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Abstract

Suppose we have access to a small number of samples from an unknown distribution, and
would like learn facts about the distribution. An untrusted data server claims to have studied the
distribution and makes assertions about its properties. Can the untrusted data server prove that
its assertions are approximately correct? Can a short efficiently verifiable proof be generated in
polynomial time?

We study doubly-efficient interactive proof systems that can be used to verify properties of
an unknown distribution over a domain [N ]. On top of efficient verification, our focus is on
proofs that the honest prover can generate in polynomial time. More generally, the complexity
of generating the proof should be as close as possible to the complexity of simply running a
standalone analysis to determine whether the distribution has the property.

Our main result is a new 2-message doubly-efficient interactive proof protocol for verifying
any label-invariant distribution property (any property that is invariant to re-labeling of the
elements in the domain of the distribution). The sample complexity, communication complexity

and verifier runtime are all Õ(
√
N). The proof can be generated in quasi-linear Õ(N) time

and sample complexities (the runtimes of the verifier and the honest prover hold under a mild
assumption about the property’s computational complexity). This improves on prior work,
where constructing the proof required super-polynomial time [Herman and Rothblum, STOC
2022]. Our new proof system is directly applicable to proving (and verifying) several natural
and widely-studied properties, such as a distribution’s support size, its Shannon entropy, and its
distance from the uniform distribution. For these (and many other) properties, the runtime and
sample complexities for generating the proof are within polylog(N) factors of the complexities
for simply determining whether the property holds.
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1 Introduction

Given sample access to an unknown discrete distribution over a large domain [N ], what can we learn
about the distribution’s properties? How many samples are required, and what is the computational
complexity of learning? These are foundational questions in statistics and in computer science.

An emerging line of works asks a new question: what is the complexity of verifying facts about
the distribution? Suppose that an untrusted prover, who knows the distribution, claims that the
distribution has some property, e.g. that the distribution’s entropy is k, or that its support size is
M . Can the prover provide a proof of approximate correctness for such claims? We are interested
in proofs that can be verified using fewer samples and computational resources than it would take
to approximate these quantities on our own. More generally: which distribution properties can be
verified efficiently?

The computational complexity and sample complexity of generating the proof are also of central
importance. This is true both from a foundational perspective, and with the goal of deploying
proof systems in the real world, where generating the proof needs to be as efficient as possible,
and certainly needs to be computationally feasible. In a doubly-efficient proof system the proof can
be generated in polynomial time. More generally, the complexity of proving should be as close as
possible to the complexity of simply performing the task. In this work we study doubly-efficient
proof systems for verifying properties of distributions, our main question is:

Can an untrusted prover generate, in polynomial time, a proof that convinces a verifier that an
unknown distribution has some property? How efficient can proving and verifying be?

We focus on verifying distribution properties via an interactive proof system [GMR85], where a
probabilistic verifier has sampling access to the distribution and communicates with an untrusted
prover. This continues a study of proof systems for distribution properties initiated by Chiesa
and Gur [CG18]. Drawing inspiration from the property testing literature [GGR98, RS96], the
prover’s claim is that the distribution has (or is close to having) a property. If the prover’s claim
is approximately correct, the verifier accepts with high probability. If the claim is far from correct,
i.e. the distribution is far from the property, then no matter what strategy a cheating prover
might follow, the verifier rejects with high probability. Recently, Herman and Rothblum [HR22]
showed that, for the rich class of “label invariant” distribution properties (see below), approximate
verification can be very efficient: any such property has a 2-message interactive proof system,
where verification requires only Õ(

√
N) samples, communication, and (under a mild additional

assumption) verification time. These results apply to several important and widely-studied tasks,
such as estimating the Shannon entropy, the support size, and the distance from the uniform
distribution, which all boil down to verifying label-invariant distribution properties. On the other
hand, for all these properties, performing the analysis (without help from an untrusted prover)
requires Ω(N/ logN) samples and running time [VV10]. Thus, for these (and other) properties,
verification can be quasi-quadratically more efficient than performing the analysis.

While this result showed the existence of efficiently-verifiable proofs for a rich class of data
analyses, the computational complexity of generating the proof was prohibitive: the honest prover
runtime was super-polynomial in N . This made their protocol infeasible for many scenarios.
Moreover, for the important and widely-studied properties mentioned above, there was a huge
gap between the complexity of computing (or deciding) the problem (which is quasi-linear in N)
and the complexity of generating the proof (which was super-polynomial).
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1.1 This Work: Doubly-Efficient Proofs

Our main result is a new doubly-efficient proof system for approximately verifying any label-
invariant property of distributions over the domain [N ], where the honest prover’s runtime is
quasi-linear in N . For the support size, the Shannon entropy and the distance from the uniform
distribution, the proof can be generated with only polylog(N) overhead over the computational
complexity and the sample complexity of simply deciding the problem (without generating a proof).

We proceed to detail this result: a distribution property is a set of distributions (similarly to
the way a language is a set of strings), parameterized by the size of the domain N . Label-invariant
properties (sometimes referred to as symmetric properties) are a natural class of distribution
properties, where changing the “labels” of elements in the support of a distribution does not change
membership in the property.1 Many natural and widely-studied properties are label-invariant: e.g.
being uniform over [N ], having entropy k, or having support size M . Another example is being
uniform on a set of size S [BC17]. On the other hand, having support on the odd elements in [N ] is
(one example of) a property that is not label-invariant. We measure the distance of a distribution
D from a property P by D’s total variation distance to the closest distribution in P.

Theorem 1.1 (Main result: doubly-efficient IPs for label-invariant properties). For every label-
invariant property P with a doubly-efficient approximate decision procedure (see below), there exists
an interactive proof system as follows. The prover and the verifier both get as input an integer N
and proximity parameters εc, εf ∈ [0, 1] where εc < εf , as well as sampling access to an unknown
distribution D over support [N ], and the following properties hold:

• Completeness: if D is εc-close to the property (i.e. D is at statistical distance at most εc
from a distribution that has the property) and the prover follows the protocol, then the verifier
accepts w.h.p.

• Soundness: if D is εf -far from the property (its statistical distance from every distribution in
the property is at least εf ), then no matter how the prover cheats, the verifier rejects w.h.p.

• Doubly-efficient prover: Taking ρ = εf−εc, the honest prover’s runtime and sample complexity

are Õ(N) · poly(1/ρ).

• Efficient verification: the protocol consists of 2 messages, the communication complexity and
the verifier’s sample complexity and runtime are all Õ(

√
N) · poly(1/ρ).

We emphasize that the completeness requirement is tolerant [PRR06]: the verifier should accept
even if the distribution is not in the property, so long as it is close to the property. The complexity
is polynomial in the gap (εf − εc) between the distances. Tolerant verification can be used to
approximately verify the distribution’s distance to the property: if the prover claims the distance
is δ, we can verify this (up to distance ρ) by setting εc = δ and εf = δ + ρ in our proof system.

Doubly efficient approximate decision condition. We need the property to satisfy a mild
approximate decision condition. This assumes the existence of two procedures as follows. The first
procedure, given a histogram of the distribution’s probabilities, accepts if the distribution is in

1More formally, for a distribution D over the domain [N ], and a permutation π : [N ] → [N ], we let π(D) be
the distribution obtained by sampling from D and applying the permutation π to the outcome. A property P is
label-invariant if for every distribution D ∈ P, and every permutation π over D’s domain, π(D) ∈ P.
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the property and rejects if the distribution is σ-far from the property. The histogram is defined
as follows: we bucket the elements in the domain according to their (approximate) probabilities,
and the histogram specifies the number of elements in each bucket. In more detail, we round each
element’s probability down to the nearest value eℓτ/N for an integer ℓ, where τ is an approximation
parameter that is polynomial in σ. We refer to this as the distribution’s τ -approximate histogram,
and note that it gives sufficient information for approximating the distribution’s distance from a
label-invariant property. We can ignore the elements whose probabilities are very small, so the
τ -approximate histogram can be represented using O(log2N/τ) bits. The approximate decision
procedure should run in time that is polynomial in this representation, i.e. in poly(logN, 1/σ) time
(see Definition 6.5), and is used by the verifier in our interactive proof.

We also need a second procedure that, given sample access to a distribution D that is εc-close
to the property, outputs the histogram of a distribution D′ in the property that is (approximately)
εc-close to D. This second procedure is used by the honest prover in our protocol, and we require
that it runs in quasi-linear time (more generally, the honest prover runtime grows with the runtime
of this procedure). A property that has both procedures has a doubly-efficient approximate decision
procedure. We view this as a mild condition, and note that it is satisfied by natural properties such
as the support size, the distance from UN and the Shannon entropy.

Verified histogram and applications. The protocol of Theorem 1.1 is achieved by constructing
a sub-protocol that lets the verifier learn a verified (approximate) histogram of the distribution D.
The probability that the verifier accepts and the histogram is σ-far from accurate for D is small,
where the complexities are all polynomial in 1/σ. In turn, the verified histogram can be used to
obtain the result of Theorem 1.1, estimating the distance from a label-invariant property, or to
obtain protocols for quantities of interest that can be estimated from the histogram.

In particular, we get doubly-efficient protocols for the quantities discussed above:

• Distance to UN : given claimed distance δ, if |∆(D,UN )− δ| > ρ, the verifier rejects w.h.p.

• Support size: given a promise that each element in D’s support has probability at least
1/N and claimed support size M , if ||Supp(D)| −M | > ρ ·N , the verifier rejects w.h.p. The
promise of a lower bound on the probabilities of elements in D’s support is standard in the
study of estimating the support size.

• Shannon entropy: given claimed entropy k, if |H(D)− k| > ρ, the verifier rejects w.h.p.

For all these problems, if the prover’s claim is (approximately) correct, then the verifier accepts
w.h.p. The proof system for distance from UN follows immediately from obtaining a verified
histogram. The proof systems for the entropy and support size also follow by translating the
statistical distance between the distribution D and the claimed histogram into a bound on the
difference between D’s entropy or support size and the value implied by the histogram. The
complexities of all protocols are polynomial in (1/ρ) (for the Shannon Entropy we need the verified
histogram to be (ρ/ logN)-accurate w.r.t to the distribution D).

We remark that our protocol actually gives a stronger guarantee: the verifier can obtain a
collection of samples, drawn i.i.d. from D, and alleged probabilities for each of these samples,
where the probabilities are guaranteed to be approximately correct (see Remark 2.2). The verified
tagged samples can be used to derive an approximate histogram (deriving the size of each bucket ℓ
from the fraction of samples tagged as belonging to bucket ℓ divided by the probability of elements
in that bucket), but they may also have further applications.
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On our protocols’ complexities. Several remarks about the protocol’s complexity are in order.
The sample complexity is nearly-optimal (for any interactive proof, regardless of its communication
or round complexities): Chiesa and Gur [CG18] (extended in [HR22]) showed an Ω(

√
N) sample-

complexity lower bound for the promise problem where in the YES case the distribution equals UN

and in the NO case the distribution is uniform over a set of size (N/2). Thus, this lower bound
applies also to verifying the distance from uniform, the Shannon entropy, and the support size.

Our protocols all use secret coins. For clarity of exposition, our protocols are presented as if
the honest prover has perfect knowledge of the distribution, but this idealized honest prover can
implemented by a quasi-linear time honest prover that learns a sufficiently-accurate (multiplicative)
approximation to the distribution. As noted above, the sample and runtime complexities of
standalone distribution testing (without generating a proof) for the distance form uniform, entropy,
and support size properties are Θ(N/ log(N)) [VV10]. Thus, the prover complexity is optimal for
these quantities, and is within polylog(N) factors of the complexity of deciding the problem.

Comparison to known results. Our result is most directly related to the interactive proof of
[HR22]. Our main contribution is achieving a quasi-linear in N runtime for the honest prover,
whereas in the prior work the honest prover runtime was N log(N)·poly(1/ρ) (i.e., super-polynomial).

We also compare to two other known methods for verifying general distribution properties,
which are both doubly-efficient. First, Chiesa and Gur [CG18] showed it is possible to verify
using small sample complexity but large communication and verifier runtime. In their protocol,
the prover sends a complete description of a distribution D̃. The verifier checks that D̃ is close
to the property, and then runs a distribution tester to verify that the alleged distribution D̃ is
ε-close to the actual distribution D. The verification can be performed using O(

√
N/ε2) samples

[BFF+01, VV14, Gol20]. Moreover, the protocol is non-interactive, using only a single message.
However, the verification time and the communication are quasi-linear in N . It is also possible
to verify with zero communication by having the verifier ignore the prover and simply learn (an
approximation to) the entire distribution D on its own (see Theorem 3.15). This requires no
communication, but the sample complexity and verification time are linear in N .

In contrast to the above solutions, our focus is on verification that is simultaneously efficient in
terms of the verifier’s running time, of the communication complexity, and of the sample complexity.
In our protocols, all of these complexity measures are bounded by Õ(

√
N) · poly(1/σ).

1.2 Further Related Work

We study the verification of distribution properties via interactive proofs. Interactive proof systems
were introduced by Goldwasser, Micali and Rackoff [GMR85] in the context of proving computational
statements about an input that is fully known to the prover and the verifier. In our work, the
distribution can be thought of as the input, but it is not fully known to the verifier. We aim for
verification without examining the distribution in its entirety, using minimal resources (samples,
communication, runtime, etc.). Our work builds on a line of work that studies the power of sublinear
time verifiers, who cannot read the entire input [EKR04, RVW13, GR18], on verifying properties
of distributions using a small number of samples [CG18, HR22], and on verifying the result of
machine learning algorithms using a small number of labeled examples [GRSY21]. In particular,
Chiesa and Gur [CG18] introduced and studied interactive proofs for distribution verification and
showed upper and lower bounds. Our work is most closely related to (and builds on) the protocol
of [HR22] for label-invariant properties, where proof generation required super-polynomial time.
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Doubly-efficient proof systems. Our work focuses on doubly-efficient proof systems, where
the honest prover can generate the proof in polynomial time. This is motivated by the goal of
building interactive proof systems that can be used in the real world (where all parties, including
the honest prover, need to run in polynomial time). It is also very important from a foundational
perspective, where achieving polynomial runtime for the honest prover is of central importance.
This was already true in the genesis of the field: the prover in a zero-knowledge proof for an
NP language is required to run in polynomial time given a witness to the input’s membership
in the language [GMR85, GMW91]. It was also an early focus in works on PCPs [BFLS91], on
computationally sound CS proofs [Mic94], and in the line of work on doubly-efficient interactive
proof systems for delegating computation [GKR15].

2 Technical Overview

2.1 The Protocol Behind Theorem 1.1

We describe the protocol behind Theorem 1.1 in broad strokes , and review several of our technical
ideas and contributions.

Membership in a label-invariant property can be decided based on the probability histogram of
the distribution, i.e. for every p ∈ [0, 1] how many elements x ∈ [N ] satisfy D(x) = p. Through our
protocol, the verifier obtains an approximation of this object, namely, the (approximate) bucket-
histogram of the distribution D, that has description of size polylog(N) bits (compared to the
potentially Ω(N) size of the probability histogram). The bucket histogram allows the verifier to
approximate the distance of D from any label-invariant property.

For an accuracy parameter τ < 0.012, the τ -approximate bucket histogram partitions the interval
[0, 1] into O(logN/τ) buckets, and counts how much probability mass of the distribution D falls in
each bucket. More concretely, we define the ℓ’th bucket of D to be:

BD
ℓ =

{
x ∈ [N ] : D(x) ∈

[
eℓτ

N
,
e(ℓ+1)τ

N

)}

And denote its mass pℓ = D(BD
ℓ ). We consider all elements x ∈ [N ] with probability, D(x) ≤ τ2

N
to be in one bucket, with corresponding index L. We call the collection {pℓ}ℓ∈Z: eℓτ

N
≥ τ2

N

the τ -

approximate bucket histogram of D. (We omit the subscript from now on for ease of notation.)

Assuming D contains no heavy elements. Similar to [HR22], we show a protocol to obtain
the bucket histogram of the distribution D assuming that it has no heavy elements, that is, for all

x, D(x) = O
(

1√
N

)
. In a nutshell, by taking Õ(

√
N) samples from D, it is possible to approximate

well enough the probability of every element x with probability D(x) = Ω
(

1√
N

)
, and so, in order

to obtain the full bucket histogram of the distribution, all that is left is to compute the histogram
on the lighter part of the domain, which is what our protocol achieves.

2In the context of tolerant verification of label-invariant distribution properties, i.e. looking to accept distributions
εc close to the property and rejecting distributions εf far from it (in total variation distance), we take τ ≈ (εf − εc)

2
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2.1.1 Approximating the bucket histogram of a distribution with no heavy elements

Communication Phase. The verifier performs the following sampling process 2s times for s =

Õ
(√

N
)
poly(τ−1): it flips a fair coin and obtains b ∈ {0, 1}, if b = 0, it draws z by D, and if b = 1

it draws z by U[N ] (the uniform distribution over the entire domain).
The verifier thus obtains the bits b ∈ {0, 1}2s, and the respective sample, (zi)i∈[2s], which

is composed of two intertwined samples, one from D and one form U[N ], denoted by SD =
{i ∈ [2s] : bi = 0} and SU = {i ∈ [2s] : bi = 1}, each of size roughly s.

The verifier sends the sample (zi)i∈[2s] to the prover, who replies with the tag of each sample:
the alleged bucket index to which the element zi belongs. That is, the prover sends (tag(zi))i∈[2s],

such that, allegedly, D(zi) ≈ etag(zi)τ

N . If zi /∈ Supp(D), the prover sends ⊥. The verifier then

computes the alleged empirical mass of bucket j according to the sample SD, vj =
|{i∈SD:tag(zi)=j}|

|SD| .
Observe that if the prover is honest, then vj ≈ pj for every j, and the verifier obtained a

good approximation of the approximate bucket histogram of D! The rest of the protocol involves
verifying that indeed the prover didn’t lie. In order to do so, the verifier performs two tests, which
are carried out without any further interaction with the prover.

Test 1: bucket size verification. First, The verifier checks that no element sampled by D
was tagged ⊥. Then, they check that the alleged empirical mass of the j’th bucket as observed in
the part of the sample drawn by D matches the expected size of the bucket, reflected through the
samples drawn by U[N ].

Concretely, we expect the empirical mass of the j’th bucket according to the samples drawn

from U[N ], to be roughly
|BD

j |
N . The verifier doesn’t know

∣∣∣BD
j

∣∣∣, but it knows vj , which should be

close to the mass of the j’th bucket according to D. And so, the verifier computes
vj

ejτ/N
and uses

it as an approximation of the alleged quantity
∣∣∣BD

j

∣∣∣. For every j, the verifier counts how many

samples in SU were tagged j, and computes from that the alleged empirical mass of the j’th bucket
as observed from the samples drawn from U[N ]. They then check that this quantity is roughly
vje

−jτ .

Note that if the prover is honest vje
−jτ ≈ pje

−jτ =
Npje

−jτ

N ≈ |B
D
j |
N .

Test 2: Collisions Matching Test. For every alleged bucket j, let the set of samples in SD

tagged j be Sj
D. Note that by definition

∣∣∣Sj
D

∣∣∣ = svj . The verifier expects that the true mass

according to D of the set {zi}i∈Sj
D
is roughly

∣∣∣Sj
D

∣∣∣ · ejτN .3 And so, the verifier draws a fresh sample

of size s by D, and computes the empirical mass of the set {zi}i∈Sj
D
according to the new sample.

If this mass is not roughly
∣∣∣Sj

D

∣∣∣ · ejτN , for all j, the verifier rejects.

If neither test failed, the verifier accepts.

Completeness. If the prover is honest, both tests pass, and we get that vj ≈ pj for all j. The
honest prover strategy only requires them to know the probability of the elements sent by the

3Assume for sake of simplicity that Sj
D contains only unique elements. In actuality, through choice of s and the

assumption that D’s support does not contain heavy elements, the number of collisions inside SD is small with respect
to the expected error.
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verifier, which can be approximated with sufficient accuracy using Õ(N)poly(τ−1) samples and
runtime (for a detailed discussion of the complexity of the honest prover and the level of accuracy
it requires see Remark 4.14).

Soundness. We show that no matter what strategy a prover might employ, if the prover significantly
miss-tags the samples, then one of the tests will fail with high probability.

We characterize dishonest prover behavior by considering, for every two buckets ℓ and j, the
variable xℓ,j ∈ [0, 1], which is the fraction of samples that were sampled from D and truly landed
in the bucket BD

ℓ , but were tagged j. Moreover, we consider the number of samples from D that
truly landed in BD

ℓ is |SD| pℓ (recall that pℓ = D(BD
ℓ ), so this is indeed the expected number of

samples from bucket ℓ drawn in SD). Thus, the number of samples in SD that landed in bucket ℓ,
but were claimed to be in bucket j, is |SD| pℓxℓ,j .

Analyzing Test 1. We show that even though the variables {xℓ,j} reflect how the prover lies
on the samples drawn from D, they also capture the way the prover lies on SU . That is, xℓ,j is
also close to the fraction of samples drawn by U[N ] that landed in BD

ℓ , but were claimed to belong
to bucket j. This is due to the fact that the bits b ∈ {0, 1}2s are hidden from the prover. Upon
receiving a sample z, all the prover can know is to which true bucket ℓ the element z belongs.
Looking at the set of all samples in (zi)i∈[2s] that landed in BD

ℓ , the prover knows that roughly s ·pℓ

were sampled from D, and the rest, roughly s · |B
D
ℓ |
N = s · pℓe−ℓτ were sampled from U[N ], however,

the choice of which samples were drawn by D and which from U[N ] is unknown to the prover.

Therefore, a prover that wishes to miss-tag xℓ,j fraction of the samples in SD that fell in BD
ℓ and

tag them j, will also in the process similarly miss-tag roughly xℓ,j fraction of the samples drawn
from U[N ] that landed in the ℓ’th bucket.

Focusing our attention on the samples that were tagged j, and taking
|BD

ℓ |
N to be (a good

approximation of) the true fraction of samples that were sampled by U[N ] and landed in BD
ℓ , we

get that the fraction of samples drawn by U[N ] and tagged j is
∑

ℓ
|BD

ℓ |
N · xℓ,j =

∑
ℓ pℓe

−ℓτxℓ,j ,

where the last equality is achieved by plugging
∣∣BD

ℓ

∣∣ = Npℓe
−ℓτ . Test 1 checks that for every

alleged bucket j, the fraction of samples drawn by U[N ] and tagged j equals vje
−jτ . This amount

to requiring that the prover’s miss-tags satisfy the following equation:

e−jτ ≈
∑
ℓ

pℓxℓ,j
vj
· e−ℓτ (1)

Remark 2.1. Note that heavy buckets, i.e. buckets ℓ for which eℓτ

N > 1√
N
, might have considerable

mass, yet very few elements. Upon receiving some sample z from a heavy bucket, the probability
that they were sampled by U[N ], and not through D is roughly 1/N

eℓτ/N
< 1√

N
, and so, the prover can

tag roughly O(
√
N) such samples, and still not miss-tag any sample that was drawn by U[N ] and

fell in BD
ℓ . Limiting our scope to distributions with no heavy elements, as well as taking sample

complexity s = Õ
(√

N
)

assures us that for any bucket with significant mass, we can establish a

relation between the cheating patterns across SD and SU .

Analyzing Test 2. For every alleged bucket j, the true mass of the set of samples tagged j is∑
i∈Sj

D
D(zi). And so, the expected empirical mass of Sj

D in the fresh sample should be roughly
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∑
i∈Sj

D
D(zi). Since this sum is composed of elements from potentially many other buckets, we

rewrite the sum to reflect this. There are roughly spℓxℓ,j samples that fell in bucket ℓ (i.e. each

with true probability eℓτ

N ) and were tagged j, and so
∑

i∈Sj
D
D(zi) =

∑
ℓ spℓxℓ,j

eℓτ

N .

Since Test 2 checks that the empirical mass of {zi}i∈Sj
D
in SU is roughly

∣∣∣Sj
D

∣∣∣ · ejτN = svj
ejτ

N , we

get that Test 2 essentially verifies that:

ejτ ≈
∑
ℓ

pℓxℓ,j
vj
· eℓτ (2)

Combining tests in “sterile” setting. Assume that Approximate Equations (1) and (2) hold
with exact equality. For every j, consider the distribution Pj that assigns every bucket index ℓ the
probability

pℓxℓ,j

vj
. In this case, rewrite the equations as follows:

Eℓ∼Pj

[
eℓτ
]
= ejτ

Eℓ∼Pj

[
e−ℓτ

]
= e−jτ

By Jensen’s Inequality: ejτ = Eℓ

[
eℓτ
]
≥ eτE[ℓ], and e−jτ = Eℓ

[
e−ℓτ

]
≥ e−τE[ℓ], or equivalently,

ejτ ≤ eτE[ℓ]. We conclude that eτE[ℓ] = ejτ , from which we get that

Eℓ

[
eℓτ
]
= eτE[ℓ]

Meaning that Jensen’s Inequality holds with equality for every j. This can only happen if
random variable eℓτ is a constant in Pj , i.e. that xℓ,j = 1ℓ=j . Setting xℓ,j = 1ℓ=j for all ℓ and j
is exactly the honest prover strategy, where every sample is tagged correctly. In other words, the
only prover strategy that satisfies both tests for all j is the honest prover behavior, and any other
strategy will be rejected.

Of course, we don’t expect Equations (1) and (2) to hold in exact equality upon running the
actual protocol. In the next section we show that assuming these equations are close to be correct
is enough to argue that any prover response that’s far enough from the honest strategy will be
rejected with high probability.

Remark 2.2 (Verified tagged sample). Our protocol guarantees even more than approximate
correctness of the histogram. The set of taggings on the samples drawn from D is guaranteed
to be “close” to the true probabilities of those samples (otherwise the verifier rejects w.h.p.). This
is a potentially more powerful guarantee that may lead to further applications, e.g. in testing for
properties of pairs of distributions. See Theorem 6.1 for the formal guarantee.

2.1.2 Slack analysis: single bucket case

We show how to account for slack by focusing on a simplified case, where the prover claims that
the entire distribution D is supported on a single bucket, j0, while D is actually σ-far from it in
total variation distance (see Definition 3.1).

In other words, if we denote by S the alleged support size of BD
j0
, we’d want to accept when D

is uniform over S elements, and reject if it is σ-far from that. This problem was investigated in the
non-interactive setting in [BC17]. Note that S ∈

(
Ne−(j0+1)τ , Ne−j0τ

]
.
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Test 1: Revisited. The verifier checks that for every i ∈ SD, tag(zi) = j0, i.e. that no sample
that was drawn from D was claimed to be outside Supp(D). Next, set wj0 to be the fraction
of samples tagged j0 in SU . Recall that assuming that the D is not supported on heavy buckets
means that S = Ω(

√
N), and through our choice of s = Õ(

√
N)poly(τ−1), the verifier expects

the empirical mass of Supp(D) in SU to be in (1 ± O(τ)) S
N with high probability. However, if

Supp(D) /∈ (1±O(τ))S, then the prover has to miss-tag elements in order to pass this test.
Consider the case where D is σ-far from being uniform over S elements and also |Supp(D)| =

(1 + Ω(τ))S. Then, in order to pass the test with high probability, the prover must claim that
samples z that fell inside the support of D, do not belong to the support. However, by doing so,
the prover risks miss-tagging a sample drawn from D, and failing the first part of the test. Still,
the prover can miss-classify and pass the test with high probability, by choosing to miss-classify
elements with low probability according to D, which are much more likely to have been drawn from
U[N ].

Assume therefore that D’s support doesn’t contain any tiny probability element. I.e. for all
x ∈ Supp(D), D(x) ≥ τ

N (we later discuss what happens when there are tiny elements). In this
case, when the prover receives a sample z ∈ Supp(D), the probability that the sample was drawn

from D is D(z)
D(z)+1/N ≳ τ , and so, when the prover miss-classifies Ω(1/τ) samples, it is likely that

at least one of the samples was drawn from D, and the verifier will reject. We conclude that the
prover can only miss-label O(τ−1) samples as being outside the support and still pass Test 1 with
high probability. Therefore, if Test 1 passed, with high probability:

|Supp(D)| ≤ (1 +O(τ))S +
O(τ−1)

s
·N (3)

Test 2: Revisited. In the one alleged bucket case, Test 2 amounts to drawing a fresh sample of
size s by D, computing the empirical mass of all the elements in {zi}i∈SD

, and then comparing it

to their the expected mass, which should be |SD| e
j0τ

N ≈ s · ej0τN . For any D, the expected empirical
mass of SD in the fresh sample will be s ·

∑
i∈SD

D(zi). Taking the expectation also over the choice
of SD, we get that with high probability, this quantity is up to a multiplicative factor of τ close to
s · ∥D∥22. Therefore, if Test 2 passed, then with high probability ∥D∥22 ∈ (1 + τ) 1

S .
If D is also σ-far in statistical distance from being uniform over S elements, Herman and

Rothblum [HR22] prove the following lemma:

Lemma 2.3 (Support Size Gap Lemma [HR22]). For every discrete distribution D, integer S ∈ N,
and parameters σ, τ ∈ [0, 1]. If D satisfies:

• ∥D∥22 ∈
[
1−τ
S , 1+τ

S

]
,

• D is at statistical distance at least σ from every distribution that is uniform over S elements,

then:

|Supp(D)| ≥ S
(
1 +O(σ2)−O(τ)

)
(4)

If D is σ-far from being uniform over S elements, and have passed Test 1 and Test 2, then,
with high probability, both Inequalities (3) and (4) hold. We show that there exists a choice of

τ = O(σ2) and s = Õ
(√

N
)
poly(τ−1), as well as constants 0 < c1 < c2 such that if D is σ-far from
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uniform, only distributions satisfying Supp(D) ≤ (1 + c1)S can pass Test 1 with high probability,
while only distributions that satisfy Supp(D) ≥ (1 + c2)S can pass Test 2 with high probability;
and so at least one of the tests must fail.

Remark 2.4 (Soundness whenD contains tiny elements.). Assume that C =
{
x ∈ Supp(D) : D(x) < τ

N

}
isn’t empty. Note that in this case, it might that the prover can miss-tag many samples in the support
of D as being outside the support, without landing on a sample drawn by D, and failing Test 1.
This is since some samples might be considerably less likely to have been sampled by D than by
U[N ]. And so, instead of thinking of Test 1 and Test 2 as producing two conflicting claims about
|Supp(D)|, we think of them doing so about |Supp(D) \ C|.

2.2 Comparison with the [HR22] Protocol

Herman and Rothblum [HR22] give a protocol for obtaining the approximate histogram of a
samplable distributionD. However, the construction suffered from super-polynomial prover runtime.
In order to discuss the differences between the constructions, we first present the approach of [HR22]
to the verification problem of the previous section. Namely, a protocol for accepting distributions
uniform over a set of size S, and rejecting distributions σ-far from any distribution uniform over S
elements.

The verifier computes a a τ -approximation to D’s collision probability, ∥D∥22, in the same way
presented in the previous section. Then, through a variant of Lemma 2.3, they show that if Test 2
passed, then the Shannon entropy of any D which is σ-far from uniform over a set of size S, must
satisfy H(D) ≥ logS + σ2

32 − τ .
Thus, in this case, D’s true entropy is significantly higher than what is claimed by the cheating

prover (the prover claims the entropy is log(S), and for τ = O(σ), there is a Θ(σ2) entropy gap).
To detect this false claim, in the [HR22] protocol, the verifier asks the prover to execute an entropy
upper bound protocol from the statistical zero knowledge literature [SV03, Vad99]. This protocol
requires super-polynomial running time for the honest prover: see Section 2.2 for further elaboration
and a comparison to our approach. We want a doubly-efficient proof system, so using the entropy
upper bound protocol is a non-starter: we need a new approach.

we elaborate briefly on the entropy upper bound protocol, which is the source for the honest
prover’s super-polynomial running time in their work. The first step in the entropy upper bound
protocol is amplifying the Shannon Entropy gap into a min-entropy gap by repetition (sometimes
referred to as a “direct product”): taking many samples from the distribution D. This canonical
idea goes back to the work of [HILL99]. Taking m = Θ(log(N)/σ2) samples from D gives a new
distribution D

⊗
m with min-entropy close to (m ·H(D)). The min-entropy of D

⊗
m’s can be upper

bounded via a standard protocol that uses a strong seeded randomness extractor (see e.g. Vadhan
[Vad12]). In the NO case, where D’s Shannon entropy was at least (log(S)+Θ(σ2)), the extractor’s
output will be close to uniform over its range, which is of size NΘ(log(N)/σ2). In the YES case, where
D’s Shannon entropy was log(S), the extractor’s output will have a support that is significantly
smaller than its range. The verifier flips an unbiased coin and, depending on its coin toss, sends
to the prover a sample either from the extractor’s output or from the uniform distribution over
the range. The prover should guess the verifier’s coin flip. Soundness follows because in the NO
case the two distributions are statistically close. Completeness also follows, because in the YES
case the distributions are far. However, the honest prover’s running time is huge, as it needs to
check whether the sample it received is in the support of the extractor’s output, and this requires
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runtime NΘ(log(N)/σ2).

2.3 Organization of The Paper

Section 3 contains definition and preliminaries. Sections 4 and 5 comprise the two main pillars of
our main result: the first of the two contains a doubly-efficient proof system for obtaining a tagged
sample of distribution D, namely, a collection of samples drawn from D, and a set of claims about
the probability under D of each sample. The verification of this set of claims is performed in two
steps, and includes the collisions matching tester constructed in Section 5. Finally, in Section 6
we put all these components together, and construct a doubly-efficient histogram reconstruction
protocol, which we then leverage for doubly efficient verification of label-invariant properties.

3 Preliminaries

3.1 Distributions - General Definitions

Without loss of generality, and for the sake of simplicity of notation ahead, we consider all finite
domains to be subsets of N.

Definition 3.1. The statistical distance between distributions P and Q over a finite domain X is
defined as:

∆SD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)|

Claim 3.2. Let P,Q be distributions over a domain X such that ∆SD(P,Q) = δ. Then:

max
A⊆X

(P (A)−Q(A)) = δ

Proof. Define A = {x ∈ X : P (x) > Q(x)}. Observe that by definition:

∆SD(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)| (5)

=
1

2

∑
x∈A

(P (x)−Q(x)) +
1

2

∑
x∈X\A

(Q(x)− P (x)) (6)

=
1

2
(P (A)−Q(A)) +

1

2
(Q(X \A)− P (X \A)) (7)

=
1

2
(P (A)−Q(A)) +

1

2
(1−Q(A)− (1− P (A))) (8)

= P (A)−Q(A) (9)

Moreover, since by definition for every x ∈ A it holds that P (x) > Q(x), then:

A ∈ argmax
X⊆X

(P (X)−Q(X))

As taking any element out of A will decrease the value of P (A)−Q(A), and any element added to
A has to be from {x ∈ X : Q(x) ≥ P (x)}, and as such, it won’t increase P (A)−Q(A).
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Definition 3.3 ((N, ξ)-bucket of a distribution). The ℓ’th (N, ξ) bucket of distribution P is:

BP
ℓ =

{
x ∈ Supp(P ) : P (x) ∈

[
eℓξ

N
,
e(ℓ+1)ξ

N

)}

Definition 3.4 ((N, ξ)-histogram of a distribution). The (N, ξ)-histogram of distribution P is the

collection {pℓ}ℓ∈Z. We also consider the histogram with all elements of mass lighter than ξ2

N collected
to one bucket, BP

L . That is:

BP
L =

{
x ∈ Supp(P ) : P (x) ≤ ξ2

N

}
, pL = P

(
BP

L

)
This is motivated by two reasons: for a distribution P over domain [N ], pL · N ≤ ξ2, and so,

it holds that BP
L accounts for at most ξ2 mass (which we consider small). Therefore, when we

consider the (N, τ)-histogram of some distribution, we in fact don’t consider the bucket indices to
be taken from Z, but from a smaller set:

Definition 3.5 (Number of bucket buck(N, ξ)). Given parameters N and ξ, we consider b(N, ξ)

to be the number of buckets with all buckets ℓ for which eℓξ

N ≥
ξ2

N are collected into one.

Observe that b(N, ξ) =
⌈
logN
ξ

⌉
+
⌈
2 log 1/ξ

ξ

⌉
= O (logN/ξ)

Convention 3.6. In the paper, unless stated otherwise, whenever we talk about bucket indices we
consider them to be taken from the index set:

I(N,ξ) =

{
−
⌈
2 log 1/ξ

ξ

⌉
, . . . ,−1, 0, 1, . . . ,

⌈
logN

ξ

⌉}
3.2 Relabeling Distance

The reader is referred to [HR22] for proofs for all claims in this section.

Definition 3.7 (Permutation of a distribution). For a distribution P over a domain X , and a
permutation π over the same domain, we define π(P ) as the distribution that satisfies for every
x ∈ X : π(P )(x) = P (π−1(x)).

Definition 3.8. For any set A, perm(A) is the set of all permutations over the set A.

Definition 3.9 (Relabeling distance). Let P and Q be distributions over finite domains X ⊆ N,
and Y ⊆ N respectively. The relabeling distance between P and Q is defined to be:

∆RL(P,Q) = min {∆SD(P, π(Q)) : π ∈ perm (N)}

Claim 3.10. Let P,Q,R be any three distributions over finite domains X ,Y, and Z respectively.
The Relabeling Distance satisfies:

• ∆RL(P,Q) ≥ 0, and ∆RL(P,Q) = 0 iff there exists a permutation σ ∈ perm(N) such that
P = σ(Q).

• Symmetry: ∆RL(P,Q) = ∆RL(Q,P ).
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• Triangle inequality: ∆RL(P,R) ≤ ∆RL(P,Q) + ∆RL(Q,R)

Definition 3.11. For any finite distribution Q, and any (N, ξ)-histogram {pj}j, define:

∆RL(Q, {pj}j = min
P has histogram {pj}j

∆SD(Q,P )

This definition also extends to the distance between two histograms.

Claim 3.12. Let {qj}j and {pj}j be two (N, ξ)-histograms. For every ε ≥ 0, if 1
2

∑
j |pj − qj | ≤ ε,

then,
∆RL({qj}j , {pj}j) ≤ eξε+ eξ(eξ − 1)

Claim 3.13. For any two distributions P,Q over the domain [N ]. Let πord : [N ] → [N ] be the
permutation that satisfies the property for every i, j ∈ [N ], if P (i) < P (j) then

(
πord(Q)

)
(i) ≤(

πord(Q)
)
(j). Then, it holds that:

∆RL(P,Q) = ∆SD(P, π
ord(Q))

Proposition 3.14 (Histogram distance estimator). For every ξ ≤ 0.1 there exists an algorithm
that runs in O (log(N)/ξ) time and given parameters N , ξ, as well as two (N, ξ)-histograms {pj}j
and {qj}j, outputs d such that |d−∆RL ({pj}j , {qj}j |) ≤ 7ξ.

3.3 Testing and Verifying Distribution Properties

Theorem 3.15 (Folklore distribution learner [Gol17]). There exists an algorithm that given sample
access to a distribution P over the domain [N ], and an accuracy parameter α ∈ (0, 1), it runs in
time Õ(N/α2), takes O(N/α2) samples, and with probability at least 0.99 outputs a full description
of a distribution Papprox such that ∆SD(P, Papprox) ≤ α.

Definition 3.16 (Distribution tester for property Π). Let δ be some distance measure between
distributions, and Π be some collection of finite distributions. Denote ΠN = Π∩∆N (where ∆N is
the set of all distributions over domain of size at most N). A tester T of property Π is a probabilistic
oracle machine, that on input parameters N and ε, and oracle access to a sampling device for a
distribution D over a domain of size N , outputs a binary verdict that satisfies the following two
conditions:

1. If D ∈ ΠN , then Pr(TD(N, ε) = 1) ≥ 2/3.

2. If δ(D,ΠN ) > ε, then Pr(TD(N, ε) = 0) ≥ 2/3.

In the context of this work, the relevant distance measure is statistical distance as defined above.
An extension of this definition, introduced by Parnas, Ron, and Rubinfeld [PRR06] is the following:

Definition 3.17 ((εc, εf )-tolerant distribution property tester). For parameters εc, εf ∈ [0, 1] such
that εc < εf , a (εc, εf )-tolerant tester T of property Π is a probabilistic oracle machine, that on
inputs N, εc, εf and given oracle access to a sampling device for distribution D over a domain of
size N , outputs a binary verdict that satisfies the following two conditions:

1. If δ(D,ΠN ) ≤ εc, then Pr(TD(N, εc, εf ) = 1) ≥ 2/3.
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2. If δ(D,ΠN ) ≥ εf , then Pr(TD(N, εc, εf ) = 0) ≥ 2/3.

Note that a tolerant distribution test is for some property Π is at least as hard as a standard
non-tolerant tester for the same property.

Our main result is a double efficient interactive proof system for many tolerant testing problems.
The following definition sets the framework for this work. It is based on the setting presented in the
seminal work of Goldwasser, Micali, and Rackoff [GMR85], and it is an extension of the definition
presented by Chiesa and Gur [CG18] that includes tolerant testing, that seeks to have small honest
prover complexity, in the vein of [GKR15].

Definition 3.18 (Proof system for tolerant distribution testing problems). A proof system for a
tolerant distribution testing problem Π with parameters εc and εf is a two-party game, between a
verifier executing a probabilistic polynomial time strategy V , and a prover that executes a strategy
P . Given that both V and P have black-box sample access to distribution D over the domain [N ],
and are given N , the interaction should satisfy the following conditions:

• Completeness: For every D over domain of size at most N , such that ∆SD(D,ΠN ) ≤ εc,
the verifier V , after interacting with the prover P , accepts with probability at least 2/3.

• Soundness: For every D over domain of size at most N such that ∆SD(D,ΠN ) ≥ εf , and
every cheating strategy P ∗, the verifier V , after interacting with the prover P ∗, rejects with
probability at least 2/3.

The complexity measures associated with the protocol are: the sample complexity of the verifier as
as the honest prover (strategy P), the communication complexity, the runtime of both agents, and
the round complexity (how many messages were exchanged).

Definition 3.19 (Label invariant distribution property). A distribution property Π is called label
invariant if for all N ∈ N, it holds that any permutation σ over N elements satisfies that D ∈ ΠN

if and only if σ(D) ∈ ΠN .
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4 Bucket Size Verification Protocol

4.1 Protocol Overview

In this section, given sample access to a distribution D over domain [N ], we construct a protocol
for obtaining a collection of claims about the probability under D of each element in a set S ⊆ [N ]
of size roughly

√
N .

Concretely, given some accuracy parameter τ ∈ (0, 0.1), at the end of the protocol, the verifier

is left with (zi, π(zi))i∈[s] where s = θ̃
(√

N · poly(τ−1)
)
, (zi)i∈[s] was drawn i.i.d. by D, and for

every i ∈ [s], it is alleged that π(zi) ≈ D(zi).
If the prover is honest, then indeed π(zi) = (1±O(τ)) ·D(zi), and a honest prover strategy with

input the same as that of the verifier (black-box sample access to D, parameters N and τ) can be
implemented in time roughly linear inN . If the prover is dishonest (and potentially computationally
unbounded), however, we characterize the distance between the alleged probability under D of each
element (π(zi))i∈[s] to their true probability (D(zi))i∈[s] through the following variables:

xℓ,j =

∣∣∣{i ∈ [s] : zi ∈ BD
ℓ , π(zi) ∈

[
ejτ

N , e
(j+1)τ

N

]}∣∣∣∣∣{i ∈ [s] : zi ∈ BD
ℓ

}∣∣
Recall that BD

ℓ =
{
x ∈ [N ] : D(x) ∈

[
eℓτ

N , e
(ℓ+1)τ

N

)}
. That is, xℓ,j should be thought of as the

fraction of elements with mass approximately eℓτ/N that were claimed to have mass approximately
ejτ/N at the end of the protocol (indeed, if the prover is honest, then xℓ,j = 1ℓ=j). We are
guaranteed that if the verifier accepted, no matter how the prover chose to respond or cheat, the
following holds:

The Soundness Guarantee. Fix a sample and set of claims (zi, π(zi))i∈[s] obtained through the
protocol. Consider the following variables induced by these claims, for every ℓ ∈ Z:

vℓ =

∣∣∣{i ∈ [s] : π(zi) ∈
[
eℓτ

N , e
(ℓ+1)τ

N

]}∣∣∣
s

, q̂ℓ =

∣∣∣{i ∈ [s] : D(zi) ∈
[
eℓτ

N , e
(ℓ+1)τ

N

]}∣∣∣
s

That is, q̂ℓ is the empirical mass of BD
ℓ according to the sample (zi)i∈[s], and thus, it is strongly

concentrated around D
(
BD

ℓ

)
= qℓ, while vℓ is the alleged empirical mass of the same set, and can

potentially be far from q̂ℓ. In particular by definition, vj =
∑

ℓ q̂ℓxℓ,j. At the end of the protocol,
with high probability over the verifier’s coin tosses and samples, if they accepted, then it must be
that:

Nvje
−jτ ≈

∑
ℓ

Nq̂ℓe
−ℓτxℓ,j (10)

Digest of soundness guarantee. The soundness condition claims that any interaction at the
end of which Inequality (10) doesn’t hold, will be rejected with high probability. I.e. by definition
it must hold that vj =

∑
ℓ q̂ℓxℓ,j , and the protocol enforces another condition over {xℓ,j}ℓ,j , namely

vje
−jτ ≈

∑
ℓ q̂ℓxℓ,je

−ℓτ . This can be interpreted as a condition over the alleged size of each bucket:

recall that allegedly, for every ℓ, vℓ = q̂ℓ, and since by definition,
∣∣BD

ℓ

∣∣ ∈ [ qℓ
e(ℓ+1)/N

, qℓ
eℓ/N

]
≈
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[
q̂ℓ

e(ℓ+1)/N
, q̂ℓ
eℓ/N

]
, the verifier considers the left-hand side of Approximate Equality (10),

vj
ejτ/N

, as

the alleged approximate size of BD
j according to (zi, π(zi))i∈[s]. Thus, we think of the soundness

condition of the protocol as requiring the prover to lie in such a way that the alleged size of each
bucket conforms to the above approximate equality.

Note that if the prover behaves dishonestly, the verifier in this protocol is not required to reject
with high probability. Indeed, catching a cheating prover is done in several stages, and the protocol
presented in this section is only one step in this process. In order to complete the verification of
the above-mentioned claims regarding the alleged probability of the elements sampled, we require
the tester described in Section 5. The way both these procedures are combined can be found in
Section 6. We continue to outline how the Bucket Size Verification Protocol works:

Step I: obtaining tagged samples. The verifier flips a balanced roughly coin 2s times, and
obtains b ∈ {0, 1}2s. Every time the coin shows 0, the verifier draws a sample from D, and
otherwise it draws a sample from U[N ]. We think of the samples drawn (z1, z2, . . . , z2s) as actually
being composed of two different interweaved samples, and denote by S0 = {i : bi = 0} the samples
drawn by D, and S1 = [2s] \S0, the samples drawn by U[N ]. For simplicity assume both sets are of
size s. The sample (z1, . . . , z2s) is sent to the prover (note that the choice of coins b is not revealed
to the prover).

For every i ∈ [2s], the prover replies with π(zi) (often referred to as tags in the paper, as they
are thought of placement in buckets) as explained above, or ⊥ if the sample was drawn from U[N ]

outside the support of D. If the prover is honest, the tags are all correct.

Step II: bucket size consistency test. The verifier computes the empirical (N, τ)-histogram
of D implied by the prover’s answer. For every bucket index j, it considers the set of elements
drawn from D tagged as belonging to bucket j:

Sj
0 =

{
i ∈ S0 : π(zi) ∈

[
ejτ

N
,
e(j+1)τ

N

)}

Then, it sets vj =
|Sj

0|
|S0| . If the prover is honest, we expect this quantity to be very strongly

concentrated around the true mass of the bucket qj = D(BD
j ). Since, for every bucket j it holds

that
∣∣∣BD

j

∣∣∣ ∈ ( qj
e(j+1)τ/N

,
qj

ejτ/N

]
, the verifier derives from vj an alleged size for the j’th bucket:

vj
ejτ/N

.

A main idea behind the bucket size consistency check is that the verifier actually gets two
approximations for the size of each bucket, and checks that they are close. One is obtained through
considering the samples in S0, as explained above, and the other, through S1. Focusing on the
second approximation, for every bucket index j, the verifier considers the following quantity:

wj =

∣∣∣{i ∈ S1 : π(zi) ∈
[
ejτ

N , e
(j+1)τ

N

)}∣∣∣
s1

As before, the meaning of this quantity in the case that the prover is honest is the fraction of
samples drawn from U[N ] that landed in the j’th bucket of D. Therefore if the prover is honest, we

expect wj to be (strongly) concentrated around
|BD

j |
N . And so, we can think of (N · wj) as another
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approximation of
∣∣∣BD

j

∣∣∣. The verifier then accepts when these two approximations are indeed close,

that is, if the following holds:
wj ≈ vje

−jτ

After passing this test, the verifier outputs (zi, π(zi))i∈S0
.

Proof intuition. The completeness of the protocol follows immediately from the explanations

above. In short, we expect both
Nvj
ejτ

as well as (N · wj) to be concentrated around
∣∣∣BD

j

∣∣∣, and
thus close. The soundness condition is a bit more involved. For every two bucket indices ℓ and
j, we consider the variables xℓ,j , yℓ,j ∈ [0, 1] as a characterization of how the prover cheated. We
explained above the definition of {xℓ,j}ℓ,j as a characterization of how the prover cheated over S0.
The collection {yℓ,j}ℓ,j is defined analogously with respect to S1 (see Definition 4.2 and following
discussion for more detail). We capitalize strongly on the fact that for (almost) every ℓ and j,
xℓ,j and yℓ,j are closely related. Intuitively, this can be explained through the following important
observation:

Observation 4.1. A cheating prover that wants to mistag the samples that were drawn according
to D (e.g. tag half the samples drawn from D that landed in bucket BD

ℓ as if they belong to bucket
j) must also, in the process, mistag samples that were drawn according to U[N ] in a similar pattern

(following the above example, half of the samples drawn according to U[N ] that landed in BD
ℓ , will

be tagged as belonging to bucket j according to D).
This is justified by the fact that the prover doesn’t know b ∈ {0, 1}s, and so, when considering

the set of samples in (z1, . . . , zs) that truly landed in the set BD
ℓ , it is unable to determine which

was drawn from D and which from U[N ].

And so, if we write mℓ =
|i∈S1:zi∈BD

ℓ |
|S1| (i.e. the empirical mass of the set BD

ℓ according to the

uniform distribution over the domain, and the samples in S1), we can rewrite wj =
∑

ℓmℓyℓ,j . Now,
from the same reasoning as above, mℓ is strongly concentrated around

∣∣BD
ℓ

∣∣ /N , which is roughly
Nqℓe

−ℓτ/N ≈ q̂ℓe
−ℓτ . And so, plugging mℓ ≈ q̂ℓe

−ℓτ and xℓ,j ≈ yℓ,j , we get with high probability:

wj ≈
∑
ℓ

q̂ℓe
−ℓτxℓ,j

We thus get that by verifying that wj ≈ vje
−jτ , we get the desired result, namely:

Nvje
−jτ ≈ N

∑
ℓ

q̂ℓe
−ℓτxℓ,j (11)

Honest prover runtime. A prover that approximates the probability of each element with mass
at least τ

N to a multiplicative factor of τ/10 can be implemented in time Õ(N)poly(τ−1). Such
approximation might not put every element in its correct bucket, as elements with probability
close to the margins of the buckets might be placed in adjacent buckets. This does not affect the
completeness of the protocol, which can withstand such errors. See Remark 4.14 for more detail.

Technical remarks. The above intuition disregards issues of measure concentration, and the
treatment of small buckets for which we cannot ensure that xℓ,j ≈ yℓ,j . Consequently, taking these
points into account, the true soundness guarantee is a lower bound on Nvje

−jτ , rather than an
approximate equality.
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4.2 Bucket Size Verification Protocol

Protocol 4.1.1: Bucket Size Verification Protocol

Input: parameters N ∈ N, τ ∈ (0, 1), as well as sample access to distribution D over domain [N ]. D is
assumed to satisfy ∀x D(x) ≤ τ√

N

1. V: toss a balanced coin 2s times for s =
√
N · poly(logN, τ−1) to obtain b ∈ {0, 1}2s. For every

i ∈ [2s], if bi = 0, draw zi ← D; otherwise, draw zi ← U[N ]. Send (z1, z2, . . . , zs) to P.

2. P: for every i ∈ [2s]: if zi ∈ Supp(D), set π(zi) so that π(zi) ∈ D(zi) [1− τ/10, 1 + τ/10] (see
Algorithm 4.12.1 for details), and otherwise set π(zi) = ⊥.

3. V: set S0 = {i : bi = 0}, and |S0| = s0, as well as S1 = {i : bi = 1}, with |S1| = s1. If |s0 − s/2| > s/6,
reject. For every i ∈ [2s] such that π(zi) ̸= ⊥, also set tag(zi) = ⌊log (N · π(zi)) /τ⌋. Do the following:

(a) Basic consistency test. Check that for all i1, i2 ∈ [2s], if zi1 = zi2 , tag (zi1) = tag (zi2), and
that for all i ∈ S0, π(zi) ̸= ⊥.

(b) Verify bucket sizes. For every j, define vj =
|{i∈S0:tag(zi)=j}|

s0
, and wj =

|{i∈S1:tag(zi)=j}|
s1

.

Reject if there exists such j such that ejτ

N ≥
τ
N for which vj ≥ τ2

logN and:∣∣wj − vje
−jτ
∣∣ ≥ 4τvje

−jτ (12)

4. V: output (zi, π(zi))i∈S0
.

In order to formally claim the completeness and soundness conditions that apply to Protocol
4.1.1, we first define a set of variables that characterize all possible prover responses in the protocol:

Definition 4.2. Any prover response in Protocol 4.1.1 induces the following collections of variables.
For every two buckets ℓ and j define:

xℓ,j =

∣∣{i ∈ S0 : zi ∈ BD
ℓ , tag(zi) = j

}∣∣∣∣{i ∈ S0 : zi ∈ BD
ℓ

}∣∣
yℓ,j =

∣∣{i ∈ S1 : zi ∈ BD
ℓ , tag(zi) = j

}∣∣∣∣{i ∈ S1 : zi ∈ BD
ℓ

}∣∣
To give some intuition as to meaning of these variables, as expained above in the protocol

overview, and as will be further explained in the analysis, consider some prover strategy: the
prover receives a collection of samples from the verifier, some drawn by D and some by U[N ]. The
first set of variables {xℓ,j}ℓ,j characterizes (cheating) prover behavior over samples drawn by the

verifier according to D, and {yℓ,j}ℓ,j captures (cheating) behavior over samples drawn according to
U[N ]. It is important to note that the prover doesn’t know for each sample whether it was drawn
according to D or according to U[N ]. More concretely, the variable xℓ,j (respectively yℓ,j) describes

the fraction of samples drawn according from D (U[N ]) that landed in bucket BD
ℓ , but were reported

as belonging to D-bucket j. In particular, if the prover is honest we get yℓ,j = xℓ,j = 1 if ℓ = j and
yℓ,j = xℓ,j = 0 otherwise.
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Lemma 4.3. Protocol 4.1.1 satisfies the following conditions: the verifier runs in time Õ(s),

and draws O(s) samples, for s = Õ
(√

N
)
poly(τ−1); the honest prover, given the same input

as the verifier, can be implemented with both its runtime and sample complexity be of magnitude
Õ (N) poly

(
τ−1

)
. At the end of the interaction the verifier either rejects or outputs (zi, π(zi))i∈[s],

such that the following conditions hold:

• Completeness. If the prover is honest, then, with probability at least 0.95 over the samples
and coin-tosses of both the verifier and the prover, the verifier accepts and for every i ∈ [s],
π(zi) is a τ -approximation of D(zi).

• Soundness. No matter what strategy a cheating prover might employ, with probability at
least 0.95 over the samples and the coin tosses of the verifier, either the verifier rejects, or
for every j such that ejτ

N ≥
τ
N and vj ≥ τ2

logN :

vje
−jτ ≥ (1− 18τ)

∑
ℓ: e

ℓτ

N
≥ τ2

N

q̂ℓxℓ,je
−ℓτ − poly

(
logN, τ−1

)
· 1
s

(13)

4.3 Proof of Lemma 4.3

4.3.1 Completeness of Protocol 4.1.1

For simplicity, we analyze the protocol’s completeness under the simplifying assumption that the
honest prover tags every sample with it’s true bucket. Looking ahead, since we want a doubly-
efficient honest prover, the tags will be according to multiplicative approximations to the true
probabilities, and some samples might be slightly mis-tagged. This does not have much of an effect
on the completeness analysis, see Remark 4.14 for further details.

With high probability the number of samples drawn according to D and the number of samples
drawn according to U[N ] will be roughly s. Formally:

Claim 4.4. For every s > 500τ−2, with probability at least 0.999,
∣∣∣∑i∈[s] bi − s

∣∣∣ < s · τ

Proof. By Hoeffding’s Inequality, for s > 500τ−2:

Pr
b

∣∣∣∣∣∣
∑
i∈[2s]

bi − s

∣∣∣∣∣∣ > sτ

 < e−2s·τ2/80 < 0.001

We choose s > 500τ−2, so the verifier is unlikely to reject due to a bad choice of bits (bi)i.
Next, observe that by definition, a honest prover passes the basic consistency test (Step (3a)),

and provides (π(zi))i∈S0
such that π(zi) ∈ D(zi) [1− τ/10, 1 + τ/10]. And so, in order to show

completeness, we need to show that for every bucket index j such that vj ≥ τ2

logN , Inequality (12)
holds.

Following the line of argument in the protocol overview in Section 4.1, we show that if the prover
is honest, then for every j such that vj ≥ τ2

logN , it holds that vj and wj are tightly concentrated
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around qj = D(BD
j ) and

|BD
j |
N respectively. The claim again follows from the multiplicative Chernoff

bound, but since we will come back to the connection between the empirical mass of buckets and
their true mass according to the distribution from which the sample was drawn, we introduce the
following definition and claim:

Definition 4.5 ( (Z, R, τ)-characteristic sample). Let R ≥ 1 and τ > 0 be positive real numbers,
Z a partition of the domain [N ], of size |Z|, then a sample S = (z1, . . . , zt) drawn i.i.d. according
to distribution P over [N ] is (Z, R, τ)-characteristic if for every set A ∈ Z, such that P (A) > 1

R it
holds that: ∣∣∣∣ |{i ∈ [t] : zi ∈ A}|

t
− P (A)

∣∣∣∣ < τ · P (A)

Claim 4.6. For domain [N ], let R,Z, P be as specified in Definition 4.5. Let S be a sample of

size t ≥ R log(1000|Z|)
τ2

drawn i.i.d. by the distribution P . Then, with probability at least 0.999, S is
(Z, R, τ)-characteristic with respect to P .

Proof. Fix A ∈ Z. For every i ∈ [t], define the indicator that Si ∈ A to be 1zi∈A. Note that
|{i∈[t]:zi∈A}|

s = 1
s

∑
i∈[t] 1Si∈A, and that this sum is composed of independent variables. Since for

every i, Ezi∼P [1zi∈A] = P (A), and all the samples were drawn i.i.d., Ez∼P s

[
1
t

∑
i∈[t] 1zi∈A

]
= P (A).

By applying the multiplicative Chernoff bound with t ≥ R log(1000|Z|)
τ2

we conclude that for every
A ∈ Z such that P (A) > 1

R , with probability at most 1
1000|Z| :∣∣∣∣ |{i ∈ [t] : zi ∈ A}|

t
− P (A)

∣∣∣∣ ≥ τ · P (A)

Taking the union bound over A ∈ Z provides the desired result.

We can now think of
{
BD

ℓ

}
ℓ
as a partition of [N ] of size b(N, τ). Since the sample is considerably

larger than b(N, τ), it follows that with very high probability the sample V draws will be characteristic
with respect to this partition. More concretely, we define the following variables that characterize
any sample drawn, regardless of the prover’s response:

Definition 4.7. The (true) fraction of samples drawn according to U[N ] that landed in the set BD
ℓ

is:

mℓ =

∣∣{i ∈ S1 : zi ∈ BD
ℓ

}∣∣
s1

The (true) fraction of samples drawn according to Q that landed in the set BD
ℓ is:

q̂ℓ =

∣∣{i ∈ S0 : zi ∈ BD
ℓ

}∣∣
s0

Following Definition 4.2, for every prover response:

wj =
∑
ℓ

mℓ · yℓ,j

vj =
∑
ℓ

q̂ℓ · xℓ,j

In this section we focus on the case that the prover is honest, and for every bucket index j, we
assume vj = q̂j , as well as wj = mj .
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Corollary 4.8. With probability at least 0.998, for every j such that qj >
log(1000b(N,τ))

sτ2
: |q̂j − qj | <

τ · qj

Proof. By Claim 4.4 and choice of s, with probability at least 0.999, s0 > s/3. By Claim 4.3.1 and
the choice of s, give that s0 > s/3, it holds that with probability at least 0.999, the sample (zi)i∈S0

is({
BD

ℓ

}
ℓ
, sτ2

log(1000b(N,τ)) , τ
)
-characteristic with respect to Q, and in particular, if qj >

log(1000b(N,τ))
sτ2

,

|vj − qj | = |q̂j − qj | < τ · qj .

Since the verifier has only access to vj and doesn’t know qj , we wish to have a guarantee that
vj and qj are close, given that vj is large enough (and not given that qj is large enough, as the
previous claim shows).

Claim 4.9. If the prover is honest, then with probability at least 0.96 over the choice of (bi)i∈[s]

and (z1, . . . , zs), for every j such that vj >
τ2

logN : |vj − qj | < τ · qj

Proof. Assume s0 > s/3. Since the prover is honest, for every bucket index j it holds that vj = q̂j ,
as well as E(zi)i∈S0

[vj ] = qj . By Markov’s Inequality, for all j, with probability at most 1
1000b(N,τ) ,

vj ≥ 1000b(N, τ)qj . In particular, with probability at least 1 − 1
1000b(N,τ) , every j such that qj <

τ2

1000b(N,τ) logN , it holds that vj <
τ2

logN . Taking the union bound over all buckets, with probability

at least 0.999, for every j, if qj < τ2

1000b(N,τ) logN then vj < τ2

logN . Therefore, if vj ≥ τ2

logN , then

qj > τ2

1000b(N,τ) logN , and in particular, through the choice of s, qj > log(1000b(N,τ))
sτ2

, and following
Corollary 4.8, we conclude with probability at least 0.96 over the verifier’s randomness, for every
bucket index j such that vj >

τ2

logN , it holds that |vj − qj | < τ · qj .

Moving on to show a similar result for the samples drawn from U[N ]:

Corollary 4.10. With probability at least 0.99 over the choice of (zi)i∈[s], for every ℓ such that
|BD

ℓ |
N > log(1000b(N,τ))

sτ2
: ∣∣∣mℓ − qℓe

−ℓτ
∣∣∣ < 2τ · qℓe−ℓτ

Proof. By Claim 4.4, with probability at least 0.999, s1 > s/3. Assume this is the case. Note

that
|BD

ℓ |
N = U[N ]

(
BD

ℓ

)
. By Claim 4.3.1, it holds that with probability at least 0.999, (zi)i∈S1

is({
BD

ℓ

}
ℓ
, sτ2

log(1000b(N,τ)) , τ
)
-characteristic with respect to U[K], i.e. for every ℓ such that

|BD
ℓ |
N >

log(1000b(N,τ))
sτ2

: ∣∣∣∣∣mℓ −
∣∣BD

ℓ

∣∣
N

∣∣∣∣∣ < τ ·
∣∣BD

ℓ

∣∣
N

To conclude the proof observe that by definition,
∣∣BD

ℓ

∣∣ ∈ [e−τ ·Nqℓe
−ℓτ , Nqℓe

−ℓτ
)

Claim 4.11. If the prover is honest, then with probability at least 0.98 over the choice of (zi)i∈[s]

and (bi)i∈[s] it holds that for all ℓ, if vℓ >
τ2

logN , then
∣∣wℓ − qℓe

−ℓτ
∣∣ < 2τ · qℓe−ℓτ
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Proof. By Claim 4.9, if the prover is honest, then with probability at least 0.96 over the choice of
(zi)i∈[s] and (bi)i∈[s], it holds that for all ℓ such that vℓ >

τ2

logN , |vℓ − qℓ| < τ · qℓ, this implies the
following:∣∣BD

ℓ

∣∣ ≥ e−τNqℓe
−ℓτ ≥ e−2τNvje

−ℓτ ≥ e−2τ ·Ne−ℓτ · τ2

logN
≥ e−2τ

√
N

τ
· τ2

logN
≥
√
Nτ

2 logN

Where the second to last inequality is justified through the assumption that for every ℓ such that
BD

ℓ ̸= ϕ it holds that eℓτ

N ≤
τ√
N
. Following the above inequality:∣∣BD

ℓ

∣∣
N
≥
√
Nτ

2N logN
=

τ√
N logN

≥ log (1000b(N, τ))

sτ2

Where the last inequality is justified through the choice of s. By so, we conclude that if the prover
is honest, for every ℓ such that vℓ >

τ2

logN , it holds that:∣∣BD
ℓ

∣∣
N
≥ log (1000b(N, τ))

sτ2

And by Corollary 4.10, with probability at least 0.99 for all such ℓ:∣∣∣mℓ − qℓe
−ℓτ
∣∣∣ < 2τ · qℓe−ℓτ

We have shown that with high probability if some bucket index j satisfies the condition that
vj ≥ τ2

log , then vj ≈ qj , or alternatively, Nvje
−jτ ≈ Nqje

−jτ (Claim 4.9). Similarly, we have

shown that with high probability, for every bucket index j for which
|BD

ℓ |
N > log(1000b(N,τ))

sτ2
, it also

holds that mℓ ≈ qℓe
−ℓτ (Claim 4.10). We put both these claims together to show that with high

probability the second consistency test passes:

Claim 4.12. If the prover is honest, with probability at least 0.9, for all j such that vj ≥ τ2

logN it
holds that: ∣∣wj − vje

−jτ
∣∣ ≤ 4τ · vje−jτ

Proof. By Claim 4.9, with probability at least 0.98, for every j such that vj >
τ2

logN , |qj − vj | < τqj .

By Claim 4.11, with probability at least 0.98 for every j such that vj > τ2

logN , it holds that∣∣wj − qje
−jτ
∣∣ ≤ 2τ · qje−jτ . And so, we conclude that with probability at least 0.95 over choice of

(bi)i∈[s] and (zi)i∈[s], for all j such that vj >
τ2

logN :∣∣wj − vje
−jτ
∣∣ ≤ ∣∣wj − qje

−jτ
∣∣+ ∣∣qje−jτ − vje

−jτ
∣∣

=
∣∣wj − qje

−jτ
∣∣+ e−jτ |qj − vj |

≤ 2τ · qje−jτ + τ · qje−jτ

≤ 3τqje
−jτ

< 4τvje
−jτ

We proved that with high probability, if the prover is honest, the verifier does not reject.
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4.3.2 Honest Prover Complexity

Algorithm 4.12.1: Honest Prover Strategy

Input: parameters N ∈ N, τ ∈ (0, 0.01), black-box sample access to distribution D over domain [n], and
tuple (zi)i∈[s] such that for all i ∈ [s], zi ∈ Supp(D).

Goal: For every i ∈ [s] such that D(zi) ≥ τ
N output π(zi) ∈ (0, 1) such that π(zi) ∈ D(zi) · [(1− τ/10, 1 +

τ/10)].

1. Draw t = 300N logN
τ3 samples by D. Denote the sample as (a1, . . . , at).

2. For every elements x ∈ [N ] denote D̂(x) = |{i∈[t]:ai=x}|
t .

3. For every i ∈ [s] set π(zi) = max
{
D̂(zi),

τ
2N

}
.

4. Output (π(zi))i∈[s]

We show that the prover strategy outlined in Algorithm 4.12.1 is an efficient strategy for the
honest prover in Protocol 4.1.1.

Claim 4.13. Fix a sample (zi)i∈[s]. Algorithm 4.12.1 takes Õ(Nτ−3) samples and satisfies the
following condition: with probability at least 1−o(1), for every i ∈ [s], such that D(zi) ≥ τ

N it holds
that:

π(zi) ∈ D(zi) · [1− τ/10, 1 + 10τ ]

Proof. Fix x ∈ [N ]. For every i ∈ [t], define 1ai=x to be the indicator of the event ai = x. Therefore,

Eai∼D [1ai=x] = D(x), and through the linearity of expectation, E(ai)i∈[t]∼Dt

[
1
t

∑
i∈[t] 1ai=x

]
=

D(x). Assume D(x) ≥ τ
N . Through the multiplicative Chernoff bound:

Pr
(ai)i∈[t]∼Dt

∣∣∣∣∣∣1t
∑
i∈[t]

1ai=x −D(x)

∣∣∣∣∣∣ > τ

10
D(x)

 ≤ 2exp

(
−τ2 ·D(x)

300
· t
)
≤ 2exp (− logN) =

2

N

Where the last inequality is due to the assumption that D(x) ≥ τ
N and the choice of t. Since the

sample (zi)i∈[s] contains O(s) elements, taking the union bound over all elements in (zi)i∈[s]:

Pr
(ai)i∈[s]∼Dt

(
∃i s.t. D(zi) ≥

τ

N
and π(zi) /∈ D(zi) ·

[
1− τ

10
, 1 +

τ

10

])
≤ s · 2

N
= o(1)

Moreover, the sample complexity and runtime of the algorithm are both O(t) = Õ
(
Nτ−3

)
.

Remark 4.14 (Completeness using approximate probabilities). For simplicity of presentaiton, the
protocol’s completeness analysis assumed that the tags provided by the honest prover specified each
sample’s correct bucket. In reality, however, the polynomial-time honest prover can only compute
multiplicative approximations to the true probabilities. With high probability all the approximation
will be quite good, but this still leaves the possibility that the honest prover might tag a sample as
falling in an adjacent bucket (this can only happen to elements that are close to the edges of their
true bucket). The completeness analysis of Section 4.1.1 already contains sufficient slack to allow
for such errors: we elaborate below.
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In more detail: we have shown that the prover obtains with high probability good approximations
(up to a multiplicative factor of τ/10) of the probability of all elements in (zi)i∈[s] with probability
above τ/N . However, this does not imply that all the elements will be placed into their correct

buckets. It is possible that an element x ∈ BD
ℓ will satisfy π(x) ∈

[
e(ℓ+1)τ

N , e
(ℓ+2)τ

N

)
or π(x) ∈[

e(ℓ−1)τ

N , e
ℓτ

N

)
. This will happen to elements that are close to the edges of each bucket.

Our protocol can withstand such errors while maintaining completeness: even if all elements
close to the margins of each bucket are wrongly placed in adjacent buckets, the verifier will still pass
all the tests, and we are still guaranteed that π(zi) ∈ D(zi)[1− τ/10, 1 + τ/10].

The reason behind this is that even though the result is phrased for a bucket partition as defined
in Definition 3.3, in actuality, the verifier in Protocol 4.1.1 simply requires the following conditions
from the bucket-partition:

• Every element in Supp(D) is in exactly one bucket (so that no element is accounted for twice
by aggregating according to buckets).

• If x, y ∈ [N ] are in the same bucket, it holds D(x) ≈ D(y). Specifically, we consider a bucket

partition for which D(y)
D(x) ∈ [e−τ , eτ ].

The second point is important, as it allows the verifier to conclude from the empirical mass of each
bucket, namely vj = q̂j, an approximation of its size, by considering Nvje

−jτ . This quantity is

close, with high probability to Nqℓe
−jτ , which is a close approximation of

∣∣∣BD
j

∣∣∣.
These approximations already come with considerable slack: the true size of bucket j is anywhere

in the interval
[

qj
e(j+1)τ/N

,
qj

ejτ/N

]
, and vj is anywhere in the interval [qj(1− τ), qj(1 + τ)]. This slack

is multiplicative, of magnitude θ(τ), and is accounted for in the protocol, which in fact, allows even
more slack than required.

We interpret the honest’s prover’s approximations to the true probabilities as a fuzzy bucket

partition of the domain,
{
BD,fuzz

ℓ

}
ℓ
, where elements are assigned to “fuzzy” buckets according to

the empirical probabilities learned by the honest prover in Algorithm 4.12.1. Thus, each element in
the support of D lies in exactly one bucket, and (w.h.p. over the honest prover’s samples) for each

bucket ℓ, if x ∈ BD,fuzz
ℓ then D(x) ∈

[
e(ℓ−1/10)τ

N , e
(ℓ+1/10)τ

N

]
. This partition of the domain satisfies

the two conditions given above, with a slightly higher slack in the bucket range (not considerably
larger than before). The extra slack that this partition needs is already accounted for in the protocol’s
completeness analysis.

4.3.3 Soundness of Protocol 4.1.1

Following the ideas outlined in the protocol overview in Section 4.1, the soundness condition claims
that no matter what strategy a cheating prover might employ, if the verifier accepted, then with
high probability, the prover commits to a lower bound for the size of each alleged bucket. I.e. the
verifier is guaranteed that the approximation of the size each bucket j obtained from the prover’s
answers, namely,

vj
ejτ/N

, is bounded from below by roughly
∑

ℓ
q̂ℓ

eℓτ/N
· xℓ,j . Recall:

• For every j, wj is the alleged empirical mass of the j’th bucket under the distribution U[N ],
while mℓ is the true empirical mass of the ℓ’th bucket under U[N ]. By definition of {yℓ,j}ℓ,j ,
it holds that wj =

∑
ℓmℓyℓ,j .
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• As in the previous section, for (almost) every ℓ, it holds mℓ ≈
|BD

ℓ |
N ≈ Nqℓe

−ℓτ

N ≈ q̂ℓe
−ℓτ (recall

that q̂ℓ is strongly concentrated around qℓ).

And at the end of an accepting run, we are also guaranteed through Step (3b) that wj ≈ vje
−jτ .

Putting all of these together, we get that at the end of an accepting run, with high probability:

vje
−jτ ≈ wj ≈

∑
ℓ

mℓyℓ,j ≈
∑
ℓ

q̂ℓe
−ℓτyℓ,j

This is very close to what we actually wish to obtain. We need to replace yℓ,j with xℓ,j , and as a
consequence, we also replace the approximate equality with a lower bound on vje

−jτ . The way we
relate xℓ,j to yℓ,j is based on the unavoidable connection between the prover’s mistags on samples
in S0 and samples in S1: we show that a prover that wishes to mistag the samples drawn by D must
also mistag samples drawn by U[N ] in a similar pattern (see Observation 4.1 for a more detailed
intuition).

Thus, the majority of this section focuses on relating with high probability xℓ,j and yℓ,j for all
bucket pairs (ℓ, j). We show that for significant buckets xℓ,j ≈ yℓ,j . For small buckets we show

instead that q̂ℓe
−ℓτxℓ,j −mℓyℓ,j = Õ(1/s), i.e. mℓyℓ,j cannot be significantly larger than q̂ℓe

−ℓτxℓ,j
(this connection is what compels us to replace the approximate equality with a lower bound).

Instead of analyzing the prover’s response to a sample drawn according to the process described
in the protocol, we analyze the prover’s answer with respect to a sample (zi)i∈[s], and bits (bi)i∈[s]
that are distributed in the same way as the sample and bits drawn by the verifier, but were produced
differently.

Definition 4.15. Consider the joint distribution (Z,B) defined as follows: Z ∼ 1
2D+ 1

2U[N ], and:

B
∣∣
Z=z

=

{
0, w.p. D(z)

D(z)+1/N

1, w.p. 1/N
D(z)+1/N

Let (z1, . . . , zs) and (b1, . . . , bs) respectively be the sample and the bits drawn by V in Protocol
4.1.1. Define the random variable produced by collecting them together S = ((z1, b1) , . . . , (zs, bs)).
For the same s set as in Protocol 4.1.1, consider the the random variable S′ = ((z′1, b

′
1) , . . . , (z

′
s, b

′
s)),

where i ∈ [s], (z′i, b
′
i) is drawn i.i.d. according to distribution (Z,B).

Claim 4.16. Let S and S′ be the random variables as above, then:

∆SD

(
S, S′) = 0

Proof. Note that by definition, for every sample i drawn as in Protocol 4.1.1, (zi, bi) = (x, 1) with
probability 1

2 ·
1
N and (zi, bi) = (x, 0) with probability 1

2D(x), as either bit is chosen with probability
1
2 , and then z is sampled according to either Q or U[N ]. Consider next the probability that (z′i, b

′
i) =

(x, 0). By definition, this is the product of the probability that distribution
(
1
2D + 1

2U[N ]

)
yielded

x, and the probability that the bit chosen then was 0, given that x was sampled. This is:(
1

2
D(x) +

1

2
U[N ](x)

)
· D(x)

D(x) + 1
N

=
1

2
D(x)

Likewise, the probability that (z′i, b
′
i) = (x, 1) is 1

2 ·
1
N .

And so, we conclude that for every x ∈ [N ] and b ∈ {0, 1}, (x, b) is as likely to have been
produced through the process outlined in Protocol 4.1.1 as it is through distribution (Z,B).
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The important difference between S and S′ is that the bits are set after the samples from the
distributions are drawn. Since the prover is not given the bits (bi)i∈[s], its view in Protocol 4.1.1
doesn’t allow it to distinguish whether the sample it receives was drawn through the true process
in Protocol 4.1.1, or each sample was drawn independently from (Z,B). Therefore, for sake of the
analysis in this section, we fix some cheating prover strategy P ∗, and analyze the variables {xℓ,j}ℓ,j
and {yℓ,j}ℓ,j where we think of (zi)i and (bi)i as drawn i.i.d. by (Z,B). Whatever we conclude
from this analysis then transfers to any prover strategy in the protocol. Concretely, consider the
following mental experiment:

Mental Experiment 4.16.1: Alternative Production of the View of Protocol 4.1.1

1. V: draws (z1, . . . , zs) according to 1
2D + 1

2U[N ]. And sends it to P.

2. P: for every i ∈ [s], set π(zi) as in Protocol 4.1.1. Send (π(zi))i∈[s] to V.

3. V: for every i ∈ [s], draw bi ∼ B
∣∣
Z=zi

.

For every i ∈ [s], let tag(zi) = ⌊log (N · π(zi)) /τ⌋. Every prover response in the mental
experiment induces the following sets for every bucket index ℓ and for all j, that are well defined
before (bi)i∈[s] are set:

Aℓ,j =
{
i ∈ [s] : zi ∈ BD

ℓ , tag(zi) = j
}

Claiming that xℓ,j and yℓ,j are close for some pair of bucket indices (ℓ, j) can be now phrased as
a claim about the set Aℓ,j : we wish to show that after setting (bi)i in Mental Experiment 4.16.1

roughly
eℓτ

N
eℓτ

N
+ 1

N

fraction of Aℓ,j will be with its respective bit set to 0, and the remaining roughly

1
N

eℓτ

N
+ 1

N

fraction of Aℓ,j will be set with respective bit 1.

Definition 4.17. For every x ∈ [N ] define the likelihood ratio of x to be rx = D(x)
D(x)+1/N

We show that any sufficiently large enough collection of samples R ⊆ [s] drawn according to
1
2Q + 1

2U[N ] will be partitioned to two sets S0 ∩ R and S1 ∩ R, of sizes roughly
∑

i∈R rzi and∑
i∈R (1− rzi) respectively, with high probability.

Claim 4.18. Fix (z1, . . . , zs). Let R ⊆ [s]. Assume
∑

i∈R rzi > 1
τ2
. With probability of at least

1− 2e−
1
3
τ2

∑
i∈R rzi over the choice of (bi)i∈R:∣∣∣∣∣|R ∩ S0| −

∑
i∈R

rzi

∣∣∣∣∣ < τ
∑
i∈R

rzi

Similarly, assuming
∑

i∈R (1− rzi) >
1
τ2
, with probability at least 1− 2e−

1
3
τ2

∑
i∈R(1−rzi )∣∣∣∣∣|R ∩ S1| −

∑
i∈R

(1− rzi)

∣∣∣∣∣ < τ
∑
i∈R

(1− rzi)
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Proof. Define 1bi=0 to be the indicator that bi = 0. Recall that once (z1, . . . , zs) is set, E[1bi=0] =

Pr (B = 0 | Z = zi) =
D(zi)

D(zi)+1/N = rzi . Therefore, by linearity of expectation:

E [|R ∩ S0|] =
∑
i∈R

E [1bi=0] =
∑
i∈R

rzi

And so, to wrap up the claim we just need to show that the random variable |R ∩ S0| is concentrated
around its mean, and indeed, by the multiplicative Chernoff Bound, since every bit bi is chosen
independently of the other:

Pr

(∣∣∣∣∣|R ∩ S0| −
∑
i∈R

rzi

∣∣∣∣∣ > τ
∑
i∈R

rzi

)
≤ 2e−

1
3
τ2

∑
i∈R rzi

Note that |R ∩ S0| assumes integer values, and the above inequality might be wrong if |R ∩ S0| = 0.
However, assuming

∑
i∈R rzi > 1

τ2
, with high probability, |R ∩ S0| ̸= 0 and the inequality above

holds.
An analogous argument applies for |R ∩ S1|.

We apply this claim over the sets Aℓ,j and Sℓ, defined as such:

Definition 4.19. For every ℓ, define Sℓ =
{
i ∈ [s] : zi ∈ BD

ℓ

}
.

Recall that our first goal was to prove that xℓ,j ≈ yℓ,j under some condition on the indices.

Note that by definition
|Aℓ,j∩S0|
|Sℓ∩S0| = xℓ,j , and likewise

|Aℓ,j∩S1|
|Sℓ∩S1| = yℓ,j . And so, we apply the previous

claim over these sets:

Claim 4.20. Fix (z1, . . . , zs), as well as some prover response (tag(z1), . . . , tag(zs)), that induces

sets Aℓ,j ⊆ [s]. Let (ℓ, j) be such that
∑

i∈Aℓ,j
rzi ,

∑
i∈Aℓ,j

(1− rzi) >
log(1000b(N,τ))

τ2
. For every such

pair (ℓ, j), with probability at least 1− δℓ,j over the choice of (bi)i∈[s],it holds that:

|Aℓ,j ∩ S0|
|Sℓ ∩ S0|

∈
|Aℓ,j |
|Sℓ|

·
[
e−4τ , e4τ

]
As well as:

|Aℓ,j ∩ S1|
|Sℓ ∩ S1|

∈
|Aℓ,j |
|Sℓ|

·
[
e−4τ , e4τ

]
Where δℓ,j = 4

(
e
− 1

3
τ2

∑
i∈Aℓ,j

rzi + e
− 1

3
τ2

∑
i∈Aℓ,j

(1−rzi )
)
.

Proof. Let ℓ be some bucket index as assumed in the claim above. By Claim 4.18, with probability

at most 2e
− 1

3
τ2

∑
i∈Aℓ,j

rzi : ∣∣∣∣∣∣|Aℓ,j ∩ S0| −
∑

i∈Aℓ,j

rzi

∣∣∣∣∣∣ ≥ τ
∑

i∈Aℓ,j

rzi (14)
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Also with probability at most 2e−
1
3
τ2

∑
i∈Sℓ rzi :∣∣∣∣∣∣

∣∣∣Sℓ ∩ S0

∣∣∣−∑
i∈Sℓ

rzi

∣∣∣∣∣∣ ≥ τ
∑
i∈Sℓ

rzi (15)

Since by definition
∣∣Sℓ
∣∣ ≥ |Aℓ,j |, as Aℓ,j ⊆ Sℓ, taking union bound on these two events, we learn

that with probability at most 4e
− 1

3
τ2

∑
i∈Aℓ,j

rzi both conditions apply.

Also note that for every i such that zi ∈ BD
ℓ , D(zi) ∈

[
eℓτ

N , eτ · eℓτN
)
, which implies rzi ∈[

eℓτ/N
eℓτ/N+1/N

, eτ · eℓτ/N
eℓτ/N+1/N

)
. And so:∣∣∣∣∣∣

∑
i∈Aℓ,j

rzi − |Aℓ,j |
eℓτ/N

eℓτ/N + 1/N

∣∣∣∣∣∣ ≤ (1− eτ ) · |Aℓ,j |
eℓτ/N

eℓτ/N + 1/N
(16)

As well as:

∣∣∣∣∣∣
∑
i∈Sℓ

rzi −
∣∣∣Sℓ
∣∣∣ eℓτ/N

eℓτ/N + 1/N

∣∣∣∣∣∣ ≤ (1− eτ ) ·
∣∣∣Sℓ
∣∣∣ eℓτ/N

eℓτ/N + 1/N
(17)

Putting Inequalities (14),(15),(16), and (17) together, we get that with probability at least

4e
− 1

3
τ2

∑
i∈Aℓ,j

rzi over choice of (bi)i∈[s], the following inequalities hold:

|Aℓ,j ∩ S0| ≤ (1 + τ)
∑

i∈Aℓ,j

rzi ≤ eτ · eτ |Aℓ,j | ·
eℓτ/N

eℓτ/N + 1/K
= e2τ |Aℓ,j | ·

eℓτ/N

eℓτ/N + 1/K

|Aℓ,j ∩ S0| ≥ (1− τ)
∑

i∈Aℓ,j

rzi ≥ e−τ · e−τ |Aℓ,j | ·
eℓτ/N

eℓτ/N + 1/K
= e−2τ |Aℓ,j | ·

eℓτ/N

eℓτ/N + 1/K

As well as: ∣∣∣Sℓ ∩ S0

∣∣∣ ∈ ∣∣∣Sℓ
∣∣∣ eℓτ/N

eℓτ/N + 1/K
·
[
e−2τ , e2τ

]
We thus get that with probability at least 4e

− 1
3
τ2

∑
i∈Aℓ,j

rzi ,
∣∣Sℓ ∩ S0

∣∣ ̸= 0 and:

|Aℓ,j ∩ S0|
|Sℓ ∩ S0|

∈
|Aℓ,j |
|Sℓ|

·
[
e−4τ , e4τ

]
An analogous argument applies for the intersections with S1. Taking a union bound over both
conditions yields the desired result.

In particular, note that for pairs of indices (j, ℓ) such that Aℓ,j is large enough as to have in

expectation sufficiently many samples assigned bit 0 and 1 (concretely, at least Ω̃(1/τ2) samples in
expectation for each category), it holds that xℓ,j ≈ yℓ,j :
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Corollary 4.21. Every pair (ℓ, j) such that
∑

i∈Aℓ,j
rzi ,

∑
i∈Aℓ,j

(1− rzi) > log(1000b(N,τ))
τ2

, with

probability at least 1− δℓ,j over the choice of (bi)i∈[s], where δℓ,j is defined as in the previous claim,
it holds that:

xℓ,j
yℓ,j
∈ [e−8τ , e8τ ]

Proof. Let ℓ and j be bucket indices satisfying the conditions of the corollary. By definition,

xℓ,j =
|Aℓ,j∩S0|
|Sℓ∩S0| , as well as yℓ,j =

|Aℓ,j∩S1|
|Sℓ∩S1| . Therefore, Claim 4.20, we get

xℓ,j

yℓ,j
∈ [e−8τ , e8τ ]

Recall that the verifier checks that wj ≈ vje
−jτ . By definition, wj =

∑
ℓmℓyℓ,j . And so, if the

verifier accepted, then:

vje
−jτ ≈

∑
ℓ

mℓyℓ,j

In order to prove that the soundness condition holds, we need to show that for every j,
∑

ℓmℓyℓ,j
is larger than roughly

∑
ℓ q̂ℓxℓ,je

−ℓτ . In order to show this, we show that with high probability, for
all j and every ℓ, one of the following must hold:

• mℓyℓ,j ≈ qℓe
−ℓτxℓ,j

• mℓyℓ,j is not significantly smaller than qℓe
−ℓτxℓ,j .

Starting with the first condition, the pairs of indices (ℓ, j) for which the former holds are those
for which xℓ,j ≈ yℓ,j . Formally:

Claim 4.22. With probability 0.99 over the choice of (z1, . . . , zs), any prover response (π(z1), · · ·π(zs)),
induces sets {Aℓ,j}ℓ,j, and satisfies the condition that with probability at least 0.98 over the choice of

(bi)i∈[s], for all bucket indices pairs (ℓ, j) that satisfy
∑

i∈Aℓ,j
rzi ,

∑
i∈Aℓ,j

(1− rzi) >
log(1000b(N,τ))

τ2
,

it holds that: ∣∣∣mℓ · yℓ,j − q̂ℓe
−ℓτxℓ,j

∣∣∣ < 15τ · q̂ℓe−ℓτxℓ,j

Proof. For all bucket indices pairs (ℓ, j) that satisfy the conditions of the claim, the following apply:

• We conclude that
∣∣BD

ℓ

∣∣ has to be big: since Aℓ,j ⊆ Sℓ, the fact that
∑

i∈Aℓ,j
(1− rzi) >

log(1000b(N,τ))
τ2

, implies that
∑

i∈Sℓ (1− rzi) >
log(1000b(N,τ))

τ2
, and since E[s1·mℓ] =

∑
i∈Sℓ (1− rzi) =

|BD
ℓ |
N . With overwhelming probability s1 ∈ [s/3, 2s/3] (see Claim 4.3.1), and so, with high

probability: ∣∣BD
ℓ

∣∣
N
≥ 3

2s

∑
i∈Sℓ

(1− rzi) ≥
log (1000b(N, τ))

sτ2

By Claim 4.10, we conclude that with probability at least 0.99, every ℓ that satisfies the above
conditions also satisfies: ∣∣∣mℓ − qℓe

−ℓτ
∣∣∣ ≤ 2τqℓe

−ℓτ

And so: ∣∣∣mℓxℓ,j − qℓe
−ℓτxℓ,j

∣∣∣ < 2τ · qℓe−ℓτxℓ,j (18)
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• By Corollary 4.21, with probability at least 0.99, over all buckets satisfying:∑
i∈Aℓ,j

rzi ,
∑

i∈Aℓ,j

(1− rzi) >
log (1000b(N, τ))

τ2

We get that
yℓ,j
xℓ,j
∈ [e−8τ , e8τ ]. This implies:

|mℓyℓ,j −mℓxℓ,j | <
(
e8τ − 1

)
mℓxℓ,j < 9τ ·mℓxℓ,j (19)

Therefore, taking the union bound, with probability at least 0.98, for all ℓ and j satisfying the
conditions in the statement, by putting Inequalities (18) and (19) together, we conclude that:∣∣∣mℓyℓ,j − qℓe

−ℓτxℓ,j

∣∣∣ ≤ |mℓyℓ,j −mℓxℓ,j |+
∣∣∣mℓxℓ,j − qℓe

−ℓτxℓ,j

∣∣∣ ≤ 9τmℓxℓ,j+2τqℓe
−ℓτxℓ,j ≤ 12τqℓe

−ℓτxℓ,j

Where the last inequality is justified through Inequality (18). Finally, observing that
∑

i∈Aℓ,j
rzi >

log(1000b(N,τ))
τ2

, also implies as above that qℓ > log(1000b(N,τ))
sτ2

. We get through Claim 4.9 that
|qℓ − q̂ℓ| ≤ (eτ − 1) qℓ. Plugging this in the inequality above yields the desired result.

Moving on to pairs (ℓ, j) that don’t satisfy
∑

i∈Aℓ,j
rzi ,

∑
i∈Aℓ,j

(1− rzi) > log(1000b(N,τ))
τ2

, we

relate the quantities mℓyℓ,j and qℓe
−ℓτxℓ,j additively, using Markov’s inequality.

Claim 4.23. Fix (z1, . . . , zs), as well as prover’s response (π(z1), . . . , π(zs)), which induces sets

{Aℓ,j}ℓ,j. With probability at least 0.99, every pair (ℓ, j) for which
∑

i∈Aℓ,j
(1− rzi) ≤

log(1000b(N,τ))
τ2

satisfies:

mℓyℓ,j − q̂ℓxℓ,je
−ℓτ ≥ −1

s
· 200b(N, τ)2 · log (1000b(N, τ))

τ2
(20)

Proof. Since mℓyℓ,j ≥ 0, suffice to show that with probability of at least 0.99 over the choice of

b ∈ {0, 1}s for all (ℓ, j) such that
∑

i∈Aℓ,j
(1− rzi) ≤

log(1000b(N,τ))
τ2

, it holds that:

q̂ℓxℓ,je
−ℓτ ≤ 1

s
· 200b(N, τ)2 · log (1000b(N, τ))

τ2

Indeed, by Definition 4.17, for every i ∈ BD
ℓ , rzi ≤ e(ℓ+1)τ (1− rzi), and by extension:

E
bi∼B

∣∣∣
Z=zi

[s0q̂ℓxℓ,j ] =
∑

i∈Aℓ,j

rzi ≤ e(ℓ+1)τ
∑

i∈Aℓ,j

(1− rzi) ≤ e(ℓ+1)τ log (1000b(N, τ))

τ2

From which we get that by Markov’s Inequality, with probability at most 1
100b(N,τ)2

, it holds that:

s0q̂ℓxℓ,j ≥ 100b(N, τ)2 · e(ℓ+1)τ log (1000b(N, τ))

τ2
(21)

Taking union bound over all such buckets, with probability at least 0.99, all pairs (ℓ, j) for which∑
i∈Aℓ,j

(1− rzi) ≤
log(1000b(N,τ))

τ2
, also satisfy:

s0q̂ℓxℓ,j ≤ 100b(N, τ)2 · e(ℓ+1)τ log (1000b(N, τ))

τ2
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Since with high probability s0 ∈ s
2 · [e

−τ , eτ ], we conclude that for all such pairs, with probability
at least 0.99:

q̂ℓe
−ℓτxℓ,j ≤

100eτ b(N, τ)2

s0
· log (1000b(N, τ))

τ2
≤ 1

s
· 200b(N, τ)2 · log (1000b(N, τ))

τ2

In order to account for all possible indices pairs, we are left to deal with those indices (ℓ, j) for

which
∑

i∈Aℓ,j
rzi ≤

log(1000b(N,τ))
τ2

. We focus our attention only to the case where eℓτ

N > τ2

N .

Claim 4.24. Fix (zi)i∈[s], as well as prover’s response (π(zi))i∈[s], which induces sets {Aℓ,j}ℓ,j.
W.p. at least 0.99 over all (ℓ, j) such that

∑
i∈Aℓ,j

rzi ≤
log(1000b(N,τ))

τ2
and eℓτ

N ≥
τ
N , it holds that:

mℓyℓ,j − q̂e−ℓτxℓ,j ≥ −
1

s
· 200b(N, τ)2 · log (1000b(N, τ))

τ4

Proof. This proof follows the same line of reasoning as the proof of Claim 4.23. First, observe that:

E
bi∼B

∣∣∣
Z=zi

[
s0q̂ℓxℓ,je

−ℓτ
]
= e−ℓτ

∑
i∈Aℓ,j

rzi ≤
1

τ2
· log (1000b(N, τ))

τ2
≤ log (1000b(N, τ))

τ4
(22)

Next, as in Claim 4.23, applying both Markov’s inequality with the union bound, alongside the
fact that s0 ∈ s

2 [e
−τ , eτ ] with high probability, yields the desired result.

Claim 4.25 (Soundness of Protocol 4.1.1). No matter what cheating strategy a cheating prover
might employ, with probability at least 0.95 over the samples of the verifier, either the verifier
rejects, or for every j such that vj ≥ τ2

logN :

vje
−jτ ≥ (1− 18τ)

∑
ℓ:eℓτ≥τ2

q̂ℓe
−ℓτxℓ,j − poly

(
logN, τ−1

)
· 1
s

Proof. Assume a run of Protocol 4.1.1 terminated with the verifier accepting. Let (z1, . . . , zs) be
the samples drawn by the verifier and sent to the prover, and (π(z1), . . . π(zs)) the prover’s response

that induces sets Aℓ,j . Since the verifier accepted, we know that for every j such that vj ≥ τ2

logN :∣∣wj − vje
−jτ
∣∣ ≤ 4τvje

−jτ ≤ 5τwj (23)

Denote GOOD =
{
(ℓ, j) :

∑
i∈Aℓ,j

rzi ,
∑

i∈Aℓ,j
(1− rzi) ≤

log(1000b(N,τ))
τ2

,
}
, and BAD the collection of

all other pairs. By definition, wj =
∑

ℓmℓyℓ,j . By Claims 4.22, 4.23, and 4.24, with probability at
least 0.95 over (z1, . . . zs), the prover’s randomness, and b ∈ {0, 1}s, we get:

wj =
∑
ℓ

mℓyℓ,j

≥
∑

ℓ:(ℓ,j)∈GOOD

mℓyℓ,j +
∑

ℓ:(ℓ,j)∈BAD,eℓτ≥τ2

mℓyℓ,j

≥ (1− 15τ)
∑

ℓ:(ℓ,j)∈GOOD

q̂ℓe
−ℓτxℓ,j +

∑
ℓ:(ℓ,j)∈BAD,eℓτ≥τ2

q̂ℓe
−ℓτxℓ,j − poly(logN, τ−1) · 1

s

≥ (1− 15τ)
∑

ℓ:eℓτ≥τ2

q̂ℓe
−ℓτxℓ,j − poly(logN, τ−1) · 1

s
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5 Collisions Matching Test

In the previous section, a verifier with black-box sample access to a distribution D over domain

[N ] drew s = Õ
(√

N
)
poly

(
τ−1

)
samples (zi)i∈[s] for some τ ∈ (0, 0.01), and obtained the colletion

of claims (π(zi))i∈[s], which allegedly approximates (D(zi))i∈[s]. In this section, we present an
algorithm (tester) that given sample access to D, the input ((zi, π(zi)))i∈[s], as well as parameters

N ∈ N and σ ∈ (0, 1), where σ is assumed to satisfy σ = Ω(
√
τ), satisfies the following conditions:

Tester Completeness. If for all i ∈ [s], π(zi) ≈ D(zi) the tester will accept with high probability

Tester Soundness. If the claims (π(zi))i∈[s] are σ-far from (D(zi))i∈[s] in the following sense:

1
s

∑
i∈[s]

(
1−min

{
D(zi)
π(zi)

, π(zi)
D(zi)

})
≥ σ, then with high probability either the tester rejects, or the

following condition holds: let {vj}j , {q̂ℓ}ℓ and {xℓ,j}ℓ,j induced by ((zi, π(zi)))i∈[s] be defined as
explained in Section 4. There must be some bucket index j with significant alleged mass for which
Nvje

−jτ (i.e. the alleged size of the bucket), satisfies:

Nvje
−jτ ≤

(
1− Ω(σ2)

) ∑
ℓ:eℓτ≥τ2

Nq̂ℓxℓ,je
−ℓτ (24)

Recall that in the previous section we showed that if the run of the Bucket Size Verification
Protocol terminated with the verifier accepting, it must be that for all j with significant alleged mass,
the alleged size of the j’th (N, τ)-bucket, Nvje

−jτ , is lower bounded by (1−O(τ))
∑

ℓ:eℓτ≥τ2 Nq̂ℓxℓ,je
−ℓτ .

And so, conflating these two conditions one against the other later in Section 6, we show that
it is possible to choose τ = O(σ2) and s = Õ(

√
N)poly(σ−1), so that if the prover provided

tags that are σ-far from the truth in the above-mentioned sense, it cannot be that with high
probability both the Bucket Size Verification Protocol and the tester presented in this section pass
with high probability, as if they had, there would be some bucket j for which Nvje

−jτ will be
bounded from above by

(
1− Ω(σ2)

)∑
ℓ:eℓτ≥τ2 Nq̂ℓxℓ,je

−ℓτ , which is smaller than its lower bound of

(1−O(τ))
∑

ℓ:eℓτ≥τ2 Nq̂ℓxℓ,je
−ℓτ , reaching contradiction. More on the combination of the protocol

and the tester in Section 6.

Tester Outline. Tester 5.1.1 works as follows: it produces from the tagged sample (zi, π(zi))
the histogram {vj}j as explained in Protocol 4.1.1. If the tags are correct, we expect that for all ℓ

vj = q̂ℓ ≈ qℓ = D(BD
ℓ ). Then, it draws s fresh samples from D, T = (t1, . . . , ts). By choice of s,

there will be a lot of collisions between elements of (zi)i∈[s] and (ti)i∈[s]. For every alleged bucket j,
we define the following variables for counting the collisions involving samples tagged as belonging
to bucekt j:

C̃j = |{(k,m) ∈ [s]× [s] : zk = tm, tag(zk) = j}|

To estimate the expected value of this variable, consider that there are s ·vj samples in S tagged as
belonging to bucket j. If the tags are correct, each sample is of probability approximately ejτ/N ,
and so, we expect that:

ET∼Ds

[
C̃j

]
= (s · vj) · s ·

eℓτ

N
=

s2

N
vje

ℓτ
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And indeed, this is exactly what the tester checks, it goes over every (significantly heavy) bucket

j, and checks that C̃j ≈ s2

N vje
jτ . If the tags are correct, from concentration bounds we get

that this check passes with high probability for all j. If the tags are far from being correct,

i.e. 1
s

∑
i∈[s]

(
1−min

{
D(zi)
π(zi)

, π(zi)
D(zi)

})
≥ σ, then, we argue that it must be that there exists some

(significantly heavy) bucket j for which: Nvje
−jτ ≤

(
1− Ω(σ2)

)∑
ℓ:eℓτ≥τ2 Nq̂ℓxℓ,je

−ℓτ . This is
because the collision matching test rejects with high probability any tags that don’t satisfy the
following approximate equality for every j:

vj
ejτ

N
≈
∑
ℓ

q̂ℓxℓ,j
eℓτ

N

And we show that satisfying this condition on every bucket, implies an upper bound on the alleged
size of some bucket j (this is inspired by techniques in [HR22], and illustrated in Section 2).

Proposition 5.1. There exists a tester T that gets as input parameters σ ∈ (0, 0.1), N ∈ N, sample
access to a distribution D over domain [N ], and a sample (zi)i∈[s] that was drawn i.i.d. by D of

size s = Θ̃
(√

N
)
poly(1/τ), where τ = O(σ2), alongside the tuple (π(zi))i∈[s], where π(zi) ∈ (0, 1]

for all i ∈ [s]. D is assumed to satisfy D(x) ≤ τ√
N

for all x ∈ [N ]. The tester’s sample complexity

and runtime are both Õ
(√

N
)
poly(τ−1), and at the end of the run, the following apply:

• Completeness. If for all i ∈ [s], π(zi)
D(zi)

∈ [e−τ , eτ ], then with probability at least 0.9 over the

choice of (zi)i∈[s], and the samples drawn by T , T accepts.

• Soundness. Let {vj}j be the (N, τ)-histogram induced by ((zi, π(zi)))i∈[s] (see Protocol 4.1.1
for details). If:

1

s

∑
i∈[s]

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})
> σ

Then, with probability at least 0.9 over (zi)i∈[s] and T ’s samples, there exists at least one

bucket index j such that ejτ

N ≥
τ
N , vj ≥ τ2

logN and:∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ ≥

(
1 + 0.2σ2 − 10τ

)
vje

−jτ (25)

Where {vj}j and {xℓ,j}ℓ,j are induced by ((zi, π(zi)))i∈[s] as defined in Definitions 4.7 and 4.2
respectively.

We show that Tester 5.1.1 meets the conditions specified in Proposition 5.1.

5.1 Completeness of Tester 5.1.1

The proof that Tester 5.1.1 satisfies the completeness condition outlined in Proposition 5.1 follows
Herman and Rothblum [HR22], and is restated in Appendix A, Claim A.2.

We thus proceed to show that Tester 5.1.1 satisfies the soundness condition in Proposition 5.1.
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Tester 5.1.1: Collisions Matching Tester

Input: sample access to distribution D over domain [N ], parameters N ∈ N, σ, τ ∈ (0, 1) such that

τ = O(σ2), as well as a tagged sample S = ((zi, π(zi)))i∈[s], for s = Õ(
√
N)poly(τ−1), such that (zi)i∈[s]

was drawn i.i.d. by D. Assume that for all x ∈ [N ] D(x) ≤ τ√
N
.

1. Set {vj}j and (tag(zi))i∈[s] as in Protocol 4.1.1.

2. Draw s fresh samples from D, denote this sample as T = (t1, t2, . . . , ts). For every (N, τ)-bucket
index j, define:

C̃j = |{(k,m) ∈ [s]× [s] : zk = tm, tag(zk) = j}|

3. Reject unless for every bucket j such that vj ≥ τ2

logN , and ejτ

N ≥
τ
N , it holds that:∣∣∣∣C̃j −

s2

N
vje

jτ

∣∣∣∣ ≤ 5τ
s2

N
vje

jτ

5.2 Soundness of Tester 5.1.1

Let {xℓ,j}ℓ,j be defined with respect to the tagged sample ((zi, π(zi)))i∈[s] as in Definition 4.2.

We wish to show that if 1
s

∑
i∈[s]

(
1−min

{
D(zi)
π(zi))

, π(zi))D(zi)

})
then there exists some bucket index j

such that vj ≥ τ2

logN and ejτ ≥ τ that satisfies Inequality (25). We actually show a slightly stronger
condition. We show that under the above mentioned assumption there exists with high probability
some bucket index j that satisfies vj ≥ τ2

logN , ejτ ≥ τ , as well as q̂LxL,j ≤ τvj , for which Inequality

(25) holds. Recall that by definition q̂L is the empirical mass of BD
L =

{
x ∈ [N ] : D(x) ≤ τ2

N

}
.

Since qL ≤ N · τ2N ≤ τ2, we expect many alleged buckets to satisfy this condition. We define:

Definition 5.2. Fix sample (zi)i∈[s] as well as prover response (π(zi))i∈[s], and let {vj}j be the
alleged (N, τ)-histogram induced by the tagged sample. Denote the set of good bucket indices J ={
j : vj ≥ τ2

logN , ejτ ≥ τ, q̂LxL,j ≤ τvj

}
We first observe that by definition we can rewrite the soundness condition as follows:

Claim 5.3. If 1
s

∑
i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
> σ, then, given that τ < σ2 and σ < 0.1, it holds

that: ∑
j

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|τ

)
≥ 0.99σ
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Proof.

1

s

∑
i∈[s]

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})
=

1

s

∑
j

∑
i:tag(zi)=j

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})

=
1

s

∑
j

∑
ℓ

∑
i:tag(zi)=j,zi∈BD

ℓ

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})

≤ e2τ
1

s

∑
j

∑
ℓ

sq̂ℓxℓ,j

(
1−min

{
ejτ/N

eℓτ/N
,
eℓτ/N

ejτ/N

})

≤ e2τ
∑
j

∑
ℓ

q̂ℓxℓ,j

(
1−min

{
ejτ/N

eℓτ/N
,
eℓτ/N

ejτ/N

})
= e2τ

∑
j

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|τ

)
Where the first inequality is due to the fact that by definition for every z ∈ BD

ℓ and tag(z) = j

it holds that both D(z) ∈
[
eℓτ

N , e
(ℓ+1)τ

N

)
and π(z) ∈

[
ejτ

N , e
(j+1)τ

N

)
, as well as since the number of

samples i ∈ [s] satisfying zi ∈ BD
ℓ and tag(zi) = j is by definition sq̂ℓxℓ,j . We conclude that since

σ < 0.1 and τ < σ2 that the soundness conditions implies that:∑
j

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|τ

)
≥ 0.99σ

From now on, we will consider the soundness condition to be
∑

j

∑
ℓ q̂ℓxℓ,j

(
1− e−|ℓ−j|τ) ≥

0.99σ.
Next, we show it must be that some j ∈ J for which the sum

∑
ℓ q̂ℓxℓ,j

(
1− e−|ℓ−j|τ) is relatively

large, i.e. there are alleged buckets that satisfy the conditions of set J and account for a significant
portion of the distance:

Claim 5.4. Let σ ∈ (0, 0.01) be such that τ ≤ σ2. Assume
∑

i∈[s]

(
1−min

{
Q̃(zi)
Q(zi)

, Q(zi)

Q̃(zi

})
> σ.

With probability at least 0.99 over the choice of (zi)i∈[s], there exists some j ∈ J such that:∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
> 0.8vjσ

Proof. As explained above, assuming the soundness condition implies that:∑
j

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
≥ 0.99σ

Denote J1 =
{
j : vj ≤ τ2

logN

}
. It follows immediately that

∑
j∈J1

∑
ℓ q̂ℓxℓ,j =

∑
j∈J1 vj ≤ b(N, τ) ·

τ2

logN ≤ τ .
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Similarly, we define J2 = {j : q̂LxL,j > τvj}. Observe that for every j ∈ J2:∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j ≤ vj ≤
q̂LxL,j

τ

Therefore, with probability at least 0.99 over the choice of (zi)i∈[s]:

∑
j∈J2

∑
ℓ

q̂ℓxℓ,j ≤
∑
j∈J2

 ∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j + q̂LxL,j


≤
∑
j∈J2

(q̂LxL,j/τ + q̂LxL,j)

≤
(
1

τ
+ 1

)∑
j∈J2

q̂LxL,j

≤
(
1

τ
+ 1

)
q̂L

≤
(
1

τ
+ 1

)
100qL

≤
(
1

τ
+ 1

)
100τ2

≤ 100τ + 100τ2

≤ 0.1σ

Where the third to last inequality is due to Markov’s Inequality, since E(zi)i∈[s]
[q̂L] = qL; the second

to last from the fact that since the domain of D is [N ], then qL ≤ N · τ2N ≤ τ2, and the last inequality
is due to the assumption over σ and τ . Finally, define J3 =

{
j : ejτ < τ

}
:∑

j∈J3

∑
ℓ

q̂ℓxℓ,j ≤
∑
j∈J3

∑
ℓ

q̂ℓxℓ,j ≤
∑
j∈J3

vj ≤ 2τ ≤ 0.01σ

Since J = {j : j /∈ J1 ∪ J2 ∪ J3}, we conclude:∑
j∈J

vj =
∑
j∈J

∑
ℓ

q̂ℓxℓ,j ≥ 1− 0.15σ

Since for all ℓ and j,
(
1− e−|ℓ−j|) ≤ 1, we get:

0.99σ ≤
∑
j

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
≤
∑
j∈J

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
+
∑
j /∈J

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
≤
∑
j∈J

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
+
∑
j /∈J

vj

≤
∑
j∈J

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
+ 0.15σ
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We get: ∑
j∈J

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
≥ 0.85σ

Equivalently, denote
∑

j∈J vj = α ≥ 0.95.:

∑
j∈J

(vj/α)
∑
ℓ

q̂ℓxℓ,j
vj/α

(
1− e−|ℓ−j|

)
≥ 0.85σ

And by an averaging argument, there exists some j ∈ J such that
∑

ℓ
q̂ℓxℓ,j

vj/α

(
1− e−|ℓ−j|) ≥ 0.85σ.

Since α ≥ 0.95, this is equivalent to:∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)
≥ 0.8vjσ

We next show that for all j ∈ J we get a strong approximation of the variable C̃j as a function
of s, q̂ℓ and xℓ,j :

Claim 5.5. With probability at least 0.99 over the choice of (z1, . . . , zs), for every prover response
(π(zi))i∈[s], characterised by variables {xℓ,j}ℓ,j it holds that:

E[C̃j ] ∈

 ∑
ℓ:eℓτ≥τ2

e−τxℓ,j
s2

N
q̂ℓe

ℓτ , e2τ
∑

ℓ:eℓτ≥τ2

xℓ,j
s2

N
q̂ℓe

ℓτ


And with probability of at least 0.99 over the choice of T :∣∣∣C̃j − ET [C̃j ]

∣∣∣ ≤ τET [C̃j ]

The proof of this claim follows Herman and Rothblum [HR22], and is restated in the language
of this result in Appendix A.

We thus can conclude that if the run of Tester 5.1.1 ended with accepting the input, then, with
high probability over both (zi)i∈[s] and the samples drawn by T , C̃j ≈

∑
ℓ xℓ,j

s2

N q̂ℓe
ℓτ is close to

s2

N vje
−jτ . Formally:

Claim 5.6. With probability at least 0.95, if Tester 5.1.1 accepted, then for every j ∈ J it holds
that: ∣∣∣∣∣∣s

2

N

∑
ℓ:eℓτ≥τ2

xℓ,j q̂ℓe
ℓτ − s2

N
vje

jτ

∣∣∣∣∣∣ ≤ 10τ · s
2

N
vje

jτ

Proof. From Claim 5.5, we know that with probability at least 0.99, for every j ∈ J :∣∣∣C̃j − E
[
C̃j

]∣∣∣ ≤ (eτ − 1)E
[
C̃j

]
We conclude that: ∣∣∣C̃j − E

[
C̃j

]∣∣∣ ≤ (e2τ − 1
)
C̃j
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And since E[C̃j ] ∈
[∑

ℓ:eℓτ≥τ2 e
−τxℓ,j

s2

N q̂ℓe
ℓτ , e2τ

∑
ℓ:eℓτ≥τ2 xℓ,j

s2

N q̂ℓe
ℓτ
)
, this implies:∣∣∣∣∣∣C̃j −

s2

N

∑
ℓ:eℓτ≥τ2

xℓ,j q̂ℓe
ℓτ

∣∣∣∣∣∣ ≤ (e4τ − 1
)
C̃j

If the tester accepted, it also holds that for the same set of indices j that:∣∣∣∣C̃j −
s2

N
vje

jτ

∣∣∣∣ ≤ 5τ
s2

N
vje

jτ

And through the triangle inequality, we conclude:∣∣∣∣∣∑
ℓ

xℓ,j
s2

N
q̂ℓe

ℓτ − s2

N
vje

jτ

∣∣∣∣∣ ≤ (e4τ − 1)C̃j + 5τ
s2

N
vje

jτ (26)

≤
(
e4τ − 1

)
eτ

s2

N
vje

jτ + 5τ
s2

N
vje

jτ (27)

≤ 10τ · s
2

N
vje

jτ (28)

Where the last inequality stems from the assumptions that τ < 0.1. Dividing by s2

N we get that if
Tester 5.1.1 accepted, then, with probability at least 0.95 over (z1, . . . , zs) and the samples drawn
by the tester, for every j ∈ J :∣∣∣∣∣∣

∑
ℓ:eℓτ≥τ2

s2

N
q̂ℓxℓ,je

ℓτ − s2

N
vje

jτ

∣∣∣∣∣∣ ≤ 10τ · s
2

N
vje

jτ

We now proceed to show that this relation, namely,
∑

ℓ xℓ,j
s2

N q̂ℓe
ℓτ ≈ s2

N vje
jτ , which is deduced

from the collision matching test assuming the verifier accepted, can be used to show that the alleged
size of the j’th bucket, expressed as

vj
ejτ/N

is in fact smaller than the expression
∑

ℓ
q̂ℓ

eℓτ/N
· xℓ,j .

In order to show this, we first argue the following lemma:

Lemma 5.7. For every j ∈ J , if
∣∣∣vjejτ −∑ℓ:eℓτ≥τ2 q̂ℓxℓ,je

ℓτ
∣∣∣ ≤ γ · vjejτ , then, there exists a

function mj(ℓ) such that: mj(ℓ) ∈
[
eℓτ

N , e
jτ

N

]
∪
[
ejτ

N , e
ℓτ

N

]
, and:

vj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

vje−jτ

)
≥ 1

2

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
1

mj(ℓ)2

(
eℓτ

N
− ejτ

N

)2

− vj(γ + 3τ)

Proof. Fix j ∈ J . By Taylor’s theorem, for every x ∈ R≥0:

log

(
1

x

)
= log

(
N

ejτ

)
− N

ejτ

(
x− ejτ

N

)
+

1

2
· 1

(m(ejτ/N, x))2

(
x− ejτ

N

)2

Where m(ejτ/N, x) ∈
[
x, e

jτ

N

]
∪
[
ejτ

N , x
]
. Set mj(ℓ) = m(ejτ/N, eℓτ/N). We get:
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∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j log

(
N

eℓτ

)
=

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j log

(
N

ejτ

)
−

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
N

ejτ

(
eℓτ

N
− ejτ

N

)

+
1

2

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
1

(mj(ℓ))2

(
eℓτ

N
− ejτ

N

)2

Equivalently:∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j log

(
N

eℓτ

)
−

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j log

(
N

ejτ

)
= −

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
N

ejτ

(
eℓτ

N
− ejτ

N

)
(29)

+
1

2

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
1

(mj(ℓ))2

(
eℓτ

N
− ejτ

N

)2

(30)

First, consider the expression on the left-hand side
∑

ℓ:eℓτ≥τ2 q̂ℓxℓ,j log
(

N
eℓτ

)
−
∑

ℓ:eℓτ≥τ2 q̂ℓxℓ,j log
(

N
ejτ

)
.

Denote αj =
∑

ℓ:eℓτ≥τ2 q̂ℓxℓ,j = vj − q̂LxL,j . Recall that by definition, for all j ∈ J , αj ≥ (1− τ)vj .
Therefore, through Jensen’s Inequality and the concavity of the log function:∑

ℓ:eℓτ≥τ2

q̂ℓxℓ,j log

(
N

eℓτ

)
−

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j log

(
N

ejτ

)
= αj

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
αj

log

(
N

eℓτ

)
− αj log

(
N

ejτ

)
(31)

≤ αj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,jNe−ℓτ

αj

)
− αj log

(
N

ejτ

)
(32)

= αj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

αje−jτ

)
(33)

≤ vj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

(1− τ)vje−jτ

)
(34)

≤ vj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

vje−jτ

)
+ 2τvj (35)

Next, turning our attention to the right-hand side. From the fact that
∑

ℓ:eℓτ≥τ2 q̂ℓxℓ,j ≥
(1− τ)vj , as well as the assumption

∣∣∣vjejτ −∑ℓ:eℓτ≥τ2 q̂ℓxℓ,je
ℓτ
∣∣∣ ≤ γ · vjejτ :∣∣∣∣∣∣

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
N

ejτ

(
eℓτ

N
− ejτ

N

)∣∣∣∣∣∣ =
∣∣∣∣∣∣ Nejτ

 ∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
eℓτ

N
−

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
ejτ

N

∣∣∣∣∣∣ (36)

=
N

ejτ

∣∣∣∣∣
(∑

ℓ

q̂ℓxℓ,j
eℓτ

N

)
− vj(1− τ)

ejτ

N

∣∣∣∣∣ (37)

≤ γ · vj + τvj (38)

≤ (γ + τ)vj (39)
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Plugging the above inequality, as well as Inequality (31) into Equation (29), we get:

vj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

vje−jτ

)
+ 2τvj ≥

1

2

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
1

(mj(ℓ))2

(
eℓτ

N
− ejτ

N

)2

− vj (γ + τ) (40)

Rearranging, we get that for every j ∈ J for which
∣∣∣vjejτ −∑ℓ:eℓτ≥τ2 q̂ℓxℓ,je

ℓτ
∣∣∣ ≤ γ · vjejτ , we get:

vj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

vje−jτ

)
≥ 1

2

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
1

(mj(ℓ))2

(
eℓτ

N
− ejτ

N

)2

− vj (γ + 3τ) (41)

Recapping, we proved that with high probability over the choice of samples S and T , if
Tester 5.1.1 accepted, for every bucket index j ∈ J , it holds that the difference between the
alleged size of bucket j,

(
Nvje

−jτ
)
, and the expression

(
N
∑

ℓ q̂ℓxℓ,je
−ℓτ
)
, depends on γ · vj and

1
2

∑
ℓ q̂ℓxℓ,j

1
mj(ℓ)2

(
eℓτ

N −
ejτ

N

)2
; as well as that there exists a j0 ∈ J for which

∑
ℓ q̂ℓxℓ,j0

(
1− e−|ℓ−j0|

)
>

0.8vjσ.

We combine both these ideas to to bound the expression
∑

ℓ q̂ℓxℓ,j0
1

mj0
(ℓ)2

(
eℓτ

N −
ej0τ

N

)2
:

Claim 5.8. Let σ ∈ (0, 0.01) be such that τ ≤ σ2. Assume 1
s

∑
i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
> σ,

then there exists some j0 ∈ J for which:∑
ℓ

q̂ℓxℓ,j0
1

mj0(ℓ)
2

(
eℓτ

N
− ej0τ

N

)2

≥ 0.5vj0σ
2

Proof. By Claim 5.4, with probability at least 0.99 there exists some j0 ∈ J for which:∑
ℓ:eℓτ≥τ2

∑
ℓ

q̂ℓxℓ,j0

(
1− e−|ℓ−j0|

)
> 0.8vj0σ

For every j ∈ J , by definition of mj(ℓ), it holds that:∑
ℓ

q̂ℓxℓ,j
1

mj(ℓ)2

(
eℓτ

N
− ejτ

N

)2

≥
∑
ℓ

q̂ℓxℓ,j min

{(
N

eℓτ

)2

,

(
N

ejτ

)2
}(

eℓτ

N
− ejτ

N

)2

(42)

≥
∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|

)2
(43)

In particular, for j0, since j0 ∈ J , it holds that
∑

ℓ:eℓτ≥τ2 q̂ℓxℓ,j0 = αj0 ≥ (1 − τ)vj0 , and through
Jensen’s Inequality:∑

ℓ

q̂ℓxℓ,j0

(
1− e−|ℓ−j0|

)2
= αj0

∑
ℓ

q̂ℓxℓ,j0
αj0

(
1− e−|ℓ−j0|

)2
≥ αj0

(∑
ℓ

q̂ℓxℓ,j0
αj0

(
1− e−|ℓ−j0|

))2

≥ 0.6αj0σ
2

≥ 0.5vj0σ
2
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Proposition 5.9 (Soundness of Tester 5.1.1). With high probability over the choice of (zi)i∈[s],
for every set of claims (π(zi))i∈[s], if T accepted, then, with probability of at least 0.95 over the

samples drawn by T , if
∑

i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
≥ σ it holds that there exists some j such

that vj ≥ τ2

logN , ejτ

N ≥
τ
N and:∑

ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ ≥

(
1 + 0.2σ2 − 10τ

)
vje

−jτ

Proof. By Claim 5.6, if the tester accepted, then with probability at least 0.9, it holds that for

every j ∈ J
∣∣∣ s2N ∑ℓ xℓ,j q̂ℓe

ℓτ − s2

N vje
jτ
∣∣∣ ≤ 10τ · s2N vje

jτ .

Through Lemma 5.7, we conclude that for all such j, plugging γ = 10τ , it also holds that there

exists some mj(ℓ) ∈
[
eℓτ

N , e
jτ

N

]
∪
[
ejτ

N , e
ℓτ

N

]
, for which:

vj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

vje−jτ

)
≥ 1

2

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j
1

mj(ℓ)2

(
eℓτ

N
− ejτ

N

)2

− 10τvj

Finally, by Claim 5.8, there must be some j ∈ J for which:

vj log

(∑
ℓ:eℓτ≥τ2 q̂ℓxℓ,je

−ℓτ

vje−jτ

)
≥ 0.2vjσ

2 − 10τvj

Rearranging the last inequality, we get:∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ ≥ e0.2σ

2−10τvje
−jτ ≥

(
1 + 0.2σ2 − 10τ

)
vje

−jτ
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6 Full Protocol

In this section we prove the Theorem 1.1: a doubly-efficient proof system for any label-invariant
property. The full construction ties together the Collision-Matching Tester of Section 5 and the
Bucket Size Verification Protocol of Section 4. Tying these two components together requires
that the distribution satisfy the following promise: there should be no “heavy” elements (whose
probabilities are above τ√

N
for the chosen accuracy parameter τ , see above). Note that a distribution

with only heavy elements can be easily learned (i.e. obtaining an explicit description of a distribution
D′ that is arbitrarily close to D) by the verifier without any interaction and low sample complexity
(roughly O(

√
N) samples, see Theorem 3.15), while a distribution solely supported on light elements

(i.e. with probability smaller than τ√
N
) requires significantly more samples (potentially Ω(N)) to

be learned without interaction. Therefore, the main focal point of our construction deals with
verifying properties with distribution that are harder to learn, and assumes that no heavy elements
are found in the support. Nonetheless, a general distribution might have both light and heavy
elements. In this section we address this difficulty, as well as put together all the tools presented
in previous sections.
The full construction proceeds in two steps:

1. In Section 6.1, we present a doubly-efficient protocol for reconstructing the histogram of a
distribution without heavy elements, combining the tools presented in the previous sections,
putting together the protocol of Section 4 and the collision-matching test of Section 5.

2. In Section 6.2, we show how to obtain an approximate histogram of a general distribution.
We recall a reduction of [HR22] that allows us to essentially “get rid” of any heavy elements:
in a nutshell, the verifier can use distribution learning to identify all the heavy elements and
approximate their probabilities. Then, if these elements account for less than 1−σ of the mass
(for some distance parameter σ ∈ (0, 0.1)), then there is enough mass on light elements. The
verifier then runs the protocol of Section 6 on the light-elements through rejection sampling,
and combines both histograms together.

3. In Section 6.3 we refer again to [HR22] who show how to leverage a verified approximate
histogram of D to a proof system for label-invariant distribution properties given sample
access to D.

6.1 Handling Light Elements

Theorem 6.1. There exists a 2-message interactive protocol between an honest verifier and a
(potentially malicious) prover, where the verifier receives as input parameters σ ∈ (0, 0.1) and
100 < N ∈ N, as well as sample access to a distribution D over domain [N ]. Set τ = 1

500σ
2.

Assume D(x) ≤ τ√
N
. The communication complexity, verifier sample complexity, and verifier

runtime are all s = Õ(
√
N) · poly(σ−1). Given sample access to the distribution D, the honest

prover requires with high probability Õ (N) poly(σ−1) samples and runtime.
At the end of the interaction, the verifier rejects or outputs ((zi, π(zi)))i∈[s], where (zi)i∈[s] is a

sample of size s drawn i.i.d. by D, such that:

• If the prover is honest, then with probability at least 0.9, the verifier doesn’t reject, and

((zi, π(zi)))i∈[s] satsifies
1
s

∑
i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
= O(τ).
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• Whatever strategy a dishonest prover follows, with probability at most 0.1 over the verifier’s
coin tosses and samples, they accept and ((zi, π(zi)))i∈[s] satisfies:

1

s

∑
i∈[s]

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})
≥ σ

Protocol 6.1.1: Doubly-Efficient Histogram Retrieval Protocol

Input: parameters N ∈ N, σ ∈ (0, 1), as well as sample access to distribution D over domain [N ]. D is
assumed to satisfy ∀x, D(x) ≤ τ√

N
for τ = 1

500σ
2.

Goal: obtain with high probability ((zi, π(zi)))i∈[s], such that (zi)i∈[s] is a sample drawn i.i.d. by D, and

1
s

∑
i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
≤ σ, for s = Õ(

√
N)poly

(
σ−1

)
.

1. V-P: run Protocol 4.1.1 with the distributionD, parameter τ , and s = θ̃
(√

N
)
·poly(σ−1). If protocol

ended without rejection, obtain a tagged sample ((zi, π(zi)))i∈[s] for some s = θ̃
(√

N
)
· poly(σ−1).

2. V: Run Tester 5.1.1 on the obtained tagged sample ((zi, π(zi)))i∈[s], with parameters N, σ, τ . Reject
if tester rejected.

3. V: output ((zi, π(zi)))i∈[s]

6.1.1 Completeness of Protocol 6.1.1

Assume the prover is honest. We can conclude the following:

Step (1) of Protocol 6.1.1. After running Step (1) of Protocol 6.1.1, the verifier obtains a
tagged sample ((zi, π(zi)))i∈[s], from which they can deduce a (N, τ)-histogram {vj}j , as given in
Protocol 4.1.1. If the prover is honest, then by the completeness condition of Protocol 4.1.1 outlined
in Proposition 4.1.1, at the end of the step it holds that with probability at least 0.95:

• The verifier accepts.

• For every i ∈ [s], π(zi) ∈ D(zi) [e
−τ , eτ ], and so: 1

s

∑
i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
= O(τ) =

O(σ2)

Step (2) of Protocol 6.1.1 . Assuming the conditions above hold, then the input to Tester

5.1.1 is a correctly tag sample S = ((zi, tag(zi)))i∈[s], with s = Õ
(√

N
)
poly(σ−1), and by the

completeness condition of Tester 5.1.1, outlined in Proposition 5.1, with probability at least 0.99,
the Tester accepts.
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6.1.2 Soundness of Protocol 6.1.1

In order to show soundness, we assume that Step (1) passed without rejection, and that the verifier

obtained a tagged sample ((zi, π(zi)))i∈[s] such that 1
s

∑
i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
≥ σ. We

proceed to show that with high probability Step (2) results in rejection.
To understand how we achieve this, we first review what we know after having passed Step (1).

With probability at least 0.95 over the randomness of V , based on the soundness of Protocol 4.1.1
outlined in Section 4 we are guaranteed the following: define {vj}j as well as {xℓ,j}ℓ,j as in Section

4. Every bucket index j such that ejτ

N ≥
τ
N and vj ≥ τ2

logN satisfies:

vje
−jτ ≥ (1− 18τ)

∑
ℓ:eℓτ≥τ2

q̂ℓe
−ℓτxℓ,j − f

(
logN, τ−1

)
· 1
s

(44)

Where f
(
logN, τ−1

)
= (logN)t1 ·

(
1
τ

)t2 , for some t1, t2 ∈ N. If we assume that the tester at Step
(2) passed then we are also guaranteed that with high probability there exists some bucket index

j such that ejτ ≥ τ , vj ≥ τ2

logN and:∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ ≥

(
1 + 0.2σ2 − 10τ

)
vje

−jτ (45)

That means that there exists some bucket j for which:

(1− 18τ)
∑

ℓ:eℓτ≥τ2

q̂ℓe
−ℓτxℓ,j − f

(
logN, τ−1

)
· 1
s
≤ vje

−jτ ≤ 1

(1 + 0.2σ2 − 10τ)

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ

(46)

We show that assuming 1
s

∑
i∈[s]

(
1−min

{
π(zi)
D(zi)

, D(zi)
π(zi)

})
≥ σ, we can choose s = θ̃

(√
N
)
poly

(
σ−1

)
for which this cannot be, and so, it cannot be that with high probability both the Bucket Size
Verification Protocol passes and so does the Collisions Matching Tester.

Claim 6.2. There exists a choice of s = Õ
(√

N
)
poly(σ−1) such that for every j ∈ J :

(1− 18τ)
∑

ℓ:eℓτ≥τ2

q̂ℓe
−ℓτxℓ,j − f

(
logN, τ−1

)
· 1
s
>

1

(1 + 0.2σ2 − 10τ)

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ (47)
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Proof. First, note that:

(1− 18τ)
∑

ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ − 1

1 + 0.2σ2 − 10τ

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ

=

(
1− 18τ − 1

1 + 0.2σ2 − 10τ

) ∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ

≥
(
1− 18τ −

(
1− 0.1σ2 + 5τ

)) ∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ

≥
(
0.1σ2 − 23τ

) ∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ

≥
(
0.1σ2 − 23τ

)
·
√
Nτ2

2 logN

Where the last inequality stems from:

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ ≥

√
N

τ

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j ≥ (1− τ)vj

√
N

τ
≥
√
Nτ2

2 logN

Which is justified by the assumption that j ∈ J , as well as the assumption qℓ = 0 for ℓ satisfying
eℓτ

N ≥
τ√
N
.

Next, since τ = 1
500σ

2, we get that:

(1− 18τ)
∑

ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ− 1

1 + 0.2σ2 − 10τ

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
−ℓτ ≥

(
0.1σ2 − 23τ

)
·
√
Nτ2

2 logN
≥ 0.05

σ2τ2
√
N

2 logN

Thus, if we set s such that 1
sf
(
logN, τ−1

)
≤ 0.05σ2τ2

√
N

2 logN , we’re done. Indeed, we conclude the
proof by setting:

s = 50
√
N · f(logN, τ−1) · logN

σ2τ2
= Õ(

√
N)poly(τ−1)

6.1.3 On ∆RL-distance guaranatees

In [HR22] the authors consider the ∆RL distance measure between distribution (see Definition
3.9). In short, for two distributions ∆RL(P,Q) (called the relabeling distance between P and Q)
can be thought of as the smallest distance between P (equivalently Q) and a permutation of Q
(equivalently, P ), where a permutation of distribution is defined in Definition 3.8.

As we are interested in the distance between D and a label-invariant distribution property,
which is a set closed under permutations. Two distributions that are permutation of one another
might be very far in ∆SD, however, if one is close to a label-invariant property, so is the other. And
so, when talking about label invariant properties, it is useful to consider relabeling distance, ∆RL.

As a consequence, [HR22] use ∆RL distance to characterize the soundness condition of their
histogram reconstruction protocol. They require that their proof system will reject histograms
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{aj}j for which ∆RL({aj}j , D) ≥ σ with high probability. In this work we use a different sense of
soundness. We require the verifier to reject with high probability interactions that produce a tagged

sample (zi, π(zi)))i∈[s] that satisfies 1
s

∑
i∈[s]

(
1−min

{
D(zi)
π(zi)

, π(zi)
D(zi)

})
> σ. This measure is more

delicate, as it sums the individual mislabeling per each sample, instead of considering the implicit
aggregate distance measure of ∆RL. In this section we show that the new soundness condition is
compatible with the one in [HR22]. That is, if {aj}j was obtained through our protocol, then if

∆RL(D, {aj}j) ≥ σ, then it must be that 1
s

∑
i∈[s]

(
1−min

{
D(zi)
π(zi)

, π(zi)
D(zi)

})
≥ σ/4. That is, running

our protocol with σ/4 guarantees that every histogram rejected by [HR22] with high probability
is also rejected by our protocol, despite having a different soundness condition. This allows us to
plug our result in the setting offered by [HR22].

Remark 6.3. The main benefit of considering the soundness condition with respect to the quantity
1
s

∑
i∈[s]

(
1−min

{
D(zi)
π(zi)

, π(zi)
D(zi)

})
is that it allows us to argue more delicately about the mistagging,

as the prover is penalized per mistagged sample. This is a basis for extending the protocol to non-
label invariant properties, where we want to understand how far each sample is from it’s true tag.

Claim 6.4. Fix ((zi, π(zi)))i∈[s] as defined in the previous sections, and let {vj}j be the (N, τ)-
histogram induced by it. If ∆RL({vj}j , D) ≥ σ, then:

1

s

∑
i∈[s]

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})
≥ σ/4

Proof. Through the proof of Claim 5.3, we learn that if:∑
j

∑
ℓ

q̂ℓxℓ,j

(
1− e−|ℓ−j|τ

)
≥ σ/4 (48)

Then:
1

s

∑
i∈[s]

(
1−min

{
π(zi)

D(zi)
,
D(zi)

π(zi)

})
≥ σ/4

Therefore, assuming ∆RL({vj}j , D) ≥ σ, we show that Inequality (48) holds. First, we show this
under the assumption that {vj}j is a histogram of a (roughly)-uniform distribution. I.e. there
exists some j0 for which vj0 = 1. This also implies that xℓ,j = 1 if j = j0, and xℓ,j = 0 otherwise.
Then we decompose a general histogram to many instances of this case.

Step 1. There exists some bucket index j0 s.t. vj0 = 1. In this case, we want to show:∑
ℓ

q̂ℓxℓ,j0

(
1− e−|ℓ−j0|τ

)
=
∑
ℓ

q̂ℓ

(
1− e−|ℓ−j0|τ

)
≥ σ/5 (49)

Through [HR22] it holds that with high probability over (zi)i∈[s], ∆RL(D, {q̂ℓ}ℓ) ≤ 5τ , as {q̂ℓ}ℓ
represents the empirical histogram of D for a large sample.

Let D′ be a distribution over [N ] consistent with (N, τ)-histogram {q̂ℓ}ℓ, and assume w.l.o.g.
that for all x ∈ [N − 1], D′(x) ≥ D′(x + 1). Let P be a distribution consistent with {vj}j (i.e. P
has only one bucket - the j0’th bucket, and is thus almost uniform), such that ∆RL(D

′, {vj}j) =
∆SD(D

′, P ), which also implies that for all x ∈ [N ], P (x) ≥ P (x+ 1) (as showed in [HR22]).

46



Define:

A1 =
{
i ∈ Supp(D′) ∩ Supp(P ) : D′(i) ≥ P (i) ̸= 0

}
A2 =

{
i ∈ Supp(D′) ∩ Supp(P ) : D′(i) < P (i) ̸= 0

}
A3 = Supp(D′) \ Supp(P )

A4 = Supp(P ) \ Supp(D′)

Observe that σ − 5τ ≤ ∆SD (P,D′) =
∑

x∈A1
(D′(x)− P (x)) +

∑
x∈A3

D′(x). Denote σ′ = σ − 5τ .
Thus, it must be that either

∑
x∈A1

(D′(x)− P (x)) ≥ σ′/2, or
∑

x∈A3
D′(x) ≥ σ′/2. In order to

prove that Inequality (49), we consider the following case analysis:

Case 1.1: assume
∑

x∈A1
(D′(x)− P (x)) ≥ σ′/2 . define:

Agood =

{
i ∈ A1 :

D′(i)− ej0τ

N

D′(i)
> σ′/4

}

Abad =

{
i ∈ A1 :

D′(i)− ej0τ

N

D′(i)
≤ σ′/4

}

Note that:

∑
i∈Abad

(
D′(i)− ej0τ

N

)
=
∑

i∈Abad

D′(i)

(
D′(i)− ej0τ

N

)
D′(i)

≤ σ′

4

∑
i∈Abad

D′(i) ≤ σ′

4

Since
∑

i∈A1

(
D′(i)− ej0τ

N

)
≥ σ′/2, this implies that:∑

i∈Agood

(
D′(i)− ej0τ/N

)
≥ σ′/4
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And so: ∑
ℓ

q̂ℓxℓ,j0

(
1− e−|ℓ−j0|τ

)
≥
∑
ℓ:ℓ≥j0

q̂ℓ

(
1− e−|ℓ−j0|τ

)
≥
∑
ℓ:ℓ≥j0

q̂ℓ

(
1− ej0−ℓτ

)
≥
∑
ℓ:ℓ≥j0

q̂ℓ
eℓτ/N

(
eℓτ

N
− ej0

N

)

≥ (1− 2τ)
∑
ℓ:ℓ≥j0

∑
i∈BD′

ℓ

(
eℓτ

N
− ej0

N

)

≥ (1− 2τ)2
∑
i∈A1

(
D′(i)− ej0

N

)

≥ (1− 2τ)2
∑

i∈Agood

(
D′(i)− ej0

N

)
≥ (1− 2τ)2σ′/4

≥ σ/5

Case 1.2: assume
∑

x∈A3
D′(i) ≥ σ′/2. In particular it holds that A4 = ϕ. This second case is

divided into two subcases, according to the value of pA2
min = min{D′(i) : i ∈ A2}.

Case 1.2.1: assume pA2
min < ej0τ

2N , and
∑

i∈A3
D′(i) ≥ σ′/2. Recall that we assumed without

loss of generality that D′(i) ≥ D′(i + 1) as well as P (i) ≥ P (i + 1), for all i ∈ [N ]. Therefore,
in particular, we conclude that for every i ∈ A3, D

′(i) ≤ pA2
min - this is justified by observing that

A2 ⊆ Supp(P ), while A3 ∩ Supp(P ) = ϕ, and so, we deduce that for all j ∈ A3 and k ∈ A2, j > k.

Therefore, for every i ∈ A3, (e
j0τ/N −D′(i)) ≥ ej0τ

2N , which implies: (ej0τ/N−D′(i))
D′(i) ≥ ej0τ/2N

D′(i) ≥ 1.
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And so: ∑
ℓ

q̂ℓxℓ,j0

(
1− e−|ℓ−j0|τ

)
≥

∑
ℓ: e

ℓτ

N
≤ ej0τ

2N

q̂ℓ

(
1− e(ℓ−j0)τ

)

≥
∑

ℓ: e
ℓτ

N
≤ ej0τ

2N

q̂ℓ
ej0τ/N

(
ej0

N
− eℓτ

N

)

=
∑

ℓ: e
ℓτ

N
≤ ej0τ

2N

eℓτ/N

ej0τ/N
· q̂ℓ
eℓτ/N

(
ej0

N
− eℓτ

N

)

≥ (1− 2τ)
∑

ℓ: e
ℓτ

N
≤ ej0τ

2N

eℓτ/N

ej0τ/N
·
∣∣∣BD′

ℓ

∣∣∣ (ej0

N
− eℓτ

N

)

≥ (1− 2τ)2
∑
i∈A3

D′(i)

ej0τ/N
·
(
ej0

N
−D′(i)

)

≥ (1− 2τ)2
∑
i∈A3

D′(i)

ej0τ/N
· e

j0

2N

≥ (1− 2τ)2
∑
i∈A3

D′(i)

2

≥ σ/5

Case 1.2.2: Assume pA2
min ≥

ej0τ

2N and
∑

i∈A3
D′(i) ≥ σ′/2 . This implies that A4 = ϕ. We have

that ∆SD(D
′, P ) =

∑
i∈A2

(P (i)−D′(i)):∑
ℓ

q̂ℓxℓ,j0

(
1− e−|ℓ−j0|τ

)
≥

∑
ℓ: e

ℓτ

N
∈
[
ej0τ

2N
, e

j0τ

N

] q̂ℓ
(
1− e(ℓ−j0)τ

)

≥
∑

ℓ: e
ℓτ

N
∈
[
ej0τ

2N
, e

j0τ

N

]
q̂ℓ

ej0τ/N

(
ej0

N
− eℓτ

N

)

≥
∑

ℓ: e
ℓτ

N
∈
[
ej0τ

2N
, e

j0τ

N

] ·
1

2

q̂ℓ
eℓτ/N

(
ej0

N
− eℓτ

N

)

≥ (1− 2τ)

2

∑
ℓ: e

ℓτ

N
∈
[
ej0τ

2N
, e

j0τ

N

]
∣∣∣BD′

ℓ

∣∣∣ (ej0

N
− eℓτ

N

)

≥ (1− 2τ)2

2

∑
i∈A2

(
ej0

N
−D′(i)

)
≥ σ/5

And we conclude that in any case,
∑

ℓ q̂ℓxℓ,j0
(
1− e−|ℓ−j0|τ

)
≥ σ/5. We now prove the general case:
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Case 2: {vj}j is supported on multiple buckets. We rewrite Inequality (48) we wish to prove
as follows: ∑

j

vj
∑
ℓ

q̂ℓxℓ,j
vj

(
1− e−|ℓ−j|τ

)
≥ σ/5

Consider thus a new distribution P consistent with {vj}j that’s defined as follows: there exists a

subdomain Xj ⊆ [N ] such that D′∣∣
Xj

has the conditional histogram
{

q̂ℓxℓ,j

vj

}
f(ℓ,j)

Where for every

j, ℓ, define f(ℓ, j) = log
(
N · eℓτ

Nvj

)
/τ , and P

∣∣
Xj

is uniform over
vj

ejτ/N
elements, and also satisfies

∆RL(D
′∣∣
Xj

, P
∣∣
Xj

) = ∆SD(D
′∣∣
Xj

, P
∣∣
Xj

) = σj . From the above analysis, we get that for every ℓ:

∑
ℓ

q̂ℓxℓ,j
vj

(
1− e−|ℓ−j|τ

)
≥ σj/5

And so, taking weighted sum according vj on both sides of the inequality, we get:∑
j

vj
∑
ℓ

q̂ℓxℓ,j
vj

(
1− e−|ℓ−j|τ

)
≥
∑
j

vjσj/5

And since
∑

j vj∆SD

(
D
∣∣
Xj

, P
∣∣
Xj

)
≥
∑

j vjσj/4 ≥ σ/4, we get:

∑
j

vj
∑
ℓ

q̂ℓxℓ,j
vj

(
1− e−|ℓ−j|τ

)
≥
∑
j

vjσj/5 = σ/5

6.2 Handling General Distributions

In the previous section we showed how to handle distributions with no heavy elements. In this
section we demonstrate how to decompose a general distribution’s support into light and heavy
subdomains, how to approximate the conditional histograms of D for both sections, and then how
to combine them for a complete histogram of D. We do so by following [HR22], and so, we only
bring here this procedure in broad strokes. We refer the reader to the IP for verified histogram
reconstruction from [HR22] for further details.

6.2.1 Short overview of [HR22] IP for verified histogram reconstruction

Given distance parameter σ, and accuracy parameter τ ≤ 1
500σ

2, the verifier divides the domain
into two subsets Xlight and Xheavy, obtains an approximate (N, τ)-histogram of D restricted to
these subdomains, and then proceeds to combine the results obtained on each subdomain into one
verified histogram for D, {aj}j , such that if the prover is honest, with high probability the verifier
accepts and ∆RL(D, {aj}j) = O(τ); and no matter how the prover tries to cheat, at the end of the
interaction, with high probability, either the verifier rejects or ∆RL(D, {aj}j) = O(σ2).
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Indentifying the heavy elements. The verifier, on its own (i.e. without interacting with

the prover), draws sufficiently many samples to identify a set WD =
{
x ∈ [N ] : D(x) ≥ τ√

N

}
of

bounded size.
This is simply done by considering the set Xheavy to be the set of distinct elements observed

after taking Õ(
√
N/τ2) samples from D. W.h.p. all elements with probability at least τ√

N
will

appear in this set at least once, i.e. WD ⊆ Xheavy (note that Xheavy might also contain light
elements, this is fine, the focus is to capture all the heavy elements). Let Xlight be the complement,
i.e. ([N ] \ Xheavy). We can estimate the probabilities of the sets Xheavy and Xlight by D up to
σ/100 accuracy using poly(1/σ) samples. Note that if distribution D has no or very few heavy
elements, we’ll get that the estimate D (Xheavy) is very small.

Finding the histogram of D conditioned on both the heavy subdomain and the light
subdomain. We now proceed with a case analysis: we’d like to obtain verified histograms of both
D
∣∣
Xheavy

and D
∣∣
Xlight

, after having identified Xheavy as explained above. If both sets have weight

(by D) that is sufficiently bounded away from 0, then we can do so by obtain sufficiently many
samples from each of them (and, for Xlight, interacting with the prover). If, on the other hand, one
of the two sets has tiny probability, then we might not be able to obtain sufficiently many samples
from it, but on the other hand it will not affect D’s histogram (because the set’s total probability
is small), and we can safely ignore it. We need only verify the histogram of the other set (from
which we can sample, since its probability is close to 1).

For Xheavy, if our estimate on its probability is less than least σ/9, then we can safely ignore
it. Otherwise, we learn its histogram, and observe that in this case, we know that Xheavy’s true
probability by D is at least σ/10, and so we can learn its histogram up to a σ/10 statistical distance
using the folklore distribution learner (see Section 3).4 We can sample from D

∣∣
Xheavy

using rejection

sampling, since its weight is sufficiently large. Thus, using also the fact that |Xheavy| = Õ
(√

N/τ
)
,

we can learn a good enough approximation to the histogram using Õ
(√

N
)
poly(τ−1) samples from

D.
For Xlight, if our estimate on its probability is less than least σ/9, then we can safely ignore it.

Otherwise, similarly to the above, we know that w.h.p. Xlight’s probability by D is at least σ/10.
In this case, we run a verified histogram protocol outlined in the previous section to obtain the
tagged sample (zi, π(zi))i∈[s] of the distribution D

∣∣
Xlight

, from which we can deduce the histogram

of D
∣∣
Xlight

, up to ∆RL distance σ/10. Observe that we can use rejection sampling to implement

sample-access to D
∣∣
Xlight

via samples form D (with an overhead of at most O(1/σ) samples from D

per sample from D
∣∣
Xlight

), so we can indeed run the protocol on D
∣∣
Xlight

(paying the aforementioned

overhead).
To wrap up, if our estimate on the weight of either of the two sets is smaller than σ/9, then

w.h.p. its true weight is less than σ/8, and we can safely ignore it. We learn the other one to
within distance σ/10, so the total distance from the learned histogram to the true one is smaller
than 0.9σ with high probability. If both sets have empirical weight greater than σ/10, then we
learn the two histograms and compose them into a single global histogram. W.h.p. the result will

4In fact, we learn the explicit distribution D′ over domain Xheavy, guaranteed to be σ/10 close in statistical
distance to D

∣∣
Xheavy

with high probability, not just the histogram
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be at distance smaller than 0.9σ from the true distribution of D′. For more details, we refer the
reader to the fuller exposition in [HR22], and the IP for verified histogram reconstruction.

6.3 From Doubly Efficient Histogram Verification to Doubly Efficient Verification
of Label-Invariant Distribution Properties

In order to get from doubly efficient histogram reconstruction protocol, as presented here, to a
proof system for tolerantly-verifying a large collection of label invariant distribution properties, the
reader is referred to Section 4 of [HR22]. We explain here how this is achieved, but omit details.

Recall the setting of Theorem 1.1. Let P be some label-invariant distribution property. The
verifier get as input N ∈ N, parameters 0 ≤ εc < εf ≤ 1, as well as black-box sample access to
distribution D over domain [N ]. Denote ρ = εf − εc. We want a proof system that with high
probability achieves the following:

• Completeness. If ∆SD (D,P) ≤ εc, the verifier accepts with high probability.

• Soundness. If ∆SD (D,P) ≥ εf , the verifier rejects with high probability.

• The verifier sample complexity, runtime, and the protocol communication complexity are all

Õ
(√

N
)
poly

(
ρ−1
)
.

• The prover runs in time Õ(N)poly
(
ρ−1
)

Consider the following protocol:

1. Obtain a verified approximate histogram of D. Run the protocol outlined in Section
6.2 with σ = ρ

3 , and τ = 1
500σ

2. At the end of the run, either the verifier rejected, or they
have obtained an (N, τ)- histogram {aj}j that satisfies ∆RL(D, {aj}j) ≤ ρ/3.

The verifier now knows a good approximation of the histogram of D. From here, it needs to
determine whether D is εc-close or εf -far from P. This is done through the following procedure:

2. Obtain a histogram of a distribution inside P close to D. The prover provides a
histogram {bj}j so that there exists a distribution D′ consistent with {bj}j such that D′ ∈ P,
and ∆SD(D

′, D) ≤ εc.

Now, the verifier needs to figure out two things: (i) whether {bj}j is indeed consistent with some
distribution inside PN . If so, since P is label-invariant, it means that all distributions consistent
with {bj}j are in PN (or τ -close to one); (ii) whether there exists a distribution D′ consistent with
{bj}j which is εc-close to D.

The second point can be easily checked through an algorithm given in [HR22]. The first point
however is tricky. In order to efficiently produce {bj}j by the prover and in order to find a procedure
that checks that {bj}j is consistent with some distribution in P we actually limit ourselves to only
those label-invariant distribution properties that admit such procedures. Formally:

Definition 6.5 (Doubly-efficient approximate decision procedure). For every N ∈ N, and distribution
property P, denote PN = P ∩∆N . P has doubly-efficient approximate decision procedures if there
exist two algorithms Acheck and Aproduce as follows:
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Procedure Acheck runs in time poly(logN, τ−1), gets as input the domain size N , accuracy
parameter τ , distance parameter σ ∈ (0, 1), and a (N, τ)-histogram {pj}j. There exists a function
µ(N, σ) = poly(1/ logN, σ) (µ specifies a minimum sensitivity requirement on the accuracy parameter
τ) s.t. for every integer N , τ ≤ µ(N, σ), (N, τ)-histogram {pj}j, and σ > 0:

• If there exists a distribution D ∈ PN consistent with {pj}j, then Acheck accepts.

• If every distribution D ∈ ∆N consistent with {pj}j satisfies ∆RL(D,PN ) ≥ σ, Acheck rejects.

Aproduce gets black-box sample access to the distribution D, which is assumed to satisfy ∆SD(D,PN ) ≤
εc, as well as parameters N, τ, εc, and εf , it has runtime and sample complexity of magnitude

Õ(N)poly
(
(εf − εc)

−1
)
, and produces a histogram {bj}j such that: {bj}j is consistent with some

D′′ ∈ PN and ∆RL(D, {bj}j) ≤ εc +
εf−εc
10 .

And so, if we assume P admits doubly-efficient approximate decision procedures, the honest
prover can produce the histogram {bj}j efficiently, and the verifier can check that {bj}j is close to
{aj}j , run the decision procedure, and accept if both checks pass.

Completeness and Soundness. Completeness is immediate from the completeness of all steps
involved. Consider next that D is εf -far from P. Then, if the verifier in the protocol outlined in
Section 6.2 didn’t reject the histogram obtained, then with high probability ∆RL (D, {aj}j) ≤ σ =
ρ/3. Then, consider {bj}j , if there doesn’t exist a distribution consistent with {bj}j inside PN , the
verifier will reject. Therefore, assume that there is such a distribution. Next, it must hold that
∆RL({bj}j , D) ≥ εf , which means that: ∆RL({aj}j , {bj}j) ≥ ∆RL({bj}j , D) − ∆RL({aj}j , D) ≥
εf − ρ > εc + ρ/3. And we get that the test fails. And the verifier rejects with high probability

Prover Complexity. The prover has to run two procedures: 1. Protocol 6.1.1, as part of the
proof system outlined in Section 6.2. This requires it to run in time Õ(N)poly(ρ−1); 2. It needs to
provide {bj}j , which can be produced efficiently through Aproduce in time Õ(N)poly(ρ−1), assuming
that P has a doubly-efficient approximate decision procedure.

We remark that producing proofs for properties with Aproduce that runs in time super-linear is
possible as well, but it will result with higher runtime for the prover.

About doubly-efficient decision procedures. We consider the existence of doubly efficient
decision procedures to be a mild assumption on the distribution property. The reader is referred to
[HR22] for more further details on the check-procedure, as well as examples of explicit algorithms
for natural distribution properties.

In this work, we also require the existence of Aproduce, which was not required in [HR22].
We consider this additional requirement as an only slightly stronger assumption. This is since
in time quasi-linear in N , the honest prover can obtain an explicit description of a distribution
D′ that is

εf−εc
100 -close to D. A possible implementation of Aproduce can simply change D′ to

obtain some description of D′′ (the histogram of which will be sent to the verifier) such that
∆SD(D

′′, D′) ≤ εc +
εf−εc
100 , and D′′ ∈ PN . For properties such as being at distance δ from U[N ],

or having entropy smaller than K, the process of obtaining D′′ for D′ requires only Õ(N) runtime
(indeed, for these properties, a histogram ofD′′ can even be obtained in sublinear time by computing
it directly form the histogram of D′).
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A Collisions Concentration

Assume D is a distribution over domain [N ] that satisfies that for every x ∈ [N ], D(x) ≤ τ√
N

with

parameters. Let S be an i.i.d. sample of size s drawn by D. Let {q̂ℓ}ℓ,{xℓ,j}ℓ,j be as defined in
Section 4. Let J be as in Definition 5.2

Assume a fresh i.i.d. sample of D of size s was sampled. Denote this sample by T . And for
every bucket j, define C̃j to be defined in Tester 5.1.1.

This section is taken with small changes from [HR22]. The main difference is that the notation
is according to the conventions in this paper, and also, we consider only buckets satisfying the
conditions of set J .

Claim A.1. With probability of at least 0.99 over the choice of sample S, and any mislabelling of
S characterised by variables {xℓ,j}ℓ,j:

• For every j ∈ J :

E[C̃j ] ∈
s2

N

 ∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
ℓτ , e2τ

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
ℓτ


• With probability of at least 0.99 over the choice of T , for all j inJ :∣∣∣C̃j − ET [C̃j ]

∣∣∣ ≤ τET [C̃j ]

Proof. Fix j ∈ J . Define Ir,k to be the indicator that Tr = Sk, and tag(Sk) = j. Denote F̃j =

{i ∈ [s] : tag(Si) = j}. By definition, C̃j =
∑

r∈[s]
∑

k∈F̃j
Ir,k (note that Ir,k = 0 for all k /∈ F̃j).

Therefore, by the linearity of expectation:

E
[
C̃j

]
=
∑
r∈[s]

∑
k∈F̃j

E[Ir,k]

The value of E[Ir,k] can vary significantly between indices in F̃j , depending on Sk, the probability

of the element Sk affects the probability that the sample Tr collided with it. Thus, we divide F̃j

into disjoint subsets according to the bucket origin of each sample in S. Define F̃ℓ→j ⊆ F̃j to be
the set of indices associated with true bucket ℓ that were tagged as belonging to alleged bucket j.
By this definition, F̃j = ∪ℓF̃ℓ→j , and also for every ℓ, |F̃ℓ→j | = sq̂ℓxℓ,j . Plugging this back to the
above expression:

E[C̃j ] =
∑
ℓ

∑
r∈[s]

∑
k∈F̃ℓ→j

E[Ir,k] =
∑
r∈[s]

∑
k∈F̃L→j

E[Ir,k] +
∑

ℓ:eℓτ≥τ2

∑
r∈[s]

∑
k∈F̃ℓ→j

E[Ir,k] (50)

This decomposition of the sum allows us to unravel the expression E[Ir,k], since for all ℓ, that satisfy
eℓτ ≥ τ2, every k ∈ F̃ℓ→j , satisfies D(Sk) ∈

[
eℓτ

N , eτ eℓτ

N

)
, and so E[Ir,k] ∈

[
eℓτ

N , eτ eℓτ

N

)
. Similarly, for

k ∈ F̃L→j , D(Sk) = E[Ir,k] ∈
[
0, τ

2

N

)
. We conclude that:

∑
ℓ:eℓτ≥τ2

∑
r∈[s]

∑
k∈F̃ℓ→j

E[Ir,k] ≤
∑

ℓ:eℓτ≥τ2

s · (sxℓ,j q̂ℓ) · eτ
eℓτ

N
= eτ

∑
ℓ:eℓτ≥τ2

xℓ,j ·
s2

N
q̂ℓe

ℓτ (51)
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And: ∑
ℓ:eℓτ≥τ2

∑
r∈[s]

∑
k∈F̃ℓ→j

E[Ir,k] ≥
∑

ℓ:eℓτ≥τ2

s · (sxℓ,j q̂ℓ) ·
eℓτ

N
=

∑
ℓ:eℓτ≥τ2

xℓ,j ·
s2

N
q̂ℓe

ℓτ (52)

As well as: ∑
r∈[s]

∑
k∈F̃L→j

E[Ir,k] ≤ s · (sxL,j p̂L) ·
τ2

N
=

s2

N
q̂LxL,jτ

2 (53)

Finally, observe that given j ∈ J , it holds that q̂L ≤ τvj , which implies:

q̂LxL,j ≤ τvj = τ
∑

ℓ:eℓτ≥τ2

q̂ℓxℓ,j + τ · q̂L

Or equivalently, since τ < 0.01:

q̂LxL,j ≤
τ

1− τ

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j ≤ 1.1τ
∑

ℓ:eℓτ≥τ2

q̂ℓxℓ,j

From which we conclude:

s2

N
q̂LxL,jτ

2 ≤ 1.1τ
∑

ℓ:eℓτ≥τ2

q̂ℓxℓ,jτ
2 ≤ 1.1τ

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
ℓτ (54)

Combining Inequalities (53),(52), and (54), we conclude:

E[C̃j ] ≤ eτ
∑

ℓ:eℓτ≥τ2

(
s2

N
q̂ℓxℓ,je

ℓτ

)
+

s2

N
q̂LxL,jτ

2 ≤ e2τ
∑

ℓ:eℓτ≥τ2

(
s2

N
q̂ℓxℓ,je

ℓτ

)

We also get:

E[C̃j ] ≥
∑

ℓ:eℓτ≥τ2

s2

N
q̂ℓxℓ,je

ℓτ

And so concludes the first part of the proof.
Moving on to proving measure concentration. In order to do so, we bound Var[C̃j ] from above,

in the aim of using Chebyshev’s inequality to bound the probability that C̃j deviates from its
expectation. First, recall that:

Var
[
C̃j

]
=

∑
(r1,k1):
r1∈[s]
k1∈F̃j

∑
(r2,k2):
r2∈[s]
k2∈F̃j

Cov [Ir1,k1 , II2,k2 ]

In order to bound this expression, observe that for every r1, r2 ∈ [s], such that r1 ̸= r2, since Tr1

and Tr2 were chosen i.i.d., the variables Ir1,k1 and Ir2,k2 are independent, and so Cov [Ir1,k1 , Ir2,k2 ] =
0. Also, if r1 = r2, but Sk1 ̸= Sk2 , then, as it is impossible that both the variables Ir1,k1 , Ir2,k2
are positive at the same time, it follows that in this case, Cov [Ir1,k1 , Ir2,k2 ] < 0. This leaves us
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only with the case r1 = r2 and Sk1 = Sk2 . In this case, the variables satisfy Ir1,k1 = Ir2,k2 , and by
the definition of the covariance, this yields Cov [Ir1,k1 , Ir2,k2 ] = Var[Ir1,k1 ]. And as for every r1, k1,
Var[Ir1,k1 ] ≤ ET [Ir1,k1 ], we conclude:

Var[C̃j ] ≤
∑
r∈[s]

∑
k1∈F̃j

∑
k2:

Sk2
=Sk1

ET [Ir,k1 ] (55)

Assuming D has maximal probability τ/
√
N , with probability at least 0.99 over the choice of S, it

follows that every element sampled in S appears at most logN times, and so, we are guaranteed
that for every k1, the number of summands in the third sum over k2 is at most logN . Therefore:

Var[C̃j ] ≤
∑
r∈[s]

∑
k1∈F̃ℓ

∑
k2:

Sk2
=Sk1

ET [Ir,k1 ] ≤ logN
∑
r∈[s]

∑
k1∈F̃j

ET [Ir,k1 ] = logNET [C̃j ] (56)

For every j ∈ J :

E
[
C̃j

]
≥ s2

N

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,je
ℓτ ≥ s2 · τ2

N

s2

N

∑
ℓ:eℓτ≥τ2

q̂ℓxℓ,j ≥
s2 · τ2

N
vj(1− τ) ≥ s2

N
· τ4

logN

Therefore, using Chebyshev’s inequality, as well as the lower bound for shown above, for every
j ∈ J :

Pr
T

(∣∣∣C̃j − ET [C̃j ]
∣∣∣ ≥ τET [C̃j ]

)
≤ logN

τ2ET [C̃j ]
≤ N log2N

τ6
· 1
s

Summing over all j ∈ J , we get by union bound that the probability that there exists some

j ∈ J such that
∣∣∣C̃ℓ − ET [C̃ℓ]

∣∣∣ > τET [C̃ℓ] is at most:

∑
j∈J

N log2N

τ6
· 1
s
≤ b(N, τ) ·N log2N

τ6
· 1
s
≤ 1

s
≤ 0.01

Where the last inequality is justified by the choice of s.

Corollary A.2. If xℓ,j = 1ℓ=j for all (ℓ, j) then, for all j such that ejτ ≥ τ and vj ≥ τ2

logN it holds
that with probability at least 0.99 over the choice of S and T :∣∣∣∣C̃j −

s2

N
vje

jτ

∣∣∣∣ ≤ 5τ
s2

N
vje

jτ

Proof. Plugging xℓ,j = 1ℓ=j in Claim A.1, we get that every j for which ejτ ≥ τ and vj ≥ τ2

logN
also satisfies q̂LxL,j = 0 ≤ τvj , and so j ∈ J . Therefore, with probability at least 0.99, for all such
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j, since τ < 0.01: ∣∣∣∣C̃j −
s2

N
vje

jτ

∣∣∣∣ ≤ ∣∣∣C̃j − ET [C̃j ]
∣∣∣+ ∣∣∣∣ET [C̃j ]−

s2

N
vje

jτ

∣∣∣∣
≤ τET [C̃j ] +

∣∣∣∣ET [C̃j ]−
s2

N
vje

jτ

∣∣∣∣
≤ τ · e2τ s

2

N
vje

jτ +
(
e2τ − 1

) s2
N

vje
jτ

≤
(
τe2τ + e2τ − 1

) s2
N

vje
jτ

≤
(
τ + 3τ2 + 3τ

) s2
N

vje
jτ

≤ 5τ
s2

N
vje

jτ
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