obtained by strengthening the code
with a suitable HTS that is obtained under the hardness assumption.

Remark 4.3. The reason that Theorem 4.2 is stated for “infinitely many n”, rather than for “every sufficiently
large n” is that we rely on Theorem 2.33 which is stated for “infinitely many n. As explained in Remark 2.34,
it seems likely that a careful inspection of the components of Theorem 2.33 will reveal that the set of infinitely
many n achieved there is very dense (and possibly even the set of “every sufficiently large n”). Such a
statement would carry over to Theorem 4.2.

We also remark that Somewhat surprisingly, if we are willing to settle for a larger rate R∗(p) (such that
R∗(p) = RGV (p) = 1 − H(2p) achieved by the Gilbert-Varshamov bound, then it is possible to give an
unconditional construction that is evasive for Hamming channels (that are computationally unbounded). This
was shown in [SS22] for R∗(p) = (1−H(p)) · 1−4p1−2p which is larger than 1−H(2p) for every 0 < p < 1

4 .

In the remainder of this section we prove Theorem 4.2.

4.2.1 Proof of Theorem 4.2

We are given constants c, p and ϵ as in the theorem statement. We choose λ = ϵ
2 and use the assumption

that E is hard for exponential size nondeterministic circuits to apply Theorem 3.5 and obtain that for every
sufficiently large k, there is a function f : {0, 1}k → {0, 1}λ·k that is a (h, 1

kc+1)-HTS for circuits of size
kc+1, with h = 2δk where we choose δ = 1−H(2p)

2 and note that δ > 0 as p < 1
4 .

Let k′ = k + λ · k, and let R = 1 − H(p) − ϵ
2 . Let n = k′/R. We apply Theorem 2.33 to obtain

that for infinitely many n, there are functions Enc : {0, 1}k′ → {0, 1}n and Dec : {0, 1}n → {0, 1}k′ such
that (Enc,Dec) decode from PermUniPerm

p with success probability 1 − 2−Ω(n0.1). We also have that these
functions are explicit, and therefore, have circuits of size poly(n). We can assume w.l.o.g. that c is sufficiently
large so that Enc,Dec have circuits of size nc.

We will construct a pair of function (Enc′,Dec′) where Enc′ : {0, 1}k → {0, 1}n and Dec′ : {0, 1}n →
{0, 1}k ∪ {fail} as follows:

• Enc′(x) = Enc(x ◦ f(x)) and note that indeed |x ◦ f(x)| = k + λ · k = k′.

• Dec′(v) operates as follows:

– Apply Dec(v) to obtain a string of length k′ which we interpret as a pair (x, y) ∈ {0, 1}k ×
{0, 1}λ·k.

– If y ̸= f(x) then Dec′(v) output “fail”.
– If y = f(x), and δ(v,Enc(x ◦ f(x))) > p output “fail”.
– Finally, output x, if we reached this stage. (That is, if y = f(x) and δ(v,Enc(x ◦ f(x))) ≤ p.

40

We will show that the pair (Enc′,Dec′) meet the requirements of the theorem. First of all, we observe
that the rate of (Enc,Dec) is:

k

n
=
k′ − λ · k

n
= 1−H(p)− ϵ

2
− λ · k

n
≥ 1−H(p)− ϵ

2
− ϵ

2
= 1−H(p)− ϵ,

as required.
All error patterns e supported by PermUniPerm

p have wt(e) ≤ p. This means that for every m,

δ(Enc(m),Enc(m)⊕ e) ≤ p,

and so when Dec′ decodes a given string v = Enc(m)⊕e, it can safely fail if δ(Enc(Dec(v)), v) > p, without
harming the behavior against error patterns in the support of PermUniPerm

p . This means that we do not hurt
the decoding properties of (Enc,Dec) against PermUniPerm

p , and can therefore conclude that (Enc′,Dec′)

decode from PermUniPerm
p with success probability 1− 2−Ω(n0.1).

It remains to prove that (Enc,Dec) are 1
nc -evasive for Cktn

c

p . Let C ∈ Cktn
c

p be a channel. We will show
that

Pr
Z←Un

[Dec′(Z ⊕ C(Z)) ̸= fail] ≤ 1

nc
.

For this purpose we consider a sampling circuit A that works as follows:

• A samples Z ← Un.

• It compute Z ⊕ C(Z).
• It applies Dec on Z ⊕ C(Z) to obtain a string of length k′ which we interpret as (X,Y) ∈ {0, 1}k ×
{0, 1}λ·k.

• Finally, A outputs (X,Y).

Note that by definition, A has size O(nc) ≤ kc+1. This means that f is secure against A, and there exists
a set H ⊆ {0, 1}k of size at most h, such that:

Pr
(X,Y)←A

[X ̸∈ H and Y = f(X)] ≤ 1

kc+1
.

As the channelC produces an error pattern with relative weight at most p, and Dec′(v) fails if δ(Enc(Dec(v)), c) >
p, we have that in the experiment described above:{

Dec′(Z ⊕ C(Z)) ̸= fail
}
⇒ {Y = f(X) and δ(Enc(X ◦ f(X)), Z) ≤ 2p} .

41

It follows that:

Pr
Z←Un

[Dec′(Z ⊕ C(Z)) ̸= fail] ≤ Pr[Y = f(X) and δ(Enc(X ◦ f(X)), Z) ≤ 2p]

= Pr[X ∈ H and Y = f(X) and δ(Enc(X ◦ f(X)), Z) ≤ 2p]

+ Pr[X ̸∈ H and Y = f(X) and δ(Enc(X ◦ f(X)), Z) ≤ 2p]

≤ Pr[X ∈ H and δ(Enc(X ◦ f(X)), Z) ≤ 2p] + Pr[X ̸∈ H and Y = f(X)]

≤
∑
x∈H

Pr[X = x and δ(Enc(X ◦ f(X)), Z) ≤ 2p] +
1

kc+1

≤
∑
x∈H

Pr[δ(Enc(x ◦ f(x)), Z) ≤ 2p] +
1

kc+1

≤ h · 2−n·(1−H(2p)) +
1

nc+1

≤ 2
(1−H(2p))k

2 · 2−n·(1−H(2p)) +
1

kc+1

≤ 2
−n·(1−H(2p))

2 +
1

kc+1

≤ 1

nc
.

Where the last inequality follows because p < 1
4 , and k = R · n.

Finally, for the third item we note that for every m, the circuit Am can be hardwired with m, f(m) and
z = Enc(m). This means that Am(e) can compute v = z ⊕ e and Dec(v) without having to compute f .
It can then apply Dec′ on v to obtain x, y, and by comparing (x, y) to (m, f(m)), and checking whether
δ(v,Enc(m, f(m)) ≤ p, it can answer whether Dec(Enc(m)⊕ e) = m. The point is that while this requires
Am to compute Dec′, Am does not need to compute f , and therefore (by the explicitness of (Enc′,Dec′) this
can be done by a circuit of size na0 , where the a0 is universal and does not depend on c.

5 SS-non-malleable codes

The notion of small set non-malleable codes was introduced in [SS22] as a component for the stochastic codes
for poly-size channels. In [SS22], the existence of SS-non-malleable codes was proven using the probabilistic
method (to yield a Monte-Carlo randomized construction). In this section we will define a notion of SS-
non-malleability that is weaker than the one considered in [SS22], but still sufficient for the application of
stochastic codes for poly-size channels. We will give an explicit construction of such codes under hardness
assumptions. These codes will be used as a component in the construction of stochastic codes for poly-size
circuits that is presented in Section 6.

5.1 Definitions of non-malleable and SS-non-malleable codes

Non-malleable codes are stochastic codes that provide some weak decoding guarantee, even against powerful
adversaries that can completely modify the codeword. The next definition makes the baseline requirement
that codes should decode correctly if no errors are introduced.

Definition 5.1. A stochastic code (that is a pair of maps Enc : {0, 1}k × {0, 1}d → {0, 1}n, and Dec :
{0, 1}n → {0, 1}k ∪ {fail}) is valid if for every m ∈ {0, 1}k and every s ∈ {0, 1}d, Dec(Enc(m, s)) = m.

42

In a seminal paper, Dziembowski, Pietrzak and Wichs [DPW18] introduced the notion of non-malleable
codes. Loosely speaking, such codes are valid stochastic codes with an additional property that any adversary
in the considered class cannot make the decoding algorithm decode to a message that is different and yet
correlated with the original message.

Definition 5.2 (non-malleable codes [DPW18]). A valid stochastic code (that is a pair of maps Enc :
{0, 1}k × {0, 1}d → {0, 1}n, and Dec : {0, 1}n → {0, 1}k ∪ {fail}) is ϵ-SS-non-malleable for a class
C, if for every C ∈ C, there exists a distribution DC that is supported on {0, 1}k ∪ {same}, and for every
m ∈ {0, 1}k,

∆(Dec(C(Enc(m,Ud))); Copy(DC ,m)) ≤ ϵ,

where the function Copy is defined by:

Copy(x, y) =

{
x, x ̸= same
y, x = same

We say that the stochastic code is simulatable by size s-circuits, if for every C ∈ C, there exist a size s circuit
AC that samples DC .

Shaltiel and Silbak [SS22] defined a notion of SS-non-malleable codes that considers a scenario in which
one is interested in encoding a random message X ← Uk, and the adversary C sees additional information
ψ(S) in addition to the encoding of S. Here, the focus is on functions ψ which are injective, and therefore (at
least information theoretically) leak all the information about S. (In this paper, we will be interested in the
case that ψ is a PRG that fools the adversary). The security guarantee is defined using a different approach
than the one used in the seminal work of [DPW18]. The approach is similar in spirit to the way we defined
an HTS in this paper (and in fact, our definition of HTS came out of the definition of [SS22]). It is required
that for every adversary C, there exists a small set H of messages, such that it is unlikely that C can make the
decoding decode to a message that is neither the original message, nore in H . (We remark that some works
in non-malleable codes [FMVW16, JW15] considered concepts that are somewhat similar. See [SS22] for a
discussion).

Definition 5.3 (SS-non-malleable codes (modified version of [SS22])). Let ψ be a function that on input
s ∈ {0, 1}k returns a string. A valid stochastic code (that is a pair of mapsEnc : {0, 1}k×{0, 1}d → {0, 1}n,
and Dec : {0, 1}n → {0, 1}k ∪{fail}) is (ψ, h, ρ)-SS-non-malleable for a class C, if for every C ∈ C, there
exists a set HC ⊆ {0, 1}k, with |HC | ≤ h, such that:

Pr
X←{0,1}k,S←{0,1}d

[Dec (C(ψ(X),Enc(X,S)))) ̸∈ HC ∪ {X} ∪ {fail}] ≤ ρ.

If we omit ψ, then ψ is the constant function that outputs the empty string (meaning that C only receives
Enc(X,S)).

This definition is somewhat different than the one used in [SS22], and the differences are detailed below.

Remark 5.4 (Comparison of this definition to [SS22]). The definition of [SS22] has an additional integer
parameter v, and it is required that security holds even if C observes ψ(S) and v encodings of X (using v
independent seeds S1, . . . , Sv). This added security was used in the construction of stochastic codes for poly-
size channels of [SS22]. We work with a weaker definition (which corresponds to the case v = 1 in [SS22])
and will therefore need to modify the construction of stochastic codes for poly-size circuits that is given in
Section 6.

An additional difference is that [SS22] gives a probabilistic argument showing that there exist codes that
are SS-non-malleable (for a function ψ that gives more information about S, than a PRG). We will only be

43

able to argue about the case that ψ is a seed-extending PRG (and this will require additional modification in
the final construction of stochastic codes for poly-size circuits).

Finally, in [SS22] the probabilistic argument also gives that the stochastic code is pseudorandom, and
decodes from small radius (in the sense defined in Definition 2.11). We will not be able to reproduce these
properties for the SS-non-malleable code, and this is an additional complication that we will need to handle
in the construction 6.

5.2 An explicit construction of SS-non-malleable codes under hardness assumptions

The main result of this section is an explicit construction of an SS-non-malleable code that is secure whenever
the function ψ is a sufficiently strong seed-extending PRG.

Theorem 5.5. There exists a constant c0 > 1 such that if E is hard for exponential size nondeterministic
circuits then for every constant c > 1, there exist constants c′ > d′ ≥ 1, and constants a′ ≥ 1 such that for
every constant a ≥ a′ and for every sufficiently large n, setting k = a · log n, k′ = kc0 and d = nd

′
, there are

functions Enc : {0, 1}k × {0, 1}d → {0, 1}k′ , and Dec : {0, 1}k′ → {0, 1}k ∪ {fail}) such that for every
function G : {0, 1}k → {0, 1}n that is a seed-extending 1

nc′ -PRG for circuits of size nc
′
, the pair (Enc,Dec)

is a (G,na
′
, 1
nc)-SS-non-malleable codes for randomized circuits of size nc. Furthermore, Enc,Dec can be

computed in time nd
′
.

The remainder of this section is devoted to proving Theorem 5.5. We build on recent results by Ball,
Dachmman-Soled and Loss [BDL22] that give an explicit construction of non-malleable codes under hardness
assumptions.

5.3 The non-malleable codes of Ball, Dachman-Soled and Loss

Recently, Ball, Dachman-Soled and Loss gave an explicit construction of non-malleable codes for poly-size
circuits under hardness assumptions. Our construction of SS-non-malleable codes will use this result.

Theorem 5.6 (non-malleable under hardness assumptions [BDL22]). If E is hard for nondeterministic cir-
cuits, then for every constant c > 1, there exist a constant d′ > 1 such that for every sufficiently large n, and
every c · log n < k < n, setting k′ = k8 and d = nd

′
, there are functions Enc : {0, 1}k ×{0, 1}d → {0, 1}k′ ,

and Dec : {0, 1}k′ → {0, 1}k ∪{fail}) such that the pair (Enc,Dec) is a 1
nc -non-malleable code for circuits

of size nc. Furthermore, Enc,Dec can be computed in time nd
′
.

We remark that the codes of [BDL22] can also encode short strings, and the requirement that k > c · log n
is made in order to simplify the statement.

The guarantee obtained by [BDL22] is statistical, and they do not claim in their statement that their code
is efficiently simulatable. Nevertheless, it is standard to show that such a code is efficiently simulatable.

Proposition 5.7. For every constant c > 1, there exists a constant e > 1 such that the non-malleable code of
Theorem 5.6 is simulatable by circuits of size ne. Furthermore, the statement holds not only for deterministic
circuits of size nc, but also for randomized circuits of size nc.

For completeness, we provide a proof of this proposition.

Proof. For every circuit C of size nc, we will construct a circuit AC that samples the distribution DC . For
this purpose, we define the function Uncopy as follows:

Uncopy(x, y) =

{
same, x = y
y, x ̸= y

44

Let AC be the circuit that chooses M ← Uk, and computes M̄ = Dec(C(Enc(M,Ud))), and outputs M̂ =
Uncopy(M, M̄). Note that this circuit is indeed of size ne for some constant e that depends on the constant c
and the d′ from Theorem 5.6 (which in turn depends on c).

The intuition is that as M̄ is statistically close to Copy(DC ,M), we can hope to obtain a distribution that
is close to DC when applying Uncopy on both sides. However, we should be careful as Uncopy does not
always reverse the operation of Copy. What is true (and easy to check) is that for every x ∈ {0, 1}k∪{same}
and y ∈ {0, 1}k, we have that

Uncopy(y,Copy(x, y)) ̸= x⇔ x = y.

We can therefore conclude that:

Uncopy(M,Copy(DC ,M)) ̸= DC ⇔ DC =M.

However, as M is uniform over {0, 1}k, and is independent of DC , the latter event occurs with probability
2−k.
By the definition of DC and the fact that it is independent of M , we have that for every m ∈ {0, 1}k

∆((M̄ |M = m); Copy(DC ,m)) ≤ 1

nc
.

Which implies that:

∆((M,M̄); (M,Copy(DC ,M))) ≤ 1

nc
.

We can now apply the function Uncopy to both sides and conclude that:

∆(Uncopy(M,M̄); Uncopy(M,Copy(DC ,M))) ≤ 1

nc
.

Which gives that:

∆(M̂ ; Uncopy(M,Copy(DC ,M))) ≤ 1

nc
.

However, we have already seen that the distribution on the right is identical to DC except for with probability
2−k. Overall, we conclude that:

∆(M̂ ;DC) ≤
1

nc
+

1

2k
.

This means that the distribution sampled by AC shows the non-malleability of the code with error

ϵ =
1

nc
+

(
1

nc
+

1

2k

)
≤ 3

nc
,

where the latter inequality follows by our requirements on k. This holds also if C is a randomized circuit, as
the simulating circuit A can toss the randomness for C, and for every choice of random coins r for C, the
simulating circuit A (with fixed r) produces a distribution DC,r that is good for C (with fixed r). Finally, the
difference between 1

nc and 3
nc is immaterial in the statemenmt of Theorem 5.6.

5.4 Using HTS to convert non-malleable codes into SS-non-malleable codes

We will show how to convert the non-malleable codes into SS-non-malleable codes in two steps. In the first
step we will use an HTS to convert an efficiently simulatable non-malleable code into an SS-non-malleable
code for the constant function ψ that outputs an empty string. We will then show how to convert such an
SS-non-malleable code into one that is secure when G is a sufficiently strong seed-extending PRG.

The next definition gives the construction for the first step.

45

Definition 5.8. Let k, d, n,m′ be parameters. Given:

• A function f : {0, 1}k → {0, 1}m′ .
• Functions Enc : {0, 1}k+m′ × {0, 1}d → {0, 1}n, and Dec : {0, 1}n → {0, 1}k+m′ ∪ {fail})

We define a pair of functions Encf : {0, 1}k × {0, 1}d → {0, 1}n and Decf : {0, 1}n → {0, 1}k as follows:

• Encf (x, s) = Enc(x ◦ f(x), s).
• Decf (z) works by applying Dec(z). If Dec(z) does not fail, then it outputs x ◦ y ∈ {0, 1}k+m′ and
Decf outputs x if y = f(x), and fails otherwise.

We now claim that using an HTS, the following construction indeed produces an SS-non-malleable code
(where ψ is the function that outputs the empty string).

Lemma 5.9. Let k, d, n,m′ be parameters, and let (Enc,Dec) and f be as in Definition 5.8. If

• (Enc,Dec) is an ϵ-non-malleable code for randomized circuits of size s, and is simulatable by circuits
of size s′, and

• f is an (h, ρ)-HTS for circuits of size s′.

Then (Encf ,Decf) is an (h, ϵ+ ρ)-SS-non-malleable for randomized circuits of size s.

The proof of Lemma 5.9 is given in Section 5.4.1.
The next lemma implements the second step in our plan, and shows that an SS-non-malleable code where

ψ is the function that outputs an empty string, is secure against ψ = G if G is a sufficiently strong seed-
extending PRG.

Lemma 5.10. There exists a polynomial p such that the following holds: Let Enc : {0, 1}k × {0, 1}d →
{0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {fail} be size t circuits, such that (Enc,Dec) form an (h, ρ)-non-
malleable code for randomized circuits of size s. If G : {0, 1}k → {0, 1}n is a seed-extending ϵ-PRG for
circuits of size p(t, s, h, k), then (Enc,Dec) is a (G, h, ρ + ϵ)-SS-non-malleable for randomized circuits of
size s.

The proof of Lemma 5.10 is given in Section 5.4.2.
We are finally ready to prove Theorem 5.5.

Proof. (of Theorem 5.5) Using the assumption that E is hard for exponential size nondeterministic circuits,
we can apply Theorem 5.6 with the additional properties guaranteed in Proposition 5.7. We will choose
k = (log n)c1 for a universal constant c1 that will be specified later.

Using the assumption that E is hard for exponential size nondeterministic circuits, we can also apply
Theorem 3.4 to obtain an (h, n−c)-HTS f : {0, 1}a·logn → {0, 1}(logn)O(1)

for h = na
′
, where we cannot

choose a′, but can choose a to be much larger than a′. We will also make sure to set Theorem 3.4 so that
this HTS will be against circuits of size poly(ne) (where ne is the size of the simulating circuit guaranteed in
Proposition 5.7) for a sufficiently large polynomial that will be chosen later. This is done, as we plan to apply
Lemma 5.9 which requires that the HTS will be secure against the simulating circuitA (rather than the original
circuit C). The parameters are set up so that we can apply Lemma 5.9 and obtain Encf : {0, 1}k×{0, 1}d →
{0, 1}k′ and Decf : {0, 1}k′ → {0, 1}k ∪ {fail} for k = a log n, and k′ = poly(log n) for some universal
polynomial. (Here we needed to set up Enc,Dec to encode strings of length (log n)c1 because the input length
of Enc is the sum of the input length of Encf and the output length of f . We were shooting to obtain input
length k = a log n, and can indeed choose the constant c1 so that this can be obtained. A consequence is

46

that k′ is a polynomial in k which indeed gives that k′ = (log n)c0 for some universal constant c0. Applying
Lemma 5.9 we indeed get that (Encf ,Decf) are (na

′
, n−c)-SS-non-malleable for randomized circuits of size

nc.
We finally apply Lemma 5.10 to argue that (Encf ,Decf) remain secure even if the adversary C, also

sees G(X). For this purpose, we note that Encf ,Decf can be computed in time t(n) for some polynomial
t. This is because computing Encf ,Decf reduces to computing Enc,Dec and f (which all can be computed
in time polynomial in n). Using Lemma 5.10, this gives that if G is a seed-extending PRG for circuits of
size p(t(n), nc, h, k) (which is yet a larger polynomial in n) then (Encf ,Decf) form a (G,na

′
, n−c)-SS-non-

malleable code for randomized circuits of size nc.

5.4.1 Proof of Lemma 5.9

We have that (Enc,Dec) is ϵ-non-malleable for randomized circuits of size s and is simulatable by circuits of
size s′. Let C be a randomized circuit of size s. By the non-malleability of (Enc,Dec), C has a simulating
circuit A of size s′. We will consider the following probability space:

• X ← Uk.

• Y = f(X).

• S ← Ud.

• (XR, YR) = Decf (C(Encf (X ◦ f(X), S))).

• (XM , YM)← A.

• (XI , YI) = Copy((XM , YM), (X,Y)).

By the non-malleability of (Enc,Dec) we have that for every x

∆((XR, YR)|X = x); ((XI , YI |X = x)) ≤ ϵ.

Which implies that:

Claim 5.11. ∆((X,XR, YR); (X,XI , YI) ≤ ϵ.

We use only this claim later on, and note that this property seems weaker than full-fledged non-malleability,
as it only protects the encoding of the specific message distribution m = (X,Y), rather than protecting the
encoding of every individual message.

By the HTS property of f against the circuit A, we have that there exists a set H ⊆ {0, 1}k of size at most
h, such that:

Pr[XM ̸∈ H and YM = f(XM)] ≤ ρ.

In order to prove the SS-non-malleability of (Encf ,Decf) we plan to use the set H against C, and our
goal is to prove that:

Claim 5.12. Pr[Decf (C(Encf (X,S))) ̸∈ H ∪X ∪ {fail}] ≤ ϵ+ ρ

Proof. We first observe that by the definition of (Encf ,Decf) we have that:

{Decf (C(Encf (X,S))) ̸∈ H ∪X ∪ {fail}} ⇒ {XR ̸∈ H and YR = f(XR) and XR ̸= X} .

We therefore can conclude that:

Pr[Decf (C(Encf (X,S))) ̸∈ H ∪X ∪ {fail}] ≤ Pr[XR ̸∈ H and YR = f(XR) and XR ̸= X]

≤ Pr[XI ̸∈ H and YI = f(XI) and XI ̸= X] + ϵ,

47

where the second inequality follows by Claim 5.11. The pair (XI , YI) were obtained by

(XI , YI) = Copy((XM , YM), (X,Y)).

This means that whenever XI ̸= X then (XM , YM) = (XI , YI) and we can conclude that:

Pr[XI ̸∈ H and YI = f(XI) and XI ̸= X] ≤ Pr[XM ̸∈ H and YM = f(XM) and XM ̸= X]

≤ Pr[XM ̸∈ H and YM = f(XM)]

≤ ρ.

Overall, we conclude that

Pr[Decf (C(Encf (X,S))) ̸∈ H ∪X ∪ {fail}] ≤ ϵ+ ρ,

as required.

5.4.2 Proof of Lemma 5.10

Let C : {0, 1}n × {0, 1}n → {0, 1}n be a randomized circuit of size s, our goal is to show that there exists a
set H ⊆ {0, 1}k of size h such that

Pr
X←{0,1}k,S←{0,1}d

[Dec (C(G(X),Enc(X,S))) ̸∈ H ∪ {X} ∪ {fail}] ≤ ϵ+ ρ.

For this purpose, we will consider a randomized circuitC ′ : {0, 1}n → {0, 1}n defined byC ′(z) = C(Un, z).
Intuitively, the randomized circuit C ′ replaces the input G(X) with Un. By the SS-non-malleability of the
(Enc,Dec) we have that there exists a set H of size at most h (for C ′) which satisfies:

Pr
X←{0,1}k,S←{0,1}d

[
Dec

(
C ′(Enc(X,S))

)
̸∈ H ∪ {X} ∪ {fail}

]
≤ ρ.

We plan to use this H for C, and use the pseudorandomness of G to argue that C (that sees G(X)) cannot
benefit from this additional input.

For this purpose, we will consider the following randomized circuit B which receives input (x, z) ∈
{0, 1}k × {0, 1}n.

• B simulates the encoding/decoding experiment using C and z as follows: Choose S ← Ud, and com-
putes x̄ = Dec(C(z,Enc(x, S)).

• If x̄ ∈ H ∪ {x} ∪ {fail} answer one, and otherwise answer zero.

This definition is made so that the following holds:

Claim 5.13.

• ForX ← Uk andZ = G(X), {B(X,Z) = 1}⇔ {Dec (C(G(X),Enc(X,S))) ̸∈ H ∪ {X} ∪ {fail}}.
• For X ← Uk and Z ← Un, {B(X,Z) = 1} ⇔ {Dec (C ′(Enc(X,S))) ̸∈ H ∪ {X} ∪ {fail}}.
• B can be computed by a randomized circuit of size p(t, s, h, k) for some universal polynomial p.

48

G is a seed-extending ϵ-PRG for circuits of size p(t, s, h, k), meaning that (X,G(X)) is indistinguishable
from (X,Un) for circuits of that size. We conclude that for

p = Pr
X←{0,1}k,S←{0,1}d

[Dec (C(G(X),Enc(X,S)))) ̸∈ H ∪ {X} ∪ {fail}] ,

we have that:

p = Pr
X←Uk

[B(X,G(X)) = 1]

≤ Pr
X←Uk,Z←Un

[B(X,Z) = 1] + ϵ

= Pr
X←{0,1}k,S←{0,1}d

[
Dec

(
C ′(Enc(X,S)))

)
̸∈ H ∪ {X} ∪ {fail}

]
+ ϵ

≤ ρ+ ϵ.

6 A construction of stochastic codes for poly-size circuits based on hardness
assumptions

In this section we prove our main result, providing an explicit construction of stochastic codes for poly-size
circuits based on hardness assumption (proving Theorem 1.1). We start by restating Theorem 1.1 in a more
precise way:

Theorem 6.1 (Explicit stochastic codes for poly-size channels). If E is hard for exponential size nondeter-
ministic circuits then for every constants 0 ≤ p < 1

4 , c > 1, and for every sufficiently small constant ϵ > 0,
there exists a constant d such that for infinitely many N , there is a stochastic code (Enc,Dec) for CktN

c

p

with:

• Rate R ≥ 1−H(p)− ϵ.
• Success probability 1− 1

Nc .

Furthermore, the construction is explicit and Enc,Dec are computable in time Nd.

Remark 6.2. Theorem 6.1 is stated for “infinitely many n”, rather than for “every sufficiently large n”.
However, it works for a very dense set of n, and the only component in the construction that is stated for
infinitely many n is Theorem 2.33 which works for a dense set of n. See Remarks 4.3, and Remark 2.34.

In the remainder of the section we prove Theorem 6.1. In Section 6.1 we present our construction. In
Section 6.2.1 we compare our construction to those used in previous work. The proof is given in Section 6.2.

6.1 The construction

In this section we present our construction of stochastic codes for channels that are implementable by poly-
size circuits.

The construction and analysis in this chapter build heavily on previous work starting with the seminal
paper of Guruswami and Smith [GS16], and using ideas from later works [GS16, SS21a, SS21b, SS22]. We
would like to imitate the construction of Shaltiel and Silbak [SS22] (that relied on Monte-Carlo constructions
of evasive BSC codes, and SS-non-malleable codes, now that we have given explicit constructions of these
objects. Unfortunately, we cannot do this directly because the objects that we explicitly construct are not as
strong as the ones that were guaranteed in the Monte-Carlo constructions of [SS22]. More specifically, the

49

explicit SS-non-malleable codes that we construct do not have some of the properties that the Monte-Carlo
ones from [SS22] have. (See Remark 5.4 for a detailed comparison).

This forces us to modify the construction in several respects, in order to get by with this weaker compo-
nent. The changes in constructions are natural (and some of them build on earlier ideas) and yet, they lead
to some subtle changes which make the analysis somewhat more cumbersome. Nevertheless, we stress that
on an “intuitive high-level” both construction and analysis are essentially similar to that of [SS22]. We will
not give an intuitive explanation of the overall construction and analysis, as such an explanation appears in
[SS22]. Instead, we will try to explain some of the differences in Section 6.2.1.

The construction is detailed in four figures: Figure 1 lists parameters, Figure 2 lists ingredients that we
use, Figure 3 describes the encoding algorithm, and Figure 4 describes the decoding algorithm. We start with
some notation and definitions.

Partitioning codewords into control blocks and data blocks. The construction will think of codewords
c ∈ {0, 1}N as being composed of n = nctrl + ndata blocks of length b = N/n. We specify the precise
choices of n, b, nctrl, ndata in Figure 1.

Figure 1: Parameters for stochastic code

In this figure we make some of the parameter choices for the construction of Theorem 6.1.

Hardness assumption: We are assuming that E is hard for exponential size nondeterministic circuits.
We are given constants:

• 0 < p < 1
4 - The fraction of errors we need to recover from.

• ϵ > 0 - We will construct a stochastic code Enc with output length N , and rate R ≥ R′(p) − ϵ. We assume that
ϵ > 0, is sufficiently small in terms of p.

• c - We are aiming to construct a stochastic code for circuits of size N c with success 1− ν for ν = 1
Nc .

Other parameters that we choose:

• N - The length (in bits) of the codeword. Throughout, we assume that N is sufficiently large, and that other
parameters are either constants, or chosen as a function of N .

• Let b = cb · logN , where cb is a constant that we choose later in Figure 2.
• Let n = N/b. We split the N output bits of the codeword to n blocks of length b.
• Let nctrl = n0.9 be the number of “control blocks”, and ndata = n− nctrl be the number of “data blocks”.
• Let Nctrl = b · nctrl and Ndata = b · ndata. (Note that: n = nctrl + ndata, N = Nctrl +Ndata).
• Let c0 > 1 be a sufficiently large universal constant that we will choose in the proof of Theorem 6.1.

We use these choices to choose ingredients (a sampler, a PRG, a pseudorandomly chosen permutation, a pseudorandom
code, an SS-non-malleable code, an instantiation of the Reed-Solomon code and an evasive BSC code) that will be used
in the construction. These choices are made in Figure 2.

We now set up some notation. Given a subset I ⊆ [n] of nctrl distinct indices, we can decompose c into
its data part cdata ∈ {0, 1}Ndata=ndata·b and its control part cctrl ∈ {0, 1}Nctrl=nctrl·b. Similarly, given strings
cdata and cctrl we can prepare the codeword c (which we denote by (cdata, cctrl)

I by the reverse operation.
This is stated formally in the definition below.

Definition 6.3 (Data and control portion of a codeword). We view strings c ∈ {0, 1}N as composed of n
blocks of length b = N/n, so that c ∈ ({0, 1}b)n, and ci denotes the b bit long i’th block of c.

Let I = {i1, . . . , inctrl
} ⊆ [n] be a subset of indices of size nctrl.

50

Figure 2: Ingredients for stochastic code

We are assuming that E is hard for exponential size nondeterministic circuits. In Figure 1 we specified parameters that are
used by the construction. More specifically, we when given constants p, ϵ, c, and a specified codeword length N , we have
chosen parameters n, b, nctrl, ndata, Nctrl, Ndata that were chosen as a function of previous choices, and of a constant
cb ≥ 1, that was not yet specified. In this figure, we will specify the ingredients that will be used in our construction, and
choose cb. The constant c0 will be chosen in the proof to be sufficiently large.

Averaging Sampler: We use Theorem 2.19 (choosing csamp = c + c0) to obtain a (1
logn ,

1
ncsamp)-sampler with distinct

samples Samp : {0, 1}dsamp → [n]nctrl . We indeed meet the condition that the number of samples nctrl =
n0.9 ≥ 20.1 logn. By Theorem 2.19 we have an explicit construction with seed length dsamp = Oc,c0(log n) =
Oc,c0(logN).

RS code: Let EncRS : {0, 1}N0.1 → ({0, 1}logN)nctrl be the Reed-Solomon code from Theorem 2.13
Pseudorandom code: Let cpr = c + c0. Using the hardness assumption, we apply Theorem 2.12 (choosing p = 1/3,

c = cpr and a = 2) to obtain constants Lpr, cd and the constant cb (which we have promised to choose earlier). We
also obtain a stochastic code (Encpr,Decpr) where Encpr : {0, 1}2·logN × {0, 1}d=cd·logN → {0, 1}b=cb·logN

and Decpr : {0, 1}b=cb·logN → {0, 1}2·logN . We are guaranteed that the code is Lpr-wealy-list decodable from
radius 1/3, and 1

Ncpr -pseudorandom for size N cpr circuits. Furthermore, there exists a constant dpr > cpr such
that (Enc,Dec) run in time Ndpr , and have circuits of size Ndpr .

SS-non-malleable code: Let cssnm = dpr + c0. Using the hardness assumption, we apply Theorem 5.5 (choosing
c = cssnm) to obtain constants dssnm > cssnm, c′ssnm > dssnm and a constant a′ssnm < c′ssnm, as well as a stochastic
code (Encssnm,Decssnm). We are allowed to choose any constant ck ≥ a′ssnm, and setting ℓ = ck · logN , we have
that Encssnm : {0, 1}ℓ×{0, 1}Ndssnm → {0, 1}(logN)O(1)

(where the constant hidden in theO(1) is universal). We
are also guaranteed that for every Ĝ : {0, 1}ℓ → {0, 1}N that is a seed-extending 1

Nc′ssnm
-PRG for circuits of size

N c′ssnm , the stochastic code (Encssnm,Decssnm) is (Ĝ,Na′
ssnm , 1

Ncssnm)-SS-non-malleable for randomized circuits
of size N cssnm . Furthermore Encssnm,Decssnm run in time Ndssnm , and have circuits of size Ndssnm .

BSC code that is evasive: Let cBSC = dssnm + c0, pBSC = p · (1 + ϵ
10), and RBSC = 1 − H(p) − ϵ/3. Using the

hardness assumption, we apply Theorem 4.2 (using c = cBSC, p = pBSC, ϵ = ϵ/3). We obtain a constant dBSC

and a code (EncBSC,DecBSC) where EncBSC : {0, 1}RBSC·Ndata → {0, 1}Ndata and DecBSC : {0, 1}Ndata →
{0, 1}RBSCNdata ∪ {fail} that run in time NdBSC , and have circuits of size NdBSC . (Theorem 4.2 only gives
a guarantee for infinitely many choices of Ndata, and using the fact that N is uniquely derived from Ndata, this
translates to the guarantee made in Theorem 6.1 that the theorem holds for infinitely manyN . See Remark 6.2 for a
discussion). We are also guaranteed that the code is 1

NcBSC
-evasive for CktN

cBSC

pBSC
, and decodes from PermUniPerm

pBSC
.

PRG against circuits: Let cPRG be a constant that is larger than c0 + c+ dssnm + c′ssnm + a′ssnm + dBSC + dpr. Using
the hardness assumption, we apply Theorem 2.7 to obtain that there exists a constant ck > 1 (and this is where we
choose the constant ck specified earlier) and a seed extending 1

3·NcPRG
-PRG,G : {0, 1}dPRG=

ck
3 ·logN → {0, 1}N2

for circuits of size N cPRG . Furthermore, G runs in time poly(N cPRG). We will sometimes view G as a function
that outputs only Ndata bits by truncating the output to length Ndata.

Pseudorandomly chosen permutation: Let πG : {0, 1}dPRG × [Ndata]→ [Ndata] be the function defined in Definition
2.31, so that for a string sπ ∈ {0, 1}dPRG , πsπ = πG

sπ is a permutation over [Ndata].
Control strings, and a combined PRG: As dsamp = Oc,c0(logN) we have that dPRG = ck

3 · logN is at least
dsamp. We will assume w.l.o.g. that dsamp = dPRG. As we have already chosen ℓ = ck · logN , this means
that ℓ′ = ℓ

3 = ck
3 · logN is the length of seeds for the sampler, PRG, and pseudorandomly chosen permu-

tation. Given s ∈ {0, 1}ℓ (which we call a “control string”) we think of it as consisting of three such seeds
s = (ssamp, sπ, sPRG) where each is of length ℓ′. We also define a “combined PRG” Ĝ : {0, 1}ℓ → {0, 1}3N2

by
Ĝ(s) = G(ssamp), G(sπ), G(sPRG), and it follows by a hybrid argument that Ĝ is a seed-extending 1

Nc′ssnm
-PRG

for circuits of size N c′ssnm (meaning that Ĝ meets the requirement made by the SS-non-malleable code).

51

• Given strings cdata ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl we define an N bit string c denoted by
(cdata, cctrl)

I as follows: We think of cdata, cctrl, c as being composed of blocks of length b (that is
cdata ∈ ({0, 1}b)ndata , cctrl ∈ ({0, 1}b)nctrl and c ∈ ({0, 1}b)n). We enumerate the indices in [n] \ I by

j1, . . . , jndata
and set cℓ =

{
(cctrl)k if ℓ = ik for some k;
(cdata)k if ℓ = jk for some k

• Given a string c ∈ {0, 1}N (which we think of as c ∈ ({0, 1}b)n) we define strings cIdata, c
I
ctrl by

cIctrl = c|I and cIdata = c|[n]\I , (namely the strings restricted to the indices in I , [n] \ I , respectively).

We omit the superscript I when it is clear from the context.

6.2 Proof of Theorem 6.1

This section is devoted to proving Theorem 6.1, and show the correctness of the main construction.

The setup: Throughout the remainder of the section, we fix the setup of Theorem 6.1. Specifically, let
0 ≤ p < 1

4 , c ≥ 1 be constants, and let ϵ > 0 be a sufficiently small constant. We use these choices to
set up the parameters and ingredients as explained in Figure 1 and Figure 2. The choices in Figure 1 allow
us to choose a universal constant c0 > 1 that we will choose later. Let N be sufficiently large, we will
argue the correctness for infinitely many N . More specifically, as chosen in Figure 2, we will assume that
Ndata = N −Nctrl is one of the lengths for which the code (EncBSC,DecBSC) was guaranteed to be correct
in Figure 2, and there are indeed infinitely many choices of such N . We set ν = 1

Nc to be the required error
parameter.

Let Enc : {0, 1}RN × {0, 1}ℓ+nctrl·d+Ndssnm → {0, 1}N and Dec : {0, 1}N → {0, 1}RN ∪ {fail} be
the functions specified in Figures 3 and Figure 4 using the ingredients and parameter choices in Figure 1 and
Figure 2. Overall, by construction, the algorithms (Enc,Dec) run in time polynomial in n.

Bounding The Rate. By Figure 3, the rate R of Enc is given by:

R =
RBSC ·Ndata

N

= (1−H(pBSC)−
ϵ

3
) · (1− nctrl

n
)

≥ (1−H(p)− ϵ

10
− ϵ

3
) · (1− ϵ

10
)

≥ 1−H(p)− ϵ,

where the third line follows because nctrl = n0.9, and using Equation (2) from Section 2, we have that:

H(pBSC) = H(p · (1 + ϵ

10
)) ≤ H(p) +

ϵ

10
.

Road map for arguing the correctness of decoding. The main part in proving Theorem 6.1 is showing that
the decoding algorithm is correct. The remainder of this section is devoted to this proof, and in this section
we give a roadmap of this proof.

The setup:

• Let m ∈ {0, 1}RN be a message.

• Let C : {0, 1}N → {0, 1}N be a channel in CktN
c

p

52

Figure 3: Encoding algorithm for stochastic code

Preperations: In this figure we use the parameters and ingredients of Figures 1 and Figure 2 to define the stochas-
tic encoding map. The encoding map will encode messages of length RBSC ·Ndata, and will output words
of length N . This gives that it will have rate R = RBSC·Ndata

N . The stochastic encoding map and will use a
seed of length ℓ+ nctrl · d+Ndssnm .

Definition: We define Enc : {0, 1}R·N × {0, 1}ℓ+nctrl·d+Ndssnm → {0, 1}N as follows:

Input:
• A message m ∈ {0, 1}RBSC·Ndata .
• A “random coin” for the stochastic encoding that consists of:

– s = (ssamp, sπ, sPRG). Recall that ssamp, sπ, sPRG ∈ {0, 1}ℓ
′
, and ℓ′ = ℓ/3, so that

s ∈ {0, 1}ℓ.
– r0 ∈ {0, 1}N

dssnm .
– r1, . . . , rnctrl

∈ {0, 1}d.

Output: A codeword c = Enc(m; (s, r0, r1, . . . , rnctrl
)) of length N .

Operation:
Determine control blocks: Apply Samp(G(ssamp)) to generate control = {i1, . . . , inctrl

} ⊆ [n].
These blocks will be called “control blocks”, and the remaining ndata blocks will be called “data
blocks”.

Prepare data part: We prepare a string cdata of length Ndata as follows:
• Encode m by x = EncBSC(m).
• Generate anNdata bit string y by reordering theNdata bits of the encoding using the (inverse

of) the permutation πsπ (·) = πG(sπ, ·). More precisely, y = π−1
sπ (x) = π−1

sπ (EncBSC(m)).
• Mask y using PRG. That is, cdata = y⊕G(sPRG) = π−1

sπ (EncBSC(m))⊕G(sPRG). (Here
we truncate the output of G to length Ndata).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks of
length b) as follows:

• Compute o = Encssnm(s, r0).
• Compute w = EncRS(o). Note that EncRS was set to encode inputs of length N0.1, and so,

can be used on o, which is an output of Encssnm (which is of length logO(1)N). We obtain
w ∈ ({0, 1}logN)nctrl .

• For every j ∈ [nctrl], compute (cctrl)j = Encpr((ij , wj), rj). (Here, we encode the pair
(ij , wj) which we can view as a string of length log n + logN ≤ 2 logN (and so we can
apply Encpr on such a string).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging
cdata and cctrl. That is, c = (cdata, cctrl)

control.

We will keep these choices of m,C fixed throughout this section.
We need to show that w.h.p. the message m is decoded correctly when applying encoding, channel

and decoding. We will refer to this experiment as the encoding/decoding experiment, and will denote it by
expred(m,C). In this experiment, S ∈ {0, 1}ℓ, R0 ∈ {0, 1}N

dssnm and R1, . . . , Rnctrl
∈ {0, 1}d are chosen

uniformly at random. We set R = (R0, R1, . . . , Rnctrl
). The string Z = Enc(m; (S,R)) is the codeword,

E = C(Z) is the error pattern chosen by the channel, V̄ = Z⊕E is the received word given to the decoding,
and M̄ = Dec(V̄) is the message returned by the decoding. We use the convention that capital letters denote
the random variables associated with small letters used in the construction, and a complete specification of

53

Figure 4: Decoding algorithm for stochastic code

Definition: We define Dec : {0, 1}N → {0, 1}R·N ∪ {fail} as follows:

Input: A “received word” v̄ ∈ {0, 1}N .
Output: A message m̄ ∈ {0, 1}R·N or fail.
Operation of decoding algorithm: On input v̄ ∈ {0, 1}N :

Compute control candidates:
• For i ∈ [n], let Listi = Decpr(v̄i). (Here v̄i is the i’th block of v̄). Recall that for every i,
Listi is of size Lpr.

• Let List denote the union over all the elements in the n lists.
• Every element in List can be thought of as a pair (i, w) ∈ {0, 1}logn × {0, 1}logN (in a

similar way to what was done in the encoding algorithm).
• In List there are at most t = Lpr · n such pairs. We now run the list-decoding algorithm

of Theorem 2.13 assuming that the “agreement parameter” a = nctrl

100 . We obtain a list of at
most 2t/a = 200 · Lpr · N

nctrl
≤ 200 · Lpr · N0.2 ≤ n strings ō1, . . . , ōn where each is an

element of {0, 1}N0.1

, and by only looking at a prefix, we view it as a string of length that
is the output length of Encssnm.

• For every i ∈ [n], compute s̄i = Decssnm(ōi). We define candidates = {s̄i : i ∈ [n]}.
Compute valid candidates: We say that s̄ is successful, if when computing the procedure

DecodeUsingCandidate(s̄) (that is defined below) we obtain m̄(s̄) ̸= fail.
Output message: If there exists a single s∗ ∈ candidates that is successful, output m̄(s∗). Other-

wise, output fail.

Internal procedure DecodeUsingCandidate: On input s̄ ∈ {0, 1}ℓ (which we think of as a candidate for
the control string) this procedure works as follows:

Determine control blocks: Apply Samp(G(s̄samp)) to generate control = {̄i1, . . . , īnctrl
}. Com-

pute v̄data = v̄control
data .

Unmask PRG: Compute ȳ = v̄data⊕G(s̄PRG). (Here we truncate the output of G to length Ndata).
Reverse permutation: Let x̄ be the Ndata bit string obtained by “undoing” the permutation. More

precisely, let πs̄π (·) = πG(s̄π, ·), and let x̄ = πs̄π (ȳ) = πs̄π (v̄data ⊕G(s̄PRG)).
Decode data: Compute m̄ = DecBSC(x̄).
output: We use m̄(s̄) to denote the answer m̄ when DecodeUsingCandidate is applied on s̄.

experiment expred(m,C) is given in Figure 5.
In order to complete the proof of Theorem 6.1 we need to show that the probability that the decoded

message M̄ is equal to m is large. More precisely, that:

Pr
expred(m,C)

[M̄ = m] ≥ 1− ν. (3)

Recall that in the experiment, every candidate control string s̄ ∈ CANDIDATES is used to produce a
candidate message M̄(s̄).

The correct control string is one of the candidates. We first claim that w.h.p. the correct control string S
is in CANDIDATES and that when decoding using this candidate we obtain the correct message m. (Loosely
speaking, the earlier work of [GS16, SS21a] that obtained list-decoding, stopped here, and outputted the list of
messages

{
M̄(s̄) : s̄ ∈ CANDIDATES

}
). The next lemma is stating that this list indeed contains the original

54

Figure 5: The encoding/decoding experiment expred(m,C).

Parameters: A message m ∈ {0, 1}RN and a channel C ∈ Cktn
c

p .

Encoding phase: Choose uniformly at random S ∈ {0, 1}ℓ, R0 ∈ {0, 1}N
dssnm , and R1, . . . , Rnctrl

∈ {0, 1}d,
and let Z = Enc(m; (S,R)). More specifically, divide S into three parts of length ℓ′ = ℓ/3, so that
S = (Ssamp, SPRG, Sπ) and perform the following:

• CONTROL = {I1 < . . . < Inctrl
} = Samp(G(Ssamp)).

• x = EncBSC(m)

• Y = π−1
Sπ

(x).

• Z ∈ {0, 1}N is defined as follows:

– ZCONTROL
data = Y ⊕G(SPRG).

– ZCONTROL
ctrl is defined as follows:

* O = Encssnm(S,R0).
* W = EncRS(O).
* For every j ∈ [nctrl], ZIj = Encpr((Ij ,Wj), Rj).

Channel phase: Let E = C(Z) and V̄ = Z ⊕ E.
Decoding phase: Let M̄ = Dec(V̄). More specifically:

Compute candidates:
• For i ∈ [n], let LISTi = Decpr(V̄i).
• Let LIST denote the union over all the elements in the n lists.
• Run the list-decoding algorithm of Theorem 2.13 on the t pairs in LIST (as in the decoding

algorithm, that is assuming that the “agreement parameter” a = nctrl

100) to obtain a list Ō1, . . . , Ōn.
• For every i ∈ [n], let S̄i = Decssnm(Ōi).
• Let CANDIDATES =

{
S̄i : i ∈ [n]

}
.

Decode using candidates: For every s̄ ∈ CANDIDATES, compute DecodeUsingCandidate(s̄), more
specifically:

• Let CONTROL(s̄) = Samp(G(s̄samp)) and compute V̄data(s̄) = V̄ (s̄)CONTROL
data .

• Let Ȳ (s̄) = V̄data(s̄)⊕G(s̄PRG).
• Let X̄(s̄) = πs̄π (Ȳ (s̄)).
• Let M̄(s̄) = DecBSC(X̄(s̄)).

Compute valid candidates: For every s̄ ∈ CANDIDATES, determine whether s̄ is successful, that is, if
M̄(s̄) ̸= fail.

Output message: If there exists a single s̄ ∈ CANDIDATES that is successful, we denote it by S∗ and
the final output is M̄ = M̄(S∗), otherwise we set S∗ = fail and M̄ = fail.

message m.

Lemma 6.4 (The correct control string is one of the candidates).

Pr
expred(m,C)

[S ∈ CANDIDATES and M̄(S) = m] ≥ 1− ν/2.

Loosely speaking, this is supposed to follow by the correctness of the list-decoding algorithm of [GS16]
(with modifications in [SS21a]) which guarantees that the correct candidate control string appears in the list

55

CANDIDATES, and that when decoding with this candidate, the original message m is obtained. We explain
the technique of previous work [GS16, SS21a, KSS19, SS21b] and prove Lemma 6.4 in Section 6.2.4. The
argument is very similar to that used in the aforementioned previous work, but one has to be more careful,
because of the reasons explained in Section 6.2.1.

All incorrect candidates are unsuccessful. This part of the analysis was the main contribution of [SS21b,
SS22], showing that one can “get rid” of incorrect candidates, and achieve unique decoding. That is, we will
show that w.h.p. only the candidate S is successful. Meaning that our decoding algorithm has that w.h.p.
S∗ = S (and we identify the correct candidate). This is formally stated in the next lemma.

Lemma 6.5 (Only the correct candidate survives).

Pr
expred(m,C)

[S∗ = S] ≥ 1− ν/2.

Together, Lemmata 6.4 and 6.5 imply that with probability at least 1 − ν, we have that S∗ = S and
M̄ = M̄(S∗) = M̄(S) = m. This means that (3) holds, and the correct message is decoded with probability
1− ν, concluding the proof of Theorem 6.1.

The argument for proving Lemma 6.5. For this part, we will use the same overall approach of [SS22]. We
will first use the SS-non-malleability of Encssnm to prove the following lemma:

Lemma 6.6 (Using SS-non-malleability). There exists a set H ⊆ {0, 1}ck·logN of size at most Na′ssnm+1 such
that:

Pr
expred(m,C)

[∃i ∈ [n] : S̄i ̸∈ H ∪ {S} ∪ {fail}] ≤ N−(cssnm−1).

The proof of Lemma 6.6 appears in Section 6.2.2, and implements the intuition used in proving a similar
lemma in [SS22]. However, there are some technical differences that are caused by the modified construction.

Next we will use the evasiveness property of Dec to show that for every fixed s̄ ∈ {0, 1}ck·logN , the
probability that the procedure DecodeUsingCandidate(s̄) will not fail is small, where the probability is in
expred(m,C).

Lemma 6.7 (Using evasiveness). For every fixed s̄ ∈ {0, 1}ck·logN ,

Pr
expred(m,C)

[DecodeUsingCandidate(s̄) ̸= fail] ≤ 1

N cPRG
+

1

N cBSC
.

The proof of Lemma 6.7 appears in Section 6.2.3 and implements the same overall approch that was used
for proving a similar lemma in [SS22]. This argument is now much more delicate due to the fact that our
SS-non-malleable code, does not share some of the properties that were used in [SS22].

Putting the two lemmas together, we conclude that it is unlikely that there exists i ∈ [n] such that S̄i is
successful, and S̄i ̸= S. This is done formally in the next claim.

Claim 6.8.

Pr
expred(m,C)

[∃i ∈ [n] : DecodeUsingCandidate(S̄i) ̸= fail, and S̄i ̸= S] < ν/2.

Proof. Let:

P = Pr
expred(m,C)

[∃i ∈ [n] : DecodeUsingCandidate(S̄i) ̸= fail and S̄i ̸= S].

56

We have that:

P ≤ Pr
expred(m,C)

[∃i ∈ [n] : S̄i ̸∈ H ∪ {S} ∪ {fail}] + Pr
expred(m,C)

[∃s̄ ∈ H : DecodeUsingCandidate(s̄) ̸= fail]

≤ N−(cssnm−1) +
∑
s̄∈H

Pr
expred(m,C)

[DecodeUsingCandidate(s̄) ̸= fail]

≤ N−(cssnm−1) +Na′ssnm+1 · (1

N cPRG
+

1

N cBSC
)

≤ ν

2
,

where the second inequality is by Lemma 6.6, the third inequality is by Lemma 6.7, and the final inequality
follows because ν = N−c, and we have that cssnm > c + c0, and both cBSC and cPRG are larger than
c+ ca′ssnm + c0. We can choose c0 to be sufficiently large so that the inequality holds.

We are now ready to prove Lemma 6.5.

Proof. (of Lemma 6.5) By Lemma 6.4 we have that:

Pr
expred(m,C)

[∃i : S̄i = S and DecodeUsingCandidate(S̄i) = m ̸= fail] ≥ 1− ν/2.

Combining this with Claim 6.8 we have that except with probability ν, we have that in expred(m,C) the two
events below occur:

•
{
∃i ∈ [n] : S̄i = S and S̄i is successful

}
.

•
{
∀i ∈ [n] : either S̄i = S or S̄i is not suceessful

}
.

When these two events occur, we have that there is a unique s̄ ∈ CANDIDATES that is successful, and
S∗ = s̄ = S.

This concludes the proof of Theorem 6.1. It remains to prove the lemmas that appeared inside the proof,
and this is done in the remainder of the section. However, before doing that, we compare the construction and
proof to those in [SS22].

6.2.1 Comparison of the construction and analysis to earlier work

The reason that we cannot use the construction and proof of [SS22] is that the SS-non-malleable codes that
we have do not have some of the additional properties that were achieved by the probabilistic argument in
[SS22], see Remark 5.4. This creates several complications:

• Rather than having one “control code” Encctrl that is SS-non-malleable, pseudorandom, and decodes
from a about a 1/4 fraction of errors (as is the case in [SS22]). We now have several codes where each
one has one of these properties. Fortunately, this isn’t a problem, as we can combine these components
together (in fact, this was already done in some of the previous papers [GS16, SS21a]): When preparing
the nctrl control blocks c1, . . . , cnctrl

, the previous construction took cj = Encctrl(s, rj) for independent
random strings r1, . . . , rnctrl

. We can achieve the same effect by first using a random string r0, to
compute o = Encssnm(s, r0). We then encode o using a Reed-Solomon code EncRS, and each output
symbol is encoded with the pseudorandom code Encpr.

57

• A more serious problem is that in [SS22] the SS-non-malleable code was secure when choosing the
function ψ(s) which in addition to G(sPRG) also produced a description of Samp(ssamp) and πsπ . The
second two components do not look pseudorandom. We are forced to use

ψ(s) = Ĝ(s) = G(ssamp), G(sπ), G(sPRG),

as we must use a function ψ that is a seed extending PRG. This creates complications as in order to
use SS-non-malleability, in the proof of Lemma 6.6, we need to argue in that a small circuit that sees
Ĝ(S),Encssnm(S) can prepare the corresponding codeword Enc(m; (S,R)). This is a problem, as
such an adversary has no information about S. However, by carefully modifying the construction (so
that control and sπ are functions of G(sπ) and G(ssamp) we can arrange it so that the codeword can
indeed be prepared by a small circuit that sees Ĝ(S),Encssnm(S).

• The previous modification causes other problems. It is now computationally difficult to compute the
control and πsπ as a function of s, as this requires computing G (which cannot be done by a small
circuit). This creates complications in the proof of Lemma 6.7. Fortunately, in that proof, it is possible
to do the analysis when SPRG is kept uniform, and Ssamp, Sπ are fixed. In such a setup, control and πsπ
are fixed and can be hardwired to the circuit.

• The fact that the “control code” is composed of several components, dictates a complexity leveraging
argument where some components fool other components. In particular, we are now forced to set the
evasiveness property of (EncBSC,DecBSC) to work against circuits that can compute Encpr,Decpr.
This in particular means that the pseudorandomness properties of Encpr is quite weak, and we cannot
use its pseudorandomness against some of the other components. In particular, when arguing that the
codeword is pseudorandom, the control part (that was prepared using Encpr) is pseudorandom with
error ϵpr which is not sufficiently small to do a union bound over all elements in the set H obtained
by SS-non-malleability. Because of this, we cannot rely on the pseudorandomness of the control part,
when arguing that evasiveness on random strings implies evasiveness on pseudorandom strings. Instead,
in the proof of Lemma 6.7 we use a delicate argument that pretends that the control block is composed
of “errors” introduced by the channel.

• Another consequence of this “leveraging” is that we cannot expect Encpr to be pseudorandom for
circuits that can compute DecBSC. This means that while the codeword looks pseudorandom to the
channel, it does not look pseudorandom when the channel is composed with DecBSC. Fortunately,
this is easy to handle, as in the proof of Lemma 6.4 it is sufficient that Encpr is pseudorandom for a
circuit that needs to check whether DecBSC returns the specific message m, and this is the reason we
require the final condition in Theorem 4.2, so that a small circuit can perform this task, without running
DecBSC.

6.2.2 Using SS-non-malleability: Proof of Lemma 6.6

We need to define a set H ⊆ {0, 1}ck·logN of size N ca′ssnm+1 . We will use the channel circuit C to define n
adversaries C1, . . . , Cn for the SS-non-malleability property of Encssnm. Recall that any adversary Ci to the
SS-non-malleability is expecting to receive input of the form:

Ĝ(S),Encssnm(S,R0),

for a uniformly chosen S ← {0, 1}ck·logN , and a uniformly chosen R0 ← {0, 1}N
dssnm . In our setting,

Ĝ(S) = G(Ssamp), G(Sπ), G(SPRG) as defined in Figure 2. Intuitively, such an adversary is trying to pro-
duce a string that will be decoded by Decssnm to a string S̄ ̸= S that is “correlated” with S.

58

Definition 6.9. For every i ∈ [n], we define a randomized circuit Ci as follows:

Input: The adversaryCi receives a string g, (which is supposed to be Ĝ(S)) and a string ewhich is supposed
to be Encssnm(S,R0).

Operation: The adversary Ci is hardwired with the fixed message m, the fixed string EncBSC(m), and the
circuit C. It will act as follows:

Simulate the encoding: We will now notice that if indeed g and e are as intended, then Ci can prepare
a string that is distributed like Z = Enc(m; (S,R)) in expred(m,C). More specifically.

• The control indices CONTROL = {I1 < . . . < Inctrl
} are obtained by CONTROL = Samp(G(Ssamp)),

andG(Ssamp) is a substring of Ĝ(S), and so, Ci can prepare CONTROL by applying Samp.
• The permutation πSπ is obtained (see Definition 2.31) by a straightforward computation as

a function of G(Sπ). Therefore, a full description of this permutation is available to Ci who
has G(Sπ) as a substring of Ĝ(S).

• The string G(SPRG) is a substring of Ĝ(S) and is available to Ci.
• Ci (that is a randomized circuit) can choose R1, . . . , Rnctrl

← {0, 1}ndssnm (just like the
encoding does).

• Assuming the inputs are as intended, from here, Ci (that is hardwired with EncBSC(m) and
receives Encssnm(S,R0) as input) can prepare Z = Enc(m; (S,R0, R1, . . . , Rnctrl

)) by fol-
lowing the same procedure that Enc uses (as in expred(m,C). (A key observation is that Ci

does not need to compute Encssnm, πG, G or EncBSC. The only nontrivial operation it needs
to perform is computing Encpr, and therefore, simulating the encoding can be computed by
a circuit of size Ndpr+c1 for a universal constant c1).

Simulate the channel: The adversary will compute E = C(Z) and V̄ = Z ⊕ E. (This is what the
channel C does on the encoding, and if the inputs to Ci are as intended, then this is a simulation
of V̄ from expred(m,C)).

Simulate the beginning of the decoding: Ci implements the “compute candidates” phase of expred(m,C)
exactly in the same manner as in expred(m,C) to produce Ō1, . . . , Ōn. The only nontrivial oper-
ation in this phase is running Decpr which can be done in size Ndpr .

Output a single candidate: Finally, Ci outputs Ōi.

We record the following obvious properties of the adversary Ci:

Claim 6.10. There exists a universal constant c1 such that for every i ∈ [n], Ci is a randomized circuit of size
N c +O(N c1+dpr), and furthermore:

• Let S,R0 be chosen as in expred(m,C). For every i ∈ [n], if Ci receives the input:

Ĝ(S),Encssnm(S,R0)

then it outputs a variable that is distributed like Ōi from expred(m,C).

• In particular, it follows that in the decoding phase in expred(m,C) we have that S̄i = Decssnm(S̄i) (in
expred(m,C)) is distributed like:

Decssnm(C
i(Ĝ(S),Encssnm(S,R0))).

Recall that we have chosen cssnm = dpr + c0, where dpr > c. We will choose the constant c0 to be
sufficiently large so that the size of Ci is bounded byN cssnm . Recall also, that in Figure 2 we have established

59

that Ĝ is a seed-extending 1

Nc′ssnm
-PRG for circuits of size N c′ssnm , and have chosen Encssnm so that it is a

(Ĝ,Na′ssnm , 1
Ncssnm)-SS-non-malleable for circuits of size N cssnm . This means that for every i ∈ [n], Ci is

an adversary that is handled by the SS-non-malleability (Encssnm,Decssnm). We can conclude that for every
i ∈ [n], there exists a set HCi ⊆ {0, 1}ck·logN with |HCi | ≤ Na′ssnm , such that

Pr
S←{0,1}ck·logN,R0←{0,1}N

dssnm

R1,...,Rnctrl
←{0,1}cd·logN

[Dec(Ci(Ĝ(S),Encssnm(S,R0))) ̸∈ HCi ∪ {S} ∪ {fail}] ≤
1

N cssnm
.

By Claim 6.10, we get that for every i ∈ [n]:

Pr
expred(m,C)

[S̄i ̸∈ HCi ∪ {S} ∪ {fail}] <
1

N cssnm
.

We define:
H =

⋃
i∈[n]

HCi .

It follows that |H| ≤ n ·Na′ssnm ≤ Na′ssnm+1, and by a union bound over the n ≤ N choices for i ∈ [n], we
get that:

Pr
expred(m,C)

[∃i ∈ [n] : S̄i ̸∈ H ∪ {S} ∪ {fail}] ≤
∑
i∈[n]

Pr
expred(m,C)

[S̄i ̸∈ HCi ∪ {S} ∪ {fail}]

< n ·N−cssnm

≤ N−(cssnm−1),

and Lemma 6.6 follows.

6.2.3 Using evasiveness: Proof of Lemma 6.7

Fix some s̄ ∈ {0, 1}ck·logN . We are interested in the operation of DecodeUsingCandidate(s̄) in the experiment
expred(m,C). In this proof, it will be convenient to consider a version of expred(m,C) where Ssamp, Sπ and
R0, . . . , Rnctrl

are fixed (which means that only SPRG is chosen at random).

Definition 6.11. For every ssamp, sπ ∈ {0, 1}ℓ
′
, every r0 ∈ {0, 1}n

dssnm and every r1, . . . , rnctrl
∈ {0, 1}cd·logN

we define the experiment expredssamp,sπ ,r0,r1,...,rnctrl
to be the experiment expred(m,C) conditioned on the

event:
{Ssamp = ssamp, Sπ = sπ, R0 = r0, R1 = r1, . . . , Rnctrl

= rnctrl
} .

Namely, the experiment in which only SPRG is chosen at random.

It is sufficient to prove Lemma 6.7 for every fixing of Ssamp, Sπ and R0, . . . , Rnctrl
. For this purpose, we

consider some values of ssamp, sπ and r0, . . . , rnctrl
, and let expr denote the experiment expredssamp,sπ ,r0,r1,...,rnctrl

.
We need to prove that:

Pr
expr

[DecodeUsingCandidate(s̄) ̸= fail] ≤ 1

N cPRG
+

1

N cBSC
.

We plan to use the pseudorandomness of the seed-extending PRGG, and the evasiveness of (EncBSC,DecBSC).
Our plan is to define two circuits: a “distinguisher” to the PRG, and a “channel” for the evasiveness exper-
iment. Loosely speaking, the distinguisher circuit, will check whether the channel makes DecBSC output a

60

value different from fail, and we will arrange it so that on the pseudorandom distribution (SPRG, G(SPRG))
this experiment will correspond with expr while on the uniform distribution (SPRG, B) where B ← UNdata

is independent of SPRG, this will correspond to the evasiveness experiment considered in Definition 4.1. We
will construct the “distinguisher” and “channel” in stages, starting with the following sub-procedures Pdata

and Pctrl:

Definition 6.12. We define a circuitPdata : {0, 1}Ndata → {0, 1}Ndata as follows: Pdata(b) = π−1sπ (EncBSC(m))⊕
b. Note that sπ and EncBSC(m) are fixed, and can be hardwired to Pdata.

This definition was made so that:

Claim 6.13.

• Pdata is a circuit of size poly(N).

• Pdata(G(SPRG)) is distributed like Zcontrol
data in expr.

• Pdata(UNdata
) is uniform over {0, 1}Ndata .

Definition 6.14. We define a circuit Pctrl : {0, 1}ℓ
′ → {0, 1}Nctrl as follows:

• On input sPRG ∈ {0, 1}ℓ
′
, compute o = Encssnm((ssamp, sπ, sPRG)). (Here, ssamp and sπ are fixed,

and sPRG is the input to Pctrl).

• Compute w = EncRS(o, r0).

• Note that control = Samp(G(ssamp) = {i1 < . . . < inctrl
} is fixed, and can be hardwired to Pctrl.

• For every j ∈ [nctrl] compute zj = Encpr((ij , wj), rj).

• Output z1, . . . , znctrl
.

This definition was made so that:

Claim 6.15.

• Pctrl is a circuit of size Ndpr+O(1) +Ndssnm +NO(1).

• Pctrl(SPRG) is distributed like Zcontrol
ctrl in expr.

Together, this implies that:

Claim 6.16.

• For SPRG ← {0, 1}ℓ′ and B = G(SPRG), X = Pdata(B), and Y = Pctrl(SPRG), we have that
(X,Y)control is distributed like the codeword Z from expr.

• For SPRG ← {0, 1}ℓ
′

and B ← {0, 1}Ndata . X = Pdata(B), and Y = Pctrl(SPRG), we have that X,Y
are independent, and X is uniform over {0, 1}Ndata .

Our plan is to prove the lemma by relating the two experiments above to expr, and the evasiveness ex-
periment. We then plan to use the pseudorandomness of G. For this purpose, we will define a potential
distinguisher for G.

Definition 6.17. We define a circuit Ds̄ : {0, 1}ℓ′ × {0, 1}Ndata → {0, 1} as follows: Given input sPRG ∈
{0, 1}ℓ′ and b ∈ {0, 1}Ndata do the following:

Simulate encoding: Prepare a string z as follows:

61

• Compute x = Pdata(b) and y = Pctrl(sPRG).
• Compute z = (x, y)control. (That is, we prepare a “codeword”).

Simulate channel: Prepare a string v̄ as follows:

• Compute e = C(z). (That is, prepare an error pattern).
• Compute v̄ = z ⊕ e. (That is compute the received word).

Simulate DecodeUsingCandidate(s̄): Apply DecodeUsingCandidate as follows:

• Compute v̄data = vcontrol
data .

• Compute ȳ = v̄data ⊕G(s̄PRG) noting that G(s̄PRG) is fixed and can be hardwired to the circuit.
• Compute x̄ = πs̄π(ȳ) noting that πs̄π is fixed and can be hardwired to the circuit.
• Compute m̄ = DecBSC(x̄).

Produce output: Output zero if m̄ = fail, and one otherwise.

This definition was made so that:

Claim 6.18.

• Ds̄ is a circuit of size Ndpr+dssnm+dBSC+c+O(1). (Here, the main point is that Ds̄ applied G on fixed
strings, and therefore does not need to run the PRG G which would have required more resources).

• For SPRG ← {0, 1}ℓ
′

and B = G(SPRG),

Pr[Ds̄(SPRG, B) = 1] = Pr
expr

[DecodeUsingCandidate(s̄) ̸= fail].

(This immediately follows as Ds̄ simulates all the steps correctly).

This connects the probability that Ds̄ answers one on (SPRG, G(SPRG)) to the probability of the event
that we want to bound.

We have chosen cPRG to be larger than dpr + dssnm + dBSC + c + c0. By choosing c0 to be sufficiently
large, we have that Ds̄ is a circuit of size N cPRG . As G is a seed-extending 1

NcPRG -PRG for circuits of size
N cPRG , we conclude that:

Claim 6.19.

Pr
SPRG←{0,1}ℓ′

[Ds̄(SPRG, G(SPRG)) = 1] ≤ Pr
SPRG←{0,1}ℓ′ ,B←{0,1}Ndata

[Ds̄(SPRG, B) = 1] +
1

N cPRG
.

In order to prove the lemma, it remains to show that:

Pr
SPRG←{0,1}ℓ′ ,B←{0,1}Ndata

[Ds̄(SPRG, B) = 1] ≤ 1

N cBSC
.

In fact, we will show that for every fixing sPRG of SPRG,

Pr
B←{0,1}Ndata

[Ds̄(sPRG, B) = 1] ≤ 1

N cBSC
.

For this purpose, we fix some value of sPRG. We would like to relate the experiment above to the evasiveness
experiment of Definition 4.1. For this purpose, we will consider the operation of Ds̄(sPRG, B) on B ←
{0, 1}Ndata . Note that in this experiment:

62

• y = Pctrl(sPRG) is fixed.

• X = Pdata(B) is uniformly distributed.

• Therefore, the constructed word Z = (X, y)control consists of a fixed control part, and a uniform data
part (where these parts were chosen according to ssamp).

• The channel C is applied on Z to produce the received word V̄ = Z ⊕ C(Z).
• We would like to understand this operation (of going fromZ to V̄) as applying a channelC ′ : {0, 1}Ndata →
{0, 1}Ndata onZcontrol

data to produce V̄ control
data . The motivation is that the “simulate DecodeUsingCandidate(s̄)”

is only interested in V̄ control
data . (This gives rise to a channel C ′ that receives Zcontrol

data and outputs a noise
vector e′ of length Ndata that leads to the received word V̄ control

data = Zcontrol
data ⊕ e′.

• C ′ relies on C (which has access to all of Z, and not just to Zcontrol
data . Therefore, the circuit size of C ′

will be the sum of the circuit size of C, and the circuit complexity of generating Z from Zcontrol
data .

• Fortunately, at this pointZi for i ∈ control, is either fixed (if it belongs to y) or uniform and independent
of Zcontrol

data (if the block Zi is a part of X).

• This means that the circuit complexity of the channel C ′ is comparable to that of C, and C ′ has circuits
of size N c+O(1).

• While the stringZcontrol
data is not uniformly distributed, every block ofZcontrol

data is either a block ofX (which
is uniformly distributed) or a block of y (which is fixed). The length of y is Nctrl. This means we can
imagine that C ′ receive a uniform Z ′ ← {0, 1}Ndata (as in the evasiveness experiment) and its first step
is to replace at most Nctrl of its input bits by fixed values from y and then proceeds as before. (This
may potentially add Nctrl errors to the pN errors introduced by C, and so C ′ may introduce pN +Nctrl

errors on its Ndata bit long input).

Summing up this discussion, whenDS̄ receives the fixed sPRG, and a uniformB ← {0, 1}Ndata , there is a
channel C ′ of size N c+O(1) that induces pN +Nctrl errors, so that if we define h : {0, 1}Ndata → {0, 1}Ndata

according to the final two operations of DecodeUsingCandidate, namely:

h(z′) = πs̄π(z
′ ⊕G(s̄PRG)),

then, we have that:

Claim 6.20.

Pr
B←{0,1}Ndata

[Ds̄(sPRG, B) = 1] = Pr
Z′←{0,1}Ndata

[DecBSC(h(Z
′ ⊕ C ′(Z ′))) ̸= fail].

The right hand side, is almost exactly the probability considered in the evasiveness experiment. It would be
exactly the evasiveness experiment if h is the identity function. Note that in the definition of h, G(s̄PRG) = g
for some fixed string g, and πs̄π is some fixed permutation σ. This means that h(z′) = σ(z′ ⊕ g) . We will
soon observe that the evasiveness guarantee also holds with such a function h. Before doing that, let us first
compute the fraction of errors introduced by C ′.

The fraction of errors introduced by C ′ is

pN +Nctrl

Ndata
= p · N

Ndata
+
Nctrl

Ndata
= p(1 + o(1)) +

nctrl
ndata

= p(1 + o(1)) ≤ pBSC,

where here we use that nctrl = n0.9 and pBSC = p · (1 + ϵ
10).

The circuit C ′ is a circuit of size N c+O(1) and we have chosen cBSC = dssnm + c0 which is larger than
c+O(1) for a sufficiently large c0. We will now argue that the evasiveness of (EncBSC,DecBSC) also holds
with the function h.

63

Claim 6.21.
Pr

Z′←{0,1}Ndata

[DecBSC(h(Z
′ ⊕ C ′(Z ′))) = fail] ≤ 1

N cBSC
.

Proof. We have that h(z′) = σ(z′ ⊕ g) for a fixed string g ∈ {0, 1}Ndata and a fixed permutation σ over
[Ndata]. We will reduce the experiment in the claim to the evasiveness experiment. Consider the experiment
in the claim, namely Z ′ ← {0, 1}Ndata . Let us define the random variable

W = σ(Z ′ ⊕ g).

Note that just like Z ′, W is also uniformly distributed over {0, 1}Ndata . We now define a new “channel” T (w)
as follows:

T (w) = σ(C ′(σ−1(w)⊕ g)).
We have already established that C ′ is a circuit of size NCBSC that induces at most a pBSC fraction of errors.
Note that by definition, T inherits these two properties of C ′.

The definition of W and T is made so that:

W ⊕ T (W) = σ(Z ′ ⊕ g)⊕ σ(C ′(σ−1(σ(Z ′ ⊕ g))⊕ g))
= σ(Z ′ ⊕ g)⊕ σ(C ′(Z ′ ⊕ g ⊕ g))
= σ(Z ′ ⊕ g)⊕ σ(C ′(Z ′))
= σ(Z ′ ⊕ C ′(Z ′)⊕ g)
= h(Z ′ ⊕ C(Z ′)).

In other words,

Pr
Z′←{0,1}Ndata

[DecBSC(h(Z
′ ⊕ C ′(Z ′))) ̸= fail] = Pr

W←{0,1}Ndata

[DecBSC(W ⊕ T (W)) ̸= fail].

The right hand side is exactly the scenario considered in the evasiveness experiment. Therefore, by the
evasiveness of (EncBSC,DecBSC) this probability is upper bounded by 1

NcBSC .

Altogether, we get that:

Pr
expr

[DecodeUsingCandidate(s̄) ̸= fail] = Pr
SPRG←{0,1}ℓ′

[Ds̄(SPRG, G(SPRG)) = 1]

≤ Pr
SPRG←{0,1}ℓ′ ,B←{0,1}Ndata

[Ds̄(SPRG, B) = 1] +
1

N cPRG

= Pr
Z′←{0,1}Ndata

[DecBSC(h(Z
′ ⊕ C ′(Z ′))) ̸= fail] +

1

N cPRG

= Pr
W←{0,1}Ndata

[DecBSC(W ⊕ T (W)) ̸= fail] +
1

N cPRG

≤ 1

N cBSC
+

1

N cPRG
,

as required.

Remark 6.22. In the proof above, we treated Y as if it has no pseudorandomness properties. This seems
strange as the code Encpr has pseudorandomness properties, and we could have hoped to use these. The
reason that this was not done is that the error parameter in the pseudorandomness of Encpr is 1

Ncpr which is
larger than the error of 1

NcPRG + 1
NcBSC that we obtained. This difference is critical, as we are planning to use

this error to do a union bound over the N ca′ssnm elements in H , and the way we chose the parameters dictates
that N cpr < N

ca′ssnm (as we have chosen the parameters of the SS-non-malleable code Encssnm as a function
of Encpr and leveraged the assumption, so that Encssnm fools adversaries that are able to run Encpr,Decpr.

64

6.2.4 The correct control string is one of the candidates: Proof of Lemma 6.4

The proof of Lemma 6.4 is very similar to the corresponding proofs in earlier works [GS16, SS21a, SS22] that
achieved list-decoding, rather than unique decoding. We cannot directly cite these proofs, as our construction
has some differences compared to the aforementioned previous work (and these differences are necessary
to make argument go through). Nevertheless, the argument that we present here is essentially identical to
previous work, modulu these modifications.

We need the following notion of a milestone function. This notion emerged from previous work [GS16,
SS21a].

Definition 6.23 (Milestone function). We define a function A : {0, 1}ℓ′ × {0, 1}ℓ′ × {0, 1}N → {0, 1} as
follows: On inputs ssamp, sπ ∈ {0, 1}ℓ

′
and e ∈ {0, 1}n, A(ssamp, sπ, e) outputs one iff there exist at least

a = nctrl
100 elements i ∈ I = Samp(G(ssamp)) such that wt(ei) ≤ 1

3 , and

DecBSC(EncBSC(m)⊕ πsπ(eIdata)) = m.

We define Assamp,sπ(e) = A(ssamp, sπ, e).

Recall that at this point, we have fixedm andC, andA is designed so that in the experiment expred(m,C):

• A(Ssamp, Sπ, C(Z)) checks whether there exist a control blocks i ∈ I = Samp(G(Ssamp)) on which
the block Ei = C(Z)i (of the error vector E = C(Z)) has low weight. If this happens then for
these i, when computing Listi = Decpr(V̄i), we have that the error Ei added to Zi is of relative
Hamming weight at most 1/3. This is exactly the scenario for which the decoding algorithm Decpr was
designed. This is because the code (Encpr,Decpr) was set up to be Lpr-weakly-list-decodable from
radius 1/3. It follows that for these a choices of i, Listi contains the correct string. This implies that
in List = ∪i∈[n]Listi, there are at least a pairs that are the original pairs. The Reed-Solomon code
EncRS was set up to list-decode if at least a out of the given pairs are correct. It follows that there exists
i∗ ∈ [n] such that Ōi∗ is the original string O. This implies that S̄i∗ = Decssnm(Ōi∗) is the original
control string S, and so the original control string S will appears in the list CANDIDATES.

• Furthermore, when continuing the decoding in expred(m,C) using the candidate S̄i = S, the original
message m will be decoded. (Note that the noise pattern that is applied to EncBSC for fixed e, during
the decoding by DecBSC is indeed πsπ(e)).

By this discussion we have that:

Pr
expred(m,C)

[S ∈ CANDIDATES and M̄(S) = m] ≥ Pr
expred(m,C)

[A(Ssamp, Sπ, C(Z)) = 1]. (4)

On the other hand, the construction of Enc and Dec was set up so that, decoding is successful against
additive channels. This is stated next.

Lemma 6.24. For every e ∈ {0, 1}N with wt(e) ≤ p,

Pr
Ssamp,Sπ←{0,1}ℓ′

[A(Ssamp, Sπ, e) = 1] ≥ 1−N−csamp −N−(cPRG−1).

Proof. We will now analyze what happens in this scenario, where e ∈ {0, 1}N is fixed, and Ssamp, Sπ are
uniform.

65

To prove the lemma, we make the following definition. For every i ∈ [n], let f(i) = wt(ei). By the
properties of the Sampler, we have that when choosing Ssamp ← {0, 1}ℓ′ , and taking {i1, . . . , inctrl

} =
Samp(G(Ssamp)), the probability that

1

nctrl
·
∑

j∈[nctrl]

f(ij) > p+
1

log n

is at most 1
Ncsamp + 1

NcPRG . (This follows by the choice of parameters of the Sampler Samp in Figure 1 using
Theorem 2.19, and we need to pay an additional additive error for the error of G, as we applied Samp on
G(Ssamp) and recall that the error of G is 1

NcPRG).
Recall that p < 1

4 . Therefore, when this event occurs, by Markov’s inequality the number of j ∈ [nctrl]

such that f(ij) > 2/3 is at most nctrl/4
1/3 = nctrl · 34 . It indeed follows that, for at least a = nctrl

100 choices of j,
f(ij) = wt(eij) ≤ 1/3, and the first condition in the definition of A is met.

We now show that the second condition is met w.h.p. over the choice of Sπ ← {0, 1}ℓ
′
. This is essentially

the scenario for which DecBSC was designed (see Figure 1) of decoding from a pseudorandomly chosen
permutation. More precisely, the weight of e is pN , and even if all the pN ones in e end up in eIdata then the
fraction of ones in the data part of e is at most:

pN

Ndata
= p · 1

1− nctrl
n

≤ p · (1 + ϵ

10
) = pBSC,

where the last inequality holds for large enough N , by our choice that nctrl = n0.9. In Figure 2, we have
set up the code (EncBSC,DecBSC) to decode from Perm

UniPermNdata
pBSC , and because πSπ is pseudorandomly

chosen (with error N−cPRG), rather than uniformly chosen, we get decoding error

2−Ω(N0.09) +N−c
′
PRG ≤ N−(cPRG−1),

for sufficiently large N . Here, we make use of the fact that G fools circuits of size N cPRG , and we have
chosen cPRG ≥ dBSC + c0, This gives that for every fixing ssamp of Ssamp, DecBSC (which is of size NdBSC)
does not distinguish between uniform and pseudorandomly chosen permutations.

Overall, by a union bound, we have that:

Pr
Zsamp,Zπ←{0,1}ℓ′

[A(Ssamp, Sπ, e) = 1] ≥ 1−N−csamp −N−(cPRG−1),

as required.

We would like to argue that Lemma 6.24 implies a bound in the scenario considered in (4) (where e =
C(Z), rather than e being a fixed vector that is independent of Z) . For this purpose, we observe that for every
fixed values ssamp, sπ ∈ {0, 1}ℓ

′
, A can be computed by a small circuit.

Claim 6.25. The function T (e) = Assamp,sπ(C(e)) can be computed by a circuit of sizeN c+c1 for a universal
constant c1.

Proof. For fixed ssamp, sπ, such a circuit can be hardwired with I = Samp(G(ssamp)) and πsπ . There-
fore, after computing C(e), it is easy to compute e′ = πsπ(e

I
data) in fixed polynomial time. This takes

care of the first condition in the definition of A. For the second condition, we need to check whether
DecBSC(EncBSC(m)⊕ e′) = m.

Recall that in Figure 2 we took DecBSC to be the code from Theorem 4.2. Applying DecBSC directly
would take time NdBSC (which we cannot afford). Fortunately, in Theorem 4.2 (3rd item) we have set things

66

up so that once we compute e′, checking whether DecBSC(EncBSC(m) ⊕ e′) = m can be done by a circuit
of fixed polynomial size. Overall, we indeed obtain that T (e) can be computed by a circuit of size N c+c1 for
some universal constant c1.

We will now prove that the encoding of a message m is pseudorandom, even when fixing sπ and ssamp.

Lemma 6.26 (Pseudorandomness of encoding). For every message m ∈ {0, 1}RN , ssamp ∈ {0, 1}ℓ
′
, sπ ∈

{0, 1}ℓ′ , and r0 ∈ {0, 1}N
dssnm , let V = Enc(m; (sπ, ssamp, SPRG, r0, R1, · · · , Rnctrl

)) be a random vari-
able (defined over the probability space where SPRG, R1, · · · , Rnctrl

are chosen uniformly and indepen-
dently). V is N−(cpr−3)-pseudorandom for circuits of size N cpr−3.

Proof. We assume for contradiction that there exists a circuit D of size N cpr−3

|Pr[D(V) = 1]− Pr[D(UN) = 1]| > N−(cpr−3).

We will prove that one of the following holds:

• There exists a size N cpr circuit C : {0, 1}Ndata → {0, 1} such that:

|Pr[C(G(SPRG)) = 1]− Pr[C(UNdata
) = 1]| > N−cpr .

• There exists z′ ∈ {0, 1}ℓ and a size N cpr circuit C : {0, 1}b → {0, 1}, such that:

|Pr[C(Encpr(z′, Ud)) = 1]− Pr[C(Ub) = 1]| > N−cpr .

This suffices, as the lemma follows by the pseudorandomness properties of G and Encpr.
We now prove that one of the two items hold. We partition V into V = (Vdata, Vctrl)

Samp(G(ssamp)).
We have that D distinguishes V = (Vdata, Vctrl) from UN = (Udata, Uctrl) with probability greater than
N−(cpr−3), we do a hybrid argument and consider the hybrid distribution H = (Vdata, Uctrl). It follows that:

• Either D distinguishes H from UN with probability N−(cpr−3)/2,

• or, D distinguishes H from V with probability N−(cpr−3)/2.

In the first case, we have that Vdata andUctrl are independent, and an averaging argument gives that there exists
a fixed value v′ctrl, such that D distinguishes (Udata, v

′
ctrl) from (Vdata, v

′
ctrl) with probability N−(cpr−3)/2.

This gives that there exists a size N cpr−3 circuit C : {0, 1}Ndata → {0, 1} such that the first item holds.
In the second case, we have that m and sπ are fixed and therefore the string y = π−1sπ (EncBSC(m)) used

in the encoding algorithm is also fixed. The encoding algorithm computes the data part by xoring y with
G(SPRG) and therefore Vdata = G(SPRG) ⊕ y. By an averaging argument, there exists a fixing s′PRG such
that D distinguishes ((G(s′PRG) ⊕ y), Uctrl) from (((G(s′PRG) ⊕ y), Vctrl)|SPRG = s′PRG) with probability
N−(cpr−3)/2.

We get that there exists a size N cpr−3 circuit C ′ : {0, 1}nctrl·d → {0, 1} such that D′ distinguishes Uctrl

from V ′ctrl = (Vctrl|SPRG = s′PRG).
In the latter distribution, the three components of the control string S = (Ssamp, Sπ, SPRG) are fixed.

This means that when preparing the control part, o = Encssnm(s, r0) and w = EncRS(o) are fixed, we now
recall that the encoding procedure prepares the j’th block of the control part cctrl, by Encpr((ij , wj), rj).

Having fixed SPRG = s′PRG the only random variables that remain unfixed in V ′ctrl are R1, . . . , Rnctrl
.

This means that there exist fixed strings x1, . . . , xnctrl
∈ {0, 1}2 logN such that (V ′ctrl)j = Encctrl(xj , Rj) and

in particular, the nctrl blocks are independent. We have that D′ distinguishes V ′ctrl from Uctrl with probability
N−(cpr−3)/2, and by a standard hybrid argument, there exists a circuit C of size N cpr−3 such that C distin-
guishes (V ′ctrl)j = Encctrl(xj , Rj) from uniform with probability nctrl · N

−(cpr−3)

2 ≥ N−cpr and the second
item follows.

67

By the lemma, the distribution Z ← expred(m,C) conditioned on the event {Ssamp = ssamp, Sπ = sπ}
is N−(cpr−3)-pseudorandom against circuits of size N cpr−3. We have chosen cpr = c + c0, and by taking c0
to be sufficiently large, we can guarantee that the circuit that computes T (e) = Assamp,sπ(C(e)) is of size
N cpr−3. It follows that for every fixed values ssamp, sπ ∈ {0, 1}ℓ

′
:

| Pr
expred(m,C)

[Assamp,sπ(C(Z)) = 1 | Ssamp = ssamp, Sπ = sπ]− Pr[Assamp,sπ(C(UN)) = 1]| ≤ N−(cpr−3).

(5)
We are now ready to prove Lemma 6.4. Let:

P = Pr
expred(m,C)

[S ∈ CANDIDATES and M̄(S) = m].

P ≥ Pr
expred(m,C)

[ASsamp,Sπ(C(Z)) = 1]

= Essamp,sπ←{0,1}ℓ′

[
Pr

expred(m,C)
[ASsamp,Sπ(C(Z)) = 1 | Ssamp = ssamp, Sπ = sπ]

]
≥ Essamp,sπ←{0,1}ℓ′

[
Pr

expred(m,C)
[ASsamp,Sπ(C(Un)) = 1 | Ssamp = ssamp, Sπ = sπ]−N−(cpr−3)

]
= Essamp,sπ←{0,1}ℓ′

[
Pr[Assamp,sπ(C(Un)) = 1]

]
−N−(cpr−3)

= Pr
Ssamp,Sπ←{0,1}ℓ′

[A(Ssamp, Sπ, C(Un)) = 1]−N−(cpr−3)

≥ 1−N−csamp −N cPRG−1 −N−(cpr−1) −N−(cpr−3)

≥ 1− ν/2,

where the first line is by (4), the third line is by (5), the fifth line is by Lemma 6.24, and the final inequality is
because ν = N−c and csamp, cPRG and cpr were chosen to be at least c+ c0, and we can choose the constant
c0 to be sufficiently large.

7 Open problems

7.1 Open problems on stochastic codes for poly-size circuits.

In this paper we give the first explicit construction of stochastic codes for Cktn
c

p , and achieve the optimal rate
R = 1 − H(p). This is achieved under the assumption that E is hard for exponential size nondeterministic
circuits.

Relaxing the hardness assumption. Shaltiel and Silbak [SS21a] showed that the assumption that E is hard
for poly-size circuits is necessary. Can we relax the assumption above? Can we construct similar codes using
the assumption that E is hard for exponential size circuits?

Stochastic codes against channels that can simulate encoding and decoding. In our results, encoding
and decoding algorithms run in time poly(nc). That is, the channel cannot perform decoding. This is the case
in all past work in this area. Is this necessary? Can we obtain stochastic codes against channels that can run
the decoding algorithm, say under cryptographic assumptions?

68

7.2 Open problems on HTS

We believe that the notion of HTS introduced here is of independent interest. It will be interesting to explore
additional applications.

Obtaining both small h and small output simultaneously. Each of the two Theorems 3.4 and Theorem
3.5 optimized one parameter at the cost of the other. Can we explicitly construct a (h, ρ) HTS f : {0, 1}n →
{0, 1}o(n) for circuits of size nc with h = poly(nc) and ρ = n−c? We remark that an easy application of the
probabilistic method shows that such an HTS exists, and can have output length c log n + 1. One avenue to
achieve this is to improve the construction of high-error dispersers (Theorem 2.25) that we use as a component
so that it works for lower min-entropy, while still having D ≪ n.

We also remark that using our techniques (and a different choice of extractors for weakly recognizable
distribution) it is possible to obtain a version of Theorem 3.5 (namely, an HTS with h = 2δn for any constant
δ > 0) in which the output length is linear in c log n, under the assumption that E is hard for exponential size
Σ2-circuits.

Relaxing the hardness assumption. Is a hardness assumption against nondeterministic circuits necessary
in order to obtain the HTS of Theorems 3.4 and 3.5?

References

[AASY15] B. Applebaum, S. Artemenko, R. Shaltiel, and G. Yang. Incompressible functions, relative-error
extractors, and the power of nondeterministic reductions. In 30th Conference on Computational
Complexity, pages 582–600, 2015.

[AIKS16] S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel. Pseudorandomness when the odds
are against you. In 31st Conference on Computational Complexity, CCC, volume 50, pages
9:1–9:35, 2016.

[BD22] G. Blanc and D. Doron. New near-linear time decodable codes closer to the GV bound. Electron.
Colloquium Comput. Complex., TR22-027, 2022.

[BDL22] M. Ball, D. Dachman-Soled, and J. Loss. (nondeterministic) hardness vs. non-malleability. In
Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
volume 13507, pages 148–177, 2022.

[BGP00] M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of np-witnesses using an np-
oracle. Inf. Comput., 163(2):510–526, 2000.

[BKP18] N. Bitansky, Y. Tauman Kalai, and O. Paneth. Multi-collision resistance: a paradigm for keyless
hash functions. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pages 671–684, 2018.

[BKS+10] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:
New constructions of condensers, ramsey graphs, dispersers, and extractors. J. ACM, 57(4),
2010.

[BOV07] B. Barak, S. J. Ong, and S. P. Vadhan. Derandomization in cryptography. SIAM J. Comput.,
37(2):380–400, 2007.

69

[BSS23] M. Ball, R. Shaltiel, and J. Silbak. Non-malleable codes with optimal rate for poly-size circuits.
Electronic Colloquium on Computational Complexity (ECCC), (167), 2023.

[BV17] N. Bitansky and V. Vaikuntanathan. A note on perfect correctness by derandomization. In
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, volume 10211, pages 592–606, 2017.

[CJL15] Z. Chen, S. Jaggi, and M. Langberg. A characterization of the capacity of online (causal) binary
channels. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 287–296, 2015.

[CT22] L. Chen and R. Tell. When arthur has neither random coins nor time to spare: Superfast deran-
domization of proof systems. Electron. Colloquium Comput. Complex., TR22-057, 2022.

[DJLS13] B. K. Dey, S. Jaggi, M. Langberg, and A. D. Sarwate. Upper bounds on the capacity of binary
channels with causal adversaries. IEEE Transactions on Information Theory, 59(6):3753–3763,
2013.

[DMOZ22] D. Doron, D. Moshkovitz, J. Oh, and D. Zuckerman. Nearly optimal pseudorandomness from
hardness. J. ACM, 69(6):43:1–43:55, 2022.

[DPW18] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. J. ACM, 65(4):20:1–20:32,
2018.

[Dru13] Andrew Drucker. Nondeterministic direct product reductions and the success probability of SAT
solvers. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages
736–745, 2013.

[EGZ22] Chattopadhyay E, J. Goodman, and D. Zuckerman. The space complexity of sampling. In 13th
Innovations in Theoretical Computer Science Conference, ITCS, volume 215, pages 40:1–40:23,
2022.

[FL97] U. Feige and C. Lund. On the hardness of computing the permanent of random matrices. Com-
putational Complexity, 6(2):101–132, 1997.

[FMVW16] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and key deriva-
tion for poly-size tampering circuits. IEEE Trans. Inf. Theory, 62(12):7179–7194, 2016.

[For65] G. D. Forney. Concatenated codes. PhD thesis, Massachusetts Institute of Technology, 1965.

[GI05] V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with near-optimal rate.
IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[Gol97] O. Goldreich. A sample of samplers - a computational perspective on sampling (survey). Elec-
tronic Colloquium on Computational Complexity (ECCC), 4(20), 1997.

[GS99] V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometry
codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

[GS16] V. Guruswami and A. Smith. Optimal rate code constructions for computationally simple chan-
nels. Journal of the ACM (JACM), 63(4):35, 2016.

70

[GST03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness
tradeoffs for arthur-merlin games. Computational Complexity, 12(3-4):85–130, 2003.

[GUV07] V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced expanders and randomness extractors
from parvaresh-vardy codes. In CCC, pages 96–108, 2007.

[GW02] O. Goldreich and A. Wigderson. Derandomization that is rarely wrong from short advice that is
typically good. In APPROX-RANDOM, pages 209–223, 2002.

[HNY17] P. Hubácek, M. Naor, and E. Yogev. The journey from NP to TFNP hardness. In 8th Innovations
in Theoretical Computer Science Conference, ITCS, volume 67, pages 60:1–60:21, 2017.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP ifE requires exponential circuits: Derandomizing
the XOR lemma. In STOC, pages 220–229, 1997.

[JST21] F. G. Jeronimo, S. Srivastava, and M. Tulsiani. Near-linear time decoding of ta-shma’s codes
via splittable regularity. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1527–1536, 2021.

[JVV86] M. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combinatorial structures
from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

[JW15] Z. Jafargholi and D. Wichs. Tamper detection and continuous non-malleable codes. In Theory of
Cryptography - 12th Theory of Cryptography Conference, TCC, volume 9014, pages 451–480,
2015.

[KSS19] S. Kopparty, R. Shaltiel, and J. Silbak. Quasilinear time list-decodable codes for space bounded
channels. To appear in the 60th Annual Symposium on Foundations of Computer Science
(FOCS), 2019.

[KvM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs unless
the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

[KvMS12] J. Kinne, D. van Melkebeek, and R. Shaltiel. Pseudorandom generators, typically-correct deran-
domization, and circuit lower bounds. Computational Complexity, 21(1):3–61, 2012.

[Lan04] M. Langberg. Private codes or succinct random codes that are (almost) perfect. In 45th Sympo-
sium on Foundations of Computer Science (FOCS 2004), pages 325–334, 2004.

[Lip94] R. J. Lipton. A new approach to information theory. In 11th Annual Symposium on Theoretical
Aspects of Computer Science, pages 699–708, 1994.

[LRVW03] C.J. Lu, O. Reingold, S. P. Vadhan, and A. Wigderson. Extractors: optimal up to constant factors.
In STOC, pages 602–611. ACM, 2003.

[LZ19] F. Li and D. Zuckerman. Improved extractors for recognizable and algebraic sources. In Dimitris
Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM, volume 145 of LIPIcs, pages
72:1–72:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[MPSW10] Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correction for
computationally bounded noise. IEEE Trans. Information Theory, 56(11):5673–5680, 2010.

71

[MRRW77] R. McEliece, E. Rodemich, H. Rumsey, and L. Welch. New upper bounds on the rate of a code
via the delsarte-macwilliams inequalities. IEEE Transactions on Information Theory, 23(2):157–
166, 1977.

[MV05] P. Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using hitting
sets. Computational Complexity, 14(3):256–279, 2005.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. JCSS: Journal of Computer and System
Sciences, 49, 1994.

[Sha09] R. Shaltiel. Weak derandomization of weak algorithms: explicit versions of yao’s lemma. In
CCC, 2009.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335, 1983.

[Smi07] A. D. Smith. Scrambling adversarial errors using few random bits, optimal information reconcil-
iation, and better private codes. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 395–404, 2007.

[SS21a] R. Shaltiel and J. Silbak. Explicit list-decodable codes with optimal rate for computationally
bounded channels. Comput. Complex., 30(1):3, 2021.

[SS21b] R. Shaltiel and J. Silbak. Explicit uniquely decodable codes for space bounded channels that
achieve list-decoding capacity. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1516–1526, 2021.

[SS22] R. Shaltiel and J. Silbak. Error correcting codes that achieve BSC capacity against channels that
are poly-size circuits. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS, pages 13–23, 2022.

[Sto83] L. J. Stockmeyer. The complexity of approximate counting. In STOC, pages 118–126, 1983.

[STV01] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the xor lemma. J.
Comput. Syst. Sci., 62(2):236–266, 2001.

[SU05] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom
generator. J. ACM, 52(2):172–216, 2005.

[SU06] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. Compu-
tational Complexity, 15(4):298–341, 2006.

[SU09] R. Shaltiel and C. Umans. Low-end uniform hardness versus randomness tradeoffs for am. SIAM
J. Comput., 39(3):1006–1037, 2009.

[Sud97] M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal of
Complexity, 13, 1997.

[TS17] A. Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 238–251, 2017.

[TV00] L. Trevisan and S. P. Vadhan. Extracting randomness from samplable distributions. In 41st
Annual Symposium on Foundations of Computer Science, pages 32–42, 2000.

72

[TZ04] A. Ta-Shma and D. Zuckerman. Extractor codes. IEEE Trans. Inf. Theory, 50(12):3015–3025,
2004.

[Vio12] E. Viola. The complexity of distributions. SIAM J. Comput., 41(1):191–218, 2012.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algorithms,
11(4):345–367, 1997.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory Comput., 3(1):103–128, 2007.

73 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

