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Abstract
Boolean function F (x, y) for x, y ∈ {0, 1}n is an XOR function if F (x, y) = f(x ⊕ y) for some
function f on n input bits, where ⊕ is a bit-wise XOR. XOR functions are relevant in communication
complexity, partially for allowing the Fourier analytic technique. For total XOR functions, it is
known that deterministic communication complexity of F is closely related to parity decision tree
complexity of f . Montanaro and Osbourne (2009) observed that one-way communication complexity
D→

cc (F ) of F is exactly equal to non-adaptive parity decision tree complexity NADT⊕(f) of f .
Hatami et al. (2018) showed that unrestricted communication complexity of F is polynomially
related to parity decision tree complexity of f .

We initiate the study of a similar connection for partial functions. We show that in the case
of one-way communication complexity whether these measures are equal, depends on the number
of undefined inputs of f . More precisely, if D→

cc (F ) = t and f is undefined on at most O
(

2n−t
√

n−t

)
inputs, then NADT⊕(f) = t. We also provide stronger bounds in extreme cases of small and large
complexity.

We show that the restriction on the number of undefined inputs in these results is unavoidable.
That is, for a wide range of values of D→

cc (F ) and NADT⊕(f) (from constant to n − 2) we provide
partial functions (with more than Ω

(
2n−t
√

n−t

)
undefined inputs, where t = D→

cc ) for which D→
cc (F ) <

NADT⊕(f). In particular, we provide a function with an exponential gap between the two measures.
Our separation results translate to the case of two-way communication complexity as well, in
particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions.

Previous results for total functions heavily rely on the Boolean Fourier analysis and thus, the
technique does not translate to partial functions. For the proofs of our results we build a linear
algebraic framework instead. Separation results are proved through the reduction to covering codes.
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1 Introduction

In communication complexity model two players, Alice and Bob, are computing some fixed
function F : {0, 1}n × {0, 1}n → {0, 1} on a given input (x, y). However, Alice knows only
x and Bob knows only y. The main object of studies in communication complexity is the
amount of communication Dcc(F ) needed between Alice and Bob to compute the function.

Function F is a XOR-function if for all x, y ∈ {0, 1}n we have F (x, y) = f(x⊕y) for some
f : {0, 1}n → {0, 1}, where x⊕y is a bit-wise XOR of Boolean vectors x and y. XOR-functions
are important in communication complexity [28, 19, 26, 27, 3, 13, 15, 1, 24, 22, 5, 2, 8, 11, 9],
on one hand, since there are important XOR-functions defined based on Hamming distance
between x and y, and on the other hand, since the structure of XOR-functions allows for the
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2 One-Way Communication Complexity of Partial XOR Functions

Fourier analytic techniques. In particular, this connection suggests an approach for resolving
Log-rank Conjecture for XOR-functions [28, 13].

In recent years there was considerable progress in the characterization of communication
complexity of a XOR-function F in terms of the complexity of f in parity decision tree model.
In this model the goal is to compute a fixed function f on an unknown input x ∈ {0, 1}n and
in one step we are allowed to query XOR of any subset of input bits. We want to minimize
the number of queries that is enough to compute f on any input x. The complexity of f in
this model is denoted by DT⊕(f). It was shown by Hatami et al. [13] that for any total f
we have Dcc(F ) = poly(DT⊕(f)).

Even stronger connection holds for one-way communication complexity case. In this
setting only very restricted form of communication is allowed: Alice sends Bob a message
based on x and Bob has to compute the output based on this message and y. We denote
the complexity of F in this model by D→

cc (F ). The relevant model of decision trees is the
model of non-adaptive parity decision trees. In this model we still want to compute some
function f on an unknown input and we still can query XORs of any subsets of input bits,
but now all queries should be provided at once (in other words, each query cannot depend
on the answers to the previous queries). The complexity of f in this model is denoted by
NADT⊕(f). It follows from the results of Montanaro, Osbourne [19] and Gopalan et al. [10]
that for any total XOR-function F (x, y) = f(x⊕ y) we have D→

cc (F ) = NADT⊕(f).
These results on the connection between communication complexity and parity decision

trees can be viewed as lifting results. This type of results have seen substantial progress
in recent years (see [21]). The usual structure of a lifting result is that we start with a
function f that is hard in some weak computational model (for example, a decision tree
type model), compose it with some gadget function g to obtain f ◦ g (each variable of f
is substituted by a copy of g defined on fresh variables) and show that f ◦ g is hard in a
stronger computational model (for example, a communication complexity type model). The
results on XOR-functions can be viewed as lifting results for g = XOR.

The results on the connection between communication complexity of XOR-functions and
parity decision trees discussed above are proved only for total functions f for the reason that
the proofs heavily rely on the Fourier techniques. However, in communication complexity and
decision tree complexity it is often relevant to consider a more general case of partial functions,
and many lifting theorems apply to this type of functions as well, see e.g. [7, 17, 4, 23]. In
particular, there are some lifting results for partial functions for gadgets that are stronger
than XOR: Mande et al. [18] proved such a result for one-way case for inner product gadget
(inner product is XOR applied to ANDs of pairs of variables) and Loff, Mukhopadhyay [17]
proved a result on lifting with equality gadget for general case (note that equality for inputs
of length 1 is practically XOR function). In [17] a conjecture is mentioned that for partial
XOR-functions Dcc(F ) is approximately equal to DT⊕(f) as well.

Our results.

In this paper we initiate the studies of the connection between communication complexity for
the case of partial XOR functions and parity decision trees. It turns out that for one-way case
whether they are equal depends on the number of inputs on which the function is undefined:
if the number of undefined inputs is small, then the complexity measures are equal and if it
is too large, they are not equal.

More specifically, we show that for t = D→
cc (F ) the equality D→

cc (F ) = NADT⊕(f) holds
if f is undefined on at most O

(
2n−t
√
n−t

)
inputs. We prove a stronger bound on the number of

undefined inputs for small values of t. More specifically, for t = 1 we show that the equality
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D→
cc (F ) = NADT⊕(f) is true for all partial f . For t = 2 we show that the equality is true

for at most 2n−3 − 1 undefined inputs. On the other end of the spectrum we show that for
any partial function if NADT⊕(f) ≥ n− 1, then D→

cc (F ) = NADT⊕(f).

On the other hand, we provide a family of partial functions for which D→
cc (F ) <

NADT⊕(f)1. More specifically, we show that for any constant 0 < c < 1 there is a
function f with NADT⊕(f) = cn and D→

cc (F ) ≤ c′n for some c′ < c.

The number of undefined inputs for the function is O
(

2dn
√
n

)
if c > 1/2, is equal to 2n−1 if

c = 1/2, and is 2n −O
(

2dn
√
n

)
if c < 1/2, where 0 < d < 1 is some constant (depending of c).

We provide a function f for which NADT⊕(f) =
√
n logn and D→

cc (F ) ≤ O(logn), the
number of undefined inputs for f is 2n − 2Θ(

√
n log3/2 n). Thus, we provide an exponential

gap between the two measures.

We provide stronger bounds for small and large values of complexity. For D→
cc (F ) = 1

we show that the equality D→
cc (F ) = NADT⊕(f) is true for all partial f . For D→

cc (F ) = 2
the equality is true for at most 2n−3 − 1 undefined inputs. The smallest values of measures
for which we provide a separation are D→

cc (F ) = 7 and NADT⊕(f) = 8. On the other
end of the spectrum we show that for any partial function if NADT⊕(f) ≥ n − 1, then
D→

cc (F ) = NADT⊕(f). The largest value of NADT⊕ for which we provide a separation is
n− 2, this complements the result that starting with NADT⊕(f) = n− 1 the measures are
equal.

All our separation results translate to the setting of two-way communication complexity
vs. parity decision trees. In particular, we provide a partial function f with exponential
gap between Dcc(F ) and DT⊕(f), which refutes the conjecture mentioned in [17]. It is an
interesting open problem whether the polynomial relation between these measures discovered
by Hatanami et al. for total functions holds for partial functions with some restriction on
the number of undefined points.

The techniques behind the results on the connections between communication complexity
of XOR-functions and parity decision tree complexity for total functions heavily rely on
the Fourier analysis. However, it is not clear how to translate this technique to partial
functions. To prove our results, we instead translate the Fourier-based approach of [19, 10]
into the language of linear algebra. We design a framework to capture the notion of one-way
communication complexity of partial XOR-functions and use this framework to establish
equality of D→

cc (F ) and NADT⊕(f) for the small number of undefined points. The separation
results can be proved using our framework, but in these version of the paper we provide
self-contained proof. The separation results are proved by a reduction to the covering codes.

The rest of the paper is organized as follows. In Section 2 we provide necessary preliminary
information and introduce the notations. In Section 3 we introduce our linear-algebraic
framework. In Section 4 we prove main results on the equality of complexity measures. In
Section 5 we prove separation results. In Section 6 we provide results for extreme cases.
Some of the technical proofs are presented in Appendix.

1 Note that the gap in the other direction is impossible: it is easy to see that D→
cc (F ) ≤ NADT⊕(f) for all

f (see Lemma 4 below). Similar inequality (with an extra factor of 2) holds for general communication
complexity and parity decision tree complexity.
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2 Preliminaries

2.1 Boolean cube
A Boolean cube is a graph on the set {0, 1}n of Boolean strings of length n. We connect two
vertices with an edge if they differ in a single bit only. The set {0, 1}n can also be thought of
as the vector space Fn2 , with the bitwise XOR as the group operation. An inner product over
this space can be defined as

⟨x, y⟩ =
⊕
i

xi ∧ yi. (1)

Hamming weight of x denoted |x| is defined as the number of coordinates of x equal
to 1. Hamming distance dist(x, y) between x ∈ {0, 1}n and y ∈ {0, 1}n is the number of
coordinates at which x and y differ. The Hamming ball of radius r is a set of vertices of
Boolean cube {0, 1}n with Hamming weight not exceeding r. We denote by V (n, r) the
volume of a Hamming ball in {0, 1}n of radius r.

2.2 Isoperimetric inequalities
▶ Definition 1. For a set A we denote the set of neighbors of elements of A as ΓA. We
denote Γ′A := ΓA \A.

We will need the vertex isoperimetric inequality for a Boolean cube known as Harper’s
theorem. To state it we first define Hales order.

▶ Definition 2 (Hales order [12, Page 56]). Consider two subsets x, y ⊆ [m] for some natural
m. We define x ≺ y if |x| < |y| or |x| = |y| and the smallest element of the symmetric
difference of x and y belongs to x. In other words, there exists an i such that i ∈ x, i /∈ y,
and i is the smallest element in which x and y differ. Here is an example of Hales order for
m = 4:

∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}.

We can induce Hales order on the set {0, 1}m by identifying subsets of [m] with their char-
acteristic vectors. We define Ima to be the set of the first a elements of {0, 1}m in Hales
order.

▶ Theorem 3 (Harper’s theorem [12, Theorem 4.2]). Let A ⊆ {0, 1}m be a subset of vertices
of m-dimensional Boolean cube and denote a = |A|. Then |ΓA| ≥ |ΓIma |.

2.3 Communication Complexity and Decision Trees
Throughout this paper, f denotes a partial function {0, 1}n → {0, 1,⊥}, we let Dom(f) =
f−1({0, 1}). We define an XOR-function F : {0, 1}n × {0, 1}n → {0, 1,⊥} as

F (x, y) = f(x⊕ y). (2)

In communication complexity model two players, Alice and Bob, are computing some
fixed function F : {0, 1}n × {0, 1}n → {0, 1} on a given input (x, y). However, Alice knows
only x and Bob knows only y. The main subject of studies in communication complexity
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is the amount of communication Dcc(F ) needed between Alice and Bob to compute the
function. Formal definition of the model can be found in [16].

We will be mostly interested the in one-way communication model. This is a substantially
restricted setting, in which only Alice is permitted to send bits to Bob. Formally, the one-way
communication complexity D→

cc (F ) is defined to be the smallest integer t, allowing for a
protocol where Alice knowing her input x sends t bits to Bob, which together with Bob’s
input y enable Bob to calculate the value of F .

The bits communicated by Alice depend only on x, that is Alice’s message to Bob is
h(x) for some fixed total function h : {0, 1}n → {0, 1}t. Bob computes the output F (x, y)
based on h(x) and his input y. That is, Bob outputs φ(h(x), y) for some fixed total
function φ : {0, 1}t × {0, 1}n → {0, 1}. If (x, y) is within the domain of F , then the equality
φ(h(x), y) = F (x, y) must be true.

The notion of parity decision tree complexity is a generalization of the well-known decision
tree complexity model. In this model, to evaluate a function f for a given input x the protocol
queries the parities of some subsets of the bits in x. The cost of the protocol on specified
input x is the number of queries the protocol makes on that input. The cost of the protocol
(sometimes referred to as the worst-case cost) is maximum over all inputs x, costs of protocol
on the input x. The complexity of problem f in the model of parity decision trees DT⊕(f)
is the minimal over all valid protocols, cost of a protocol for f .

We consider the non-adaptive parity decision tree complexity NADT⊕(f). This version
differs from its adaptive counterpart in that all the queries should be fixed at once. In other
words, each next query should not depend on the answers to previous queries. Next, we give
a more formal definition of NADT⊕(f).

The protocol of complexity p is defined by n-bit strings s1, . . . , sp and a total function
l : {0, 1}p → {0, 1}. On input x the protocol queries the values of

⟨s1, x⟩, . . . , ⟨sp, x⟩ (3)

and outputs

l(⟨s1, x⟩, . . . , ⟨sp, x⟩). (4)

The protocol computes partial function f , if for any x ∈ Dom(f) we have

l(⟨s1, x⟩, . . . , ⟨sp, x⟩) = f(x). (5)

Throughout the paper t, h, φ, p, s1, . . . , sp, l have the same meaning as defined above.
It is easy to see that there is a simple relation between NADT⊕(f) and D→

cc (F ).

▶ Lemma 4. For any f we have D→
cc (F ) ≤ NADT⊕(f).

Proof. Alice and Bob can compute F (x, y) by a simple simulation of NADT⊕ protocol for
f . The idea is that they privately calculate the parities of their respective inputs according
to NADT⊕ protocol, then Alice sends the computed values to Bob, who XORs them with
his own parities, and then computes the value of F .

More formally, assume that NADT⊕(f) = p and the corresponding protocol is given by
s1, . . . , sp ∈ {0, 1}n and a function l, that is

∀x ∈ Dom(f), f(x) = l(⟨s1, x⟩, . . . , ⟨sp, x⟩). (6)

For i ∈ [p], we let

hi(x) := ⟨si, x⟩. (7)
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For the communication protocol of complexity p we let

h(x) = (h1(x), . . . , hp(x)), (8)
φ(a, y) := l(a1 ⊕ ⟨s1, y⟩, . . . , ap ⊕ ⟨sp, y⟩). (9)

Then for any (x, y) such that x⊕ y ∈ Dom(f) we have

φ(h(x), y) = l(h1(x)⊕ ⟨s1, y⟩, . . . , hp(x)⊕ ⟨sp, y⟩) = (10)
l(⟨s1, x⟩ ⊕ ⟨s1, y⟩, . . . , ⟨sp, x⟩ ⊕ ⟨sp, y⟩) = (11)
l(⟨s1, x⊕ y⟩, . . . , ⟨sp, x⊕ y⟩) = f(x⊕ y) = F (x, y). (12)

We constructed a p-bit communication protocol for F , and thus

D→
cc (F ) ≤ p = NADT⊕(f). (13)

◀

In this paper, we are mainly interested in whether the inequality in the opposite direction
is true.

2.4 Covering Codes
▶ Definition 5. A subset C ⊆ {0, 1}n is a (n,K,R) covering code if |C| ≤ K and for any
x ∈ {0, 1}n there is c ∈ C such that dist(x, c) ≤ R. In other words, all points in {0, 1}n are
covered by balls of radius R with centers in C.

The following general bounds on K are known for covering codes.

▶ Theorem 6 ([6, Theorem 12.1.2]). For any (n,K,R) covering code we have

logK ≥ n− log V (n,R). (14)

For any n and any R ≤ n there is a (n,K,R) covering code with

logK ≤ n− log V (n,R) + logn. (15)

We will use the following well known fact.

▶ Theorem 7 ([6, Section 2.6]). If n = 2m − 1 for some m, then Boolean cube {0, 1}n can be
splitted into disjoint balls of radius 1.

This construction is known as a Hamming error correcting code. Note that it is a
(n = 2m − 1, 2n

n+1 , 1) covering code.

▶ Definition 8. For two covering codes C1 and C2 their direct sum is

C1 ⊕ C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}. (16)

▶ Lemma 9 ([6, Theorem 12.1.2]). If C1 is a (n1,K1, R1) covering code and C2 is a (n2,K2, R2)
covering code, then C1 ⊕ C2 has parameters (n1 + n2,K1K2, R1 +R2).

We need the following bounds on the sizes of Hamming balls (see, e.g. [14, Appendix A]).

▶ Lemma 10. For any n and k ≤ n we have(n
k

)k
≤ V (n, k) ≤

(en
k

)k
. (17)
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▶ Lemma 11. For any constant 0 < c < 1 we have(
n

cn

)
= O

(
1√
n

2H(c)n
)
. (18)

For any constant 0 < c < 1/2 we have

V (n, cn) = O

(
1√
n

2H(c)n
)
, (19)

where H is the binary entropy function.

▶ Lemma 12 ([25, Section 5.4]).

V
(
n,
n

2 −Θ(
√
n logn)

)
= 2n

poly(n) . (20)

For the binary entropy function H(x) we will use the following simple fact.

▶ Lemma 13. For any constant c ∈ (0, 1) and for any αn −−−−→
n→∞

0 we have

H(c+ αn) = H(c) +O(αn), (21)

where the constant in O-notation might depend on c, but not on n.

This is true since the derivative of H is upper bounded by a constant in any small enough
neighborhood of c.

3 Linear-algebraic framework

3.1 Graph-based analysis of one-way communication protocols
Recall that in a one-way communication protocol of complexity t for F (x, y) = f(x ⊕ y)
Alice on input x ∈ {0, 1}n first sends to Bob h(x) for some fixed h : {0, 1}n → {0, 1}t.
After that Bob computes the output φ(h(x), y), where y ∈ {0, 1}n is Bob’s input and
φ : {0, 1}t × {0, 1}n → {0, 1}.

Let’s consider the partition H = {Ha | a ∈ {0, 1}t}, where for any a ∈ {0, 1}t

Ha = h−1(a). (22)

We refer to H as h-induced partition. A class Ha of this partition is the set of inputs for
which Alice sends Bob the same message.

Consider two arbitrary inputs x, y ∈ {0, 1}n. We call the vector ∆ = x ⊕ y the shift
between x and y. The intuition is that y is equal to the shift x⊕∆ of x by y (and vise versa).

We say that ∆ ∈ {0, 1}n is a good shift if there is a pair x, y ∈ {0, 1}n such that x⊕y = ∆
and h(x) = h(y), or equivalently, if x and y belong to the same class of H. Note that f does
not necessarily need to be defined on inputs x and y. However, it turns out that on the
domain of f the value of f is invariant under good shifts.

▶ Lemma 14. Assume that ∆ is a good shift. Consider any v, u ∈ Dom(f) such that
v ⊕ u = ∆. Then, f(v) = f(u).

Proof. Since ∆ is good, there are x and y such that h(x) = h(y) and x⊕ y = ∆. Then

f(v) = φ(h(x), x⊕ v) = φ(h(y), x⊕ v) = f(v ⊕ x⊕ y) = f(v ⊕∆) = f(u). (23)

◀
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h : {0, 1}3 → {a, b, c, d, e}

c

a

d

c

b

e

a b

Gh

Figure 1 Example of total h-induced graph

This leads us to the following notion.

▶ Definition 15. For the functions f : {0, 1}n → {0, 1}, f(x⊕ y) = φ(h(x), y) let the total
h-induced graph be the graph with vertices {0, 1}n and with an edge between x ∈ {0, 1}n
and y ∈ {0, 1}n if x⊕ y is a good shift for h. Now remove vertices where the function f is
undefined. The resulting graph is called the partial h-induced graph.

There is an alternative way of thinking about total h-induced graph. Consider a graph with
vertices labeled {0, 1}n in which we connect two vertices if the value of h on these vertices
is the same. Clearly it is a subgraph of the total h-induced graph. Now consider a shift of
this graph, that is, a graph in which we XORed labels of all vertices with some fixed vector.
This graph is also a subset of the total h-induced graph. By considering all possible shifts
and taking the union of all graphs we will get the total h-induced graph. See Figure 1 for an
example of total h-induced graph.

By transitivity, if (h, φ) form a valid communication protocol then f assigns identical
values to each connected component in partial h-induced graph. The converse is also true.

▶ Theorem 16. Consider a function f : {0, 1}n → {0, 1}. For a function h : {0, 1}n → {0, 1}t
there is a function φ : {0, 1}t × {0, 1}n → {0, 1} such that (h, φ) form a valid communication
protocol for f if and only if f assigns the same value to each connected component in the
partial h-induced graph.

Proof. As discussed above, if (h, φ) forms a valid communication protocol, then f assigns
the same value to each connected component of the partial h-induced graph.

It remains to prove the converse statement. We assume that f assigns the same value to
each connected component and we need to show that there is φ such that

∀(x, y) ∈ Dom(F ), F (x, y) = φ(h(x), y). (24)

The proof idea is the following. Each input (x, y) ∈ {0, 1}n × {0, 1}n to F yields an input
(a, y) ∈ {0, 1}t × {0, 1}n to φ where α = h(x). We define φ on (α, y) to be equal to F on a
single corresponding F -input (x′, y) with x′ ∈ h−1(α). Then we prove that φ defined that
way gives a communication protocol computing F correctly on all inputs (x, y) ∈ Dom(f)

Formally, we define φ as follows. For each α ∈ {0, 1}t and y ∈ {0, 1}n, consider x′ ∈ {0, 1}n
such that h(x′) = α and (x′, y) ∈ Dom(F ). If there is no such x′ we define φ(α, y) arbitrarily.
If there is such an x′, let

φ(α, y) := F (x′, y). (25)

Now we show that the resulting protocol computes F (x, y) correctly for any (x, y).
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Consider arbitrary (x, y) ∈ Dom(F ). Consider x′ chosen for α = h(x) and y (it exists,
since clearly x itself satisfies all the necessary conditions).

Thus, we have

φ(h(x), y) = F (x′, y). (26)

It remains to prove that

F (x′, y) = F (x, y) (27)

or equivalently,

f(x′ ⊕ y) = f(x⊕ y). (28)

For XOR of these two inputs of f we have

(x′ ⊕ y)⊕ (x⊕ y) = x′ ⊕ x. (29)

Since h(x) = h(x′), we have that x′ ⊕ x is a good shift. And since

(x, y), (x′, y) ∈ Dom(F ), (30)

we have

x⊕ y, x′ ⊕ y ∈ Dom(f). (31)

We have that vertices x⊕ y and x′ ⊕ y are connected in the partial h-induced graph and
by Lemma 14 f assigns the same value to them. Hence, the function φ, together with h,
forms a communication protocol for F . ◀

3.2 Using coset structures on a Boolean cube to analyze non-adaptive
parity decision trees.

We consider the vertices of the Boolean cube as a vector space Fn2 . We show that a NADT⊕

protocol corresponds to a linear subspace of Fn2 such that f is constant on each of its cosets
(the coset for a linear subspace L and a vector l is defined as the set {x + l|l ∈ L} and
denoted L+ l).

▶ Theorem 17. Let f : {0, 1}n → {0, 1}. There is a p-bit NADT⊕ protocol for f if and
only if there exists an n− p dimensional subspace of {0, 1}n such that for each coset of that
subspace, f assigns the same value to all inputs of the coset where f is defined.

Proof. Suppose s1, . . . , sp, l form a valid NADT⊕ protocol for f . We construct a matrix S
with rows s1, . . . , sp. If some of the rows are linearly dependent, we add rows arbitrarily
to make the rank of S equal to p. When S is multiplied on the right by some vector x, we
obtain all inner products of x with vectors s1, . . . , sp (and possibly other bits if we added
rows).

Consider the vector subspace {x|Sx = 0}. This is an n− p dimensional space. For all
points in the same coset of this subspace, the tuple consisting of values of the inner products
(⟨s1, x⟩, . . . , ⟨sp, x⟩) is the same, so is the value of l(⟨s1, x⟩, . . . , ⟨sp, x⟩). For all points where
f is defined and lying in the same coset, the value of f must be equal to the value of l and
thus the same for all points in the coset.
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In the reverse direction, let ⟨e1, . . . , en−p⟩ be an n− p dimensional subspace of {0, 1}n
such that for each of its cosets f is constant on all points of that coset on which it is defined.
We can represent this subspace in the form {x|Sx = 0} for some matrix S of size p× n.

Vectors x and y are in the same coset of ⟨e1, . . . , en−p⟩ iff Sx = Sy. Thus, to compute
f(x) it is enough to compute the inner product of x with the rows of S.

◀

▶ Corollary 18. Consider a function f : {0, 1}n → {0, 1} having valid communication
protocol f(x ⊕ y) = φ(h(x), y) where h : {0, 1}n → {0, 1}t, φ : {0, 1}t × {0, 1}n → {0, 1}.
Suppose there is an n− t dimensional subspace L of {0, 1}n and consider subgraphs of partial
h-induced graph each over vertices belonging to different cosets of L. If all of these subgraphs
are connected then NADT⊕(f) ≤ t.

Proof. By Theorem 16 f is constant on each coset. By Theorem 17 it follows that
NADT⊕(f) ≤ t. ◀

4 Equality between D→
cc (F ) and NADT⊕(f)

In this section we will show that if D→
cc (F ) = t and the number of undefined inputs is small,

then NADT⊕(f) = t as well. More specifically, we prove the following theorem.

▶ Theorem 19. If for the function f : {0, 1}n → {0, 1} we have D→
cc (F ) = t, where F (x, y) =

f(x⊕ y), and f is undefined on less than
( n−t+1

⌊ n−t
2 ⌋−1

)
inputs, then NADT⊕(f) = t.

By Lemma 11 we have that
( n−t+1
⌊n−t+1

2 ⌋
)

= O( 2n−t
√
n−t ) and since ⌊n−t

2 ⌋ − 1 differs from⌊
n−t+1

2
⌋

by only a constant, it is easy to see that the same estimate applies to
( n−t+1

⌊ n−t
2 ⌋−1

)
as

well. Thus, the number of undefined inputs is O( 2n−t
√
n−t ).

The rest of the section is devoted to the proof of Theorem 19. The idea of the proof is as
follows. Consider the h-induced partition H corresponding to the communication protocol
of complexity t. We show that either the partition H corresponds to the cosets of an n− t
dimensional subspace of {0, 1}n, which allows us to construct an NADT⊕ protocol, or there
exist many good shifts. The structure of these good shifts imposes restrictions on f that
again allow us to construct an NADT⊕ protocol.

We start with a simple case.

▶ Lemma 20. If there exists t-bit communication protocol, (h, φ) for a function f : {0, 1}n →
{0, 1}, and the h-induced partition H corresponds to cosets of an n− t dimensional subspace
L of {0, 1}n, then NADT⊕(f) ≤ t.

Proof. Since the partition H corresponds to the cosets of L, we have that for any inputs x
and y, if h(x) = h(y), then x⊕ y ∈ L and vice versa. In other words, all good shifts are in L
and any shift in L is good. Thus, connected components of the total h-induced graph are
cosets of L and are fully connected. By Corollary 18 we have that NADT⊕(f) ≤ t. ◀

The structure of the proof for the other case is the following. We show that the total
h-induced graph is structured into connected components, each of which is a coset of a
k-dimensional subspace of {0, 1}n for k ≥ n − t. We show that there is a bijective graph
homomorphism of the k-dimensional Boolean cube onto each component. Furthermore, each
vertex in the total h-induced graph has a degree of at least 2n

2t − 1. We show that if we
remove fewer than

( n−t+1
⌊ n−t

2 ⌋−1
)

vertices, each coset still contains one connected component. By
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the way of contradiction, suppose this is not the case and some coset contains more than one
connected component. We consider the smallest of these components, denote the set of its
nodes by S. We show that the number of neighboring vertices of S in the total h-induced
graph (excluding S itself) is not less than

( n−t+1
⌊ n−t

2 ⌋−1
)
. This implies that after removing the

undefined inputs of f S cannot not be separated from other nodes in the coset. To show this
we treat separately cases of large and small |S|. For small |S| we use the fact that vertices
have high degree. For large |S| we use the vertex-isoperimetric inequality for the Boolean
cube.

▶ Lemma 21. Suppose there exists a t-bit communication protocol (h, φ) for f : {0, 1}n →
{0, 1} and the h-induced partition H classes do not correspond to cosets of an n−t-dimensional
subspace of {0, 1}n. Let D be the set of good shifts for h. Then D contains a minimum of
n− t+ 1 linearly independent vectors.

Proof. Suppose there are at most n−t linearly independent good shifts e1, . . . , en−t. Consider
a linear subspace of {0, 1}n spanned over by these shifts and add some vectors to it to make
it exactly n− t dimensional if needed. Denote the resulting subspace L. As classes of H do
not correspond to the cosets of L and there are 2t of both classes and cosets there exist two
elements belonging to the same class and different cosets. Their XOR is a good shift linearly
independent with e1, . . . , en−t. We got a contradiction implying the lemma. ◀

▶ Lemma 22. Suppose there exists t-bit communication protocol (h, φ) for f . Let D be the
set of all good shifts for h and {e1, . . . , ek} be the largest linearly independent subset of D.
Then the total h-induced graph H has the following properties.

Cosets of the subspace ⟨e1, . . . , ek⟩ are connected components of H.
There is a bijective graph homomorphism of k-dimensional Boolean cube into each coset.

Proof. It is easy to see that all vertices in any coset are connected to each other. Let’s show
that no edges exist between vertices of different cosets. Assume by contradiction that there
is an edge between vertices v and u from different cosets. Note that u ⊕ v /∈ ⟨e1, . . . , ek⟩.
Thus, vectors e1, . . . , ek, u⊕ v form a linearly independent system of size k + 1, which is a
contradiction.

Now, let’s construct a homomorphism q from the Boolean cube {0, 1}k into the coset
v + ⟨e1, . . . , ek⟩ for an arbitrary vertex v. Consider a matrix B that has vectors e1, . . . , ek as
its columns and let q(x) = v ⊕ Bx. The image of q is within the coset v + ⟨e1, . . . , ek⟩, as
columns of B belong to the subspace ⟨e1, . . . , ek⟩. The mapping is bijective on v+⟨e1, . . . , ek⟩,
as B’s columns are linearly independent. Finally, consider a pair of vertices x, y adjacent in
a Boolean cube. Since the vertices are adjacent, they only differ in a single bit i. Thus,

q(x)⊕ q(y) = (v ⊕Bx)⊕ (v ⊕By) = B(x⊕ y) = ei. (32)

Since ei ∈ D, an edge exists between q(x) and q(y), implying that q is a graph homomorphism.
◀

▶ Lemma 23. Suppose there exists t-bit communication protocol (h, φ) for f : {0, 1}n → {0, 1}.
Then in the total h-induced graph, the degree of any vertex is not less than 2n

2t − 1.

Proof. Let’s consider the largest class in the h-induced partition H. Since the number of
classes is at most 2t, the largest class contains at least 2n

2t elements. Fix an element of the
class and compute its XOR with all elements in the same class H. We have 2n

2t XORs in
total, 2n

2t − 1 of which are non-zero. Since each XOR is computed between elements in the
same class, these XORs are good shifts. For all vertices in the h-induced graph for each good
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shift we draw an edge from the vertex corresponding to this shift. Therefore, the degree of
any vertex is at least 2n

2t − 1. ◀

▶ Lemma 24. If A is a subset of k-dimensional Boolean cube satisfying V
(
m,

⌊
m−1

2
⌋
− 2

)
≤

|A| ≤ 2k−1 for some m, then |Γ′A| ≥
(

m
⌊m−1

2 ⌋−1
)
.

The proof of the lemma is moved to Appendix B. Finally, we are ready to prove Theorem 19.

Proof of Theorem 19. We are given t-bit communication protocol (h, φ) for F . By Lemma 21,
the h-induced partition H either corresponds to cosets of an n − t dimensional subspace
of {0, 1}n (and then by Lemma 20 we have NADT⊕(f) ≤ t), or the set of good shifts D
contains at least n− t+ 1 linearly independent vectors. Let ⟨e1, . . . , ek⟩, where k ≥ n− t+ 1,
be the largest subset of linearly independent vectors in D. Consider the cosets of the
subspace ⟨e1, . . . , ek⟩. We will show that if we remove fewer than

( n−t+1
⌊ n−t

2 ⌋−1
)

vertices from
the total h-induced graph, each coset will contain no more than one connected component.
Assume by contradiction that after removing the vertices, some coset splits into several
connected components. Let A be the smallest of these components. If there are at most
V (n− t+ 1, ⌊n−t

2 ⌋ − 2)− 1 vertices in A, consider a vertex a in A. Given the degree of a is
at least 2n−t − 1, a has at least

2n−t − V
(
n− t+ 1,

⌊
n− t

2

⌋
− 2

)
≥ V

(
n− t+ 1,

⌊
n− t

2

⌋)
− V

(
n− t+ 1,

⌊
n− t

2

⌋
− 2

)
≥

(
n− t+ 1⌊
n−t

2
⌋
− 1

)
(33)

neighbors outside A.
On the other hand, suppose A has at least V (n − t + 1, ⌊n−t

2 ⌋ − 2) vertices. Since A
is the smallest connected component in its coset it also follows that A has no more than
2k−1 vertices. By Lemma 24 we have |Γ′A| ≥

( n−t+1
⌊n−t

2 ⌋−1
)
, which is more than the number of

removed vertices, a contradiction. Thus, cosets cannot be split into several components and
by Corollary 18 we have NADT⊕(f) ≤ n− k ≤ t− 1, which is a contradiction. ◀

5 Separations between D→
cc (F ) and NADT⊕(f)

In this section we show that if the number of undefined inputs is large, there is a gap between
D→

cc (F ) and NADT⊕(f). That is, we aim to come up with a function f such that D→
cc (F ) is

small and NADT⊕(f) is large.
The key idea in our construction is that in h-induced graph for the intended communication

protocol the edges connect only vertices with small Hamming distance between them. Then,
if the function f has 0-inputs and 1-inputs far away from each other, they are not connected
and h corresponds to a valid protocol. We will ensure that at the same time f has large
NADT⊕ complexity.

We start with the construction of the functions, then investigate their NADT⊕ complexity
and then prove upper bounds on D→

cc complexity of the corresponding XOR functions. The
latter part is through the reduction to covering codes.

▶ Definition 25. For a parameter k define fk : {0, 1}n → {0, 1,⊥} in the following way.

fk(x) =


0 for |x| ≤ k,
⊥ for k + 1 ≤ |x| ≤ n− 1,
1 for |x| = n.

(34)
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We denote the corresponding XOR function by Fk.

Note, that the number of undefined inputs in fk is V (n, n− k − 1)− 1.
It turns out that fk has reasonably large NADT⊕ and DT⊕ complexities.

▶ Theorem 26. NADT⊕(fk) = DT⊕(fk) = k + 1.

Proof. Since DT⊕(f) ≤ NADT⊕(f) for any f , it is enough to prove that NADT⊕(fk) ≤ k+1
and DT⊕(fk) ≥ k + 1.

For the upper bound, observe that it is enough to query variables x1, . . . , xk+1. If all of
them are equal to 1, we output 1, otherwise we output 0. It is easy to see that this protocol
computes fk correctly.

For the lower bound suppose, for the sake of contradiction, that an adaptive parity
decision tree exists that can compute the function f with k or fewer queries. Consider the
path corresponding to the input e = (1, . . . , 1). Let’s assume that the decision tree queried
the parities ⟨si, e⟩ for s1, . . . , sk. The answers to the queries are equal to ⟨s1, e⟩, . . . , ⟨sk, e⟩.
Consider a matrix B ⊆ Fk×n consisting of rows s1, . . . , sk.

Denote a = Be. In particular, we have that a lies in the subspace generated by columns
of B. Since the rank of B is at most k (the matrix has k rows), there is a subset of at most
k columns generating this subspace. In particular, there is x ∈ {0, 1}n with |x| ≤ k, such
that a = Bx. That is, Be = Bx and the protocol behaves the same way on e and x, which is
a contradiction, since fk(e) = 1 and fk(x) = 0. ◀

▶ Remark 27. Since fk has large (adaptive) parity decision tree complexity and for any
F : {0, 1}n×{0, 1}n → {0, 1} we have D→

cc (F ) ≥ Dcc(F ), all separations provided by functions
fk translate into the same separations between DT⊕ and Dcc.

Next, we proceed to the upper bound on the D→
cc (Fk).

▶ Theorem 28. Suppose for some n, k and t there is a (n, 2t, R) covering code C for
R =

⌊
n−k−1

2
⌋
. Then, D→

cc (Fk) ≤ t.

Proof. Split the points of {0, 1}n into balls with radius R with centers in the points of C (if
some point belongs to several balls, attribute it to one of them arbitrarily). This results in a
partition of the cube into 2t subsets with the diameter of each subset at most n− k − 1.

The proof can be finished through Theorem 16, but to make it more self-contained we
directly describe communication protocol.

On input x Alice sends as h(x) the index of the ball containing x. Bob computes ¬y,
componentwise negation of y, and outputs 1 if it is in the same ball. If this is not the case,
Bob outputs 0.

Clearly, the complexity of this protocol is at most t. For the correctness of the protocol,
if f(x⊕ y) = 1, then x = ¬y and the protocol clearly outputs 1. However, if f(x⊕ y) = 0,
then |x⊕ y| ≤ k and thus dist(x,¬y) ≥ n− k. In this case x and ¬y are not in the same ball
and the protocol outputs 0. ◀

▶ Theorem 29. For any n and k we have

D→
cc (Fk) ≤ n− log V (n,R) + logn (35)

for R =
⌊
n−k−1

2
⌋
.

Proof. By Theorem 6 there exists a (n, 2t, R) covering code for

log 2t = t ≤ n− log V (n,R) + logn. (36)

The theorem follows from Theorem 28. ◀
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From this we can get a separation for a wide range of parameters.

▶ Corollary 30. Suppose k = cn for some constant 0 < c < 1. Then NADT⊕(fk) = cn+ 1
and

D→
cc (Fk) ≤

(
1−H

(
1− c

2

))
n+O(logn). (37)

In particular, D→
cc (Fk) < NADT⊕(fk). The number of undefined inputs for fk is 2n−O( 2H(c)n

√
n

)
if c < 1/2, is equal to (1 + o(1))2n−1 if c = 1/2, and is O( 2H(1−c)n

√
n

) if c > 1/2.

Proof. The equality for NADT⊕ is proved in Theorem 26.
For communication complexity bound we apply Theorem 29. We have R =

⌊
(1−c)n−1

2

⌋
=

(1−c)n
2 +O(1) and by Lemmas 11 and 13 we have

log V (n,R) = H

(
1− c

2

)
n−O(logn). (38)

By Theorem 29 we have

D→
cc (Fk) ≤ n− log V (n,R) + logn =

(
1−H

(
1− c

2

))
n+O(logn). (39)

To show that D→
cc (Fk) < NADT⊕(fk) we need to compare k = cn with the bound on

communication complexity. It is easy to see that

1−H
(

1− c
2

)
< c (40)

for all 0 < c < 1 (the left hand-side and the right hand-side are equal for c = 0 and c = 1
and the left hand-side is concave in c).

The bounds on the number of undefined inputs follow easily from Lemma 11. ◀

The largest gap we can get is the following.

▶ Corollary 31. For k = Θ(
√
n logn) we have that NADT⊕(fk) = Θ(

√
n logn) and

D→
cc (Fk) = O(logn). The number of undefined inputs for fk is 2n − 2Θ(

√
n log3/2 n).

Proof. For k = Θ(
√
n logn) we have R = n

2 −Θ(
√
n logn) in Theorem 29. By Lemma 12

we have V (n,R) = 2n

poly(n) and as a result D→
cc (Fk) = O(logn).

For the number of undefined inputs, we apply Lemma 10:(n
k

)k
≤ V (n, k) ≤

(en
k

)k
. (41)

For k = Θ(
√
n logn) it is easy to see that both sides are 2Θ(

√
n log3/2 n). From this the

estimate on the number of undefined inputs follows. ◀

6 Extreme Cases

In this section we discuss extreme cases. All proves are moved to Appendix A.
For small values of complexity measures we have the following equality results.

▶ Theorem 32. Suppose F satisfies D→
cc (F ) = 1. It then follows that NADT⊕(f) = 1.
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▶ Theorem 33. If function f is undefined on fewer than 2n−3 inputs and D→
cc (F ) = 2, then

NADT⊕(f) = 2.

On the other end of the spectrum, we show that if NADT⊕(f) is really large, then it is
equal for all partial functions.

▶ Theorem 34. For any partial function f : {0, 1}n → {0, 1,⊥}, if NADT⊕(f) ≥ n− 1, then
D→

cc (F ) = NADT⊕(f).

The largest value of NADT⊕ for which we get separation is n− 2.

▶ Theorem 35. D→
cc (Fn−3) ≤ n−Θ(logn), whereas NADT⊕(fn−3) = n− 2. The number

of undefined inputs for fn−3 is n(n+1)
2 .

The smallest value of D→
cc for which we get a separation is 7.

▶ Theorem 36. For any n ≥ 32 we have D→
cc (F7) ≤ 7, whereas NADT⊕(f7) = 8.
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A Proofs for the Extreme Cases

A.1 Case D→
cc (F ) = 1

Assume there exists t-bit communication protocol, (h, φ) for a function F (x, y) = f(x⊕ y)
where f : {0, 1}n → {0, 1}. A function h is called balanced if all classes in the h-induced
partition are of equal size. We say that h is balanced on a subset when its restriction to
the inputs in this subset is balanced. For the case t = 1, we analyze two distinct scenarios
separately: when h is balanced and when it is not.

For the scenario where h is unbalanced, we will demonstrate that all shifts are good,
leading to the conclusion that f is a constant function. Conversely, when h is balanced, we
identify a specific n− 1-dimensional subspace of {0, 1}n on which h is unbalanced. We then
show that every shift in this subspace is good. This observation gives us that the function
value of f depends solely on whether x belongs to this identified subspace and this can be
checked with a single parity query.

▶ Lemma 37. Assume there exists 1-bit communication protocol, (h, φ) for a function
F (x, y) = f(x⊕ y) where f : {0, 1}n → {0, 1}. If h is unbalanced, then every shift is good.

Proof. Consider arbitrary shift ∆. Consider the cosets corresponding to the subspace ⟨∆⟩.
The h-induced partition consists of two classes, since they are not equal, one class contains
more than 2n−1 elements. Applying the Pigeonhole principle we get that some coset of the
subspace ⟨∆⟩ contains two elements with the same h value. Given that a coset has only two
points and those differ by shift ∆, we conclude that ∆ is indeed a good shift. ◀

▶ Lemma 38. Assume there exists 1-bit communication protocol, (h, φ) for a function
F (x, y) = f(x ⊕ y) where f : {0, 1}n → {0, 1}. If h is unbalanced on a given subspace of
{0, 1}n, then every shift in this subspace is good.

Proof. The proof is completely analogous to the proof of Lemma 37. Indeed, since h is
unbalanced on the subspace, for any shift ∆ in the subspace there are x and y such that
h(x) = h(y) and x⊕ y = ∆. Thus, ∆ is a good shift. ◀

▶ Lemma 39. Suppose there exists t-bit communication protocol, (h, φ) for a function
F (x, y) = f(x ⊕ y) where f : {0, 1}n → {0, 1}. For a balanced function h, there is an
n− 1-dimensional subspace of of {0, 1}n over which h is unbalanced.

Proof. The proof is based on Fourier analysis. For the completeness of the proof, we provide
basic definitions in Appendix C.

Consider Fourier decomposition of h. Since h is balanced and thus not constant, there
must be a non-zero coefficient ĥ(S) in its Fourier decomposition associated with a non-
empty subset S. We show that h is unbalanced on the n− 1-dimensional linear subspace
X = {x|χS(x) = 1}. Assume, for the sake of contradiction, that h is balanced on X. The

https://doi.org/10.1137/1.9781611973402.136
https://doi.org/10.1016/j.tcs.2010.03.027
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Fourier coefficient ĥ(S) can be computed as follows:

ĥ(S) = 1
2n

∑
x

(−1)h(x)χS(x) =

1
2n

(
|{h(x) = 0, x ∈ X}|−|{h(x) = 1, x ∈ X}|−|{h(x) = 0, x /∈ X}|+|{h(x) = 1, x /∈ X}|

)
.

(42)

Denote the quantity |{h(x) = 0, x ∈ X}| as a. As h is balanced on X, it follows that
|{h(x) = 1, x ∈ X}| = a. The set X contains 2n−1 elements so a = 2n−2. Given that h is
balanced across {0, 1}n, both the sets {h(x) = 0, x ∈ {0, 1}n} and {h(x) = 1, x ∈ {0, 1}n}
each have 2n−1 elements. Therefore:

|{h(x) = 0, x /∈ X}| = |{h(x) = 0, x ∈ {0, 1}n}| − |{h(x) = 0, x ∈ X}| = 2n−2, (43)
|{h(x) = 1, x /∈ X}| = |{h(x) = 1, x ∈ {0, 1}n}| − |{h(x) = 1, x ∈ X}| = 2n−2. (44)

We can see that ĥ(S) = 0 which leads us to the required contradiction. ◀

We are now ready to prove Theorem 32

Proof of Theorem 32. Given 1-bit communication protocol, (h, φ) for a function F , consider
the total h-induced graph. For any unbalanced h by Lemma 37 we get that all shifts are
good, so the graph is complete. It can’t be split into connectivity components by vertex
removal, therefore the partial h-induced graph has a single connectivity component. By
Corollary 18 we have NADT⊕(f) = 0.

For a balanced function, we use Lemma 39 to choose an n− 1-dimensional subspace U of
{0, 1}n, on which h is unbalanced. By Lemma 38, all the shifts in U are good. Select two
arbitrary vertices x and y, from the same coset of U . Vertices x and y are connected in the
total h-induced graph because their XOR belongs to U . Therefore cosets of U are cliques
and they will remain connected in a partial h-induced graph. By Corollary 18 we conclude
that NADT⊕(f) = 1. ◀

A.2 Case D→
cc (F ) = 2

Assume there exists 2-bit communication protocol, (h, φ) for a function F (x, y) = f(x⊕ y)
where f : {0, 1}n → {0, 1}. We handle cases when h is unbalanced and balanced separately.
In the first case, we observe that the XOR of two bad shifts results in a good shift. We then
use a known result on the bound on sumset cardinality to show that the good shifts either
contain a coset of a n−1-dimensional subspace of {0, 1}n or there exists large enough number
of such shifts. Either of these cases implies a certain structure on the total h-induced graph,
which allows us to get the desired lower bound. When h is balanced, we again consider
the subspace of {0, 1}n on which it is unbalanced and analogously to the prior scenario, we
deduce a specific structure on the subspace allowing us to conclude the proof.

▶ Lemma 40. Assume there exists 2-bit communication protocol, (h, φ) for a function
F (x, y) = f(x ⊕ y) where f : {0, 1}n → {0, 1} and the function h is unbalanced. Then the
XOR of two bad shifts is a good shift.

Proof. Assume ∆1 and ∆2 are bad shifts. Consider the cosets of the subspace ⟨∆1,∆2⟩.
There are a total of 2n−2 such cosets. As the function h is unbalanced, the h-induced
partition has a class, denoted as H1, which contains strictly more than 2n−2 elements. By
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the Pigeonhole principle, there exists a coset of ⟨∆1,∆2⟩ that contains two elements, namely
x and y, both of which belong to H1. As h(x) = h(y), the XOR of x and y produces a
good shift. Additionally, x and y lay in the same coset, thus the shift x⊕ y is a member of
⟨∆1,∆2⟩. Within the subspace ⟨∆1,∆2⟩, there are only three distinct non-zero shifts: ∆1,
∆2, and ∆1 ⊕∆2. Given that both ∆1 and ∆2 are bad shifts, the only possible good shift
among them is ∆1 ⊕∆2. ◀

▶ Theorem 41. Let A and B be non-empty subsets of {0, 1}n. Define the sumset of A and
B as A+B = {a+ b|a ∈ A, b ∈ B}. Assume that A is not contained in a coset of any proper
subspace of {0, 1}n. Then

|A+B| ≥ min{|A|+ |B| − 2n−3, 3 · 2n−2}. (45)

The proof of this theorem is moved to Appendix D.

▶ Lemma 42. Assume there exists 2-bit communication protocol, (h, φ) for a function
F (x, y) = f(x⊕ y) where f : {0, 1}n → {0, 1} and h is unbalanced. Then either there exists
at least 5 · 2n−3 − 1 good shifts (not counting 0), or the set of good shifts contains a coset of
an n− 1-dimensional subspace of {0, 1}n.

Proof. Let B be the set of bad shifts and B be the set of good shifts, these are complementary
so |B|+ |B| = 2n. There are two cases to consider: either B is a subset of a coset of a proper
subspace of {0, 1}n or it is not. In the first case, let Q be a subspace of {0, 1}n and q be a
vector in {0, 1}n such that B ⊆ Q+ q. We extend the coset Q+ q to a coset Q′ + q of some
n− 1-dimensional subspace Q′ of {0, 1}n. Observe that since B is fully contained in Q′ + q,
another coset of Q′ it is fully contained in B.

In the second case, first observe that by Lemma 40 the sum of bad shifts is a good shift,
thus we have B +B ⊆ B. By Theorem 41 we have

|B| ≥ |B +B| ≥ min{2|B| − 2n−3, 3 · 2n−2}. (46)

We also know that |B|+ |B| = 2n. As a result, either

|B|+ 2|B| − 2n−3 ≤ 2n, (47)

or

|B| ≥ 3 · 2n−2. (48)

It is easy to see that in both cases

|B| ≥ 5 · 2n−3. (49)

If we exclude the zero shift, we have at least 5 · 2n−3 − 1 good shifts. ◀

▶ Lemma 43. Assume there exists 2-bit communication protocol, (h, φ) for a function
F (x, y) = f(x⊕ y) where f : {0, 1}n → {0, 1}. If h is unbalanced, then one of the following
two conditions is true for the total h-induced graph:

Total h-induced graph consists of two cliques, each being a coset of an n− 1-dimensional
subspace of {0, 1}n.
Total h-induced graph is 2n−2-vertex connected.
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Proof. We consider three cases.
Case 1: In this case, we assume that the set of good shifts contains a n− 1-dimensional

subspace Q of {0, 1}n. Take two arbitrary points x and y from the same coset Q+ q, where
q is a specific vector in {0, 1}n. Then, x and y can be expressed as x = x′ ⊕ q and y = y′ ⊕ q
for x′, y′ ∈ Q. Consequently, x ⊕ y = x′ ⊕ y′ ∈ Q. This shows that any two points in the
coset of Q are connected by an edge in the total h-induced graph, forming cliques.

Case 2: Assume that the set of good shifts contains an n− 1-dimensional coset Q+ q,
where Q is an n− 1-dimensional subspace of {0, 1}n and q is a vector not in Q. Consider
two arbitrary points x and y from different cosets of Q. Without loss of generality, let x ∈ Q
and y ∈ Q+ q. There exists y′ ∈ Q such that y = y′ ⊕ q. Then, x⊕ y = (x⊕ y′)⊕ q ∈ Q+ q.
Thus, an edge exists between x and y in the total h-induced graph, and, as a result, the
graph contains a complete bipartite graph with parts being the cosets of Q. To make this
graph disconnected one has to delete the whole part, thus the graph is 2n−1-connected.

Case 3: Assume the set of good shifts satisfies neither of the first two conditions. Then,
by Lemma 42, there must be at least 5 · 2n−3 − 1 good shifts. Take any two arbitrary
non-neighboring vertices x and y; the sizes of their neighbor sets are at least 5 · 2n−3 − 1.
Given that the total number of vertices excluding x and y is 2n − 2, the intersection of these
neighbor sets must contain at least 2n−2 vertices. Hence, removing fewer than 2n−2 vertices
cannot disconnect the graph. ◀

▶ Lemma 44. Assume there exists 2-bit communication protocol, (h, φ) for a function
F (x, y) = f(x⊕ y) where f : {0, 1}n → {0, 1}. If h is unbalanced on an n− 1-dimensional
subspace Q of {0, 1}n, then one of the following conditions must hold:

The total h-induced graph consists of four distinct cliques, each of which corresponds to a
coset of an n− 2-dimensional subspace of Q.
The subgraphs of the total h-induced graph on the vertices of cosets of Q, are at least
2n−3-vertex connected.

Proof. For the proof we just apply Lemma 43 on the subspace Q. Formally, let B be a
matrix whose columns form a basis for Q. We define a new function h′ : x 7→ h(Bx) (x is
of length n− 1). Applying Lemma 43, we conclude that the total h′-induced graph either
consists of cliques corresponding to cosets of an n− 2-dimensional subspace Q′ of {0, 1}n or
that graph is 2n−3-vertex connected.

To relate h′ back to h, we consider a vector q not in Q and define two graph embeddings
ψ1 : x 7→ Bx and ψ2 : x 7→ Bx ⊕ q of the total h′-induced graph into the total h-induced
graph. The images of these mappings are Q and Q+ q. To see that they are indeed graph
embeddings we notice that if x and y are connected in the total h′-induced graph, x⊕ y is
a good shift for h′, so B(x⊕ y) is a good shift for h, which implies that images of x and y

under ψ1, as well as images of x and y under ψ2, are indeed connected in h-induced graph.
The bound on vertex connectivity of cosets follows from these embeddings. Note that these
mappings are also affine transformations that only differ by a shift. Therefore, the image
of cosets in {0, 1}n−1 over these mappings will result in cosets of the same space in {0, 1}n,
which finishes the proof. ◀

We are now ready to finish the proof of Theorem 33.

Proof of Theorem 33. Given 2-bit communication protocol, (h, φ) for a function F , we
have two main cases to consider, depending on whether h is balanced or unbalanced. If h is
unbalanced, we apply Lemma 43. As a result, either the h-induced graph consists of cliques
corresponding to cosets of n− 1-dimensional subspace of {0, 1}n, or the h-induced graph is
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2n−2-vertex connected. In the first case, by Corollary 18, we conclude that NADT⊕(f) ≤ 1,
which is a contradiction. In the second case the graph is 2n−2-vertex connected and again by
Corollary 18 we find that NADT⊕(f) = 0 because the function f is undefined on fewer than
2n−2 inputs, making it impossible to disconnect the graph by removing these vertices.

If h is balanced, we use Lemma 39 to find a subspace Q of {0, 1}n where h becomes
unbalanced. Then by Lemma 44 the graph will split either into four fully connected cosets
of subspace of {0, 1}n, or into two 2n−3 vertex-connected cosets of subspace of {0, 1}n.
As f in undefined in less than 2n−3 points we again use Corollary 18 and conclude that
NADT⊕(f) ≤ 2. ◀

A.3 Equality for Large Values of D→
cc (F ) and NADT⊕(f)

Proof of Theorem 34. First consider the case NADT⊕(f) = n and assume that D→
cc (F ) ≤

n − 1. Consider the corresponding function h. One of its equivalence classes H is of size
at least 2, denote two of its elements by u and v. We have that ∆ = u⊕ v is a good shift.
Thus, for any x if f(x) and f(x⊕∆) are defined, then f(x) = f(x⊕∆). But this exactly
means that there is a 1-dimensional space such that f is constant on each of its cosets. Thus,
NADT⊕(f) ≤ n− 1, which is a contradiction.

Now consider the case NADT⊕(f) = n − 1 and again assume that D→
cc (F ) ≤ n − 2.

Consider the corresponding function h. Now one of its equivalence classes H is of size at
least 4. Consider any three points u, v, w in this class. Then the vectors u⊕ v, u⊕ w and
v ⊕ w are good shifts. Note that they together with 0-vector form a 2-dimensional linear
subspace of {0, 1}n consisting of good shifts. As a result, f is a constant on every coset of
this subspace and NADT⊕(f) ≤ n− 2, which is a contradiction. ◀

A.4 Separations in Boundary Cases
Proof of Theorem 35. We have already proved equality for NADT⊕(fn−3) and it remains
to bound D→

cc (Fn−3).
For this we use Theorem 28. Note that in our case R = ⌊n−k−1

2 ⌋ = 1.
If n = 2m − 1 for some integer m, then we can just use Theorem 7. Each ball of radius 1

is of volume n+ 1 and thus in total we have 2n/(n+ 1) balls. As a result,

D→
cc (Fn−3) ≤ log 2n

n+ 1 = n− log(n+ 1). (50)

For general n consider maximal integer m such that 2m− 1 ≤ n. Denote n1 = 2m− 1 and
n2 = n− n1. Consider Hamming code C1 on {0, 1}n1 and consider the code C2 = {0, 1}n2 .
The latter code has parameters (n2, 2n2 , 0). By Lemma 9 we have that C1⊕C2 has parameters
(n, 2n1

n1+1 · 2
n2 , 1). Since n1 is at least half of n, we have

D→
cc (Fn−3) ≤ log

(
2n1

n1 + 1 · 2
n2

)
= n−Θ(logn). (51)

The undefined inputs of fn−3 are just inputs x ∈ {0, 1}n with weight n− 1 and n− 2. It
is easy to see that there are n(n+1)

2 of them. ◀

Proof of Theorem 36. Again, we already found NADT⊕(f7).
For the bound on D→

cc we start with Reed-Muller code RM(1, 5) [6, Chapter 9]. This code
has parameters (25, 26, 12) (as a covering code), that is, it has 32 input bits, the number of
covering balls is 26 and their radius is R = 12. In terms of Theorem 28 we have R = 32−7−1

2
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and thus the code gives us the protocol for F7 of size log 26 = 6 on n = 32 inputs (that is,
for the particular case of n = 32 we have an even better upper bound on communication
complexity).

For general n ≥ 32 denote n1 = 32 and n2 = n − n1. Let C1 be Reed-Muller code
introduced above and C2 consist of two vectors: all zeros and all ones. The code C2 has
parameters (n2, 2,

⌊
n2
2

⌋
). Then C1⊕C2 has parameters (n, 27,

⌊
n2
2

⌋
+12). Note that its radius

R can be bounded as

R =
⌊n2

2

⌋
+ 12 ≤ n2

2 + 12 = n

2 + 12− 32
2 = n− 7− 1

2 . (52)

Thus, the code gives a protocol for F7 of size 7. ◀

B Isoperimetric Inequalities

This section is devoted to proving Lemma 24.

▶ Lemma 45. For any subset A ⊆ {0, 1}m of m-dimensional Boolean cube vertices, it holds
that |Γ′A| ≥ |Γ′Im|A||.

Proof. In the case |A| = 1, A and IM|A| are just sets of single element and equality between
|Γ′A| and |Γ′Im|A|| is obvious. Otherwise the set Im|A| doesn’t have isolated vertices. Thus, all the
vertices in Im|A| are neighbors of Im|A| and |Γ′Im|A|| = |ΓIm|A||−|A|. Meanwhile |Γ′A| ≥ |ΓA|−|A|.
Therefore Theorem 3 implies

|Γ′A| ≥ |ΓA| − |A| ≥ |ΓIm|A|| − |A| = |Γ′Im|A||. (53)

◀

▶ Lemma 46. For a satisfying V (m, r) ≤ a ≤ V
(
m,

⌊
m−1

2
⌋)

the following holds:

|Γ′Ima | ≥ |Γ′ImV (m,r)| =
(

m

r + 1

)
. (54)

Proof. Let r′ be the maximum integer for which V (m, r′) ≤ a. Note that r′ ≥ r. If
a = V (m, r′), the lemma is trivial. Otherwise, the inequality a ≤ V

(⌊
m−1

2
⌋
,m

)
implies that

r′ ≤
⌊
m−1

2
⌋
− 1.

The set Ima contains elements with Hamming weight up to r′ and possibly some with
weight r′ + 1. Let B = Ima \ ImV (m,r′) be the elements of Ima with Hamming weight r′ + 1.
Define

B+ = {x ∈ Γ′B : |x| = r′ + 2}. (55)

Elements of B doesn’t belong to Γ′Ima , since they belong to Ima , meanwhile elements of B+

belong to Γ′Ima , since they are neighbors of elements from B and doesn’t belong ImV (m,r′).
Therefore,

|Γ′Ima | =
(

m

r′ + 1

)
− |B|+ |B+|. (56)

To prove that |B+| ≥ |B|, let’s consider a bipartite subgraph G of m-dimensional Boolean
cube. The left part contains vertices with Hamming weight r′ + 1, and the right part contains
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vertices with Hamming weight r′ + 2. Here, B is a subset of the left part, and B+ is the set
of neighbors of B in G. Note that the degree of any vertex in the left part is

degL = m− (r′ + 1) ≥ m− ⌊m− 1
2 ⌋ = ⌈m− 1

2 ⌉+ 1, (57)

while the degree of any vertex in the right part is

degR = r′ + 2 ≤ ⌊m− 1
2 ⌋+ 1. (58)

Given that edges from B connect exclusively to vertices in B+, it follows that |B|degL ≤
|B+|degR, which implies |B+| ≥ |B|. Consequently,

|Γ′Ima | ≥ |ImV (m,r′)| =
(

m

r′ + 1

)
≥

(
m

r + 1

)
. (59)

◀

▶ Remark 47. A similar idea applies for a larger then V
(
m,

⌊
m−1

2
⌋)

. In that case |B+| ≥
degL

degR
|B| = m−(r′+1)

r′+2 |B|, therefore |Γ′Ima | ≥
m−(r′+1)
r′+2 |Γ′ImV (m,r′)|. Note that here, unlike in

previous case, r′ must be the largest integer satisfying V (m, r′) ≤ a.

▶ Lemma 48. For any M ≥ m and any a ≤ 2m it holds that |Γ′Ima | ≤ |Γ′IMa |.

Proof. The proof goes by induction on M . The base case for M = m is trivial. Assuming the
lemma holds for M , we aim to prove it for M +1. For this we construct a subset A ⊆ {0, 1}M
with |A| = a and |Γ′A| ≤ |Γ′IM+1

a |. Here, the first Γ′ refers to the M -dimensional Boolean
cube, while the second Γ′ refers to the (M + 1)-dimensional Boolean cube.

We consider the ’slices’ of the set IM+1
a along its last coordinate:

A0 = {(x1, . . . , xM ) : x ∈ IM+1
a , xM+1 = 0}, (60)

A1 = {(x1, . . . , xM ) : x ∈ IM+1
a , xM+1 = 1}. (61)

Denote by r the maximum number such that all the elements with Hamming weight at most
r belong to IM+1

a . The set A0 contains all the elements with Hamming weight r and maybe
some elements with Hamming weight r + 1, while the set A1 contains all the elements with
Hamming weight r− 1 and maybe some elements with Hamming weight r. Three cases arise
based on the dimension M : either 2r + 1 < M , 2r + 1 = M or 2r = M . As a ≤ 2m ≤ 2M
it’s impossible for r to take larger values. The third case is trivial, here a is just equal to 2M
and boundary is empty.

In the first case, we define

A = A0 ⊔ ¬A1, (62)

where

¬A1 = {(1− x1, . . . , 1− xM ) : x ∈ A1}. (63)

This union is indeed disjoint because the first set has elements with Hamming weight not
above r + 1, while the second has elements with weight at most M − r. Next, we notice that
the cardinality of the boundary of A does not exceed that of IM+1

a . Indeed, if a vertex belongs
to Γ′A it either belongs to Γ′A0 or to Γ′¬A1 or to both. That is, |Γ′A| ≤ |Γ′A0|+ |Γ′¬A1|.
As we get ¬A1 from A1 with graph automorphism, |Γ′¬A1| = |Γ′A1|. If vertex v belongs
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Γ′A0, then vertex (v, 0) belongs Γ′Im
′+1

a and similarly if v belongs Γ′A1, then (v, 1) belongs
Γ′Im

′+1
a . Therefore,

|Γ′Ima | ≤ |Γ′IMa | ≤ |Γ′A| ≤ |Γ′IM+1
a |. (64)

In the second case, we adjust the construction of A because otherwise points from A0
and ¬A1 may overlap. The set A contains all vertices with Hamming weight at most r and
at least M − r + 1, and is filled up to cardinality a with vertices having Hamming weight
r + 1 = M − r. In this configuration, Γ′A contains vertices of Hamming weight r + 1 that
are not in A. But the number of such elements doesn’t exceed the number of elements with
weight r + 1, which doesn’t belong to A0 and all these elements lay in Γ′A0, hence:

|Γ′Ima | ≤ |Γ′IMa | ≤ |Γ′A| ≤ |Γ′A0| ≤ |Γ′IM+1
a |. (65)

This finishes the proof of the induction step and the lemma. ◀

▶ Lemma 49. For all M there exists such r that

V

(
M − 1,

⌊
M − 2

2

⌋
− 2

)
≤ V (M, r) ≤ V

(
M − 1,

⌊
M − 2

2

⌋)
. (66)

Proof. We select r to be the smallest number such that V
(
M − 1,

⌊
M−2

2
⌋
− 2

)
≤ V (M, r).

Clearly, r ≤
⌊
M−2

2
⌋
− 2. For such r the following holds:

V

(
M − 1,

⌊
M − 2

2

⌋
− 2

)
≤ V (M, r) ≤ V

(
M − 1,

⌊
M − 2

2

⌋
− 2

)
+

(
M

r

)
. (67)

From here, we can further bound
(
M
r

)
as follows:(

M

r

)
= M

M − r

(
M − 1
r

)
≤ 2

(
M − 1
r

)
. (68)

Thus,

V (M, r) ≤ V
(
M − 1,

⌊
M − 2

2

⌋
− 2

)
+ 2

(
M − 1
r

)
≤ V

(
M − 1,

⌊
M − 2

2

⌋)
. (69)

The last inequality holds since r ≤
⌊
M−2

2
⌋
− 2. ◀

Proof of Lemma 24. First, we consider the case when |A| ≤ V
(
k,

⌊
k−1

2
⌋)

. Here we let
M = k and a = |A|. By Lemma 45 we have |Γ′A| ≥ |Γ′IMa |. We will iteratively decrease M
and a until M = m and a = V (m, ⌊m−1

2 ⌋− 2) in a way that the boundary of the set IMa does
not increase. When the algorithm finishes, the set IMa is a Hamming ball and its boundary
contains all the elements with weight

⌊
m−1

2
⌋
− 1 and thus is of volume

(
m

⌊ m−1
2 ⌋−1

)
. The size

of the boundary of an initial set is at least as large.
We decrease the variables in the following way. While M is larger then m, if a ≤

V (M − 1,
⌊
M−2

2
⌋
) we simply apply Lemma 48 to decrease M by one, otherwise we first

set a to be V (M, r), where r is selected by Lemma 49, the boundary won’t increase after
these assignment by Lemma 46 and then we again apply Lemma 48 to decrease M . On all
steps of the algorithm, a doesn’t exceed V (M,

⌊
M−1

2
⌋
) which allows us to use these lemmas.

When M reaches m it holds that V (m,
⌊
m−1

2
⌋
− 2) ≤ a ≤ V (m,

⌊
m−1

2
⌋
) and we make a to

be precisely equal to V (m,
⌊
m−1

2
⌋
− 2) by applying Lemma 46 once again.
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There exists a remaining case if initially V (k,
⌊
k−1

2
⌋
) ≤ |A| ≤ 2k−1. It is only possible if

k is even. In that case we use Remark 47 with r′ =
⌊
k−1

2
⌋

to conclude that

|Γ′A| ≥ k

k + 2

(
k
k
2

)
=

(
k

k
2 − 1

)
= |Γ′IkV (k,k/2−2)|. (70)

As
(
k,

⌊
k−1

2
⌋
− 2

)
≤ V (k, k2 − 2) ≤ V

(
k,

⌊
k−1

2
⌋)

the statement of the lemma follows from
the first case. ◀

C Fourier Analysis

Here we provide the basic definitions from Fourier analysis. Functions that map {0, 1}n → R
form a 2n-dimensional vector space under the operation of addition (indeed we can represent
the function as a 2n-dimensional vector of values for each of n-bit binary strings). For this
space, we introduce an inner product:

⟨ψ, θ⟩ = 1
2n

∑
x∈{0,1}n

ψ(x)θ(x). (71)

Let’s consider the parity functions, which are expressed as

χS(x) = (−1)
∑

i∈S
xi , (72)

with S ⊆ [n]. These functions form an orthonormal basis with respect to our previously
defined inner product. As a direct consequence, any function ψ of the form {0, 1}n → R can
be uniquely represented as

ψ(x) =
∑
S⊆[n]

ψ̂(S)χS(x). (73)

The terms ψ̂(S) in the above expansion are known as Fourier coefficients. They can be
computed in the following way:

ψ̂(S) = ⟨ψ, χS⟩ = 1
2n

∑
x∈{0,1}n

ψ(x)χS(x). (74)

Indeed,

⟨ψ, χS⟩ = ⟨
∑
T⊆[n]

ψ̂(T )χT , χS⟩ =
∑
T⊆[n]

⟨ψ̂(T )χT , χS⟩ = ψ̂(S), (75)

where the last equality follows from the orthonormality property.
For Fourier analysis involving Boolean functions, the typical convention is to consider

function outputs in the set {−1, 1} as opposed to {0, 1}. When analyzing the Fourier
coefficients of a binary function ψ with the domain {0, 1}, we analyze the function (−1)ψ(x)

rather than ψ directly. For an in-depth discussion on Fourier analysis, refer to [20].

D Bounds on Cardinality of Set Sum

In this section, we prove Theorem 41. The core idea of the proof is in the procedure that
iteratively moves elements from the set B to the set A while shifting them by some vector.
This operation doesn’t change the sum of the sizes of the sets and is done in a manner that
ensures the sumset cardinality at any given iteration is at most the cardinality of the sumset
from the previous iteration. We provide a lower bound on the size of the sumsets when
algorithm finishes and argue that initial subset’s size is at least as large.
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▶ Lemma 50. Let A and B be non-empty subsets of {0, 1}n. If B is not contained in any
coset of a proper subspace of {0, 1}n and A isn’t equal to {0, 1}n, then |A+B| > |A|.

Proof. In case |B| > |A| the statement of the lemma is obvious because sets are nonempty.
From now on we assume that |A| ≥ |B|.

For the sake of contradiction, assume that |A+B| = |A|. Now, let’s define the set B′ as
B shifted by an element b from B, i.e., B′ = B + b. The zero element is contained in B′ and
the size of the sumset A+B′ equals that of A+B, which in turn is |A|. Indeed, adding the
element b to each element in the sumset results in a bijection between A+B′ and A+B.
Now, as A ⊆ A+B′ (since the zero element is in A′) and the sizes of the two sets are equal,
we deduce that A+B′ = A. Consequently, for every element b′ ∈ B′, b′ +A = A.

Let’s define a set Q as the set of all elements q in {0, 1}n such that q +A = A. This set
Q satisfies the properties of a subspace of {0, 1}n. Indeed, for any two elements q1 and q2 in
Q, their sum when added to A remains A, i.e., q1 + q2 +A = q1 +A = A. However, Q is not
equal to {0, 1}n. To illustrate this, for a given element a0 in A, when q varies over {0, 1}n,
the summation q + a0 ranges over all elements in {0, 1}n, which inevitably includes elements
outside of A. Since every shifted set b′ +A with b′ ∈ B′ is A, we have B′ ⊆ Q. This implies
that B is contained in the coset defined by b+Q, leading to a contradiction, which finishes
the proof of the lemma. ◀

▶ Lemma 51. Let A and B be non-empty subsets of {0, 1}n. Assume that A is not contained
in any coset of a proper subspace of {0, 1}n. Let Q be the smallest subspace of {0, 1}n such
that B is contained in a coset of Q. Then either |A+B| > |A| or A satisfies the following
condition: for each coset of Q, either all vectors from that coset belong to A or none do.

Proof. Let us consider the cosets of Q. For each coset, we select an arbitrary vector qi from
that coset. Assume B is contained in the coset Q+ q̃. We define Ai = A ∩ (Q+ qi), that is,
Ai consists of the vectors from A that are in the coset Q+ qi. We first prove that for distinct
Ai and Aj , their respective sum-sets Ai +B and Aj +B do not intersect. Consider arbitrary
vectors a1 ∈ Ai, a2 ∈ Aj , and b1, b2 ∈ B. Notice that a1 + b1 = qi + q̃ + (a1 + qi) + (b1 + q̃)
and a2 + b2 = qj + q̃ + (a2 + qj) + (b2 + q̃). As vectors (a1 + qi), (a2 + qj), (b1 + q̃), (b2 + q̃),
belong to Q and vectors qi and qj are from different cosets of Q, it follows that a1 + b1 and
a2 + b2 must belong to different cosets, ensuring that (Ai+B)∩ (Aj +B) = ∅. Consequently,
the sum-set A+B can be partitioned as follows:

A+B =
⊔
i

(Ai +B). (76)

We further note that |Ai + B| = |Ai + qi + B + q̃|. Indeed XORing each element with
qi + q̃ establishes a bijection between these two sets. Since both Ai + qi and B + q̃ are
contained in the subspace Q, and given that Q is the smallest subspace containing a coset
of B, Lemma 50 can be applied unless Ai + qi is a empty or equal to Q. This results in
|Ai + B| > |Ai|, unless Ai is empty or contains all the vectors from corresponding coset.
Combining this result with our partition of A+B completes the proof. ◀

Now we provide the main algorithm (see Algorithm 1).

▶ Lemma 52. Let A0, B0, Ai, Bi be as given in Algorithm 1. The size of the setsum A0 +B0
is at least as large as that of Ai + Bi at any iteration i of the algorithm, and sizes of sets
A0, B0, Ai, Bi satisfy |A0|+ |B0| = |Ai|+ |Bi| at each iteration.
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Algorithm 1 Algorithm for Lemma 52
Input: A0, B0.

1: i← 0
2: Q0 ← smallest subspace of {0, 1}n such that B0 is contained in a coset of Q0
3: while ∃q ∈ {0, 1}n : Ai ∩Qi + q ̸= 0, Ai ∩Qi + q ̸= Qi + q do
4: b′ ← select arbitrary b′ in Bi
5: B̃ ← Bi + b′

6: a′ ← select any a′ such that a′ + B̃ ̸⊆ Ai ▷ We can find such a′ by Lemma 51
7: B′ ← {b ∈ B̃|a′ + b /∈ Ai}
8: Ai+1 ← Ai ∪ (a′ +B′)
9: Bi+1 ← B̃ \B′

10: Qi+1 ← smallest subspace of {0, 1}n such that Bi+1 is contained in a coset of Qi+1
11: i← i+ 1
12: end while

Proof. We start by observing that |Ai + Bi| = |Ai + B̃|. This equality holds because
Ai + B̃ = Ai + Bi + b′, and XORing with b′ establishes a bijection between Ai + Bi and
Ai + B̃. The loop’s condition assures us that there exists a coset of Qi such that its
intersection with A is neither empty nor consists of all vectors of the coset. Given that B̃
is simply B translated by a vector b, Qi is also the smallest subspace of {0, 1}n, coset of
which contains B̃. Therefore, we can apply Lemma 51 to conclude that |Ai + B̃| > |Ai|. This
allows us to choose a vector a′ such that a′ + B̃ is not a subset of Ai. By the definition of
a′, B′ is non-empty. Now we construct the sets Ai+1 and Bi+1. They have the following
properties: First, |Ai+1| = |Ai| + |B′|. This is true because Ai ∩ (a′ + B′) = ∅, which
follows directly from the choice of B′. The cardinality of B̃ \B′ is |Bi| − |B′|. Consequently,
|Ai+1|+ |Bi+1| = |Ai|+ |Bi|.

Next, Ai+1 + Bi+1 ⊆ Ai + B̃. The set Ai + Bi+1 is obviously contained in Ai + B̃. It
remains to show that (a′ +B′) +Bi+1 = (a′ +B′) + (B̃ \B′) is also contained in Ai + B̃. To
demonstrate this, consider an arbitrary a ∈ (a′ +B′) and b ∈ B̃\B′. Then a = a′ +b′ for some
b′ ∈ B′. Because b is not in B′, a′ + b is an element of Ai. Therefore, (a′ + b) + b′ belongs to
Ai+B̃. By induction, we conclude that |Ai|+|Bi| = |A0|+|B0| and |Ai+Bi| ≤ |A0 +B0|. ◀

It remains to prove the lower bound of the sumset size |Ai +Bi| for the termination step
of the algorithm. Initially, we construct B̃ to always include the element 0 to ensure that
Bi is never empty throughout the algorithm. Indeed, if Bi were empty at some iteration i,
it would imply that B′ = B̃ in the previous iteration i− 1, which contradicts the fact that
a′ + 0 ∈ Ai and therefore 0 /∈ B′. Consequently, |Ai +Bi| ≥ |Ai|.

The algorithm halts when the condition specified in line 3 is not met. Specifically, given
that Qi is the smallest subspace of {0, 1}n such that Bi is contained in a coset of Qi, for
all cosets of Qi, the intersection of Ai with that coset is either empty or contains the entire
coset. It follows that |Bi| ≤ |Qi| = 2dimQi , yielding

|A0 +B0| ≥ |Ai +Bi| ≥ |Ai| ≥ |A0|+ |B0| − |Bi| ≥ |A0|+ |B0| − 2dimQi . (77)

If the dimension of Qi is at most 2n−3, we obtain the desired bound. Next we consider
the case when dimQi ≥ 2n−2. We use the fact that Ai ⊇ A0. When dimQi = n or
dimQi = n− 1, it’s straightforward to see that Ai would span the entire {0, 1}n space. In
the first case it follows since A0 is non-empty and in the second case it follows because A0 is
not contained in neither Qi, nor Qi. Next, consider the case dimQi = n− 2. In this case,
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Qi has four distinct cosets. Since A0 is not contained in any proper subspace of {0, 1}n, it
must contain elements in at least three of these cosets. Therefore, for these three cosets, Ai
would contain all the elements, leading to a size of 3× 2n−2 at the minimum. This concludes
the proof of Theorem 41.
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