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Abstract

Set-disjointness is one of the most fundamental and widely studied problems in the area of
communication complexity. In this problem, each party i receives a set Si ⊆ [N ]. The goal is
to determine whether

⋂
Si is empty via communication between players. The decision version

simply asks if the common intersection is empty or not, while the search version asks players to
find an element a ∈

⋂
Si if it exists. Both versions give wide applications in diverse areas.

In this paper, we focus on the communication complexity of the search version under
product distributions in the number-in-hand (NIH) model. For the decision version, Babai,
Frankl, and Simon (FOCS 86) proposed an Ω(

√
N) lower bound under product distributions

for the two-party setting, and was extended to k-party setting Ω(N1−1/k/k2) by Dershowitz,
Oshman, and Roth (STOC 21).

For the search version, though it is well-motivated by several applications, lower bounds
were less known due to some technical obstacles. In this paper, we study the following natural
problem, which was further motivated by Bauer, Farshim, and Mazaheri (CRYPTO 18) from
cryptography motivations: there are k players, and each of them receives a (random) set of size
≈ N1−αi ; the goal is to find a common element. We prove that:

• If each party holds a random set of size ≈ N1−αi , the communication complexity lower
bound is Ω(N

∑
i αi−maxi{αi}/k).

Furthermore, we show that our lower bounds are indeed almost tight, up to logarithmic factors.
Building on this lower bound, we give several applications. The first one involves improved
results for the security of several combiners in backdoored random oracles (BRO). The second
one is an application in distributed computing via connections established by Huang, Pettie,
Zhang, and Zhang (SODA 20).

Our proof is built on a structure-vs-pseudorandomness decomposition inspired by Göös,
Pitassi and Watson (FOCS 17), and this technique could be of independent interest since it
enables a new method to prove communication lower bounds for search problems with many
possible solutions. To the best of our knowledge, existing lower-bound techniques do not apply
to this setting.

*Shanghai Jiao Tong University.
†University of Southern California. Research supported by NSF CAREER award 2141536.
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1 Introduction

The number-in-hand set-disjointness problem lies in the heart of communication complexity, whose
lower bounds have wide applications in streaming algorithms, data structures, circuit complex-
ity, and related fields (see [CP10, She14] for details). In the setting of k-party number-in-hand
set-disjointness problem, each player i is assigned with a subset Si of [N ], and the goal of this
communication problem is to determine if

⋂k
i=1 Si = ∅.

In this paper, we consider the search version of the set-disjointness problem, which is called the
set-intersection problem. The setting is: each player i is assigned with a subset Si of [N ], and the
goal changes to finding an element a ∈

⋂k
i=1 Si.

We consider the communication complexity under product distribution here, and there are
two typical product distributions that have been widely studied before. One is the fixed-size product
distribution, where each player i receives a uniformly random subset Si ⊆ [N ] with |Si| = ni. The
other one is the Bernoulli product distribution, where each player i receives a random set Si sampled
as follows: for each element a ∈ [N ], a ∈ Si independently with probability mi. Babai, Frankl, and
Simon [BFS86] first proposed the communication complexity of the set-disjointness problem under
fixed-size product distribution where ni =

√
N , and gave an Ω(

√
N) lower bound. Their proof

could also be adapted to the setting of Bernoulli product distribution with mi = N−1/2. Recently,
this bound was extended to the k-party setting by a recent paper by Dershowitz, Oshman, and
Roth [DOR21]. They showed that when k ≤ logN/6, the communication complexity under the
Bernoulli product distribution, wheremi = N−1/k, isΩ(N1−1/k/k2). Both of these decision-version
lower bounds gave various applications.

In the context of the set-intersection (the search version), lower bounds are less known, though
it also provides many applications. One of the main obstacles here is that the size of intersections
could be very large, i.e., players only need to find one common element from many possible choices.
To the best of our knowledge, many existing methods fail to bypass this barrier. To this end, we
now state our main result.

Our results. We consider the same setting as [DOR21]. The difference is that they assumed all
players have a similar size set (≈ N1−1/k), while we allow the sizes to be asymmetric and also
consider a larger range of parameters where the size of intersections could be very large and the
set-disjointness problem is easy since the ksets are not disjoint with high probability. Concretely,
we assume that each player holds a (random) set Si of size |Si| ≈ N1−αi with

∑
i αi ≤ 1, and prove

the following results for set-intersection.

Theorem 1.1. For the k-party set-intersection problem under Bernoulli product distribution, where mi =
N−αi ,

∑
i αi ≤ 1 and k ≤ 0.1 ·min{Nmini{αi}/2, N (1−maxi{αi})/3}1:

1. the communication complexity lower bound is Ω(N
∑

i αi−maxi{αi}/k) to achieve a constant accuracy;

2. there exists a protocol that solves this problem under the distribution mentioned above with a constant
accuracy and uses O(k log n ·N

∑
i αi−maxi{αi}) communication cost.

Our main theorem suggests that Θ̃(N
∑

i αi−maxi{αi}) is a tight bound up to logarithmic factors
when k = o(logN). Notice that our bound does not apply to the case k ≥ Ω(logN) since the

1We assume all the distributions considered in this paper satisfy this constraint.
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requirement k ≤ 0.1Nmini{αi}/2 does not hold for large k. Our bound is similar to [DOR21] when
α1 = · · · = αk = 1/k, where they prove an lower bound of Ω(N1−1/k/k2) for k ≤ logN/6.

1.1 Applications

It is well-known that set-disjointness is a fundamental problem in communication complexity with
wide applications in many areas. Also, our results, lower bounds for the set-intersection problem,
have applications in different areas. We mainly discuss the applications in two areas.

Applications in cryptography. Collision-resistant Hash functions (CRHFs) are a very important
primitive in cryptography. A CRHF is a function h : {0, 1}n → {0, 1}m with m < n. It usually
hopes that m is much smaller than n (the smaller, the better). Hence, there are many collision
pairs in the function h. On the other hand, the security part of CRHFs would like to promise that
adversaries with bounded computational power can not find such collision pairs.

We expect that our lower bounds could give applications in the analysis of CRHFs. A concrete
example could be the applications given by Bauer, Farshim, and Mazaheri [BFM18]. This paper con-
sidered the communication complexity for the two-party set-intersection problem under Bernoulli
product distribution. The main technical lemma in their paper showed an Ω(Nmin{α1,α2}+α1+α2−1)
lower bound for α1 + α2 ≤ 1, where each player i receives a random set with size ≈ N1−αi .

Building on this lower bound, [BFM18] proved one-way security for combiners in 2-BRO
models. However, their lower bound only showed hardness when 2α1 +α2 ≥ 1 and α1 +2α2 ≥ 1,
and was hard to extend to k-party settings limited by their techniques. They further conjectured
that:

1. The lower bound could be further improved.

2. A similar result also holds for k-party settings, which implies one-way security for combiners
in k-BRO models.

Once this conjecture has been proved, their results for one-way security for combiners can be
automatically improved. In this paper, we address both of them. In the two-player setting, we
improve the lower bound from Ω(Nmin{α1,α2}+α1+α2−1) as it shown in [BFM18] to Ω(Nmin{α1,α2}),
i.e., we remove the extra (1 − α1 − α2) term. For a larger gap of (1 − α1 − α2), our improvement
becomes more significant. Notice that N1−α1−α2 is exactly the expected size of |S1∩S2|, indicating
that our improvement is more significant for larger intersections. We also remove the constraints
of 2α1 + α2 ≥ 1 and α1 + 2α2 ≥ 1. Moreover, our result applies for the k-party setting and is tight
up to logarithmic factors.

By the reductions established in [BFM18], our result directly gives the following improvements
in cryptography:

1. improved one-way security for three combiners in the BRO model, including concatenation
combiners, cascade combiners, and xor combiners;

2. generalization of previous results from the 2-BRO model to the k-BRO model.

3



Applications in distributed computing: Connections between distributed computing and com-
munication complexity have also been widely studied. However, as Drucker, Kuhn, and Oshman
[DKO12] pointed out:

Importing problems from the distributed computing world into the communication complexity model
raises issues that are not often considered in existing communication complexity lower bounds: search
problems, where players are allowed to choose one of many possible outputs; partial knowledge, where each
player needs to output only part of the answer; and unicast communication cost.

Hence, in order to further study the connections between distributed computing and commu-
nication complexity, techniques to prove communication lower bounds in new settings are needed.
This echoes the cryptography applications in which lower-bound techniques for search problems
with many solutions are sought.

We now give a concrete application of our main theorem (Theorem 1.1). A nice paper by
Huang, Pettie, Zhang, and Zhang [HPZZ21] studied a similar (two-party) set-intersection problem.
However, in their setting, Alice and Bob are asked to find the whole set S1 ∩ S2 (enumerating all
solutions is somehow similar to decision problems). They observed this set-intersection enumeration
problem is equivalent to the (local) triangle enumeration problem in the CONGEST networks.
Building on their lower bounds on set-intersection enumeration lower bounds, they proved a lower
bound for triangle enumeration in the CONGEST networks. By using the same reduction as in
[HPZZ21], our main theorem (Theorem 1.1) implies a lower bound for explicitly finding one triangle
in the CONGEST networks. For more backgrounds and motivations about triangle detection and
enumeration, we refer to the papers by Dolev, Lenzen, and Peled [DLP12] and Izumi and Le Gall
[ILG17].

Further potential applications. Inspired by lifting theorems from communication complexity,
Coretti, Dodis, Guo, and Steinberger [CDGS18] employed a pre-sampling technique to prove a
number of positive results in the random oracle model. The main idea of this pre-sampling
technique is to decompose a high-entropy source into many structured distributions (they called it
bit-fixing source). Despite many successes, their deposition still has some limitations. For example,
a more recent paper by Dodis, Farshim, Mazaheri, and Tessaro [DFMT20] studied the security in
the backdoored random oracle model. However, the decomposition method by [CDGS18] can not
solve the question in [DFMT20]. [DFMT20] made the following comment towards this:

In order to overcome the bounded adaptivity restriction and prove full indifferentiability, one would
require an improved decomposition technique which fixes considerably less points after each leakage. This,
at the moment, seems (very) challenging and is left as an open question. In particular, such a result would
simultaneously give new proofs of known communication complexity lower bounds for a host of problems,
such as set-disjointness and intersection, potentially a proof of the conjecturally hard problem stated in [3],
and many others. (We note that improved decomposition techniques can potentially also translate to improved
bounds.)

Since we provide a new decomposition and give an almost tight bound for the set-intersection
problem, we believe that our decomposition is helpful for the applications in [CDGS18]. The main
conceptual difference between our decomposition and pre-sampling is as follows.

• Pre-sampling decomposes a high-entropy source directly.

• We decompose rectangles recursively, i.e., the decomposition of a node in the protocol tree
tracks the decomposition information from its ancestors. (See more details in Section 1.2)
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Overall, our method enables a new approach to prove communication lower bounds for search
problems, even when there are many possible outputs, and it could be applied to the k-party
setting without any barrier.

1.2 Proof outline

In this section, we give a brief introduction to our proof for the lower bound and the idea behind
it. Instead of considering Bernoulli distributions, we consider the following product distribution
to simplify our presentation:

• Each player i independently and uniformly samples cN1−αi elements from [N ] (may have
duplicates), where c equals (1 + 2/k) here.

Thus, each player i receives a vector in [N ]cN
1−αi and gets its set Si ⊆ [N ] by removing the duplicate

elements in the vector. In general, for any I ⊆ [cN1−αi ] and β ∈ [N ]I , we consider β as a subset of
[N ] in a similar way. We prove the lower bound under this distribution, and then reductions are
established in Section 3.3 to prove our main theorem.

It is well known that a deterministic protocol Π partitions the input domain into 2|Π| rectangles
by step-by-step communication. The crucial idea of our proof is to further partition these leaf
rectangles in the protocol tree into many structured rectangles defined below.

Definition 1.2 (Structured rectangles). Assuming R = X1 × X2 × · · · × Xk, where each Xi is a
subset of [N ]cN

1−αi , is a rectangle. We say R is a structured rectangle if there exist subsets of coordinates
J1, J2, · · · , Jk with Ji ⊆ [cN1−αi ] satisfying that

• For each i, there exists a βi ∈ [N ]J
c
i such that ∀xi ∈ Xi, xi(J

c
i ) = βi. Here, Jc

i is the complement of
Ji defined by Jc

i := [cN1−αi ]− Ji and xi(J
c
i ) ∈ [N ]J

c
i is the values of xi on Jc

i .

• For each i, Xi has a high block-wise min-entropy (see definitions in Section 2) on the coordinates Ji.

The notion of structured rectangle has also been widely used in query-to-communication lifting
theorems [GPW17, CFK+19, LMM+22].

In the decomposition, we recursively (starting from the root to the leaves) decompose all
rectangles in the protocol tree, i.e., for a node (which is also a rectangle), we decompose it based on
the decomposition of its ancestors. This is the key step compared to existing decomposition (pre-
sampling techniques) in cryptography, which may lead to new applications. The formal process
of this decomposition is referred to Section 3.

After the decomposition process, each leaf has been partitioned into many structured rectan-
gles. For a structured rectangle R = X1 ×X2 × · · · ×Xk associated with J1, . . . , Jk and βi ∈ [N ]J

c
i

for i ∈ [k], we say that:

1. R is bad if ∩iβi ̸= ∅.

2. R is good if ∩iβi = ∅. We also call good structured rectangles as pseudorandom rectangles.

Then, our proof consists of the following two parts.

• If the communication complexity of Π is small, the total size of bad structured rectangle is
small compared to the size of the input domain (formalized by Lemma 3.2);

5



• On the other hand, we show that players can not find a common intersection from pseudo-
random rectangles (formalized by Lemma 3.3).

Combining the two parts, we are able to prove the main theorem. We refer the detailed proofs
to Section 3.

Comparison to previous proofs. Similar questions have been widely studied in several recent
papers [BFM18, HPZZ21, DOR21, OR23]. All of these papers used standard known techniques in
communication complexity such as information complexity.

These papers achieved tight bounds for set-disjointness (decision version), or set-intersection
enumeration (finding whole intersections). However, all of their bounds for search problems are
sub-optimal whenever the size of the set intersection (the solution space for the search problem) is
large. By contrast, our new method is inspired by lifting theorems [GPW17, CFK+19, LMM+22].
On the other hand, unlike the previous lifting theorems, we do not require the communication
function to have a composed form (with a gadget).

2 Preliminaries

To begin with, we formally define the product distributions adopted in this paper. For fixed
parameters: k is the number of parties, N is the size of the domain, and αi ∈ (0, 1) are param-
eters indicating the size of each player’s set. We consider the following three types of hardness
distributions in this paper (two of them have appeared in Section 1):

1. Each player i independently and uniformly samples cN1−αi elements from [N ] (may have
duplicates), where c equals (1 + 2/k).

2. Each player i independently and uniformly samples ciN
1−αi distinct elements from [N ],

where 1− 1/k ≤ ci ≤ 1 + 1/k.

3. Each player i independently samples its set Si with that every element a ∈ [N ] is contained
in Si with probability N−αi .

We assume that
∑

i αi ≤ 1, otherwise the existence of intersections can be not guaranteed. Fur-
thermore, if

∑
i αi ≤ 1− C holds for some constant C > 0, the common intersection of all players

could be very large (≈ NC).
The hardness distribution 3 is the Bernoulli product distribution with wide applications. Previ-

ous papers have mainly focused on this distribution. We prove the lower bound under distribution
1, and use two simple reductions to get the lower bound results for the hardness distribution 2 and
3. We refer the two reductions to Section 3.3. In what follows, our discussion mainly focuses on
distribution 1.

For a distribution D and a communication protocol Π, we define the accuracy of Π on D by:

AccΠ(D) := Pr
S1,··· ,Sk∼D

[
Π(S1, · · · , Sk) ∈

k⋂
i=1

Si

]
.

For simplicity in notations, we define this accuracy notion, which does not take the cases
when sets are disjoint into consideration, differently from [BFM18] in which they also consider the
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accuracy of distinguishing disjoint cases, namely they define

Acc′Π(D) := Pr
S1,··· ,Sk∼D

[
Π(S1, · · · , Sk) ∈

k⋂
i=1

Si or Π(S1, · · · , Sk) =

k⋂
i=1

Si = ∅
]
.

Since we aim to establish lower bounds for those protocols achieving AccΠ(D) = Ω(1), we only
consider the range of α1, . . . , αk with2

Pr
S1,··· ,Sk∼D

[ k⋂
i=1

Si ̸= ∅
]
> 1/2.

In this paper, our lower bound result shows that achieving AccΠ(D) > ϵ, where epsilon is a
constant less than 1/2, requires large amounts of communication. This also implies a non-trivial
hardness result to achieve Acc′Π(D) > ϵ+ 1/2 since the disjoint cases could contribute at most 1/2

to Acc′Π(D) when PrS1,··· ,Sk∼D

[⋂k
i=1 Si ̸= ∅

]
> 1/2 holds. Hence, our results also imply hardness

results under the [BFM18] setting.
Next, we introduce some useful notions in communication complexity. In a k-party communi-

cation problem, where each party holds an input xi from a domain ∆i, a rectangle is defined by
R := X1 ×X2 × · · · ×Xk (Xi ⊆ ∆i).

For a subset Xi ⊆ ∆i, we denote Xi as the uniform distribution on Xi. In the set-intersection
problem (particularly hard distribution 1), we consider the cases that each input is in ∆i = [N ]Mi

where Mi = cN1−αi , and an instance xi ∈ [N ]Mi can be transformed into a subset of [N ] by
removing duplicate elements. Also, for two instances xi ∈ [N ]Mi , xj ∈ [N ]Mj , we define xi ∩ xj by
the intersection of the two subsets of [N ] deduced from xi and xj .

For a set of coordinates Ji ⊆ [Mi], we use Xi(Ji) to denote marginal distribution of Xi on Ji.
For an instance xi ∈ [N ]Mi and a set of coordinates Ji ⊆ [Mi], define xi(Ji) to be an instance in
[N ]Ji by projecting xi on Ji.

A useful concept adopted in this paper is the dense notion used in lifting theorems [GPW17,
CDGS18, CFK+19, LMM+22].

Definition 2.1 (Min-entropy). For a random variable X taking value on ∆, its min-entropy is defined as
follows:

H∞(X) = min
x∈∆

(
log

1

Pr[X = x]

)
.

Definition 2.2 (Density function). We define the one-side density function for a random variable X on
its support [N ]J as:

D(X) := |J | logN −H∞(X).

Note that D(X) ≥ 0 always holds by definitions and D(X) = 0 when X is a uniform distribution.

Definition 2.3 (k-side density function). For a structured rectangle R = X1 ×X2 × · · · ×Xk, where
each Xi is subset of [N ]Mi and associated with a set Ji ⊆ [Mi], we define its k-side density function as:

D(R) = D
(
X1(J1)

)
+D

(
X2(J2)

)
+ · · ·+D

(
Xk(Jk)

)
.

2PrS1,··· ,Sk∼D

[⋂k
i=1 Si ̸= ∅

]
> 1/2 is guaranteed by the definitions of hardness distribution 3 when

∑
i αi ≤ 1.
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The density function is also known as the entropy deficiency in lifting theorem papers, and we
design the k-side density function in order to extend the two-party results to the k-party setting.

Definition 2.4. A random variable X on [N ]J is called (1− δ)-dense if for every subset I ⊆ [J ],

H∞(X(I)) ≥ (1− δ) · logN · |I|.

The definition of (1− δ)-dense measures the pseudorandomness of a random variable. In our
proof, a typical choice of δ is 1

10k logN 3

The following lemma tells us that a random variable could be decomposed by a combination
of random variables with dense properties by fixing some positions:

Lemma 2.5 (Density-restoring partition [GPW17]). Let X be a subset of [N ]M and J be a subset of [M ],
and there exists an β ∈ NJc such that ∀x ∈ X,x(Jc) = β. Then, there exists a partition of X :

X := X1 ∪X2 ∪ · · · ∪Xr

such that every Xi is associated with a set Ii ⊆ J and a value τi ∈ [N ]Ii . Then, they satisfy the following
properties:

1. ∀x ∈ Xi, x(Ii) = τi;

2. Xi(J − Ii) is (1− δ)-dense;

3. D
(
Xi(J − Ii)

)
≤ D

(
X(J)

)
− δ|Ii| logN + γi.

Here, we define γi := log(|X|/| ∪j≥i X
j |).

For dense random variables, we also have the following useful lemma.

Lemma 2.6. If X1,X2, · · · ,Xℓ are ℓ < k independent
(
1 − 1

10k logN

)
-dense random variables and each

Xi takes value from [N ]Ji with |Ji| ≤ c · N1−αi , where c is a constant and Nαi = ω(k), then for any
element a ∈ [N ], it holds

Pr

[
a ∈

ℓ⋂
i=1

Xi

]
≤ ecℓ

N
∑

i αi
,

here e ≈ 2.7 denotes the Euler’s number.

3 Lower bounds for the product distributions

In this section, we prove the communication lower bound for the hardness distribution 1. Then, in
Section 3.3, we use reductions to obtain lower bounds for hardness distributions 2 and 3. Formally,
we prove that:

Theorem 3.1. If a communication protocol Π solves k-party set-intersection problem under the hardness
distribution 1 with accuracy bigger than 0.1, the communication complexity CC(Π) is

Ω

(
N

∑
i αi−maxi{αi}

k

)
.

3δ = 0.9 in previous structure-vs-pseudorandomness decomposition [GPW17, CDGS18, CFK+19, LMM+22].
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3.1 The decomposition and sampling process

The key idea of this proof, as we introduce in Section 1, is to decompose rectangles (nodes4) of
the protocol tree into structured rectangles and analyze the accuracy of the protocol could achieve
in those decomposed structured rectangles. We design a decomposition and sampling process in this
section to

• decompose the rectangles of the protocol tree into structured rectangles;

• sample a decomposed rectangle with respect to its size.

We define the root rectangle of the protocol tree to be Rroot, which contains all valid inputs. Rroot

is also a structured rectangle by definitions. We start from Rroot and begin our decomposition and
sampling process, which uses a random walk on the protocol tree from the root Rroot to a leaf, and
do the decomposition along the path. See Algorithm 1 for the formal decomposition process.

Algorithm 1: The decomposition and sampling process
Input: A rectangle Rroot = X1 ×X2 × · · · ×Xk, where each Xi equals [N ]cN

1−αi .
Output: A rectangle Rcur = Xcur

1 ×Xcur
2 × · · · ×Xcur

k , and k sets J1, J2, · · · , Jk.
1 for each i, Ji ← [cN1−αi ];
2 Rcur ← Rroot;
3 while Rcur is not in a leaf level a do
4 without loss of generality, we assume it is player i’s turn to speak;
5 Xcur

i is partitioned by: Xcur
i = X0 ∪X1, and Rcur is thus partitioned by: Rcur = R0 ∪R1;

6 toss a ( |X0|
|Xcur

i | ,
|X1|
|Xcur

i |) biased coin c;
7 if c = 0:
8 Xcur

i ← X0;
9 Rcur ← R0;

10 if c = 1:
11 Xcur

i ← X1;
12 Rcur ← R1;
13 if Xcur

i (Ji) is (1− 1
10k logn)-dense:

14 continue;
15 else:
16 decompose Xcur

i by Lemma 2.5 with J = Ji, get X1, · · · , Xr, I1, · · · , Ir;
17 Rcur is thus decomposed by Rcur = R1 ∪ · · · ∪Rr;
18 sample a random element j ∈ [r]: j w.p. |Xj |/|Xcur

i | equals j for each j;
19 Xcur

i ← Xj , Ji ← Ji\Ij ;
20 Rcur ← X1 ×X2 × · · · ×Xk;
21 end

aRcur is not in a leaf level means Rcur is not a sub-rectangle of any leaf rectangle of the protocol tree.
We use Rcur to denote the current rectangle of the decomposition and sampling process. It

begins with Rcur = Rroot, and at each step Rcur is partitioned into two subrectangles R0, R1 by
the protocol. Then, we replace Rcur with R0 or R1 with probability |R0|/|Rcur| or |R1|/|Rcur|

4Note that a node of the protocol tree is a rectangle.
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(which also equals to |X0|/|Xcur
i | or |X1|/|Xcur

i | as we defined in Algorithm 1), and reach a new
rectangle. After reaching the new rectangle, the structured property of Rcur may get destructed,
and our decomposition works here to maintain the structured property. We use the density-
restoring partition (Lemma 2.5) to further decompose the current rectangleRcur into r subrectangles
Rcur = R1 ∪ R2 ∪ · · · ∪ Rr, and each Rj is a structured rectangle. Again, we choose Rj to be our
next rectangle with probability |Rj |/|Rcur|, and do the process above recursively until reaching
a leaf rectangle. As shown in the decomposition and sampling process, we eventually sample a
structured rectangle in the leaf level with respect to its size.

Note that at some point of the random walk, the current rectangle Rcur may not exist on the protocol tree
since we do the density-restoring partition to further decompose the rectangles. However, every Rcur that
potentially appears in the random walk must be fully contained in a rectangle of the protocol tree. Thus, the
protocol Π also partitions Rcur into two sub-rectangles if Rcur is not in the leaf level of the protocol tree.

Note that the output Rcur of the process above is a random variable over rectangles. We define
Rleaf to be the random variables over decomposed structured rectangles in the leaf level (not leaf
rectangles of the protocol tree, but sub-rectangles of those leaves after decomposition) sampled by
the process above, and Rleaf is associated with random sets J leaf

i s. For convenience, we define the
support of Rleaf to be Rleaf. One may see the two important properties of the decomposition and
sampling process:

• Every rectangle R ∈ Rleaf is a structured rectangle;

• For a rectangle R = X1 ×X2 × · · · ×Xk ∈ Rleaf, we have that

Pr[Rleaf = R] =
∏
i

|Xi|
cN1−αi

=
|R|

ckNk−
∑

i αi
.

The verification of the two properties is straightforward from the definition of our decomposition
and sampling process. The first statement offers the structured property which makes it easier to
analysis the rectangles. The second statement tells us that: the probability that Rleaf = R equals
the probability that the input lies in R. This is crucial in later bounding the accuracy of Π.

Next, we bound the accuracy ofΠ. For every structured rectangleR = X1×X2×· · ·×Xk ∈ Rleaf

associated with J1, J2, · · · , Jk, we define Jc
i as [cN1−αi ]− Ji, namely the fixed parts of Xi. Hence,

for each Xi, it holds ∀x ∈ Xi, x(J
c
i ) = βi since R is a structured rectangle. We can then divide all

the rectangles inRleaf into two types:

1. R is a bad structured rectangle if ∩iβi ̸= ∅;

2. R is a good structured rectangle if ∩iβi = ∅.

Assume R is a bad structured rectangle. Then, there exists a universal common element a5 such
that a ∈ ∩ixi for any possible instance (x1, x2, · · · , xk) in R. The protocol is thus able to achieve
perfect correctness by outputting a when the input lies in R. Hence, we need to show with a low
probability that Rleaf is a bad rectangle, namely the probability that input lies in bad rectangles is
small. To be more specific, we prove the following lemma:

Lemma 3.2. If CC(Π) ≤ 0.0001N
∑

i αi−maxi{αi}/k, it holds that PrR∼Rleaf [R is bad] ≤ 0.05.

5We can choose any element that lies in ∩iβi here.
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For those good structured rectangles, we show the following facts: for a good structured rectangle,
the protocol Π cannot achieve high accuracy since there is no intersection on the fixed parts, while
the other parts are dense. Formally, we prove the following lemma:

Lemma 3.3. For a good structured rectangle R = X1 ×X2 × · · · ×Xk, it holds that for any a ∈ [N ],

Pr[a ∈ ∩iXi] ≤ 0.05.

Combining the three lemmas above, we can easily prove Theorem 3.1.

Proof of Theorem 3.1. We prove the theorem by showing that communication protocol Π with
CC(Π) ≤ 0.0001N

∑
i αi−maxi{αi}/k can achieve at most 0.1 accuracy.

It is well known that a communication protocol Π partitions the whole input domain into
several leaf rectangles and assigns an answer to each leaf rectangle. With our decomposition and
sampling process, original leaf rectangles are further decomposed into two types of structured
rectangles mentioned above. The accuracy of Π comes from the following two parts:

1. The probability Pr[Rleaf is bad] = p1.

2. The probability that protocol outputs the correct answer in a good structured rectangle is p2.

From Lemma 3.2 and 3.3, we know that p1 ≤ 0.05, p2 ≤ 0.05. By a union bound, the total accuracy
is thus no more than p1 + p2 ≤ 0.1 as desired.

It suffices to prove the two important lemmas above.

3.2 Proofs of technical lemmas

We first prove Lemma 3.2 by the following round-by-round analysis.

Proof of Lemma 3.2. Recall the decomposition process from line 4 to line 12. In each communication
round, player i sends one bit, and partitions Xcur

i into two parts X0, X1. Then, Xcur
i is replaced

by X0 (or X1) with probability |X0|
|Xcur

i | (or |X1|
|Xcur

i | ). In this process, the density function D(Xcur
i (Ji))

would increase since the size of |Xcur
i | decreases. This contributes to the density function with an

increment of:

• log(
|Xcur

i |
|X0| ) with probability |X0|/|Xcur

i |;

• log(
|Xcur

i |
|X1| ) with probability |X1|/|Xcur

i |.

Thus, in expectation, the density function of Rcur = Xcur
1 ×Xcur

2 × · · ·×Xcur
k after partitioning will

increase
|X0|
|Xcur

i |
log

(
|Xcur

i |
|X0|

)
+
|X1|
|Xcur

i |
log

(
|Xcur

i |
|X1|

)
≤ 1, (1)

where |Xcur
i | denotes the size of Xcur

i before partitioning. Furthermore, if Xcur
i (Ji) is no longer

(1 − 1
10k logn)-dense, we partition Xcur

i by Lemma 2.5 and get Xcur
i = X1 ∪ X2 ∪ · · · ∪ Xr and
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I1 ∪ I2 ∪ · · · ∪ Ir with Xj(Ij) = τj for all j. We use Lemma 2.5, where we take δ = 1/(10k logN),
and get:

D(Xj(Ji − Ii)) ≤ D(Xcur
i (Ji))− δ|Ij | logN + γj = D(Xcur

i (Ji))−
|Ij |
10k

+ γj . (2)

Recall that γj := log(|Xcur
i |/| ∪p≥j X

p|) here. In the decomposition process, Xcur
i is replaced with

Xj with probability |Xj |/|Xcur
i |. Hence, taking expectation in one communication round, we have

E[γj ] =
∑
j

|Xj |
|Xcur

i |
log(|Xcur

i |/| ∪p≥j X
p|) ≤

∫ 1

0
log

1

1− x
dx = 1. (3)

Thus, combining (1), (2) and (3) and taking expectations, we know that after CC(Π) rounds of
communication (where each round communicates exact one bit message), it holds:

ER∼Rleaf [D(R)] ≤ 2 · CC(Π)−
EJ1∼J leaf

1 ,··· ,Jk∼J leaf
k

[∑k
j=1 |Jc

j |
]

10k
.

Here, the 2 · CC(Π) comes from (1) and (3). We know that ER∼Rleaf [D(R)] ≥ 0 from definitions.
Hence, we have

k∑
j=1

EJj∼J leaf
j

[|Jc
j |] ≤ 20k · CC(Π). (4)

We can bound the probability that the bad structured rectangle appears round by round. At
each round of communication, if we choose Xj to replace Xcur

i , then we will fix |Ij |more positions
for Xcur

i . We then consider the probability that this new fixed part contributes to forming a bad
structured rectangle with future fixed positions.

Let Rj = Xcur
1 ×Xcur

2 ×· · ·Xj · · ·×Xcur
k , for any x = (xcur

1 , xcur
2 , · · · , xj , · · · , xcur

k ) ∈ Rj , we label
it as a error term if ∃a ∈ τj , a ∈

⋂
p ̸=i x

cur
p (Jp) 6. By Lemma 2.6, for any a ∈ τj ,

Pr[a ∈
⋂
p ̸=i

Xcur
p (Jp)] ≤

eck−1

N (
∑k

p=1 αp)−αi

By a union bound, the probability that error terms appear in Rj is

Pr[∃a ∈ τj , a ∈
⋂
p ̸=i

Xcur
p (Jp)] ≤

|Ij | · eck−1

N (
∑k

p=1 αp)−αi

Also, we know that the total number of fixed elements equals
∑k

i=1 |Jc
i |, which is identical to the

summation of |Ij | of every step, thus, the average probability of error terms at the end of the
decomposition process is at most

eck−1

N (
∑

i αi)−maxi{αi}
·

k∑
i=1

EJi∼J leaf
i

[
|Jc

i |
]
.

6τj is a fixed subset of [N ] with size at most |Ij | since Xj is fixed on Ij . Input x may be labeled many times during
the decomposition process.
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We note that for any R ∈ Rleaf, if R is bad, then all instances x ∈ R have been labeled as an error
term in the decomposition process, together with (4), we have

Pr
R∼Rleaf

[R is bad] ≤ eck−1

N (
∑

i αi)−maxi{αi}
·

k∑
i=1

EJi∼J leaf
i

[
|Jc

i |
]
≤ 0.05.

The last inequality holds since c = (1 + 2/k) and CC(Π) ≤ 0.0001N
∑

i αi−maxi{αi}/k.

Next, we show that in the good structured rectangles, the protocol Π cannot achieve large
accuracy in finding the common element. This also comes from the structured properties of the
rectangles:

Proof of Lemma 3.3. Notice that we consider the rectangle R = X1 ×X2 × · · · ×Xk associated with
J1, J2, · · · Jk that has no common elements on fixed parts Jc

i . Thus, for any element a ∈ [N ], there
exists at least a party i which does not contain a on its fixed part. Thus, we use Lemma 2.6 for
Xi(Ji) with ℓ = 1, and get

Pr[a ∈Xi] = Pr[a ∈Xi(Ji)] ≤ ce/Nαi = o(1).

3.3 Lower bounds for other hardness distributions

In this section, we first establish a reduction from Bernoulli hardness distribution (hardness distri-
bution 3) to hardness distribution 2 by the following lemma:

Lemma 3.4. If a communication protocol Π that solves set-intersection under hardness distribution 3 with
accuracy ϵ, there exists parameters c1, · · · , ck with each 1− 1/k ≤ ci ≤ 1+ 1/k for hardness distribution 2
so that Π can find set intersection under this distribution with accuracy ϵ − 2k exp(−N1−maxi{αi}

3k2
), which

is bigger than ϵ− 0.01 when N1−maxi{αi} ≥ 100k2 log k.

Proof. We first use Chernoff bound to bound the probability of the size of set Si of each player i
exceeding (1 + 1/k) ·N1−αi or less than (1− 1/k) ·N1−αi under the hardness distribution 3:

Pr[||Si| −N1−αi | > 1/k ·N1−αi ] ≤ 2 exp

(
− N1−αi

3k2

)
.

We use A to denote the event that ∃i, ||Xi| − N1−αi | > 1/k · N1−αi . Then, by a union bound, we
know that:

Pr[A] ≤ 2k · exp
(
− N1−maxi{αi}

3k2

)
.

Then, condition on ¬A, we have the success probability of Π in finding set intersection under

hardness distribution 3 is bigger than ϵ− 2k · exp
(
− N1−maxi{αi}

3k2

)
. Furthermore, condition on ¬A,

the hardness distribution 3 can be represented by a combination of product distributions:∑
c1,c2,··· ,ck

σ(c1, c2, · · · , ck)Dc1,c2,··· ,ck ,

where Dc1,c2,··· ,ck denotes the hardness distribution 2 with parameters c1, c2, · · · , ck. Then, the
lemma follows by an averaging argument.
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It suffices to construct a reduction from hardness distribution 2 to hardness distribution 1.

Lemma 3.5. If there exists a communication protocol Π with communication complexity C which solves
set-intersection under hardness distribution 2 with accuracy ϵ, there exists a communication protocol Π′

with communication complexityC which solves set-intersection under hardness distribution 1 with accuracy
ϵ− 0.05 when k2N−mini{αi} ≤ 1

100 holds.

Proof. We construct the communication protocol Π′ as follows:

1. For each player i, remove the duplicate elements of its input and get a Si ⊆ [N ].

2. Randomly sample ciN
1−αi elements from Si, Π′ fail if |Yi| < ciN

1−αi .

3. Run the communication protocol Π on Yis to find intersection.

We know that the successful probability of Π′ under hardness distribution 1 is bigger than

ϵ− Pr[Π′ fail at step 2].

It suffices to bound Pr[Π′ fail at step 2]. From the union bound, we have:

Pr[Π′ fail at step 2] ≤ k · Pr[|Si| < ciN
1−αi ]

≤ k · Pr[#repeated elements in Si > (c− ci)N
1−αi ].

We know that

E[#repeated elements] = cN1−αi

(
1− (1− 1/N)cN

1−αi−1

)
≤ c2N1−2αi .

From Markov’s Inequality, we have

Pr[#repeated elements > (c− ci)N
1−αi ] ≤ E[#repeated elements]/(c− ci)N

1−αi ≤ kc2N−αi .

If kN−αi ≤ 1
100k holds, which is guaranteed by the constraints, Pr[Π′ fail at step 2] ≤ 0.05 also

holds. This concludes the lemma.

4 Efficient protocols for the hardness distribution

In this section, we first explain an efficient protocol for the hardness distribution 3, where we
use D3 to denote the distribution, showing that our lower bound result is almost tight for this
distribution. Also, this protocol can be easily extended to some more general product distributions
sharing "similarities" with the Bernoulli product distribution. Formally, we prove:

Theorem 4.1. There is a protocol Π, which solves the hardness distribution 3, with AccΠ(D3) ≥ 0.1 and

CC(Π) = O(N
∑

i αi−maxi{αi} logN).

Furthermore, this protocol can be extended to more general distributions. Let D be any distribution that
satisfies the following properties:

1. each party holds a set of size Θ(N1−αi);
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2. the size of intersecting part of all parties is Ω(N1−
∑

i αi);

there exists a protocolΠ′ withO(k logN ·N
∑

i αi−maxi{αi}) communication cost that achievesΩ(1) accuracy
under D.

Proof. To begin with, we first propose an efficient protocol to solve D3. Without loss of generality,
we assume α1 ≥ α2 ≥ · · · ≥ αk and each party i gets a subset Si ⊆ [N ]. Then, the communication
protocol Π proceeds as follows:

1. The first party uniformly and randomly picks min{|S1|, N
∑

i αi−maxi{αi}} elements from S1

and sends them, denoted by M1, to the second party.

2. The second party receives the message M1 from the first one, and sends M2 := M1
⋂
S2 to

the third party.

3. The process goes on, and the last party computes Mk−1
⋂
Sk. If it is not empty, the last party

outputs any element in it. Otherwise, the protocol fails.

Then, we bound AccΠ(D3) and its communication complexity to show Π is highly efficient. From
the definitions, we know that

AccΠ(D3) = Pr[M1 ∩ S2 ∩ · · · ∩ Sk ̸= ∅].

Also, we have that

Pr[M1 ∩ S2 ∩ · · · ∩ Sk ̸= ∅ | |M1| = m] = 1−
(
1− 1

N
∑

i αi−maxi{αi}

)m

≥ m

e ·N
∑

i αi−maxi{αi}
.

The last inequality holds since m ≤ N
∑

i αi−maxi{αi}. From Chernoff bound, we know that the
probability that Pr

[
|M1| ≤ N

∑
i αi−maxi{αi}/2

]
≤ e−N1−α1/12 ≤ e−10k3 . The last inequality is from

the constraint of k ≤ 0.1 ·min{Nmini{αi}/2, N (1−maxi{αi})/3}. Furthermore, when

|M1| ≥ N
∑

i αi−maxi{αi}/2,

it holds that
Pr[M1 ∩ S2 ∩ · · · ∩ Sk ̸= ∅ | |M1| = m] ≥ 1

2e
.

Combining the facts above, we have AccΠ(D3) ≥ 1
2e

(
1− e−10k3

)
≥ 0.1.

On the other hand, we bound the communication complexity by bounding the expected size
of |Mi|. E[|M1|] ≤ N

∑
i αi−maxi{αi} logN holds from definitions. Furthermore, we have

E[|Mi|] ≤ E[|Mi−1|] ·N−αi .

Then, E[
∑

iMi] ≤ O(N
∑

i αi−maxi{αi} log n) follows by N−αi ≤ Nmini{αi} ≤ 1/2. This concludes
the first statement.

Next, we slightly change the protocol above to match the second statement. The protocol Π′

proceeds as follows:

1. The first party uniformly and randomly picks Θ(N
∑

i αi−maxi{αi}) elements from S1 and
sends them, denoted by M1, to the second party.
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2. The second party receives the message M1 from the first one, and sends M2 := M1
⋂
S2 to

the third party.

3. The process goes on, and the last party computes Mk−1
⋂
Sk. If it is not empty, the last party

outputs any element in it.

Obviously, the communication complexity of this protocol Π′ is O(k log n · N
∑

i αi−maxi{αi}).
Also, we know the accuracy is bigger than

Ω

(
1− (1− Ω(N1−

∑
i αi)

|S1|
)Θ(N

∑
i αi−maxi{αi})

)
= Ω(1).

Thus, our lower bounds show that those trivial protocols are nearly optimal.
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A Omited Proofs

In this section, we prove lemma 2.6.

Lemma 2.6. If X1,X2, · · · ,Xℓ are ℓ < k independent
(
1 − 1

10k logN

)
-dense random variables and each

Xi takes value from [N ]Ji with |Ji| ≤ c · N1−αi , where c is a constant and Nαi = ω(k), then for any
element a ∈ [N ], it holds

Pr

[
a ∈

ℓ⋂
i=1

Xi

]
≤ ecℓ

N
∑

i αi
,

here e ≈ 2.7 denotes the Euler’s number.
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Proof. We know that allXi’s are independent. Thus, we first bound the probability thatPr[a ∈Xi].
Assuming that Ji = (j1, j2, · · · , j|Ji|), we then prove for any p ≤ |Ji|

Pr[a /∈
p⋂

q=1

Xi(jq)] ≥
(
1− 1 + 1/k

N

)p

by induction. Here, Xi(jq) denotes the value of Xi on the coordinate jq.

1. When p = 1, we have this inequality directly from the fact that Xi is (1− 1
10k logN )-dense.

2. When p > 1, we assume this inequality holds for p− 1. In that case,

Pr[a /∈
p⋂

q=1

Xi(jq)] =

(
1− Pr[a = Xi(jp) | a /∈

p−1⋂
q=1

Xi(jq)]

)
· Pr[a /∈

p−1⋂
q=1

Xi(jq)].

It suffices to show that Pr[a = Xi(jp) | x /∈
⋂p−1

q=1 Xi(jq)] ≤ 1+1/k
N . If we assume

Pr[a = Xi(jp) | a /∈
p−1⋂
q=1

Xi(jq)] >
1 + 1/k

N

holds, we have:

Pr[a = Xi(jp)] = Pr
[
a = Xi(jp) | a /∈

p−1⋂
q=1

Xi(jq)
]
· Pr[a /∈

p−1⋂
q=1

Xi(jq)
]

≥
(
1− 1 + 1/k

N

)cN1−αi
1 + 1/k

N

≥
(
1− 2c

Nαi

)
1 + 1/k

N

≥ 1 + 1/(2k)

N
.

Here, the last inequality holds from the fact that Nαi = ω(k). This contradicts with the fact

that Xi is
(
1− 1

(10k logN)

)
-dense. Hence, we know that

Pr[a /∈Xi] ≥ (1− 1 + 1/k

N
)|Ji| ≥ (1− 1 + 1/k

N
)cN

1−αi ≥ 1− c · 1 + 1/k

Nαi
,

and
Pr[a ∈ ∩iXi] ≤

∏
i

Pr[a ∈Xi] ≤ cℓ(1 + 1/k)ℓ · 1

N
∑

i αi
≤ cℓ

e

N
∑

i αi
.
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