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Abstract

Consider the recently introduced notion of probabilistic time-bounded Kolmogorov Complexity,
pKt (Goldberg et al, CCC’22), and let MpKtP denote the language of pairs (x, t) such that
pKt(x) ≤ t. We show the equivalence of the following:

• MpKpolyP is (mildly) hard-on-average w.r.t. any samplable distribution D;

• MpKpolyP is (mildly) hard-on-average w.r.t. the uniform distribution;

• existence of one-way functions.

As far as we know, this yields the first natural class of problems where hardness with respect to
any samplable distribution is equivalent to hardness with respect to the uniform distribution.

Under standard derandomization assumptions, we can show the same result also w.r.t. the
standard notion of time-bounded Kolmogorov complexity, Kt.
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1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently computed (in polynomial
time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse polynomial
probability for infinitely many input lengths n. Whether one-way functions exist is unequivocally
the most important open problem in Cryptography (and arguably the most important open prob-
lem in the theory of computation, see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient
for many of the most central cryptographic primitives and protocols (e.g., pseudorandom gener-
ators [BM84, HILL99], pseudorandom functions [GGM84], private-key encryption [GM84], digital
signatures [Rom90], commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to as private-key prim-
itives, or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83]. Additionally, as observed by Impagliazzo [Gur89, Imp95], the existence of a OWF
is equivalent to the existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

The Win-Win Paradigm, and OWFs from Average-case Hardness of NP? A central
problem in the theory of Cryptography is whether the existence of OWFs can be based on some
simple complexity-theoretic assumptions. Ideally, we would want an assumption that leads to a
win-win scenario: either we have secure OWFs (and thus can securely implement all primitives
in Minicrypt), or we get some algorithmic breakthroughs that are useful to society/the pursuit of
knowledge etc. The ideal win-win scenario would be to get a construction of OWF based on worst-
case hardness of NP (i.e., on the assumption that NP 6⊆ BPP)—the question of whether this is
possible goes back to the original work by Diffie and Hellman [DH76] and is sometimes referred to as
the “holy-grail” of Cryptography. A slightly less ambitious goal that still would yield a very strong
win-win scenario would be to base the existence of OWF on the existence of an NP language that is
average-case hard w.r.t. to some samplable distribution D. (Note that the existence of OWF trivially
implies this assumption.) If such a reduction were to be obtained (or in Impagliazzo’s language, if
we rule out “Pessiland”—a world where NP is hard on average but OWFs do not exist.), then either
OWF exists, or we can solve all NP problems “in practice”, whenever the instances are sampled by
an “efficient world.” Unfortunately, also obtaining such a reduction has remained an open problem
for 5 decades:

Does the average-case hardness (w.r.t. some efficiently samplable distribution) of some
language in NP imply the existence of OWFs?

There has, however, been some recent progress towards this question based on connections between
OWFs and Kolmogorov Complexity.

On OWFs and Kolmogorov Complexity The notion of Kolmogorov complexity (K-complexity),
introduced by Solomonoff [Sol64], Kolmogorov [Kol68] and Chaitin [Cha69], provides an elegant
method for measuring the amount of “randomness” in individual strings: The K-complexity of a
string is the length of the shortest program (to be run on some fixed universal Turing machine U)
that outputs the string x; the notion of t(·)-time-bounded Kolmogorov Complexity (Kt-complexity)
[Kol68, Tra84, Sip83, Ko86, Har83] considers a time-bounded version of this problem: Kt(x) is
defined as the length of the shortest program that outputs the string x within time t(|x|).

A recent result by Liu and Pass [LP20] shows that “mild” average-case hardness1 of the time-

1By “mild” average-case hardness, we here mean that no PPT algorithm is able to solve the problem with probability
1 − 1

p(n)
on inputs of length n, for some polynomial p(·)
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bounded Kolmogorov complexity problem (when the time-bound is some polynomial) is equivalent to
the existence of OWFs. Additionally, [LP22] demonstrates that the same type of result also holds for
the, so-called, conditional time-bounded Kolmogorov Complexity problem [ZL70, Lev73, Tra84, LM91]
(where Kt(x|z) is defined as the length of the shortest program that within time t(|x|) outputs x
having access to z) that they also show is NP-complete. The problem, however, is that it is not
known whether the problem is average-case complete with respect to the uniform distribution. In
other words, if NP is average-case hard (with respect to some samplable distribution), then the
(conditional) time-bounded Kolmogorov complexity problem is hard for some efficiently samplable
distribution (by its NP-completeness), but the characterization of OWFs considers hardness of the
problem with respect to the uniform distribution.

Hardness w.r.t. Samplable or the Uniform Distribution Thus, resolving the above central
open problem (of basing OWF on average-case hardness of NP) is equivalent to showing that average-
case hardness of the time-bounded Kolmogorov complexity problem with respect to any samplable
distribution implies average-case hardness with respect to the uniform distribution. More generally,
we may ask:

For what classes of problems does average-case hardness with respect to any samplable
distributions imply average-case hardness with respect to the uniform distribution?

Our focus here will be on time-bounded Kolmogorov complexity-style problem due to their connec-
tion with cryptography. As mentioned, showing this for the particular conditional time-bounded
Kolmogorov complexity problem is equivalent to basing OWF on the average-case hardness of NP
(i.e., ruling out Pessiland). But showing this for just the “plain” time-bounded Kolmogorov com-
plexity problem would also yield a very natural win-win scenario: while there are many important
applications to solving the time-bounded Kolmorogov complexity (e.g., optimal file-compression, in-
ductive reasoning in science, optimal machine learning etc.2), we typically do not care much about
solving it on random instances, but rather instances with structure. If one can base OWF on the
hardness of this problem with respect to any samplable distribution, we would get non-existence of
OWF implies that the Kt-complexity can be “solved in practice”.

An elegant step in this direction was recently taken by Ilango, Ren and Santhanam [IRS22]; they
show that the existence of OWFs is equivalent to average-case hardness of a Gap version—with a
ω(log n) gap—of the Kolmogorov complexity problem w.r.t. any efficiently samplable distribution;
Liu and Pass [LP21] extend this result to show that it suffices to assume that it is hard to approximate
K-complexity within a term of ω(log n) with respect to any samplable distribution. [IRS22] also
show that under standard derandomization assumption, it suffices to assume average-case hardness
also of a Gap version (again with ω(log n) gap) also of the time-bounded Kolmogorov complexity
problem, and thus for a problem in NP, w.r.t. any samplable distribution. These results thus show
that one can characterize OWFs through average-case hardness of some natural gap/approximation
problem with respect to any samplable distribution. The problem, however, is that they all work in
a gap/approximation regime where the problem is provably easy under the uniform distribution—It
is trivial to provide a ω(log n) approximation of K or Kt w.r.t. the uniform distribution: simply
output the length of the string! Indeed, as these result show, in this regime, the sampler for the hard
distribution must it self be a OWF. So in a sense, these result do not give us any insight into how
to build a OWF “from scratch”.

2Typically, one would actually like to solve a search version of this problem, where one not only finds the time-
bounded K-complexity of a string but also the program that “witnesses” this complexity; as we shall see our results
actually consider this.
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As far as we know, the only result that we are away of showing that hardness with respect to
any samplable distributions implies hardness with respect to the uniform distribution is the seminal
result of Impagliazzo and Levin [IL90]; their result however only shows average-case hardness of
NP with respect to some samplable distribution implies average-case hardness of some (artificial)
specially-constructed NP language with respect to the uniform distribution. As far as we known, no
such reductions are not known for any “natural” classes of languages.

1.1 Our Results

Roughly speaking, our main result shows that for a probabilistic version of Kt, average-case hardness
with respect to any samplable distribution (of the exact, as opposed to the approximate) problem
is equivalent to the average-case hardness with respect to the uniform distribution, which in turn is
equivalent to the existence of OWFs. This notion, called probabilistic Kt (denoted pKt) was recently
introduced by Goldberg et al [GKLO22]. Roughly speaking, this notion measures the length of the
shortest program that outputs a string x if we get access to a random string (think of it as Kt in
the “Common Random String” (CRS) model). More formally, let

pKt
δ(x) = min{w ∈ N | Pr[r ← {0, 1}t(|x|) : Kt(x | r) ≤ w] ≥ δ}

and let MpKtP denote the promise problem (ΠYES,ΠNO) where ΠYES consists of (x, k), |k| = dlog |x|e,
pKt

2/3(x) ≤ k and ΠNO consists of (x, k), |k| = dlog |x|e, pKt
1/3(x) > k.

Our main result shows:

Theorem 1.1. The following are equivalent:

• There exists an efficiently samplable distribution D such MpKtP is mildly hard-on-average on
D for every sufficiently large polynomial t(·);

• MpKtP is mildly hard-on-average on the uniform distribution for every sufficiently large poly-
nomial t(·)

• OWF exists.

In fact, our formal proof is even stronger; we show that it suffices to assume hardness of a search
version of the pKt problem where given any x sampled from an efficient distribution D, and a random
CRS r, the goal is to find the shortest program that generates x given r. This yields a strong and
natural win-win scenario:

Either OWF exist, or we can (with probability 1−1/poly(n)) find the best way to compress
any efficiently sampled string x, in the presence of a CRS.

We highlight that such compression is not just useful in its own; if ascribe to Occam’s razor (i.e.,
“rule of parsimony”: that the simplest way to explain a phenomena is preferable to a more complex),
then solving this search version of Kt (even in the presence of a CRS), yields a powerful tool for
scientific discovery.

We next turn to considering the “standard” Kt problem; let MKtP denote the language of pairs
of (x, k), |k| = dlog |x|e, Kt(x) ≤ k. We show that under standard derandomization assumptions
(used to show that AM ⊂ NP), hardness of MKpolyP w.r.t. some samplable distribution is equivalent
to hardness w.r.t. the uniform distribution (which by [LP20] is equivalent to OWF).

Theorem 1.2. Assume that E 6⊆ ioNSIZE[2Ω(n)]. Then, the following are equivalent:
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• There exists an efficiently samplable distribution D such that MKtP is mildly hard-on-average
on D for every sufficiently large polynomial t(·);

• MKtP is mildly hard-on-average on the uniform distribution for every sufficiently large polyno-
mial t(·);

• OWF exists.

Again, we can strengthen the result and base it on the hardness of solving the search version of
the Kt problem.

This final results is related to the recent result by [IRS22], that shows equivalence of infinitely-
often OWFs and the io-average-case hardness of a Gap Kt problem (with a ω(log n) gap) under a
derandomization assumption. First, their result does not extend to handle also “standard” OWFs (on
the other hand, it uses a weaker derandomization assumptions).3 More significantly, our result weak-
ens the assumption to only require hardness of solving the exact (as opposed to Gap/approximate)
version of the Kt problem. This difference is significant, and the results are different on a qualitative
level: Kt seemingly is hard to compute on essentially any “well-spread” distribution (and in partic-
ular on the uniform distribution), but it seems very hard to (unconditionally) find a distribution on
which it is hard to approximate within ω(log n). Indeed, as mentioned above, the proof in [IRS22]
essentially show that the Gap problem can only be hard on a samplable distribution D if the sampling
procedure for the distribution itself is a OWF.

1.2 Proof Overview

We here provide some intuitions behind the proofs of Theorems 1.1, 1.2. We will show that (1)
hardness with respect to any samplable distribution implies OWF, and (2) OWFs imply hardness
with respect to the uniform distribution. Step (2) will actually follow mostly using the techniques
from [LP20]—they pass through the notion of an “entropy-preserving PRG” constructed in [LP20]
from OWFs, and we next observe that just as [LP20] showed that such PRGs imply (mild) average-
case hardness of MKtP, we can also show (dealing just with some minor technical details) that they
also imply mild average-case hardness of MpKtP.

We here focus on (1); for simplicity of notation, let us start by considering the standard Kt

problem. We aim to construct a OWF assuming Kt is mildly hard-on-average to compute with
respect to some samplable distribution. Towards doing this, let us first recall the high-level idea
behind the construction of [LP20], that was based on the average-case hardness of computing Kt

with respect to the uniform distribution.

The LP20 OWF [LP20] actually only constructs a so-called weak OWF4; a (strong) OWF can be
be obtained by relying on Yao’s hardness amplification theorem [Yao82]. Their construction proceeds
as follows. Let c be a constant such that every string x can be output by a program of length |x|+ c
(running on the fixed Universal Turing machine U). Consider the function f(`||Π′), where ` is a
bitstring of length log(n + c) and Π′ is a bitstring of length n + c, that lets Π be the first ` bits of
Π′, and outputs `||y where y is the output generated by running the program Π5 for t(n) steps.

3It would seem that we can also use a weaker derandomization assumption in case we only want to deduce io-OWFs;
we defer the details to the full version.

4Recall that an efficiently computable function f is a weak OWF if there exists some polynomial q > 0 such that f
cannot be efficiently inverted with probability better than 1 − 1

q(n)
for sufficiently large n.

5Formally, the program/description Π is an encoding of a pair (M,w) where M is a Turing machine and w is some
input, and we evaluate M(w) on the Universal Turing machine U .
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We aim to show that if f can be inverted with high probability—significantly higher than 1−1/n—
then Kt-complexity of random strings z ∈ {0, 1}n can be computed with high probability. The
heuristic H, given a string z, simply tries to invert f on `||z for all ` ∈ [n + c], and outputs the
smallest ` for which inversion succeeds.6

The key idea for arguing that this works is that for every string z with Kt-complexity w, there
exists some program Πz of length w that outputs it; furthermore, by our assumption on c, w ≤ n+c.
We thus have that f(Un+c+log(n+c)) will output w||z with probability at least

1

n+ c
· 2−w ≥ 1

n+ c
· 2−(n+c) =

2−n

O(n)

(we need to pick the right length, and next the right program). So, if the heuristic fails with
probability δ, then the one-way function inverter must fail with probability at least δ

O(n) , which leads

to the conclusion that δ must be small (as we assumed the inverter fails with probability significantly
smaller than 1

n).

Dealing with Samplable Distributions: Step 1 Our main insight is that the above proof idea
actually works to solve Kt not only on the uniform distribution but in fact also on any distribution D
that samples any string x with probability upperbounded by poly(n)

2K
t(x)

—we refer to such a distribution

as being polynomially bounded by Kt. To see why this holds, consider again a string z with Kt

complexity w. As before, f(Un+c+log(n+c)) will output w||z with probability at least

1

n+ c
· 2−w

Given that this string z is sampled by D with probability ≤ poly(n)2−w, we again have that if the
heuristic fails for a set of string z with probability mass δ, then the OWF inverter must fail with
probability δ/poly(n) (since pointwise, the probabilities in the OWFs experiment “dominate” the
probabilities assigned by D, except for a polynomial factor.) This concludes that the LP20 OWF
actually is secure even if we simply assume that Kt is hard for any distribution that is polynomially
bounded by Kt. (Note that it directly follows that the uniform distribution is polynomially bounded
by Kt, by the observation that Kt(x) ≤ |x| + c; so this condition already trivially generalizes the
condition from [LP20].)

Dealing with Samplable Distributions: Step 2 In the second step of the proof we aim to
show that if we take an efficiently samplable distribution, then it must be polynomially bounded by
Kt. (As we shall discuss shortly, we will not quite be able to do this, but either turning to pKt, or
using derandomization, will help. But let’s postpone this for a moment).

The intuition for why this ought to be true is the following. Consider some efficient sampler D
that is able to sample an element x s.t. Kt(x) = w with probability nω(1) · 2−w. We can have at
most 2w/nω(1) such elements so intuitively, we can compress x into log(2w−ω(1) logn) = w−ω(1) log n
bits, which seems like a contradiction. The problem, however is that we cannot efficiently recover x
from the list of these strings.

But what if we had access to a pair-wise independent hash function H, provided as a CRS? As
we shall argue, then we can indeed find a short (< w) representation of x that can be efficiently
decoded. Let ` denote the number of random bits used by the sampler, and let S denote the set
of random tapes that map x; note that |S| ≥ 2` · nω(1) · 2−w = 2`−w−ω(1) logn. If we apply H to

6Or, in case, we also want solve the search problem, we also output the `-bit truncation of the program Π′ output
by the inverter.
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each of these random tapes, truncate the answer to log |S| − O(1) bits, then it follows from the
Chebyshev’s inequality that except with probability some large constant probability, there will exist
some random tape leading to x that gets mapped to the all 0 string. Furthermore, by the same
Chebyshev’s inequality-based argument, there are at most 2`−log |S| = 2w−ω(1) logn strings in total
that get mapped to the all 0 string. We can finally rely on the fact that pair-wise independent
hash functions can be constructed using a linear mapping, and we can leverage this structure to
efficiently index each of these pre-images to the all 0 string of the hash function. Essentially, we can
simply use a basis for the kernel of the matrix describing the hash function. Since the space contains
2w−ω(1) logn strings, we will have w − ω(1) log n basis vectors, and each such string in the space can
thus be specified by a binary vector of length w − ω(1) log n bits.

This still does not contradict the assumption that Kt(x) = w since the above compression
uses an external hash function. However, if we instead switch to using pKt, then we do get a
contradiction. This of course requires redoing also Step 1 w.r.t to pKt, which introduces some
additional technicalities but we can essentially proceed in the same way.

Finally, we remark that if we rely on derandomization assumptions, we can actually derandomize
the hashfunction and actually prove Step 2 also for Kt.

2 Preliminaries

2.1 One-way Functions

We recall the definition of one-way functions [DH76]. Roughly speaking, a function f is one-way if
it is polynomial-time computable, but hard to invert for PPT attackers.

Definition 2.1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ such
that for all n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

We may also consider a weaker notion of a weak one-way function [Yao82], where we only require
all PPT attackers to fail with probability noticeably bounded away from 1:

Definition 2.2. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be
an α-weak one-way function (α-weak OWF) if for every PPT algorithm A, for all sufficiently large
n ∈ N ,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] < 1− α(n)

We say that f is simply a weak one-way function (weak OWF) if there exists some polynomial q > 0
such that f is a 1

q(·) -weak OWF.

Yao’s hardness amplification theorem [Yao82] shows that any weak OWF can be turned into a
(strong) OWF.

Theorem 2.3 ([Yao82]). Assume there exists a weak one-way function. Then there exists a one-way
function.

2.2 Time-bounded Kolmogorov Complexity

We introduce the notion of time-bounded conditional Kolmogorov complexity. Roughly speaking,
the t-time-bounded Kolmogorov complexity, Kt(x | z), of a string x ∈ {0, 1}∗ conditioned on a string
z ∈ {0, 1}∗ is the length of the shortest program Π = (M,y) such that Π(z) outputs x in t(|x|) steps.
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Formally, fix some universal RAM machine U (with only polynomial overhead), and let t(·) be a
running time bound. For any string x, z ∈ {0, 1}∗, we define

Kt(x | z) = min{w ∈ N | ∃Π ∈ {0, 1}w, U(Π(z), 1t(|x|)) = x}

When z is an empty string, we simply denote the quantity by Kt(x). We consider RAM machines
(as in [LP22, GKLO22]) since it allows z to be as long as the running time of the machine Π (or
even longer).

Very recently, Goldberg et al [GKLO22] introduced a probabilistic variant of time-bounded Kol-
mogorov complexity, denoted as pKt. Let us recall the notion here. Roughly speaking, in the
probabilistic version, the program is allowed to be picked after a uniform random string. And a
string will have small pKt-complexity if a short program exists over a large fraction of random
strings. We proceed to the formal definition. Let δ(n) be a probability threshold function. For any
string x ∈ {0, 1}∗, the δ-probabilistic t-bounded Kolmogorov complexity of x [GKLO22], pKt

δ(x), is
defined to be

pKt
δ(x) = min{w ∈ N | Pr[r ← {0, 1}t(|x|) : Kt(x | r) ≤ w] ≥ δ(n)}

We usually consider δ as being a constant. We omit the subscript δ if δ = 2/3.
We rely on the following decisional/search problems about time-bound Kolmogorov complexity

(and its probabilistic variant).

Decisional. We turn to defining the decisional version of the minimum time-bounded Kolmogorov
complexity problem. Let MKtP denote the language of pairs of (x, k), |k| = dlog |x|e, Kt(x) ≤ k. For
its probabilistic version, let MpKtP denote the promise problem (ΠYES,ΠNO) where ΠYES consists of
(x, k), |k| = dlog |x|e, pKt

2/3(x) ≤ k and ΠNO consists of (x, k), |k| = dlog |x|e, pKt
1/3(x) > k.

Search. We will rely on the search version of the minimum time-bounded Kolmogorov complexity
problem. In our search problem, an instance is a single string x ∈ {0, 1}∗ (as opposed to a pair of
string x and threshold k, as in the decisional version). A witness of a string x is the shortest program
that outputs x within t(|x|) steps. We turn to the formal definition. Let Search-Kt denote the binary
relation Rsearch-Kt ⊆ {0, 1}n×{0, 1}∗ where (x,Π) ∈ Rsearch-Kt iff |Π| = Kt(x), and U(Π, 1t(|x|)) = x.

We will also define the search version of the minimum conditional time-bounded Kolmogorov
complexity problem. In this problem, an instance is a pair of a target string x and an auxiliary
input z. And its witness is just the “Kt-witness” of x conditioned on z. More formally, let Search-
cKt denote the binary relation Rsearch-cKt ⊆ {0, 1}n+t(n) × {0, 1}∗ where ((x, z),Π) ∈ Rsearch-cKt iff
z ∈ {0, 1}t(|x|), |Π| = Kt(x | z), and U(Π(z), 1t(|x|)) = x.

Finally, we recall two useful properties with respect to Kt: (1) The Kt-complexity of x is al-
ways bounded by its length (plus a universal constant); and (2) random strings will have high
Kt-complexity with high probability. We notice that these two properties are also satisfied if we
focus on its probabilistic variant pKt.

Fact 2.4 ([GKLO22]). The following statements hold.

1. There exists a constant c such that for all polynomials t(n) ≥ n, all functions δ(n) ≤ 1, for all
strings x ∈ {0, 1}∗ it holds that pKt

δ(x) ≤ Kt(x) ≤ |x|+ c.

2. For any n ∈ N,m < n, Pr[x← {0, 1}n : pKt
δ(x) ≤ m] ≥ 1− 1

δ(n)2n−m+1
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2.3 Average-case Complexity

We turn to defining what it means for complexity problems to be average-case hard (for PPT al-
gorithms). We will be considering problems that are only defined on some input lengths (such as
MKtP). We say that a language L is defined over inputs lengths s(·) if L ⊆ ∪n∈N{0, 1}s(n). (For
promise problems or search problems, this can also be done analogously.) For concreteness, note
that MKtP is defined on input lengths s(n) = n+ dlog ne.

We will also consider ensembles that are only defined on some input lengths. We say that
D = {Dn}n∈N is an ensemble defined over input lengths s(·) if for all n ∈ N, Dn is a probability
distribution over {0, 1}s(n). (In this work, we will only consider ensembles that are defined only
over s(n) = n + dlog ne.) We say that an ensemble D = {Dn}n∈N is samplable if there exists a
probabilistic polynomial-time Turing machine S such that S(1n) samples Dn; we use the notation
S(1n; r) to denote the algorithm S with randomness fixed to r. We say that D is tD(·)-time samplable
if for all n ∈ N, S(1n) terminates in tD(n) steps. One example of an ensemble defined over input
lengths s(·) is the uniform distribution, which samples each x ∈ {0, 1}s(n) with equal probability for
each n ∈ N.

Definition 2.5 (Average-case Complexity). We say that a problem P defined over input lengths
s(·) is mildly hard-on-average (mildly HoA) with respect to an ensemble D (also defined over input
lengths s(·)) if there exists a polynomial p such that for all PPT heuristic H, for all sufficiently large
n ∈ N,

Pr[x← Dn : H(x) fails to solve P on x] ≥ 1

p(n)

where

• if P is a language L, H(x) fails to solve L on x iff H(x) 6= L(x);

• if P is a promise problem Π = (ΠYES,ΠNO), H(x) fails to solve Π on x iff x ∈ ΠYES∧H(x) = 0
or x ∈ ΠNO ∧H(x) = 1;

• if P is a search problem R ⊆ {0, 1}∗ × {0, 1}∗, H(x) fails to solve R on x iff (x,H(x)) 6∈ R;

We next show some search-to-decision reductions for the Kolmogorov complexity problems we
considered. These reductions are easy to see in the worst-case setting, we now prove them in the
average-case setting. Let D be a distribution ensemble for MKtP (or MpKtP). Recall that Dn will
sample a pair of a string x ∈ {0, 1}n and a threshold k ∈ {0, 1}dlogne. We consider the projected
distribution, D′, of D, where each D′n is just Dn but only samples x from Dn.

Lemma 2.6. Let t be a polynomial.

• If there exists an ensemble D under which MpKtP is mildly HoA, then Search-cKt is mildly
HoA w.r.t. (D′,U) where D′ is the projected distribution of D.

• If there exists an ensemble D under which MKtP is mildly HoA, then Search-Kt is mildly HoA
w.r.t. the projected distribution of D.

Proof: We sketch the proof for the former statement, and the latter statement will follow from
essentially the same proof with minor adjustments.

For any polynomial p, we will show that if there is an algorithm A that solves Search-cKt with
probability at least 1 − 1

2p(n)2
over (D′,U) for infinitely many n, then there exists an algorithm H

that decides MpKtP with probability ≥ 1− 1
p(n) w.r.t. D for infinitely many n. Fix some n on which

A succeeds over x← D′n, r ← {0, 1}t(n).
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Consider the algorithm H that acts as follows. On input (x, k) ← Dn, H repeats the following
procedure for at least n times. In each iteration, H samples random r ← {0, 1}t(n), and invokes
A(x, r). Finally, H outputs 1 if in at least a half fraction of iterations, A returns a program of length
at most k.

By a standard averaging argument, with probability at least 1− 1
2p(n) over x← D′n, A(x, r) will

output a Kt(x | r)-witness with probability at least 1 − 1
p(n) . We refer to such x as being “good”.

We argue that on input a good x, H(x) fails to decide MpKtP = (ΠYES,ΠNO) with probability at
most 1

2p(n) : If (x, k) ∈ ΠYES, it follows that Kt(x | r) ≤ k with probability at least 2/3, and A(x, r)

will output a program with length ≤ k with probability 2/3 − 1
p(n) . By a standard Chernoff-type

argument, if follows that H(x) will output 0 with probability at most 1
2p(n) . If (x, k) ∈ ΠNO, the same

argument can be made and H(x) will output 1 with probability at most 1
2p(n) . Combining this with

the fact that x is “bad” with probability at most 1
2p(n) , we conclude that the heuristic H fails with

probability at most 1
p(n) . Finally, note that this holds for infinitely many n, which is a contradiction.

3 Theorems

We state our main results in this section.

Theorem 3.1. There exists a polynomial γ such that the following are equivalent:

1. The existence of a tD(·)-time samplable ensemble D, and a polynomial t(·), t(n) ≥ γ(tD(n)),
such that Search-cKt is mildly hard-on-average w.r.t. (D,U).

2. The existence of a tD(·)-time samplable ensemble D, and a polynomial t(·), t(n) ≥ γ(tD(n)),
such that MpKtP is mildly hard-on-average w.r.t. D.

3. The existence of one-way functions.

4. For all polynomials t(n), t(n) > (1 + ε)n for some ε > 0, MpKtP is mildly hard-on-average
w.r.t. the uniform distribution.

Proof: (2) ⇒ (1) is proved in Lemma 2.6. The implication (1) ⇒ (3) follows from Theorem 4.1
(stated and proved in Section 4). By Theorem 5.1 (stated and proved in Section 5), (3) implies (4).
Finally, (4) trivially implies (2).

Theorem 3.2. Assume that E 6⊆ ioNSIZE[2Ω(n)]. There exists a polynomial γ such that the following
are equivalent.

1. The existence of a tD(·)-time samplable ensemble D, and a polynomial t(·), t(n) ≥ γ(tD(n)),
such that Search-Kt is mildly hard-on-average w.r.t. D.

2. The existence of one-way functions.

3. For all polynomials t(n), t(n) > (1+ε)n for some ε > 0, MKtP is mildly hard-on-average w.r.t.
the uniform distribution.

Proof: (1) ⇒ (2) follows from Theorem 4.2 (stated and proved in Section 4). By Theorem 5.2, (2)
implies (3). Finally, the implication (3) ⇒ (1) is proved in Lemma 2.6.
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4 OWFs from Hardness of MpKpolyP w.r.t. Any Samplable Distri-
bution

In this section, we show that if there exists a samplable distribution under which Search-cKpoly

is mildly hard-on-average, then one-way functions exist. In addition, this result can be extend to
assuming mild average-case hardness of Search-Kpoly under a derandomization assumption. Note
that by Lemma 2.6, hardness of MpKpolyP (resp MKpolyP) implies hardness of Search-cKpoly (resp
Search-Kt). Therefore, we obtained OWFs assuming mild average-case hardness of MpKpolyP (resp
of MKpolyP).

Theorem 4.1. There exists a polynomial γ such that the following holds. Assume that there exist
a tD(·)-time samplable ensemble D, and a polynomial t(·), t(n) ≥ γ(tD(n)), such that Search-cKt is
mildly HoA w.r.t. (D,U). Then, one-way functions exist.

Proof: This theorem follows from Lemma 4.3 (stated and proved in Section 4.1) and Lemma 4.6
(stated and proved in Section 4.2).

Theorem 4.2. Assume that E 6⊆ ioNSIZE[2Ω(n)]. There exists a polynomial γ such that the following
holds. Assume that there exist a tD(·)-time samplable ensemble D, and a polynomial t(·), t(n) ≥
γ(tD(n)), such that Search-Kt is mildly HoA w.r.t. D. Then, one-way functions exist.

Proof: This theorem follows from Lemma 4.4 (stated and proved in Section 4.1) and Lemma 4.8
(stated and proved in Section 4.2).

The above theorems are proved in two steps. We first show that if we only consider distributions
that are “polynomially bounded by the complexity measure” (defined blow), we can deduce OWFs
from average-case hardness of Search-cKpoly (if the complexity measure is cKpoly) or Search-Kpoly (if
Kpoly). Then we show that any samplable distribution will be polynomial bounded by pKpoly, and
by Kpoly under derandomization assumption.

We turn to defining what it means for a distribution to be polynomially bounded by a complexity
measure. For a distribution ensemble D, we say that D is polynomially bounded by pKt (resp by Kt)
if there exists a polynomial δ(·) such that for all string x ∈ {0, 1}∗, n = |x|, Pr[x′ ← Dn : x′ = x] ≤
δ(n)2−pK

t(x) (resp ≤ δ(n)2−K
t(x)).

4.1 When D is polynomially bounded

Lemma 4.3. Assume that there exist a polynomial t and an ensemble D such that D is polynomially
bounded by pKt and Search-cKt is mildly HoA w.r.t. D. Then, weak one-way functions exist.

Proof: Let c be the constant from Fact 2.4, and t be the polynomial as in the lemma statement.
We consider the function f : {0, 1}dlog(n+c)e+n+c+t(n) → {0, 1}∗, which takes an input `||Π′||r where
|`| = dlog(n+ c)e, |Π′| = n+ c and |r| = t(n), outputs

f(`||Π′||r) = `||r||U(Π(r), 1t(n))

where Π is a prefix of Π′ and Π is of length ` (where the bit-string ` is interpreted as an integer
∈ [n+ c]).

This function is only defined over some input lengths, but by an easy padding trick, it can be
transformed into a function f ′ defined over all input lengths, such that if f is weakly one-way (over
the restricted input lengths), then f ′ will be weakly one-way (over all input lengths): f ′(x′) simply
truncates its input x′ (as little as possible) so that the (truncated) input x now becomes of length
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n′ = dlog(n+ c)e+ n+ c+ t(n) for some n and outputs f(x). This will decrease the input length by
a polynomial factor (since t is a polynomial) so the padding trick can be applied here.

We now show that f is a weak OWF (over the restricted input length) assuming that Search-cKt

is mildly HoA w.r.t. (D,U). Since the search problem is mildly HoA and the distribution D is
polynomially bounded by pKt

1−2−n , let p be the polynomial in the mild average-case hardness and

δ be the polynomial in the bound where pKt bounds D. Let q(n) = 16nδ(n)p(n)2. We assume for
contradiction that f is not 1

q -weak one-way. (In the later proof, although the input length of f we
consider is m = dlog(n+ c)e+ n+ c+ t(n) for some n, we will view n as a “security parameter” and
analyze the one-wayness of f on input length m with respect to n. Since n and m are polynomially
related, we can still conclude that f is weak one-way.) Then, there exists a PPT attacker A that
inverts f with probability at least 1 − 1

q(n) on infinitely many n. We will use A to solve the cKt

search problem over (D,U) with probability at least 1− 1
p(n) (and thus a contradiction).

Our search algorithm, H, proceeds as follows. On input z ← Dn, r ← Ut(n), the search algorithm
enumerates over all possible i ∈ [n + c], and for each i, H will invoke the attacker A to invert f on
the string i||r||z. And H will also check if the inversion succeeds. If the inverter succeeds, it will
output a pre-image of i||r||z. By the definition of f , this string will be of the form i||Π′||r, and from
which we can obtain a program Π of length i. Finally, H outputs the shortest program it obtains.

We turn to proving that H is a good search algorithm that succeeds with probability 1 − 1
p(n) .

Fix some n ∈ N such that the inverter A succeeds on security parameter n. It is helpful here to
introduce what it means for a string z to be “good”: Let α = 1

2p(n) . For each string z ∈ {0, 1}n,

r ∈ {0, 1}t(n), we let wz,r = Kt(z | r) denote the length of the shortest program that outputs z on
input r within t(n) steps. We refer to a string z ∈ {0, 1}n as being good if

Pr[r ← {0, 1}t(n) : A(wz,r||r||z) succeeds] ≥ 1− α(n)

where the probability is also taken over the internal randomness of A, and the inverter A succeeds
on wz,r||r||z if it returns a valid pre-image. Notice that by our choice of wz,r, it is guaranteed that
a pre-image must exist. Let G denote the set of all good strings z ∈ {0, 1}n. We first claim that
heuristic H will succeeds with high probability on any good z.

Claim 1. For any z ∈ {0, 1}n, if z is good, then H(z, r) fails with probability at most 1
2p(n) over

random r ← {0, 1}t(n).

Proof: Notice that for any z, r, if the inverter succeeds in inverting f on wz,r||r||z, it will obtain a
program Π of length wz,r that on input r, outputs z within t(n) steps. By our choice of wz,r, this
will be the shortest such program, H(z, r) will finally output it as a witness. Therefore, if z is good,
then H(z, r) will output a valid Kt(z | r)-witness with probability at least 1− α(n) = 1− 1

2p(n) over

r.

On the other hand, since our inverter A succeeds with high probability, there should be only “a
few” bad strings. We assume for contradiction that the total probability weight of bad strings (w.r.t.
Dn) is ≥ 1

2p(n) . That is, ∑
z 6∈G

Pr[z′ ← Dn : z′ = z] ≥ 1

2p(n)

Recall that the distribution D is polynomial bounded by pKt. So for any string z 6∈ G, the probability
that z is sampled by Dn is at most δ(n)2−pK

t(z). It follows that∑
z 6∈G

δ(n)2−pK
t(z) ≥

∑
z 6∈G

Pr[z′ ← Dn : z′ = z] ≥ 1

2p(n)
(1)
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However, z will be sampled with probability at least

1

2t(n)

∑
r∈{0,1}t(n)

1

n+ c

1

2wz,r

in the one-way function experiment, since for each randomness r, there exists a program of length
wz,r = Kt(z | r) that outputs z (on input r) within t(n) steps, and the OWF will output z if the
program is picked. By the definition of pKt, it follows that z will be sampled with probability at
least

1

n+ c

(
2−pK

t(z) · 2/3
)
≥ 1

2(n+ c)
2−pK

t(z) ≥ 1

4n
2−pK

t(z)

When a bad string z is sampled, the inverter A will fail with probability at least 1
α(n) . Thus, A will

fail with probability at least ∑
z 6∈G

1

4nα(n)
2−pK

t(z)

By Equation 2, this is at least
1

4nα(n)
· 1

2p(n)δ(n)
>

1

q(n)

which is a contradiction (since A is a good inverter). We thus conclude that the total probability
weight of bad strings (w.r.t. Dn) is ≤ 1

2p(n) . Finally, by a Union bound (to take into account good

strings) and Claim 1, the probability that the heuristic fails w.r.t. Dn is at most 1
p(n) .

Combining the above argument with the fact that the attacker A succeeds on infinitely many
input lengths n, we conclude that H fails with probability at most 1

p(n) on infinitely many n, which

is a contradiction.

We can prove that Lemma 4.3 also holds for Kt analogously.

Lemma 4.4. Assume that there exist a polynomial t and an ensemble D such that D is polynomially
bounded by Kt and Search-Kt is mildly HoA w.r.t. D. Then, weak one-way functions exist.

Proof: This lemma will be proved using similar ideas in the proof of Lemma 4.3, so the proof is
presented based on the proof of Lemma 4.3. We assume familiarity of the proof of Lemma 4.3.

We will consider roughly the same OWF construction as in Lemma 4.3, except that we no longer
need to sample a random string r in the construct. We consider the function f : {0, 1}dlog(n+c)e+n+c →
{0, 1}∗, which takes an input `||Π′ where |`| = dlog(n+ c)e, and |Π′| = n+ c, outputs

f(`||Π′) = `||U(Π(r), 1t(n))

where Π is a prefix of Π′ and Π is of length ` (where the bit-string ` is interpreted as an integer
∈ [n+ c]).

This function is also only defined over some input lengths, but it suffices to show that f is a weak
OWF over input lengths on which f is well defined. As showed in Lemma 4.3, by using a padding
trick, we can transform this function f to a standard OWF.

In this lemma, we will show that f is a weak OWF (over the restricted input length) assuming that
Kt is mildly HoA to search w.r.t. D. Since Search-Kt is mildly HoA and D is polynomially bounded
by Kt, let p be the polynomial in the mild average-case hardness and δ be the polynomial in the bound
where Kt bounds D. Let q(n) = 8nδ(n)p(n)2. We assume for contradiction that f is not 1

q -weak one-
way. (In the later proof, although the input length of f we consider is m = dlog(n+ c)e+n+ c+ t(n)
for some n, we will view n as a “security parameter”, as in Lemma 4.3.) Then, there exists a PPT
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attacker A that inverts f with probability at least 1 − 1
q(n) on infinitely many n. We will use A to

solve the Search-Kt problem over D with probability at least 1− 1
p(n) (and thus a contradiction).

Our search algorithm for Kt, H, proceeds as follows. On input z ← Dn, H will enumerate over
all possible i ∈ [n + c], and for each i, the heuristic will invoke the attacker A to invert f on the
string i||z. And H will also check if the inversion succeeds. If the inverter succeeds, it will output a
pre-image of i||z. By the definition of f , this string will be of the form i||Π′, and from which we can
obtain a program Π of length i. Finally, H outputs the shortest program it obtains.

We turn to proving that H is a good search algorithm that succeeds with probability 1 − 1
p(n) .

Fix some n ∈ N such that the inverter A succeeds on security parameter n. As in Lemma 4.3, it
is also helpful here to introduce what it means for a string z to be “good”: Let α(n) = 1

2p(n) . For

each string z ∈ {0, 1}n, we let wz = Kt(z) denote the length of the shortest program that outputs z
within t(n) steps. We refer to a string z ∈ {0, 1}n as being good if

Pr[A(wz||z) succeeds] ≥ 1− α(n)

where the probability is taken over the internal randomness of A. Notice that by our choice of wz, it
is guaranteed that a pre-image must exist. Let G denote the set of all good strings z ∈ {0, 1}n. We
first claim that heuristic H will succeeds with high probability on any good z (similar to the proof
of Lemma 4.3).

Claim 2. For any z ∈ {0, 1}n, if z is good, H(z) fails with probability at most 1
2p(n) .

Proof: Note that if the inverterA succeeds on wz||z, it will obtain a program Π which is a Kt-witness
of z – Π will output z within time t(n) and it’s of length Kt(z). Therefore, H(z) will eventually
output this program. This implies that if z is good, H(z) will find a correct witness with probability
at least 1− α(n) = 1− 1

2p(n)

On the other hand, since our inverter A succeeds with high probability, there should be only “a
few” bad strings. We assume for contradiction that the total probability weight of bad strings (w.r.t.
Dn) is ≥ 1

2p(n) . That is, ∑
z 6∈G

Pr[z′ ← Dn : z′ = z] ≥ 1

2p(n)

Recall that the distribution D is polynomial bounded by Kt. So for any string z 6∈ G, the probability
that z is sampled by Dn is at most δ(n)2−K

t(z). It follows that∑
z 6∈G

δ(n)2−K
t(z) ≥

∑
z 6∈G

Pr[z′ ← Dn : z′ = z] ≥ 1

2p(n)
(2)

However, z will be sampled with probability at least

1

n+ c

1

2wz
=

1

n+ c

1

2Kt(z)

in the one-way function experiment, since there exists a program of length wz = Kt(z) that outputs
z within t(n) steps, and the OWF will output z if the program is picked. When a bad string z is
sampled, the inverter A will fail with probability at least 1

α(n) . Thus, A will fail with probability at
least ∑

z 6∈G

1

2nα(n)
2−K

t(z)
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By Equation 2, this is at least
1

2nα(n)
· 1

2p(n)δ(n)
>

1

q(n)

which is a contradiction (since A is a good inverter). We thus conclude that the total probability
weight of bad strings (w.r.t. Dn) is ≤ 1

2p(n) . Finally, by a Union bound (to take into account good

strings) and Claim 2, the probability that the heuristic fails w.r.t. Dn is at most 1
p(n) .

4.2 Bounding any samplable distribution

We proceed to showing that samplable distributions are bounded by the complexity measures we
consider. We first focus our attention to pKpoly. Towards this, let us recall the Coding Theorem for
pKpoly.

Theorem 4.5 (The Coding Theorem [LOZ22, Theorem 30]). There exists a polynomial γ such that
for any tD-time samplable ensemble D, any string x ∈ {0, 1}n such that Dn samples x with probability
δ > 0, for any polynomial t such that t(n) ≥ γ(tD(n)), it holds that

pKt(x) ≤ log(1/δ) +O(log tD(n))

The coding theorem roughly says that if a (samplable) distribution assign too much weight to an
individual string, we will be able to find a short description of that string. We next use the coding
theorem to show that any samplable distribution can be bounded by pKpoly.

Lemma 4.6. There exists a polynomial γ such that for all polynomial t, any tD-time samplable
ensemble D is polynomially bounded by pKt if t(n) ≥ γ(tD(n)).

Proof: Let γ be the polynomial in Theorem 4.5. It follows that for any tD-time D, any x, δ =
Pr[Dn = x], and any polynomial t(n) ≥ γ(tD(n)), it holds that

1/δ · tD(n)O(1) ≥ 2pK
t(x)

which implies that δ ≤ tD(n)O(1) · 2−pKt(x). Notice that tD(n)O(1) is a polynomial, and the above
equation holds for any x in the support of D, we thus conclude that D is polynomially bounded by
pKt.

The above proof relies on Theorem 4.5, whose proof uses tools from complexity theory (uncondi-
tional PRGs that fool constant-depth circuits). We here present an alternative proof of Lemma 4.6
(which implicitly also proves Theorem 4.5) in Appendix A using only hash functions.

We move on to considering Kpoly. As observed by [GKLO22], Kpoly is at most pKpoly up to an
additive O(log n) factor under a derandomization assumption.

Proposition 4.7 ([GKLO22, Proposition 66]). Assume that E 6⊆ ioNSIZE[2Ω(n)], there exists a
polynomial p such that for every polynomial t, t′, t′(n) ≥ p(t(n)), for every x ∈ {0, 1}n, it holds that

Kt′(x) ≤ pKt(x) + log(t(n))

Combining the above Proposition and Lemma 4.6, we conclude that any samplable distribution
will also be bounded by Kpoly.

Lemma 4.8. Assume that E 6⊆ ioNSIZE[2Ω(n)]. There exists a polynomial γ′ such that for all poly-
nomial t′, any tD-time samplable ensemble D is polynomially bounded by Kt′ if t′(n) ≥ γ′(tD(n)).
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Proof: The proof of Lemma 4.8 relies on the proof of Lemma 4.6, and we refer the reader to the
proof of Lemma 4.6 for notations used in this proof. Let p be the polynomial in Proposition 4.7.
Recall that the proof of Lemma 4.6 showed that δ ≤ tD(n)O(1) · 2−pKt(x). We now consider any
polynomial t′ such that t′(n) ≥ p(t(n)). By Proposition 4.7, it follows that

δ ≤ tD(n)O(1) · 2−pKt(x) ≤ tD(n)O(1) · 2−Kt′ (x)+log(t(n)) = tD(n)O(1)t(n) · 2−Kt′ (x)

Thus, we conclude that D is polynomially bounded by Kt′ .

5 Hardness of MpKpolyP w.r.t. Uniform from OWFs

We here show that that for every polynomial t(n) ≥ 1.1n, the existence of OWFs implies mild
average-case hardness of MpKpolyP and mild average-case hardness of MKpolyP. Our proof closely
follows the proof in [LP20] with only minor modifications to deal with the fact that we now consider
the probabilistic variant of Kolmogorov complexity and we focus on languages/promise problems.

Theorem 5.1. Assume that one-way functions exist. Then, MpKtP is mildly hard-on-average with
respect to the uniform distribution.

Proof: This theorem follows from Theorem 5.5 and Theorem 5.6.

Theorem 5.2. Assume that one-way functions exist. Then, MKtP is mildly hard-on-average with
respect to the uniform distribution.

Proof: This theorem follows from Theorem 5.5 and Theorem 5.7.

5.1 Some additional preliminaries

Let us first recall some additional standard preliminaries.

Computational Indistinguishability We recall the definition of (computational) indistinguisha-
bility [GM84].

Definition 5.3. Two ensembles {An}n∈N and {Bn}n∈N are said to be µ(·)-indistinguishable, if for
every probabilistic machine D (the “distinguisher”) whose running time is polynomial in the length
of its first input, there exists some n0 ∈ N so that for every n ≥ n0:

|Pr[D(1n, An) = 1]− Pr[D(1n, Bn) = 1]| < µ(n)

We say that are {An}n∈N and {Bn}n∈N simply indistinguishable if they are 1
p(·) -indistinguishable for

every polynomial p(·).

Statistical Distance and Entropy For any two random variables X and Y defined over some
set V, we let SD(X,Y ) = 1

2

∑
v∈V |Pr[X = v] − Pr[Y = v]| denote the statistical distance between

X and Y . For a random variable X, let H(X) = E[log 1
Pr[X=x] ] denote the (Shannon) entropy of X,

and let H∞(X) = minx∈Supp(X) log 1
Pr[X=x] denote the min-entropy of X.
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5.2 Entropy-preserving PRGs

Liu and Pass [LP20] defined a notion of a conditionally-secure entropy-preserving pseudorandom
generator (cond EP-PRG). Roughly speaking, a cond EP-PRG is a function where the output is
indistinguishable from the uniform distribution and also preserves the entropy in the input only
when conditioned on some event E.

Definition 5.4. An efficiently computable function G : {0, 1}n → {0, 1}n+γ logn is a µ(·)-conditionally
secure entropy-preserving pseudorandom generator (µ-cond EP-PRG) if there exist a sequence of
events = {En}n∈N and a constant α (referred to as the entropy-loss constant) such that the following
conditions hold:

• (pseudorandomness): {G(Un | En)}n∈N and {Un+γ logn}n∈N are µ(n)-indistinguishable;

• (entropy-preserving): For all sufficiently large n ∈ N, H(G(Un | En)) ≥ n− α log n.

We say that G has rate-1 efficiency if its running time on inputs of length n is bounded by
n+O(nε) for some constant ε < 1.

Theorem 5.5 ([LP20]). Assume that OWFs exist. Then, for every γ > 1, there exists a rate-1
efficient µ-cond-EP PRG Gγ : {0, 1}n → {0, 1}n+γ logn, where µ = 1

n2 .

Though in [LP20], running time was counted in terms oof execution on Turing machime, as noted
in [LP22], the PRG is also rate-1 efficient when run on a RAM.

5.3 Hardness of MpKtP and MKtP from Cond EP-PRG

Theorem 5.6. Assume that for some γ ≥ 4, there exists a rate-1 efficient µ-cond EP-PRG G :
{0, 1}n → {0, 1}n+γ logn where µ(n) = 1/n2. Then, for every ε > 0, all t(n) ≥ (1 + ε)n, MpKtP is
mildly HoA w.r.t. the uniform distribution.

Proof: The proof follows exactly the same structure as the proof [LP20] with only minor adjustments
to deal with the fact that we now consider probabilistic Kolmogorov complexity and MpKtP, a promise
problem. Essentially, the key observation is that random strings have high probabilistic Kolmogorov
complexity, and due to this observation, essentially the proof in [LP20] can still be applied. We
proceed to the full details.

Let γ ≥ 4, and let G′ : {0, 1}n → {0, 1}m′(n) where m′(n) = n+γ log n be a rate-1 efficient µ-cond
EP-PRG, where µ = 1/n2. For any constant c, let Gc(x) be a function that computes G′(x) and
truncates the last c bits. It directly follows that Gc is also a rate-1 efficient µ-cond EP-PRG (since
G′ is so). Consider any ε > 0 and any polynomial t(n) ≥ (1 + ε)n and let p(n) = 2n2(α+γ+1).

Assume for contradiction that there exists some PPTH(x, k) that decides MpKtP with probability
1 − 1

p(m) over random x ∈ {0, 1}m, k ∈ {0, 1}dlogme for infinitely many m ∈ N. Since m′(n + 1) −
m′(n) ≤ γ + 1, there must exist some constant c ≤ γ + 1 such that H succeeds (to decide MpKtP)
with probability 1 − 1

p(m) for infinitely many m of the form m = m(n) = n + γ log n − c. Let

G(x) = Gc(x); recall that G is a rate-1 efficient µ-cond EP-PRG (trivially, since Gc is so), and let
α, {En}, respectively, be the entropy loss constant and sequence of events, associated with it.

We next show that H can be used to break the cond EP-PRG G. Towards this, note that a
random string still has high pKt-complexity with high probability: for m = m(n), by Fact 2.4, we
have,

Pr
x∈{0,1}m

[pKt
1/3(x) > m− γ

2
log n] ≥ 1− 3

nγ/2
, (3)
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However, any string output by G, must have “low” pKt complexity : For every sufficiently large
n,m = m(n), we have that,

Pr
x∈{0,1}n

[pKt
1(G(x)) > m− γ

2
log n] = 0, (4)

since for every string r ∈ {0, 1}t(m), G(x) can be produced by a program Π with the seed x of
length n and the code of G (of constant length) hardwired in it (and the string r is skipped). The
running time of Π is bounded by t(m) for all sufficiently large n (since G is rate-1 efficient) , so
Kt(G(x)) = n+O(1) ≤ m− γ/2 log n for sufficiently large n (since recall that γ ≥ 4).

Based on these observations, we now construct a PPT distinguisher A breaking G. On input
1n, x, where x ∈ {0, 1}m(n), A(1n, x) picks k = m − γ

2 log n. A outputs 1 if H(x, k) outputs 1 and
0 otherwise. Fix some n, m = m(n) for which H succeeds to decide MpKtP with probability 1

p(m) .

The following two claims conclude that A distinguishes Um(n) and G(Un | En) with probability at

least 1
n2 .

Claim 3. A(1n,Um) outputs 0 with probability at least 1− 4
nγ/2

.

Proof: Note that A(1n, x) will output 0 if (1) x is a string with pKt
1/3-complexity larger than

m− γ/2 log n and (2) H succeeds on input (x, k). (Note that if (1) holds, (x, k) is guaranteed to be
a NO instance in MpKtP.) Thus,

Pr[A(1n, x) = 0]

≥ Pr[pKt
1/3(x) > m− γ/2 log n ∧H succeeds on (x, k)]

≥ 1− Pr[pKt
1/3(x) ≤ m− γ/2 log n]− Pr[H fails on (x, k)]

≥ 1− 3

nγ/2
− 1

p(m)

≥ 1− 4

nγ/2
.

where the probability is over a random x← Um, k ← dlogme and the randomness of A and H.

Claim 4. A(1n, G(Un | En)) outputs 0 with probability at most 1− 1
n + 2

n2

Proof: Recall that by assumption, H(x, k) fails to decide whether (x, k) ∈ MpKtP for a random
x ∈ {0, 1}m, k ∈ {0, 1}dlogme with probability at most 1

p(m) .

By an averaging argument, for at least a 1− 1
n2 fraction of random tapes r for H, the deterministic

machine Hr fails to decide MpKtP with probability at most n2

p(m) . Fix some “good” randomness r

such that Hr decides MpKtP with probability at least 1− n2

p(m) .
We next analyze the success probability of Ar. Assume for contradiction that Ar outputs 1 with

probability at least 1 − 1
n + 1

nα+γ
on input G(Un | En). Recall that (1) the entropy of G(Un | En)

is at least n − α log n and (2) the quantity − log Pr[G(Un | En) = y] is upper bounded by n for all
y ∈ G(Un | En). By an averaging argument, with probability at least 1

n , a random y ∈ G(Un | En)
will satisfy

− log Pr[G(Un | En) = y] ≥ (n− α log n)− 1.

We refer to an output y satisfying the above condition as being “good” and other y’s as being “bad”.
Let S = {y ∈ G(Un | En) : Ar(1n, y) = 0 ∧ y is good}, and let S′ = {y ∈ G(Un | En) : Ar(1n, y) =
0 ∧ y is bad}. Since

Pr[Ar(1n, G(Un | En)) = 0] = Pr[G(Un | En) ∈ S] + Pr[G(Un | En) ∈ S′],
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and Pr[G(Un | En) ∈ S′] is at most the probability that G(Un | En) is “bad” (which as argued above
is at most 1− 1

n), we have that

Pr[G(Un | En) ∈ S] ≥
(

1− 1

n
+

1

nα+γ

)
−
(

1− 1

n

)
=

1

nα+γ
.

Furthermore, since for every y ∈ S, Pr[G(Un | En) = y] ≤ 2−n+α logn+1, we also have,

Pr[G(Un | En) ∈ S] ≤ |S|2−n+α logn+1

So,

|S| ≥ 2n−α logn−1

nα+γ
= 2n−(2α+γ) logn−1

However, for any y ∈ G(Un | En), if Ar(1n, y) outputs 0, then by Equation 4, pKt
1(y) ≤ m −

γ/2 log n = k (and therefore a YES instance in MpKtP), so Hr fails to decide MpKtP on input
(y,m− γ/2 log n).

Thus, the probability that Hr fails (to decide MpKtP) on a random input (y, k) (where y and k
are uniformly sampled in {0, 1}m and {0, 1}dlogme) is at least

|S|/2m+dlogme =
2n−(2α+γ) logn−1

2n+γ logn+dlogme ≥
2−(2α+2γ) logn−1

2dlogme ≥ 2−2(α+γ+1) logn−1 =
1

2n2(α+γ+1)

which contradicts the fact that Hr fails to decide MpKtP with probability at most n2

p(m) <
1

2n2(α+γ+1)

(since n < m).
We conclude that for every good randomness r, Ar outputs 0 with probability at most 1− 1

n+ 1
nα+γ

.
Finally, by union bound (and since a random tape is bad with probability ≤ 1

n2 ), we have that the
probability that A(G(Un | En)) outputs 1 is at most

1

n2
+

(
1− 1

n
+

1

nα+γ

)
≤ 1− 1

n
+

2

n2
,

since γ ≥ 2.

We conclude, recalling that γ ≥ 4, that A distinguishes Um and G(Un | En) with probability of at
least (

1− 4

nγ/2

)
−
(

1− 1

n
+

2

n2

)
≥
(

1− 4

n2

)
−
(

1− 1

n
+

2

n2

)
=

1

n
− 6

n2
≥ 1

n2

for infinitely many n ∈ N.

Theorem 5.7. Assume that for some γ ≥ 4, there exists a rate-1 efficient µ-cond EP-PRG G :
{0, 1}n → {0, 1}n+γ logn where µ(n) = 1/n2. Then, for every ε > 0, all t(n) ≥ (1 + ε)n, MKtP is
mildly HoA w.r.t. the uniform distribution.

Proof: The proof of Theorem 5.6 can also prove this theorem by replacing pKt with Kt, and MpKtP
with MKtP.
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A An Alternative Proof of Lemma 4.6

Lemma A.1 (Lemma 4.6, restated). There exists a polynomial γ such that for all polynomial t, any
tD-time samplable ensemble D is polynomially bounded by pKt if t(n) ≥ γ(tD(n)).

We recall the notion of a universal hash function [CW79].

Definition A.2. Let H`m be a family of functions where m < ` and each function h ∈ H`m maps
{0, 1}` to {0, 1}m. We say that H`m is a universal hash family if (i) the functions hσ ∈ H`m can be
described by a string σ of `c bits where c is a universal constant that does not depend on `; (ii) for
all x 6= x′ ∈ {0, 1}`, and for all y, y′ ∈ {0, 1}m

Pr[hσ ← H`m : hσ(x) = y and hσ(x′) = y′] = 2−2m

We will rely on the following properties of universal hash functions.

Proposition A.3. Let ` ∈ N, S ⊆ {0, 1}` be a set, H`m be a universal hash family such that
m ≤ log |S|. The following statements hold:

• With probability at least 1− 2− log |S|+m+3 over hσ ← H`m, there exists s ∈ S such that hσ(s) =
0m.

• With probability at least 1− 2−`+m+3 over hσ ← H`m, |h−1
σ (0m)| ≤ 2 · 2`−m.

For completeness, we provide the proof of Proposition A.3 here.
Proof: We first prove the former statement. We consider picking a random hash function hσ ← H`m.
For each element s ∈ S, let Xs denote the random variable such that Xs = 1 iff hσ(s) = 0m. Let X
denote the random variable X =

∑
s∈S Xs. Note that E[X] = |S|/2m and the variance of X is

V(X) = E[X2 − E[X]2] = |S|( 1

2m
− 1

22m
) ≤ E[X]

since H`m is a universal hash family and all s1, s2 ∈ S, Xs1 and Xs2 are independent. Therefore the
variance of X is very small and we can apply Chebyshev’s Inequality to show that

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ E[X]− 1]

≤ Pr[|X − E[X]| ≥ (
√
V(X)/2)

√
V(X)]

≤ 1

V(X)/4
≤ 2− log |S|+m+3

So we conclude that with probability at least 1 − Pr[X = 0] ≥ 1− 2− log |S|+m+3, there exists s ∈ S
such that hσ(s) = 0m.
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The latter statement follows from essentially the same proof. For each element z ∈ {0, 1}`, let
Yz denote the random variable such that Yz = 1 iff hσ(z) = 0m. Let Y denote the random variable
Y =

∑
z∈{0,1}` Yz. Note that E[Y ] = 2`/2m and the variance of Y is

V(Y ) = E[Y 2 − E[Y ]2] = 2`(
1

2m
− 1

22m
)

since H`m is a universal hash family and all z1, z2 ∈ {0, 1}`, Yz1 and Yz2 are independent.. Notice
that by Chebyshev’s inequality,

Pr[Y ≥ 2 · 2`−m] ≤ Pr[|Y − E[Y ]| ≥ (
√
V(Y )/2)

√
V(Y )] ≤ 1

V(Y )/4
≤ 2−`+m+3

So we conclude that with probability at least 1− 2−`+m+3, |h−1
σ (0m)| ≤ 2 · 2`−m.

We turn to introducing the linear universal hash family construction [CW79].

Proposition A.4 ([CW79]). Let `,m ∈ N,m < `. For each σ ∈ {0, 1}`m+m, define hσ to be the
function such that for each x ∈ {0, 1}`, hσ(x) = Ax + b where σ = (A, b), A is a binary matrix of
m× `, and b is a binary vector of length m. Let H`m = {hσ | σ ∈ {0, 1}`m+m}.

Then, it holds that H`m is a universal hash family.

We are now ready to prove Lemma A.1.
Proof: Consider any polynomial t, and any tD-time samplable ensemble D. Let M be the PPT
sampler such that M(1n, r) uses r ∈ {0, 1}tD(n) as random coins and samples Dn for each n ∈ N.

We will show that D is polynomially bounded by pKt
1−2−n . Consider any string x ∈ {0, 1}∗,

n = |x|. Let ` = tD(n) be the length of the random tape of M . Let px = Pr[r ← {0, 1}`, x′ =
M(1n, r) : x′ = x] denote the probability mass of x in Dn. Our goal is to show that there exists a
polynomial δ such that px ≤ δ(n)2−pK

t(x) holds for all x.
Let S = {r ∈ {0, 1}` : M(1n, r) = x} be the set of random tapes on which M will output x.

(Note that |S| = 2`px.) Let m = dlog |S|e − 5. Let H`m be the universal hash family defined in
Proposition A.4.

For any hash function hσ ∈ H`m, we refer to a hash function hσ as being good if (1) ∃s ∈ S,
hσ(s) = 0m and (2) |h−1(0m)| ≤ 2 · 2`−m. We first claim that with high probability over hσ ← H`m,
hσ will be good.

Claim 5. hσ is good with probability at least 1/2 over hσ ← H`m.

Proof: By Proposition A.3 and a Union Bound, a random hσ is good with probability at least
1− 2− log |S|+m+3 − 2−`+m−3 ≥ 1

2 .

We next claim that given a good hash function hσ, there exists a short program of size roughly
log |S| that produce the string x.

Claim 6. For any good hash function hσ ∈ H`m, there exists a program Π of length at most

O(log `) + dlog 1/pxe

that, given hσ as input, outputs the string x within time O(`3).

Proof: Since hσ is good, and let s be an string ∈ S such that hσ(s) = 0m. Note that if s can be
produced using a short program, x can be generated by running M(1n, s), which adds |M | = c bits
to the description and can be done in time tD(n).

22



Finally, we show how to produce s using linear algebra. Recall that the hash function hσ(x)
is defined to be Ax + b where σ = (A, b), A, b are a binary matrix and a binary vector. We can
use the Gaussian Elimination algorithm to find an vector v ∈ {0, 1}` such that Av + b = 0m and
a basis (b1, . . . , bd) for the kernel of A. Note that each y ∈ h−1(0m) can be represented by a
d-bit coordinate vector (under the basis (b1, . . . , bd) and with respect to the offset vector v). So
d ≤ `−m+ 1 and s can also be represented a coordinate vector of `−m+ 1 bits (and let e denote
this vector). We then use this fact to construct a program Π with length ≤ 4 log ` + ` −m + O(1)
bits to produce the string x. Π has the integers n, `, the coordinate vector, and the code of M
hardcoded (≤ 4 log `+ `−m+ 1 +O(1) bits). On input a hash function description σ, it computes v
and (b1, . . . , bd) using Gaussian Elimination and Gram Schmidt, and computes s =

∑
i∈[d] bi · ei + v.

Finally, Π outputs M1(1n, s). Notice that Π runs in time O(`3) + tD(n) = O(tD(n)3) ≤ t(n). Also
notice that Π can be described by 4 log ` + ` −m + 1 + O(1), and we fix c to be the constant such
that Π can be described using 4 log `+ `−m+ c bits.

Finally, we are ready to show that px ≤ δ(n)2−pK
t(x). Towards this, we will prove that

pKt(x) ≤ O(log `) + dlog 1/pxe

and the aforementioned inequality will follow if we set δ(n) = `O(1) = tD(n)O(1) to be a large
polynomial. Consider any random string r ∈ {0, 1}2n(`m+m), and we view r as r = σ1||σ2|| . . . ||σ2n

where each σi is a description of a random hash function hσi ← H`m. By Claim 5, with probability at
least 1− 2−2n ≥ 2/3, there exists i ∈ [2n] such that hσi is a good hash function. By Claim 6, there
exists a program Π′ that on input hσi , outputs the string x. Thus, let Π be a program with the index
i and Π′ hardcoded, and Π on input r simply outputs Π′(hσi). Note that Π can be implemented
using O(log `) + dlog 1/pxe bits, and it terminates within time O(`3). By picking γ(n) = O(n3), it
follows that Π runs in O(`3) ≤ γ(`) ≤ γ(tD(n)) ≤ t(n).
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