
Symmetric Exponential Time Requires Near-Maximum Circuit

Size: Simplified, Truly Uniform

Zeyong Li∗

Abstract

In a recent breakthrough, Chen, Hirahara and Ren [CHR24] prove that S2E/1 ̸⊂ SIZE[2n/n] by giving
a single-valued FS2P algorithm for the Range Avoidance Problem (Avoid) that works for infinitely many
input size n.

Building on their work, we present a simple single-valued FS2P algorithm for Avoid that works for
all input size n. As a result, we obtain the circuit lower bound S2E ̸⊂ i.o.-SIZE[2n/n] and many other
corollaries:

1. Almost-everywhere near-maximum circuit lower bound for Σ2E ∩ Π2E and ZPENP.

2. Pseudodeterministic FZPPNP constructions for combinatorial objects such as: Ramsey graphs, rigid
matrices, pseudorandom generators, two-source extractors, linear codes, hard truth tables, and
Kpoly-random strings.

1 Introduction

Proving circuit lower bounds has been one of the most fundamental problems in complexity theory, and has
close connections to many other fundamental questions such as P versus NP, derandomization and so on. For
instance, if we could show E ̸⊂ SIZE[2o(n)], then we achieve unconditional derandomization, i.e. prBPP = prP
[NW94, IW97]. Morally speaking, it is a quest to distinguish the computational power between uniform and
non-uniform computations.

In the search of exponential circuit lower bound, we know that almost all n-bit boolean functions requires
near-maximum (2n/n)-sized circuit via a simple counting argument [Sha49, FM05]. While such argument is
inherently non-constructive, it serves as some form of evidence that we should be optimistic about finding
one such boolean function in some not-too-large complexity class.

However, limited progress has been made over the past few decades in the search of a small complexity
class with exponential circuit lower bound. In 1982, Kannan [Kan82] showed that Σ3E ∩ Π3E contains a
language with maximum circuit complexity. The frontier was later pushed to ∆3E = EΣ2P by Miltersen,
Vinodchandran and Watanabe [MVW99], which persisted to be the state of the art for more than twenty
years.

Very recently in a breakthrough result, Chen, Hirahara and Ren [CHR24] prove that:

S2E/1 ̸⊂ SIZE[2n/n] .

That is, the symmetric time class S2E with one bit of advice requires near-maximum circuit complexity.
Despite requiring one bit of advice, this is a huge improvement compared to the previous result since
S2E ⊆ ZPENP ⊆ Σ2E is expected to be a much smaller class compared to ∆3E = EΣ2P, assuming that the
exponential hierarchy does not collapse. And it turns out that this exciting result is indeed a corollary of a
single-valued algorithm for the Range Avoidance problem (Avoid).

∗National University of Singapore. Email: li.zeyong@u.nus.edu

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 156 (2023)



The Range Avoidance Problem In the past few years, study on the range avoidance problem has
been another exciting line of research [KKMP21, Kor21, GLW22, RSW22, CHLR23, GGNS23, ILW23]. The
problem itself is defined as follows: given an expanding circuit C : {0, 1}n → {0, 1}n+1, find a string not in
the image of C. That is, output y ∈ {0, 1}n+1 where ∀x ∈ {0, 1}n, C(x) ̸= y.

At a first glance, Avoid might seem to be a easy problem: a random string y would be a non-image of
C with probability at least 1/2. However, it is unclear how to amplify the probability of success without
an NP oracle. And given an NP oracle, Avoid can be trivially solved in FZPPNP. Somewhat surprisingly,
Korten [Kor21] showed that Avoid is as hard as finding optimal explicit constructions of important combina-
torial objects such as Ramsey graphs [Rad21], rigid matrices [GLW22, GGNS23], pseudorandom generators
[CT22], two-source extractors [CZ19, Li23], linear codes [GLW22], hard truth tables [Kor21], and strings
with maximum time-bounded Kolmogorov complexity (Kpoly-random strings) [RSW22]. Therefore, finding
any non-trivial algorithm for Avoid implies algorithms for constructing these important objects.

Single-Valued Algorithm Let Π be a search problem where Πx denotes the set of solutions for input
x. Morally speaking, A single-valued algorithm A on input x succeeds only when it outputs some canonical
solution yx ∈ Πx. Here are two examples:

• A single-valued FNP algorithm should have at least one successful computational path and should
output ⊥ in all other computational paths. (Studied as NPSV constructions in, e.g. [HNOS96]).

• A single-valued FZPP algorithm should succeed on most (e.g. ≥ 2/3 fraction) computational paths
and output ⊥ otherwise. (Studied as pseudodeterministic constructions in, e.g. [GG11]).

In particular, the trivial FZPPNP algorithm for Avoid (i.e. sample a string and check with the NP oracle) is
inherently not single-valued: the outputs would be different in almost all executions!

As pointed out in [CHR24] and many other previous works, circuit lower bounds can be viewed as
single-valued construction of hard truth tables. In particular, if for all input size n, one could compute
(consistently the same) truth table that is hard against all s(n)-size circuits, then the language whose
characteristic function is set to the truth table, would be a hard language /∈ SIZE[s(n)]. Given that finding
hard truth table reduces to Avoid, this connects the two tasks: proving circuit lower bound and finding
single-valued algorithm for Avoid.

1.1 Our Results

1.1.1 Algorithm for the Range Avoidance Problem

[CHR24] presented a single-valued FS2P algorithm for Avoid that works infinitely often. I.e., for infinitely
many (but unknown) input size n, there is a S2P machine1, on input a circuit C : {0, 1}n → {0, 1}n+1,
outputs a canonical non-image of C in the successful computational paths and ⊥ otherwise.

In this work, we extend their algorithm to a single-valued FS2P algorithm for Avoid that works for all
input size n.

Theorem 1.1. There is a single-valued FS2P algorithm A: when given any circuit C : {0, 1}n → {0, 1}n+1

as input, A(C) outputs yC such that yC /∈ Im(C) .

The remaining results are corollaries of our new single-valued FS2P algorithm for Avoid.

1.1.2 Almost-everywhere near-maximum circuit lower bounds

In [CHR24], their circuit lower bound requires one bit of advice. This is because their FS2P algorithm for
Avoid only works for infinitely many input size n, and the one bit of advice is necessary for indicating which
input size is ‘good’. As our algorithm works for all input size n, the circuit lower bound that we obtain are
almost-everywhere and completely removes any non-uniform advice:

1To provide some intuition for readers who are unfamiliar with this class, S2P is contained in ZPPNP[Cai07].

2



Theorem 1.2. S2E ̸⊂ i.o.-SIZE[2n/n]. Moreover, this holds in every relativized world.

Similar to [CHR24], our results fully relativize.
Via known results where S2E ⊆ ZPENP [Cai07] and ZPENP ⊆ Σ2E∩Π2E, we obtain the following corollaries:

Corollary 1.3. ZPENP ̸⊂ i.o.-SIZE[2n/n]. Moreover, this holds in every relativized world.

Corollary 1.4. Σ2E ∩ Π2E ̸⊂ i.o.-SIZE[2n/n]. Moreover, this holds in every relativized world.

1.1.3 Explicit constructions

Next, by Cai’s theorem [Cai07], we have S2P ⊆ ZPPNP. Hence, Avoid and all explicit construction problems
admit a single-valued FZPPNP algorithm. Equivalently speaking, Avoid and all explicit construction problems
admit a pseudodeterministic (with an NP oracle) algorithm, where a pseudodeterministic algorithm for a
search problem is a probabilistic algorithm that with high probability outputs a fixed solution on any given
input.

Theorem 1.5. There is a single-valued FZPPNP algorithm A: when given any circuit C : {0, 1}n → {0, 1}n+1

as input, A(C) outputs yC with probability at least 2/3 and yC /∈ Im(C).

Corollary 1.6 (Informal). There are zero-error pseudodeterministic constructions for the following objects
with an NP oracle for every input size n: Ramsey graphs, rigid matrices, pseudorandom generators, two-
source extractors, linear codes, hard truth tables, and Kpoly-random strings.

1.1.4 Missing-String problem

Lastly, we point out a connection to the MissingString problem. The MissingString problem is defined as
follows: given a list of m strings x1, . . . , xm ∈ {0, 1}n where m < 2n, the goal is to output any string
y ∈ {0, 1}n not in the list.

In [VW23], Vyas and Williams connected the circuit complexity of the MissingString with the (relativized)
circuit complexity of Σ2E.

Theorem 1.7 ([VW23]). The following are equivalent:

1. Σ2E
A ̸⊂ i.o.-SIZEA[2Ω(n)] for every oracle A;

2. for m = 2Ω(n), the MissingString problem can be solved by a uniform family of size-2poly(n) depth-3 AC0

circuits.

As a corollary of our circuit lower bound which relativizes, we can conclusively claim that:

Corollary 1.8. For m = 2Ω(n), the MissingString problem can be solved by a uniform family of size-2poly(n)

depth-3 AC0 circuits.

1.2 Proof Overview

1.2.1 Korten’s Reduction

We start by reviewing Korten’s reduction from [Kor21], which reduces Avoid on a circuit with n-bit stretch
(i.e. maps n-bit input to 2n-bit output) to Avoid on some other circuit with much longer stretch.

Given any circuit C : {0, 1}n → {0, 1}2n and parameter T = n · 2k, Korten builds another circuit
GGMT [C] : {0, 1}n → {0, 1}T by applying the circuit C in a perfect binary tree:

1. Assign the root vertex (0, 0) with value v0,0 = x. Build a perfect binary tree of height k where (i, j)
denotes the jth vertex on the ith level for 0 ≤ i ≤ k and 0 ≤ j ≤ 2i − 1.

2. For each vertex (i, j) on the tree, evaluate y = C(vi,j) and assign its left child with the first n bits of
y and its right child with the last n bits of y.

3



v0,0

v1,0

v2,0

v3,0 v3,1

v2,1

v3,2 v3,3

v1,1

v2,2

v3,4 v3,5

v2,3

v3,6 v3,7

Figure 1: An illustration of a GGM tree of height 3.

3. The output of GGMT [C](x) is simply the concatenation of the values of the 2k leaves.

Notice that on any fixed input x ∈ {0, 1}n, every vertex on the GGM tree has an n-bit value. Hence,
we call it a fully-assigned GGM tree. It is not hard to see that one can efficiently (takes time linear in the
height of the tree, k) evaluate the assigned value at any vertex by traversing the tree and apply the circuit
C at most k times. In other words, a fully-assigned GGM tree has small circuit complexity.

Korten’s reduction asserts that given an NP oracle and any f ∈ {0, 1}T \ Im(GGMT [C]), there is a
deterministic algorithm that finds a non-image of C and runs in time poly(T, n). And the algorithm is
simple:

1. Set the assigned values of the leaves to be f .

2. Next, traverse the tree in a simple bottom up manner. I.e. traverse the 2k−1 vertices on the (k − 1)th
level one by one (say, from right to left), then proceed to the (k − 2)th level and so on, until reaching
root.

3. For each interval vertex u traversed, assign vu with the lexicographically first2 n-bit string x such that
C(x) correctly evaluates to the assigned values of u’s children (Note that this step uses the NP oracle).

4. Whenever such string cannot be found, we successfully find a non-image of C (i.e. the assigned values
of u’s children). The algorithm now returns with the non-image of C found and assigns ⊥ to all
remaining vertices.

⊥

⊥

⊥

v3,0 v3,1

⊥

v3,2 v3,3

⊥

v2,2

v3,4 v3,5

v2,3

v3,6 v3,7

Figure 2: An illustration of the partially-assigned GGM tree from running Korten’s algorithm.

2the original reduction from [Kor21] didn’t specify the lexicographically first requirement. This requirement is important
for [CHR24] and us in order to obtain a single-valued algorithm, and it comes for free given the NP oracle.

4



1.2.2 History of the Reduction

The computational history of Korten’s reduction on fixed input (C, f) is fully characterised by a partially-
assigned GGM tree i.e. some of the vertices are assigned ⊥. We are interested in the computaional history
because it has a few nice properties:

1. Contains a Canonical Solution: Notice that the execution of Korten’s algorithm is fully determin-
istic. Hence, it produces the same non-image of C given the same f . And the solution is clearly stored
in the partially-assigned GGM tree.

2. Locally Verifiable: Every step of execution is very simple, making them locally verifiable. In other
words, to verify any particular step of the execution, we only need to look at a constant number of
assigned values on the partially-assigned GGM tree.

Moreover, by choosing T = 2n · 22n, we know an f that is trivially not in the image of GGMT [C]: the
concatenation of all 2n-length strings.

1.2.3 Finding a Short Description of the History

The downside of choosing T = 2n · 22n is that the size of the computational history is now exponential in n.
The locally verifiable property allows us to use a universal quantifier (∀) and a O(log T )-bit variable to verify
all O(T ) steps of the algorithm, but ultimately we need a short (poly(n)) description of the computational
history if we want to, for example build a FΣ2P algorithm.

The authors in [CHR24] appeal to the iterative win-win argument for such a short description: they
manage to show that within a large interval of input size, there exists at least one input size n such that the
corresponding computational history admits a short description. In fact, the computational history will be
the output of a (different) fully-assigned GGM tree, leveraging the fact that fully-assigned GGM tree has
small circuit complexity.

We take a slightly different approach: the key observation is that, by changing traversal order in Korten’s
algorithm, the resulting computational history (i.e. a partially-assigned GGM tree) also has small circuit
complexity! More specifically, if we change the traversal order to a post-order traversal (i.e. traverse the
left subtree, then the right subtree, and finally the root), the resulting partially-assigned GGM tree can be
decomposed into O(n) smaller fully-assigned GGM trees. See Figure 3 for an illustration. The roots of the
fully-assigned GGM trees are drawn in circles.

As such, we obtain a short description of the computational history: simply store the roots of all these
O(n) fully-assigned GGM tree.

⊥

v1,0

v2,0

v3,0 v3,1

v2,1

v3,2 v3,3

⊥

v2,2

v3,4 v3,5

⊥

v3,6 v3,7

Figure 3: An illustration of the partially-assigned GGM tree from running modified Korten’s algorithm.

1.2.4 Generalizing to FS2P

All the ingredients above allow us to build a single-valued FΣ2P algorithm for Avoid. In order to generalise
it to a FS2P algorithm, we need a selector algorithm that picks the better witness (in this case, the correct

5



description of the computational history). Now that we have a small description, this turns out to be an easy
task. It is now easy to identify a single vertex with different assigned values in the two histories, and traverse
down the tree until we hit the leaves, where we know the correct assigned value (i.e. the concatenation of
all 2n-length strings).

2 Preliminaries

Definition 2.1. Let s : N → N. We say that a language L ∈ SIZE[s(n)] if L can be computed by circuit
families of size O(s(n)) for all sufficiently large input size n.

Definition 2.2. Let s : N→ N. We say that a language L ∈ i.o.-SIZE[s(n)] if L can be computed by circuit
families of size O(s(n)) for infinitely many input size n.

By definition, we have SIZE[s(n)] ⊆ i.o.-SIZE[s(n)]. Hence, circuit lower bounds against i.o.-SIZE[s(n)]
are stronger and sometimes denoted as almost-everywhere circuit lower bound in the literature.

Definition 2.3. The Range Avoidance (Avoid) problem is defined as follows: given as input the description
of a Boolean circuit C : {0, 1}n → {0, 1}m, for m > n, find a y ∈ {0, 1}m such that ∀x ∈ {0, 1}n : C(x) ̸= y.

We assume basic familiarity with computational complexity theory, such as complexity classes in the
polynomial hierarchy (see e.g. [AB09, Gol08] for references).

Definition 2.4. Let T : N→ N. We say that a language L ∈ S2TIME[T (n)], if there exists an O(T (n))-time
verifier V (x, π1, π2) that takes x ∈ {0, 1}n and π1, π2 ∈ {0, 1}T (n) as input, satisfying that:

• if x ∈ L, then there exists π1 such that for every π2,
V (x, π1, π2) = 1, and

• if x /∈ L, then there exists π2 such that for every π1,
V (x, π1, π2) = 0.

Moreover, we say L ∈ S2E if L ∈ S2TIME[T (n)] for some T (n) ≤ 2O(n), and L ∈ S2P if L ∈ S2TIME[p(n)]
for some polynomial p.

A search problem Π maps every input x ∈ {0, 1}∗ into a solution set Πx ⊆ {0, 1}∗. An algorithm A solves
the search problem Π on input x if A(x) ∈ Πx.

Definition 2.5 (Single-valued FΣ2P algorithm). A single-valued FΣ2P algorithm A is specified by a polyno-
mial ℓ(·) together with a polynomial-time algorithm VA(x, π1, π2). On an input x ∈ {0, 1}∗, we say that A
outputs yx ∈ {0, 1}∗, if the following hold:

1. There is a π1 ∈ {0, 1}ℓ(|x|) such that for every π2 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

2. For every π1 ∈ {0, 1}ℓ(|x|) there is a π2 ∈ {0, 1}ℓ(|x|), such that VA(x, π1, π2) outputs either yx or ⊥.

And we say that A solves a search problem Π if on any input x it outputs a string yx and yx ∈ Πx.

Definition 2.6 (Single-valued FS2P algorithm). A single-valued FS2P algorithm A is specified by a polyno-
mial ℓ(·) together with a polynomial-time algorithm VA(x, π1, π2). On an input x ∈ {0, 1}∗, we say that A
outputs yx ∈ {0, 1}∗, if the following hold:

1. There is a π1 ∈ {0, 1}ℓ(|x|) such that for every π2 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

2. There is a π2 ∈ {0, 1}ℓ(|x|) such that for every π1 ∈ {0, 1}ℓ(|x|), VA(x, π1, π2) outputs yx.

And we say that A solves a search problem Π if on any input x it outputs a string yx and yx ∈ Πx.

6



3 Modified Korten’s reduction

Notation. We follow the notations from [CHR24] closely: Let s be a n-bit string. We use 0-index where
s0 denotes the first bit of s and sn−1 denotes the last bit of s. Let i < j, we use s[i,j) to denote the substring
of s from the ith bit to the (j−1)th bit. We use s1 ◦ s2 to denote the concatenation of two strings s1 and s2.

We identify any vertex in a perfect binary tree of height 2n + 1 with a tuple (i, j) where i ∈ [0, 2n + 1]
and j ∈ [0, 2i − 1], indicating that the vertex is the jth vertex on level i. Note that the two children of (i, j)
are (i + 1, 2j) and (i + 1, 2j + 1).

3.1 The GGM Tree

Recall that the GGM tree construction from [GGM86] (vaguely speaking) increases the stretch of a circuit
C : {0, 1}n → {0, 1}2n to arbitrarily long by applying C in a perfect binary tree manner.

Definition 3.1 (The GGM tree construction [GGM86]). Let C : {0, 1}n → {0, 1}2n be a circuit. Let
n, T ∈ N be such that T ≥ 4n and let k be the smallest integer such that 2kn ≥ T . The function GGMT [C] :
{0, 1}n → {0, 1}T is defined as follows.

Consider a perfect binary tree with 2k leaves, where the root is on level 0 and the leaves are on level k.
Each node is assigned a binary string of length n, and for 0 ≤ j < 2i, denote vi,j ∈ {0, 1}n the value assigned
to the vertex (i, j) (i.e. j-th node on level i). Let x ∈ {0, 1}n. We perform the following computation to
obtain GGMT [C](x): we set v0,0 := x, and for each 0 ≤ i < k, 0 ≤ j < 2i, we set vi+1,2j := C(vi,j)[0,n) (i.e.
the first half of C(vi,j)) and vi+1,2j+1 := C(vi,j)[n,2n) (i.e. the second half of C(vi,j)).

Finally, we concatenate all values of the leaves and take the first T bits as the output:

GGMT [C](x) := (vk,0 ◦ vk,1 ◦ · · · ◦ vk,2k−1)[0,T ) .

For what we need, T is always set to 2n · 22n = n · 22n+1. In other words, the GGM tree will always have
height 2n + 1.

It is known that the output of GGM tree has a small circuit [CHR24, Lemma 3.2]. For what we need,
we note that the assigned value of any vertex in a GGM tree on a given input has a small circuit.

Lemma 3.2. Let GGMEval(C, T, x, (i, j)) denote the n-bit assigned value vi,j in the evaluation of the GGM

tree GGMT [C](x). There is an algorithm running in Õ(|C| · log T ) time that, given C, T, x, (i, j), outputs
GGMEval(C, T, x, (i, j)).

Proof sketch. To compute vi,j , it suffices to traverse the GGM tree from the root to the vertex (i, j), applying

the circuit C in each step. The running time is clearly bounded by the Õ(|C| · log T ) since the GGM tree
has height O(log T ).

3.2 Modifying Korten’s Reduction

Korten’s reduction [Kor21] asserts that given a hard truth table f /∈ Im(GGMT [C]) and an NP oracle, one
can find a non-image for C in poly(T, n) time.

Note that on a fixed f , Korten’s reduction produces the same output. Hence, if we could efficiently
simulate the reduction, we obtain an efficient single-valued algorithm. The remaining parts of this section
aim to show that Korten’s reduction (after our modification) indeed has a small description.

We modify Korten’s reduction in the following manner: instead of traversing the perfect binary tree in
a simple bottom-up manner, we perform a post-order traversal (i.e. traverse the left subtree, then the right
subtree and finally the root).

For simplicity, we will fix T to be n · 22n+1 and the perfect binary tree has height 2n + 1. We note that
this choice of T (i.e. exponential in n) is the “base case” or “worst case” in the iterative win-win argument in
[CHR24]. Since we can handle even the “worst case”, we manage to completely bypass the iterative win-win
argument.

7



Fact 3.3. In a post-order traversal, any root vertex of a subtree is traversed after all other vertices in the
subtree. Any vertex in the right subtree is traversed after all vertices in the left subtree.

For the ease of presentation, we define the total order <P for all vertices on a perfect binary tree to be
the post-order traversal order. In other words, u1 <P u2 if and only if u1 should be traversed before u2.

Fact 3.4. Given two vertex u1 ̸= u2 in a perfect binary tree, there is an algorithm that decides whether
u1 <P u2 or u2 <P u1 and runs in time linear in the height of the tree.

Proof sketch. The algorithm simply finds the lowest common ancestor ua of u1 and u2. By definition of the
lowest common ancestor, u1 and u2 cannot live in the same proper subtree of ua.

The vertex living in the left subtree of ua will be traversed first. If none of them lives in the left subtree
of ua, then one of them must be ua itself. In this case, the vertex living in the right subtree will be traversed
first.

Algorithm 1: Korten′(C, f): Modified Korten’s reduction

Input: C : {0, 1}n → {0, 1}2n denotes the input circuit, and f ∈ {0, 1}T \ Im(GGMT [C]) denotes the
input hard truth table.

Output: A non-output of C.
Data: A perfect binary tree of height 2n + 1 that contains the computational history.

1 for j ← 0 to 22n+1 − 1 do
2 v2n+1,j ← f[jn,(j+1)n) ; // set f to the leaves

3 end
4 for vertex (i, j) in the Post-Order Traversal do
5 Set vi,j be the lexicographically smallest string such that C(vi,j) = vi+1,2j ◦ vi+1,2j+1 ; // this

step requires a NP oracle

6 if vi,j does not exist then
7 Set all remaining vertices ⊥ ;
8 return vi+1,2j ◦ vi+1,2j+1 ;

9 end

10 end
11 return ⊥;

3.3 History of Korten′(C, f)

The computational history of Korten′(C, f) is essentially a partially-assigned perfect binary tree of height 2n+
1 where each vertex (i, j) stores a n-bit string vi,j or ⊥. Unlike [CHR24] where they view the computational
history as a long string, we shall keep viewing it as a perfect binary tree and exploit the tree structure.
Towards that end, we call it Histree(C, f).

Definition 3.5 (the computational history of Korten′(C, f)). Let n, T ∈ N be such that T = n·22n+1. Let C :
{0, 1}n → {0, 1}2n be a circuit, and f ∈ {0, 1}T be a “hard truth table” in the sense that f /∈ Im(GGMT [C]).
The computational history of Korten′(C, f), denoted as Histree(C, f), is the partially-assigned perfect binary
tree obtained by executing Korten′(C, f).

Let h := Histree(C, f). For any vertex u in the perfect binary tree, we use h(u) to denote the value vu
stored at u. We use cL(u) and cR(u) to denote the left child and right child of u.

Definition 3.6 (Proper left children). Given a set of vertices S from a binary tree, we define the set of
proper left children of S to be:

{u : ∃w ∈ S, cL(w) = u, u /∈ S} .

8



The following lemma shows that h has a succinct description.

Lemma 3.7. Let n, T ∈ N be such that T = 2n·22n. Let C : {0, 1}n → {0, 1}2n be a circuit, and f ∈ {0, 1}T .
Let h := Histree(C, f). h admits a unique description Dh such that:

• |Dh| ≤ O(n) · log T .

• There is an algorithm Eval that takes in input Dh and any vertex (i, j), outputs h(i, j) in time poly(n) ·
log T .

Proof. We start by describing Dh.
Let u∗ = (i∗, j∗) be the vertex where Algorithm 1 finds a solution and terminates. Let S = {u0 =

(0, 0), u1, u2, . . . , u
∗} be the set of vertices on the unique path starting from the root (0, 0) to u∗. Note that

all vertices in S are assigned ⊥.
Dh is defined to contain all proper left children of S and the right child of u∗, as well as all the stored

values in these vertices. We further note that all these vertices have non ⊥ stored values. In particular,
consider any proper left children vertex uL, it lives in the left subtree of its parent while u∗ lives in the right
subtree. So uL must have already been traversed when the algorithm terminates.

Note that Dh contains both children of u∗ and hence the output of Korten′(C, f). It is clear from how
we construct Dh that |Dh| ≤ O(n) · log T since any path on the tree contains O(log T ) vertices and every
vertex stored in Dh carries O(n) bits of information. Also, Dh is uniquely defined for any fixed h.

Next, we show how to efficiently evaluate h(i, j) given any vertex (i, j) in the perfect binary tree. Notice
that any subtree in h is also a (smaller) GGM tree. From Lemma 3.2, if we know the stored value of any
ancestor of (i, j), we can efficiently (in time poly(n) · log T ) evaluate h(i, j).

Therefore, it suffices to show that for any (i, j), one of its (non ⊥) ancestors is stored in Dh:

1. If u∗ is an ancestor of (i, j), then one of u∗’s children is an ancestor of (i, j) and we know both children
are stored in Dh.

2. If (i, j) is an ancestor of u∗, then h(i, j) = ⊥.

3. Otherwise, let ua be the lowest common ancestor of u∗ and (i, j), and we know that ua ∈ S. If (i, j)
falls in the left subtree of ua, then the left child of ua is an ancestor of (i, j) which is stored in Dh.
If (i, j) falls in the right subtree of ua then we argue that h(i, j) = ⊥. This is because the algorithm
stopped at u∗ living in the left subtree of ua, and would not have traversed (i, j).

This concludes the proof.

The final ingredient we need is that Dh admits a Π1 verifier on whether its corresponding computational
history h is the correct one.

Lemma 3.8 (Π1 verification of the history). Let h := Histree(C, f). There is an oracle algorithm V with
input parameter T, n such that the following holds:

1. V takes f̃ ∈ {0, 1}T as an oracle, C, D̃h and w ∈ {0, 1}2 log T+n as inputs. It runs in poly(n) time.

2. Dh defined on h := Histree(C, f) is the unique string satisfying the following:

V f (C,Dh, w) = 1, ∀w ∈ {0, 1}2 log T+n .

Proof. The verifier proceeds in two parts. First part consists of parsing and checking whether D̃h is indeed
generated from a valid post-order traversal on the perfect binary tree.

In particular, it reads the terminating vertex u∗ based on the two children of u∗ stored in D̃h, finds the
path from (0, 0) to u∗ and check that all proper left children of vertices on the path are included in D̃h (and
of course the right child of u∗ should be included). Also stored values of these vertices are non ⊥.

9



Upon passing the first part of the verification, we know D̃h corresponds to some partially-assigned perfect
binary tree h̃ and it remains to check that h̃ is the computational history Histree(C, f). One should think of
the verifier making at most 2|w| checks and accepts only if all 2|w| check passes.

The verifier V needs to make the following checks. Note that whenever we need some value vi,j , we

will call Eval(D̃h, (i, j)) for the value. Recall that the total order <P is defined according to the post-order
traversal sequence.

1. The values written on the leaves are indeed f . Hence, for every j ∈ [0, 22n+1 − 1], check that v2n+1,j

is consistent with the corresponding string in f .

2. For every (i, j) <P u∗, C(vi,j) = vi+1,2j ◦ vi+1,2j+1. (the values are consistent with the children)

3. For every (i, j) <P u∗, for every x ∈ {0, 1}n that is lexicographically smaller than vi,j , C(x) ̸=
vi+1,2j ◦ vi+1,2j+1. (the lexicographically first requirement)

4. Let (i∗, j∗) = u∗, then for every x ∈ {0, 1}n, C(x) ̸= vi∗+1,2j∗ ◦ vi∗+1,2j∗+1. (the two children of u∗

form a non-image of C)

5. For every (i, j) where u∗ ≤P (i, j), vi,j = ⊥.

Each of the above checks is local (requires assigned values of at most 3 vertices) and efficient (runs in time
poly(n, log T )). There are in total O(T ) vertices and therefore O(T ) tests, which can be implemented with
a universal (∀) quantification over at most 2 log T + n bits.

Clearly the correct history h (and therefore its unique description Dh) passes all these checks. Also these
checks uniquely determine h as they are essentially enforcing every step of execution of Korten′(C, f).

4 Circuit Lower Bound for S2E

4.1 Single-valued FΣ2P Algorithm

We start by showing a simple single-valued FΣ2P Algorithm for Avoid.

Theorem 4.1. There is a single-valued FΣ2P algorithm A: when given any circuit C : {0, 1}n → {0, 1}2n
as input, A(C) outputs yC such that yC /∈ Im(C) .

Proof. On input a circuit C : {0, 1}n → {0, 1}2n, let T = 2n · 22n and f ∈ {0, 1}T be the concatenation of
all 2n-length bit strings. Let h = Histree(C, f). VA(C, π1, π2) is defined as follows: it parses π1 as Dh and
π2 as w, simulates the verifier V f (C,Dh, w) in Lemma 3.8. It outputs the non-image of C stored in Dh iff
V f (C,Dh, w) = 1. Otherwise it outputs ⊥.

Note that every position of f can be easily computed since it is just enumerating all 2n-length strings.
Hence the simulation can be done in polynomial time.

4.2 Single-valued FS2P Algorithm

In order to generalise the FΣ2P algorithm above to a FS2P algorithm, we need a ‘selector’ that chooses the
correct Dh when two candidates are given. We formalise such selector in the following lemma.

Lemma 4.2. Let n, T ∈ N be such that T = 2n·22n. Let C : {0, 1}n → {0, 1}2n be a circuit, and f ∈ {0, 1}T .
Let h := Histree(C, f) and Dh be the succinct description of h defined in Lemma 3.7. Given f as an oracle
and two strings π1, π2 as additional input, with the promise that πi = Dh for at least one i ∈ {1, 2}, there is
a deterministic algorithm S such that Sf (C, π1, π2) = πi and runs in time poly(n) · log T .

10



Proof. S starts by parsing π1, π2 as Dh. If any of them fail to parse (i.e. the vertices are not derived from a
post-order traversal), S simply discards it and output the other one.

Let h1 and h2 be the corresponding perfect binary tree generated from π1 and π2. Let (i∗1, j
∗
1 ) be the

termination vertex in h1 and (i∗2, j
∗
2 ) be the termination vertex in h2. S will efficiently find a single vertex

that contains different stored values in h1 and h2. In particular, we consider two cases:

1. (i∗1, j
∗
1 ) ̸= (i∗2, j

∗
2 ): Without loss of generality, we may assume (i∗1, j

∗
1 ) <P (i∗2, j

∗
2 ). Then we know that

h2(i∗1, j
∗
1 ) ̸= ⊥.

2. (i∗1, j
∗
1 ) = (i∗2, j

∗
2 ): Then they store the same set of vertices in π1 and π2, and one of the vertex must

have a different stored value.

Now given a vertex (say u) where h1(u) ̸= h2(u), S proceeds as follows:

1. If u is a leaf vertex, then S checks it against f and decides which is the correct Dh.

2. Otherwise, S checks if C(h1(u)) = C(h2(u)). If they are indeed pre-images of the same value, S picks
πi for i ∈ {1, 2} such that hi(u) is the lexicographically smaller one.

If C(h1(u)) ̸= C(h2(u)) or if h2(u) ̸= h1(u) = ⊥, then at least one of u’s children (say u′) should have
a different stored value. S then repeats the whole procedure on u′.

It is clear from the description that S terminates in O(log T ) recursive steps, and the overall running
time is poly(n) · log T .

Theorem 4.3. There is a single-valued FS2P algorithm A: when given any circuit C : {0, 1}n → {0, 1}2n
as input, A(C) outputs yC such that yC /∈ Im(C).

Proof. On input a circuit C : {0, 1}n → {0, 1}2n, let T = 2n · 22n and f ∈ {0, 1}T be the concatenation of
all 2n-length bit strings. Let h = Histree(C, f). VA(C, π1, π2) is defined as follows: it applies the selector
algorithm Sf (C, π1, π2) from Lemma 4.2 and obtains πi = Dh. It then outputs the non-image of C stored
in πi.

Note that every position of f can be easily computed since it is just enumerating all 2n-length strings.
Hence the simulation can be done in polynomial time.

4.3 Circuit Lower Bound

Before we get to our circuit lower bound, we need a few results from [Kor21, CHR24]:

Theorem 4.4. [CHR24, Theorem 2.3] Let A(x) be a single-valued FS2P algorithm and B(x, y) be an FPNP

algorithm, both with fixed output length. The function f(x) := B(x,A(x)) also admits an FS2P algorithm.

Lemma 4.5. [Kor21, Lemma 3] Let n ∈ N. There is a polynomial time algorithm A and an FPNP algorithm
B such that the following holds:

1. Given a circuit C : {0, 1}n → {0, 1}n+1, A(C) outputs a circuit D : {0, 1}n → {0, 1}2n.

2. Given any y ∈ {0, 1}2n\ Im(D), B(C, y) outputs a string z ∈ {0, 1}n+1\ Im(C).

Definition 4.6. [CHR24, Section 2.3] For n, s ∈ N where n ≤ s ≤ 2n, the truth table generator circuit
TTn,s : {0, 1}Ln,s → {0, 1}2n maps a stack program of description size Ln,s = (s+ 1)(7 + log(n+ s)) into its
truth table. Moreover, such circuit can be uniformly constructed in time poly(2n).

The following corollary follows from Theorems 4.3 and 4.4 and Lemma 4.5.

Corollary 4.7. There is a single-valued FS2P algorithm A: when given any circuit C : {0, 1}n → {0, 1}n+1

as input, A(C) outputs yC such that yC /∈ Im(C) .

11



Corollary 4.8. S2E ̸⊂ i.o.-SIZE[2n/n].

Proof Sketch. Let A be the single-valued algorithm from Corollary 4.7 and set s := 2n/n. Define the language
L such that the truth table of the characteristic function of L ∩ {0, 1}n is A(TTn,s). By our choice of s,
Ln,s = (s + 1)(7 + log(n + s)) < 2n and hence TTn,s is a valid Avoid instance.
L /∈ i.o.-SIZE[s(n)] since any s-size n-input circuit C can be encoded into a stack program of size Ln,s

bits [FM05].
L ∈ S2E since one can compute the truth table using algorithm A.

Remark 4.9. Similar to [CHR24], it is not hard to verify that all our results above relativise.

Acknowledgements

The author was supported by the NUS-NCS Joint Laboratory for Cyber Security, Singapore.
The author would like to thank Eldon Chung, Karthik Gajulapalli, Alexander Golovnev, Sidhant Saraogi

and Noah Stephens-Davidowitz for inspiring discussions.
The author would also like to thank Divesh Aggarwal, Lijie Chen, Alexander Golovnev, Hanlin Ren and

Sidhant Saraogi for their comments on early drafts of this work.
The author would also like to thank anonymous STOC reviewers for helpful comments.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, USA, 1st edition, 2009. 6

[Cai07] Jin-Yi Cai. Sp2 ⊆ ZPPNP. Journal of Computer and System Sciences, 73, 02 2007. 2, 3

[CHLR23] Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote point, and
hard partial truth table via satisfying-pairs algorithms. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, STOC 2023, page 1058–1066, New York, NY, USA, 2023.
Association for Computing Machinery. 2

[CHR24] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. Symmetric exponential time requires near-
maximum circuit size. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2024, to appear. Association for Computing Machinery, 2024. 1, 2, 3, 4,
5, 7, 8, 11, 12

[CT22] Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 125–136, 2022. 2

[CZ19] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient func-
tions. Annals of Mathematics, 189(3):653 – 705, 2019. 2

[FM05] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit size of
the hardest functions. Information Processing Letters, 95(2):354–357, 2005. 1, 12

[GG11] Erann Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their
cryptographic applications. Electron. Colloquium Comput. Complex., TR11, 2011. 2

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, aug 1986. 7

12



[GGNS23] Karthik Gajulapalli, Alexander Golovnev, Satyajeet Nagargoje, and Sidhant Saraogi. Range
avoidance for constant depth circuits: Hardness and algorithms. In Nicole Megow and Adam D.
Smith, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA,
volume 275 of LIPIcs, pages 65:1–65:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. 2

[GLW22] Venkatesan Guruswami, Xin Lyu, and Xiuhan Wang. Range avoidance for low-depth circuits
and connections to pseudorandomness. In Amit Chakrabarti and Chaitanya Swamy, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign,
USA (Virtual Conference), volume 245 of LIPIcs, pages 20:1–20:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. 2

[Gol08] Oded Goldreich. Computational complexity: A conceptual perspective. SIGACT News,
39(3):35–39, sep 2008. 6

[HNOS96] Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman. Computing
solutions uniquely collapses the polynomial hierarchy. SIAM Journal on Computing, 25(4):697–
708, 1996. 2

[ILW23] Rahul Ilango, Jiatu Li, and R. Ryan Williams. Indistinguishability obfuscation, range avoidance,
and bounded arithmetic. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, page 1076–1089, New York, NY, USA, 2023. Association for Computing
Machinery. 2

[IW97] Russell Impagliazzo and Avi Wigderson. P = bpp if e requires exponential circuits: Derandom-
izing the xor lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, STOC ’97, page 220–229, New York, NY, USA, 1997. Association for Computing
Machinery. 1

[Kan82] Ravindran Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control, 55(1):40–56, 1982. 1

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total Func-
tions in the Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 44:1–44:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. 2

[Kor21] Oliver Korten. The hardest explicit construction. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 433–444, 2021. 2, 3, 4, 7, 11

[Li23] Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1271–1281,
Los Alamitos, CA, USA, nov 2023. IEEE Computer Society. 2

[MVW99] Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In Takano Asano, Hideki Imai, D. T.
Lee, Shin-ichi Nakano, and Takeshi Tokuyama, editors, Computing and Combinatorics, pages
210–220, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. 1

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994. 1

13



[Rad21] Stanis law P. Radziszowski. Small ramsey numbers. The Electronic Journal of Combinatorics
[electronic only], DS01, 2021. 2

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits.
In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
640–650, Los Alamitos, CA, USA, nov 2022. IEEE Computer Society. 2

[Sha49] Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical
Journal, 28(1):59–98, 1949. 1

[VW23] Nikhil Vyas and Ryan Williams. On Oracles and Algorithmic Methods for Proving Lower Bounds.
In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages
99:1–99:26, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 3

14

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


