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Abstract

We prove that the blocklength 𝑛 of a linear 3-query locally correctable code (LCC) ℒ : F𝑘 →

F𝑛 with distance 𝛿 must be at least 𝑛 ≥ 2
Ω

((
𝛿2 𝑘
(|F|−1)2

)1/8)
. In particular, the blocklength of a linear 3-

query LCC with constant distance over any small field grows exponentially with 𝑘. This improves
on the best prior lower bound of 𝑛 ≥ Ω̃(𝑘3) [AGKM23], which holds even for the weaker
setting of 3-query locally decodable codes (LDCs), and comes close to matching the best-known
construction of 3-query LCCs based on binary Reed–Muller codes, which achieve 𝑛 ≤ 2𝑂(𝑘1/2).
Because there is a 3-query LDC with a strictly subexponential blocklength [Yek08, Efr09], as
a corollary we obtain the first strong separation between 𝑞-query LCCs and LDCs for any
constant 𝑞 ≥ 3.

Our proof is based on a new upgrade of the method of spectral refutations via Kikuchi
matrices developed in recent works [GKM22, HKM23, AGKM23] that reduces establishing
(non-)existence of combinatorial objects to proving unsatisfiability of associated XOR instances.
Our key conceptual idea is to apply this method with XOR instances obtained via long-chain
derivations — a structured variant of low-width resolution for XOR formulas from proof com-
plexity [Gri01, Sch08].
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1 Introduction

A locally correctable code (LCC) is an error correcting code that admits, in addition, a local correction
(a.k.a. self correction) algorithm that can recover any symbol of the original codeword by querying
only a small number of randomly chosen symbols from the received corrupted codeword. More
formally, we say that a code ℒ : {0, 1}𝑘 → {0, 1}𝑛 is 𝑞-locally correctable if for any codeword 𝑥,
a corruption 𝑦 of 𝑥, and input 𝑢 ∈ [𝑛], the local correction algorithm reads at most 𝑞 symbols
(typically a small constant such as 2 or 3) of 𝑦 and recovers the bit 𝑥𝑢 with probability 1/2 + 𝜀

whenever Δ(𝑥, 𝑦) B |{𝑣 ∈ [𝑛] : 𝑥𝑣 ≠ 𝑦𝑣}| ≤ 𝛿𝑛, where 𝛿, the “distance” of the code, and 𝜀, the
decoding accuracy, are constants. The central question about LCCs is to determine the smallest
possible blocklength 𝑛 as a function of the message length 𝑘 for a fixed number of queries 𝑞.

Local correction was first introduced for program checking [BK95], and early applications utilized
that Reed–Muller codes are locally correctable via polynomial interpolation. Since then, LCCs have
been a mainstay in complexity and algorithmic coding theory with a long array of applications. An
abridged list (the surveys [Tre04, Yek12, Dvi12] provide details) of applications includes sublinear
algorithms and property testing [RS96, BLR93], probabilistically checkable proofs [ALM+98, AS98],
IP=PSPACE [LFKN90, Sha90], worst-case to average-case reductions [BFNW93], constructions of
explicit rigid matrices [Dvi10], and 𝑡-private information retrieval protocols [IK99, BIW10]. The
existence of LCCs turns out to have natural connections to incidence geometry [Dvi12], additive
combinatorics [BDL13], and the theory of block designs [BIW10].

For any constant 𝑞 ∈ N, Reed–Muller codes (i.e., evaluations of (𝑞 − 1)-degree polynomials)

yield binary, linear1 𝑞-LCCs with a blocklength 𝑛 ≤ 2𝑂(𝑘
1

𝑞−1 ). Given their extensive applications
and connections, finding LCCs of smaller blocklength has been a major project in theoretical
computer science over the past three decades with some remarkable successes over the years. For
example, multiplicity codes [KSY14] significantly beat the blocklength of Reed–Muller codes in the
super-constant query regime. In the constant-query regime, matching vector codes [Efr09, Yek08] use
a strictly sub-exponential (i.e., 𝑛 ≤ exp(exp(𝑂(

√
log 𝑘 log log 𝑘)))) blocklength to obtain 3-query

locally decodable codes — a relaxation of LCCs where the local correction property holds only for
the 𝑘 message bits. To sidestep the difficulty of finding more efficient LCCs, the work of [BGH+04]
introduced relaxed LCCs that soften the local correction property and has seen exciting recent
developments [GRR20, AS21, CGS20, KM23, CY23]. These successes notwithstanding, constructing
better constant-query LCCs has remained a major open question (see, e.g., Chapter 8 in [Yek12]).

LCC lower bounds. The lack of progress on finding better constant-query LCCs has motivated a
long investigated conjecture that Reed–Muller codes might be optimal constant query LCCs. The
work of [KW04, GKST06] essentially confirmed this conjecture for the “base case” of 𝑞 = 2 by
proving that 𝑛 ≥ 2Ω(𝑘) for any two-query LCC, matching the construction of Hadamard codes,
which are 2-LCCs with 𝑛 = 2𝑘 . For 𝑞 ≥ 3, however, only a polynomial lower bound is known. The
works of [KW04, Woo07] prove that 𝑞-LCCs must have 𝑛 ≥ Ω̃(𝑘1/(1−1/⌈ 𝑞2 ⌉),2 and for the specific case

1A code is linear over a field F if the encoding map ℒ is an F-linear map.
2These lower bounds all hold for non-linear codes over small (i.e., polylog(𝑘)) size alphabets. A weaker polynomial

lower bound [KT00, IS18] is known to hold for linear codes over all fields and for the specific case of 𝑞 = 3, [Woo10]
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of 𝑞 = 3, a recent work [AGKM23] (which, like this work, is based on the Kikuchi matrix method)
obtained a polynomial improvement on this bound, showing that 𝑛 ≥ Ω̃(𝑘3).
Limitations of prior lower bound techniques. Beyond the weakness in the quantitative results,
all the above lower bounds suffer from an important inherent limitation — they all hold even
for the weaker setting of locally decodable codes (LDCs). As we mentioned above, there are sub-
exponential length (and thus substantially beating Reed–Muller) 3-query binary, linear codes that
are locally decodable [Yek08, Efr09]. Indeed, characterizing the limitations of prior proof techniques
and finding methods that could separate LCCs and LDCs itself has been a major research goal.
For example, Dvir, Gopi, Gu and Wigderson [DGGW19] formalize the limitations of prior lower
bound techniques for LCCs by showing that the “random restriction” approach in [KT00] applies
to a more general setting of “spanoids” where they are, in fact, tight. On the other hand, to show a
strong separation between LCCs and LDCs, Barkol, Ishai and Weinreb [BIW10] build an approach
for stronger LCC lower bounds via connections to the well-studied Hamada conjecture ([Ham73],
see lecture notes [Ton11]) and its generalizations in the theory of block designs, while Dvir, Saraf
and Wigderson [DSW14] develop new geometric techniques to prove a slightly superquadratic
lower bound for an appropriate formulation of 3-LCCs over the reals.

To summarize: there is an exponential gap between best-known constructions and lower bounds
for 𝑞-LCCs for 𝑞 ≥ 3. Further, the best known lower bound techniques for 𝑞-LCCs apply also to
𝑞-LDCs and thus provably cannot yield an exponential lower bound.

Our result. In this work, we prove an exponential lower bound for linear 3-query LCCs. We
note that the best-known constructions of LCCs (and also LDCs) namely Reed–Muller codes and
matching vector codes, are F2-linear.

Theorem 1. Let ℒ : F𝑘 → F𝑛 be a linear (3, 𝛿, 𝜀)-LCC. Then, 𝑛 ≥ 2Ω((𝛿
2𝑘/(|F|−1)2)1/8). In particular, if

ℒ : F𝑘
2 → F𝑛

2 is a (3, 𝛿, 𝜀)-LCC where 𝛿 is constant, then 𝑛 ≥ 2Ω(𝑘
1/8).

Theorem 1 improves on the prior best lower bound of 𝑛 ≥ Ω̃(𝑘3) [AGKM23] and comes close
to matching the blocklength 𝑛 = exp(𝑂(

√
𝑘)) of 3-query LCCs based on Reed–Muller codes; in

Section 9, we comment on potential strengthenings of our argument to come closer and even match
(up to constants in the exponent) the exp(𝑂(

√
𝑘)) bound.

Theorem 1 also yields the first strong separation between 3-LCCs and 3-LDCs. No such separation
was known for 𝑞-LDCs and 𝑞-LCCs for any constant 𝑞 ≥ 3.3 In particular, Theorem 1 implies that
matching vector codes that yield linear 3-LDCs over F2 of sub-exponential blocklength, such as the
codes in [Yek08, Efr09], cannot admit a local correction algorithm, answering a question of Yekhanin
(see Chapter 8 in [Yek12]).

Our proof is based on the method of spectral refutation via Kikuchi matrices developed in prior
works [GKM22, HKM23, AGKM23]. The key idea in this method is to associate the existence of
a combinatorial object (e.g., a 3-LCC) to the satisfiability of a family of XOR formulas and find a
spectral refutation (i.e., certificate of unsatisfiability) for a randomly chosen member of the family.

shows a lower bound of Ω(𝑘2) for linear 3-LDCs over all fields.
3The work of [BGT17] shows a separation between 2-LCCs and 2-LDCs over poly(𝑛)-sized alphabets. For 2-LCCs

on small alphabets, a strong separation cannot exist, e.g., on F2, the Hadamard code gives both an essentially optimal
2-LCC and 2-LDC.
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Our key new conceptual idea is to apply an appropriate version of the Kikuchi matrix method to
XOR formulas obtained by long chain derivations — a structured variant of low-width XOR resolution
refutations in proof complexity [Gri01, Sch08] — to the naive XOR instances obtained from the
query sets of a purported linear 3-LCC. These new XOR formulas allow us to utilize the additional
structural in 3-LCCs and, in particular, significantly surpass the cubic lower bound [AGKM23] for
3-LDCs that also used the Kikuchi matrix method. We discuss the new challenges that arise in
analyzing spectral refutations of XOR instances produced by such long chain derivations and our
technical ideas for handling them in Sections 3 and 4.

1.1 Roadmap

The rest of the paper is organized as follows. First, in Section 2, we introduce some notation and
recall basic facts about LCCs that we shall use in the proof. Then, in Section 3, we give a detailed
overview of the proof. In Section 4, we give an essentially complete proof of a new lower bound
of 𝑛 ≥ Ω̃(𝑘4) for binary linear 3-LCCs as a warmup. Following the warmup, in Sections 5 to 8 we
prove Theorem 1 for binary 3-LCCs, i.e., when F = F2; we handle the case of arbitrary finite fields
in Appendix A. Finally, in Section 9 we conclude with some remarks on the proof of Theorem 1,
possible strengthenings, and extensions.

2 Preliminaries

2.1 Basic notation

We let [𝑛] denote the set {1, . . . , 𝑛}. For two subsets 𝑆,𝑇 ⊆ [𝑛], we let 𝑆 ⊕ 𝑇 denote the symmetric
difference of 𝑆 and 𝑇, i.e., 𝑆 ⊕ 𝑇 B {𝑖 : (𝑖 ∈ 𝑆 ∧ 𝑖 ∉ 𝑇) ∨ (𝑖 ∉ 𝑆 ∧ 𝑖 ∈ 𝑇)}. For a natural number
𝑡 ∈ N, we let

([𝑛]
𝑡

)
be the collection of subsets of [𝑛] of size exactly 𝑡. Given variables 𝑥1, . . . , 𝑥𝑛 and

a subset 𝐶 ⊆ [𝑛], we let 𝑥𝐶 B
∏

𝑣∈𝐶 𝑥𝑣 .
For a rectangular matrix 𝐴 ∈ R𝑚×𝑛 , we let ∥𝐴∥2 =B max𝑥∈R𝑚 ,𝑦∈R𝑛 :∥𝑥∥2=∥𝑦∥2=1 𝑥

⊤𝐴𝑦 denote the
spectral norm of 𝐴, and ∥𝐴∥∞→1 B max𝑥∈{−1,1}𝑚 ,𝑦∈{−1,1}𝑛 𝑥

⊤𝐴𝑦. We note that ∥𝐴∥∞→1 ≤
√
𝑛𝑚∥𝐴∥2.

2.2 XOR formulas

An XOR instance 𝜓 on 𝑛 variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 taking values in {−1, 1} is a collection of constraints
of the form {𝑥𝐶 = 𝑏𝐶} where 𝐶 ∈ ℋ where ℋ ⊆ 2[𝑛] is the constraint hypergraph. The arity of a
constraint {𝑥𝐶 = 𝑏𝐶} equals |𝐶 |. The arity of 𝜓 is the maximum arity of any constraint in it. The
XOR formula associated with 𝜓 is the expression 𝜓(𝑥) = ∑

𝐶∈ℋ 𝑏𝐶𝑥𝐶 seen as a polynomial over
{−1, 1}𝑛 . Notice that 𝜓(𝑥) = |ℋ | if 𝑥 satisfies all the constraints of 𝜓 and in general evaluates to
(number of constraints satisfied by 𝑥) - (number of constraints violated by 𝑥). The value val(𝜓) of
a XOR instance 𝜓 (or, of the associated formula 𝜓(𝑥)) is the maximum of 𝜓(𝑥) as 𝑥 ranges over
{−1, 1}𝑛 . More generally, for a function 𝑓 (𝑥), we shall let val( 𝑓 ) B max𝑥∈{−1,1}𝑛 𝑓 (𝑥).
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2.3 Locally correctable codes

We refer the reader to the survey [Yek12] for background.

Definition 2.1 (Locally correctable code). A map ℒ : F𝑘 → F𝑛 is a (𝑞, 𝛿, 𝜀)-locally correctable code
if there exists a randomized decoding algorithm Dec(·) that takes input an oracle access to some
𝑦 ∈ F𝑛 and a 𝑢 ∈ [𝑛], (1) makes at most 𝑞 queries to the string 𝑦, and (2) for all 𝑏 ∈ F𝑘 , 𝑢 ∈ [𝑛],
and all 𝑦 ∈ F𝑛 such that Δ(𝑦,ℒ(𝑏)) ≤ 𝛿𝑛, Pr[Dec𝑦(𝑢) = ℒ(𝑏)𝑢] ≥ 1

2 + 𝜀. Here, Δ(𝑥, 𝑦) denotes the
Hamming distance between 𝑥 and 𝑦, i.e., the number of indices 𝑣 ∈ [𝑛] where 𝑥𝑣 ≠ 𝑦𝑣 . We will use
𝑞-LCCs to denote (𝑞, 𝛿, 𝜖)-LCCs where 𝛿, 𝜖 are some fixed small constants.
ℒ is linear if the map ℒ is a linear map. We note that for linear codes, 𝑘 = dim(𝒱), where𝒱

is the image of F𝑘 under the map ℒ. Without the loss of generality, a linear ℒ is systematic, i.e.,
ℒ(𝑏)𝑖 = 𝑏𝑖 for 𝑖 ∈ [𝑘]. By a slight abuse of notation, we will also use ℒ to denote the set of all
codewords, i.e., elements in the range of the map ℒ.

For the Boolean case, i.e., when F = F2, it shall be more convenient to think of the map ℒ as a
function from {−1, 1}𝑘 to {−1, 1}𝑛 , defined via the mapping 0↔ 1 and 1↔ −1.

We next discuss a combinatorial characterization of locally correctable codes. To begin with, we
recall basic notions about hypergraphs.

Definition 2.2. A 𝑞-uniform hypergraphℋ on vertex set [𝑛] is a collection of subsets 𝐶 ⊆ [𝑛] of
size 𝑞 called hyperedges. We say thatℋ is a matching if all the hyperedges inℋ are disjoint. For a
subset 𝑄 ⊆ [𝑛], we define the degree of 𝑄 inℋ , denoted degℋ (𝑄), to be |{𝐶 ∈ ℋ : 𝑄 ⊆ 𝐶}|.

LCCs admit a standard combinatorial characterization (formalized in the definition below).

Definition 2.3 (Linear LCC in normal form). A linear code ℒ : F𝑘 → F𝑛 is (𝑞, 𝛿)-normally cor-
rectable if for each 𝑢 ∈ [𝑛], there is a 𝑞-uniform hypergraph matchingℋ𝑢 with at least 𝛿𝑛 hyper-
edges such that for every 𝐶 = {𝑣1, . . . , 𝑣𝑞} ∈ ℋ𝑢 , there are coefficients 𝛼1, . . . , 𝛼𝑞 ∈ F \ {0} such
that, for any 𝑏 ∈ F𝑘 , 𝑥 = ℒ(𝑏) satisfies 𝑥𝑢 = 𝛼1𝑥𝑣1 + · · · + 𝛼𝑞𝑥𝑣𝑞 .

Fact 2.4 (Reduction to LCC normal form, Theorem 8.1 in [Dvi16]). Let ℒ : F𝑘 → F𝑛 be a linear
code that is (𝑞, 𝛿, 𝜀)-locally correctable. Then, there is a linear code ℒ′ : F𝑘 → F2𝑛 that is (𝑞, 𝛿′)-normally
correctable, with 𝛿′ ≥ 𝛿/2𝑞.

We note that there is slight difference in Fact 2.4 compared to Theorem 8.1 in [Dvi16]. In Fact 2.4,
we require that the matchings are 𝑞-uniform and all coefficients 𝛼 are nonzero, and we obtain
𝛿′ ≥ 𝛿/2𝑞. On the other hand, [Dvi16] allows for hyperedges of size ≤ 𝑞, i.e., some coefficients 𝛼

may be zero, and obtains 𝛿′ ≥ 𝛿/𝑞. We remark that Fact 2.4 immediately follows from [Dvi16] by
“padding” the code with 𝑛 0’s. This loses an additional factor of 2 in 𝛿, but allows one to make all
hyperedges have size exactly 𝑞 by querying the padded 0 entries.

Finally, we recall the lower bound for linear 2-LDCs from [GKST06].

Fact 2.5 (Lemma 3.3, Claim 4.4 in [GKST06]). Let ℒ : F𝑘 → F𝑛 be a linear map, and let 𝐺1, . . . ,𝐺𝑘 be
matchings on 𝑛 vertices such that for every 𝑏 ∈ F𝑘 and every 𝑖 ∈ [𝑘] and every (𝑢, 𝑣) ∈ 𝐺𝑖 , it holds that
𝑥𝑢 − 𝑥𝑣 = 𝑏𝑖 , where 𝑥 = ℒ(𝑏). Suppose that 1

𝑘

∑𝑘
𝑖=1 |𝐺𝑖 | ≥ 𝛿𝑛. Then, 𝛿𝑘 ≤ 2 log2 𝑛.
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When F ≠ F2, the above lower bound, as stated, only applies to the setting where the decoder is
a linear function with the added restriction that each non-zero coefficient of the linear combination
is in {−1, 1}. It is not hard to remove this restriction on coefficients, but, in our setting, we obtain a
better dependence on |F| in Theorem 1 by applying this more specialized lemma.

2.4 Concentration inequalities

We will need the following standard concentration inequalities.

Fact 2.6 (Chernoff Bound). Let 𝑥1, . . . , 𝑥𝑛 be i.i.d. Bernoulli random variables with mean 𝑝, and let
𝜇 = 𝑝𝑛. Then, for any 𝛿 ≥ 0,

Pr[
𝑛∑
𝑖=1

𝑥𝑖 ≥ (1+ 𝛿)𝜇] ≤ exp(−𝛿2𝜇/(2+ 𝛿)) .

Fact 2.7 (Scalar Bernstein inequality). Let 𝑥1, . . . , 𝑥𝑛 be independent mean 0 random variables satisfying
|𝑥𝑖 | ≤ 𝑀 almost surely for every 𝑖. Let 𝜎2 ≥ ∑𝑛

𝑖=1 E[𝑥2
𝑖
], for every 𝑖 ∈ [𝑛]. Then, for all 𝑡 ≥ 0, it holds that

Pr[
𝑛∑
𝑖=1

𝑥𝑖 ≥ 𝑡] ≤ exp

(
−

1
2 𝑡

2

𝜎2 + 1
3𝑀𝑡

)
.

We will use the following non-commutative Khintchine inequality [LP91].

Fact 2.8 (Rectangular Matrix Khintchine inequality, Theorem 4.1.1 of [Tro15]). Let 𝑋1, . . . , 𝑋𝑘 be fixed
𝑑1 × 𝑑2 matrices and 𝑏1, . . . , 𝑏𝑘 be i.i.d. from {−1, 1}. Let 𝜎2 ≥ max(∥∑𝑘

𝑖=1 𝑋𝑖𝑋
⊤
𝑖
]∥2, ∥∑𝑘

𝑖=1 𝑋
⊤
𝑖
𝑋𝑖]∥2).

Then

E

[  𝑘∑
𝑖=1

𝑏𝑖𝑋𝑖


2

]
≤

√
2𝜎2 log(𝑑1 + 𝑑2) .

Tail Bounds for 𝒓-partite non-negative polynomials. We give an elementary proof of a concen-
tration inequality for 𝑟-partite polynomials with non-negative coefficients. Such inequalities are
the subject of the celebrated work of Kim and Vu [KV00] (with tightenings due to Schudy and
Sviridenko [SS12]). For 𝑟-partite polynomials, our inequality below saves a crucial 2𝑂(𝑟) factor in
the estimate of the typical value when compared to a blackbox application of the above results
(without which, we can only obtain a quasi-polynomial lower bound for 3-LCCs).

Lemma 2.9 (Tail Bounds from bounded expected derivatives). Let 𝑥 = {𝑥(𝑖)
𝑗
}1≤𝑖≤𝑟

1≤ 𝑗≤𝑛
be 𝑛𝑟 independent

𝑝-biased Bernoulli random variables. Let 𝑃(𝑥) = 𝑃(𝑥(1), 𝑥(2), . . . , 𝑥(𝑟)) be a 𝑟-partite multilinear polynomial
of degree ≤ 𝑟 with nonnegative coefficients. That is, each monomial with a non-zero coefficient in 𝑃 has
degree at most 1 in each 𝑥(𝑖) for 1 ≤ 𝑖 ≤ 𝑟. For 𝑍 ∈ ([𝑛] ∪ {★})𝑟 , let 𝜇𝑍(𝑃) be the expected partial derivative
of 𝑃 with respect to the variables {𝑥(ℎ)

𝑍ℎ
| 1 ≤ ℎ ≤ 𝑟, 𝑍ℎ ≠ ★}. Suppose that there exists a 𝜇, 𝛾 > 0 such that

for every 𝑍, 𝜇𝑍(𝑃) ≤ 𝜇 · 𝛾 |𝑍 |, where |𝑍 | denotes the number of non ★ coordinates in 𝑍.
Then, for every 𝛽 > 0,

Pr
𝑦
[𝑃(𝑦) ≥ (1+ 𝛽)𝑟𝜇] ≤ 𝑟(𝑛 + 1)𝑟𝛼 ,
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where 𝛼 = exp
(
−

1
2 𝛽

2

2𝛾+ 1
3 𝛾𝛽

)
.

Proof. We will consider the random process that samples 𝑥 ∈ {0, 1}𝑛𝑟 by fixing 𝑥(𝑖) to a random
draw from their distribution one at a time. At each step, we obtain a new polynomial of smaller
degree obtained by fixing one additional set of variables to a fixed value in 𝑃. We understand how
the parameters 𝜇𝑍 of the polynomials so generated evolve via the Bernstein inequality Fact 2.7.

Formally, fix a 0 ≤ 𝑡. Let (𝑍𝑡+1, . . . , 𝑍𝑟) ∈ [𝑛]𝑟−𝑡 be a tuple of length 𝑟 − 𝑡. We define the quantity
𝜇𝑦(1),...,𝑦(𝑡),𝑍𝑡+1,...,𝑍𝑟

to be the quantity 𝜇𝑍𝑡+1,...,𝑍𝑟 (𝑃𝑡) where 𝑃𝑡 = 𝑃(𝑦(1), . . . , 𝑦(𝑡), 𝑥(𝑡+1), . . . , 𝑥(𝑟)). Here,
we use the notation 𝑦(𝑖) to denote sampled values for 𝑥(𝑖). Note that 𝑃𝑡 has 𝑟 − 𝑡 “free” groups of
variables 𝑥(𝑡+1), . . . , 𝑥(𝑟).

Let 𝑡 ∈ {0, . . . , 𝑟}. We will show that with probability at least 1 − 𝑡(𝑛 + 1)𝑟𝛼 over the draw of
𝑦(1), . . . , 𝑦(𝑡), it holds that for every 𝑍𝑡+1, . . . ,𝑍𝑟 with |𝑍ℎ | ∈ {0, 1} for all ℎ = 𝑡 + 1, . . . 𝑟, we have
𝜇𝑦(1),...,𝑦(𝑡),𝑍𝑡+1,...,𝑍𝑟

≤ (1+ 𝛽)𝑡𝜇 · 𝛾
∑𝑟

ℎ=𝑡+1 |𝑍ℎ |.
We prove this by induction. The base case of 𝑡 = 0 forms the hypothesis of the lemma. We now

prove the inductive step. Let 𝑡 ≥ 1, and suppose that with probability at least 1− (𝑡 − 1)(𝑛 + 1)𝑟𝛼
over the draw of 𝑦(1), . . . , 𝑦(𝑡−1), it holds that for tuple of length 𝑟 − 𝑡 + 1 𝑍𝑡 , . . . ,𝑍𝑟 , we have
𝜇𝑦(1),...,𝑦(𝑡−1),𝑍𝑡 ,...,𝑍𝑟

≤ (1+ 𝛽)𝑡−1𝜇 · 𝛾
∑𝑟

ℎ=𝑡 |𝑍ℎ |.
Fix 𝑍𝑡+1, . . . ,𝑍𝑟 with |𝑍ℎ | ∈ {0, 1} for all ℎ = 𝑡 + 1, . . . 𝑟. We now show that with probability

at least 1 − 𝛼 over the draw of 𝑦(𝑡), it holds that 𝜇𝑦(1),...,𝑦(𝑡−1),𝑦(𝑡),𝑍𝑡+1,...,𝑍𝑟
≤ (1 + 𝛽)𝜇′, where 𝜇′ =

(1+ 𝛽)𝑡−1𝜇 · 𝛾
∑𝑟

ℎ=𝑡+1 |𝑍ℎ | . The lemma then follows by union bound over the (crudely) at most (𝑛 + 1)𝑟
choices for 𝑍𝑡+1, . . . ,𝑍𝑟 .

For an assignment 𝑦(𝑡), we have that 𝜇𝑦(1),...,𝑦(𝑡−1),𝑦(𝑡),𝑍𝑡+1,...,𝑍𝑟
= 𝑓 (𝑦(𝑡)), where 𝑓 (𝑥(𝑡)) B ∑𝑛

𝑢=1 𝑐𝑢𝑥
(𝑡)

is a linear polynomial with nonnegative coefficients 𝑐𝑢 B 𝜇𝑆1,...,𝑆𝑡−1,{𝑢},𝑍𝑡+1,...,𝑍𝑟
. We note that the

mean is E𝑦(𝑡)[ 𝑓 (𝑥(𝑡))] = 𝜇𝑆1,...,𝑆𝑡−1,∅,𝑍𝑡+1,...,𝑍𝑟 ≤ 𝜇′, by the induction hypothesis. We also have that
𝑐𝑢 = 𝜇𝑆1,...,𝑆𝑡−1,{𝑢},𝑍𝑡+1,...,𝑍𝑟

≤ (1+ 𝛽)𝑡−1𝜇 · 𝛾1+∑𝑟
ℎ=𝑡+1 |𝑍ℎ | = 𝛾𝜇′, again by the induction hypothesis.

We now bound the polynomial by using the Bernstein Inequality. Let 𝑦′(𝑡) be the centered version
of 𝑦(𝑡), i.e., 𝑦′(𝑡)𝑢 = 𝑦

(𝑡)
𝑢 − 𝑝, so that 𝑦′(𝑡)𝑢 = 1− 𝑝 with probability 𝑝, and −𝑝 with probability 1− 𝑝. Then,

E[(𝑦′(𝑡)𝑢 𝑐𝑢)2] = 𝑐2
𝑢((1− 𝑝)2𝑝 + 𝑝2(1− 𝑝)) ≤ 2𝑝𝑐2

𝑢 . Further, we observe that |𝑦′(𝑡)𝑢 𝑐𝑢 | ≤ 𝑐𝑢 ≤ 𝛾𝜇′ =: 𝑀
always holds. We also note that

𝜎2 B
𝑛∑

𝑢=1

E[(𝑦′(𝑡)𝑢 𝑐𝑢)2] ≤
𝑛∑

𝑢=1

2𝑝𝑐2
𝑢 ≤ 2(max

𝑢
𝑐𝑢)(𝑝

𝑛∑
𝑢=1

𝑐𝑢) ≤ 2𝑀 · 𝜇𝑆1,...,𝑆𝑡−1,∅,𝑍𝑡+1,...,𝑍𝑟

≤ 2(𝛾𝜇′)𝜇′ = 2𝛾𝜇′2 .

Thus, by the Bernstein Inequality, we have

Pr[ 𝑓 (𝑦′(𝑡)) ≥ 𝜆] ≤ exp

(
−

1
2𝜆

2

𝜎2 + 1
3𝑀𝜆

)
,

and therefore

Pr[ 𝑓 (𝑦′(𝑡)) ≥ 𝛽𝜇′] ≤ exp

(
−

1
2𝛽

2

2𝛾 + 1
3𝛾𝛽

)
= 𝛼 .
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Note that since 𝑓 is linear, 𝑓 (𝑦′(𝑡)) = 𝑓 (𝑦(𝑡)) − 𝜇𝑆1,...,𝑆𝑡−1,∅,𝑍𝑡+1,...,𝑍𝑟 , and so it follows that Pr[ 𝑓 (𝑦(𝑡)) ≥
(1+ 𝛽)𝜇′] ≤ 𝛼, which finishes the proof. □

3 Proof overview

In this section, we will focus on the case of F = F2 to give a high-level overview of the main ideas in
the proof of Theorem 1. Without loss of generality, we can assume that ℒ is a systematic linear map
ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 , so that the first 𝑘 bits in any codeword are the message bits themselves,
i.e., for any 𝑏 ∈ {−1, 1}𝑘 , 𝑥 = ℒ(𝑏) satisfies 𝑥𝑖 = 𝑏𝑖 for all 𝑖 ∈ [𝑘]. In this section and the next, we
will use the notation ⪆ and ⪅ to suppress a multiplicative polylog(𝑛) factor.

The Kikuchi matrix method. Our proof uses the Kikuchi matrix method developed in prior
works [GKM22, HKM23, AGKM23] for finding extremal trade-offs for combinatorial structures
in hypergraphs. This method works in two steps: (1) formulate a hypergraph possessing some
relevant structure as a family of satisfiable XOR formulas, and, (2) construct a spectral refutation (i.e.,
a certificate of unsatisfiability) of a randomly chosen member of this family. The spectral refutations
in the second step rely on appropriate Kikuchi matrices — a term that we loosely use to describe
induced subgraphs of an appropriately chosen Cayley graph associated with the hypergraph. The
success of the spectral refutation naturally relies on the structure of the XOR instances. The power
of the method comes from the ease (at least in hindsight, given [GKM22, HKM23, AGKM23]) in
identifying the relevant combinatorial structure that is sufficient for the success of the spectral
refutations. This method has been used to prove Feige’s conjecture [Fei08] on the hypergraph
Moore bound (extremal girth vs. density trade-off) [GKM22, HKM23], improved lower bounds for
3-LDCs [AGKM23], and generalizations of Szemeredi’s theorems for arithmetic progressions with
restricted common differences [BC23] (which closely follows the argument in [AGKM23]).

Our proof can be seen as an upgrade on a recent work [AGKM23] that showed a lower bound of
𝑛 ≥ Ω̃(𝑘3) on the block length 𝑛 of a code of dimension 𝑘 and constant distance.4 The key conceptual
idea that helps us move beyond the cubic to an exponential lower bound (a bound that provably
cannot hold for 3-LDCs [Efr09, Yek08]) is a new family of XOR instances that crucially exploits
the additional structure in LCCs. Our new family of XOR instances is produced by performing a
certain structured variant of low-width resolution (well-studied in proof complexity [Gri01, Sch08])
on the “basic” family. We call this process long chain derivations.

In the following, we will first recall the conceptual crux of the lower bound for 𝑞-LDCs
in [AGKM23] and then use it to motivate our approach for 3-LCCs.

3.1 The naive XOR instance and LDC lower bounds

Let’s first consider the case of 3-LDCs and start by recalling the combinatorial characterization
(formalized as the normal form in Definition 2.3). A code ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 is a (𝑞, 𝛿)-LDC
if for every 1 ≤ 𝑖 ≤ 𝑘, there exists a 𝑞-uniform hypergraph matching 𝐻𝑖 over [𝑛] of size 𝛿𝑛 such
that for every 𝑏 ∈ {−1, 1}𝑘 and codeword 𝑥 = ℒ(𝑏), for every 𝑖 ∈ [𝑘] and every 𝐶 ∈ 𝐻𝑖 , it holds

4Their result extends to non-linear codes but we omit this distinction here.
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that 𝑥𝐶 = 𝑏𝑖 . The combinatorial characterization above can be easily seen to be equivalent to the
satisfiability of a family of 𝑞-XOR instances.

Observation 3.1 (LDCs and a Family of XOR Instances). Let 𝐻1, 𝐻2, . . . , 𝐻𝑘 be 𝑞-uniform hypergraph
matchings on [𝑛] of size 𝛿𝑛. For every 𝑏 ∈ {−1, 1}𝑘 , define the following 𝑞-XOR instance Φ𝑏 in 𝑛

variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 .
∀𝑖 ∈ [𝑘], ∀𝐶 ∈ 𝐻𝑖 , 𝑥𝐶 = 𝑏𝑖 . (1)

Then, there exists a (normal form) linear LDC ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 described by the collection
of 𝑞-uniform matchings 𝐻1,𝐻2, . . . ,𝐻𝑘 on [𝑛] if and only if Φ𝑏 is satisfiable for every 𝑏 ∈ {−1, 1}𝑘 .

If ℒ is a (𝑞, 𝛿)-LDC described by matchings 𝐻1,𝐻2, . . . ,𝐻𝑘 , then 𝑥 = ℒ(𝑏) satisfies all the
constraints in Φ𝑏 . Conversely, if Φ𝑏 is satisfiable for every 𝑏, then one can easily construct a linear
map ℒ (easily seen to be a linear (𝑞, 𝛿)-LDC) where ℒ(𝑏) is some satisfying assignment to Φ𝑏 .

The main idea of [AGKM23] is to show that for any collection of 𝛿𝑛-size 𝑞-matchings 𝐻1, 𝐻2, . . . , 𝐻𝑘 ,
if 𝑘 is large enough as a function of 𝑛, then for a randomly chosen 𝑏, Φ𝑏 is unsatisfiable with high
probability. This implies an upper bound on 𝑘. Now, when 𝑏 is random, Φ𝑏 is XOR formula gener-
ated via 𝑘 ≪ 𝑛 bits, i.e., much smaller than the number of variables. Thus, a naive union bound
argument cannot establish unsatisfiability of Φ𝑏 . The work of [AGKM23] establishes unsatisfiability
of Φ𝑏 for a random 𝑏 via a spectral refutation using Kikuchi matrices.

Spectral refutations for 𝚽𝒃. Let us now recall how the spectral refutation in [AGKM23] works.
Their main result is for the case of 𝑞 = 3 (where they obtained improvements on prior works).
However, for our purpose of illustrating the conceptual idea, we will focus on the simpler setting
of even 𝑞 and sketch their proof that 𝑘 ≤ �̃�(𝑛1−2/𝑞) for 𝑞-LDCs.

First, we observe that for the XOR instance Φ𝑏 , there is an associated “instance polynomial”
Φ𝑏(𝑥) B

∑𝑘
𝑖=1

∑
𝐶∈𝐻𝑖

𝑏𝑖𝑥𝐶 . We note that Φ𝑏(𝑥) is the number of constraints satisfied by 𝑥 mi-
nus the number of constraints violated, and thus Φ𝑏 is unsatisfiable if and only if val(Φ𝑏) B
max𝑥∈{−1,1}𝑛 Φ𝑏(𝑥) is less than

∑𝑘
𝑖=1 |𝐻𝑖 | = 𝑘 · 𝛿𝑛. Thus, to show that Φ𝑏 is unsatisfiable, we will

bound val(Φ𝑏).
To do this, we define a matrix whose quadratic form is equal to Φ𝑏(𝑥).

Definition 3.2 (Kikuchi matrix and graphs). Let 𝐶 ∈
([𝑛]
𝑞

)
, let ℓ be a parameter, and let 𝑁 B

(𝑛
ℓ

)
.

Let 𝐴𝐶 ∈ {0, 1}𝑁×𝑁 be the matrix indexed by sets 𝑆 ∈
([𝑛]
ℓ

)
where 𝐴𝐶(𝑆,𝑇) = 1 if 𝑆 ⊕ 𝑇 = 𝐶, and

0 otherwise. Let 𝐴𝑖 B
∑

𝐶∈𝐻𝑖
𝐴𝐶 , and let 𝐴 B

∑𝑘
𝑖=1 𝑏𝑖𝐴𝑖 . We naturally interpret (and by abuse of

notation, also call) 𝐴𝐶 , 𝐴𝑖 and 𝐴 as adjacency matrices of “Kikuchi graphs” on the vertex set
([𝑛]
ℓ

)
.

Observe that 𝐴𝐶 is a matching on vertex set
([𝑛]
ℓ

)
of size 𝐷 =

(𝑛−𝑞
𝑞/2

) ( 𝑞

𝑞/2
)
. For any 𝑥 ∈ {−1, 1}𝑛 , let

𝑥◦ℓ denote the ℓ -wise monomial vector indexed by 𝑆 ∈
([𝑛]
ℓ

)
with corresponding entry equal to 𝑥𝑆.

Then, 𝑥◦ℓ⊤𝐴𝐶𝑥
◦ℓ = 𝐷𝑥𝐶 . Consequently, 𝑥◦ℓ⊤𝐴𝑥◦ℓ = 𝐷Φ𝑏(𝑥). Thus, if 𝑥 ∈ {−1, 1}𝑛 satisfies Φ𝑏 , then

we have the following inequality that upper bounds 𝑘 in terms of ∥𝐴∥2:

𝑘𝛿𝑛 = Φ𝑏(𝑥) ≤
1
𝐷

𝑥◦ℓ2
2 ∥𝐴∥2 =

(𝑛
ℓ

)
𝐷
∥𝐴∥2 ≤ 𝑂((𝑛/ℓ )𝑞/2) ∥𝐴∥2 . (2)
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We now choose 𝑏 ∈ {−1, 1}𝑘 uniformly at random and consider 𝐴 =
∑

𝑖 𝑏𝑖𝐴𝑖 , which is a matrix

Rademacher series of the 𝐴𝑖’s. By the matrix Khintchine inequality, ∥𝐴∥2 ≤ 𝑂(
√

log 𝑁)
∑

𝑖 𝐴
2
𝑖

1/2
2

with high probability.

A combinatorial proxy for ∥𝑨∥2. Let Δ𝑖 be the maximum degree of any node in the Kikuchi graph
𝐴𝑖 , and let Δ = max1≤𝑖≤𝑘 Δ𝑖 . Then, we can naively bound

∑
𝑖 𝐴

2
𝑖


2 ≤

∑
𝑖 ∥𝐴𝑖 ∥22 ≤ 𝑘Δ2. Thus, the

maximum degree of the 𝐴𝑖’s naturally controls the spectral norm of 𝐴 as ∥𝐴∥2 ≤ Δ ·𝑂(
√
𝑘ℓ log 𝑛).

Let us now investigate bounds on Δ. Since for each 𝐶 ∈ 𝐻𝑖 , 𝐴𝐶 contributes 𝐷 edges to 𝐴𝑖 ,
the average degree of 𝐴𝑖 is clearly 𝛿𝑛𝐷/𝑁 ∼ 𝑛(ℓ/𝑛)𝑞/2. Thus, Δ ≥ 𝑂(1)max{1, 𝑛(ℓ/𝑛)𝑞/2}. If Δ
happens to be equal to this minimum possible value, then plugging it in Eq. (2) yields:

𝑘𝛿𝑛 ≤ 𝑂(1)
(𝑛
ℓ

) 𝑞/2 √
𝑘ℓ log 𝑛 ·max{1, 𝑛(ℓ/𝑛)𝑞/2} ,

which implies that 𝑘 ≤ 𝑂(ℓ log 𝑛) ·max{𝑛𝑞−2/ℓ 𝑞 , 1}. This is minimized at ℓ = 𝑛1−2/𝑞 to give the
lower bound of 𝑘 ≤ �̃�(𝑛1−2/𝑞), i.e., 𝑛 ≥ Ω̃(𝑘𝑞/(𝑞−2)).
Handling irregularities: row pruning via polynomial concentration. We will now (for the first
time in the argument) use that the 𝐻𝑖’s are matchings to argue that while the 𝐴𝑖’s are certainly
not approximately regular (i.e., max degree Δ𝑖 at most a polylog(𝑛) factor larger than the average-
degree), there is only a small fraction of nodes in any 𝐴𝑖 that have a large degree. Of course, a
small fraction of rows can still cause ∥𝐴∥2 to be too large. In order to circumvent this issue, we
observe that the argument in Eq. (2) works even if we were to replace 𝑁 ∥𝐴∥2 (maximum over
arbitrary quadratic forms) by ∥𝐴∥∞→1 (maximum over quadratic forms on ±1-coordinate vectors).
The latter quantity is insensitive to dropping a small fraction of rows since ±1-coordinate vectors
when restricted to a small number of rows must have correspondingly small ℓ2-norm.

To prove that only a small fraction of nodes can have a large degree in any 𝐴𝑖 , we view the
degree of any node 𝑆 as a polynomial in the corresponding indicator variables 𝑧 ∈ {0, 1}𝑛 with∑

𝑖 𝑧𝑖 = ℓ and use tail inequalities for low-degree polynomials (that generalize concentration of
Lipschitz functions) of Kim and Vu and extensions [KV00, SS12] to bound the chance that it takes
a value polylog(𝑛) times the average. This relies on establishing strong bounds on the expected
partial derivatives of the degree polynomial by using that the 𝐻𝑖’s are matchings.

The key heuristic: high density for Kikuchi graphs at low levels. Let’s summarize the crucial
steps of the above argument as follows: (1) 𝑞-LDCs naturally yields XOR instances of arity 𝑞, (2)
to obtain our lower bound, we need that the Kikuchi matrices 𝐴𝑖 corresponding to a matching 𝐻𝑖

are approximately regular (after dropping a negligible fraction of rows), and (3) the argument can
only yield a bound of the form 𝑘 ⪅ ℓ where ℓ is the smallest level of the Kikuchi graphs 𝐴𝑖 with an
average degree≫ 1. More precisely, if there are 𝑚𝑖 constraints of arity 𝑞 in 𝐻𝑖 , then the threshold ℓ

is the smallest integer satisfying 𝑚𝑖(ℓ/𝑛)𝑞/2 ≫ 1 for all 𝑖 ∈ [𝑘]. Note that this threshold ℓ increases
as 𝑞 increases.

We assert that even though the argument in [AGKM23] for the case when 𝑞 = 3 requires more
work (in both the design of the Kikuchi matrix itself and its analysis), the heuristic above continues
to hold. Let us also note that ensuring approximate regularity is usually the trickiest aspect of the
proof. In particular, while the heuristic above makes sense for all odd 𝑞 (and not just 𝑞 = 3), and
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the work of [AGKM23] fails to obtain an improved lower bound for odd 𝑞 > 3 because they were
unable to find an appropriate “decomposition” that ensures approximate regularity of the resulting
Kikuchi matrices.

Thus, in order to obtain an exponential lower bound, as in Theorem 1, via the schema above,
we must construct Kikuchi graphs that have constant density (i.e., average degree) at much a lower
level ℓ . Specifically, we will need to be able to take ℓ = polylog(𝑛).5

3.2 Long chain derivations: improved spectral refutations by increasing density

Given the key heuristic above, we now show how to build XOR instances from 3-LCCs that yield
constant density Kikuchi matrices at level ℓ = polylog(𝑛). Our instances will balance two opposing
concerns. On the one hand, they will be of large arity (in fact, 𝑂(log 𝑛) arity) which, given the
discussion above, hurts the density at lower levels. Nonetheless, we will show that the number of
higher arity constraints that we produce grows fast enough to compensate for this and gives us an
overall increase in density at lower ℓ . We note (with the hope of pointing the reader to the trickiest
part of the proof that motivates all our setup) that the analysis of “row pruning” i.e., arguing
approximate regularity after removing a negligible fraction of rows, will get significantly more
involved and motivates all our design choices. This includes the specific type of Kikuchi matrices
that we will choose and a new decomposition for the constraints that, while a bit unnatural at the
outset, helps guarantee approximate regularity. Let us see these ideas in more detail next.

Like 3-LDCs, 3-LCCs can, without loss of generality, be assumed to be (3, 𝛿)-normal. Thus,
for any 3-LCC ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 , there are 3-uniform hypergraph matchings 𝐻1, . . . ,𝐻𝑛 on
[𝑛], each of size 𝛿𝑛, such that for every 𝑏 ∈ {−1, 1}𝑘 , 𝑢 ∈ [𝑛], and 𝐶 ∈ 𝐻𝑢 , the encoding 𝑥 = ℒ(𝑏)
satisfies 𝑥𝐶 = 𝑥𝑢 . Note that the key difference between LCCs and LDCs is that here we have a
“local correcting” hypergraph 𝐻𝑢 for each 𝑢 ∈ [𝑛], instead of only a hypergraph for each 𝑢 ∈ [𝑘] in
the case of LDCs.

The naive XOR instances. Similar to Observation 3.1, the combinatorial characterization yields
that the XOR instance with constraints 𝑥𝐶 = 𝑥𝑢 for every 𝐶 ∈ 𝐻𝑢 and 𝑢 ∈ [𝑛] (where on the right
hand side, we set 𝑥𝑢 = 𝑏𝑢 whenever 𝑢 ∈ [𝑘]) is satisfiable for every 𝑏 ∈ {−1, 1}𝑘 . If we focus only
on the constraints corresponding to 𝐻𝑢 for 𝑢 ∈ [𝑘] (i.e., the “systematic” bits in the codeword),
then we recover the same XOR instance as in the case of 3-LDCs and our method from above
yields 𝑘 ≤ �̃�(𝑛1/3) [AGKM23]. To improve on this significantly lossy formulation, we must make
use of the additional constraints 𝐻𝑢 for 𝑢 ∉ [𝑘]. More specifically, if we were to only use the
hypergraphs 𝐻𝑢 for 𝑢 ∈ [𝑘], then any lower bound we could prove would hold for LDCs as well,
and in particular one could not hope to prove Theorem 1, which is false for LDCs.

Long chain derivations. We now show how to use the additional constraints in order to build a

5We note that while our lower bounds appear to get weaker as ℓ grows, generic convergence results about the Kikuchi
matrices imply that taking ℓ ∼ 𝑛 and bounding Φ𝑏 in terms of ∥𝐴∥2 yields the optimal bound on 𝑘, whatever it may
be! The reason the current argument (which is likely suboptimal) does not extend beyond ℓ = 𝑛1−2/𝑞 is the potentially
superfluous

√
log 𝑁 multiplicative loss in the matrix Khintchine inequality. Investigating when this

√
log 𝑁 factor (which

is tight in the worst-case) can be removed is the topic of an ongoing research effort in random matrix theory [BBH23]
and is naturally related to other problems such as resolving the matrix Spencer conjecture [Zou12, Mek14].
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Figure 1: A 2-chain with head 𝑢. Note that 𝐶 ∪ {𝑤} ∈ 𝐻𝑢 and 𝐶′ ∪ {𝑤′} ∈ 𝐻𝑤 , and that 𝑥 = ℒ(𝑏)
satisfies 𝑥𝐶𝑥𝑤 = 𝑥𝑢 and 𝑥𝐶′𝑥𝑤′ = 𝑥𝑤 , and therefore 𝑥𝐶𝑥𝐶′𝑥𝑤′ = 𝑥𝑢 .

higher arity XOR instance that is (1) approximately regular (after an appropriate decomposition),
and (2) results in high-density Kikuchi graphs at polylog(𝑛) levels. We will construct higher arity
XOR instances that use the additional constraints above using a structured variant of low-width
XOR resolution [Gri01, Sch08] that we call long chain derivations.

Let us start by forming extra constraints via 2-chains. Observe that for any 𝑢 ∈ [𝑛] and 𝐶 ∈ 𝐻𝑢 ,
we have that for any 𝑏 ∈ {−1, 1}𝑘 , 𝑥 = ℒ(𝑏) ∈ {−1, 1}𝑛 satisfies the equation 𝑥𝑢𝑥𝐶 = 1. Now,
let us choose 𝑤 ∈ 𝐶 and 𝐶′ ∈ 𝐻𝑤 . We also have that 𝑥𝑤𝑥𝐶′ = 1. As 𝑥𝐶 = 𝑥𝐶\{𝑤}𝑥𝑤 , it follows
that the “derivation” 𝑥𝑢𝑥𝐶\{𝑤}𝑥𝐶′ = 1 also holds, since 𝑥2

𝑤 = 1. We shall call such a constraint a
“2-chain” — it connects two constraints intersecting in one variable. We can think of such a 2-chain
as a tuple (𝑢,𝐶,𝑤,𝐶′,𝑤′), where 𝐶 ∪ {𝑤} ∈ 𝐻𝑢 and 𝐶′ ∪ {𝑤′} ∈ 𝐻𝑤 , and this yields the constraint
𝑥𝐶𝑥𝐶′𝑥𝑤′ = 𝑥𝑢 (see Fig. 1).

Consider now the 2-chains ∪𝑖∈[𝑘]ℋ (2)𝑖
, i.e., 2-chains of the form (𝑖,𝐶,𝑤,𝐶′,𝑤′) where 𝑖 ∈ [𝑘].

Then, the constraints have the form 𝑥𝐶𝑥𝐶′𝑥𝑤′ = 𝑏𝑖 , so they decode the 𝑖-th independent bit 𝑏𝑖 . We
have thus formed a new set of constraints with “right hand side” 𝑏𝑖 .

A heuristic calculation. Let us now do a heuristic calculation (that ignores the key issue of
approximate regularity) to see if we improve the density at lower Kikuchi levels by taking the XOR
instances corresponding to 2-chains. For any fixed “head” 𝑖 ∈ [𝑘], there are (3𝛿𝑛)2 2-chains. This is
because we have 𝛿𝑛 choices for 𝐶 ∪ {𝑤} ∈ 𝐻𝑖 , followed by 3 ways to choose 𝑤 from 𝐶 ∪ {𝑤}, and
then similarly 3𝛿𝑛 choices in total for (𝐶′,𝑤′). Letℋ (2)

𝑖
denote the set of 2-chains with head 𝑖. We

have thus produced ∼ 𝑛2 constraints and each constraint has arity 5,6 as |𝐶 | = |𝐶′ | = 2.
The Kikuchi matrix in Definition 3.2 only makes sense for even 𝑞, but let us still do a “pretend”

calculation of the relative density for the arity 5 constraints we have produced. This can be made
precise with a slightly more sophisticated Kikuchi matrix, so this is still a meaningful heuristic.

The density (i.e., average degree) expression for a Kikuchi matrix 𝐴𝑖 is now 𝑛2(ℓ/𝑛)𝑞/2 ∼
𝑛2(ℓ/𝑛)5/2 ∼ ℓ 2.5/𝑛0.5. This density is ≫ 1 whenever ℓ ≫ 𝑛1/5, so one might expect to obtain a
bound of 𝑘 ⪅ 𝑛1/5 (beating the 𝑛1/3 bound for the naive XOR instance [AGKM23]) when working
with 2-chains — a construction that crucially relies on additional structure in 3-LCC! While there

6Some constraints may have additional variable cancellations and thus have arity < 5. However, as the density gets
worse as the arity increases, this is only “better” for us.
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are lot of details that we have simply ignored in doing this calculation, it does suggest that we are
able to achieve a constant-density Kikuchi matrix 𝐴𝑖 at a lower level ℓ . A similar calculation (that
we will omit here) for chains of larger length, say 𝑟, shows that the smallest level ℓ at which we can
obtain constant density Kikuchi matrices is ℓ ∼ 𝑛1/2𝑟 , and this suggests that we might be able to
obtain constant density at level ℓ = polylog(𝑛) if we work with 𝑟 ∼ log 𝑛 length chains.

In Section 4, as a warmup to our somewhat technical proof of the main theorem, we present
a complete analysis of the 2-chains (with extended commentary) to obtain a 𝑘 ≤ �̃�(𝑛1/4) bound
(giving a polynomial improvement on the ∼ 𝑛1/3 lower bound on 3-LDCs already!) in order to
illustrate (a simplified version of) the set of new tools that go into the analysis.

3.3 From the heuristic to a proof

In the remaining part of this overview, we briefly discuss the technical tools we develop to turn
the above heuristic calculation into a full proof. We note that the actual parameters become rather
delicate. For readers familiar with the literature on random CSP refutation (our setting resembles
semirandom XOR refutation with complicated correlations in the right hand sides), this is similar
to the analysis getting rather delicate when dealing with XOR instances with super-constant arity.

Setting up the Kikuchi matrix. The instances produced by forming 𝑟-chains yield XOR instances
of (odd) arity 2𝑟 + 1. We build a different Kikuchi matrix by first applying the “Cauchy–Schwarz”
trick — a standard idea in CSP refutation also utilized in [AGKM23]. In our case, the XOR instance
produced after this trick corresponds to constraints formed by joining two 𝑟-chains at their “tails”
whenever the tails match. We choose a variant of the Kikuchi matrix for the “Cauchy–Schwarzed
instance” except for the key difference that it is indexed by 2𝑟-tuples of sets of size ℓ (instead of
a single set of size ℓ ) in the sketch above. This choice is crucial in the analysis of row pruning, in
particular, as we discuss below, in obtaining bounds that significantly beat those obtained by a
blackbox application of low-degree polynomial concentration [KV00], see below.

Regularity decomposition. If 𝐻1,𝐻2, . . . 𝐻𝑛 are such that no pair of variables appears in more
than one hyperedge (“no heavy pairs”) across all the 𝐻𝑖’s, then it turns out that the resulting
Kikuchi matrices satisfy approximate regularity after pruning a negligible fraction of rows. This
no-heavy-pair property holds, e.g., if 𝐻𝑖’s are uniformly random and independent hypergraph
matchings of size 𝛿𝑛.

However, when the 𝐻𝑖 ’s are arbitrary, and in particular when there are “heavy pairs” (i.e. pairs
of variables that appear in≫ log 𝑛 hyperedges across the 𝐻𝑖’s), the resulting Kikuchi matrices are
far from being approximately regular. Our key technical idea is a new decomposition procedure
that operates directly on the chains. Such a decomposition procedure partitions the chains into
∼ 𝑟 different groups such that each group admits a (different, appropriately defined) Kikuchi
matrix that satisfies approximate regularity. Regularity decompositions were already used in early
applications of the Kikuchi matrix method for proving hypergraph Moore bound and smoothed
CSP refutation [GKM22, HKM23]. However, our notion of regularity is (necessarily) significantly
weaker (we call it “contiguously regular” partitioning) that, unlike [GKM22], does not “by design”
ensure approximate regularity of the Kikuchi matrices after removing only a negligible fraction of

12



rows. Instead, our argument for approximate regularity relies on combining the guarantees of the
decomposition with (1) an appropriate choice of Kikuchi matrix for each piece in the partition, and
(2) the structure in the chains arising by virtue of 𝐻𝑖’s being matchings.

Polynomial concentration: bounding expected derivatives. Our main technical step (the subject
of Section 8) is proving that our weak notion of regularity combined with the fact that 𝐻𝑖’s are
matchings is enough to control expected partial derivatives of the “degree-polynomial” that
computes the degrees of nodes in the Kikuchi graph.

We note that off-the-shelf low-degree polynomial concentration inequalities (e.g., the Kim–Vu
inequality [KV00] or the related inequality of Schudy and Sviridenko [SS12]) lose an exponential
factor in the degree of the polynomial in the tail bound. This exponential factor is too costly for us
as the arity of our constraints, and thus the degree of the polynomial, is 𝑂(log 𝑛) that eventually
restricts us to only a quasi-polynomial instead of an exponential lower bound on 3-LCCs. Instead,
we induce a special “partite” structure (i.e., there exists a partition of the variables so that the
degree of the polynomial is 1 when restricted to any single piece in the partition) in the polynomial
by setting up our Kikuchi matrix to be indexed by tuples of sets (instead of a single set). For such
partite polynomials, we prove an analog7 of the Kim–Vu inequality for partite that gives sharper
bounds when its expected partial derivatives decay appropriately.

We note that the analysis of the expected partial derivatives of the “degree polynomial” (which
we use to prove approximate regularity) and the interplay of these bounds with our decomposition
of chains is the key technical part (and the focus of Section 8) of our proof. In order to illustrate this
technical part in a “base” case that still captures some of the complications, we present the case of
2-chains as a warmup in the next section.

4 Warmup: An 𝑛 ≥ Ω̃(𝑘4) Lower Bound via 2-Chains

In this section, we give a detailed sketch of the proof of the following theorem, which is a weaker
version of our main result. Notice that this theorem already improves the best known 3-LCC lower
bound [AGKM23] by a polynomial factor in 𝑘.

Theorem 4.1 (Weak version of Theorem 1). Let ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 be a (3, 𝛿)-LCC in normal
form with 𝛿 = 𝑂(1). Then, 𝑛 ≥ Ω̃(𝑘4).

The theorem above obtains a lower bound of 𝑛 ⪆ 𝑘4 — worse than the bound of 𝑛 ⪆ 𝑘5

predicted by the heuristic but still beating 𝑛 ⪆ 𝑘3 from [AGKM23]; we discuss the reason that we
do not match the heuristic in Remark 4.2.

Proof. As before, we have 3-uniform hypergraph matchings 𝐻1, . . . ,𝐻𝑛 , where for any 𝑢 ∈ [𝑛] and
𝐶 ∈ 𝐻𝑢 , we have that for any 𝑏 ∈ {−1, 1}𝑘 , 𝑥 = ℒ(𝑏) satisfies 𝑥𝐶 = 𝑥𝑢 . Following Section 3.2, we

7We did not find a reference to a known result so we include a proof in Lemma 2.9.
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shall letℋ (2)
𝑖

denote the set of 2-chains with head 𝑖. We define the 5-XOR instance Φ𝑏(𝑥) as

Φ𝑏(𝑥) B
𝑘∑

𝑖=1

𝑏𝑖

∑
®𝐶=(𝑖,𝐶0,𝑤0,𝐶1,𝑤1)∈ℋ (2)𝑖

𝑥𝐶0𝑥𝐶1𝑥𝑤1 .

We note that val(Φ𝑏) = 𝑘(3𝛿𝑛)2 for any 𝑏 ∈ {−1, 1}𝑘 , as the instance is satisfiable and has 𝑘(3𝛿𝑛)2
constraints in total. Following the strategy in Section 3.1, we shall use spectral refutation via
Kikuchi matrices to bound val(Φ𝑏)with high probability for a random 𝑏 ∈ {−1, 1}𝑘 .

4.1 Step 1: the Cauchy–Schwarz trick

As we have observed, the basic Kikuchi matrices in Definition 3.2 are only defined for constraints of
even arity, but the constraints inℋ (2)

𝑖
have arity 5, i.e., odd arity. The standard way to handle odd

arity XOR instances is to use the “Cauchy–Schwarz trick”, which produces even arity instances as
follows. Let ®𝐶 ∈ ℋ (2)

𝑖
and ®𝐶′ ∈ ℋ (2)

𝑗
for 𝑖 ≠ 𝑗 ∈ [𝑘] be two constraints in our initial 5-XOR instance,

where ®𝐶 = (𝑖, 𝐶0,𝑤0, 𝐶1,𝑤1) and ®𝐶′ = (𝑗, 𝐶′0,𝑤′0, 𝐶′1,𝑤′1)where 𝑤1 = 𝑤′1, i.e., the last element of both
chains is the same. From this pair, we can “cancel” 𝑤1 = 𝑤′1, producing the derived constraint
𝑥𝐶0𝑥𝐶1𝑥𝐶′0𝑥𝐶

′
1
= 𝑏𝑖𝑏 𝑗 , which has arity 8. We do this for all pairs of chains with the same “tail” vertex

𝑤. We note that this process produces at least (𝑘(3𝛿𝑛)2)2/𝑛 ∼ 𝑘2𝑛3 constraints.
We now define the following “Cauchy–Schwarzed instance” polynomial:

𝑓𝑏(𝑥) =
∑

𝑖≠𝑗∈[𝑘]
𝑏𝑖𝑏 𝑗

∑
𝑤∈[𝑛]

∑
®𝐶∈ℋ (2)

𝑖
, ®𝐶′∈ℋ (2)

𝑗
:𝑤1=𝑤

′
1=𝑤

𝑥𝐶0𝑥𝐶1𝑥𝐶′0𝑥𝐶
′
1

.

The phrase “Cauchy–Schwarz trick” refers to the fact that one can show 𝑘2𝑛4 ∼ Φ𝑏(𝑥)2 ≤ 𝑛 · 𝑓𝑏(𝑥) +
𝑜(𝑘2𝑛4) via a simple application of the Cauchy–Schwarz inequality and a bound on the “diagonal
terms” where 𝑖 = 𝑗. This reduces the task to bounding the cross-term polynomial 𝑓𝑏 .

We now observe that the “right-hand sides” of the constraints in 𝑓𝑏 are no longer independent,
as they are of the form 𝑏𝑖𝑏 𝑗 for 𝑖 ≠ 𝑗 ∈ [𝑘], and this will cause an issue “downstream” when we apply
matrix concentration bounds, as the matrices will not be independent. To recover independence,
we consider the polynomial 𝑓𝑀,𝑏(𝑥) defined for a (directed) matching 𝑀 on [𝑘]:

𝑓𝑀,𝑏(𝑥) =
∑
(𝑖,𝑗)∈𝑀

𝑏𝑖𝑏 𝑗

∑
𝑤∈[𝑛]

∑
®𝐶∈ℋ (2)

𝑖
, ®𝐶′∈ℋ (2)

𝑗
:𝑤1=𝑤

′
1=𝑤

𝑥𝐶0𝑥𝐶1𝑥𝐶′0𝑥𝐶
′
1

.

Because we now sum over a matching, we have that 𝑏𝑖𝑏 𝑗 and 𝑏𝑖′𝑏 𝑗′ are independent for different
directed edges (𝑖, 𝑗) and (𝑖′, 𝑗′) in 𝑀. And, we can easily relate 𝑓𝑏 and 𝑓𝑀,𝑏 , as 𝑓𝑏(𝑥) = 2(𝑘 −
1)E𝑀 𝑓𝑀,𝑏(𝑥) when 𝑘 is even, and 𝑓𝑏(𝑥) = 2𝑘E𝑀 𝑓𝑀,𝑏(𝑥) when 𝑘 is odd, where the expectation is
over a maximum matching 𝑀. This is because the chance that 𝑀 contains a directed edge (𝑖, 𝑗) is

1
2(𝑘−1) if 𝑘 is even and 1

2𝑘 if 𝑘 is odd. In particular, there exists a maximum matching 𝑀 such that
val( 𝑓𝑀,𝑏) ≥ 2

𝑘
val( 𝑓𝑏) ∼ 𝑘𝑛3.
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Remark 4.2. Restricting to a matching 𝑀 loses a factor of 𝑘 in the number of constraints. This leads
to a factor 𝑘 “loss” in the density of the corresponding Kikuchi matrix and is the main reason
why we obtain weaker bound of 𝑛 ≥ �̃�(𝑘4) instead of 𝑘5 suggested by our heuristic calculation in
Section 3.2. A better bound could be obtained by instead following the setup in [AGKM23], where
they split [𝑘] randomly into a left and right set 𝐿 and 𝑅 and only consider constraints where 𝑖 ∈ 𝐿
and 𝑗 ∈ 𝑅 (thereby losing only ∼ 1/2 of the constraints instead of a factor 𝑘). This careful setup is
necessary in [AGKM23] for their goal of obtaining a cubic (as opposed to the known quadratic)
bound, but this makes the “row pruning” step (i.e., arguing approximate regularity of Kikuchi
graphs after removing a negligible fraction of constraints) significantly more challenging. In our
case, the effect of this loss on the final lower bound diminishes as the length of the chain 𝑟 grows
and when 𝑟 ∼ log 𝑛, disappears asymptotically, and so we pick a matching 𝑀 to make the row
pruning easier.

4.2 Step 2: spectral refutation via Kikuchi matrices

Let us now bound val( 𝑓𝑀,𝑏) (with high probability over 𝑏 ∈ {−1, 1}𝑘) for any maximum matching
𝑀. We introduce our Kikuchi matrices:

Definition 4.3. For 𝑖 ≠ 𝑗 ∈ [𝑘] and ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) and ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1)with 𝑤1 = 𝑤′1,

we define the matrix 𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗 as follows. The rows/columns of the matrix 𝐴

( ®𝐶, ®𝐶′)
𝑖,𝑗 are indexed by

a 4-tuple of sets (𝑆0, 𝑆1, 𝑆′0, 𝑆′1), each in
([𝑛]
ℓ

)
, and the ((𝑆0, 𝑆1, 𝑆′0, 𝑆′1), (𝑇0,𝑇1,𝑇′0 ,𝑇′1))-th entry is 1 if

𝑆0 ⊕ 𝑇0 = 𝐶0, 𝑆1 ⊕ 𝑇1 = 𝐶1, 𝑆′0 ⊕ 𝑇′0 = 𝐶′0, 𝑆′1 ⊕ 𝑇
′
1 = 𝐶′1, and is 0 otherwise.

We let 𝐴𝑖,𝑗 =
∑
®𝐶∈ℋ (2)

𝑖
, ®𝐶′∈ℋ (2)

𝑗
:𝑤1=𝑤

′
1
𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗 and 𝐴 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 .

We now observe that each matrix 𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗 has exactly 𝐷4 nonzero entries, where 𝐷 = 2 ·

(𝑛−2
ℓ−1

)
,

and the matrix has 𝑁4 rows/columns, where 𝑁 =
(𝑛
ℓ

)
. We note that 𝐷/𝑁 ∼ ℓ/𝑛, and so the average

number of nonzero entries per row (or column), i.e., the density, is (𝐷/𝑁)4 ∼ (ℓ/𝑛)4 = (ℓ/𝑛)𝑞/2, as
the arity of the constraints is 8.

We also observe that for any 𝑥 ∈ {−1, 1}𝑛 , 𝐷4 𝑓𝑀,𝑏(𝑥) = 𝑥′⊤𝐴𝑥′, where 𝑥′ is the vector with
(𝑆0, 𝑆1, 𝑆′0, 𝑆′1)-th entry equal to

∏
𝑣∈𝑆0

𝑥𝑣
∏

𝑣∈𝑆1
𝑥𝑣

∏
𝑣∈𝑆′0 𝑥𝑣

∏
𝑣∈𝑆′1 𝑥𝑣 . We thus have that

𝑘𝑛3 ·𝐷4 ≤ 𝐷4 · val( 𝑓𝑀,𝑏) ≤ ∥𝐴∥∞→1 ≤ 𝑁4∥𝐴∥2 .

For any 𝑖 ≠ 𝑗, the matrix 𝐴𝑖,𝑗 has density ∼ 𝑚𝑖,𝑗(𝐷/𝑁)4 ∼ (ℓ/𝑛)4, where 𝑚𝑖,𝑗 is the number of the
constraints in 𝑓𝑏 with right-hand side 𝑏𝑖𝑏 𝑗 . Let us now argue that each 𝑚𝑖,𝑗 is at most 𝑂(𝑛3). Indeed,
𝑚𝑖,𝑗 is the number of pairs of 2-chains (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖

and (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ
(2)
𝑗

where

𝑤1 = 𝑤′1. To show that 𝑚𝑖,𝑗 ≤ 𝑂(𝑛3), we pick 𝑤0,𝑤1 and 𝑤′0, for a total of 𝑛3 choices, and observe
that this completely determines both chains. Indeed, because 𝐻𝑖 is a matching, there is at most one
constraint 𝐶 in 𝐻𝑖 that contains 𝑤0, and then 𝐶0 must be 𝐶 \ {𝑤}. This similarly shows that we have
at most one choice of 𝐶1 and also 𝐶′0. Finally, because 𝑤′1 = 𝑤1, and we know 𝑤1, we thus know 𝑤′1
as well, which by similar reasoning gives us at most one choice for 𝐶′1, and we have determined
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the entire chain. We note that we have a lower bound of ∼ 𝑘𝑛3 on the total number of constraints∑
(𝑖,𝑗)∈𝑀 𝑚𝑖,𝑗 , so this calculation also shows that no 𝑚𝑖,𝑗 can be much larger than the average.

Returning to the density calculation, we have shown that 𝐴𝑖,𝑗 has density at most 𝑛3(ℓ/𝑛)4 =

ℓ 4/𝑛. Again, following the blueprint in Section 3.1, we will set ℓ = 𝑛1/4 · polylog(𝑛), and we want
to show that the matrices 𝐴𝑖,𝑗 satisfy the approximate regularity condition, i.e., the number of
rows/columns with more than Δ = ℓ 4 · polylog(𝑛)/𝑛 nonzero entries is at most 𝑁4/poly(𝑛). Let us
finish the proof, assuming that this holds.

Proof assuming approximate regularity. Let ℬ denote the set of rows/columns that are “bad” for
some pair (𝑖, 𝑗), i.e., the matrix 𝐴𝑖,𝑗 has more than Δ nonzero entries in that row. Let 𝐵𝑖,𝑗 be the matrix
where the rows and columns in ℬ have been all set to 0. Let 𝐵 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐵𝑖,𝑗 . We have that 𝐵

is the sum of mean 0 independent matrices, each with spectral norm ∥𝐵𝑖,𝑗 ∥2 ≤ Δ. Therefore, by
matrix Khintchine (Fact 2.8), we have that with high probability over 𝑏, ∥𝐵∥2 ≤ 𝑂(Δ

√
𝑘 log(𝑁4)) =

𝑂(Δ
√
𝑘ℓ log 𝑛).

Now, we observe that ∥𝐴 − 𝐵∥∞→1 ≤ 𝑜(𝑁). This is because the number of nonzero entries that
we have removed from 𝐴 to produce 𝐵 is at most 𝑘 · 𝑛3 · 𝑁4/poly(𝑛) = 𝑜(𝑁4) (there are 𝑘 edges
(𝑖, 𝑗) in the matching 𝑀, each has 𝑚𝑖,𝑗 ≤ 𝑛3 constraints, and each row of 𝐴𝑖,𝑗 has at most 𝑚𝑖,𝑗 ≤ 𝑛3

nonzero entries) provided that the poly(𝑛) factor is large enough. We thus conclude that

𝑘𝑛3 ·𝐷4 ≤ 𝐷4 · val( 𝑓𝑀,𝑏) ≤ ∥𝐴 − 𝐵∥∞→1 +𝑁4∥𝐵∥2 ≤ 𝑜(𝑁4) +𝑁4𝑂(Δ
√
𝑘ℓ log 𝑛) .

Substituting the value for Δ and rearranging, we conclude that 𝑘 ≤ ℓ · polylog(𝑛) ≤ �̃�(𝑛1/4).
We remark that Sections 4.1 and 4.2 are fairly mechanical, and they justify the use of the heuristic

calculation. The place where we had “freedom” is in the choice of constraints to use in the initial
XOR instance, which we chose to be the 2-chainsℋ (2)

𝑖
. It thus remains to bound the number of bad

rows ℬ. This “row pruning” step is key to converting the heuristic into a full proof.

4.3 Step 3: row pruning, the key technical step

We want to understand if, after dropping a 1/poly(𝑛) fraction of the rows, every Kikuchi graph
𝐴𝑖,𝑗 satisfies approximate regularity. This is equivalent to showing that for every matrix 𝐴𝑖,𝑗 , with
probability at least 1 − 1/poly(𝑛) a uniformly random row (𝑆0, 𝑆1, 𝑆′0, 𝑆′1), has at most Δ nonzero
entries in 𝐴𝑖,𝑗 for Δ = ℓ 4 · polylog(𝑛)/𝑛 = Δ𝑎𝑣𝑔polylog(𝑛).
The heavy pair degree. We now make a key observation. Whether the above approximate
regularity property holds for a given collection of matchings 𝐻1, 𝐻2, . . . , 𝐻𝑛 is governed by a single
parameter that we call the heavy pair degree 𝑑. This is the maximum, over all pairs {𝑣, 𝑣′} ⊆ [𝑛],
of the number of hyperedges across the 𝐻𝑖’s that contain {𝑣, 𝑣′}. We will prove that if 𝑑 is small
enough then approximate regularity holds for every 𝐴𝑖,𝑗 after dropping a 1/poly(𝑛)-fraction of
rows. When 𝑑 is large, this property will not hold for the 𝐴𝑖,𝑗 ’s from Definition 4.3. Instead, we will
define a different collection of Kikuchi matrices that have high density and for which row pruning
succeeds.

Lemma 4.4 (Row pruning for 2-chains with no heavy pairs). Let 𝐻1, . . . , 𝐻𝑛 be 3-uniform hypergraph
matchings of size 𝛿𝑛, and let 𝑑 be the maximum, over all pairs {𝑣, 𝑣′} of vertices, of the number of pairs
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(𝑢,𝐶) with 𝑢 ∈ [𝑛] and 𝐶 ∈ 𝐻𝑢 where {𝑣, 𝑣′} ⊆ 𝐶. Fix 𝑖 ≠ 𝑗 ∈ [𝑘], and let 𝐴𝑖,𝑗 be the matrix defined in
Definition 4.3 at level ℓ ∈ N.

Suppose that 𝑑 ≤ ℓ 2. Then, the number of rows (𝑆0, 𝑆1, 𝑆′0, 𝑆′1) of 𝐴𝑖,𝑗 with more than Δ = ℓ 4 ·
polylog(𝑛)/𝑛 nonzero entries is at most 𝑁4/poly(𝑛).

We note that if the matchings 𝐻1, . . . ,𝐻𝑛 are random, then we have 𝑑 ≤ polylog(𝑛) with high
probability, and so random matchings satisfy the “small heavy-pair degree” assumption with
high probability. We can thus think of 𝑑 ≤ polylog(𝑛) as a pseudorandom property of a collection
𝐻1, . . . ,𝐻𝑛 of matchings. We now sketch a proof of Lemma 4.4.

The degree polynomial and its partial derivatives. As the first step in the proof of Lemma 4.4, we
define a degree 4 polynomial Deg𝑖,𝑗 : {0, 1}4𝑛 →N, where we think of the 4𝑛 variables as split into
4 groups of 𝑛 variables 𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1), which are indicator variables of the 4 sets 𝑆0, 𝑆1, 𝑆′0, 𝑆′1,
respectively. This polynomial Deg𝑖,𝑗(𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1)) upper bounds the number of nonzero entries
in the (𝑆0, 𝑆1, 𝑆′0, 𝑆′1)-th row in the matrix 𝐴𝑖,𝑗 in Definition 4.3.

Formally, let 𝒯𝑖,𝑗 denote the (multi)-set of 4-tuples (𝑢0, 𝑢1, 𝑣0, 𝑣1) such that there exists ®𝐶 =

(𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖
and ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ

(2)
𝑗

with 𝑤1 = 𝑤′1 such that 𝑢0 ∈ 𝐶0, 𝑢1 ∈
𝐶1, 𝑣0 ∈ 𝐶′0, 𝑣1 ∈ 𝐶′1; if there are multiple such pairs ( ®𝐶, ®𝐶′) that produce the same (𝑢0, 𝑢1, 𝑣0, 𝑣1),
then we add this tuple multiple times. Then, we set

Deg𝑖,𝑗(𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1)) B
∑

(𝑢0,𝑢1,𝑣0,𝑣1)∈𝒯𝑖,𝑗

𝑠
(0)
𝑢0 𝑠
(1)
𝑢1 𝑠
′(0)
𝑣0 𝑠

′(1)
𝑣1 .

Note that Deg𝑖,𝑗 is a polynomial with non-negative coefficients. We are interested in the proba-
bility that Deg𝑖,𝑗 , on uniform draws of 4-tuples of ℓ -size sets, takes a value that deviates from its
expectation 𝜇 by some multiplicative factor. It turns out (see Lemma 8.3) that we can pass on to
independent 𝑝-biased product distribution on {0, 1}4𝑛 for 𝑝 ∼ ℓ/𝑛 without much loss. This is help-
ful because the tail behavior of low-degree polynomials with non-negative coefficients on product
distributions is determined by a bound on its expected partial derivatives. Namely, variants of the
Kim-Vu inequality (see Lemma 2.9) show the following: if the expectation of every partial derivative of
Deg𝑖,𝑗 is at most 𝜇, then Deg𝑖,𝑗(𝑆0, 𝑆1, 𝑆′0, 𝑆′1) ≤ 𝑂(𝜇 log 𝑛) with probability at least 1− 1/poly(𝑛).

Let us now examine the expected partial derivatives of Deg𝑖,𝑗(𝑠). We start by introducing
notation to refer to them. Let 𝑍 = (𝑧0, 𝑧1, 𝑧′0, 𝑧′1) ∈ ([𝑛] ∪ {★})4 be an ordered tuple of length 4, with
entries either in 𝑛 or set to ★, which we think of as an “unfixed” value. Then, 𝑍 encodes partial
derivatives with respect to any subset of variables that use at most one variable in each of the groups
𝑠(0), 𝑠(1), 𝑠′(0), 𝑠′(1). All other partial derivatives of Deg𝑖,𝑗 are 0 since Deg𝑖,𝑗 has degree 1 in each of the
4 groups of variables (i.e., Deg𝑖,𝑗 is 4-partite). We know that E[Deg𝑖,𝑗(𝑠)] = 𝜇(★,★,★,★) ≤ 24(ℓ/𝑛)4 · 𝑛3 =

𝑂(1) · ℓ 4/𝑛; the factor of 24 comes from the fact that each pair ( ®𝐶, ®𝐶′) adds 24 different tuples to 𝒯𝑖,𝑗 .
Now, Lemma 2.9 implies that the chance that Deg𝑖,𝑗 takes a value larger than 𝜇 · polylog(𝑛) is at
most 1/poly(𝑛) if 𝜇𝑍 ≤ 𝜇 for all 𝑍.

Computing expected partial derivatives. To help bound the expected partial derivatives 𝜇𝑍, let
us relate these parameters to combinatorial quantities of the hypergraphs 𝐻1,𝐻2, . . . ,𝐻𝑛 . Notice
that when we take partial derivatives with respect to some 𝑍, the only monomials that “survive”

17



are ones that “contain” 𝑍, and furthermore the expectation of the partial derivative is simply
(ℓ/𝑛)# of ★ entries in 𝑍 times the number of such monomials. Formally, let deg𝑖,𝑗(𝑍) be the number of

pairs ( ®𝐶, ®𝐶′) ∈ ℋ (2)
𝑖
×ℋ (2)

𝑗
where 𝑤1 = 𝑤′1 and 𝑧0 ∈ 𝐶0, 𝑧1 ∈ 𝐶1, 𝑧′0 ∈ 𝐶′0, 𝑧′1 ∈ 𝐶′1, where for the

symbol ★, we say that ★ ∈ 𝐶 always holds — we say that such a pair ( ®𝐶, ®𝐶′) contains 𝑍. Then,
the expected partial derivative at 𝑍 is 𝜇𝑍 = 24−|𝑍 |(ℓ/𝑛)4−|𝑍 | deg𝑖,𝑗(𝑍), where |𝑍 | is the number
of non-★ entries in 𝑍.8 For example, 𝑍 = (★,★,★,★) is contained in all such pairs of 2-chains,
and so deg𝑖,𝑗(★,★,★,★) = 𝑚𝑖,𝑗 ≤ 𝑂(𝑛3) and 𝜇𝑍 = 𝜇 = 16(ℓ/𝑛)4𝑚𝑖,𝑗 . Let us use the shorthand
𝜇𝑡 = max𝑍:|𝑍 |=𝑡 𝜇𝑍.

Let 𝑍 be an arbitrary 4-tuple with at least one non-★ entry. As explained above, estimating 𝜇𝑍 is,
up to scaling, equivalent to counting deg𝑖,𝑗(𝑍), the number of pairs ( ®𝐶, ®𝐶′) that contain 𝑍. We next

observe that if 𝑍 has no ★ entries, then the number of 2-chains ( ®𝐶, ®𝐶′) containing 𝑍 is an absolute
constant. This is because there is at most one constraint 𝐶0 ∪ {𝑤0} that contains 𝑧0 in 𝐻𝑖 . Given
this constraint, there are 2 choices for 𝑤0, as 𝑤0 ∈ 𝐶0 ∪ {𝑤0} \ {𝑧0}. Given 𝑤0, there is at most one
constraint 𝐶1 ∪ {𝑤1} in 𝐻1 that contains 𝑧1, and then at most 2 choices for 𝑤1. We can similarly use
the knowledge of (𝑧′0, 𝑧′1) to bound the number of choices for 𝐶′0,𝐶′1. All in all, we have at most
16 = 𝑂(1) choices for the pair ( ®𝐶, ®𝐶′) given 𝑍 with no ★ entries. This immediately shows that for 𝑍
such that |𝑍 | = 4, 𝜇𝑍 ≤ 𝑂(1) ≤ 𝜇.

Let us now deal with 𝑍’s with at least one ★ entry by breaking up into cases depending on |𝑍 |.
We will view the counting of deg𝑖,𝑗(𝑍) as a procedure that makes a bounded number of choices to

decode the pair ( ®𝐶, ®𝐶′).
Let us deal with the case when |𝑍 | = 1. By swapping the roles of 𝑖 and 𝑗 if needed, without

loss of generality we can assume that one of 𝑧0 or 𝑧1 is non-★, and all other entries in 𝑍 are ★.
There are at most 𝑛 choices for 𝑧0 (if 𝑧1 ≠ ★) or 𝑧1 (if 𝑧0 ≠ ★). We now have 𝑛 choices for 𝑧′0, which
again determines 𝐶′0 and 𝑤′0 up to 2 choices. We now observe that (𝐶′1,𝑤′1) is uniquely determined.
Indeed, this is because we know 𝑤′1, as it equals 𝑤1 (the two 2-chains must have matching tails),
and therefore this determines the hyperedge 𝐶′1 ∪ {𝑤

′
1} ∈ 𝐻𝑤′0

uniquely. We have thus shown that
for 𝑍 with |𝑍 | = 1, we have deg𝑖,𝑗(𝑍) ≤ 𝑂(𝑛2), and so 𝜇𝑍 ≤ (ℓ/𝑛)3 ·𝑂(𝑛2) ≤ 𝑂(ℓ 3/𝑛) ≤ 𝑂(ℓ 4/𝑛).

Let us now handle the case when |𝑍 | = 2. Similar arguments as above show that Deg𝑖,𝑗(𝑍) ≤
𝑂(𝑛) holds for all 𝑍 except when the non-★ entries of 𝑍 look like 𝑍 = (★, 𝑧1,★, 𝑧′1) where 𝑧1, 𝑧′1 ≠ ★,
and thus 𝜇𝑍 ≤ (ℓ/𝑛)2 ·𝑂(𝑛) ≤ 𝑂(ℓ 4/𝑛) for these 𝑍’s. To count deg𝑖,𝑗(𝑍) for 𝑍 = (★, 𝑧1,★, 𝑧′1)where
𝑧1, 𝑧′1 ≠ ★, we pay a factor of 𝑛 to determine 𝑧0, and then this determines (up to an 𝑂(1) factor)
𝐶0 and 𝐶1 as well. Now, we know 𝑤′1 (because it is equal to 𝑤1) and 𝑧′1 which is in 𝐶′1. Thus, the
hyperedge 𝐶′1 ∪ {𝑤

′
1} must contain the pair {𝑧′1,𝑤′1}. Using the heavy pair degree, there are at most

𝑑 choices for the pair (𝑤′0, 𝐶′1 ∪ {𝑤
′
1}), and after learning 𝑤′0 we also know 𝐶′0. Hence, we have paid

a total of 𝑂(𝑛𝑑) choices, which implies that 𝜇2 ≤ (ℓ/𝑛)2 ·𝑂(𝑛𝑑) = 𝑂(ℓ 2𝑑/𝑛). For |𝑍 | = 3, a similar
issue arises and gives a bound of 𝜇3 ≤ 𝑂(ℓ 𝑑/𝑛).

We can now finish the proof of Lemma 4.4.

8The extra factor of 24−|𝑍 | comes from the fact that for every 𝑍 and pair ( ®𝐶, ®𝐶′) containing 𝑍, the pair ( ®𝐶, ®𝐶′) produces
24−|𝑍 | tuples (𝑢0, 𝑢1, 𝑣0, 𝑣1) in 𝒯𝑖,𝑗 that contain 𝑍. In this case, this is just a constant factor, so we can ignore it.
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Proof of Lemma 4.4. Notice that if 𝑑 ≤ ℓ 2 then 𝜇𝑡 ≤ 𝜇 for every 𝑡. Applying Lemma 2.9 now yields
that the probability that Deg𝑖,𝑗 > 𝜇 · polylog(𝑛) is at most 1/poly(𝑛). Taking a union bound on
𝑘 < 𝑛 yields that the fraction of bad rows |ℬ|/𝑁 is at most 1/poly(𝑛), as desired. □

4.4 Step 4: hypergraph decomposition to handle large heavy pair degree

We will handle the case when the heavy pair degree is high by designing a different Kikuchi matrix.
To do this, we we will construct the cross term polynomial (obtained by applying the Cauchy–
Schwarz inequality) slightly differently. Our current Kikuchi matrix is built from the XOR instance
obtained by pairing up chains that agree on their tails and thus “cancel” (i.e., square out) one
variable. When the heavy pair degree is large, we will build chains by cancelling a pair of variables
instead. The number of pairs of chains that agree in a pair of variables instead of just their tails, i.e.,
the new number of “Cauchy–Schwarzed” constraints, will of course be smaller than before. On the
other hand, since we cancel a pair of variables instead of just the tail, the arity of the resulting XOR
instance will be smaller: 6 instead of 8. The punchline is that the density vs. arity trade-off (i.e., our
key heuristic discussed in Section 3.2) breaks in our favor, provided that there are many “heavy pairs”.

To formally implement this argument, we decompose the set of chains by “labeling” each chain
by the heavy pair contained within, if one exists. Intuitively, this is the pair of variables in the
chain that we intend to cancel in the Cauchy–Schwarz trick. If the chain does not contain any
heavy pair, then we label it by its tail variable 𝑤, which we will cancel in the Cauchy–Schwarz
trick as done before in Section 4.1. We letℋ𝑄 denote the set of chains labeled by the heavy pair
𝑄, andℋ𝑤 denote the set of chains labeled by the tail variable 𝑤. For technical reasons (that will
become relevant when we do the row pruning argument for the different, yet-to-be-defined Kikuchi
matrices), our decomposition will produce multiple pieces labeled by the same heavy pair 𝑄, i.e.,
ℋ𝑄,1,ℋ𝑄,2, etc., and for two chains labeled by the same 𝑄, we shall only cancel the pair 𝑄 if these
two chains lie within the same pieceℋ𝑄,𝑝 .

Formally, our hypergraph decomposition is as follows. Given the collectionℋ (1) = {(𝑢,𝐶,𝑤) :
𝑢 ∈ [𝑛],𝐶 ∪ {𝑤} ∈ 𝐻𝑢} of 1-chains, we perform the following greedy algorithm: if there exists
an ordered pair 𝑄 = (𝑄1,𝑄2) such that there are more than 𝑑 B ℓ 2 1-chains (𝑢,𝐶,𝑤) inℋ (1) with
𝑄1 ∈ 𝐶 and 𝑄2 = 𝑤, i.e., 𝑄 is a heavy pair contained in the chain (𝑢,𝐶,𝑤), then we choose an
arbitrary set of exactly 𝑑 such 1-chains, remove them fromℋ (1), and place them in a new “partition”
ℋ𝑄,𝑝 ; here, 𝑝 ∈ N denotes the “label” of the partition, as we may be producing multiple partitions
with the same 𝑄, and so we will denote these different pieces of the partition byℋ𝑄,1,ℋ𝑄,2, etc.
Finally, if there is no such heavy pair 𝑄, then we create partitionsℋ𝑤 for each 𝑤 ∈ [𝑛], and add all
remaining 1-chains with “tail 𝑤”, i.e., 1-chains of the form (𝑢,𝐶,𝑤), toℋ𝑤 .

This decomposition has the following properties:

(1) ℋ (1) = (∪𝑤ℋ𝑤)
⋃(∪(𝑄,𝑝)ℋ𝑄,𝑝) is a disjoint partition ofℋ (1);

(2) For each 𝑄 = (𝑄1,𝑄2) and 𝑝 ∈ N,ℋ𝑄,𝑝 is a set of 1-chains that “contain” the tuple 𝑄, i.e., each
(𝑢,𝐶,𝑤) inℋ𝑄,𝑝 has 𝑤 = 𝑄2 and 𝐶 ∋ 𝑄1;

(3) For each 𝑄 and 𝑝 ∈ N, |ℋ𝑄,𝑝 | = 𝑑;
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(4) For each 𝑤 ∈ [𝑛], there is only one partitionℋ𝑤 ;

(5) The total number of partitionsℋ𝑄,𝑝 is at most 𝑂(𝑛2/𝑑), as there are at most 𝑂(𝑛2) 1-chains, and
eachℋ𝑄,𝑝 has exactly 𝑑 1-chains.

We stress that the decomposition is only on 1-chains, not the set of 2-chains ∪𝑖∈[𝑘]ℋ (2)𝑖
that are the

constraints in the XOR instance! At a high level, this is because, e.g., the 2-chains inℋ (2)
𝑖

(orℋ (2)
𝑗

)
are formed by taking a 1-chain and prepending it with a hyperedge in 𝐻𝑖 (or 𝐻𝑗), and so “first link”
in each 2-chain is specific to the choice of 𝑖 ∈ [𝑘], but the “second link” is an arbitrary 1-chain, and
so it is “shared” across theℋ (2)

𝑖
’s in some informal sense.9 This property turns out to be important

when it comes time to bound the expected partial derivatives.
Now, we define ℋ (2)

𝑖,𝑄,𝑝 to be the set of 2-chains (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) where the “second link”
(𝑤0,𝐶1,𝑤1) is inℋ𝑄,𝑝 . Using the decomposition, we now define the following polynomials:

Φ𝑏(𝑥) B
𝑘∑

𝑖=1

𝑏𝑖

∑
®𝐶=(𝑖,𝐶0,𝑤0,𝐶1,𝑤1)∈ℋ (2)𝑖

𝑥𝐶0𝑥𝐶1𝑥𝑤1 ,

Ψ𝑖,𝑤(𝑥) B
∑

𝐶0,𝑤0:𝐶0∪{𝑤0}∈𝐻𝑖

∑
(𝑤0,𝐶1,𝑤1)∈ℋ𝑤

𝑥𝐶0𝑥𝐶1 ,

Ψ𝑖,𝑄,𝑝(𝑥) B
∑

(𝑖,𝐶0,𝑤0,𝐶1,𝑤1)∈ℋ (2)𝑖,𝑄,𝑝

𝑥𝐶0𝑥𝐶1\𝑄1 ,

Ψ
(0)
𝑏
(𝑥, 𝑦) B

𝑘∑
𝑖=1

∑
𝑤∈[𝑛]

𝑏𝑖𝑦𝑤Ψ𝑖,𝑤(𝑥) ,

Ψ
(1)
𝑏
(𝑥, 𝑦) B

𝑘∑
𝑖=1

∑
(𝑄,𝑝)

𝑏𝑖𝑦𝑄,𝑝Ψ𝑖,𝑄,𝑝(𝑥) ,

where above 𝑦𝑄,𝑝 and 𝑦𝑤 are new variables. By definition, if we set 𝑦𝑤 = 𝑥𝑤 and 𝑦𝑄 = 𝑥𝑄1𝑥𝑄2 , then
we have that Φ𝑏(𝑥) = Ψ(0)(𝑥, 𝑦) +Ψ(1)(𝑥, 𝑦). Indeed, all we have done is partitioned the constraints
into these two polynomials and removed the “𝑥𝑄1𝑥𝑄2 term” from each monomial, replacing it with
the new variable 𝑦𝑄,𝑝 .

We now refute the two polynomials Ψ(0)(𝑥, 𝑦) and Ψ(1)(𝑥, 𝑦) separately using the machinery in
Sections 4.1 to 4.3. In fact, Sections 4.1 to 4.3 immediately show that we can successfully refute the
polynomial Ψ(0)(𝑥, 𝑦). Indeed, the only issue that we encountered was in Section 4.3, where the row
pruning failed if there was a pair {𝑣, 𝑣′} that appeared in more than ℓ 2 1-chains inℋ (1). However,
this cannot happen, as otherwise our decomposition algorithm would not have terminated.

It thus remains to handle the second polynomial, Ψ(1)(𝑥, 𝑦). Applying the “Cauchy–Schwarz
trick” of Section 4.1, we can reduce this to the case of bounding the polynomial:

𝑓𝑀,𝑏(𝑥) =
∑
(𝑖,𝑗)∈𝑀

𝑏𝑖𝑏 𝑗

∑
(𝑄,𝑝)

Ψ𝑖,𝑄,𝑝(𝑥)Ψ𝑗,𝑄,𝑝(𝑥) ,

9For this reason, in Section 6, the length of the chains defining the XOR constraints is 𝑟 + 1, but we only decompose
length 𝑟 chains.
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Figure 2: A pair of 2-chains ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖,𝑄,𝑝 , ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ
(2)
𝑗,𝑄,𝑝 . The

blue vertices appear in the sets (𝑆0,𝑅, 𝑆′0) for the rows of the matrix 𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 , and the green vertices

appear in the columns. The orange elements are the elements of 𝑄 that are canceled via the Cauchy–
Schwarz operation.

where 𝑀 is a maximum matching, as before. Notice that the constraints in 𝑓𝑀,𝑏 have arity 6 (see
Fig. 2). Following the blueprint of Section 4.2, we define the following Kikuchi matrices.

Definition 4.5. For 𝑖 ≠ 𝑗 ∈ [𝑘], (𝑄, 𝑝), and ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖,𝑄,𝑝 , ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈

ℋ (2)
𝑗,𝑄,𝑝 , we define the matrix 𝐴

( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 as follows. The matrix 𝐴

( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 is indexed by a 3-tuple of sets

(𝑆0,𝑅, 𝑆′0), each in
([𝑛]
ℓ

)
, and the (𝑆0,𝑅, 𝑆′0), (𝑇0,𝑊 ,𝑇′0)-th entry is 1 if 𝑆0 ⊕ 𝑇0 = 𝐶0, 𝑆′0 ⊕ 𝑇′0 = 𝐶′0, and

𝑅 = {𝑢} ∪𝑈 , 𝑊 = {𝑣} ∪𝑉 , where 𝐶1 = {𝑢,𝑄1}, 𝐶′1 = {𝑣,𝑄1}, and 𝑈 ⊆ [𝑛] is a set of size ℓ − 1
where 𝑢, 𝑣 ∉ 𝑈 .

We let 𝐴𝑖,𝑗 =
∑

𝑄,𝑝
∑
®𝐶∈ℋ (2)

𝑖,𝑄,𝑝 , ®𝐶′∈ℋ (2)
𝑗,𝑄,𝑝

𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 and 𝐴 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 .

Notice that for ®𝐶 = (𝑖,𝐶0,𝑤0,𝐶1,𝑤1) ∈ ℋ (2)𝑖,𝑄,𝑝 and ®𝐶′ = (𝑗,𝐶′0,𝑤′0,𝐶′1,𝑤′1) ∈ ℋ
(2)
𝑗,𝑄,𝑝 , the split of

the elements in the constraint across the row (𝑆0,𝑅, 𝑆′0) and the column (𝑇0,𝑊 ,𝑇′0) is asymmetric:
see Fig. 2.

Applying the same machinery in Section 4.2 to the matrices in Definition 4.5 will yield the
correct lower bound provided that the row pruning step succeeds. It thus remains to bound the
number of rows in 𝐴𝑖,𝑗 for a fixed pair (𝑖, 𝑗)with a number of nonzero entries exceeding the average
by a polylog(𝑛) factor.

We now apply Lemma 2.9. As before, we define a similar degree polynomial Deg𝑖,𝑗 , and the
tail bound boils down to computing the expected partial derivatives 𝜇𝑍, where 𝑍 = (𝑧0, 𝑟, 𝑧′0) ∈
([𝑛] ∪ {★})3 is now a tuple of length 3, and 𝜇𝑍 = (ℓ/𝑛)3−|𝑍 | deg𝑖,𝑗(𝑍), as the constraints have arity 3.

We observe that deg𝑖,𝑗(★,★,★) ≤ 𝑂(𝑛2𝑑), as we have 𝑂(𝑛2) choices for ®𝐶 = (𝑖, 𝐶0,𝑤0, 𝐶1,𝑤1) ∈ ℋ (2)𝑖

(which then determines (𝑄, 𝑝)), followed by 𝑂(𝑑) choices for (𝑤′0,𝐶′1,𝑤′1) (because this must be

in ℋ (1)
𝑄,𝑝 , which has size 𝑑), and then a unique choice for 𝐶0. Therefore, 𝜇0 ≤ (ℓ/𝑛)3 · 𝑂(𝑛2𝑑) =

𝑂(ℓ 3𝑑/𝑛).
Bounding 𝜇1 is straightforward, and we omit the calculations. We obtain a bound of 𝜇1 ≤

(ℓ/𝑛)2 · 𝑂(𝑛𝑑) = 𝑂(ℓ 2𝑑/𝑛). Bounding 𝜇2 can be done with a trivial bound of deg𝑖,𝑗(𝑍) ≤ 𝑂(𝑛),
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yielding 𝜇2 ≤ (ℓ/𝑛) ·𝑂(𝑛) = 𝑂(ℓ ). Finally, it is simple to bound deg𝑖,𝑗(𝑍) ≤ 𝑂(1) when |𝑍 | = 3, and
so we obtain 𝜇3 ≤ 𝑂(1).

We notice that 𝜇0 ≥ 𝜇1 and 𝜇2 ≥ 𝜇3 always hold. So, either 𝜇0 or 𝜇2 must be the maximum.
Because 𝑑 = ℓ 2, we have 𝜇0 = 𝑂(ℓ 3𝑑/𝑛) ∼ ℓ 5/𝑛 ≫ ℓ ∼ 𝜇2 because ℓ 4 ≫ 𝑛, by choice of ℓ . Thus,
𝜇0 ≫ 𝜇2, and so the row pruning argument, etc., will all succeed. This, combined with the
refutation argument for Ψ(0)

𝑏
(𝑥), implies that our heuristic calculation succeeds and we get a bound

of 𝑘 ≤ �̃�(ℓ ), where ℓ is chosen to be �̃�(𝑛1/4). Thus, we obtain a lower bound of 𝑘 ≤ �̃�(𝑛1/4). □

4.5 Preview: extending the warmup to a proof of Theorem 1

We now give a brief overview of how we shall extend the ideas used in this warmup to prove
Theorem 1. First, we observe that in the argument we presented in Sections 4.1 to 4.4, there
were only two crucial moments in the proof where we had a lot of freedom: (1) the choice of the
constraints in the initial XOR instance (in this warmup, we chose the set of 2-chains with head
𝑖 ∈ [𝑘]), and (2) the choice of the hypergraph decomposition in Section 4.4 — the rest of the proof
was fairly mechanical, and boiled down to computing the expected partial derivatives 𝜇𝑍 . Namely,
if we can choose the constraints and the decomposition so that the row pruning succeeds for all
the resulting Kikuchi matrices, i.e., the expected partial derivatives of the degree polynomials are
appropriately bounded, then the general machinery in Sections 4.1 to 4.3 succeeds in proving the
lower bound predicted by the heuristic calculation in Section 3.2 (up to a small loss, see Remark 4.2).

As discussed in Section 3.2, we shall define the XOR instance using (𝑟 + 1)-chains for a parameter
𝑟 = 𝑂(log 𝑛), and the heuristic calculation predicts that this will yield an exponential lower bound.
Thus, the key technical component of the proof is to choose the decomposition of the (𝑟 + 1)-chains
so that the degree polynomials of the resulting Kikuchi matrices all satisfy the bounded expected
partial derivatives condition. In Section 4.4, we showed how to do this for the case when 𝑟 = 1.

We now wish to point out the following crucial observation: the decomposition in Section 4.4 is
“informed” by the row pruning calculation for the undecomposed chains done in Section 4.3. Specifi-
cally, in Section 4.3, we argued that if there is a violating partial derivative for the undecomposed
chains, then there is some combinatorial structure in the chains (namely, a heavy pair) that is the
“cause” of the large expected partial derivative, and this combinatorial structure is exactly the
criteria that we use to decompose the hypergraph. In some sense, the hypergraph decomposition
(along with the modified Cauchy–Schwarz trick and Kikuchi matrices) can be thought of as a
precise way to “fix” this high expected partial derivative. For longer chains, there is once again an
intimate relationship between the existence of a violating expected partial derivative and a certain
“denser-than-anticipated” combinatorial structure (analogous to heavy pairs) being present in the
chains we construct. For larger chains, this structure is a more complicated to describe, but an
analogous chain decomposition for this structure accomplishes the same job.

More precisely, we generalize the decomposition of Section 4.4 as follows. As done in Section 4.4,
we shall think of an (𝑟 + 1)-chain inℋ (𝑟+1)

𝑖
as being split into two subchains, the “first link” in 𝐻𝑖

and then the rest of the chain, which is an 𝑟-chain. As before, our decomposition shall decompose
the 𝑟-chain part only, and this induces a decomposition of the (𝑟 + 1)-chains inℋ (𝑟+1)

𝑖
. Recall that

in Section 4.4, we decomposed a 1-chain (𝑢,𝐶,𝑤) by picking a 𝑄 where 𝑄1 ∈ 𝐶 and 𝑄2 = 𝑤.
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Notice that 𝑄 only contains one element of the hyperedge 𝐶; there was no need to do a further
decomposition to handle, e.g., heavy triples 𝑄 = (𝑄1,𝑄′1,𝑄2)where {𝑄1,𝑄′1} = 𝐶 and 𝑄2 = 𝑤.

Now, we have 𝑟-chains (𝑢,𝐶1,𝑤1, . . . ,𝐶𝑟 ,𝑤𝑟), and we shall decompose if there is a 𝑄 =

(𝑄1, . . . ,𝑄𝑟+1) ∈ ([𝑛] ∪ {★})𝑟 × [𝑛] such that (1) 𝑄 is heavy, i.e., is contained in many 𝑟-chains,
meaning that (a) 𝑄ℎ+1 = 𝑤𝑟 , and so in particular 𝑄ℎ+1 ≠ ★, and (b) 𝑄ℎ ∈ 𝐶ℎ for ℎ = 1, . . . , 𝑟; and (2)
𝑄 is contiguous, meaning that if ℎ ∈ [𝑟 + 1] is the minimal ℎ such that 𝑄ℎ ≠ ★, then 𝑄ℎ′ ≠ ★ for all
ℎ′ ≥ ℎ, i.e., 𝑄 has ★’s followed by only non-★ entries.

Condition (1) above is a somewhat natural extension of the decomposition method in Section 4.4,
but condition (2) is trickier. It turns out (in a somewhat subtle way) that because the 𝐻𝑖’s are
matchings, if there is a violating expected partial derivative, then not only is there a heavy 𝑄, but
there must be a heavy contiguous 𝑄. In a sense (that can be made precise), the contiguous 𝑄’s are
irreducible violations and thus it is enough to only handle them.

5 Proof of Theorem 1: From LCCs to XOR Formulas

We now present the proof of Theorem 1 for the case of F = F2. The proof is spread over Sections 5
to 8 and follows the steps in the warmup. In the current section, we define 𝑟-chains and the family
of XOR instances associated to the LCC that we wish to refute. Then, in Section 6, we decompose
the 𝑟-chains, and thereby decompose the (𝑟 + 1)-chains forming the constraints in the XOR instance.
Then, in Section 7, we define the Kikuchi matrices and finish the argument up to the proof of the
row pruning lemma, Lemma 7.4, an analogue of Lemma 4.4 that is the key technical lemma. Finally,
in Section 8, we prove Lemma 7.4.

Let ℒ : F𝑘
2 → F𝑛

2 be (3, 𝛿, 𝜀)-locally correctable. Without loss of generality, by Fact 2.4 we can
assume that ℒ is (3, 𝛿′)-normally decodable, where 𝛿′ ≥ 𝛿/6 and 𝑛′ = 2𝑛. For the remainder of the
proof, we will redefine 𝛿 to be 𝛿′, and 𝑛 to be 2𝑛. We shall also think of the code ℒ : F𝑘

2 → F𝑛
2 as a

map ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 .
We will now define satisfiable XOR formulas Φ associated with the linear code ℒ. Let

ℒ : {−1, 1}𝑘 → {−1, 1}𝑛 be a linear (3, 𝛿)-normally correctable code. Recall that without loss
of generality, ℒ is systematic, meaning that the first 𝑘 bits of ℒ are the message bits. In particular,
for every 𝑏 ∈ {−1, 1}𝑘 , there is a unique 𝑥 ∈ ℒ such that 𝑥 |[𝑘] = 𝑏. We can thus generate 𝑥 ← ℒ
uniformly at random by first choosing 𝑏 ← {−1, 1}𝑘 uniformly at random, and then setting 𝑥 to be
the unique extension of 𝑏.

Since ℒ is a linear (3, 𝛿)-normally correctable code, there exist 3-uniform hypergraph matchings
𝐻1, . . . ,𝐻𝑛 , each of size exactly 𝛿𝑛, such that every 𝑥 ∈ ℒ satisfies the following system of 4-XOR
constraints, i.e., each constraint has arity 4:

∀𝑢 ∈ [𝑛],𝐶 ∈ 𝐻𝑢 , 𝑥𝐶𝑥𝑢 = 1 . (3)

We will construct an XOR formula by long chain derivations. Intuitively, a long chain derivation
starts from the natural XOR constraints (3) and derives new ones by chaining together 𝑡 constraints
with an appropriate combinatorial structure. Below, we formalize the set of constraints in this
formula as a family of hypergraphs built from the 𝐻𝑢’s.
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Figure 3: A 4-chain. The pairs of blue vertices are the 𝐶ℎ’s, and the red vertices are the 𝑤ℎ’s. Note
that for any 𝑥 ∈ ℒ, we have 𝑥𝑤ℎ−1𝑥𝐶ℎ

𝑥𝑤ℎ
= 1.

Definition 5.1 (𝑡-chain hypergraphℋ (𝑡)). Let 𝑡 ≥ 1 be an integer. For any 𝑢 ∈ [𝑛], letℋ (𝑡)𝑢 denote
the set of tuples of the form (𝑢,𝐶1,𝑤1,𝐶2,𝑤2, . . . ,𝐶𝑡 ,𝑤𝑡), where each 𝐶ℎ ∈

([𝑛]
2

)
, 𝑤ℎ ∈ [𝑛], and it

holds that for all 1 ≤ ℎ ≤ 𝑡, 𝐶ℎ ∪ {𝑤ℎ} ∈ 𝐻𝑤ℎ−1 where we set 𝑤0 B 𝑢. We call 𝑢 the head, 𝑤ℎ’s the
pivots for 1 ≤ ℎ ≤ 𝑡 − 1 and 𝑤𝑡 the tail in such a chain. We letℋ (𝑡) = ∪𝑢∈[𝑛]ℋ (𝑡)𝑢 denote the set of all
𝑡-chains, whereℋ (𝑡)𝑢 is the set of 𝑡-chains with head 𝑢.

The following simple observation helps us understand the combinatorial structure in the chains.

Observation 5.2. Let 𝑥 = ℒ(𝑏) for a linear LCC over F2 with {𝐻𝑢}𝑢∈[𝑛] being the associated matchings.
Then, for any 𝑡-chain (𝑢,𝐶1,𝑤1,𝐶2,𝑤2, . . . ,𝐶𝑡 ,𝑤𝑡), 𝑥 satisfies 𝑥𝑢𝑥𝑤𝑡

∏𝑡
ℎ=1 𝑥𝐶ℎ

= 1.

Proof. We know that 𝑥 satisfies 𝑥𝑤ℎ
𝑥𝐶ℎ+1𝑥𝑤ℎ+1 = 1 for every 0 ≤ ℎ ≤ 𝑡 where we define 𝑤0 = 𝑢.

Taking products of the left-hand sides of each of these 𝑡 equations, we observe that for every
1 ≤ ℎ ≤ 𝑡 − 1, 𝑥𝑤ℎ

is “squared out” (since 𝑥2
𝑣 = 1 for every 𝑣 ∈ [𝑛]), and this finishes the proof. □

Building chains iteratively. It is useful to think of 𝑡-chains as being built by extending smaller
chains by iteratively adding hyperedges to the head (i.e. to the left). The following notation and
observation formalizes this.

Definition 5.3 (Extending Chains). For the 𝑡-chain hypergraph ℋ (𝑡) built from 3-matchings
𝐻1,𝐻2, . . . ,𝐻𝑛 on [𝑛], we define 𝐻𝑢 ◦ℋ (𝑡+1) as:

𝐻𝑢 ◦ℋ (𝑡) = ∪𝑤0∈[𝑛]
{
(𝑢,𝐶0, ®𝐶 | ®𝐶 ∈ ℋ (𝑡)𝑤0 , {𝐶0 ∪ {𝑤0} ∈ 𝐻𝑢

}
.

Observation 5.4. For 𝑡 ≥ 1, letℋ (𝑡) be the 𝑡-chain hypergraph built from 3-matchings 𝐻1, 𝐻2, . . . , 𝐻𝑛

on [𝑛]. Then,ℋ (𝑡+1) = ∪𝑢∈[𝑛]𝐻𝑢 ◦ℋ (𝑡) = ∪𝑢∈[𝑛]ℋ (𝑡
′)

𝑢 ◦ℋ (𝑡−𝑡
′) for any 0 < 𝑡′ < 𝑡.

Chains that fix some positions. We will often refer to the set of chains where some of the 𝐶ℎ ’s are
forced to contain some 𝑣ℎ ∈ [𝑛]. Towards this, we introduce the following terminology.
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Definition 5.5 (Chains containing 𝑄). For any 𝑄 = (𝑄1, . . . ,𝑄𝑡 ,𝑄𝑡+1) ∈ {[𝑛] ∪★}𝑡 × [𝑛], we say
that a chain (𝑢,𝐶1,𝑤1, . . . ,𝐶𝑡 ,𝑤𝑡) ∈ ℋ (𝑡) contains 𝑄 if 𝑄𝑡+1 = 𝑤𝑡 and for 1 ≤ ℎ ≤ 𝑡, if 𝑄ℎ ≠ ★, then
𝑄ℎ ∈ 𝐶ℎ . We say that a 𝑄 is contiguous if there exists 𝑠 ≤ 𝑡 such that 𝑄ℎ ≠ ★ for every ℎ ≥ 𝑠 + 1 and
𝑄ℎ = ★ for every 1 ≤ ℎ ≤ 𝑠, i.e., the first 𝑠 entries are ★, and the remaining entries are non-★. We
note that by definition, 𝑄𝑡+1 ≠ ★ always.

We say that 𝑄 is complete if 𝑄 does not contain any ★. We say that 𝑄′ ⊇ 𝑄 if whenever 𝑄ℎ ≠ ★,
𝑄′

ℎ
= 𝑄ℎ . We define the size |𝑄 | to be the number of coordinates in 𝑄 that do not equal ★.

We writeℋ (𝑡)
𝑄

to denote the set of all 𝑡-chains that contain 𝑄, and for 𝑢 ∈ [𝑛], we writeℋ (𝑡)
𝑢,𝑄 to

denote the set of 𝑡-chains with head 𝑢 that contain 𝑄.

We caution the reader thatℋ (𝑡)𝑢 andℋ (𝑡)
𝑄

, are different sets of chains. In context, it shall be easy
to distinguish between the two cases as the type of 𝑢 and 𝑄 are different: namely, we have 𝑢 ∈ [𝑛]
and 𝑄 ∈ {[𝑛] ∪★}𝑡+1.

XOR Formulas from 𝒓-chains. Next, we define XOR formulas associated with ℋ (𝑟+1) that are
guaranteed to be satisfiable. The length of the chain depends on a parameter 𝑟, which we shall set
later.

Definition 5.6 (The XOR Formula Φ). Fix 𝑟 ∈ N.
For any 𝑏 = (𝑏1, . . . , 𝑏𝑘) ∈ {−1, 1}𝑘 , define the polynomial Φ𝑏 :

Φ𝑏(𝑥) =
𝑘∑

𝑖=1

𝑏𝑖

∑
(𝑖,𝐶0,𝑤0,𝐶1,𝑤1 ...,𝐶𝑟 ,𝑤𝑟 )∈ℋ (𝑟+1)

𝑥𝑤𝑟

𝑟∏
ℎ=0

𝑥𝐶ℎ
=

𝑘∑
𝑖=1

𝑏𝑖

∑
𝐶0,𝑤0:𝐶0∪{𝑤0}∈𝐻𝑖

𝑥𝐶0

∑
(𝑤0,𝐶1,𝑤1,...,𝐶𝑟 ,𝑤𝑟 )∈ℋ (𝑟)

𝑥𝑤𝑟

𝑟∏
ℎ=1

𝑥𝐶ℎ
.

We will drop the subscript 𝑏 when it is clear from the context.

We note the equality holds above as we are simply thinking of the chain (𝑖,𝐶0,𝑤0, . . . ,𝐶𝑟 ,𝑤𝑟)
as being split into two parts, the 1-chain (𝑖,𝐶0,𝑤0), followed by the 𝑟-chain (𝑤0,𝐶1,𝑤1, . . . ,𝐶𝑟 ,𝑤𝑟).
We write the polynomial in this form because for much of the proof, we shall wish to think of the
𝑟-chain as separate from the 1-chain (𝑖,𝐶0,𝑤0).

We now observe that Φ𝑏(𝑥) is satisfiable and thus has a high value.

Lemma 5.7. For every 𝑏 ∈ {−1, 1}𝑘 , Φ𝑏 is satisfied by 𝑥 = ℒ(𝑏) and thus, val(Φ𝑏) = 𝑘(3𝛿𝑛)𝑟+1.

Proof. Observe that Φ𝑏 is a sum of monomials corresponding to a 𝑟-chain each of which is satisfied
by 𝑥 = ℒ(𝑏) by Observation 5.2. Thus, val(Φ𝑏) equals the total number of chains of length 𝑟 with
head in [𝑘], which we next count.

Define 𝑤−1 B 𝑖. Given 𝑤ℎ−1 for ℎ ≥ 0, there are 𝛿𝑛 choices for the set 𝐶ℎ ∪ {𝑤ℎ} ∈ 𝐻ℎ and for
each such choice, there are 3 choices for the next pivot 𝑤ℎ . Thus, the number of (𝑟 + 1)-chains with
head 𝑖 is (3𝛿𝑛)𝑟+1. Summing over the 𝑘 possible heads completes the proof. □

6 Contiguously Regular Partition of Chains

In this section, we partition the 𝑟-chain hypergraphℋ (𝑟) into buckets that satisfy a useful regularity
property. We first abstract out the relevant properties of the partition below and then show how it
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can be using a simple greedy partitioning algorithm. This partitioning will be key to setting up and
analyzing our spectral refutation in the next section.

Definition 6.1 (Contiguously regular partition). For 𝛿 > 0 and 𝑟 ∈ N, let ℋ (𝑟) be the 𝑟-chain
hypergraph built form 3-matchings 𝐻1,𝐻2, . . . ,𝐻𝑛 on [𝑛] of size 𝛿𝑛 each. Letℋ (𝑟) = ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 be

a disjoint partition ofℋ (𝑟) indexed by 𝑄 ∈ ([𝑛] ∪ {★})𝑟 × [𝑛] and 𝑝 ∈ [𝑚] for some large enough
𝑚 ∈ N. We say that such a partition is 𝑑-contiguously regular if the following conditions hold:

(1) for every 𝑄 ∈ ([𝑛] ∪ {★})𝑟 × [𝑛] and 𝑝 ∈ [𝑚],ℋ (𝑟)
𝑄,𝑝 ⊆ ℋ

(𝑟)
𝑄

,

(2) for every (𝑄, 𝑝) such thatℋ (𝑟)
𝑄,𝑝 ≠ ∅, 𝑄 is contiguous,

(3) if |𝑄 | = 1, thenℋ (𝑟)
𝑄,𝑝 = ∅ whenever 𝑝 > 1,

(4) for every contiguous 𝑄,𝑄′ such that 𝑄′ ⊇ 𝑄,���{ ®𝐶′ ∈ ℋ |𝑄′ |−1 | ®𝐶′ contains 𝑄′, and ∃ ®𝐶 extending ®𝐶′, ®𝐶 ∈ ℋ (𝑟)
𝑄,𝑝

}��� ≤ 𝑑 |𝑄
′ |−1 .

(5) For every 𝑡, the set 𝑃𝑡 of all (𝑄, 𝑝) such thatℋ (𝑟)
𝑄,𝑝 ≠ ∅ and |𝑄 | = 𝑡 + 1 satisfies |𝑃𝑡 |𝑑𝑡 ≤ 𝑛(3𝛿𝑛)𝑡 .

Observe that |𝑃0 | ≤ 𝑛 is forced by (3).

We now give a bit of intuition for the definition. A contiguously regular partition takes the
set of 𝑟-chainsℋ (𝑟) and decomposes it into pieces, where the pieces are intuitively indexed by 𝑄;
however, for technical reasons, we will want to have multiple pieces assigned to the same 𝑄, and so
we disambiguate these pieces using the label 𝑝, i.e., we can have piecesℋ (𝑟)

𝑄,1,ℋ (𝑟)
𝑄,2,ℋ (𝑟)

𝑄,3, etc.

Condition (1) says that the chains in the piece ℋ (𝑟)
𝑄,𝑝 in the decomposition are all chains that

contain 𝑄, hence why we view them as indexed by 𝑄. Condition (2) says that the only nonempty
pieces have a contiguous 𝑄, hence the name “contiguously regular partition”. Condition (3) says
that if |𝑄 | = 1, then there is only one piece with this 𝑄. Recall that when |𝑄 | ≥ 2, we can have
piecesℋ (𝑟)

𝑄,1,ℋ (𝑟)
𝑄,2,ℋ (𝑟)

𝑄,3, etc.; we have asserted that when |𝑄 | = 1, this does not happen. Condition

(4) is a regularity condition saying that chains inℋ (𝑟)
𝑄,𝑝 appear in this piece because the tuple 𝑄 is

“maximal”. Condition (5) asserts that the number of pieces with |𝑄 | of a given size is not too large.
We now make the following observation.

Observation 6.2. Items (1), (2), and (4) imply that |ℋ (𝑟)
𝑄,𝑝 | ≤ 𝑛(3𝛿𝑛)𝑟−|𝑄 |𝑑 |𝑄 |−1 for all (𝑄, 𝑝).

Moreover, letℋ (𝑟)
𝑢,𝑄,𝑝 denote the set of chains inℋ (𝑟)

𝑄,𝑝 with head 𝑢. Then, Items (1), (2) and (4)

imply that |ℋ (𝑟)
𝑢,𝑄,𝑝 | ≤ (3𝛿𝑛)𝑟−|𝑄 |𝑑 |𝑄 |−1 when |𝑄 | ≤ 𝑟.

Proof. To see this, we apply item (4) with 𝑄′ = 𝑄, and we now count the chains inℋ (𝑟)
𝑄,𝑝 by (1) first

choosing a suffix ®𝐶′ ∈ ℋ |𝑄 |−1
|𝑄 | , and then (2) completing the chain. By Item (4), we have at most 𝑑 |𝑄 |−1

choices for the suffix. Once the suffix is fixed, we now complete the chain as follows. If |𝑄 | = 𝑟 + 1,
then we have chosen the entire chain and are done. Otherwise, we do the following. First, we choose
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𝑤0, which has 𝑛 choices. Then, we choose 𝐶1 ∪ {𝑤1} ∈ 𝐻𝑤0 , which has 𝛿𝑛 choices, followed by
𝑤1 ∈ 𝐶1 ∪ {𝑤1}, which has 3 choices. We repeat this until we reach the point in the chain where we
have determined 𝑤𝑟−|𝑄 | . Because we also know the suffix ®𝐶′, we have already determined 𝑤𝑟+1−|𝑄 | .
Because 𝐻𝑤𝑟−|𝑄 | is matching, there is at most one 𝐶𝑟+1−|𝑄 | such that 𝐶𝑟+1−|𝑄 | ∪ {𝑤𝑟+1−|𝑄 |} ∈ 𝐻𝑤𝑟−|𝑄 | ,
and so we have determined the entire chain. We have thus made at most 𝑛(3𝛿𝑛)𝑟−|𝑄 |𝑑 |𝑄 |−1 choices
when |𝑄 | ≤ 𝑟, and 𝑑𝑟 choices if |𝑄 | = 𝑟 + 1. In both cases, this is at most 𝑛(3𝛿𝑛)𝑟−|𝑄 |𝑑 |𝑄 |−1.

Finally, we note that for |𝑄 | ≤ 𝑟, the above argument also bounds |ℋ (𝑟)
𝑢,𝑄,𝑝 |. We simply save a

factor of 𝑛 because 𝑤0 must be equal to 𝑢. □

We now give an algorithm that, givenℋ (𝑟) and 𝑑, outputs a 𝑑-contiguously regular partition of
ℋ (𝑟) using a simple iterative greedy scheme.

Lemma 6.3 (Contiguously regular partition of chains). For 𝛿 > 0, let 𝐻1,𝐻2, . . . ,𝐻𝑛 be arbitrary 𝛿𝑛

size 3-matchings on [𝑛]. For 𝑟 ∈ N, letℋ (𝑟) be the 𝑟-chain hypergraph built from 𝐻1,𝐻2, . . . ,𝐻𝑛 . Then,
for every 𝑑 ∈ N, there exists a 𝑑-contiguously regular partitionℋ (𝑟) = ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 .

Proof. The greedy algorithm that computes the decomposition is given below.

Algorithm 6.4.

Given: An 𝑟-chain hypergraphℋ (𝑟).

Output: A contiguously 𝑑-regular partitionℋ (𝑟) = ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 .

Operation:

1. Initialize: For 𝑄 = (𝑤) for each 𝑤 ∈ [𝑛], letℋ (0)
𝑄,1 = {(𝑤)}, i.e., the set of 0-chains

with tail 𝑤.

2. Iterative Greedy Fixing: For 𝑡 = 1, . . . , 𝑟, do:

(a) Initializeℋ (𝑡)(★,𝑄),𝑝 = ∪𝑢∈[𝑛]𝐻𝑢 ◦ℋ (𝑡−1)
𝑄,𝑝 for every 𝑄 ∈ ([𝑛] ∪ {★})𝑡−1 × [𝑛].

(b) For every 𝑄′ = (𝑢,𝑄) for 𝑄 ∈ [𝑛]𝑡−1 × [𝑛], initialize 𝑝′ = 1 and do:

i. Let ℛ = ℋ (𝑡)(★,𝑄),𝑝 ∩ { ®𝐶 ∈ ℋ
(𝑡) | ®𝐶 contains 𝑄′}. If |ℛ| ≤ 𝑑 |𝑄

′ |−1, end.

ii. Otherwise, select exactly 𝑑 |𝑄
′ |−1 𝑡-chains from ℛ, remove them fromℋ (𝑡)(★,𝑄),𝑝 ,

and put them in a new pieceℋ (𝑡)
𝑄′,𝑝′.

iii. Set 𝑝′ = 𝑝′ + 1.

We now verify that our decomposition satisfies the properties required of a contiguously 𝑑-regular
partition. The key observation is that the algorithm iterates over 𝑡 = 1, . . . , 𝑟, and computes, after
the 𝑡-th iteration, a 𝑑-contiguously regular partition ofℋ (𝑡). Indeed, we prove this by induction.
For 𝑡 = 0 this trivially holds.

We now show the induction step. We observe that properties (1) and (2) are trivial. Property (3)
holds because of the following. We observe that the pieces in the decomposition ofℋ (𝑡) are either
obtained by extending “old” pieces to getℋ (𝑡)(★,𝑄),𝑝 = ∪𝑢∈[𝑛]𝐻𝑢 ◦ℋ 𝑡−1

𝑄,𝑝 , or by adding “new” pieces
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produced in step (2b). We note that we only produce new pieces for 𝑄 with |𝑄 | ≥ 2, so we cannot
violate property (3). Property (4) follows because the loop in step (2bi) finished.

Finally, to check property (5), we need to bound |𝑃𝑡′ | for 0 ≤ 𝑡′ ≤ 𝑡. As |𝑃0 | ≤ 𝑛 always holds,
it remains to bound |𝑃𝑡′ | for 𝑡′ ≤ 𝑡. We note that all the “new” pieces have a 𝑄 where |𝑄 | = 𝑡 + 1.
Hence, for 𝑡′ ≤ 𝑡 − 1, |𝑃𝑡′ | satisfies property (5) by the induction hypothesis. To bound |𝑃𝑡 |, we
observe that each new partition contains 𝑑 |𝑄

′ | = 𝑑𝑡 chains. Asℋ (𝑡) has at most 𝑛(3𝛿𝑛)𝑡 chains (see,
e.g., the proof of Lemma 5.7), the bound on |𝑃𝑡 | follows. □

Every 𝑑-contiguously regular partition of ℋ (𝑟) naturally relates to a “bipartite” polynomial
Ψ (i.e., Ψ has additional variables 𝑦𝑄,𝑝 corresponding to labels of the buckets in the partition in
addition to the original variables 𝑥 ∈ {−1, 1}𝑛) such that val(Ψ) upper bounds val(Φ). Our main
technical argument will construct a spectral refutation to upper bound val(Ψ) for a 𝑑-contiguously
regular partition ofℋ (𝑟) for an appropriate choice of 𝑑.

Definition 6.5 (Bipartite XOR Formulas from a contiguously regular partition). Fix 𝑟, 𝑑 ∈ N and
for the 𝑟-chain hypergraph ℋ (𝑟) built from 3-matchings 𝐻1,𝐻2, . . . ,𝐻𝑛 on [𝑛] of size 𝛿𝑛 each,
let ℋ (𝑟) = ∪𝑝∈𝑃,𝑄∈([𝑛]∪{★})𝑟×[𝑛]ℋ (𝑟)𝑄,𝑝 be a contiguously 𝑑-regular partition. For each nontrivial

piece ℋ (𝑟)
𝑄,𝑝 , we define Ψ𝑖,𝑄,𝑝 as the following XOR formula with terms corresponding (𝑟 + 1)-

chains obtained by (1) taking 𝑟-chains from a single pieceℋ (𝑟)
𝑄,𝑝 with 𝑥𝑄 “modded out” from the

corresponding monomial and (2) joining with a 1-chain (𝑖,𝐶0,𝑤0). Namely,

Ψ𝑖,𝑄,𝑝(𝑥) =
∑

𝐶0,𝑤0:𝐶0∪{𝑤0}∈𝐻𝑖

∑
(𝑤0,𝐶1,𝑤1,𝐶2,𝑤2,...,𝐶𝑟 ,𝑤𝑟 )∈ℋ (𝑟)𝑄,𝑝

𝑥𝐶0𝑥𝑤𝑟\𝑄𝑟+1

𝑟∏
ℎ=1

𝑥𝐶ℎ\𝑄ℎ
.

Here, we use the convention that if 𝑄ℎ = ★, then 𝐶ℎ \𝑄ℎ B 𝐶ℎ . We note that because 𝑤𝑟 = 𝑄𝑟+1,
we have 𝑥𝑤𝑟\𝑄𝑟+1 = 1.

For each 0 ≤ 𝑡 ≤ 𝑟, let Ψ(𝑡)(𝑥, 𝑦) = ∑𝑘
𝑖=1

∑
(𝑄,𝑝)∈𝑃𝑡

𝑏𝑖𝑦𝑄,𝑝Ψ𝑖,𝑄,𝑝(𝑥). Finally, we let Ψ(𝑥, 𝑦) =∑
0≤𝑡≤𝑟 Ψ

(𝑡)(𝑥, 𝑦); here, for every pieceℋ (𝑟)
𝑄,𝑝 in the contiguously regular partition, we introduce a

new variable 𝑦𝑄,𝑝 .

We next observe that Ψ is satisfiable and thus has a large value for every 𝑏 ∈ {−1, 1}𝑘 . Indeed,
the observation is that we have replaced the monomial 𝑥𝑄 in Φ with a new variable 𝑦𝑄,𝑝 for each
(𝑄, 𝑝).

Lemma 6.6. Let ℋ (𝑟) = ∪𝑝∈𝑃,𝑄ℋ (𝑟)𝑄,𝑝 be a contiguously 𝑑-regular partition. Fix 𝑏 ∈ {−1, 1}𝑘 and
𝑥 ∈ {−1, 1}𝑛 . Then, there is a 𝑦 such that Ψ(𝑥, 𝑦) = Φ(𝑥). In particular, setting 𝑥 = ℒ(𝑏), we have that
val(Ψ(𝑥, 𝑦)) ≥ val(Φ(𝑥)) ≥ 𝑘(3𝛿𝑛)𝑟+1.

We note that the system of equations in Φ(𝑥) is satisfiable, and so val(Φ) is simply the number
of constraints in the instance.

Proof. Set 𝑦𝑄,𝑝 = 𝑥𝑄 for every (𝑄, 𝑝), where 𝑥𝑄 B
∏

ℎ:𝑄ℎ≠★ 𝑥𝑄ℎ
. □
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For intuition, we observe that for random matchings 𝐻1, . . . ,𝐻𝑛 , the 𝑂(log 𝑛)-contiguously
regular partition is the trivial one.

Lemma 6.7 (Trivial partition is regular for random matchings ). Let 𝐻1,𝐻2, . . . ,𝐻𝑛 be uniformly
random and independent 3-matchings on [𝑛]. Then, the trivial partition of the associated 𝑟-chain hypergraph
ℋ (𝑟), where we setℋ (𝑟)

𝑄,𝑝 to be the set of all chains with tail 𝑤 if 𝑄 = (★, . . . ,★,𝑤) and 𝑝 = 1, and empty
otherwise, is 𝑂(log 𝑛)-regular with probability at least 1− 1/𝑛 over the draw of 𝐻𝑖’s.

Remark 6.8. Eventually (in Lemma 7.4 and Sections 7.5 and 7.6), we will set the parameter 𝑑 to be
constant. However, if the matchings 𝐻1, . . . ,𝐻𝑛 are random, then with high probability the trivial
partition will not be 𝑂(1)-regular. However, if we run Algorithm 6.4 to decompose the 𝑟-chains,
then with high probability over the draw of 𝐻1, . . . ,𝐻𝑛 , only a 𝑜(1)-fraction of the 𝑟-chains will
be placed in a “non-trivial component” of the decomposition, i.e., in a pieceℋ (𝑟)

𝑄,𝑝 where |𝑄 | ≥ 2.
Phrased differently, if we discard a 𝑜(1)-fraction of hyperedges from the random matchings, then
the trivial partition of the 𝑟-chain hypergraph of the remaining hyperedges will be 𝑂(1)-regular.
This fact is somewhat analogous to the fact that sparse random graphs are not, e.g., triangle-free
with high probability, but can be made triangle-free by removing a very small number of edges.

Proof. We claim that the trivial partition ofℋ (𝑟) is 𝑑-regular for 𝑑 = 𝑂(log 𝑛) with probability at
least 1 − 1/𝑛. In the trivial refinement, as defined above, we partition ℋ (𝑟) by simply placing a
chain inℋ (𝑟)

𝑄,𝑝 if 𝑄 = (★, . . . ,★,𝑤), 𝑝 = 1, and the tail of the chain is 𝑄𝑟+1 = 𝑤.
Towards this, we first prove that for every pair 𝑢, 𝑣 ⊆ [𝑛], the number of hyperedges in

the multiset ∪𝑢∈[𝑛]𝐻𝑖 that contain 𝑢 and 𝑣 is at most 𝑂(log 𝑛). To see this, observe that the
chance that there are some 𝑢, 𝑣 that co-occur in a hyperedge in at least 𝑏 different 𝐻𝑖’s is at
most 𝑛2 (𝑛

𝑏

)
(3/𝑛)𝑏 ≤ 3𝑏/𝑏! ≤ 1/𝑛 if 𝑏 = 𝑐 log2 𝑛 for some large enough 𝑐 > 0. We will now set

𝑑2 = 2𝑐 log2 𝑛 and confirm 𝑑-regularity of the trivial refinement.
Now take any contiguous 𝑄 ∈ ([𝑛] ∪ {★})𝑟 × [𝑛] of size |𝑄 | = 𝑡 + 1. Consider the chains

®𝐶′ = (𝑤0,𝐶1,𝑤1, . . . ,𝐶𝑡 ,𝑤𝑡) ∈ ℋ (𝑡) that contain 𝑄. We now iteratively choose
(𝑤𝑡−1,𝐶𝑡 ,𝑤𝑡), (𝑤𝑡−2,𝐶𝑡−1,𝑤𝑡−1), . . . , (𝑤0,𝐶1,𝑤1). Assuming we have made the first ℎ choices in the
list, we have determined 𝑤𝑡−ℎ−1. There are at most 𝑐 log2 𝑛 choices for a hyperedge in any of 𝐻𝑖s
that contains 𝑄𝑡−ℎ−1 and 𝑤𝑡−ℎ−1 and given this choice, at most 2 choices for 𝑤𝑡−ℎ . So in total, we
have at most (2𝑐 log2 𝑛)𝑡 = 𝑑𝑡 choices. □

7 Spectral Refutation via Kikuchi Matrices

In Section 6, we defined polynomials Ψ(𝑡)(𝑥, 𝑦) such that E𝑏[val(Φ)] ≤ ∑𝑟
𝑡=0 E𝑏[val(Ψ(𝑡))]. Thus, to

prove Theorem 1, we need to upper bound E𝑏[val(Ψ(𝑡))] for each 𝑡. In this section, we will define,
for each 0 ≤ 𝑡 ≤ 𝑟, a Kikuchi matrix 𝐴(𝑡) such that E𝑏[val(Ψ(𝑡))2] ≤ ∥𝐴(𝑡)∥∞→1. Then, in Section 8
we shall bound ∥𝐴(𝑡)∥∞→1 and finish the proof.
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7.1 Step 1: the Cauchy–Schwarz trick

First, we show that we can relate Ψ(𝑡)(𝑥, 𝑦) to a certain “cross-term” polynomial 𝑓𝑀 obtained via
applying the Cauchy–Schwarz inequality.

Lemma 7.1 (Cauchy–Schwarz trick). Let 𝑀 be a maximum directed matching1011 of [𝑘] and let 𝑓𝑀 be the
cross-term polynomial defined as

𝑓𝑀(𝑥) = 𝑓
(𝑡)
𝑀

=
∑
{𝑖,𝑗}∈𝑀

𝑏𝑖𝑏 𝑗

∑
(𝑄,𝑝)∈𝑃𝑡

Ψ𝑖,𝑄,𝑝(𝑥)Ψ𝑗,𝑄,𝑝(𝑥) .

Then,
E𝑏←{−1,1}𝑘val(Ψ(𝑡)) ≤ 𝑘

(
|𝑃𝑡 |(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2 + |𝑃𝑡 |2𝑘E𝑀E𝑏←{−1,1}𝑘 [val( 𝑓 (𝑡)
𝑀
)] ,

where the expectation E𝑀 is over a uniformly random maximum matching 𝑀.

Proof. We will first apply the Cauchy–Schwarz inequality to eliminate the 𝑦 variables:

Ψ(𝑡)(𝑥, 𝑦)2 =
©«

∑
(𝑄,𝑝)∈𝑃𝑡

𝑦𝑄,𝑝

(
𝑘∑

𝑖=1

𝑏𝑖Ψ𝑖,𝑄,𝑝

)ª®¬
2

≤ ©«
∑
(𝑄,𝑝)∈𝑃𝑡

𝑦2
𝑄,𝑝

ª®¬ ©«
∑
(𝑄,𝑝)∈𝑃𝑡

(
𝑘∑

𝑖=1

𝑏𝑖Ψ𝑖,𝑄,𝑝

)2ª®¬
= |𝑃𝑡 | ©«

∑
(𝑄,𝑝)∈𝑃𝑡

𝑘∑
𝑖=1

Ψ2
𝑖,𝑄,𝑝 +

∑
(𝑄,𝑝)∈𝑃𝑡

∑
𝑖≠𝑗∈[𝑘]

𝑏𝑖𝑏 𝑗Ψ𝑖,𝑄,𝑝(𝑥)Ψ𝑗,𝑄,𝑝
ª®¬ .

Observe that |Ψ𝑖,𝑄,𝑝(𝑥)| is at most the number of (𝑤0,𝐶1,𝑤1, . . . ,𝐶𝑟 ,𝑤𝑟) ∈ ℋ (𝑟)𝑄,𝑝 and 𝐶0 ∈
([𝑛]

2

)
such that 𝐶∪{𝑤0} ∈ 𝐻𝑖 . If |𝑄 | = 𝑟 + 1, i.e., 𝑡 = 𝑟, then we observe that by Observation 6.2, we have
|ℋ (𝑟)

𝑄,𝑝 | ≤ 𝑑 |𝑄 |−1, and for each choice of (𝑤0,𝐶1,𝑤1, . . . ,𝐶𝑟 ,𝑤𝑟) ∈ ℋ (𝑟)𝑄,𝑝 , there is at most one choice
of 𝐶0. If |𝑄 | ≤ 𝑟, then we have at most (3𝛿𝑛) choices for (𝐶0,𝑤0), and for each 𝑤0, we have by
Observation 6.2 that |ℋ (𝑟)

𝑤0,𝑄,𝑝 | ≤ (3𝛿𝑛)𝑟−|𝑄 |𝑑 |𝑄 |−1, giving us (3𝛿𝑛)𝑟−|𝑄 |+1𝑑 |𝑄 |−1 choices in total. We

thus have that |Ψ𝑖,𝑄,𝑝(𝑥)| ≤ (3𝛿𝑛)𝑟−|𝑄 |+1𝑑 |𝑄 |−1, regardless of |𝑄 | = 𝑡 + 1.
Thus, for |𝑄 | = 𝑡 + 1,

∑
𝑄,𝑝

∑𝑘
𝑖=1 Ψ

2
𝑖,𝑄,𝑝 ≤ 𝑘 |𝑃𝑡 |

(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2. This gives us an upper bound of

𝑘 |𝑃𝑡 |
(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2 on the first term.
Let’s now analyze the second term. Since a uniformly random maximum matching on [𝑘]

contains a (directed) edge (𝑖, 𝑗) with probability exactly 1
2(𝑘−1) if 𝑘 is even, and 1

2𝑘 , if 𝑘 is odd, we
have:∑

𝑖≠𝑗∈[𝑘]
𝑏𝑖𝑏 𝑗

∑
(𝑄,𝑝)∈𝑃𝑡

Ψ𝑖,𝑄,𝑝(𝑥)Ψ𝑗,𝑄,𝑝(𝑥) ≤ 2𝑘E𝑀

∑
(𝑖,𝑗)∈𝑀

𝑏𝑖𝑏 𝑗

∑
(𝑄,𝑝)∈𝑃𝑡

Ψ𝑖,𝑄,𝑝(𝑥)Ψ𝑗,𝑄,𝑝(𝑥) = 2𝑘E𝑀[ 𝑓 (𝑡)𝑀
] .

Using that val(E𝑀[ 𝑓 (𝑡)𝑀
]) ≤ E𝑀[val( 𝑓 (𝑡)

𝑀
)] completes the proof. □

10A directed matching is a matching, only the edges are additionally directed
11This is a perfect matching if 𝑘 is even, and will leave one element of [𝑘] unmatched if 𝑘 is odd.
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7.2 Step 2: defining the Kikuchi matrices

It thus remains to bound val( 𝑓𝑀) for an arbitrary directed maximum matching 𝑀.
For 𝑖 ∈ [𝑘] and (𝑄, 𝑝), we letℋ (𝑟+1)

𝑖,𝑄,𝑝 denote the set of chains inℋ (𝑟+1) of the form (𝑖, 𝐶0,𝑤0, 𝐶1,𝑤1, . . . , 𝐶𝑟 ,𝑤𝑟)
where (𝑤0,𝐶1,𝑤1, . . . ,𝐶𝑟 ,𝑤𝑟) ∈ ℋ (𝑟)𝑄,𝑝 . We define the Kikuchi matrices that we consider below.

Definition 7.2 (Kikuchi matrices for a fixed 𝑡). Let 𝑖, 𝑗 ∈ [𝑘].
Let ®𝐶 = (𝑖, 𝐶0,𝑤0, 𝐶1,𝑤1, 𝐶2,𝑤2, . . . , 𝐶𝑟 ,𝑤𝑟) ∈ ℋ (𝑟+1)

𝑖,𝑄,𝑧 and ®𝐶′ = (𝑗, 𝐶′0,𝑤′0, 𝐶′1,𝑤′1, 𝐶′2,𝑤′2, . . . , 𝐶′𝑟 ,𝑤′𝑟) ∈

ℋ (𝑟+1)
𝑗,𝑄,𝑧 . For 𝑄 of size |𝑄 | = 𝑡 + 1, we let 𝐴(

®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 ∈ {0, 1}(

[𝑛]
ℓ )

2𝑟+2−𝑡
be the matrix with rows and columns

by indexed by (2𝑟 + 2− 𝑡)-tuples of sets (𝑆0, . . . , 𝑆𝑟−𝑡 , 𝑆′0, . . . , 𝑆′𝑟−𝑡 ,𝑅1, . . . ,𝑅𝑡) of size exactly ℓ . Note
that when 𝑡 = 0, we do not have any “𝑅ℎ’s” in the row/column index tuples.

We set 𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝((𝑆0, . . . , 𝑆𝑟−𝑡 , 𝑆′0, . . . , 𝑆′𝑟−𝑡 ,𝑅1, . . . ,𝑅𝑡), (𝑇0, . . . ,𝑇𝑟−𝑡 ,𝑇′0 , . . . 𝑇′𝑟−𝑡 ,𝑊1, . . . ,𝑊𝑡)) equal

to 1 if the following holds, and otherwise we set this entry to be 0.

1. For ℎ = 0, . . . , 𝑟 − 𝑡, we have 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ ,

2. For ℎ = 0, . . . , 𝑟 − 𝑡, we have 𝑆′
ℎ
⊕ 𝑇′

ℎ
= 𝐶′

ℎ
,

3. For ℎ = 1, . . . , 𝑡, we have 𝑅ℎ = {𝑢} ∪𝑈 , 𝑊ℎ = {𝑣} ∪𝑈 , where 𝐶𝑟−𝑡+ℎ = {𝑢,𝑄ℎ}, 𝐶′𝑟−𝑡+ℎ =

{𝑣,𝑄ℎ}, and 𝑈 ⊆ [𝑛] is a set of size ℓ − 1 with 𝑢, 𝑣 ∉ 𝑈 .

We let 𝐴𝑖,𝑗 =
∑
(𝑄,𝑝)∈𝑃𝑡

∑
®𝐶∈∈ℋ (𝑟+1)

𝑖,𝑄,𝑝
®𝐶′∈ℋ (𝑟+1)

𝑗,𝑄,𝑝
𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 , and for any matching 𝑀 on [𝑘], let 𝐴𝑀 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐴𝑖,𝑗 .

7.3 Step 3: relating the “Cauchy–Schwarzed” polynomial 𝑓𝑀 and the Kikuchi matrix 𝐴

The following lemma shows that we can express 𝑓𝑀(𝑥) as a (scaling of a) quadratic form on the
matrix 𝐴.

Lemma 7.3. Let 𝑥 ∈ {−1, 1}𝑛 , and let 𝑥′ ∈ {−1, 1}𝑁 , where 𝑁 =
(𝑛
ℓ

)2𝑟+2−𝑡 , denote the vector where the
(𝑆0, 𝑆1, . . . , 𝑆𝑟−𝑡 , 𝑆′0, 𝑆′1, . . . , 𝑆′𝑟−𝑡 ,𝑅1, . . . ,𝑅𝑡)-th entry of 𝑥′ is

∏𝑟−𝑡
ℎ=0 𝑥𝑆ℎ

𝑥𝑆′
ℎ

∏𝑡
ℎ=1 𝑥𝑅ℎ

. Then, 𝑥′⊤𝐴𝑥′ =

𝐷 𝑓𝑀(𝑥), where 𝐷 = 22𝑟+2−2𝑡 (𝑛−2
ℓ−1

)2𝑟+2−𝑡
. Note that 𝐷/𝑁 = 22𝑟+2−2𝑡

(
ℓ (𝑛−ℓ )
𝑛(𝑛−1)

)2𝑟+2−𝑡
. In particular,

val( 𝑓𝑀) ≤ 1
𝐷 ∥𝐴∥∞→1.

Proof. Expanding definitions, we have

𝑥′⊤𝐴𝑥′ =
∑
(𝑖,𝑗)∈𝑀

𝑏𝑖𝑏 𝑗

∑
(𝑄,𝑝)∈𝑃𝑡

∑
®𝐶∈ℋ (𝑟+1)

𝑖,𝑄,𝑝 , ®𝐶′∈ℋ (𝑟+1)
𝑗,𝑄,𝑝

𝑥′⊤𝐴(
®𝐶, ®𝐶′)

𝑖,𝑗,𝑄,𝑝𝑥
′ ,

𝑓𝑀(𝑥) =
∑
(𝑖,𝑗)∈𝑀

𝑏𝑖𝑏 𝑗

∑
(𝑄,𝑝)∈𝑃𝑡

Ψ𝑖,𝑄,𝑝(𝑥)Ψ𝑗,𝑄,𝑝(𝑥) ,

where we recall that

Ψ𝑖,𝑄,𝑝(𝑥) =
∑

𝐶0,𝑤0 :𝐶0∪{𝑤0}∈𝐻𝑖

𝑥𝐶0

∑
(𝑤0,𝐶1,𝑤1,𝐶2,𝑤2,...,𝐶𝑟 ,𝑤𝑟 )∈ℋ (𝑟)𝑄,𝑝

𝑟−𝑡∏
ℎ=1

𝑥𝐶ℎ

𝑡∏
ℎ=1

𝑥𝐶𝑟−𝑡+ℎ\𝑄ℎ
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=
∑
®𝐶∈ℋ (𝑟+1)

𝑖,𝑄,𝑝

𝑟−𝑡∏
ℎ=0

𝑥𝐶ℎ

𝑡∏
ℎ=1

𝑥𝐶𝑟−𝑡+ℎ\𝑄ℎ

Thus, it suffices to show that

𝑥′⊤𝐴(
®𝐶, ®𝐶′)

𝑖,𝑗,𝑄,𝑝𝑥
′ = 𝐷 ·

𝑟−𝑡∏
ℎ=0

𝑥𝐶ℎ

𝑡∏
ℎ=1

𝑥𝐶𝑟−𝑡+ℎ\𝑄ℎ

𝑟−𝑡∏
ℎ=0

𝑥𝐶′
ℎ

𝑡∏
ℎ=1

𝑥𝐶′
𝑟−𝑡+ℎ\𝑄ℎ

.

Let ®𝑆 = (𝑆0, 𝑆1, . . . , 𝑆𝑟−𝑡 , 𝑆′0, 𝑆′1, . . . , 𝑆′𝑟−𝑡 ,𝑅1, . . . ,𝑅𝑡) and ®𝑇 = (𝑇0, . . . ,𝑇𝑟−𝑡 ,𝑇′0 , . . . 𝑇′𝑟−𝑡 ,𝑊1, . . . ,𝑊𝑡) be

such that 𝐴(
®𝐶, ®𝐶′)

𝑖,𝑗,𝑄,𝑝( ®𝑆, ®𝑇) = 1. Then, we have that

𝑥′®𝑆
𝑥′®𝑇

=

𝑟−𝑡∏
ℎ=0

𝑥𝑆ℎ
𝑥𝑇ℎ𝑥𝑆′ℎ𝑥𝑇

′
ℎ

𝑡∏
ℎ=1

𝑥𝑅ℎ
𝑥𝑊ℎ

=

𝑟−𝑡∏
ℎ=0

𝑥𝑆ℎ⊕𝑇ℎ𝑥𝑆′ℎ⊕𝑇
′
ℎ

𝑡∏
ℎ=1

𝑥𝑅ℎ⊕𝑊ℎ

=

𝑟−𝑡∏
ℎ=0

𝑥𝐶ℎ
𝑥𝐶′

ℎ

𝑡∏
ℎ=1

𝑥𝐶𝑟−𝑡+ℎ\𝑄ℎ
𝑥𝐶′

𝑟−𝑡+ℎ\𝑄ℎ
,

where we use that this entry of 𝐴(
®𝐶, ®𝐶′)

𝑖,𝑗,𝑄,𝑝( ®𝑆, ®𝑇) is nonzero and 𝑥 ∈ {−1, 1}𝑛 so that 𝑥2
𝑢 = 1 for any

𝑢 ∈ [𝑛].
Next, we prove that there are exactly 𝐷 pairs ( ®𝑆, ®𝑇)where 𝐴

( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝( ®𝑆, ®𝑇) is nonzero. We observe

that, for each ℎ = 0, . . . , 𝑟 − 𝑡 + 1, there are exactly 2
(𝑛−2
ℓ−1

)
pairs (𝑆ℎ ,𝑇ℎ) such that 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ .

Indeed, this is because 𝐶ℎ = {𝑢, 𝑣} has size exactly 2, so 𝑆ℎ ⊕ 𝑇ℎ = 𝐶ℎ implies that 𝑆ℎ = {𝑢} ∪𝑈
and 𝑇ℎ = {𝑣} ∪𝑈 . There are 2 choices for 𝑢 ∈ 𝐶ℎ to assign to 𝑆ℎ , and then afterward there are

(𝑛−2
ℓ−1

)
choices for the set 𝑈 , which is a set of size ℓ − 1 not containing either of 𝑢, 𝑣. For ℎ = 1, . . . , 𝑡, there
are exactly

(𝑛−2
ℓ−1

)
pairs (𝑅ℎ ,𝑊ℎ) satisfying the condition, as this is the number of choices for 𝑈 . Here,

note that we do not have the additional factor of 2 because the 𝑢 coming from 𝐶𝑟−𝑡+ℎ must be in

𝑅ℎ . Combining, we see that 𝐷 = 22(𝑟−𝑡+1) (𝑛−2
ℓ−1

)2(𝑟−𝑡+1)+𝑡
, as required. The “in particular” follows by

noting val( 𝑓𝑀) = max𝑥∈{−1,1}𝑛 𝑓𝑀(𝑥) and ∥𝐴∥∞→1 = max𝑥′,𝑦′∈{−1,1}𝑁 𝑥′⊤𝐴𝑦′. □

7.4 Step 4: bounding the∞→ 1-norm of 𝐴 via row pruning

By Lemma 7.3, in order to upper bound E𝑏[val( 𝑓𝑀)], it suffices to bound E𝑏[∥𝐴∥∞→1].
We always have ∥𝐴∥∞→1 ≤ 𝑁 ∥𝐴∥2. It turns out that ∥𝐴∥2 is governed by the maximum degree

(relative to the average) of any of 𝐴𝑖,𝑗 , where by degree we mean the number of nonzero entries in
a row/column. However, the 𝐴𝑖,𝑗’s can have rows of degree significantly larger the the average,
and this prohibits the spectral norm from giving a good bound on val( 𝑓𝑀).

The key observation is that, for a certain choice of our parameters ℓ , 𝑟, 𝑑, the fraction of these
“bad rows” is very small and does not noticeably affect ∥𝐴∥∞→1. We can thus “zero out” these bad
rows and then use the spectral certificate on the “pruned matrix” to bound val( 𝑓𝑀). Establishing
this combinatorial fact is the crux of our proof and is captured in the following lemma. The next
section (Section 8) is dedicated to the proof of this lemma, and constitutes the key component of
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the proof. In fact, at a high level all the steps done so far in the proof are somewhat generic, and
our key innovation is choosing the decomposition step carefully to ensure that this row pruning
step succeeds.

Lemma 7.4 (Row pruning). Fix 𝑟 ≥ 1, and letℋ (𝑟) denote the 𝑟-chain hypergraph. Let ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 be a

𝑑-contiguously regular partition ofℋ (𝑟). Fix 0 ≤ 𝑡 ≤ 𝑟 and a maximum directed matching 𝑀 on [𝑘]. Let
𝐴 be the Kikuchi matrix defined in Definition 7.2, which depends on 𝑟, 𝑡, the pieces ∪(𝑄,𝑝)∈𝑃𝑡

ℋ (𝑟)
𝑄,𝑝 of the

refinement, and the matching 𝑀.
Let Γ > 0 be a constant, and let Δ = 9 · 22𝑟+2−2𝑡(ℓ/𝑛)2𝑟+2−𝑡𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 . Let ℬ denote the set of rows

®𝑆 such that there exists 𝑖 ≠ 𝑗 ∈ [𝑘] where the ®𝑆-th row/column of 𝐴𝑖,𝑗 has more than Δ nonzero entries.
Suppose there is 𝛾 ∈ (0, 1) such that

(1) 𝛾 ≤ 1
𝑐Γ𝑟3 log2 𝑛

, where 𝑐 is a sufficiently large absolute constant;

(2) 2
3𝛿ℓ ≤ 𝛾;

(3)
(

3𝛾𝛿ℓ
4

) 𝑟+1
≥ 𝑛;

(4) (2𝑟 + 2) exp(−ℓ/64𝑟2) ≤ ℓ−Γ𝑟 ;

(5) 𝑑 = 3𝛿ℓ𝛾.

Then, the number of bad rows is |ℬ| ≤ 2ℓ−Γ𝑟𝑁 .

7.5 Step 5: finishing the proof

Let Γ be a sufficiently large constant, 𝑟 = 𝑂(log 𝑛), 𝛾 = 1/𝑂(log4 𝑛), and ℓ = 𝑂(log4 𝑛/𝛿) for a
sufficiently large constant. This choice of parameters satisfies all the conditions in Lemma 7.4 and
furthermore they satisfy

(2ℓ−Γ𝑟) · (2ℓ )2𝑟+2−𝑡 ≤ 1/𝑛2 .

We note that by our choice of parameters, 𝑑 is constant.
Applying Lemma 6.3, we can construct a contiguous 𝑑-regular refinement of ℋ (𝑟), given

by ℋ (𝑟) = ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 and polynomials Ψ(𝑡) for 0 ≤ 𝑡 ≤ 𝑟 such that 𝑘(3𝛿𝑛)𝑟+1 ≤ E𝑏[val(Φ)] ≤∑𝑟
𝑡=0 E𝑏[val(Ψ(𝑡))].

By Lemma 7.1, we have

(E𝑏[val(Ψ(𝑡))])2 ≤ E𝑏[val(Ψ(𝑡))2] = E𝑏[val((Ψ(𝑡))2)] ≤ 𝑘
(
|𝑃𝑡 |(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2 + |𝑃𝑡 |2𝑘E𝑀E𝑏←{−1,1}𝑘 [val( 𝑓 (𝑡)
𝑀
)] .

By Lemma 7.3, we have for any maximum directed matching 𝑀,

E𝑏←{−1,1}𝑘 [val( 𝑓 (𝑡)
𝑀
)] ≤ 1

𝐷
∥𝐴∥∞→1 .

Let 𝐵𝑖,𝑗 denote the matrix 𝐴𝑖,𝑗 after we zero out all rows and columns in ℬ. We observe that
∥𝐵𝑖,𝑗 ∥2 ≤ Δ as every row and column in 𝐵𝑖,𝑗 has at most Δ nonzero entries; the fact about the
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columns of 𝐵𝑖,𝑗 follows because 𝐴𝑖,𝑗 = 𝐴⊤
𝑗,𝑖 , so the set ℬ contains all the bad columns as well. Thus,

∥𝐴𝑖,𝑗 − 𝐵𝑖,𝑗 ∥∞→1 ≤ |ℬ| · (2ℓ )
2𝑟+2−𝑡 ≤ 2ℓ−Γ𝑟𝑁 · (2ℓ )2𝑟+2−𝑡 ≤ 𝑁/𝑛2, by our choice of parameters. Here,

we used that every row of 𝐴𝑖,𝑗 can (crudely) have at most (2ℓ )2𝑟+2−𝑡 nonzero entries.
Now, let 𝐵 =

∑
(𝑖,𝑗)∈𝑀 𝑏𝑖𝑏 𝑗𝐵𝑖,𝑗 . The random matrix 𝐵 is a Rademacher series with 𝑘 terms in

R𝑁×𝑁 . By the Matrix Khintchine (Fact 2.8) inequality, we have that E𝑏[∥𝐵∥2] ≤ 𝑂(Δ
√
𝑘 log 𝑁) =

𝑂(Δ
√
𝑘𝑟ℓ log 𝑛). Note that here we use that 𝑀 is a matching, so 𝑏𝑖𝑏 𝑗 and 𝑏𝑖′𝑏 𝑗′ are independent

Rademacher random variables for distinct edges (𝑖, 𝑗) and (𝑖′, 𝑗′) in the matching.
Hence, we have that

𝐷E𝑏[val( 𝑓𝑀)] ≤ E𝑏[∥𝐴∥∞→1] ≤ E𝑏[∥𝐵∥∞→1 + ∥𝐴 − 𝐵∥∞→1]
≤ E𝑏[𝑁 ∥𝐵∥2] + 𝑘𝑁/𝑛2 ≤ 𝑁𝑂(Δ

√
𝑘𝑟ℓ log 𝑛) + 𝑜(𝑁) .

Thus, E𝑏[val( 𝑓𝑀)] ≤ 𝑁
𝐷𝑂(Δ

√
𝑘𝑟ℓ log 𝑛). Using the bound on Δ from Lemma 7.4, we have that

𝑁

𝐷
Δ ≤ 2−2𝑟−2+2𝑡

(
𝑛(𝑛 − 1)
ℓ (𝑛 − ℓ )

)2𝑟+2−𝑡
· 9 · 22𝑟+2−2𝑡(ℓ/𝑛)2𝑟+2−𝑡𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡

=

(
𝑛 − 1
𝑛 − ℓ

)2𝑟+2−𝑡
· 9 · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 ≤ 𝑒

𝑂(ℓ 𝑟)
𝑛 · 9 · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 ≤ 𝑂(1) · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 ,

and so we conclude that E𝑏[val( 𝑓𝑀)] ≤ 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡𝑂(
√
𝑘𝑟ℓ log 𝑛), where we use that ℓ 𝑟 ≤ 𝑛.

We thus have

E𝑏[val(Ψ(𝑡))] ≤
√
𝑘 (|𝑃𝑡 |(3𝛿𝑛)𝑟−𝑡𝑑𝑡)2 + |𝑃𝑡 |2𝑘 · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡𝑂(

√
𝑘𝑟ℓ log 𝑛) .

Next, we note that we have |𝑃𝑡 |𝑑𝑡 ≤ |ℋ (𝑡) | = 𝑛(3𝛿𝑛)𝑡 , and so

E𝑏[val(Ψ(𝑡))] ≤
√
𝑘 (𝑛(3𝛿𝑛)𝑡 · (3𝛿𝑛)𝑟−𝑡)2 + 𝑛(3𝛿𝑛)𝑡 · 2𝑘 · (3𝛿𝑛)2𝑟+1−𝑡𝑂(

√
𝑘𝑟ℓ log 𝑛)

≤ 𝑂(1) ·
√
𝑘

1
3𝛿
(3𝛿𝑛)𝑟+1 +𝑂(1) · (3𝛿𝑛)𝑟+1

√
𝑘

3𝛿
(𝑘𝑟ℓ log 𝑛)1/4

≤ 𝑂(1) ·
√
𝑘 · (3𝛿𝑛)𝑟+1

(
1

3𝛿
+

√
1

3𝛿
(𝑘𝑟ℓ log 𝑛)1/4

)
≤ 𝑂(1) ·

√
𝑘 · (3𝛿𝑛)𝑟+1

√
1

3𝛿
(𝑘𝑟ℓ log 𝑛)1/4 ,

assuming that 𝛿−2 ≤ 𝑂(𝑘𝑟ℓ log 𝑛) = 𝑂(𝑘 log6 𝑛/𝛿).12 Thus,

𝑘(3𝛿𝑛)𝑟+1 ≤ E𝑏[val(Φ)] ≤
𝑟∑

𝑡=0

E𝑏[val(Ψ(𝑡))] ≤ (𝑟 + 1) ·𝑂(1) ·
√
𝑘 · (3𝛿𝑛)𝑟+1

√
1

3𝛿
(𝑘𝑟ℓ log 𝑛)1/4

=⇒ 𝑘 ≤ 1
9𝛿2
·𝑂(𝑟5ℓ log 𝑛) = 𝑂(log10 𝑛/𝛿3) ,

12When we optimize the log 𝑛 factor in the next step, we will no longer need this assumption, which is why it does not
appear in Theorem 1.
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by our choice of 𝑟, ℓ . We note that, up to the proof of Lemma 7.4, this almost finishes the proof of
Theorem 1. The issue is that we have lost an additional log2 𝑛-factor. In the next and final step, we
shall save this factor by reformulating the above proof as a reduction to a 2-LDC and applying a
off-the-shelf bound on linear 2-LDCs instead of a spectral refutation to finish.

7.6 Step 6: optimizing the log 𝑛 factor

We shall now reformulate the arguments in Section 7.5 to give us a reduction from the 3-LCC ℒ to
a 2-LDC ℒ′. Instead of bounding val(Ψ(𝑡)) using the∞→ 1 norm of the Kikuchi matrices, we shall
instead use the Kikuchi matrices to give a reduction to a linear 2-LDC, and then we apply the lower
bound of [GKST06] (Fact 2.5). The difference between Section 7.5 and this subsection is similar
to the difference between the main proof and the proof in Appendix B in [AGKM23], which also
saves some additional log 𝑛 factors in the setting of 3-LDC lower bounds.

The reason for the savings is that, in the case of 2-query linear codes, Fact 2.5 shows a lower
bound of 2 log2 𝑛 ≥ 𝛿𝑘, which saves a factor of 𝛿 over the lower bound from spectral refutation of
𝑂(log 𝑛) ≥ 𝛿2𝑘 for general codes. In our reduction, we shall produce a 2-LDC with 𝛿′ ∼ 𝛿/(log2 𝑛),
so this optimization saves us a 𝑂(log2 𝑛) factor. As a result, we get a final lower bound of 𝑘 ≤
𝑂(log8 𝑛), as opposed to the lower bound of 𝑘 ≤ 𝑂(log10 𝑛) that we obtained in Section 7.5.

We proceed similarly to Section 7.5. Let Γ be a sufficiently large constant, 𝑟 = 𝑂(log 𝑛), 𝛾 =

1/𝑂(log4 𝑛), and ℓ = 𝑂(log4 𝑛/𝛿) for a sufficiently large constant. We note that this choice of
parameters satisfies all the conditions in Lemma 7.4, and furthermore they satisfy

(2ℓ−Γ𝑟) · (2ℓ )2𝑟+2−𝑡 ≤ 1/𝑛2 .

Applying Lemma 6.3, we can construct a contiguous 𝑑-regular refinement of ℋ (𝑟), given
by ℋ (𝑟) = ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 and polynomials Ψ(𝑡) for 0 ≤ 𝑡 ≤ 𝑟 such that 𝑘(3𝛿𝑛)𝑟+1 ≤ E𝑏[val(Φ)] ≤∑𝑟

𝑡=0 E𝑏[val(Ψ(𝑡))].
Now, we observe that there exists 𝑡 ∈ {0, . . . , 𝑟} such that 𝑘(3𝛿𝑛)𝑟+1/(𝑟 + 1) ≤ E𝑏[val(Ψ(𝑡))]. In

particular, Ψ(𝑡) has at least 𝑘(3𝛿𝑛)𝑟+1/(𝑟 + 1) constraints. For the remainder of the proof, we let 𝑡 be
this particular value in {0, . . . , 𝑟}.

By Lemma 7.1, we have

(E𝑏[val(Ψ(𝑡))])2 ≤ E𝑏[val(Ψ(𝑡))2] = E𝑏[val((Ψ(𝑡))2)] ≤ 𝑘
(
|𝑃𝑡 |(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2 + |𝑃𝑡 |2𝑘E𝑀E𝑏←{−1,1}𝑘 [val( 𝑓 (𝑡)
𝑀
)] .

Therefore, there exists a maximum directed matching 𝑀 on [𝑘] such that

1
𝑘 |𝑃𝑡 |
(E𝑏[val(Ψ(𝑡))])2 − |𝑃𝑡 |

(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2 ≤ 2E𝑏←{−1,1}𝑘 [val( 𝑓 (𝑡)
𝑀
)] .

For the remainder of the proof, we let 𝑀 be this particular directed matching.
Let 𝐿 = {𝑖 : (𝑖, 𝑗) ∈ 𝑀} denote the “left halves” of the edges in the matching 𝑀. We note that

𝑘′ B |𝐿| ≥ 𝑘−1
2 . Let ℒ′ : {−1, 1}𝐿 → {−1, 1}2𝑁 , where 𝑁 B

(𝑛
ℓ

)2𝑟+2−𝑡 , be the linear code defined
from ℒ as follows. For each 𝑏 ∈ {−1, 1}𝐿, we first extend 𝑏 to be in {−1, 1}𝑘 by setting 𝑏 𝑗 = 1
for all 𝑗 ∉ 𝐿 (for 𝑏 ∈ {−1, 1}𝐿, we shall abuse notation and think of 𝑏 as in {−1, 1}𝑘 using this
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trivial extension). Then, we let 𝑥 = ℒ(𝑏), and finally we let 𝑥′ B ℒ′(𝑏) be the vector with 2𝑁
coordinates, one for each row/column of 𝐴, where the ®𝑆-th entry (similarly ®𝑇-th entry) is given by
𝑥′®𝑆

=
∏𝑟−𝑡

ℎ=0 𝑥𝑆ℎ
𝑥𝑆′

ℎ

∏𝑡
ℎ=1 𝑥𝑅ℎ

.
We make the following observations. First, we note that ℒ′ is clearly a linear map. Secondly,

following Lemma 7.3, we note that for every 𝑏 ∈ {−1, 1}𝐿, every (𝑖, 𝑗) ∈ 𝑀 (which implies that
𝑖 ∈ 𝐿 and 𝑗 ∉ 𝐿), and row ®𝑆 and column ®𝑇 where 𝐴𝑖,𝑗( ®𝑆, ®𝑇) = 1, we have that 𝑥′ = ℒ′(𝑏) satisfies
𝑥′®𝑆

𝑥′®𝑇
= 𝑏𝑖 .

We now show that ℒ′ is a (2, 𝛿)-LDC for 𝛿′ = Ω(𝛿/𝑟2). Formally, we shall show that for each
(𝑖, 𝑗) ∈ 𝑀, there exists a matching 𝐺′′

𝑖,𝑗 on [2𝑁] such that for every 𝑏 ∈ {−1, 1}𝐿, each edge ( ®𝑆, ®𝑇)
in 𝐺′′

𝑖,𝑗 , we have 𝑥′®𝑆
𝑥′®𝑇

= 𝑏𝑖 where 𝑥′ = ℒ′(𝑏), and furthermore 1
𝑘′

∑
(𝑖,𝑗)∈𝑀 |𝐺′′𝑖,𝑗 | ≥ 𝛿′ · 2𝑁 , where we

recall that 𝑘′ B |𝐿| is the dimension of ℒ′.
We have already argued that for every edge ( ®𝑆, ®𝑇) in the bipartite graph 𝐺𝑖,𝑗 defined by the

adjacency matrix 𝐴𝑖,𝑗 (where the rows and columns form the left and right sets of vertices), we have
𝑥′®𝑆

𝑥′®𝑇
= 𝑏𝑖 . It thus remains to show that 𝐺𝑖,𝑗 has a matching of size 𝛿′𝑁 .

As before, let 𝐵𝑖,𝑗 denote the matrix 𝐴𝑖,𝑗 after we zero out all rows and columns in ℬ. We observe
that every row and column in 𝐵𝑖,𝑗 has at most Δ nonzero entries; the fact about the columns of 𝐵𝑖,𝑗

follows because 𝐴𝑖,𝑗 = 𝐴⊤
𝑗,𝑖 , so the set ℬ contains all the bad columns as well. Thus, the bipartite

graph 𝐺′
𝑖,𝑗 defined by the adjacency matrix 𝐵𝑖,𝑗 has maximum (left or right) degree at most Δ and

therefore has a matching 𝐺′′
𝑖,𝑗 of size at least |𝐺′

𝑖,𝑗 |/Δ.

Now, the number of edges removed is at most |ℬ| · (2ℓ )2𝑟+2−𝑡 ≤ 2ℓ−Γ𝑟𝑁 · (2ℓ )2𝑟+2−𝑡 ≤ 𝑁/𝑛2, by
our choice of parameters. Here, we used that every row of 𝐴𝑖,𝑗 can (crudely) have at most (2ℓ )2𝑟+2−𝑡

nonzero entries. Thus, we have that |𝐸(𝐺′
𝑖,𝑗)| ≥ |𝐸(𝐺𝑖,𝑗)| −𝑁/𝑛2.

In order to finish the reduction, we need to lower bound 1
𝑁

∑
(𝑖,𝑗)∈𝑀 |𝐸(𝐺′′𝑖,𝑗)|. We have that

1
𝑁

∑
(𝑖,𝑗)∈𝑀

|𝐸(𝐺′′𝑖,𝑗)| ≥
∑
(𝑖,𝑗∈𝑀)

1
𝑁Δ
|𝐸(𝐺′𝑖,𝑗)| ≥

∑
(𝑖,𝑗∈𝑀)

1
𝑁Δ

(
|𝐸(𝐺𝑖,𝑗)| −

𝑁

𝑛2

)
≥ 1

𝑁Δ

(
𝐷 ·E𝑏←{−1,1}𝑘 [val( 𝑓 (𝑡)

𝑀
)] − 𝑘𝑁

𝑛2

)
≥ 𝐷

2𝑁Δ

(
1

𝑘 |𝑃𝑡 |
(E𝑏[val(Ψ(𝑡))])2 − |𝑃𝑡 |

(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2
)
− 𝑘

Δ𝑛2

≥ 𝐷

2𝑁Δ

(
1

𝑘 |𝑃𝑡 |
· 𝑘

2(3𝛿𝑛)2𝑟+2

(𝑟 + 1)2 − |𝑃𝑡 |
(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2
)
− 𝑘

Δ𝑛2
.

Using the bound on Δ from Lemma 7.4, we have that

𝑁Δ

𝐷
≤ 2−2𝑟−2+2𝑡

(
𝑛(𝑛 − 1)
ℓ (𝑛 − ℓ )

)2𝑟+2−𝑡
· 9 · 22𝑟+2−2𝑡(ℓ/𝑛)2𝑟+2−𝑡𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡

=

(
𝑛 − 1
𝑛 − ℓ

)2𝑟+2−𝑡
· 9 · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 ≤ 𝑒

𝑂(ℓ 𝑟)
𝑛 · 9 · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 ≤ 𝑂(1) · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 ,

which implies that

1
𝑁

∑
(𝑖,𝑗)∈𝑀

|𝐸(𝐺′′𝑖,𝑗)| ≥
1

𝑂(1)𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡

(
1

𝑘 |𝑃𝑡 |
· 𝑘

2(3𝛿𝑛)2𝑟+2

(𝑟 + 1)2 − |𝑃𝑡 |
(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2
)
− 𝑘

Δ𝑛2
.
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Next, we note that we have |𝑃𝑡 |𝑑𝑡 ≤ |ℋ (𝑡) | = 𝑛(3𝛿𝑛)𝑡 , and so

1
𝑁

∑
(𝑖,𝑗)∈𝑀

|𝐸(𝐺′′𝑖,𝑗)| ≥
1

𝑂(1)𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡

(
1

𝑘 |𝑃𝑡 |
· 𝑘

2(3𝛿𝑛)2𝑟+2

(𝑟 + 1)2 − |𝑃𝑡 |
(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2
)
− 𝑘

Δ𝑛2

≥ 1
𝑂(1)

(
𝑘(3𝛿)
(𝑟 + 1)2 −

1
3𝛿

)
− 𝑘

Δ𝑛2
≥ 1

𝑂(1)
𝑘(3𝛿)
(𝑟 + 1)2 ,

if we assume that 𝑘 ≥ Ω(𝑟2/𝛿2) = Ω(log2 𝑛/𝛿2). Note that if not, then we have that 𝛿2𝑘 ≤ 𝑂(log2 𝑛),
which is a better lower bound than Theorem 1.

Therefore, we have shown that

1
𝑘′

∑
(𝑖,𝑗)∈𝑀

|𝐸(𝐺′′𝑖,𝑗)| ≥ 𝛿′𝑁 ,

where 𝑘′ = |𝐿| ≥ 𝑘−1
2 and 𝛿′ = Ω(𝛿/𝑟2). Hence, by Fact 2.5, it follows that

𝑂(ℓ 𝑟 log 𝑛) ≥ 2 log2 𝑁 ≥ 𝛿′𝑘 ≥ Ω(𝛿𝑘/𝑟2)
=⇒ 𝑘 ≤ 𝑂(ℓ 𝑟3 log 𝑛/𝛿) ≤ 𝑂(log8 𝑛/𝛿2) ,

i.e., 2Ω((𝛿
2𝑘)1/8) ≤ 𝑛. This finishes the proof of Theorem 1 for the case of F = F2, up to the proof of

Lemma 7.4.

8 Row Pruning: Proof of Lemma 7.4

In this section, we prove Lemma 7.4, restated below, which is the main technical component in the
proof of Theorem 1.

Lemma 8.1 (Row pruning). Fix 𝑟 ≥ 1, and letℋ (𝑟) denote the 𝑟-chain hypergraph. Let ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 be a

𝑑-contiguously regular partition ofℋ (𝑟). Fix 0 ≤ 𝑡 ≤ 𝑟 and a maximum directed matching 𝑀 on [𝑘]. Let
𝐴 be the Kikuchi matrix defined in Definition 7.2, which depends on 𝑟, 𝑡, the pieces ∪(𝑄,𝑝)∈𝑃𝑡

ℋ (𝑟)
𝑄,𝑝 of the

refinement, and the matching 𝑀.
Let Γ > 0 be a constant, and let Δ = 9 · 22𝑟+2−2𝑡(ℓ/𝑛)2𝑟+2−𝑡𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 . Let ℬ denote the set of rows

®𝑆 such that there exists 𝑖 ≠ 𝑗 ∈ [𝑘] where the ®𝑆-th row/column of 𝐴𝑖,𝑗 has more than Δ nonzero entries.
Suppose there is 𝛾 ∈ (0, 1) such that

(1) 𝛾 ≤ 1
𝑐Γ𝑟3 log2 𝑛

, where 𝑐 is a sufficiently large absolute constant;

(2) 2
3𝛿ℓ ≤ 𝛾;

(3)
(

3𝛾𝛿ℓ
4

) 𝑟+1
≥ 𝑛;

(4) (2𝑟 + 2) exp(−ℓ/64𝑟2) ≤ ℓ−Γ𝑟 ;

(5) 𝑑 = 3𝛿ℓ𝛾.
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Then, the number of bad rows is |ℬ| ≤ 2ℓ−Γ𝑟𝑁 .

For 𝑖 ≠ 𝑗 ∈ [𝑘] and a row ®𝑆, let deg𝑖,𝑗( ®𝑆) denote the number of nonzero entries in the ®𝑆-th row.

The main idea of the proof is to observe that for any 𝑖, 𝑗, deg𝑖,𝑗( ®𝑆) is upper-bounded by a (2𝑟 + 2− 𝑡)-
partite polynomial Deg𝑖,𝑗(𝑠(1), 𝑠(2), . . . , 𝑠(2𝑟+2−𝑡)) in 𝑛(2𝑟 + 2− 𝑡) variables 𝑠

(ℎ)
𝑢 for 1 ≤ ℎ ≤ 2𝑟 + 2− 𝑡

and 𝑢 ∈ [𝑛] that define ®𝑆, i.e., 𝑠(ℎ) (in {0, 1}𝑛) represents the 0− 1 indicator vector of 𝑆ℎ (or 𝑆′
ℎ

or 𝑅ℎ ,
depending on the value of ℎ). The contiguous regularity property allows us to control the expected
partial derivatives of Deg𝑖,𝑗 and thus apply the tail bounds for partite polynomials in Lemma 2.9.

Let us first set up the polynomial Deg𝑖,𝑗 formally.

For ®𝐶 ∈ ℋ (𝑟+1)
𝑖,𝑄,𝑝 and ®𝐶′ ∈ ℋ (𝑟+1)

𝑗,𝑄,𝑝 , let 𝒯 ( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 denote the set of (2𝑟 + 2− 𝑡)-tuples

(𝑢0, . . . , 𝑢𝑟−𝑡 , 𝑢𝑟−𝑡+1, . . . , 𝑢𝑟 , 𝑣0, . . . , 𝑣𝑟−𝑡) such that for ℎ = 0, . . . , 𝑟 − 𝑡, 𝑢ℎ ∈ 𝐶ℎ and 𝑣ℎ ∈ 𝐶′ℎ , and for

ℎ = 1, . . . , 𝑡, we have 𝑢𝑟−𝑡+ℎ ∈ 𝐶ℎ \𝑄ℎ . For a row ®𝑆 and a tuple𝑈 = (𝑢0, . . . , 𝑢𝑟−𝑡 , 𝑢𝑟−𝑡+1, . . . , 𝑢𝑟 , 𝑣0, . . . , 𝑣𝑟−𝑡),
we write 𝑈 ∈ ®𝑆 to mean that 𝑢ℎ ∈ 𝑆ℎ , 𝑣ℎ ∈ 𝑆′ℎ for ℎ = 0, . . . , 𝑟 − 𝑡 and 𝑢𝑟−𝑡+ℎ ∈ 𝑅ℎ for ℎ = 1, . . . , 𝑡.

We next make an easy observation about the structure of the matrices 𝐴
( ®𝐶, ®𝐶′)
𝑖,𝑗,𝑄,𝑝 .

Observation 8.2. Every row of 𝐴(
®𝐶, ®𝐶′)

𝑖,𝑗,𝑄,𝑝 has at most 1 non-zero entry. Further, for every non-zero row

®𝑆, there is a unique (2𝑟 + 2− 𝑡)-tuple 𝑈 ∈ 𝒯 ®𝐶, ®𝐶′
𝑖,𝑗,𝑄,𝑝 such that 𝑈 ∈ ®𝑆. Finally, 𝑈 ∈ ®𝑆 does not guarantee

a non-zero entry.

Let 𝒯𝑖,𝑗 =
⋃
(𝑄,𝑝)∈𝑃𝑡

⋃
®𝐶∈ℋ (𝑟+1)

𝑖,𝑄,𝑝 , ®𝐶′∈ℋ (𝑟+1)
𝑗,𝑄,𝑝
𝒯𝑖,𝑗,𝑄,𝑝 . Then, by the above observation, the number of

nonzero entries in the ®𝑆-th row of 𝐴𝑖,𝑗 is upper bounded by the number of tuples 𝑈 ∈ 𝒯𝑖,𝑗 with
𝑈 ∈ ®𝑆. Define the following polynomial Deg𝑖,𝑗 that counts this latter quantity, as follows.

Let 𝑠 = (𝑠(0), . . . , 𝑠(𝑟−𝑡), 𝑠(𝑟−𝑡+1), . . . , 𝑠(𝑟), 𝑠′(0), . . . , 𝑠′(𝑟−𝑡)) be a partitioned set of 0, 1-valued vari-
ables where each 𝑠(ℎ), 𝑠′(ℎ) is an 𝑛-tuple (𝑠(ℎ)𝑢 )𝑢∈[𝑛]. We view 𝑠 as the tuple of 0-1 indicators for the
sets appearing in a ®𝑆. Formally, we have

Deg𝑖,𝑗(𝑠) B
∑
𝑈∈𝒯𝑖,𝑗

𝑟∏
ℎ=0

𝑠
(ℎ)
𝑢ℎ

𝑟−𝑡∏
ℎ=0

𝑠
′(ℎ)
𝑣ℎ .

Let𝒟 denote the uniform distribution over the rows ®𝑆, i.e., each 𝑠(ℎ) is drawn independently
and uniformly at random from {0, 1}𝑛 conditioned on ∥𝑠(ℎ)∥1 = ℓ . Thus, to bound the fraction of
rows with a large number of nonzero entries, it suffices to prove bounds on the tail probability
of Deg𝑖,𝑗 on 𝒟. As 𝒟 is not quite a product distribution, we cannot directly apply Lemma 2.9.
Nonetheless, we shall show that its tail bounds behave like those for a product distribution, via the
following coupling lemma.

Let 𝒟′ denote the distribution where each 𝑠
(ℎ)
𝑢 , 𝑠′(ℎ)𝑣 are chosen independently as a 𝑝-biased

Bernoulli random variable where 𝑝 = (1+ 𝛽)ℓ/𝑛 independently for 𝛽 = 1
4𝑟 . The following lemma

relates tail bounds for Deg𝑖,𝑗 on𝒟′ with those on𝒟.

Lemma 8.3 (Coupling). We have Pr𝑠←𝒟[Deg𝑖,𝑗(𝑠) ≥ Δ] ≤ Pr𝑠←𝒟′[Deg𝑖,𝑗(𝑠) ≥ Δ]+ (2𝑟+2) exp(−ℓ/64𝑟2).
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Proof of Lemma 8.3. To relate the two probabilities, we will couple 𝒟′ with 𝒟 as follows. First,
sample 𝑠 ← 𝒟′. Then, for each ℎ = 0, . . . , 𝑟, set 𝑠(ℎ) to be a uniformly random subset of 𝑠(ℎ) (if one
exists), and similarly for ℎ = 0, . . . , 𝑟 − 𝑡, set 𝑠′(ℎ) to be a uniformly random subset of 𝑠′(ℎ) of size ℓ

also. If one of the sets 𝑆ℎ or 𝑆′
ℎ

has size < ℓ , i.e., ∥𝑠(ℎ)∥1 < ℓ for some ℎ ∈ {0, . . . , 𝑟} or ∥𝑠′(ℎ)∥1 < ℓ

for some ℎ ∈ {0, . . . , 𝑟 − 𝑡}, then the coupling fails and we abort. Let 𝒥 be the joint distribution
induced by this coupling.

Fix ℎ ∈ {0, . . . , 𝑟}. By Chernoff bound, we have for every 𝛿 ∈ [0, 1] and for any ℎ,

Pr
𝑠∼𝒟′
[∥𝑠(ℎ)∥1 < (1− 𝛿)(1+ 𝛽)ℓ ] ≤ exp

(
𝛿2ℓ (1+ 𝛽)

2

)
.

Setting 𝛿 = 1 − 1
1+𝛽 and noting that 𝛽 = 1

4𝑟 < 1, we see that
(
𝛿2ℓ (1+𝛽)

2

)
= ℓ

2(4𝑟+16𝑟2) ≥
ℓ

64𝑟2 . Hence,

the probability that 𝒥 aborts is at most (2𝑟 + 2) exp(−ℓ/64𝑟2) ≤ ℓ−Γ𝑟 . Here, we use Item 4 in the
assumptions of the parameters in Lemma 7.4.

We also observe that Deg𝑖,𝑗 is monotone, that is, Deg𝑖,𝑗(𝑠) ≥ Deg𝑖,𝑗(𝑠′) for any Boolean variables
𝑠, 𝑠′ where 𝑠′ ≤ 𝑠 coordinate-wise. In particular, if we first sample 𝑠 ← 𝒟′ and it holds that
Deg𝑖,𝑗(𝑠) ≤ Δ, then it also holds that Deg𝑖,𝑗(𝑠′) ≤ Δ also, regardless of the choice of 𝑠′ made by the
coupling 𝒥 . We thus have

Pr
𝑠′←𝒟
[Deg𝑖,𝑗(𝑠′) > Δ] ≤ Pr

(𝑠,𝑠′)∼𝒥
[Deg𝑖,𝑗(𝑠) > Δ | 𝒥 does not abort] ≤ Pr

𝑠←𝒟′
[Deg𝑖,𝑗(𝑠) > Δ] + ℓ−Γ𝑟 .

This completes the proof. □

We finally obtain a tail bound on Deg𝑖,𝑗 for the product distribution𝒟′ to complete the proof.

Lemma 8.4. For Δ = 9 · 22𝑟+2−2𝑡(ℓ/𝑛)2𝑟+2−𝑡 · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 , we have Pr𝑠←𝒟′[Deg𝑖,𝑗(𝑠) ≥ Δ] ≤ ℓ−Γ𝑟 .

Proof of Lemma 8.4. We will apply Lemma 2.9 to bound Pr𝑠←𝒟′[Deg𝑖,𝑗(𝑠) ≥ Δ]. Note that Deg𝑖,𝑗 is
homogeneous, multilinear, (2𝑟 + 2− 𝑡)-partite polynomial. To apply Lemma 2.9, we will now bound
the expected partial derivatives 𝜇𝑍 of Deg𝑖,𝑗 for each tuple 𝑍 ∈ {[𝑛] ∪ {★})2𝑟+2−𝑡 .

Let
𝜇 = 3 · 22𝑟+2−2𝑡(ℓ/𝑛)2𝑟+2−𝑡 · 𝑑𝑡(3𝛿𝑛)2𝑟+1−𝑡 = 3 · 22𝑟+2−2𝑡 ℓ

𝑛
(3𝛿ℓ )2𝑟+1−𝑡𝑑𝑡 . (4)

Claim 8.5 (Bounding Expected Partials). Let 𝛾 = 𝑐
Γ𝑟3 log2 𝑛

, ℓ ≥ 4𝑛1/𝑟

3𝛿𝛾4 , 𝑑 = 3𝛾𝛿ℓ . Then, for any

ℎ = 0, . . . , 2𝑟 + 2− 𝑡, we have 𝜇𝑍 B 𝜇𝑍(Deg𝑖,𝑗) ≤ 𝜇 · 𝛾 |𝑍 |.
We postpone the proof of Claim 8.5, and now finish the proof of Lemma 7.4 by using Lemma 2.9.

Applying of Lemma 2.9 with 𝛽 = 1/(2𝑟 + 2) and 𝛾, we see that

Pr
𝑥←𝒟′
[𝑃𝑖,𝑗(𝑥) ≥ 3𝜇] ≤ 𝑟(𝑛 + 1)𝑟 exp

(
−

1
2(2𝑟+2)2

2𝛾 + 1
3(2𝑟+2)𝛾

)
≤ 𝑟(𝑛 + 1)𝑟 exp

(
− 1

24𝛾(𝑟 + 1)2

)
≤ ℓ−Γ𝑟 ,

as 3 ≥ (1+ 1
2𝑟+2 )2𝑟+2 ≥ (1+ 1

2𝑟+2 )2𝑟+2−𝑡 and 𝛾 ≤ 1
𝑐Γ𝑟3 log2 𝑛

by Item 1 of our parameter assumptions. □

39



It thus remains to prove Claim 8.5.

Proof of Claim 8.5. For 𝑈 ∈ 𝒯𝑖,𝑗 , we say 𝑍 ⊆ 𝑈 if 𝑍 and 𝑈 agree on all non-★ entries of 𝑍. We let
deg𝑖,𝑗(𝑍) denote the number of tuples 𝑈 ∈ 𝒯𝑖,𝑗 where 𝑍 ⊆ 𝑈 . Note that 𝜇𝑍 = 𝑝2𝑟+2−𝑡−|𝑍 | deg𝑖,𝑗(𝑍).

Let’s now estimate deg𝑖,𝑗(𝑍) – which equals the number of triples (𝑈 , ®𝐶, ®𝐶′) where 𝑈 ∈ 𝒯 ( ®𝐶, ®𝐶′)
𝑖,𝑗 and

𝑍 ⊆ 𝑈 .
Fix a 𝑍 and let 𝑍1 denote the first 𝑟 + 1 entries, and 𝑍2 denote the last 𝑟 + 1 − 𝑡 entries. First,

we argue that there are at most 2|𝑍1 |(3𝛿𝑛)𝑟+1−|𝑍1 | choices for ®𝐶 ∈ ∪(𝑄,𝑝)∈𝑃𝑡
ℋ (𝑟+1)

𝑖,𝑄,𝑝 for which 𝑍1

is contained in ®𝐶. To see why, consider choosing ®𝐶 iteratively. Given the first ℎ − 1 choices,
let’s now consider the ℎ-th choice. If (𝑍1)ℎ is a ★, then there are 𝛿𝑛 choices for the hyperedge
𝐶ℎ ∪ {𝑤ℎ} ∈ 𝐻𝑤ℎ−1 , as we already know 𝑤ℎ−1 (when ℎ = 0, 𝑤−1 B 𝑖 is fixed). Then, there are 3
choices for 𝑤ℎ within this hyperedge. If (𝑍1)ℎ = 𝑢ℎ ≠ ★, then, there is a unique hyperedge in 𝐻𝑤ℎ−1

containing 𝑢ℎ . This hyperedge has two other vertices that could be chosen as 𝑤ℎ . Hence, we have
2|𝑍1 |(3𝛿𝑛)𝑟+1−|𝑍1 | choices in total. Observe that once we have chosen ®𝐶, we also know the index
(𝑄, 𝑝) of the partition in the refinement that ®𝐶 comes from.

Next, let’s count the number of partial tuples 𝑈 = (𝑢0, . . . , 𝑢𝑟) that we can produce from this ®𝐶.
For each non-★ entry of 𝑍1, we know 𝑢ℎ = (𝑍1)ℎ . For each ℎ where (𝑍1)ℎ = ★, if ℎ ∈ {0, . . . , 𝑟 − 𝑡},
then we only know 𝑢 ∈ 𝐶ℎ , which gives us |𝐶ℎ | = 2 choices for 𝑢ℎ . If ℎ ∈ {𝑟 − 𝑡 + 1, . . . , 𝑟}, then
we know that 𝑢ℎ must equal 𝐶ℎ \𝑄ℎ−(𝑟−𝑡) – a unique choice. We thus pay an additional 2𝑟+1−𝑡−|𝑍′1 | ,
where 𝑍′1 is the partial tuple ((𝑍1)0, . . . , (𝑍1)𝑟−𝑡), to determine (𝑢0, . . . , 𝑢𝑟).

We now have two cases.

(1) Case 1: 𝑍2 has no★ entries, i.e., |𝑍2 | = 𝑟+1− 𝑡. This implies that (𝑣0, . . . , 𝑣𝑟−𝑡) = ((𝑍2)0, . . . , (𝑍2)𝑟−𝑡),
and so we have uniquely determined 𝑈 . By an argument similar to above, we also have at most
2𝑟+1 choices for ®𝐶′ ∈ ℋ (𝑟+1)

𝑗,𝑄,𝑝 (recall that we already know 𝑄, which determines 𝑣𝑟+1−𝑡 , . . . , 𝑣𝑟 up

to 2𝑡 choices). Hence, we have argued in this case that deg𝑖,𝑗(𝑍) ≤ 22𝑟+2(3𝛿𝑛)𝑟+1−|𝑍1 | , where we
use that |𝑍1 | ≤ 𝑡 + |𝑍′1 |.
It then follows that

𝜇𝑍 = 𝑝2𝑟+2−|𝑍 | deg𝑖,𝑗(𝑍) ≤ 𝑝2𝑟+2−𝑡−(𝑟+1−𝑡)−|𝑍1 |22𝑟+2(3𝛿𝑛)𝑟+1−|𝑍1 |

≤ (1+ 𝛽)2𝑟+2 · (ℓ/𝑛)𝑟+1−|𝑍1 |22𝑟+2(3𝛿𝑛)𝑟+1−|𝑍1 |

≤
(
1+ 1

4𝑟

)4𝑟

22𝑟+2(3𝛿ℓ )𝑟+1−|𝑍1 |

≤ 3 · 22𝑟+2 · (3𝛿ℓ )𝑟+1−|𝑍1 | .

Now, we observe that since 𝜇 = 3 · 22𝑟+2−2𝑡 ℓ
𝑛 (3𝛿ℓ )2𝑟+1−𝑡𝑑𝑡 and 𝑑 = 3𝛿ℓ𝛾, we have that

𝜇𝑍

𝛾 |𝑍 |𝜇
=

3 · 22𝑟+2 · (3𝛿ℓ )𝑟+1−|𝑍1 |

𝛾 |𝑍1 |+𝑟+1−𝑡 · 3 · 22𝑟+2−2𝑡 ℓ
𝑛 (3𝛿ℓ )2𝑟+1−𝑡𝑑𝑡

=
22𝑡𝑛

𝛾 |𝑍1 |+𝑟+1 · ℓ (3𝛿ℓ )𝑟+|𝑍1 |

≤ 22(𝑟+1)𝑛

𝛾 |𝑍1 |+𝑟+1 · (3𝛿ℓ )𝑟+1+|𝑍1 |
≤ 1 ,
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provided that 3𝛿ℓ ≥ 1 and (3𝛿ℓ𝛾/4)𝑟+1 ≥ 𝑛, which hold by Item 3 of the parameter assumptions.

(2) Case 2: 𝑍2 has at least one ★ entry. In this case, let us write 𝑍2 = (𝑍′2,★,𝑍′′2 ), where 𝑍′′2 does not
contain any ★. Note that 𝑍′′2 may be empty, i.e., have length 0.

We observe that there are at most 2|𝑍
′
2 |(3𝛿𝑛)𝑟+1−𝑡−(|𝑍′′2 |+1)−|𝑍′2 | choices for the partial chain

(𝑗, 𝐶′0,𝑤0, . . . , 𝐶′
ℎ′ ,𝑤

′
ℎ′)where ℎ′ = 𝑟 − 𝑡 − (|𝑍′′2 | + 1) (i.e., the number of entries in 𝑍′2). As in Case

1, we argue inductively and consider the step when we have chosen 𝑗,𝐶′0,𝑤0, . . . ,𝐶′
ℎ
,𝑤′

ℎ
for

some 0 ≤ ℎ < ℎ′. If (𝑍′2)ℎ = ★, then, there are 𝛿𝑛 choices for choosing the next hyperedge and 3
choices for deciding the 𝑤′

ℎ+1 within it giving a total of 3𝛿𝑛 choices. If (𝑍′2)ℎ ≠ ★, then there is
at most one hyperedge (so no choice to be made) in 𝐻𝑤′

ℎ
that could appear as the next link and,

given the hyperedge, there are 2 choices for the 𝑤′
ℎ+1.

Given the first ℎ′ links in the partial chain, we have at most 2𝑟+1−𝑡−(|𝑍′′2 |+1)−|𝑍′2 | choices for the
partial tuple (𝑣0, . . . , 𝑣ℎ′). So in total, we have 2𝑟+1−𝑡−(|𝑍′′2 |+1)(3𝛿𝑛)𝑟+1−𝑡−(|𝑍′′2 |+1)−|𝑍′2 | choices for
the partial chain (𝑗,𝐶′0,𝑤0, . . . ,𝐶′

ℎ′,𝑤
′
ℎ′) and the partial tuple (𝑣0, . . . , 𝑣ℎ′).

To count the number of ways to complete the chain, we break our analysis into two subcases.

(a) Subcase 1: 𝑍′′2 is empty, and so |𝑍2 | = |𝑍′2 |. In this case, ℎ′ = 𝑟 − 𝑡 − 1. Since we have already
chosen (𝑄, 𝑝), the number of different choices for the partial chain (𝑤′𝑟−𝑡 , 𝐶′𝑟−𝑡+1,𝑤′

𝑟−𝑡+1, . . . , 𝐶′𝑟 ,𝑤′𝑟)
must be at most 𝑑𝑡 , by Item (4) in Definition 6.1 with 𝑄′ = 𝑄. Given this choice, 𝑤′𝑟−𝑡 is
fixed so there is at most one choice for a hyperedge in 𝐻𝑤′

𝑟−𝑡−1
that contains 𝑤′𝑟−𝑡 and given

that choice, there are two possible ways to choose 𝑣𝑟−𝑡 . In total, we have made at most 2𝑑𝑡

choices.

In the case that 𝑡 = 0, the partial chain is the “0-chain” given by 𝑄𝑟+1 = 𝑤′𝑟 , and as we have
𝑤′𝑟 = 𝑄𝑟+1 = 𝑤𝑟 , this gives a unique choice for the “chain”, i.e., 𝑑0 = 1 choices.

(b) Subcase 2: 𝑍′′2 is nonempty. We observe that for ℎ′ = 𝑟 − 𝑡 − (|𝑍′′2 | + 1), the partial chain

(𝑤′
ℎ+1,𝐶′

ℎ′+2,𝑤′
ℎ′+2, . . . ,𝐶′𝑟 ,𝑤′𝑟)must contain the complete tuple 𝑍′′2 ∥𝑄

(𝑡)
𝑧 , where ·∥· denotes

concatenation. Thus, by 𝑑-regularity, there are at most 𝑑𝑡+|𝑍
′′
2 | choices of such tuples. Given

the choice of this partial chain, there are 2𝑟−𝑡−ℎ
′

choices for (𝑣ℎ′+1, . . . , 𝑣𝑟−𝑡). Hence, in total
we have made 2|𝑍

′′
2 |+1𝑑𝑡+|𝑍

′′
2 | choices.

We note that in either subcase, we make at most 2|𝑍
′′
2 |+1𝑑𝑡+|𝑍

′′
2 | choices to pick ®𝐶′ ∈ ℋ (𝑟+1)

𝑗,𝑄,𝑝 and

(𝑣ℎ′+1, . . . , 𝑣𝑟−𝑡), where we can have |𝑍′′2 | = 0. Thus, the total number of choices of ®𝐶′ and
(𝑣0, . . . , 𝑣𝑟−1) is at most

2𝑟+1−𝑡−(|𝑍′′2 |+1)(3𝛿𝑛)𝑟+1−𝑡−(|𝑍′′2 |+1)−|𝑍′2 |2|𝑍
′′
2 |+1𝑑𝑡+|𝑍

′′
2 | = 2𝑟+1−𝑡(3𝛿𝑛)𝑟−𝑡−|𝑍2 | · 𝑑𝑡+|𝑍′′2 | ,

and thus, the total number of triples (𝑈 , ®𝐶, ®𝐶′) that contribute to deg𝑖,𝑗(𝑍) is at most

2𝑟+1−𝑡−|𝑍′1 |+|𝑍1 |(3𝛿𝑛)𝑟+1−|𝑍1 |2𝑟+1−𝑡(3𝛿𝑛)𝑟−𝑡−|𝑍2 | · 𝑑𝑡+|𝑍′′2 |.
Thus,

𝜇𝑍 ≤ 𝑝2𝑟+2−𝑡−|𝑍1 |−|𝑍2 |2𝑟+1−𝑡−|𝑍′1 |+|𝑍1 |(3𝛿𝑛)𝑟+1−|𝑍1 |2𝑟+1−𝑡(3𝛿𝑛)𝑟−𝑡−|𝑍2 | · 𝑑𝑡+|𝑍′′2 |
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≤ (1+ 𝛽)2𝑟+222𝑟+2−2𝑡+|𝑍1 |(ℓ/𝑛)2𝑟+2−𝑡−|𝑍1 |−|𝑍2 |(3𝛿𝑛)2𝑟+1−𝑡−|𝑍1 |−|𝑍2 | · 𝑑𝑡+|𝑍′′2 |

≤ (1+ 𝛽)2𝑟+222𝑟+2−2𝑡+|𝑍1 |(ℓ/𝑛)(3𝛿ℓ )2𝑟+1−𝑡−|𝑍1 |−|𝑍2 | · 𝑑𝑡+|𝑍′′2 |

≤ 𝜇
1
3
(1+ 𝛽)2𝑟+22|𝑍1 |(3𝛿ℓ )−|𝑍1 |−|𝑍2 | · 𝑑 |𝑍′′2 |

≤ 𝜇

(
2

3𝛿ℓ

) |𝑍1 |
(3𝛿ℓ )−|𝑍′2 |

(
𝑑

3𝛿ℓ

) |𝑍′′2 |
≤ 𝜇

(
2

3𝛿ℓ

) |𝑍1 |
(3𝛿ℓ )−|𝑍′2 |𝛾 |𝑍′′2 | ,

using that (1+ 𝛽)2𝑟+2 ≤ 3 and 𝑑 = 3𝛾𝛿ℓ . We thus have

𝜇𝑍 ≤ 𝜇max{ 2
3𝛿ℓ

, 𝛾} |𝑍 | ≤ 𝛾 |𝑍 |𝜇 ,

where we use Item 2 in the parameter assumptions.

This finishes the proof of Claim 8.5. □

9 Discussion

We conclude with some remarks on the proof of Theorem 1, possible strengthenings, and extensions.

(1) Non-linear codes. The lower bound in Theorem 1 applies only to linear codes. However,
we note that we only use linearity of the code to argue a lower bound on val(Φ𝑏), the XOR
instance polynomial for (𝑟 + 1)-chains. For the natural XOR instances (i.e., when 𝑟 = 0), a
lower bound on val(Φ𝑏) easily follows even for non-linear codes. This is the reason why the
3-LDC lower bounds in [AGKM23] apply to non-linear codes. The issue (that nevertheless
appears surmountable) that prevents us from obtaining a similar lower bound on val(Φ𝑏) for
XOR instances with chains of length > 1 is the following: for non-linear codes, we are only
guaranteed that each constraint is satisfied for a non-trivial constant fraction of codewords.
That is, E𝑥←ℒ[𝑥𝐶𝑥𝑢] ≥ 𝜀 for some constant 𝜀 > 0 (for linear codes, we instead obtain 𝑥𝐶𝑥𝑢 = 1
for all 𝑥 ∈ ℒ). In particular, it is not clear that E𝑏[Φ𝑏(ℒ(𝑏))] is non-trivially lower-bounded.

(2) LCCs with more queries. While our approach can likely improve the lower bounds (beyond
those known for LDCs) even for 𝑞 > 3, the improvements based on natural generalizations
of our approach are likely to only yield a polynomial factor improvement. Our explanation
is rooted in the heuristic calculation based on the density of the Kikuchi matrices explained
earlier in Section 3.2. For larger 𝑞, the number of length (𝑟 + 1)-chains with head 𝑖 ∈ [𝑘]
is still 𝑘(3𝛿𝑛)𝑟+1. The arity of the derived constraints, however, is now (𝑞 − 1)(𝑟 + 1) + 1.
This means that the density (i.e., average degree of the natural Kikuchi matrix) at level ℓ is

(3𝛿𝑛)𝑟+1(ℓ/𝑛)
(𝑞−1)(𝑟+1)+1

2 →
(
𝑛(ℓ/𝑛)

𝑞−1
2

) 𝑟+1
for large 𝑟. Thus, the optimal ℓ turns out to be 𝑛

1− 2
𝑞−1 ,

and so we can only hope to achieve a lower bound of 𝑘 ≤ �̃�(𝑛1− 2
𝑞−1 ). This nevertheless would
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yield an improvement on the current best-known lower bound of 𝑘 ≤ �̃�(𝑛1− 2
𝑞 ), inherited from

𝑞-LDCs, by a polynomial factor via long chains.

(3) Optimality of Reed–Muller codes? Our main result Theorem 1 comes close to showing that
Reed–Muller codes, which achieve a blocklength of 𝑛 = 2𝑂(

√
𝑘), are optimal linear 3-LCCs

— a longstanding goal in understanding LCCs. Closing the gap between our result and the
blocklength of Reed–Muller codes relates to optimizing the polylog(𝑛) factors in our analysis.
Let us now explain each of the log 𝑛 factors that we “lose” with an eye for the losses that appear
naturally surmountable and ones that appear rather inherent.

First, we note that we must take the chain length 𝑟 to be ≥ 𝑂(log 𝑛) and ℓ ≥ 1/𝛿 for the
heuristic calculation in Section 3.2 to work. Second, we note that the application of matrix
Khintchine (Fact 2.8) loses a

√
log 𝑁 =

√
ℓ 𝑟 log 𝑛 factor. Thus, in the ideal case, our method

could potentially yield that 𝑘 ≤ 𝑂(log 𝑁)where ℓ ∼ 1/𝛿 and 𝑟 = 𝑂(log 𝑛). This would yield a
bound of 𝑘 ≤ 𝑂(log2 𝑛), or in other words 𝑛 ≥ 2Ω(

√
𝑘), matching the blocklength of Reed–Muller

codes up to constant factors in the exponent.

However, our argument currently loses additional log 𝑛 factors that appear improvable. First,
the hypergraph decomposition step loses a factor of 𝑟 in the “density” because we need to refute
at least one of the ∼ 𝑟 subinstances produced each of which may only have 1/(𝑟 + 1)-fraction of
all the (𝑟 + 1)-chains. This loses us 𝑂(𝑟2) factor in the density once we use the Cauchy–Schwarz
trick. Second, we cannot take ℓ to be as small as 1/𝛿, i.e., a constant. Currently, we need to take
ℓ ≥ 𝑂(log4 𝑛) for the tail bounds used in the proof of Lemma 7.4 to be effective.

These additional log 𝑛 factors that we lose not appear to be inherent to our approach. To save
these losses would require a sharper chain decomposition method (that does not lose a factor
𝑟 in the density) and a sharper concentration bound than Lemma 2.9. While these appear
technically challenging, it does look plausible that one remove these additional log 𝑛 factors
and obtain a lower bound that matches the blocklength of Reed–Muller codes up to absolute
constant factors in the exponent.
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A Linear 3-LCC Lower Bounds over Larger Fields

In this section, we prove Theorem 1 in the case where the finite field F is not F2. The proof will be
nearly identical to the proof in Sections 5 to 8 for the case of F = F2, and so we shall only give a
proof sketch and mainly focus on the parts of the proof where modifications are required.

To begin, we recall that by Fact 2.4, there exist 3-uniform hypergraph matchings 𝐻1, . . . ,𝐻𝑛 ,
each of size at least 𝛿𝑛, such that for each 𝑢 ∈ [𝑛] and 𝐶 = {𝑣1, 𝑣2, 𝑣3} ∈ 𝐻𝑢 , there exists 𝛼1, 𝛼2, 𝛼3 ∈
F \ {0} such that for every 𝑥 ∈ ℒ, it holds that 𝛼1𝑥𝑣1 + 𝛼2𝑥𝑣2 + 𝛼3𝑥𝑣3 = 𝑥𝑢 . Furthermore, without
loss of generality we can assume that the code is systematic, i.e., for any 𝑏 ∈ F𝑘 , 𝑥 = ℒ(𝑏) satisfies
𝑥𝑖 = 𝑏𝑖 for all 𝑖 ∈ [𝑘].

Next, let us define a code ℒ′ : {−1, 1}𝑘 → {−1, 1}𝑛(|F|−1) where, for each 𝑢 ∈ [𝑛] and 𝛼 ∈ F \ {0},
we set ℒ′(𝑏)(𝑢,𝛼) = 𝛼ℒ(𝑏)𝑢 . Let 𝑛′ = 𝑛(|F| − 1), and associate [𝑛′] with the set [𝑛] × (F \ {0}). We
now observe that ℒ′ is a 3-LCC in normal form with the additional property that the coefficients
of all constraints can be taken to be 1 without loss of generality. Formally, there exist 3-uniform
hypergraph matchings 𝐻1, . . . ,𝐻𝑛′ such that (1) each 𝐻𝑢 has |𝐻𝑢 | ≥ 𝛿𝑛′/(|F| − 1), and (2) for each
𝑢 ∈ [𝑛′] and each 𝐶 = {𝑣1, 𝑣2, 𝑣3} ∈ 𝐻(𝑢,𝛼), every 𝑥 ∈ ℒ satisfies 𝑥𝑢 = 𝑥𝑣1 + 𝑥𝑣2 + 𝑥𝑣3 .

Moreover, there is now a group action of (F \ {0},×) on the elements of [𝑛′], namely for any
𝛼 ∈ F \ {0}, this action maps 𝑢 ↦→ 𝛼𝑢. We note that this action respects the constraints. Namely, for
𝐶 = {𝑣1, 𝑣2, 𝑣3} ∈

([𝑛′]
3

)
, if we define 𝛼𝐶 = {𝛼𝑣1, 𝛼𝑣2, 𝛼𝑣3}, then we have that 𝐻𝛼𝑢 = 𝛼𝐻𝑢 = {𝛼𝐶 :

𝐶 ∈ 𝐻𝑢}. For the proof, we will be using the fact that there is a negation action for 𝛼 = −1; this is
because this transformation has made all coefficients in the constraints be equal to 1, so to cancel a
variable 𝑥𝑢 we shall only need 𝑥−𝑢 .

We shall now abuse notation and redefine 𝑛′ to be 𝑛, and we now simply assume that we have
this group action on [𝑛]. We have thus added this additional property to the code, and in doing so
we have only decreased 𝛿 by a factor of |F| − 1.

We now turn to the main part of the proof. Following Section 5, we define 𝑡-chains. The
definition of 𝑡-chains now requires a small modification because in the original definition we
formed longer chains by canceling a variable 𝑥𝑤 via the operation 𝑥𝑤 + 𝑥𝑤 = 0, which was specific
to the field F2. Now, we use the negation action on [𝑛] to cancel a variable.

Definition A.1 (𝑡-chain hypergraphℋ (𝑡)). Let 𝑡 ≥ 1 be an integer. For any 𝑢 ∈ [𝑛], letℋ (𝑡)𝑢 denote
the set of tuples of the form (𝑢,𝐶1,𝑤1,𝐶2,𝑤2, . . . ,𝐶𝑡 ,𝑤𝑡), where each 𝐶ℎ ∈

([𝑛]
2

)
, 𝑤ℎ ∈ [𝑛], and it

holds that for all 1 ≤ ℎ ≤ 𝑡, 𝐶ℎ ∪ {𝑤ℎ} ∈ 𝐻−𝑤ℎ−1 where we set 𝑤0 B 𝑢.
Given any 𝑡-chain (𝑢,𝐶1,𝑤1,𝐶2,𝑤2, . . . ,𝐶𝑡 ,𝑤𝑡), we let the negation of the chain, denoted by

−(𝑢,𝐶1,𝑤1,𝐶2,𝑤2, . . . ,𝐶𝑡 ,𝑤𝑡), be the chain (−𝑢,−𝐶1,−𝑤1,−𝐶2,−𝑤2, . . . ,−𝐶𝑡 ,−𝑤𝑡).
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As before, we note that the linear equation defined by a 𝑡-chain or its negation is satisfied by
any 𝑥 ∈ ℒ.

In Section 5, we defined an instance polynomial Φ𝑏 related to the system of linear constraints.
This was natural over F2 as there is a group isomorphism between (F2,+) and {−1, 1} ∈ (R,×).
Here, we can make a similar definition by using a nontrivial group homomorphism 𝜋 from (F,+) to
(C,×)where the image of 𝜋 is contained in the unit circle {𝑧 ∈ C : |𝑧 | = 1}. However, the instance
polynomial Φ𝑏 (and the “decomposed polynomials” Ψ𝑖,𝑄,𝑝 defined later) were only formally needed
to discuss sets of linear constraints that are satisfied by the subspace ℒ. Thus, to avoid using the
group homomorphism 𝜋, here we shall simply use these polynomials to refer to the underlying
sets of constraints.

We now perform the hypergraph decomposition step as in Section 6, which is unchanged (once
we use the updated definition of chain).13 This produces the subinstances Ψ(𝑡)(𝑥, 𝑦), as before.

We now finish the proof following Section 7.6 in Section 7. We let 𝑡 denote the value 0 ≤ 𝑡 ≤ 𝑟

such that Ψ(𝑡) contains at least 𝑘(3𝛿𝑛)𝑟+1/(𝑟 + 1) constraints. Applying the Cauchy–Schwarz trick,
we then have that there exists a maximum directed matching 𝑀 on [𝑘] such that

1
2𝑘 |𝑃𝑡 |

(
𝑘(3𝛿𝑛)𝑟+1

𝑟 + 1

)2

− |𝑃𝑡 |
2

(
(3𝛿𝑛)𝑟−𝑡𝑑𝑡

)2

is a lower bound on number of constraints in the system of linear equations given by:

𝑏𝑖 − 𝑏 𝑗 =
𝑟−𝑡∑
ℎ=0

𝑥𝐶ℎ
+

𝑡∑
ℎ=1

𝑥𝐶𝑟−𝑡+ℎ\𝑄ℎ
+

𝑟−𝑡∑
ℎ=0

𝑥−𝐶′
ℎ
+

𝑡∑
ℎ=1

𝑥−𝐶′
𝑟−𝑡+ℎ\−𝑄ℎ

for every (𝑄, 𝑝) ∈ 𝑃𝑡 , (𝑖, 𝐶0,𝑤0, 𝐶1,𝑤1, 𝐶2,𝑤2, . . . , 𝐶𝑟 ,𝑤𝑟) ∈ ℋ (𝑟)𝑖,𝑄,𝑝 , (𝑗, 𝐶′0,𝑤′0, 𝐶′1,𝑤′1, 𝐶′2,𝑤′2, . . . , 𝐶′𝑟 ,𝑤′𝑟) ∈
ℋ (𝑟)

𝑗,𝑄,𝑝 . Here, we let 𝑥𝐶ℎ
B

∑
𝑣∈𝐶ℎ

𝑥𝑣 .
As before, the definition of the Kikuchi matrices Definition 7.2 is nearly identical: we merely

swap 𝑏 𝑗 with −𝑏 𝑗 . Because of this, the key technical part of the argument, namely the row pruning
step Lemma 7.4, holds without any changes.

Now, we define the code ℒ′ : F𝑘 → F2𝑁 identically as before. We let 𝐿 = {𝑖 : (𝑖, 𝑗) ∈ 𝑀} denote
the “left halves” of the edges in the matching 𝑀, and we define ℒ′ : F𝐿 → F2𝑁 to be the same map
as before; we simply replace sums with products, as we have not used the homomorphism 𝜋 to
embed F into C. Namely, for 𝑥′ = ℒ′(𝑏), the ®𝑆-th entry of 𝑥′ is 𝑥′®𝑆

=
∑𝑟−𝑡

ℎ=0(𝑥𝑆ℎ
+ 𝑥𝑆′

ℎ
) +∑𝑡

ℎ=1 𝑥𝑅ℎ
, and

similarly for the ®𝑇-th entry, where 𝑥 = ℒ(𝑏).
Now, the same calculation as before shows that ℒ′ is a (2, 𝛿)-LDC for 𝛿′ = Ω(𝛿/𝑟2) provided

that 𝛿2𝑘 ≤ 𝑂(log2 𝑛). Namely, there are matchings 𝐺′′
𝑖,𝑗 on [2𝑁] such that (1) for any ( ®𝑆, ®𝑇) ∈ 𝐸(𝐺′′

𝑖,𝑗),

13We note that the naive application of the decomposition step will produce partitions ℋ (𝑟)
𝑄,𝑝 where ℋ (𝑟)−𝑄,𝑝 is not

necessarily equal to −ℋ (𝑟)
𝑄,𝑝 . This turns out to not matter in the proof; as it turns out, we merely need that both

decompositions ∪𝑄,𝑝 −ℋ (𝑟)𝑄,𝑝 and ∪𝑄,𝑝ℋ (𝑟)𝑄,𝑝 are both contiguously regular partitions ofℋ (𝑟), which obviously holds.
Nonetheless, we note that one could also easily modify the decomposition step to respect this negation action.
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it holds that 𝑥′®𝑆
− 𝑥′®𝑇

= 𝑏𝑖 − 𝑏 𝑗 = 𝑏𝑖 (as 𝑏 𝑗 = 0 for 𝑗 ∉ 𝐿), and (2) 1
𝑘′

∑
(𝑖,𝑗)∈𝑀 |𝐸(𝐺′′𝑖,𝑗)| ≥ 𝛿′ · 2𝑁 , where

𝑘′ = |𝐿| ≥ 𝑘−1
2 .

As before, we now apply Fact 2.5. It follows that

𝑂(ℓ 𝑟 log 𝑛) ≥ 2 log2 𝑁 ≥ 𝛿′𝑘 ≥ Ω(𝛿𝑘/𝑟2)
=⇒ 𝑘 ≤ 𝑂(ℓ 𝑟3 log 𝑛/𝛿) ≤ 𝑂(log8 𝑛/𝛿2) .

Recall now that we had redefined 𝑛 to be 𝑛(|F| − 1) and 𝛿 to be 𝛿 = 𝛿/(|F| − 1). Thus, we have
that for the original code, 𝑘𝛿2

(|F|−1)2 ≤ 𝑂(log8 𝑛) provided that |F| ≤ 𝑛. Note that if |F| ≥ 𝑘, then
Theorem 1 becomes trivial, and so we can assume that |F| ≤ 𝑘 ≤ 𝑛 (as we always have 𝑘 ≤ 𝑛).
Finally, we note that we have assumed (when we substitute back the original values of 𝛿 and 𝑛)
that 𝛿2𝑘

(|F|−1)2 ≤ 𝑂(log2(𝑛 |F|)), which implies that 𝛿2𝑘
(|F|−1)2 ≤ 𝑂(log2 𝑛), as we may again assume that

|F| ≤ 𝑛. This is a stronger lower bound than Theorem 1, and so this finishes the proof of Theorem 1
for larger fields.
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