
Non-malleable codes with optimal rate for poly-size circuits

Marshall Ball* Ronen Shaltiel† Jad Silbak‡

November 13, 2023

Abstract

We give an explicit construction of non-malleable codes with rate 1 − o(1) for the tampering class

of poly-size circuits. This rate is optimal, and improves upon the previous explicit construction of Ball,

Dachman-Soled and Loss [BDL22] which achieves a rate smaller than 1
n

. Our codes are based on the

same hardness assumption used by Ball, Dachman-Soled and Loss, namely, that there exists a problem in

E = DTIME(2O(n)) that requires nondeterministic circuits of size 2Ω(n). This is a standard complexity

theoretic assumption that was used in many papers in complexity theory and cryptography, and can be

viewed as a scaled, nonuniform version of the widely believed assumption that EXP 6⊆ NP. Our result

is incomparable to that of Ball, Dachman-Soled and Loss, as we only achieve computational (rather

than statistical) security. Non-malleable codes with Computational security (with lower error than what

we get) were obtained by [BDK+19, DKP21] under strong cryptographic assumptions. We show that

our approach can potentially yield statistical security if certain explicit constructions of pseudorandom

objects can be improved.

By composing our new non-malleable codes with standard (information theoretic) error-correcting

codes (that recover from a p fraction of errors) we achieve the best of both worlds. Namely, we achieve

explicit codes that recover from a p-fraction of errors and have the same rate as the best known explicit

information theoretic codes, while also being non-malleable for poly-size circuits.

Moreover, if we restrict our attention to errors that are introduced by poly-size circuits, we can

achieve best of both worlds codes with rate 1 −H(p). This is superior to the rate achieved by standard

(information theoretic) error-correcting codes, and this result is obtained by composing our new non-

malleable codes with the recent codes of Shaltiel and Silbak [SS23].

Our technique combines ideas from non-malleable codes and pseudorandomness. We show how to

take a low rate “small set non-malleable code (this is a variant of non-malleable codes with a different

notion of security that was introduced by Shaltiel and Silbak [SS22]) and compile it into a (standard)

high-rate non-malleable code. Using small set non-malleable codes (as well as seed-extending PRGs)

bypasses difficulties that arise when analysing standard non-malleable codes, and allows us to use a

simple construction.

*New York University, Email:marshall.ball@cs.nyu.edu.
†University of Haifa, Email: ronen@cs.haifa.ac.il.
‡Northeastern University, Email: jadsilbak@gmail.com.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 167 (2023)

Contents

1 Introduction 1

1.1 Error correcting codes and non-malleable codes . 1

1.2 Our results: non-malleable codes with optimal rate . 3

1.2.1 Best of both worlds: Composing non-malleable codes with codes that correct from

errors . 5

1.3 Overview of the technique . 6

1.3.1 Improving the rate of non-malleable codes for poly-size circuits 6

1.3.2 Using seed-extending PRGs . 8

1.3.3 Replacing non-malleable codes with small set non-malleable codes 9

1.3.4 The final construction of Enc . 10

1.3.5 A sketch of the non-malleability proof . 10

1.3.6 Achieving statistical indistinguishability with a suitable HTS 12

1.4 Other Rate Compilers for Non-Malleable Codes . 12

1.5 Organization of this paper . 13

2 Preliminaries and ingredients 14

2.1 Circuits and hardness assumptions . 14

2.2 Coding schemes: non-malleable codes, SS-non-malleable codes and error correcting codes. . 15

2.2.1 Non-malleable codes . 15

2.2.2 Small set non-malleable codes . 16

2.2.3 Standard error correcting codes: decoding from errors 17

2.2.4 Decoding from errors induced by a specified class of channels 17

2.3 Pseudorandom generators . 18

2.4 Pairwise independent hash functions . 18

3 Non malleable codes with rate 1− o(1) for poly-size circuits 18

3.1 The construction . 19

3.2 Proof of main theorem 3.1. 19

3.3 Proof of Lemma 3.4. 23

3.3.1 Proof of Claims 3.6 and 3.8 . 26

4 Composing non-malleable codes with codes that correct from errors 31

4.1 Proof of Lemma 4.2. 33

5 Statistically secure non-malleable codes from HTS 35

5.1 Hard to sample functions (HTS) and a the formal statement of Theorem 1.3 35

5.2 Proof of Theorem 5.2. 36

5.3 Proof of Lemma 5.5. 38

i

1 Introduction

1.1 Error correcting codes and non-malleable codes

Standard error-correcting codes. Coding theory studies message transmission in noisy channels. The

objective is to design an error-correcting code (namely, a pair (Enc,Dec) of encoding and decoding algo-

rithms) that correct from a specified number of errors. Error correction relies on adding redundancy to the

message, and the code’s rate is the ratio between the length of a message and the length of its encoding. The

major goals of coding theory is to design codes with the largest possible rate for a specified number of errors,

and achieve this with explicit constructions (namely, with poly-time encoding and decoding algorithms).

Non-malleable Codes. Non-malleable codes, introduced by Dziembowski, Pietrzak, and Wichs [DPW18],

consider a more extreme scenario where there is no a-priori restriction on the number of bits that the channel

may alter. Such a channel might choose to erase the encoded message and replace it with a different string.

Obviously, in this case, one cannot expect the decoding algorithm to recover the original message. Instead,

it is required that encoding and decoding satisfy the following:

• Recovery from no errors. If the channel does not alter the encoded message, then decoding produces

the original message.

• Non-malleability. If the channel alters the encoded message, then the decoded message is either the

original or unrelated to the original message.

The definition of non-malleable codes also includes two modifications over the standard coding scenario:

• It is impossible to handle all channels, and so, a non-malleable code is defined against a specific

family C of channels (a.k.a “tampering functions”).

• The encoding algorithm Enc is allowed to be randomized.

This leads to the following definition by [DPW18] (which is stated informally below, and more formally

in Definition 2.6).

Definition 1.1 (non-malleable codes [DPW18], informal). A randomized encoding function Enc : {0, 1}Rn →
{0, 1}n and a deterministic decoding function Dec : {0, 1}n → {0, 1}Rn ∪ {⊥} form a rate R, non-

malleable code against a class C of tampering functions, if for every m ∈ {0, 1}Rn, Dec(Enc(m)) = m,

and for every C : {0, 1}n → {0, 1}n in C, there exists a distribution DC over {0, 1}Rn ∪ {same,⊥}, such

that for every m ∈ {0, 1}Rn, the experiment

TamperC(m) =

{
z ← Enc(m), v ← C(z), m̄← Dec(v)

Output m̄.

}

is indistinguishable from the following experiment

SimulatedC(m) =

{
m̄← DC

Output m if m̄ = same, and m̄ otherwise.

}

Note that in the simulated experiment, the distribution DC does not depend on m, and this is the sense

in which “m̄ is unrelated to m”.

Since the seminal work of Dziembowski, Pietrzak and Wichs [DPW18], various different classes of tam-

pering functions were considered in the literature. Loosely speaking, these can be split into “tampering func-

tions with limited information,” such as bit-wise tampering [DPW18, CG14], split-state tampering [LL12,

1

DKO13, ADL14, CGL16, AAG+16, Li17, Li19, AO20, AKO+22, Li23], interleaved tampering [CL20]; and

“tampering functions with restricted computational power,” such as local tampering [BDKM16, GMW19,

BGW19], AC0 tampering [CL17, BDKM18, BGW19, BDG+18], low degree polynomial tampering [CL17,

BCL+20], streaming tampering [BDKM18], and polynomial size circuit tampering [BDK+19, DKP21,

BDL22]. This paper belongs to the latter category, and considers the family of tampering functions imple-

mented by circuits of fixed polynomial size.

Non-malleable codes for poly-size circuits. Dziembowski, Pietrzak and Wichs, [DPW18] showed (by

a probabilistic argument) that there exist non-malleable codes against poly-size circuit (in fact, against

any “small” class of tampering functions). Later work by Faust et al. [FMVW16], and Cheraghchi and

Guruswami [CG16], improved the probabilistic analysis and showed that there exist non-malleable codes

against poly-size channel with rate 1− o(1).
It is easy to see that the decoding function Dec of a non-malleable code against circuits of size nc,

cannot be computed by circuits of size nc. This implies that in an explicit construction of non-malleable

codes against size nc circuit, we must allow the decoding algorithm to run in a polynomial time that is larger

than nc, and furthermore, that such an explicit construction implies circuit lower bounds (which are referred

to as hardness assumptions).1

Ball, Dachman-Soled and Loss [BDL22] gave an explicit construction of non-malleable codes for poly-

size circuits (based on a hardness assumption). They showed that for every constant c > 1, there is a pair of

algorithms (Enc,Dec) that run in time poly(nc), and form a non-malleable code against circuits of size nc.
The rate achieved by this construction is 1

nΘ(1) which is quite small.

Hardness assumptions against nondeterministic circuits. This construction relies on a standard hard-

ness assumption from complexity theory: Namely, the assumption that E is hard for exponential size nonde-

terministic circuits. This assumption (stated precisely in Assumption 2.1) loosely says that there is a problem

in E = DTIME(2O(n)) that cannot be computed by nondeterministic circuits of size 2Ω(n). The assumption

that E is hard for exponential size (deterministic) circuits was used by the celebrated work of Impagliazzo

and Wigderson [IW97] to imply that BPP = P. The stronger assumption that E is hard for exponential

size nondeterministric circuits was introduced for implying that AM = NP, and used in many papers in

complexity theory and cryptography [KvM02, MV05, TV00, SU05, BOV07, GW02, GST03, SU06, SU09,

Dru13, AASY15, BV17, AIKS16, HNY17, DMOZ22, BDL22, CT22]. This assumption can be viewed as a

scaled, nonuniform version of the assumption: EXP 6⊆ NP.

Other (nearly) explicit constructions of non-malleable codes for poly-size circuits were given by Ball,

Dachman-Soled, Kulkarni, Lin, and Malkin [BDK+19] as well as by Dachman-Soled, Komargodski and

Pass [DKP21]. These constructions follow a template laid out in [BDKM18] (whose codes, in contrast, were

mostly in the common random string model) and rely on a variety of very strong cryptographic assumptions,

particularly assumptions that are not known how to provably instantiate outside of the random oracle model.2

1Cheraghchi and Guruswamui [CG16] and Faust et al. [FMVW16] considered an intermediate notion of explicitness where

the encoding and decoding algorithms also receive a uniformly chosen string of length poly(nc) (which is chosen and published,

once and for all, in a pre-processing stage) and the non-malleability is guaranteed w.h.p. over this random choice. This is termed a

”Monte-Carlo construction” in coding theory, and a ”construction in the CRS model” in cryptography.
2[BDK+19] relies on plain model P-certificates (with uniform soundness) among other assumptions and [DKP21] relies on

keyless multi-collision resistant hash functions. Neither of these assumptions are known how to provably instantiate from standard

cryptographic assumptions, which is why we refer to the codes as “nearly explict.” Note that [BDK+19] also relies on the same

hardness assumption made in this work and [BDL22] ([DKP21] uses a strong assumption about the hardness of repeated squaring

in place of this hardness assumption).

2

Rate was not the focus of these works, and accordingly the codes achieve rate that is just 1
nΘ(1) .3

1.2 Our results: non-malleable codes with optimal rate

In this paper we give an explicit construction of non-malleable codes for poly-size circuits that achieve

optimal rate of R = 1− o(1), under the same hardness assumption used by Ball, Dachman-Soled and Loss

[BDL22].

Theorem 1.2 (Non-malleable codes with rate 1 − o(1), informal). If E is hard for exponential size nonde-

terministic circuits, then for every constant c, there is a non-malleable code (Enc,Dec) against circuits of

size nc, with rate R = 1− o(1). Furthermore, Enc and Dec can be computed in time poly(nc).

Theorem 1.2 is stated in a more formal way in Theorem 3.1.

Improving the rate of non-malleable codes. In order to prove Theorem 1.2 we show how to improve

the rate of a variant of non-malleable codes (called “small set non-malleable code”), and obtain (standard)

non-malleable codes with rate 1− o(1).4

More specifically, Shaltiel and Silbak [SS22] defined a notion called “small set non-malleable codes”

(which is closely related to a notion of “bounded non-malleable codes” introduced by Faust et al. [FMVW16]).

Loosely speaking, this notion of small-set non-malleability (which is incomparable to the standard notion of

non-malleability) requires that for every tampering function C, there exists a small set H of messages, such

that when C gets to corrupt the encoding of a uniformly chosen message m, it is unlikely that the decoding

will produce a message that is neither in H , nor the original message m. (See Definition 2.8 for a precise

formulation).

Loosely speaking, in small set non-malleability we are interested in the variety of outcomes a tamper-

ing function can effectively produce in the tampering experiment in which a uniform message is encoded.

Note that a poly-size tampering circuit is nonuniform, and can be hardwired with a polynomial size set of

messages and their codewords. This enables the tampering circuit to lead the decoding to produce any one

of these small set of messages. Intuitively, for a small-set non-malleable code there is no markedly better

approach than to implement this behavior. We remark that this security guarantee seems incomparable to

the standard definition of non-malleable codes.5

Shaltiel and Silbak [SS23] showed how to convert the aforementioned non-malleable codes of [BDL22]

into small set non-malleable codes (with the same parameters, and under the same hardness assumption).

The result reported in Theorem 1.2 follows by applying our new “rate improvement technique” to the small

set non-malleable codes of [SS23]. In Section 1.3 we elaborate on the ideas that are used in this “rate

3The conclusions of [BDL22] and [DKP21] are incomparable as the former achieves security with statistical indistinguisha-

bility, and the latter achieves only computational indistinguishability, but the latter achieves indistinguishability with a negligible

advantage, whereas the former only achieves indistinguishability with an arbitrary fixed inverse polynomial advantage.
4We note that non-malleable code rate compilers for other tampering classes have been constructed in the past. Loosely speaking,

these compilers as well as our own follow a similar framework akin to key-encapsulation mechanisms. However, they all differ

dramatically in both construction and analysis. We refer the reader to Section 1.4 for more details.
5Loosely speaking, small-set non-malleable codes give a weaker form of non-malleability (called “bounded non-malleability in

[FMVW16]) as they allow the tampering function to correlate the original message with the choice of which message in H is being

decoded. On the other hand, the security definition in small-set non-malleable codes implies that the tampering function cannot

produce an encoding of a uniform and independent random message (as this would allow it to break small-set non-malleability).

This is in contrast to standard non-malleability which does not seem to rule out that the tampering function can compute the

encoding (as demonstrated by Dachman-Soled, Komargodski and Pass [DKP21]). Another difference, is that the security definition

of non-malleable codes rules out tampering functions that can compute the decoding algorithm, whereas small-set non-malleable

codes do not. See discussion in [SS22].

3

improvement”, and explain how we use the security guarantee of small-set non-malleable codes, and why

the security of (standard) non-malleable codes does not seem to suffice.

Comparison of Theorem 1.2 with previous work. The non-malleable codes of Theorem 1.2 achieve

rate 1 − o(1), but with a weaker security guarantee than that of [BDL22]. We only achieve computational

indistinguishability in Definition 1.1, whereas [BDL22] achieves statistical indistinguishability. Addition-

ally, like [BDL22], we only achieve a distinguishing advantage that is an arbitrary fixed inverse polynomial,

rather than negligible (as is the case in [BDK+19, DKP21], which achieves negligible computational in-

distinguishability under very strong cryptographic assumptions). There are known barriers for achieving

negligible (statistical) indistinguishabity from nondeterministic hardness assumptions (like the one we use)

via black-box reductions [BDL22].6

Towards achieving statistical indistinguishability. While we do not obtain statistical indistinguishability

in Theorem 1.2, our technique can potentially yield statistical indistinguishability (and the same security

guarantee as in [BDL22]) if the parameters of certain “hard to sample functions” (HTS) that were introduced

and constructed by Shaltiel and Silbak [SS23] could be improved.

More specifically, Shaltiel and Silbak [SS23] defined a notion called “HTS” which is a function that

is “hard to sample on distributions with sufficient min-entropy” (a precise definition of an HTS is given in

Definition 5.1). Loosely speaking, an HTS is a function f , such that for every size nc circuit A that samples

some distribution over pairs (X,Y), there exists a small set H of inputs, such that the probability that Y =
f(X) and X 6∈ H , is small. This notion is similar in spirit to the aforementioned notion of small set non-

malleable codes: A nonuniform poly-size sampling circuitAmay be hardwired with a polynomial size setH
of inputs x, together with their output f(x). This enables such a circuit to sample a distribution (X, f(X))
where X has small support. Intuitively, there is no markedly better approach to sample a distribution of

the form (X, f(X), that to implement this behavior, and a poly-size circuit cannot sample a distribution

(X, f(X)) where X has min-entropy significantly larger than log |H|.
Shaltiel and Silbak [SS23] gave explicit constructions of HTS (under the assumption that E is hard

for exponential size nondeterministic circuits). (In fact, the aforementioned construction of small set non-

malleable codes of [SS23] is achieved by composing the non-malleable codes of [BDL22] with a suitable

HTS). The HTS constructions of [SS23] rely on components from pseudorandomness, and specifically on

“high error seeded dispersers” [Zuc07]. The min-entropy thresholdof known explicit constructions of such

dispersers [BKS+10, Zuc07] are quantitatively inferior compared to the parameters that can be achieved

by a probabilistic argument, and this makes some of the HTS constructions of [SS23] have sets size that is

small, but still larger than a polynomial.

Our next result states that if the bound on the size of small sets in the HTS construction of [SS23] can

be improved, then we can achieve statistical indistinguishability in our Theorem 1.2.

Theorem 1.3 (Statistical indistinguishability assuming improved parameters for HTS, informal). If (under

the hardness assumption) there is an explicit HTS f : {0, 1}n → {0, 1}o(n) against poly-size circuits, with

polynomial set size, then Theorem 1.2 holds with statistical indistinguishability.

By a standard application of the probabilistic method, a random function f , is w.h.p. an HTS with these

parameters. Moreover, a future improvement in the parameters of explicit constructions of high error seeded

6The barriers of [BDL22] generalize barriers on black-box constructions of negligible error Nisan-Wigderson style PRGs from

nondeterministic hardness assumptions [GSV18, AASY15]. As our “rate improvement” relies on Nisan-Wigderson style PRGs

(see Section 1.3 for an overview) these barriers also apply on our rate improvement technique.

4

dispersers will give an HTS with parameters that are sufficient to apply Theorem 1.3 and achieve statistical

indistinguishability in Theorem 1.2.

We give a formal statement of Theorem 1.3 and explain this direction, in Section 5. In Section 1.3.6 we

explain how an HTS with improved quantitative parameters can be used to convert our non-malleable codes

into ones with a statistical security guarantee.

1.2.1 Best of both worlds: Composing non-malleable codes with codes that correct from errors

It is natural to try and combine non-malleable codes with codes that correct from errors, aiming to get the

best of both worlds. More specifically, given a parameter 0 ≤ p < 1
4 (measuring the specified fraction of

errors we need to recover from) we would like to obtain codes with the following properties:

• Recovery from a p-fraction of errors. If the channel does not alter more than a p-fraction of the

encoded message, then decoding produces the original message.

• Non-malleability. If the channel alters more than a p-fraction of the encoded message, then the

decoded message is either the original or unrelated to the original message.

A natural way to construct such codes is by composition. Namely, to encode a message m, we first

encode it by a non-malleable code Encnm, and then encode Encnm(m), by a code Encp that is designed to

recover from a p-fraction of errors. In order to argue that this composition is non-malleable, we need that

in addition to the tampering function, the encoding and decoding algorithms (Encp,Decp) are also in the

class C. We are considering the case where C is the class of poly-size circuits, and so, can use any explicit

construction of codes that are designed to recover from p errors.

When composing two codes Encnm,Encp, the rate of the composed code is the product of the two rates.

As by Theorem 1.2 we now have non-malleable codes with rate 1−o(1), applying this composition, we can

get codes that are both non-malleable and recover from a p-fraction of errors, at the same rate of the best

explicit codes that recover from a p-fraction of errors. In particular, we get the following corollary (which

is stated more formally in Corollary 4.3.

Corollary 1.4 (Codes that are best of both worlds, informal). Let Rexplicit(p) denote the best rate for which

there are explicit codes that recover from a p fraction of errors. If E is hard for exponential size nondeter-

ministic circuits, then for every 0 ≤ p < 1
4 , and every constant c, there is a non-malleable code (Enc,Dec)

against circuits of size nc, with rate R approaching Rexplicit(p), that recovers from a p-fraction of errors.

Furthermore, Enc and Dec can be computed in time poly(nc).

Let Rbest(p) denote the best rate for which there are codes that recover from a p-fraction of errors

(without the explicitness requirement). Obviously, Rexplicit(p) ≤ Rbest(p). Determining these rates is a

notoriously difficult longstanding major open problem of coding theory. It is known that 1 − H(2p) ≤
Rbest(p) < 1 − H(p). (The left inequality is the Gilbert-Varshamov bound, and the right inequality is

a consequence of the Elias-Bassalygo bound). The best known explicit codes are inferior to the Gilbert-

Varshamov bound, and have Rexplicit(p) < 1−H(2p). (Recently, there has been progress on explicit codes

with rate that is close to the Gilbert-Varshamov bound for p approaching 1
4 [TS17, JST21, BD22]).

Codes against poly-size circuits with rate that is superior to that of coding theory. In our scenario, we

are already assuming that channels are poly-size circuits, and that encoding maps are randomized. For this

scenario, there are recent explicit constructions by Shaltiel and Silbak [SS23] of codes that recover from a

p-fraction of errors (w.h.p) and have rate R(p) = 1 − H(p). That is, these codes have rate R(p) that is

5

superior toRbest(p) (let aloneRexplicit(p)). These constructions rely on the same hardness assumption used

in Theorem 1.2, and by applying composition with these codes, we obtain the following corollary (which is

stated more formally in Corollary 4.4).

Corollary 1.5 (Codes that are best of both worlds, with rate R = 1 − H(p), informal). If E is hard for

exponential size nondeterministic circuits, then for every 0 ≤ p < 1
4 , and every constant c, there is a non-

malleable code (Enc,Dec) against circuits of size nc, with rateR approaching 1−H(p), such that for every

message m ∈ {0, 1}Rn, and every size nc circuit C that alters at most a p-fraction of the bits of Enc(m),
with high probability over the randomness of Enc it holds that Dec(Enc(m)) = m. Furthermore, Enc and

Dec can be computed in time poly(nc).

It is instructive to compare Corollary 1.4 to Corollary 1.5. As we have explained above, the latter

achieves codes with rate 1−H(p) that is superior to Rbest(p), and thus also to Rexplicit(p) (that is achieved

by the former). In fact, the rate of R(p) = 1 − H(p) achieved in [SS23], and inherited in Corollary 1.5,

matches the capacity of codes for Shannon’s binary symmetric channel.

However, the former gives a stronger guarantee of recovering from a p-fraction of errors in the sense that

decoding is guaranteed to produce the original message with probability one, whenever the channel does not

alter more than a p-fraction of the encoded message (and this holds also for tampering functions that are not

computationally bounded). In contrast, Corollary 1.5 achieves a weaker guarantee, correct decoding is only

guaranteed with high probability (say probability 1 − 1
nc), and only in the case that the tampering function

is a size nc circuit). These weaker decoding guarantees are inherited from the codes of Shaltiel and Silbak

[SS23], and are in some sense unavoidable, see [SS23] for a discussion.

Perspective. It is our view that as the scenario of non-malleable codes already assumes that tampering

functions are computationally bounded, and already incorporates an error parameter in the security defini-

tion, the weaker decoding guarantee of Corollary 1.5 (which only holds against channels that are poly-size

circuits) is quite natural in this scenario, and allows achieving rate that is superior to the best possible rate

of standard error correcting codes.

1.3 Overview of the technique

In this section we give an overview of the main ideas that we use. For this purpose we will allow ourselves to

be informal, and not entirely precise. The later technical sections do not build on the content of this section,

and the reader can skip to the technical section if they wish.

1.3.1 Improving the rate of non-malleable codes for poly-size circuits

As explained in the previous section, in order to prove Theorem 1.2 we will try to take a non-malleable code

Enc′ that does not have good rate, and “compile” it into new non-malleable code Enc with rate 1−o(1). Our

initial plan is to apply this transformation on the non-malleable codes of [BDL22], but as we will explain

later in Section 1.3.3, it will turn out that we need Enc′ to have a different variant of non-malleability.

A naive attempt using PRGs Let us start with the following naive attempt (that we will refine later on),

which will nonetheless be instructive. In order to construct a non-malleable code Enc with block length n
and message length k, we will take k′ ≪ k, and a PRG G : {0, 1}k

′

→ {0, 1}k. We will also require and a

non-malleable code Enc′ : {0, 1}k
′

→ {0, 1}n
′

(that may have bad rate, say n′ = poly(k′)). By choosing

6

the stretch of G to be sufficiently large, we can arrange that n′ = o(k). In order to encode a message

m ∈ {0, 1}k, we will choose a uniform seed S ← {0, 1}k
′

and define:

Enc(m) = m⊕G(S),Enc′(S).

That is, we mask m with G(S) (here, G will be a PRG that fools the tampering function C, which is a

poly-size circuit) and append Enc′(S).
The decoding algorithm Dec (of the constructed code) will apply the decoding algorithm Dec′ (of the

initial code) on the second block, to obtain some seed S̄, and complete the decoding, by computing G(S̄),
and xoring it with the first block to produce the decoded message m̄. More formally:

m̄ = Dec(V 1, V 2) = V1 ⊕G(S̄) = V1 ⊕G(Dec′(V2)).

The advantage of this naive approach is that the rate of the constructed code Enc is indeed

k

n
=

k

k + n′
=

k

k + o(k)
= 1 + o(1).

A simple attack that we ignore for now. Note that a poly-size circuit C : {0, 1}n → {0, 1}n can easily

attack this construction by simply ignoring the second block, and xoring the first block with some fixed

value v ∈ {0, 1}k. As C does not alter the second block, the decoding Dec′(Enc′(S)) will produce S̄ = S,

which gives that:

m̄ = Dec(C(Enc(m)) = ((m⊕G(S))⊕ v)⊕G(S̄) = m⊕G(S)⊕G(S)⊕ v = m⊕ v,

This attack completely breaks non-malleability as m̄ = m ⊕ v is related to m. We ignore this attack for

now. This is because using a MAC, it is not difficult to modify the construction to handle this simple attack

(which does not alter the second block). We will deal with this concern later in Section 1.3.4. It is more

problematic to handle attacks that alter the second block, and handling these kinds of attacks is the main

problem that we contend with in this paper.

How do we plan to use the non-malleability of Enc′? Let us focus on attacks that only modify the

second block. When preparing the second block, we have encoded S with the non-malleable code Enc′.
It is instructive to ask what would happen if when preparing the second block, we did not encode S, and

instead sent S “in the clear”. This would have allowed C to replace S with some ψ(S) (for a function ψ
that is computable by a small circuit). Note that we have no non-malleability guarantee for the PRG G, and

as far as we know, it may be the case that there exists a fixed v ∈ {0, 1}k, such that for every S ∈ {0, 1}k
′

,

G(S)⊕G(ψ(S)) = v.7

If this happens then a tampering circuit C that by ignores the first block, and applying ψ on the second

block, leads the decoding algorithm Dec to decode to

m̄ = m⊕G(S)⊕G(ψ(S)) = m⊕ v,

and once again we have that m̄ = m⊕ v and this attack completely break non-malleability. We will refer to

this attack as the ψ-attack.

7It is easy to construct a PRGG with this property, given an arbitrary PRGG′. More specifically, given a PRGG′, we construct

a PRG G where the seed of G has one additional bit. If this bit is zero, we output the output of G on the first part of the seed, and

if not, we xor the output of G with the fixed string v. It is easy to check that this is a PRG that satisfies G(S)⊕G(ψ(S)) = v, for

the function ψ that flips the additional bit of the seed S.

7

In the ψ-attack, C was able to arrange that the “decoded seed” S̄ is ψ(S) that is correlated with S.

Intuitively, encoding S by the non-malleable code Enc′ is supposed to guarantee that the decoded seed S̄ is

not correlated with S, and rule out the ψ-attack. More formally, we will want to argue that having encoded

S with a non-malleable code we have that if S̄ 6= S then:

1. S̄ is independent of S, which will be used to argue that:

2. G(S)⊕G(S̄) is pseudorandom (as xoring the pseudorandom string G(S) with the independent string

G(S̄) yields a pseudorandom string).

If we can do this, this will mean that an attack that only modifies the second block, leads the decoding to

decode to:

m̄ = (m⊕G(S))⊕G(S̄) = m⊕ (G(S)⊕G(S̄)),

which is a pseudorandom distribution that “masks out” m. This intuitively implies that m̄ is unrelated to m
(as required).

Difficulties in implementing the plan above. In the intuition above, we did not take into account that

when the tampering circuit C tampers the second block of Enc(m) (which is the string Enc′(m)) it also

receives the first block of Enc(m) (which is the string m ⊕ G(S)). This in particular means that when C
tries to break the non-malleability of Enc′, it receives additional information about S that the definition of

non-malleability does not account for.

As far as we know, it may be the case that G and Enc′ are related in a way that makes it possible for a

size nc circuit C, that sees both m ⊕G(S) and Enc′(S) to lead the decoding Dec′ to decode to S̄ = ψ(S)
which is correlated with S.8 Even worse, such a C can break non-malleability of Enc by implementing the

ψ-attack described above.

Summing up, it seems that encoding S by a non-malleable code Enc′, does not have the desired effect,

and does not rule out the ψ-attack.

1.3.2 Using seed-extending PRGs

Can we argue that seeing the first block (that is seeing m⊕G(S)) (in addition to the second block Enc(S))
does not help a circuit C to lead Dec′ to decode to a string S̄ that is correlated with S?

It turns out that we can achieve such behavior if we require that the PRG G is seed-extending. A seed

extending PRG is a PRG G that remains secure even when its seed is revealed to the distinguisher. More

formally, (see Definition 2.16) if the function G′(x) = G(x), x is also a PRG. Before explaining why this is

the case, let us discuss the notion of seed-extending PRGs.

Seed-extending PRGs. Seed-extending PRGs exist only in a scenario where the intended class of dis-

tinghuishers cannot run the PRG. In particular, cryptographic PRGs (which fool distinguishers that can

run the PRG) cannot be seed-extending. In contrast, known constructions of Nisan-Wigderson style PRGs

[NW94, IW97, SU05] are seed-extending, and these can be instantiated using the hardness assumption that

E is hard for exponential size deterministic circuits (that we are already assuming).9

8For example, it does not seem that we can rule out the case that a prefix of G(S) is a string Enc′(ψ(S)) where ψ is a OWF. In

such a case (and assume for simplicity that m starts with a prefix of zeros) a small circuit C can lead the Dec′ to output ψ(S), by

simply replacing the second block with a prefix of the first block.
9Another drawback of seed-extending PRGs, is that their error is not negligible, but rather an arbitrary fixed inverse polynomial.

It is known that black-box proofs cannot achieve such PRGs that run in poly-time and have negligible error, under standard hardness

8

Why seed extending PRGs help. We now explain how seed-extending PRGs bypass the problem above.

This argument is inspired by a related approach that was used by Shaltiel and Silbak [SS23] in their con-

struction of codes that recover from errors induced by poly-size channels.

We will require that in addition to the circuit C, the seed-extending PRG G, also fools Enc′,Dec′ (and

this can be achieved as Enc′,Dec′ indeed run in fixed polynomial time). For a seed extending PRG, we have

that:

(G(S), S) ≡c (Uk, S).

Using the fact that G fools Enc′, we conclude that:

(G(S),Enc′(S)) ≡c (Uk,Enc
′(S)).

As we have required thatG also foolsC and Dec′, this means that even after applying the tampering function

C, and then applying Dec′ on the second block, to obtain S̄, we have that the triplet (G(S), S, S̄) (obtained

in the left hand side) is computationally indistinguishable from the triplet (G(S), S, S̃) (obtained in the

right hand side). (Here, S̃ is the string obtained when applying Dec′ in the experiment in the right hand side,

where G(S) is replaced with Uk).

In the right hand side we have that S and S̃ are independent. This is because in the experiment in the

right hand side, the additional string that C sees is Uk (rather than G(S)), and as C could have sampled

this string on its own, it does not help C to break the non-malleability of Enc′. We can therefore use the

non-malleability of Enc′, and conclude that S and S̃ are independent.

From the indistinguishability of the left hand side and the right hand side, we can now conclude that S
and S̄ are computationally indistinguishable from being independent.

Summing this discussion, using seed-extending PRGs, we are able to obtain a weakened version of item

(1) in our plan above. While we can’t show that if S̄ 6= S, then S̄ is statistically independent from S (as in

the original item (1)), we can show that if S̄ 6= S, then S̄ and S are computationally indistinguishable from

being independent.

Unfortunately, this weaker conclusion is not sufficient to imply item (2) in our plan above. Specifi-

cally, we cannot argue that G(S) ⊕ G(S̄) is pseudorandom. This is because such a conclusion requires

the distinguisher to the PRG G, to compute G(S̄) given S̄, and as we have already observed, because G is

seed-extending, distinguishers for G cannot run G.

While this doesn’t succeed, we note that we would have been able to argue that G(S) ⊕ G(S̄) is pseu-

dorandom, if we could guarantee that S̄ is either S or a fixed string s̄. In that case, the fixed string s̄ (as

well as the fixed string G(s̄)) could be hardwired to the distinguisher, and we would be able to argue that

G(S)⊕G(s̄) is pseudorandom.

1.3.3 Replacing non-malleable codes with small set non-malleable codes

Fortunately, the notion of “small-set non-malleable codes” (abbreviated as SS-non-malleable codes) de-

scribed in the introduction, essentially allows us to assume that S̄ is a fixed string, and implement our plan.

More specifically, if we take Enc′ to be an SS-non-malleable code, then the security guarantee of SS-

non-malleable codes (see Definition 2.8 for a precise formulation) gives that for every tampering circuit C,

assumptions [GSV18, AASY15]. There are also extensions of these negative results, that rule out certain black-box constructions

of non-malleable codes with negligible error, from the assumption that E is hard for exponential size nondeterministic circuits

[BDL22]. This is (one of the) reasons why [BDL22] (as well as our Theorem 1.2) do not obtain non-malleable code with negligible

distinguishing advantage.

9

there exists a small set H ⊆ {0, 1}k
′

, such that it is unlikely that C will lead the Dec′ to decode to a string

S̄ that is neither in H , nor the original seed S.

For the sake of intuition, note that if H was of size one, this would exactly say that S̄ is either S or a

fixed string. While we cannot expect H to be of size one, the SS-non-malleable codes of [SS23] achieve

H with a polynomial size. By setting G to fool circuits that are sufficiently larger than the size of H , we

can allow a distinguisher for G to be hardwired with all the pairs (s,G(s)) for s ∈ H . This suffices to

implement the plan outlined above, and show that in our construction, either S̄ = S, or G(S) ⊕ G(S̄) is

pseudorandom.

Summing up, by refining our naive attempt, taking G to be a seed-extending PRG, and Enc′ to be an

SS-non-malleable code, we are able to circumvent the ψ-attack.

1.3.4 The final construction of Enc

We now turn our attention to the simple attack (that we outlined in Section 1.3.1) and modify the construction

of Enc so that it also bypasses the simple attack. This will be done as follows:

In addition to the PRG G and the SS-non-malleable code Enc′, we will also use a pairwise independent

family of hash functions mapping n bits to k′ bits. In order to encode a message m ∈ {0, 1}k, we will

choose a two uniform seeds SPRG, SHash ← {0, 1}
k′ . We define S = (SPRG, SHash), K = G(SHash), and

set T = hK(m). That is, we use K = G(SHash) as a “key” to choose a function hK from the pairwise

independent hash family, and set T = hK(m). Finally, we encode m by:

Enc(m) = m⊕G(SPRG),Enc
′((S, T)).

The decoding algorithm Dec proceeds as before, namely, Dec will apply the decoding algorithm Dec′ (of the

SS-non-malleable code) on the second block, to obtain some string (S̄, T̄). It will then compute G(S̄PRG),
and xor it with the first block to produce a candidate message m̄. At this point, Dec will compute K̄ =
G(S̄Hash), and check whether hK̄(m̄) = T̄ . If this is the case, Dec will output m̄, and otherwise Dec will

fail.

Circumventing the simple attack. The addition of the hash function is done in order to circumvent the

simple attack described in Section 1.3.1. Recall that in that simple attack the tampering function does not

alter the second block, and only alters the first block. In this refined construction, we will be able to argue

that it is unlikely that Dec will produce a message m̄ (rather than failing) on this simple attack.

Here is a rough sketch of this argument. Let C be a tampering circuit. Recall that G is a seed extending

PRG that fools both C and Dec′. If C implements the simple attack, we are willing to reveal m, S and T
to C (and note that this reveals all the randomness of Enc as well as the message m). However, because G
is seed-extending, SHash is (computationally) independent of K = G(SHash), which intuitively means that

even after we revealed SHash, C does not have information on the key K used to choose the hash function.

By a standard application of pairwise independence, this can be used to argue that C cannot find a message

m̄ 6= m, on which hK(m̄) = hK(m), and so, Dec will fail w.h.p., and the simple attack cannot make Dec
output a message m̄ (let alone one that is related to m).

We remark that here, we once again benefited from the fact thatG is a seed-extending PRG. Specifically,

this allowed us to reveal the seed SHash, and still maintain that K = G(SHash) is “secret”.

1.3.5 A sketch of the non-malleability proof

So far, we have only explained how our construction avoids very specific attacks. In this section we will

give a sketch of the non-malleability proof. The high level idea is to compare two experiments: The first

10

experiment is the “real experiment” in which the encoding Enc, tampering function C, and decoding Dec
run as designed. The second is an “imagined experiment” in which the strings G(SPRG), and G(SHash) are

replaced by uniform strings.

A simplifying assumption. Let’s assume for simplicity that the pseudorandomness ofG implies that these

two experiments are computationally indistinguishable. Note that this does not directly follow from the fact

that G is a PRG, because Dec (which is applied in the two experiments) needs to run G as part of the

decoding, and as G is seed-extending, it cannot fool adversaries that run G.

An important observation is that the imagined experiment can be carried out without knowing m. This

follows because in this experiment, in the encoding phase, the first block of Enc(m) is m ⊕ Uk (which

is independent of m). Furthermore, in the imagined experiment, the pair (S, T) is a uniformly distributed

string (that is independent of m). Therefore, one can can sample it, without knowing m.10

The fact that the imagined experiment can be carried out without knowingm, allows us to get a simulator

for the non-malleable code. Loosely speaking, this simulator will sample from the imagined experiment,

and we will use the computational indistinguishability of the real experiment and the imagined experiment

to argue the correctness of the simulator. We remark that this description hides many details.

Justifying the simplifying assumption using SS-non-malleability. While the computational indistin-

guishability of the real experiment and the imagined experiment does not follow from the pseudorandom-

ness of G. We are able to show that it does follow, by also using the SS-non-malleability of Enc′. This

argument is similar in flavor to the argument that we explained in Section 1.3.3.

Loosely speaking, the idea is that using SS-non-malleability (as well as the fact that G is a seed-

extending PRG, and the ideas explained in Sections 1.3.2 and 1.3.3) we can show that in the imagined

experiment, for every tampering function C, there exists a small set H of seeds, such that it is unlikely that

C can lead Dec′ to output a seed S̄ which is neither in H , nor the original S. As in Section 1.3.3, we can

set the PRG G to fool distinguishers of size slightly larger than |H|. This will allow us to argue that the two

experiments are computationally indistinguishable.

Recall that previously, we could not argue that the real experiment and the imagined experiment are

computationally indistinguishable, because in both experiments a potential distinguisher needed to compute

G, and is therefore “too large” to be fooled by G.

However, as it is unlikely that an S̄ 6∈ H would come up, it is now sufficient to fool a distinguisher that

is hardwired with the triplet s,G(sPRG), G(sHash) for every s ∈ H . (As this allows the distinguisher to run

G on all inputs that are likely to come up in the experiment).

We can indeed set G so that it fools such distinguishers, and this allows us to argue that the real experi-

ment and the imagined experiment are computationally indistinguishable.

While we are hiding some details here, this argument is similar in spirit to our explanation of how to

handle the ψ-attack. In particular, it critically relies on the fact that G is seed-extending, and that Enc′ is

SS-non-malleable.11

10Note that here we crucially use that when preparing the key K for the hash function, we applied a seed-extending PRG G,

and took K = G(SHash) (rather than K = SHash). In the former case, when we replace G(SHash) with Uk, we obtain a key K

that is independent of SHash, and this is why we get that (S, T) is uniformly distributed. Had we used the more natural choice of

K = SHash, then the pair SHash, hSHash(m) contains information about m, and we can’t sample such a pair without knowing m.
11Curiously, our simulator is non-black box in the following manner: It is not sufficient for our simulator to receive black-box

access to the tampering circuit C, and it also requires to be hardwired with the set H (associated with C, by SS-non-malleability)

as well as the triplet s,G(sPRG), G(sHash) for every s ∈ H .

11

1.3.6 Achieving statistical indistinguishability with a suitable HTS

The construction that we have outlined in the previous sections only achieves computational indistinguisha-

bility. In this section we explain the direction stated in Theorem 1.3 which shows that we can get a code

with statistical indistinguishability if we have a suitable HTS.

More specifically, given an HTS f : {0, 1}k → {0, 1}o(k) (as promised in Theorem 1.3) we will modify

the code (Enc,Dec) of Theorem 1.2 as follows: To encode a message m, we will apply Enc on the string

(m, f(m)). (Note that as |f(m)| = o(|m|) this only slightly reduces the rate of the initial code). Having

made this change, when decoding, we expect to get a pair of the form (X, f(X)), and decoding will fail if

this is not the case.

Recall that an HTS is a function that is hard to sample, and we plan to apply the HTS against the

simulator of (Enc,Dec). The transformation described above applies to any non-malleable codes with the

following property: For every tampering circuit C of size nc, there is a simulator SimC that is a circuit

of size ncSim that produces a distribution DC (as required in Definition 1.1) where computational indis-

tinguishability holds against distinguishers that are circuits of size nc
′

(for a constant c′ that is sufficiently

larger than c, cSim). The code construction of Theorem 1.2 has this property.

The security definition of the HTS (when applied against circuits of size ncSim) guarantees that for every

circuit C of size nc, the HTS f is secure against SimC . This formally means that there exists a small set H
(that depends on C) such that SimC is unlikely to sample a pair (X,Y) such that X 6∈ H , and Y = f(X).

This implies that the ditributionDC (sampled by SimC) is statistically close to having small support. We

can set the parameters so that this support is much smaller than nc
′

. By the definition of non-malleability,

we get that DC cannot be distinguished from TamperC(m) by circuits of size nc
′

.

However, when a distribution has support size nc
′

, any statistical test can be implemented by a circuit

of size roughly nc
′

. This means that statistical indistinguishability immediately follows from computational

indistinguishability.

Shaltiel and Silbak [SS23] constructed an HTS from the hardness assumption that we are already as-

suming. However, their construction does not achieve set size that is sufficiently small for our purposes, for

a function f : {0, 1}n → {0, 1}o(n).
We remark that the set size in the construction of [SS23] would be sufficiently small for our purposes, if

the parameters of explicit constructions of high-error seeded dispersers are improved. See [SS23] for details.

1.4 Other Rate Compilers for Non-Malleable Codes

Our work is not the first to consider rate optimizing compilers for non-malleable codes. All of these com-

pilers, including the one in this paper, share a similar structure that mimics “hybrid” encryption paradigm:

in each compiler some form of a low rate non-malleable code (NMC) is combined with some form of sym-

metric key “authenticated encryption.” That said, despite the high level similarity the specific instantiations

of each primitive vary widely, and each setting requires overcoming very different analytical challenges.

The rate compiler in this paper instantiates high-rate “authenticated encryption” by hiding the message

with a (non-cryptographic) seed-extending PRG and applying a information-theoretic MAC with a pseudo-

random key. Moreover, low-rate the non-malleable code used is not an NMC for polynomial tampering, but

instead a small-set NMC. As seen in Section 1.3, these choices were made to deal with challenges specific

to the setting of tampering by polynomial-size circuits.

In contrast to this work, all other compilers are for settings where the tampering must obey some kind

of locality constraint: the tampering function corresponding to any particular tampered output bit only has

access to partial information about the original codeword.

12

Local tampering. Perhaps the first rate compiler was introduced by [AGM+15] who showed how to

compile a polynomial rate non-malleable code for the family of 1-local tampering functions (where each

output bit depends on at most one input bit) to a rate 1 non-malleable code for the same class. In this

compiler “authenticated encryption” is instantiated by encoding the message in a high rate error-correcting

threshold secret-sharing scheme, flipping a few bits, and writing down the indices changed. This scheme

is obviously highly tailored to this very restricted tampering setting, yet nonetheless the analysis is quite

delicate.

Later [GMW19] techniques from the compiler of [AGM+15] as well as techniques used by [BDKM16]

to construct non-malleable codes for local tampering to achieve rate 1 non-malleable codes for c lgn-local

functions where c < 1 (i.e. tampering functions where each bit depends on the output). This work did not

compile non-malleable codes for local functions directly, but instead compiled codes for a tampering class

(called “leaky input-output local” tampering) which was a class considered in [BDKM16] in order to build

NMC for local functions.

Computationally bounded split-state tampering. After [AGM+15]’s initial compiler, [AAG+16] showed

how to compile a polynomial rate NMC for split-state tampering (which remains secure special leakage re-

silient properties, a so-called augmented split-state NMC) to a rate 1 NMC for computational split-state

tampering. Computational split-state tampering is split-state tampering (where the left half of the code-

word must be tampered independently of the right half) which is additionally restricted to be computable

in polynomial time.12 Note that without this additional computational restriction rate 1/2 is the best possi-

ble [CG16].

Their compiler simply encoded the key to a high rate authenticated encryption scheme with using a

split-state NMC, then the ciphertext is simply appended to one of the NMC codeword halves. To handle

the fact that the tampering function can jointly tamper the ciphertext text (which depends on the secret key)

with half of the codeword, augmented non-malleability was introduced.

Split-state tampering. A sequence of works [KOS17, KOS18, GMW17, AO20, AKO+22] used rate com-

pilers to improve the rate of NMCs for split-state tampering and t-state tampering (where the codeword is

broken into t > 2 blocks which are tampered independently).

[KOS17] showed how to compile a low rate split-state NMC to a rate 1/3 4-state NMC. [KOS18,

GMW17] later showed reduce the states in the resulting code to 3. Finally, [AKO+22] showed how to

reduce the states in the resulting code to just 2, yielding a rate 1/3 split-state NMC, which is currently the

best known rate of any explicit NMC in this setting. There are slight differences between these compil-

ers but they largely follow the template established in [KOS17]: a seeded extractor is used to build a high

rate leakage-resilient encoding scheme which is then tagged using an information theoretic MAC, then the

(short) seed for the leakage resilient encoding scheme and the key for the information theoretic MAC are

encoded using a low-rate split-state NMC. The analysis critically relies on the independence between the

states (making the template work for just 2 tampering states is particularly subtle).

1.5 Organization of this paper

In Section 2 we give preliminaries, provide formal definitions, and the statements of earlier work that we

use. In Section 3 we formally restate Theorem 1.2 and present our construction and analysis of our non-

malleable codes of Theorem 1.2. In Section 4 we formally restate Corollaries 1.4 and 1.5 and present our

12In contrast, to the tampering model considered in this work the polynomial time bound need not be fixed a priori. However,

the model considered here each tampered codeword bit may depend on all the bits of the original codeword.

13

results on codes that achieve the best of both worlds. In Section 5 we formally restate Theorem 1.3 and

show how to use an improved HTS to achieve non-malleable codes with statistical security.

2 Preliminaries and ingredients

In this section we give formal definitions of the notions and ingredients used in the construction. We also

cite previous results from coding theory and pseudorandomness that are used in the construction.

General notation. We use [n] to denote {1, . . . , n}.

Probability distributions. We use Un to define the uniform distribution on n bits. The statistical distance

between two distributions P,Q over Ω is ∆(P,Q) = maxA⊆Ω |P (A) − Q(A)|. Given a distribution P ,

we use X ← P to denote the experiment in which the random variable X is chosen according to P .

For a set A, we use X ← A to denote the experiment in which X is chosen uniformly from A. We

use X1, . . . , Xn ← A to denote the experiment in which n variables are chosen uniformly from A with

replacement. Given two random variables X and Y distributed over the same support we use X ≈s
ǫ Y to

denote that X and Y are sampled from distributions that have statistical distance at most ǫ. X and Y are

said to be ǫ-indistinguishable for the class of functions C, denoted as X ≈Cǫ Y , if for every D ∈ C it holds

that |Pr[D(X) = 1]− Pr[D(Y) = 1]| ≤ ǫ.

Hamming distance. The Hamming distance between x, y ∈ [q]n is ∆(x, y) = | {i : xi 6= yi} |. The

relative Hamming distance between x, y ∈ [q]n is δ(x, y) = ∆(x,y)
n .

2.1 Circuits and hardness assumptions

The assumption that E is hard for exponential size circuits of a certain type is formally stated below.

Assumption 2.1 (E is hard for exponential size circuits). We say that “E is hard for exponential size circuits

of type X” if there exists a language L in E = DTIME(2O(n)) and a constant β > 0, such that for every

sufficiently large n, the characteristic function of L on inputs of length n cannot be computed by circuits of

size 2βn of type X .

This assumption was used by Impagliazzo and Wigderson [IW97] with hardness against determinis-

tic circuits to imply that BPP = P. Later work in complexity theoey and cryptography [KvM02, MV05,

TV00, SU05, BOV07, GW02, GST03, SU06, SU09, Dru13, AASY15, BV17, AIKS16, HNY17, DMOZ22,

BDL22, CT22] used the assumption that E is hard for nondeterministic circuits for various conclusions. In

this paper, we also rely on this assumption. For completeness, we give a formal definition of nondetermin-

istic circuits below.

Definition 2.2 (randomized circuits and nondeterministic circuits). A randomized circuit C has additional

wires that are instantiated with uniform and independent bits. A nondeterministic circuit C has additional

“nondeterministic input wires”. We say that the circuit C evaluates to 1 on x iff there exist an assignment

to the nondeterministic input wires that makes C output 1 on x.

14

2.2 Coding schemes: non-malleable codes, SS-non-malleable codes and error correcting

codes.

In this section, we define the various notions of codes that come up in this paper. We start from the following

baseline notion of coding schemes, which requires that the original message is recovered if no errors are

introduced. The later definitions of various notion of codes will all have this baseline property.

Definition 2.3. A pair of functions (Enc,Dec), where Enc : {0, 1}k → {0, 1}n is a randomized function

and Dec : {0, 1}n → {0, 1}k ∪ {fail} is a deterministic function is defined to be a coding scheme with

block length n and message length k, if for every m ∈ {0, 1}k, Pr[Dec(Enc(m)) = m] = 1. We say that

a coding scheme is deterministic if Enc is a deterministic function. The rate of a coding scheme is k
n . A

coding scheme is explicit if Enc and Dec run in polynomial time. (Naturally, this makes sense only for a

family of encoding and decoding functions with varying block length n, and message length k(n).

We will often be interested in coding schemes that work against a specified family of channels C :
{0, 1}n → {0, 1}n (which will often be allowed to be randomized).

Definition 2.4 (Tampering Channels). For an integer n, we define the following.

• Fn is the class of all function C : {0, 1}n → {0, 1}n.

• F rand
n is the class of all randomized functions C : {0, 1}n → {0, 1}n.

In this paper we will be interested in the class of (deterministic or randomized) circuits of a fixed poly-

nomial size.

2.2.1 Non-malleable codes

Non-malleable codes are coding schemes that provide some decoding guarantee, even against powerful

adversaries that can completely modify the codeword. The definition below (which extends the informal

definition given in the introduction) is due to Dziembowski, Pietrzak, and Wichs [DPW18].

Definition 2.5 (The function Copy). The function Copy is defined as follows:

Copy(x, y) =

{
x, x 6= same
y, x = same

Definition 2.6 (non-malleable codes [DPW18]). A coding scheme (Enc,Dec) with block length n and

message length k is said to be ǫ-non-malleable for a class C ⊆ F rand
n , if for every C ∈ C, there exists a

distribution DC that is supported on {0, 1}k ∪ {same}, and for every m ∈ {0, 1}k,

Copy(DC ,m) ≈s
ǫ Dec(C(Enc(m))).

Let C′ be a class of functions. The coding scheme is only C′-computationally ǫ-non-malleable for the class

C, if

Copy(DC ,m) ≈C
′

ǫ Dec(C(Enc(m))).

(That is if statistical distance, is replaced by indistinguishability for distinguishers in C′).
We say that the codong scheme is simulatable by a size s-circuits, if for every C ∈ C, there exist a size

s randomized circuit SimC that samples DC .

15

In this paper, we focus on the case where both C and C′ is the class of circuits of fixed polynomial size.

Remark 2.7 (Non-malleability for randomized circuits, and black-box simulation). We will often use non-

malleability against the class C of randomized circuits of a certain size. It should be noted that when one

is only interrested in non-malleability, and does not care whether the code is simulatable by a small circuit,

non-malleability against (deterministic) circuits immediately implies non-malleability against randomized

circuits.

Moreover, efficient simulation against randomized circuits immediately follows from efficient simulation

against deterministic circuits, in the case that the simulator is black-box. More precisely, if for every deter-

ministicC. the simulator SimC can be implemneted using only oracle access toC (that is, if SimC = SimC)

then, as the simulator works for every choice of random coins of a randomized circuit, it also simulates

against the randomized circuit.

However, the simulators that we construct in this paper do not have this property. They are non-black-

box in the sense that in addition to oracle access to C, the simulator SimC also needs to be hardwired with

a polynomial length nonnuniform string (that depend on C).

In such a scenario, simulation against deterministic circuits does not immediately imply simulation

against randomized circuits. Nevertheless, our techniques do yield simulators against randomized circuits,

and this is why we are careful in Definition 2.6 (as well as the rest of the paper) about the distinction between

deterministic and randomized circuits.

2.2.2 Small set non-malleable codes

Shaltiel and Silbak [SS22, SS23] defined a notion called “small set non-malleable codes” (which is closely

related to a notion of “bounded non-malleable codes” introduced by Faust et al. [FMVW16]). In this paper,

we do not require the full power of the definition made in [SS22, SS23], and define a weaker object (while

still referring to it as an SS-non-malleable code). The reader is referred to [SS22, SS23] for the definition

of the stronger object, and to [SS22] for a discussion on how SS-non-malleable codes capture a different

intuition than the standard notion of non-malleability, and why it seems that small set non-malleability is

incomparable to standard non-malleability.

Loosely speaking, the definition below requires that for every tampering function C, there exists a small

set H of messages, such that when C gets to corrupt the encoding of a uniformly chosen message X , it is

unlikely that the decoding will produce a message that is neither in H , nor the original message X .

Definition 2.8 (SS-non-malleable codes [SS22, FMVW16]). A coding scheme (Enc,Dec) with block length

n and message length k, is (h, ρ)-SS-non-malleable for a class C ⊆ F rand
n , if for every C ∈ C, there exists

a set HC ⊆ {0, 1}
k, with |HC | ≤ h, such that:

Pr
X←{0,1}k

[Dec (C(Enc(X)))) 6∈ HC ∪ {X} ∪ {fail}] ≤ ρ.

Shaltiel and Silbak [SS23] gave the following construction of SS-non-malleable codes. Once again, we

remark that the construction of [SS23] achieves a stronger object, and that the statement we provide here is

weaker, and yet, sufficient for our purposes.

Theorem 2.9 (Construction of SS-non-malleable codes construction, [SS23]). There exists a constant c0 >
1 such that if E is hard for exponential size nondeterministic circuits then for every constant cssnm > 1, there

exist constants tssnm > cssnm ≥ 1 and constants a′ssnm ≥ 1 such that for every constant assnm ≥ a
′
ssnm and

for every sufficiently large n, setting k = assnm · log n and k′ = kc0 , there is a coding scheme (Enc,Dec)

16

with message length k and block length k′ that is a (na
′

ssnm , 1
ncssnm)-SS-non-malleable codes for randomized

circuits of size ncssnm . Furthermore, Enc,Dec can be computed in time ntssnm .

Remark 2.10. We remark that an SS-non-malleable code against deterministic circuits, does not imply SS-

non-malleability against randomized circuits. This is because, while the former does imply that for every

fixing of random coins, there exists a suitable small set H , these sets may be different for different choices

of random coins. Theorem 2.9 is stated for randomized circuits, and gives the stronger guarantee, that for

every randomized circuit of size nc, there exists a suitable small set H .

2.2.3 Standard error correcting codes: decoding from errors

We now define the standard notion of error correcting codes used in coding theory. Such codes are usually

defined by requiring a minimal distance property, namely, that for every two messages m0,m1 ∈ {0, 1}
k,

the Hamming distance between Enc(m0) and Enc(m1) is large. In this paper it will be more convenient

to use the notation of coding schemes. (In contrast to non-malleable codes, here, coding schemes can be

deterministic).

Definition 2.11 (Decoding from errors). A deterministic coding scheme (Enc,Dec) with block length n and

message length k, decodes from a p fraction of errors if for every m ∈ {0, 1}k and every v ∈ {0, 1}n with

δ(Enc(m), v) ≤ p, Dec(v) = m.

It is standard that a deterministic coding scheme is decodable from a p fraction of errors if and only if

the Hamming distance between every two codewords is at least 2pn + 1. It is also known that for p ≥ 1
4 ,

coding schemes that decode from a p fraction of errors must have vanishing rate, and this is why we restrict

our attention to p < 1
4 in this paper.

2.2.4 Decoding from errors induced by a specified class of channels

The standard scenario considered in error-correcting codes (described in the earlier section) assumes that

there is an upper bound p on the fraction of errors introduced by the channel, but places no computational

restriction on the channel. Lipton [Lip94] suggested to consider the case where channels are computationally

bounded (in addition to the upper bound on the fraction of errors that they induce). The definitions below

which considers such a situation was given by Guruswami and Smith [GS16].

Definition 2.12 (Decoding from errors introduced by a class of channels). A coding scheme (Enc,Dec) with

block length n and message length k, is decodable for the class C ⊆ F rand
n , with success probability 1− ν,

if for every m ∈ {0, 1}k and every C ∈ C, Pr[Dec(C(Enc(m))) = m] ≥ 1 − ν, where the probability is

over coin tosses of the encoding Enc and the channel C.

Following the discussion above, we will mostly be interested in the case that C is the class of poly-size

circuits that induce at most a p fraction of errors. This is captured by the definition below.

Definition 2.13 (A channel that induces a p-fraction of errors). We say that a class of channels C ⊆ F rand
n

induces at most a p-fractions of errors, if for every C ∈ C and z ∈ {0, 1}n it holds that δ(z, C(z)) ≤ p.

In recent years, there have been several constructions of coding schemes that decode against classes of

compuationally bounded channels that induce a p-fraction of errors [GS16, SS21a, KSS19, SS21b, SS22,

SS23]. The reader is referred to [SS23] for more details.

In this paper, we will use the following code for poly-size circuits that induce at most a p-fraction of

errors, due to Shaltiel and Silbak [SS23].

17

Theorem 2.14 (Coding schemes for poly-size channels [SS23]). If E is hard for exponential size nondeter-

ministic circuits then for every constants 0 ≤ p < 1
4 , c > 1, and for every sufficiently small constant ǫ > 0,

there exists a constant d, such that for infinitely many n, there is a coding scheme (Enc,Dec) for circuits

of size nc that induce at most a p-fraction of error, with rate R ≥ 1 − H(p) − ǫ, and success probability

1− 1
nc . Furthermore, Enc and Dec can be computed in time nd.

Remark 2.15. While Theorem 2.14 is stated for (deterministic) circuits, it immediately extends also to

randomized circuits.

2.3 Pseudorandom generators

We need the following standard definition of pseudorandom generators.

Definition 2.16 (Pseudorandom generators). A distribution X on n bits is ǫ-pseudorandom for a class C of

functions, if for every C ∈ C, |Pr[C(X) = 1]− Pr[C(Un)] = 1]| ≤ ǫ. A function G : {0, 1}d → {0, 1}n is

an ǫ-PRG for C if G(Ud) is ǫ-pseudorandom for C. G is seed-extending if the function G′(x) = x ◦G(x)
is an ǫ-PRG for C.

The classical result of Impagliazzo and Wigderson [IW97] gives a PRG for poly-size circuits, under the

assumption that E is hard for exponential size circuits.

Theorem 2.17 (PRGs from hardness assumptions [IW97]). If E is hard for exponential size circuits then

for every constant c > 1, there exists a constant a > 1 such that for every sufficiently large n, there is

a G : {0, 1}a·logn → {0, 1}n that is a seed-extending 1
nc -PRG for circuits of size nc. Furthermore, G is

computable in time poly(nc).

2.4 Pairwise independent hash functions

We need the following standard definition of pairwise independent hash functions.

Definition 2.18 (Pairwise independent hash functions). A family Hashn,d of functions Hashw : {0, 1}n →
{0, 1}d indexed by w ∈ {0, 1}ℓ is said to be pairwise independent if for every messages x0 6= x1 ∈ {0, 1}

n

and every y0, y1 ∈ {0, 1}
d it holds that:

Pr
w←{0,1}ℓ

[Hashw(x0) = y0 ∩Hashw(x1) = y1] ≤ 1/22d,

In particular, for every x ∈ {0, 1}n, it holds that HashUℓ
(x) ≡ Ud.

We use the following standard construction of pairwise independent hash functions due to Carter and

Wegeman.

Theorem 2.19 (Pairwise independent hash functions). For every d ≤ n there exists a family Hashn,d of

functions Hashw : {0, 1}n → {0, 1}d indexed by w ∈ {0, 1}2n such that Hashn,d is pairwise independent.

Moreover, there is a poly-time algorithm that runs in time ntHash for some fixed universal constant tHash,

that given d, x,∈ {0, 1}n and w ∈ {0, 1}2n outputs Hashw(x).

3 Non malleable codes with rate 1− o(1) for poly-size circuits

In this section we formally state Theorem 1.2 which is the main result for this paper. We give an explicit

construction of a computationally secure non-malleable codes with rate 1− o(1).

18

3.1 The construction

We remind the reader that an overview of the construction and analyis appears in Section 1.3. Our con-

struction is presented in the figures below. More specifically in Figure 1 we specify the parameters and

ingredients used in our construction, and in Figures 2 and 3 we present the encoding and decoding algo-

rithms that make use of these ingredients.

The following theorem is a our main result and is a formal version for Theorem 1.2 stated in the intro-

duction.

Theorem 3.1 (Main Theorem). If E is hard for exponential size nondeterministic circuits then for every con-

stant c > 1 there exists a constant tSim > c such that for every constant c′ > 0 and for every sufficiently large

n the following holds: If the parameters and ingredients are chosen as in Figure 1 then (Encnm,Decnm)
specified in Figures 2, 3, is a coding scheme from ndata bits to n bits, has a rate R = 1 − 1/n0.5, and is

a C-computationally 1/nc-non-malleable for randomized circuits of size at most nc, where C is the class of

randomized circuits of size at most nc
′

. Furthermore, (Encnm,Decnm) is simulatable by a size ntSim ran-

domized circuit (where tSim depends only on c), and (Encnm,Decnm) can be computed in time ntnm where

tnm is a constant that depends on c and c′.

The remainder of this section is devoted to the proof of Theorem 3.1.

3.2 Proof of main theorem 3.1.

We will use the construction specified in Figures 1,2 and 3. In the proof below, we will choose a sufficiently

large universal constant c0 (that will be chosen later).

We are given a constant c, and Figure 1 specifies constants cHash, cssnm, a
′
ssnm, tssnm. It then chooses

tSim = tssnm + tHash + a′ssnm + c + c0/2, as a function of c (and the aforementioned constants that were

determined from c). We are then given a constant c′ and Figure 1 proceeds to choose constants cPRG, aPRG

and assnm (as a function of c and c′).
Figures 1,2 and 3 specify the construction for the functions (Encnm,Decnm). We will show that this

construction has the properties guaranteed in Theorem 3.1.

In Figure 4 we specify the simulator that we use to prove Theorem 3.1. More specifically, for every

sufficiently large n, and a tampering function C : {0, 1}n → {0, 1}n that is a size nc randomized circuit and

for every set H ⊆ {0, 1}ℓ+dHash we define a probabilistic procedure SimC,H which produces an output in

{0, 1}ndata ∪ {fail, same}. The simulator SimC,H of Figure 4 makes use of the following definition.

Definition 3.2 (Set-bounded-PRG). Given a set H ⊆ {0, 1}ℓ+dHash and a PRG Ĝ we define the set-

bounded-PRG function ĜH that given (s, τ) ∈ H , outputs Ĝ(s). We will often think of ĜH as a truth table

(of length |H| · 4n bits) and the simulator will be hardwired with such a truth table.

For every randomized channel C (that is a size nc randomized circuit) we define the tampering experi-

ment. This is the experiment in which Encnm is applied on message m with uniform randomness (S,R)).
Then the channel corrupts the codeword, and finally, the decoder decodes.

Definition 3.3. For a circuit C : {0, 1}n → {0, 1}n and a message m ∈ {0, 1}n define:

TamperC(m) = Decnm(C(Encnm(m;S,R)))

where S ← Uℓ and R← Udssnm .

19

Figure 1: Parameters and Ingredients for the proof of Theorem 3.1

Parameters given to the construction: The order in which parameters are chosen in Theorem 3.1 is as follows:

• We are given a constant c and are aiming to construct an ǫ-non-malleable code for the class C = size(nc) and

ǫ = 1/nc. In the proof of Theorem 3.1 we will choose a constant tSim as a function of c. (We are aiming that the

simulator for the code will run in time ntSim).

• After choosing the constant tSim, we are given a constant c′, and are aiming to get a non-malleable code that is

C′-computationally secure for C′ = size(nc
′

).

Message length and block length of the coding scheme:

• The coding scheme that we construct will have block length n. Throughout, we assume that n is sufficiently large,

and that other parameters are chosen as a function of n.

• Let ndata = n − n0.1. The coding scheme that we will construct will have message length ndata. Let nctrl =
n− ndata = n0.1. In the construction the n bit codeword will composed of two parts of length ndata and nctrl.

Ingredients and additional parameters:

A large constant c0: Let c0 > 1 be a sufficiently large universal constant that we will choose in the proof of

Theorem 3.1.

A hash function Hash: Let cHash = c+ c0, and dHash = cHash · log(n). We apply Theorem 2.19 to obtain a hash

function Hash: {0, 1}ndata ×{0, 1}ℓHash → {0, 1}dHash with ℓHash = 2 ·ndata, and also have that Hash runs

in time ntHash .

SS-non-malleable code: Let cssnm = c + c0. We apply Theorem 2.9 for circuits of size ncssnm and obtain a

constant a′ssnm and tssnm. Theorem 2.9 guarantees that we can choose any constant assnm > a′ssnm and

obtain a coding scheme (Encssnm,Decssnm) with message length assnm · log(n) and block length nctrl.
(This follows as Theorem 2.9 guarantees that the block length is a fixed polynomial in the message length,

and we have chosen block length nctrl = n0.1 which is larger than a fixed polynomial in the message length).

By Theorem 2.9 we also have that (Encssnm,Decssnm) is a (na
′

ssnm , 1/ncssnm)-SS-non-malleable code, and

the encoding and decoding can run in time ntssnm . Note that we have not yet chosen the constant assnm, and

will do so later.

The constant tSim: We are aiming to prove Theorem 3.1 in which the constant c′ can be chosen as a function of

a constant tSim that is determined by the proof. Note that indeed, all parameters and ingredients chosen so

far, were chosen as a function of c At this point, we choose tSim = tssnm + tHash + a′ssnm + c + c0/2, and

receive the constant c′.

Seed extending PRG G: Let cPRG = tssnm+ tHash+a
′

ssnm+c+c′+c0. We apply theorem 2.17 for the constant

cPRG+1 and obtain a constant aPRG such thatG : {0, 1}aPRG·logn → {0, 1}2n is 1/ncPRG+1-pseudorandom

for circuits of size ncPRG+1. Note that the output length of G is 2n ≥ ndata. This allows us to truncate the

output to length of G to ndata, without harming its properties.

The parameters ℓ and ℓ′: We will use ℓ′ = aPRG · log(n) to denote the seed length of the seed-extending PRG

G. We set ℓ = 2 · ℓ′, and will define another seed-extending PRG with seed length ℓ below.

A seed-extending PRG Ĝ: Given a seed s ∈ {0, 1}ℓ we think of it as consisting of two strings (sPRG, sHash) ∈
{0, 1}ℓ

′

× {0, 1}ℓ
′

. We define the seed extending PRG Ĝ : {0, 1}ℓ → {0, 1}ndata+ℓHash by Ĝ(s) =
G(sPRG), G(sHash) (where the output of G(sPRG) is truncated to its first ndata and the output of G(sHash)
is truncated to its first ℓHash = 2n bits). By a simple hybrid argument we get that Ĝ is a seed extending PRG
that is 1/ncPRG -pseudorandom for circuits of size ncPRG .

Message length for SS-non-malleable code: We can now specify our choice for the constant assnm stated above,

and we take assnm = 2 ·aPRG+ cHash. This choice was made, so that the message length of the ssnm code is

assnm · log(n) = ℓ+dHash. Indeed, we will use the ssnm code to encdoe pairs (s, τ) ∈ {0, 1}ℓ×{0, 1}dHash .

20

Figure 2: Encoding algorithm for the non-malleable code

Definition: We define a randomized function Encnm : {0, 1}ndata → {0, 1}n as follows:

Input:

• A message m ∈ {0, 1}ndata .

• A “random coin” for the encoding:

– A string s = (sPRG, sHash) of length ℓ = 2ℓ′. Recall that we think of sPRG, sHash ∈
{0, 1}ℓ

′

.

– r ∈ {0, 1}dssnm where dssnm is the number of random coins needed for the randomized

function Encssnm.

Output: A codeword z = Enc(m; (s, r)) of length n.

Operation: Compute (wPRG, wHash) = Ĝ(s) and do the following:

Prepare data part: We prepare a string zdata of length ndata by masking the message using the

PRG. That is, zdata = m⊕wPRG. (Recall that we truncate the output of wPRG to length ndata).

Prepare control part: We prepare a string zctrl of length nctrl as follows:

• Compute τ = HashwHash
(m).

• Compute zctrl = Encssnm((s, τ); r) (that is apply Encssnm on the message (s, τ) using r as

randomness).

Output: z = (zdata, zctrl) (that is, the concatenation of the data part and the control part).

Figure 3: Decoding algorithm for the non-malleable code

Definition: We define Decnm : {0, 1}n → {0, 1}ndata ∪ {fail} as follows:

Input: A “received word” v ∈ {0, 1}n.

Output: A message m̄ ∈ {0, 1}ndata or fail.

Operation:

On input v = (vdata, vctrl) where vdata ∈ {0, 1}
ndata and vctrl ∈ {0, 1}

nctrl do the following:

• Recover control part: Compute (s̄, τ̄) = Decssnm(vctrl). If (s̄, τ̄) = fail output fail, else

continue to the data part.

• Recover data part: Compute (w̄PRG, w̄Hash) = Ĝ(s̄) and compute m̄ = vdata ⊕ w̄PRG.
• Check consistency: If τ̄ = Hashw̄Hash

(m̄), output m̄, else output fail.

The following is our main technical lemma, which implies Theorem 3.1. Specifically, the the lemma

states that for every (possibly randomized) tampering channel C of size at most nc, there exists a small set

H such that the simulator SimC,H asserts the non-malleability against C.

Lemma 3.4. For every constant c > 0, using the choice of tSim = tssnm + tHash + a′ssnm + c+ c0/2 made

in Figure 1, for every constant c′ > 0 and for every sufficiently large n the following holds: For every

randomized channel C of size at most nc, there exists a set H ⊆ {0, 1}ℓ+dHash , such that for every message

21

Figure 4: Simulator

Definition: We define the simulator SimH,C , for a set H and tampering function C:

Parameters: A set H ⊆ {0, 1}ℓ+dHash and a tampering function C : {0, 1}n → {0, 1}n.

Non-uniform advice: The “set-bounded-PRG” function ĜH . (See Definition 3.2).

Input: 1n.

Output: A “message” m̄ ∈ {0, 1}ndata ∪ {fail, same}.

Operations of the simulator:

Sample Randomness: We start by uniformly sampling the following strings

• s← {0, 1}ℓ,
• τ ← {0, 1}dHash

• zdata ← {0, 1}
ndata

• r ← {0, 1}dssnm

Compute the SS-non-malleable encoding:

• zctrl = Encssnm((s, τ); r).

Run the tampering function:

• v = (vdata, vctrl) = C(zdata, zctrl).

Attempt to decode: Compute (s̄, τ̄) = Decssnm(vctrl), if (s̄, τ̄) = fail output fail else continue:

1. If (s̄, τ̄) = (s, τ),

• if vdata = zdata output same.

• else, output fail.

2. If (s̄, τ̄) ∈ H , compute ĜH(s̄) = (w̄PRG, w̄Hash) and m̄ = vdata ⊕ w̄PRG.

• If τ̄ = Hashw̄Hash
(m̄), output m̄

• else output fail.

3. Else, output fail.

m ∈ {0, 1}ndata:

Copy(m, SimC,H(1n)) ≈Cǫ TamperC(m).

Where SimC,H is as defined in Figure 4, ǫ = 1/ncssnm + 2 · 1/ncPRG + 1/ncHash and C is the class of

randomized circuits of size at most nc
′

. Moreover, the simulator SimC,H can be implemented by a size ntSim

randomized circuit.

The proof of Lemma 3.4 is given in the subsection below, but first we formally prove that Theorem 3.1

follows from Lemma 3.4.

Proof of Theorem 3.1.

Proof of Theorem 3.1. Let n be sufficiently large, and note that by the choice of parameters, it indeed holds

that the code has rate R = ndata
n = ndata

ndata+nctrl
≥ 1− 1/n0.5 since nctrl = n0.1.

The correctness of the construction follows immediately by definition from Lemma 3.4. More specifi-

cally, note that given a constant c, Lemma 3.4 guaranties that there exists a constant tSim such that for every

constant c′, and every randomized channel C of size at most nc, the simulator SimC,H can be implemented

22

by a randomized circuit of size ntSim , and correctly simulates the tampering experiment. Also note that by

choosing c0 > 0 to be sufficiently large ǫ = 1/ncssnm + 2 · 1/ncPRG + 1/ncHash < 1/nc.
Finally the overall construction runs in some fixed polynomial ntnm , where tnm depends on c and c′.

This holds since given c and c′ each ingredient in the construction runs in some fixed poly time (that might

depend on c and c′).

3.3 Proof of Lemma 3.4.

This section is dedicated to proving Lemma 3.4. During this subsection we fix a randomized channel C (of

size at most nc).

The strategy of the proof. Our goal is to show that there exists a small set H such that for every message

m ∈ {0, 1}ndata , the tampering experiment TamperC(m), and the output of the simulator SimC,H(1n) are

computationally indistinguishable.

For every set H ⊆ {0, 1}ℓ+dHash , and every message m ∈ {0, 1}ndata we will define a circuit DistC,H
m

that receives input (Y, S), and has size that is proportional to H . This circuit is defined in Figure 5. Loosely

speaking, the circuit DistC,H
m will simulate TamperC(m), with two important modifications:

• In the encoding phase, DistC,H
m will use the string Y instead of Ĝ(S). This will mean that when

DistC,H(m) receives input S ← {0, 1}ℓ, and Y = Ĝ(S), the encoding phase is run exactly like in

the real experiment TamperC(m). However, when DistC,H(m) receives input S ← {0, 1}ℓ, and

Y ← U4n, the output becomes more similar to the experiment of the simulator.

• In the decoding phase, DistC,H
m will use the set-bounded PRG ĜH instead of the PRG Ĝ. This means

that when H is the full set {0, 1}ℓ+dHash , then ĜH = Ĝ. However, we can hope to use the SS-non-

malleability of (Encssnm,Decssnm) to show that there exists a small set H , such that the difference

between ĜH and Ĝ is immaterial.

More specifically, we will show through a series of hybrids that in the probability space where S ← Uℓ

and Y ← U4n:

• When H is the full set Full = {0, 1}ℓ+dHash , the output DistC,Full
m (Ĝ(S), S), is distributed exactly

like TamperC(m).

• We will use SS-non-malleability to argue that there exists a small set H , such that the previous distri-

bution is close (in statistical distance) to DistC,H
m (Ĝ(S), S).13

• AsH is small, and the size of DistC,H
m is proportional toH , we will have that DistC,H

m is fooled by the

seed-extending PRG Ĝ, and in particular that the distribution DistC,H
m (Ĝ(S), S) is computationally

indistinguishable from DistC,H
m (Y, S).

• Finally, we will argue that with this small H , the distribution DistC,H
m (Y, S) is statistically close to

the simulated distribution SimC,H(1n).

Together, this will imply that there indeed exists a small set H such that for every message m, the real

experiment TamperC(m) is computationally indistinguishable from the simulated distribution SimC,H(1n),
as required.

13In fact, in the formal proof, this step will be more complicated, and we will defer the definition of H to the experiment defined

in the next item, and will use a sepoarate argument to argue that the same H is also good in the epxeriment described in this item.

Nevertheless, for the purpose of explaining the proof strategy, it is more natural to think as if H is already defined at this stage.

23

The forma proof. We now implement this strategy. We start by defining the circuit DistC,H
m . This defini-

tion is specified in Figure 5.

Figure 5: The circuit Dist

Definition: We define a circuit DistC,H
m , for a message m, a set H and tampering function C:

Parameters: A set H ⊆ {0, 1}ℓ+dHash and a tampering function C : {0, 1}n → {0, 1}n and a message

m ∈ {0, 1}n.

Non-uniform advice: The “set-bounded-PRG” function ĜH . (See Definition 3.2).

Input: A string (wPRG, wHash, s) ∈ {0, 1}
ndata+ℓHash × {0, 1}ℓ.

Output: A “message” m̄ ∈ {0, 1}ndata ∪ {fail, same}.

Operations of Dist:

Sample randomness and compute the control and data part:

• r ← {0, 1}dssnm ,

• τ = HashwHash
(m),

• zctrl = Encssnm((s, τ); r),
• zdata = m⊕ wPRG.

Run the tampering function:

• v = (vdata, vctrl) = C(zdata, zctrl).

Attempt to decode: Compute (s̄, τ̄) = Decssnm(vctrl), if (s̄, τ̄) = fail output fail else continue:

1. If (s̄, τ̄) = (s, τ)

• set m̄ = vdata ⊕ wPRG.

• If τ = HashwHash
(m̄) output m̄,

• else, output fail.

2. If (s̄, τ̄) ∈ H , compute ĜH(s̄) = (w̄PRG, w̄Hash)

• and set m̄ = vdata ⊕ w̄PRG.

• If τ̄ = Hashw̄Hash
(m̄), output m̄,

• else, output fail.

3. Else, output fail.

We also define the following:

• Let Full = {0, 1}ℓ+dHash .

• Recall that for a setH ∈ {0, 1}ℓ+dHash , ĜH is the “set-bounded-PRG” given as a non-uniform advice

(see Definition 3.2).

• S ← Uℓ

• Y = (YPRG, YHash)← Undata+ℓHash

We now observe that for every small set H , DistC,H
m can be implemented by a small circuit. This will

be useful, as we have set the PRG Ĝ to fool circuits of that size, and this will allow us to conclude that the

two aforementioned output distributions of DistC,H
m are computationally indistinguishable (for every choice

of small set H).

24

Claim 3.5. Let cDist = tssnm + tHash + a′ssnm + c + c0/2 (and note that cDist depends on c, but not on

c′). For every set H of size na
′

ssnm , there exists a non-uniform (randomized) circuit of size at most ncDist

that computes DistC,H
m . Moreover, for every input (w, s) the values of the variables (s̄, τ̄) and m̄ in the

instantiation of DistC,H
m (w, s) can also be computed in the same size.

Proof of Claim 3.5. The claim follows by construction since the function ĜH can be given as a non-uniform

advice of size na
′

ssnm+1, (Encssnm,Decssnm) runs in time ntssnm , Hash runs in time ntHash and C runs in nc.
Overall, since cDist = tssnm + tHash + a′ssnm + c + c0/2 by choosing c0 to be sufficiently large it follows

that DistC,H
m can be computed by a size ncDist randomized circuit. Recall that the constants tssnm, tHash and

a′ssnm are chosen as a function of c and c0 is a universal constant, and so cDist depends on c but not on c′.

The proof of Lemma 3.4 will follow from the four claims below (which are the formal implementation

of the aforementioned strategy). More specifically, Claim 3.8 relates the experiment TamperC(m) to the

instantiation of DistC,Full
m (Ĝ(S), S). Claim 3.8 (that is proven in the next section) shows that there exists a

small setH such that the latter distribution is statistically close to the instantiation of DistC,H
m (Ĝ(S), S) (this

is the same experiment, except that this time a small set H is used, rather than the set of all strings). Claim

3.7 uses the pseudorandomness of G to show that the latter distribution is computationally indistinguishable

from DistC,H
m (Y, S). Finally, Claim 3.6 (that is proven in the next section) shows that the latter distribution

is statistically close to the simulation experiment.

Claim 3.6. For every set H ⊆ {0, 1}ℓ+dHash and message m ∈ {0, 1}ndata it holds that:

DistC,H
m (Y, S) ≈s

ǫ1 Copy(m, SimC,H(1n)).

where ǫ1 = 1/ncHash .

Claim 3.7. For every set H ⊆ {0, 1}ℓ+dHash of size na
′

ssnm and every message m ∈ {0, 1}ndata:

DistC,H
m (Ĝ(S), S) ≈Cǫ2 DistC,H

m (Y, S).

where C is the class of randomized circuits of size at most nc
′

and ǫ2 = 1/ncPRG .

Proof of Claim 3.7. By Claim 3.5, DistC,H
m can be computed by a circuit of size ncDist where cDist = tssnm+

tHash + a′ssnm + c+ c0/2. Recall that Ĝ(S) is a seed extending PRG for circuits of size ncPRG and by our

choice of parameters cPRG ≥ cDist + c′ + c0/2. Assume towards contradiction that there exists a circuit

E ∈ C such that |Pr[E(DistC,H
m (Ĝ(S), S)) = 1]− Pr[E(DistC,H

m (Y, S)) = 1]| ≤ 1/ǫ2, it follows that for

a sufficiently large c0, the circuit E′ of size ncPRG that on every input first applies DistC,H
m and then applies

E is able to break Ĝ contradiction the fact that Ĝ(S) is a seed extending PRG.

Claim 3.8. There exists a setH ⊆ {0, 1}ℓ+dHash of size na
′

ssnm such that for every messagem ∈ {0, 1}ndata:

DistC,Full
m (Ĝ(S), S) ≈s

ǫ DistC,H
m (Ĝ(S), S).

where ǫ3 = 1/ncPRG + 1/ncssnm .

Claim 3.9.

TamperC(m) ≡ DistC,Full
m (Ĝ(S), S).

Proof of Claim 3.9. Follows immediately from construction.

The proof of Claims 3.6 and 3.8 is given in Section 3.3.1. We now prove Lemma 3.4 follows from the

four claims above.

25

Proof of Lemma 3.4.

Proof of Lemma 3.4. Let H be the set guaranteed by Claim 3.8 of size na
′

ssnm and recall that the constant

a′ssnm depends only on c but not on c′. Let C by the class of randomized circuits of size at most nc
′

. By

Claims 3.9,3.8, 3.7 and 3.6 it follows that,

TamperC(m) ≡ DistC,Full
m (Ĝ(S), S)

≈s
ǫ3 DistC,H

m (Ĝ(S), S)

≈Cǫ2 DistC,H
m (Y, S)

≈s
ǫ1 Copy(m, SimC,H(1n))

where ǫ1 = 1/ncHash , ǫ2 = 1/ncPRG and ǫ3 = 1/ncPRG + 1/ncssnm . This proves that TamperC(m) ≈Cǫ
Copy(m, SimC,H(1n)) since ǫ = ǫ1 + ǫ2 + ǫ3 as desired. To conclude, note that the simulator SimC,H can

be implemented by a size ntSim randomized circuit for tSim = tssnm+ tHash+a
′
ssnm+ c+ c0/2 where tssnm

and a′ssnm are constants that depend on c but not on c′ and tHash and c0 are universal constants. This holds

since the function ĜH can be given as a non-uniform advice of size na
′

ssnm+1, (Encssnm,Decssnm) runs in

time ntssnm , Hash runs in time ntHash and C runs in nc.

3.3.1 Proof of Claims 3.6 and 3.8

In this section we give proofs for the two claims from the previous section that we have not yet proven. We

start by proving Claim 3.6 and then prove Claim 3.8.

Proof of Claim 3.6

Recall that S ← Uℓ and Y = (YPRG, YHash)← Undata+ℓHash
. We will make use of the following definitions

and Claims.

Definition 3.10. We define the random variables corresponding to the experiment in DistC,H
m (Y, S) as

follows:

• Zm
data = m⊕ YPRG.

• Tm = HashYHash
(m).

• Zm
ctrl = Encssnm(S,T

m;R) (where R is an independent random sting).

• V m = (V m
data, V

m
ctrl) = C(Zm

data, Z
m
ctrl)

• (S̄m, T̄m) = Decssnm(V
m)

• Ōm that denotes the final output in DistC,H
m (Y, S).

We omit the superscript m when it is clear from the context.

We will make use of following claims.

Claim 3.11. For every messagem, (Zm
data,T

m, S) are independent uniformly distributed random variables.

(In particular, (Zm
data,T

m, S) is independent of m).

Proof of Claim 3.11. Recall Zm
data = m⊕ YPRG and Tm = HashYHash

(m). Since Y = (YPRG, YHash) is a

uniformly random string that is independent from S, the claim holds by construction and by the properties

of the hash function (see Definition 2.18).

26

In particular, the above claim implies that the distribution of (Zm
data,T

m, S) does not depend on the

message m. The following claim shows that if the channel C does not change the “control part” in the code-

word, then the decoding algorithm is able to detect if the channel changed the “data part” in the codeword.

This intuitively holds, because the channel is not able to find a valid different message that hashes to the

same value.

Claim 3.12. For every m, let Xm = V m
data ⊕ YPRG. It holds that

Pr[HashYHash
(Xm) = Tm ∩Xm 6= m] ≤ 1/2dHash .

Proof of Claim 3.12. We first fix some message m and remove it from the superscript in the random vari-

ables to reduce clutter. Let R denote the randomness (of size at most dssnm) used by the SS-non mal-

leable encoding and let RC denote the randomness (of size at most nc) used by the channel C. Let

Q = (YPRG, S,R,Rc) and note that Q is independent of YHash. We will show that for every q =
(yPRG, s, r, rc) ∈ {0, 1}

ndata+ℓ+dssnm+nc
, it holds that

Pr[HashYHash
(X) = T ∩X 6= m | Q = q] ≤ 1/2dHash . (1)

Note that by averaging, proving Equation 1 concludes the proof. The rest of the proof is dedicated to proving

Equation 1.

Let Xq = (X | Q = q) and note that T is independent of Q. Writing Equation 1 in this notation, we

want to prove that

Pr[HashYHash
(Xq) = T ∩Xq 6= m] ≤ 1/2dHash .

Let Zq
data = (Zdata | Q = q) and Zq

ctrl = (Zctrl | Q = q) and note that Zq
ctrl = Encssnm(s, T, r) and

Zq
data = m⊕ yPRG. Let V q

data = (Vdata | Q = q) and V q
ctrl = (Vctrl | Q = q) and let CrC denote the circuit

C that has has rC fixed as its randomness. By construction:

(V q
data, V

q
ctrl) = CrC (Zq

data, Z
q
ctrl)

= CrC (m⊕ yPRG,Encssnm(s, T, r)).

Since Xq = V q
data ⊕ yPRG, and having fixed all the randomness (in the experiment of DistC,H

m (Y, S))
except YHash, by construction the value of Xq depends only on T. For every τ ∈ {0, 1}dHash let xq,τ ∈
{0, 1}ndata denote the constant value for which

xq,τ = Xq | T = τ.

27

It holds that,

Pr[HashYHash
(Xq) = T ∩Xq 6= m]

≤
∑

τ∈{0,1}dHash

Pr[HashYHash
(Xq) = T ∩Xq 6= m ∩ T = τ]

=
∑

τ∈{0,1}dHash

Pr[HashYHash
(xq,τ) = τ ∩ xq,τ 6= m ∩ T = τ]

=
∑

τ∈{0,1}dHash

Pr[HashYHash
(xq,τ) = τ ∩ xq,τ 6= m ∩HashYHash

(m) = τ]

=
∑

τ∈{0,1}dHash :xq,τ 6=m

Pr[HashYHash
(xq,τ) = τ ∩HashYHash

(m) = τ]

≤ 2dHash · 1/22dHash

= 1/2dHash

Where the last inequality follows by the hash function properties, see Definition 2.18.

We are finally ready to prove Claim 3.6:

Proof of Claim 3.6. Consider the hybrid distribution D̃ist
C,H

m that is defined to act exactly as DistC,H
m , with

the exception that at item 1 in the “Attempt to decode” stage it instead does the following:

1. If (s̄, τ̄) = (s, τ)

• if zdata = vdata output m.

• else, output fail.

This change is made so that D̃ist
C,H

m mimics the behavior of the simulator SimC,H (but instead of outputting

“same”, D̃ist
C,H

m directly outputs m). The proof of the claim, follows by proving the following two items:

1. D̃ist
C,H

m (Y, S) ≡ Copy(m, SimC,H(1n)).

2. DistC,H
m (Y, S) ≈s

ǫ1 D̃ist
C,H

m (Y, S).

Recall that, Zm
data, Tm, S and Ōm denote the random variables in the experiment DistC,H

m (Y, S). By

construction, all random variables in D̃ist
C,H

m (Y, S) are identical to DistC,H
m (Y, S) with the exception of the

value of m̄ and the final output Ōm. Let Õm denote final output in the experiment D̃ist
C,H

m (Y, S) (that is,

Õm = D̃ist
C,H

m (Y, S)).
To prove Item 1, note that by Claim 3.11, (Zm

data,T
m, S) are independent random variables. This is

exactly the same setup as the experiment SimC,H(1n) where the values of (zdata, τ, s) are chosen inde-

pendently from a uniform distribution. Moreover, after setting the values of (Zm
data,T

m, S) all remain-

ing operations in Copy(m, SimC,H(1n)) and D̃ist
C,H

m (Y, S) are functionally identically, implying that

Copy(m, SimC,H(1n)) ≡ D̃ist
C,H

m (Y, S).

28

It remains to prove Item 2. For the remainder of this proof we drop the superscript m from the random

variables for ease of notation. Define

E =
{
(S̄, T̄) = (S,T)

}
∧ {Vdata 6= Zdata} ∧

{
T̄ = HashYHash

(Vdata ⊕ YPRG)
}

(2)

and let Ē be the complement event of E (note that this event is the same for both experiments since

(Z, V,T, S, T̄, S̄, Y) are the same random variables in both experiments). Since D̃ist
C,H

m (Y, S) and DistC,H
m (Y, S)

only differ in Item 1 in the “Attempt to decode” stage, it follows by construction that

Ō | Ē ≡ Õ | Ē (3)

Thus to conclude the proof it suffices to show that Pr[E] ≤ ǫ1 = 1/ncHash .

Let X = Vdata ⊕ YPRG. Since Zdata = m⊕ YPRG it follows that:

E =⇒ {X 6= m} .

Moreover, since E =⇒
{
T = T̄

}
, it also holds that

E =⇒ {HashYHash
(X) = T} .

This implies that

Pr[E] ≤ Pr[HashYHash
(X) = T ∩X 6= m]

≤ 1/2dHash = 1/ncHash .

Where the last inequality follows by Claim 3.12, and the equality follows since we chose dHash = cHash ·
log(n). This concludes the proof of Claim 3.6.

Proof of Claim 3.8

We make use of the following claims and definition in our proof of Claim 3.8. The following claim shows

that by applying the SS-non-malleable code on the “control part” (that is, (S,T)), we are able to limit the

number the possible “corrupt control part” (S̄, T̄) that might arise when decoding a tampered codeword.

Specifically, there exists a small set H such that (S̄, T̄) is contains in H when decoding a corrupt codeword

in the experiment DistC,H
m (Y, S). We stress that, the set H depends only on the channel C, but not on the

message m, this intuitively holds since the data part that contained the message m is masked by the uniform

and independent string Ydata.

Claim 3.13. There exists a set H of size na
′

ssnm such that for every message m ∈ {0, 1}ndata:

Pr[(S̄m, T̄m) /∈ H ∪ {(S,Tm), fail}] ≤ 1/ncssnm

Proof of Claim 3.13. Define Cctrl : {0, 1}
n → {0, 1}nctrl as follows, for every input z ∈ {0, 1}n run C(z)

and output the last nctrl bits from C(z). This definition is made so that V m
ctrl = Cctrl(Z

m
data, Z

m
ctrl).

Recall also that by Claim 3.11 for every message m, (Zm
data,T

m, S) are independent uniformly dis-

tributed random variables. This implies that Zm
data and Zm

ctrl have the same distribution for every message

m, and that Zm
data and Zm

ctrl are independent variables. Thus, for C ′ : {0, 1}nctrl → {0, 1}nctrl defined by

C ′(x) = Cctrl(Undata
, x), it holds that V m

ctrl ≡ C
′(Zm

ctrl).

29

Recall that cssnm = c+c0, and note that by taking c0 to be a sufficiently large universal constant, it holds

that C ′ is a randomized circuit of size at most ncssnm . Thus, by the SS-non-malleability property applied

against C ′, it follows that there exists a set H of size na
′

ssnm such that:

Pr
[
Decssnm

(
C ′(Zm

ctrl

)
6∈ H ∪ {(S,Tm), fail}

]

= Pr [Decssnm(V
m
ctrl) 6∈ H ∪ {(S,T

m), fail}]

= Pr
[
(S̄m, T̄m) 6∈ H ∪ {(S,Tm), fail}

]

≤ 1/ncssnm .

This completes the proof.

Similarly to Definition 3.10, we define the notation for the experiment DistC,H
m (Ĝ(S), S).

Definition 3.14. We define the random variables corresponding to the experiment DistC,H
m (Ĝ(S), S) as

follows:

• Zm,G
data = m⊕G(SPRG).

• Tm,G = HashG(SHash)(m).

• Zm,G
ctrl = Encssnm(S,T

m,G;R) (where R is an independent random string).

• V m,G = (V m,G
data , V

m,G
ctrl) = C(Zm,G

data , Z
m,G
ctrl)

• (S̄m,G, T̄m,G) = Decssnm(V
m,G)

• Ōm,H,G that denotes the final output in DistC,H
m (Ĝ(S), S) for the set H and the message m.

We omit the superscript m when it is clear from the context.

The following claim, essentially shows that the setH guarantied from Claim 3.13 and originally defined

for the experiment DistC,H
m (Y, S), gives an equivalent guarantee in the experiment DistC,H

m (Ĝ(S), S).

Claim 3.15. There exists a set H of size na
′

ssnm such that for every message m ∈ {0, 1}ndata:

Pr[(S̄m,G, T̄m,G) /∈ H ∪
{
(S,Tm,G), fail

}
] ≤ 1/ncssnm + ǫPRG

Proof of Claim 3.15. Let H be the set guaranteed by Claim 3.13, we will prove the claim for this set. By

Claim 3.5 there exists a non-uniform circuit D of size ncDist+1 < ncPRG than on input (w, s) computes the

values of (s̄, τ̄) and outputs 1 iff (s̄, τ̄) ∈ H ∪ {(s, τ), fail}. Since (Y, S) ≈CǫPRG
(G(S), S) where C is the

class of (possibly randomized) circuits of size at most ncPRG and ǫPRG = 1/ncPRG it follows by Claims 3.5

and 3.13 that

Pr[(S̄m,G, T̄m,G) /∈ H ∪
{
(S,Tm,G), fail

}
] ≤ 1/ncssnm + 1/ncPRG

as otherwise, D can distinguish between (Y, S) and (G(S), S) with advantage greater than ǫPRG.

The proof of Claim 3.8 now follows from the above:

Proof of Claim 3.8. Let H be the set guaranteed by Claim 3.15. Recall that for any fixed m, by def-

inition the random variables S,TG, S̄G, T̄G are identical in both experiments DistC,Full
m (Ĝ(S), S) and

DistC,H
m (Ĝ(S), S). The only random variable that differ are

ŌFull,G = DistC,Full
m (Ĝ(S), S), ŌH,G = DistC,H

m (Ĝ(S), S).

30

Let Q =
{
(S̄G, T̄G) ∈ H ∪

{
(S,TG), fail

}}
and note that by construction

ŌH,G | Q ≡ ŌFull,G | Q.

Since by Claim 3.15, Pr[Q] ≥ 1 − (1/ncssnm + 1/ncPRG), it follows that ŌH,G ≈s
ǫ3 ŌFull,G for ǫ3 =

1/ncssnm + 1/ncPRG concluding the proof.

4 Composing non-malleable codes with codes that correct from errors

In this section we show how to compose the non-malleable code of Theorem 1.2 with codes that recover from

errors, and achieve the best of both worlds. This prove Corollaries 1.4 and 1.5. The formal restatements

of Corollaries 1.4 and 1.5 appears in Corollaries 4.3 and 4.4 below. We start by formally defining the

composition of coding schemes.

Definition 4.1 (Composing coding schemes). Let k1, n1, n2 be integers.

• Let (Enc1,Dec1) be a coding scheme with block length n1 and message length k1.

• Let (Enc2,Dec2) be a coding scheme with block length n2 and message length n1.

We define a randomized function Enc : {0, 1}k1 → {0, 1}n2 and a deterministic function Dec : {0, 1}n2 →
{0, 1}k1 ∪ {fail} as follows:

Enc(m) = Enc2(Enc1(m)).

On input v ∈ {0, 1}n2 , if Dec2(v) = fail then Dec(v) is defined to be fail. Otherwise, Dec(v) =
Dec2(Dec1(v)).

We now show that when composing two coding schemes, where the first is a code that recovers from

errors, and the second is a non-malleable code, we obtain a composed scheme that inherits the best of both

worlds, and has rate that is the product of the two rates. In the formulation below, we distinguish between

two cases: decoding from errors (as defined in Definition 2.11) and Decoding from errors introduced by

poly-size circuits (as defined in Definition 2.12). The first case is used for Corollary 1.4 and the second for

Corollary 1.5.

Lemma 4.2. Let k1, n1, n2 be integers.

• Let (Enc1,Dec1) be a coding scheme with block length n1 and message length k1.

• Let (Enc2,Dec2) be a coding scheme with block length n2 and message length n1.

Let (Enc,Dec) be the functions defined in Definition 4.1.

Rate. (Enc,Dec) is a coding scheme with block length n = n2 and message length k = k1. In particular,

if the two initial coding schemes have rates R1 and R2, then the composed coding scheme has rate

R1 ·R2.

Non-malleability for poly-size circuits. If the following three conditions hold for some integers s1, s2, s
′:

• Enc2 can be computed by a randomized circuit of size s2.

• Dec2 can be computed by a circuit of size s2.

31

• (Enc1,Dec1) is C-computationally ǫ-non-malleable for the class of randomized circuits of size

s1, where C′ is the class of circuits of size s′.

Then, (Enc,Dec) is C-computationally ǫ-non-malleable for the class of randomized circuits of size

s1 − 2 · s2. Furthermore, if (Enc1,Dec1) is simulatable by a size s circuit, then (Enc,Dec) is

simulatable by a size s+ 2 · s2 circuit.

Decoding from errors. If (Enc2,Dec2) is a deterministic coding scheme that decodes from a p fraction of

errors, then for every fixing of the coin tosses of Enc1, the composition of the two coding schemes

(which is a deterministic coding scheme) decodes from a p fraction of errors.

Decoding from errors induced by poly-size circuits. If (Enc2,Dec2) is a coding scheme that is decod-

able with success probability 1− ν from some class C ⊆ F rand
n , then (Enc,Dec) is a coding scheme

with success probability 1− ν from C.

We prove Lemma 4.2 below, but first we formally restate and prove the corollaries from the introduction.

Corollary 4.3 (Formal restatement of Corollary 1.4). If for every 0 ≤ p < 1/4 and infinitely many n, there

exists a deterministic coding scheme (Enc2,Dec2) that recovers from a p-fraction of errors, with rateR1(p)
and moreover, Enc2 and Dec2 can be computed in time nt for some universal constant t. Then, if E is hard

for exponential size nondeterministic circuits then for every constants c > 1, c′ > 1 and 0 ≤ p < 1/4, for

infinitely many n, there exists a coding scheme (Enc,Dec) that is C-computational 1/nc-non-malleable for

circuits of size nc, where C is the class of randomized circuits of size nc
′

, and has a simulator that can be

implemented by a randomized circuit of size ntSim for some universal constant tSim that depends on t and c
but not on c′. Furthermore, (Enc,Dec) recovers from a p-fraction of error, has a rate R(p) = R1(p)− o(1)
and Enc and Dec can be computed in time nd for a universal constant d that depends on t, c and c′.

Proof of Corollary 4.3. Follows directly from Theorem 3.1, Lemma 4.2 and the assumptions made in the

corollary. Specifically, if E is hard for exponential size nondeterministic circuits then applying Theorem 3.1

for every constants c1 and c′1, and every sufficiently large n, there exists a coding scheme (Enc1,Dec1) that

is C1-computational 1/nc1-non-malleable for circuits of size nc1 , where C is the class of randomized circuits

of size nc
′

1 , has rate R1 = 1− o(1) and has a simulator that can be implemented by a randomized circuit of

size ntSim1 for some universal constant tSim1 that depends on c1 but not on c′1.

For a given 0 ≤ p < 1/4, and for infinitely many n, let (Enc2,Dec2) be the deterministic coding scheme

given in the assumption that recovers from a p-fraction of error and has rate R2(p) and let t be the universal

constant such that Enc2 and Dec2 run in time nt.
Taking c1 = c + 2t and c′1 = c′, by Lemma 4.2 for infinitely many n, the coding scheme (Enc,Dec)

that is composed form (Enc1,Dec1) and (Enc2,Dec2) has rate R = R1 · R2(p) = R2(p) − o(1), is C-

computationally 1/nc-non-malleable for circuits of size nc, where C is the class of randomized circuits of

size nc
′

. Moreover, (Enc,Dec) has a simulator that can be implemented by a randomized circuit of size

ntSim where tSim = tSim1 + 2t and as such tSim is a constant that depends on t on c but not on c′. Finally,

by construction (Enc,Dec) runs in time nd where d is a constant that depends on t, c and c′.

We will make use of Theorem 2.14, to get the following corollary.

Corollary 4.4 (Formal restatement of Corollary 1.5). If E is hard for exponential size nondeterministic

circuits then for every constants c > 1, c′ > 1 and 0 ≤ p < 1/4, every sufficiently small constant ǫ > 0,

and for infinitely many n, there exists a code (Enc,Dec) that is C-computational 1/nc-non-malleable for

circuits of size nc, where C is the class of randomized circuits of size nc
′

and has a simulator that can be

32

implemented by a randomized circuit of size ntSim for some universal constant tSim that depends on c but

not on c′. Furthermore, (Enc,Dec) recovers from a p-fraction of error induced by circuits of size at most

nc with success probability 1− 1/nc, has a rate R′(p) = 1−H(p)− ǫ, and Enc and Dec can be computed

in time nd for a universal constant d that depends on c and c′.

Proof of Corollary 4.4. Follows directly from Theorems 3.1 and 1.2 and Lemma 4.2. Specifically, if E is

hard for exponential size nondeterministic circuits then both of the following items holds:

• By Theorem 3.1, for every constant c1 and c′1, and every sufficiently large n, there exists a coding

scheme (Enc1,Dec1) that is C1-computational 1/nc1-non-malleable for circuits of size nc1 , where C
is the class of randomized circuits of size nc

′

1 , has rate R1 = 1− o(1) and has a simulator that can be

implemented by a randomized circuit of size ntSim1 for some universal constant tSim1 that depends on

c1 but not on c′1

• By Theorem 1.2, for every constants c > 1, 0 ≤ p < 1/4, every sufficiently small constant ǫ1 > 0, and

for infinitely many n, there exists a code (Enc1,Dec1) that recovers from a p-fraction of error induced

by circuits of size at most nc with success probability 1 − 1/nc, has a rate R2(p) = 1 −H(p) − ǫ1,

and Enc and Dec can be computed in time nt1 for a universal constant t1 that depends on c.

Taking c1 = c + 2 · 2t1, c′1 = c′ and ǫ1 = ǫ/2, by Lemma 4.2, for infinitely many n, the coding

scheme (Enc,Dec) that is composed form (Enc1,Dec1) and (Enc2,Dec2) has rate R = R1 · R2(p) =
(1− o(1)) · (1−H(p)− ǫ1) ≥ 1−H(p)− ǫ, is C-computationally 1/nc-non-malleable for circuits of size

nc, where C is the class of randomized circuits of size nc
′

. Moreover, (Enc,Dec) has a simulator that can be

implemented by a randomized circuit of size ntSim where tSim = tSim1 + 2t1 and as such tSim is a constant

that depends on t1 and c but not on c′ (and recall that t1 depends on c). Finally, by construction (Enc,Dec)
runs in time nd where d is a universal constant that depends on t, c and c′.

4.1 Proof of Lemma 4.2.

This section is dedicated to proving Lemma 4.2. Let k1, n1, n2 be integers and let (Enc1,Dec1) be a coding

scheme with block length n1 and message length k1 and let (Enc2,Dec2) be a coding scheme with block

length n2 and message length n1. Let (Enc,Dec) be their composition as defined in Definition 4.1. It

is immediate from the construction that (Enc,Dec) is a coding scheme with block length n and message

length k (where n = n2 and k = k1). We now prove the properties in Lemma 4.2:

Rate. Follows immediately by construction. More concretely, recall that Enc1 maps k1 bits to n1 bits and

Enc2 maps n1 bits to n2, which implies that R1 = k1
n1

and R2 = n1
n2

. Thus, Enc that maps k1 bit to n2 bits

has a rate of R = k1
n2

= k1
n1
· n1
n2

= R1 ·R2.

Non-malleability for poly-size circuits. Recall, that by assumption

(Enc1,Dec1) is C-computationally ǫ-non-malleable for the class of randomized circuits of size s1, where C
is the class of circuits of size s′. This implies that for every randomized channel C1 : {0, 1}

n1 → {0, 1}n1

of size at most s1, there exists a simulator SimC1
1 that can be implemented by a randomized circuit if size s

such that for DC1 ← SimC1
1 ,

DC1 ≈
C
ǫ Dec1(C1(Enc1(m))). (4)

33

To prove the non-malleability property for (Enc,Dec), we want to show that for every randomized

channel C : {0, 1}n → {0, 1}n of size at most s1 − 2 · s2, there exists a simulator SimC that can be

implemented by a circuit of size s such that for DC ← SimC ,

DC ≈
C
ǫ Dec(C(Enc(m))).

We now define the the simulator SimC . For every randomized channel C : {0, 1}n → {0, 1}n of size at

most s1 − 2 · s2, we define the channel C1 : {0, 1}
n1 → {0, 1}n1 as follows: On input x ∈ {0, 1}n1 , output

Dec2(C(Enc2(x))). Note that by definition C1 can be implemented by a circuit of size s1 (this, is because

C can be implemented by a circuit of size s1 − 2 · s2, and both Enc1 and Dec2 can be implemented by

circuits of size s2). This implies that Equation 4 holds for C1.

The simulator SimC is define to be SimC1
1 . That is,DC ← SimC andDC ≡ DC1 whereDC1 ← SimC1

1 .

This yields that

DC ≡ DC1

≈Cǫ Dec1(C1(Enc1(m)))

= Dec1(Dec2(C(Enc2(Enc1(m)))))

= Dec(C(Enc(m)))

Where the first equation follows by the definition of the simulator SimC , the second equation follows by

the non-malleability property of (Enc1,Dec1) the third equation follows by the definition of C1 and the last

equation follows by the definition of (Enc,Dec). To conclude, note that if SimC1
1 can be implemented by a

size s randomized circuit, then SimC can be also be implemented by a size s circuit since SimC is defined

to be SimC1
1 .

Decoding from errors. Assume that (Enc2,Dec2) is a deterministic coding scheme that decodes from a

p-fraction of errors. We need to show that for every fixing of the coin tosses of Enc1, the composition of the

two coding schemes (which is a deterministic coding scheme) decodes from a p-fraction of errors. Recall

that by definition for every x ∈ {0, 1}n1 and every v ∈ {0, 1}n2 if δ(Enc2(x), v) ≤ p then Dec2(v) = x.

Given a message m ∈ {0, 1}k1 , let Enc1(m) = x (for some fixing of the coin tosses of Enc1) and

recall that by definition Enc(m) = Enc2(Enc1(m)) = Enc2(x). Also note that since (Enc1,Dec1) is a

coding scheme, it holds that Pr[Dec(Enc1(m)) = m] = 1. Which implies that for for every fixing of the

randomness of Enc1, Dec1(Enc1(m)) = m.

It follows that for every v ∈ {0, 1}n2 if δ(Enc(m), v)) ≤ p then Dec(v) = m. This holds since, by the

above, Dec(v) = Dec1(Dec2(v)) = Dec1(x) = m.

Decoding from errors induced by poly-size circuits. Assume that (Enc2,Dec2) is a coding scheme that

is decodable with success probability 1− ν from a class C ⊆ F rand
n . We need to show that (Enc,Dec) is a

coding scheme with success probability 1− ν from C.

By assumption for every x ∈ {0, 1}n1 , and every C ∈ C it holds that:

Pr[Dec2(C(Enc2(x))) = x] ≥ 1− ν. (5)

Since (Enc1,Enc1) is a coding scheme, it holds that for every m ∈ {0, 1}k1 , Pr[Dec1(C(Enc2(m) =

34

m] = 1. Thus, it holds that for every m ∈ {0, 1}k1 and every C ∈ C

Pr[Dec(C(Enc(m)) = m] = Pr[Dec1(Dec2(C(Enc2(Enc1(m))) = m].

≥ Pr
x←Enc1(m)

[Dec2(C(Enc2(x)) = x ∩Dec1(x) = m]

≥ Pr
x←Enc1(m)

[Dec2(C(Enc2(x)) = x] ≥ 1− ν.

Where the last inequality follows by Equation 5.

5 Statistically secure non-malleable codes from HTS

In this section we state and prove Theorem 1.3. We will show that given an “excellent” HTS function we are

able to construct a statistically secure non-malleable code from our computationally secure non-malleable

code given at Theorem 3.1.

5.1 Hard to sample functions (HTS) and a the formal statement of Theorem 1.3

Viola [Vio12] suggests to systematically study functions f : {0, 1}n → {0, 1}n
′

that are not only hard to

compute, but also hard to sample, in the sense that no low-complexity sampling algorithm can sample a pair

(X, f(X)) where X is uniform over {0, 1}n.

Following Viola [Vio12], Shaltiel and Silbak [SS23] introduce a notion of functions that are “hard to

sample” (by poly-size circuits) on any distribution X . Intuitively, one would want to require that for every

poly-size circuit A that samples a pair (X,Y), the probability that Y = f(X) is small. However, it is ob-

vious that such functions do not exist as a nonuniform circuit can be hardwired with certain pairs (x, f(x)),
allowing it to sample a distribution (X, f(X)) in the case that X is fixed (or in the case that X has small

support).

Shaltiel and Silbak [SS23] deal with this by incorporating the notion of a “small set” (as in small set

non-malleable codes). More precisely, it is required that for every sampling circuit A, there is small set H
of inputs, such that A is unlikely to sample a pair (X,Y) such that X 6∈ H , and Y = f(X). A formal

definition is given below.

Definition 5.1 (Hard To Sample (HTS)). For a function A : {0, 1}r → {0, 1}n, we use Z ← A to denote

the experiment in which W ← Ur, and Z = A(W).
A function f : {0, 1}n → {0, 1}n

′

is an (h, ρ)-HTS for a class C of functions, if for every A ∈ C that

samples a distribution Z = (X,Y) over {0, 1}n × {0, 1}n
′

, there exists a set H ⊆ {0, 1}n of size at most

h, such that:

Pr
(X,Y)←A

[X 6∈ H and Y = f(X)] ≤ ρ.

Shaltiel and Silbak [SS23] gave two explicit constructions of HTS under the assumption that E is hard

for exponential size nondeterministic circuits. The first construction achieves h = poly(n), but has n′ > n.

(In fact, the SS-non-malleable codes of Theorem 2.9 were achieved by composing the non-malleable codes

of [BDL22] with this HTS). The second construction has n′ ≪ n but instead of h = poly(n), it only

achieves h = 2o(n).
Theorem 1.3 from the introduction, states that we can use an HTS that has both n′ ≪ n, and h =

poly(n) to achieve statistical security in Theorem 1.2. This is stated more formally, in the next theorem

and corollary. More specifically, the theorem states general conditions under which an HTS can be used

35

to convert the security of a non-malleable code from computational to statistical, and the corollary is the

restatement of Theorem 1.3, which follows as the code of Theorem 3.1 meets this general condition.

Theorem 5.2 (Statistically secure non-malleable code using HTS functions). Assume that,

1. For every constants α > 0 and cf > 1 there exists constants ch and tf such that for every sufficiently

large n, there exists a function f : {0, 1}n → {0, 1}α·n such that f is an (nch , n−cf)-HTS for circuits

of size ncf . Moreover, f can be computed in time ntf .

2. For every constant cnm > 1 there exists a constants tSim > cnm and R > 0 such that for every

constant c′nm > 0 and every sufficiently large n, there exists a coding scheme (Enc,Dec) from k
bits to n bits that is C-computationally 1/ncnm-non-malleable for the class of randomized circuits of

ncnm , where C is the class of randomized circuits of size at most nc
′

nm . Moreover, (Enc,Dec) are

simulatable by a size ntSim randomized circuit, has rateR > ǫ for some universal constant ǫ > 0, and

the encoding and decoding run in time ntnm where tnm is a constant that depends on cnm and c′nm.

Then for every constants α > 0 and c > 1 and every sufficiently large n, there exists a statistically secure

1/nc-non-malleable code for the class of randomized circuits of size at most nc, that runs in time nd where

d is a constant that depends on c and α. Moreover, the rate of the code is R · 1
1+α .

Corollary 5.3. If E is hard for exponential size nondeterministic circuits, and Item 1 in Theorem 5.2 holds.

Then, for every constants 1 > α > 0 and c > 1 and every sufficiently large n, there exists a statistically

secure 1/nc-non-malleable code for the class or randomized circuits of size at most nc, that runs in time nd

where d is a constant that depends on c and α. Moreover, the rate of the code is 1− α.

Proof of corollary 5.3. The proof follows from Theorems 3.1 and 5.2. Note that assuming that E is hard

for exponential size nondeterministic circuits by Theorem 3.1, for every sufficiently large n, there exists a

computationally secure non-malleable code with rate R = 1− 1/n0.5 with the same requirements as stated

in Item 2 in Theorem 5.2. Thus, by Theorem 5.2 for every constants α > 0 and c > 1 and every sufficiently

large n, there exists a statistically secure 1/nc-non-malleable code for the class of randomized circuits of

size at most nc, with rate (1− 1/n0.5) · 1
1+α ≥ 1− α.

We prove Theorem 5.2 in the following section.

5.2 Proof of Theorem 5.2.

Shaltiel and Silbak [SS23] used an HTS to enhance the security of a given code. The high level idea is that

given a pair of functions (Enc,Dec) and an HTS f , one can consider an enhanced code defined as follows:

When one wants to encode a message x, then one encodes the message x◦f(x), and the decoding procedure

fails if the decoded pair is not of this form. This is captured (in the case of randomized encoding function)

in the definition below.

Definition 5.4. Let n, k, v, d be parameters. Given:

• A function f : {0, 1}k → {0, 1}v.

• Functions Enc : {0, 1}k+v × {0, 1}d → {0, 1}n, and Dec : {0, 1}n → {0, 1}k+v ∪ {fail}

We define a pair of functions Encf : {0, 1}k×{0, 1}d → {0, 1}n and Decf : {0, 1}n → {0, 1}k as follows:

• Encf (x, s) = Enc(x ◦ f(x), s).

36

• Decf (z) works by applying Dec(z). If Dec(z) does not fail, then it outputs x ◦ y ∈ {0, 1}k+m′

and

Decf outputs x if y = f(x), and fails otherwise.

Loosely speaking, the cost of this enhancement is that the rate of the code deteriorates, but if the given

HTS has output length which is much shorter than the input length, then this deterioration is small. The

advantage of this enhancement is that it makes it more difficult for an adversary to break the non-malleability

of the code. Loosely speaking, this is because after enhancement, the adversary loses the ability to lead a

decoded message which is not of the form x ◦ f(x). A bit more formally, we can think of the simulator

for the original code as a potential adversary for the HTS. By setting the parameters carefully, and using

the relationship between the real experiment and the simulated experiment, this limits the behavior of the

real adversary to the non-malleable code. Specifically, this argument shows that an adversary to the non-

malleable code is unlikely to lead the decoding to a message that is not in the small set H .

This intuition was used by Shaltiel and Silbak [SS23] in their construction of SS-non-malleable codes.

Here we use it in a different way in order to show that if a computationally secure non-malleable code

has some additional properties (listed in the lemma below) then the enhanced code actually has statistical

security. We remind the reader that an overview of this ideas appears in Section 1.3.6.

Lemma 5.5. Let k, d, n, v be parameters. There exists a sufficiently large universal constant c0 > 0 such

that assuming that for every c > 0 there exists constants cnm, tSim, c
′
nm and cf , ch, tf such that, cnm > c+c0,

cf > tSim + c0 and c′nm > tf + ch + c0, and for every sufficiently large n:

1. There exists functions Enc : {0, 1}k+v×{0, 1}d → {0, 1}n, and Dec : {0, 1}n → {0, 1}k+v∪{fail}
such that (Enc,Dec) is a C-computationally 1/ncnm-non-malleable for the class of randomized cir-

cuits of size at most ncnm , where C is the class of randomized circuits of size at most nc
′

nm . Moreover,

(Enc,Dec) is simulatable by a size ntSim randomized circuit, and Enc and Dec can be computed in

time ntnm , where tnm is a universal constant that depends on c.

2. There exists a function f : {0, 1}k → {0, 1}v such that f is an (nch , n−cf)-HTS for circuits of size

ncf . Moreover, f can be computed in time ntf .

Then, (Encf ,Decf) (as defined in Definition 5.4 for (Enc,Dec) and f) is a statistically secure 1/nc-non-

malleable code for the class of randomized circuits of size at most nc that runs in time nt where t > 1 is a

constant that depends on c. Moreover, the rate of the code is k/n.

We prove Lemma 5.5 in the next subsection, but first we prove Theorem 5.2.

Proving Theorem 5.2.

Proof of Theorem 5.2. Let c0 be the sufficiently large constant guarantied in Lemma 5.5. For every α > 0
and c > 1 the following holds:

• By the assumption stated in Item 2 in Theorem 5.2 we can take cnm > c+ c0 and get a constant tSim
and a rate R > ǫ for some universal constant ǫ, and can chose any constant c′nm (which we specify

below) such that there exists functions Enc : {0, 1}k+v × {0, 1}d → {0, 1}n, and Dec : {0, 1}n →
{0, 1}k+v ∪ {fail} and (Enc,Dec) is a C-computationally 1/ncnm-non-malleable for the class of

randomized circuits of size at most ncnm , where C is the class of randomized circuits of size at most

nc
′

nm . Moreover, (Enc,Dec) is simulatable by a size ntSim circuit, has rate R and runs in time ntnm ,

where tnm is a universal constant that depends on c.

37

• Let k = R · 1
1+α · n and v = α · k. Since k = O(n), by the assumption stated in Item 1 in Theorem

5.2 we can take cf > tSim + c0 and get constant ch and tf and a function f : {0, 1}k → {0, 1}v such

that f is an (nch , n−cf)-HTS for circuits of size ncf . Moreover, f can be computed in time ntf . We

can now fully specify c′nm from above, and take c′nm > tf + ch + c0.

Note that the above choice of constants was specifically made so that (Enc,Dec) and f meet the conditions

in Lemma 5.5. Thus, by Lemma 5.5, the code (Encf ,Decf) is statistically secure 1/nc-non-malleable for

the class randomized circuits of size at most nc, and runs in time nt where t > 1 is a constant that depends

on c. Moreover, the rate of the code is k/n = R · 1
1+α as desired. This concludes the proof of Theorem

5.2.

5.3 Proof of Lemma 5.5.

In this subsection we prove Lemma 5.5. An overview of this proof appears in Section 1.3.6

Given a constant c, let cnm, tSim, c
′
nm and cf , ch, tf be the constants, coding scheme (Enc,Dec) and

function f , guaranteed by the assumptions made at Lemma 5.5. Recall that by assumption cnm > c + c0,

cf > tSim + c0 and c′nm > tf + ch + c0. And that for a every sufficiently large n, (Enc,Dec) is a coding

scheme that maps k + v bits to n bits and is C-computationally 1/ncnm-non-malleable for the class of

randomized circuits of size at most ncnm , where C is the class of randomized circuits of size at most nc
′

nm ,

and is simulatable by a size ntSim randomized circuit. And f : {0, 1}k → {0, 1}v is an (nch , n−cf)-HTS for

circuits of size ncf , and can be computed in time ntf .

First note that by the non-malleability of (Enc,Dec), for every randomized circuit C of size at most nc,
there exists a simulating circuit SimC of size ntSim such that for every m′ ∈ {0, 1}k+v it holds that

Dec(C(Enc(m′)) ≈C
′

ǫ′ Copy(m′, SimC(1n)) (6)

Where C is the class of randomized circuits of size at most nc
′

nm and ǫ′ = 1/ncnm .

We now define a new (statistical) simulator SimC
f for the code (Encf ,Decf) using f and above (com-

putational) simulator SimC .

Definition 5.6 (The simulator SimC
f). Given the circuit SimC and the function f let SimC

f be defined as

follows: On input 1n, sample (m, y) ← SimC(1n). If (m, y) 6= fail, check if y = f(m) if so output m,

otherwise output fail.

We will prove that for every randomized channel C of size at most nc and every message m ∈ {0, 1}k:

Decf (C(Encf (m))) ≈s
ǫ Copy(m, Sim

C
f (1

n)) (7)

for ǫ = 1/nc. Note that proving Equation 7 concludes the proof for 5.5. In the following we fix a circuit C
and a message m, denote m′ = (m, f(m)) and consider the probability space:

• (MR, YR) = Dec(C(Enc(m′))).

• Mf
R = Decf (C(Encf (m))).

• (MI , YI) = Copy(m′, SimC(1n)).

• Mf
I = Copy(m, SimC

f (1
n)).

Stating Equation 7 in this notation, we want to prove that Mf
R ≈

s
ǫ M

f
I . But first we prove that

38

Claim 5.7. Let c′′ = ch + c0/2, ǫ′ = 1/ncnm and let C′′ be class of randomized circuits of size at most nc
′′

.

It holds that

Mf
R ≈

C′′

ǫ′ Mf
I .

Proof of Claim 5.7. Recall that c′nm > tf + ch + c0. Equation 6 states that

(MR, YR) ≈
C
ǫ′ (MI , YI) (8)

where C is the class of randomized circuits of size at most nc
′

nm and ǫ′ = 1/ncnm . Let Df be the function

defined as follows: On input (m, y), if (m, y) 6= fail, check if y = f(m) if so output m, otherwise output

fail. By definition it holds that

Mf
R ≡ D

f (MR, YR) Mf
I ≡ D

f (MI , YI) (9)

Moreover, Df can be implemented by a circuit of size ncD where cD = tf + c0/4 for some sufficiently

large universal constant c0. Since c′nm > c′′ + cD + c0/4 the claim holds as otherwise there exists a circuit

of size less than nc
′

nm that contradicts Equation 8.

By making use of the HTS properties of f and the above claim, we show that:

Claim 5.8. There exists a set H ⊂ {0, 1}k of size at most nch such that:

Pr[Mf
I /∈ H ∪ {fail}] ≤ ρ

and

Pr[Mf
R /∈ H ∪ {fail}] ≤ ρ+ ǫ′

where ρ = 1/ncf and ǫ′ = 1/ncnm .

Proof of Claim 5.8. Recall that for a message m ∈ {0, 1}k, m′ = (m, f(m)). and that by assumption

SimC(1n) can be implemented by a size ntSim randomized circuit. Let Am be the randomized circuit that

computes Copy(m′, SimC(1n)) (that is, (MI , YI)← Am). By the above, Am can be implemented by a size

ntSim+c0/4 randomized circuit, for some sufficiently large universal constant c0. Recall that cf > tSim + c0,

thus by the HTS property of f against the circuit Am, we have that there exists a set H ⊆ {0, 1}k of size at

most nch , such that:

Pr[MI 6∈ H and YI = f(MI)] ≤ ρ.

By the definition of SimC
f , this implies that:

Pr[Mf
I 6∈ H ∪ {fail}] ≤ ρ,

proving the first part in the claim. To see why the second part holds, consider the distinguisher DH that on

every input x ∈ {0, 1}k it outputs 1 iff x ∈ H ∪ {fail}. Note that DH can be implemented by a circuit of

size nch+c0/2, for a sufficiently large universal constant c0. Thus by Claim 5.7 it follows that

Pr[Mf
R 6∈ H ∪ {fail}] ≤ ρ+ ǫ′,

as otherwise DH can distinguish between Mf
I and Mf

R with advantage greater than ǫ′. This concludes the

proof.

39

Proving Lemma 5.5. We are finally, ready to prove Lemma 5.5. The key idea in the proof, is that if the

simulated experiment Mf
I and the real experiment Mf

R are statistically far, then there exists an efficient

circuit D′ that can distinguish Mf
I and Mf

R with roughly the same distinguishing advantage as the statistical

distance, contradicting Claim 5.7.

Loosely speaking, this holds since by Claim 5.8, with all but a small probability Mf
I and Mf

R are

distributed over a small domain (that is, the set H guaranteed in the claim). This implies that there exists an

adversary that is “restricted” to the set H , and is still able to distinguish between Mf
I and Mf

R. Since the

set H is small, it follows that there exists an efficient circuit D′ (that has H as a non-uniform advice) that is

able to implement the adversary.

Proof Lemma 5.5. Assume for contradiction that Equation 7 does not hold. That is, the statistical distance

between Mf
R and Mf

I is larger than ǫ = 1/nc. By the definition of the statistical distance, there exists a set

T ⊆ {0, 1}k ∪ {fail} such that:

|Pr[Mf
R ∈ T]− Pr[Mf

I ∈ T]| > ǫ (10)

Let H ⊆ {0, 1}k be the set of size nch guaranteed by Claim 5.8, and let H ′ = T ∩ (H ∪ {fail}). Consider

the distinguisher D′ defined as follows: on input x, if x ∈ H ′ output 1, otherwise output 0. We will show

that

|Pr[D′(Mf
R) = 1]− Pr[D′(Mf

I) = 1]| > ǫ′ = 1/ncnm . (11)

Note that proving Equation 11 concludes the proof of the lemma. This is because,D′ can be implemented by

a circuit of size nch+c0/2 (as the distinguisherD′ can hold the setH ′ as a non-uniform advice), contradicting

Claim 5.7. We now prove Equation 11, for this we define:

ER =
{
Mf

R ∈ H ∪ {fail}
}

EI =
{
Mf

I ∈ H ∪ {fail}
}

(12)

and let ĒR and ĒI be the complementary events of ER and EI respectively. By Claim 5.8, it holds that for

ρ = 1/ncf ,

Pr[ĒI] ≤ ρ Pr[ĒR] ≤ ρ+ ǫ′ (13)

Recall that D′(Mf
I) = 1 iff Mf

I ∈ T and Mf
I ∈ H . Writing the total probability,

Pr[Mf
I ∈ T] = Pr[Mf

I ∈ T ∩M
f
I ∈ H] + Pr[Mf

I ∈ T ∩M
f
I /∈ H] (14)

= Pr[D′(Mf
I) = 1] + Pr[Mf

I ∈ T ∩M
f
I /∈ H]

= Pr[D′(Mf
I) = 1] + Pr[Mf

I ∈ T ∩ ĒI]

Similarly,

Pr[Mf
R ∈ T] = Pr[D′(Mf

R) = 1] + Pr[Mf
R ∈ T ∩ ĒR] (15)

By Equations 14 and 15, and the triangle inequality:

|Pr[Mf
R ∈ T]− Pr[Mf

I ∈ T]|

≤ |Pr[D′(Mf
R) = 1]− Pr[D′(Mf

I) = 1]|+ |Pr[Mf
R ∈ T ∩ ĒR]|+ |Pr[M

f
I ∈ T ∩ ĒI]|

≤ |Pr[D′(Mf
R) = 1]− Pr[D′(Mf

I) = 1]|+ ρ+ ρ+ ǫ′

40

Where the last inequality follows from Equation 13. Since by assumption 1/nc = ǫ < |Pr[Mf
R ∈ T] −

Pr[Mf
I ∈ T]|, ǫ

′ = 1/ncnm and ρ = 1/ncf it follows that

|Pr[D′(Mf
R) = 1] Pr[D′(Mf

I) = 1]| > 1/nc − 1/ncnm − 2/ncf .

Since cnm > c + c0 and cf > cnm, for some sufficiently large universal constant c0, it holds that 1/nc −
1/ncnm − 2/ncf > 1/ncnm proving Equation 11 and concluding the proof as desired.

Acknowledgement

We are grateful to Banny Applebaum and Iftach Haitner for helpful discussions.

References

[AAG+16] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and

Manoj Prabhakaran. Optimal computational split-state non-malleable codes. In Eyal Kushile-

vitz and Tal Malkin, editors, Theory of Cryptography - 13th International Conference, TCC

2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, volume 9563 of Lecture

Notes in Computer Science, pages 393–417. Springer, 2016.

[AASY15] B. Applebaum, S. Artemenko, R. Shaltiel, and G. Yang. Incompressible functions, relative-

error extractors, and the power of nondeterministic reductions. In 30th Conference on Compu-

tational Complexity, pages 582–600, 2015.

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive

combinatorics. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014,

New York, NY, USA, May 31 - June 03, 2014, pages 774–783. ACM, 2014.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.

A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permuta-

tions. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th

Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-

ceedings, Part I, volume 9014 of Lecture Notes in Computer Science, pages 375–397. Springer,

2015.

[AIKS16] S. Artemenko, R. Impagliazzo, V. Kabanets, and R. Shaltiel. Pseudorandomness when the

odds are against you. In 31st Conference on Computational Complexity, CCC, volume 50,

pages 9:1–9:35, 2016.

[AKO+22] Divesh Aggarwal, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, Maciej Obremski, and

Sruthi Sekar. Rate one-third non-malleable codes. In Stefano Leonardi and Anupam Gupta,

editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome,

Italy, June 20 - 24, 2022, pages 1364–1377. ACM, 2022.

[AO20] Divesh Aggarwal and Maciej Obremski. A constant rate non-malleable code in the split-state

model. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer

Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1285–1294. IEEE,

2020.

41

[BCL+20] Marshall Ball, Eshan Chattopadhyay, Jyun-Jie Liao, Tal Malkin, and Li-Yang Tan. Non-

malleability against polynomial tampering. In Daniele Micciancio and Thomas Ristenpart,

editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Con-

ference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III,

volume 12172 of Lecture Notes in Computer Science, pages 97–126. Springer, 2020.

[BD22] G. Blanc and D. Doron. New near-linear time decodable codes closer to the GV bound. Elec-

tron. Colloquium Comput. Complex., TR22-027, 2022.

[BDG+18] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable

codes for small-depth circuits. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 826–

837. IEEE Computer Society, 2018.

[BDK+19] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, Huijia Lin, and Tal Malkin. Non-

malleable codes against bounded polynomial time tampering. In Yuval Ishai and Vincent

Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Ger-

many, May 19-23, 2019, Proceedings, Part I, volume 11476 of Lecture Notes in Computer

Science, pages 501–530. Springer, 2019.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes

for bounded depth, bounded fan-in circuits. In Marc Fischlin and Jean-Sébastien Coron, edi-

tors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on

the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,

Proceedings, Part II, volume 9666 of Lecture Notes in Computer Science, pages 881–908.

Springer, 2016.

[BDKM18] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable

codes from average-case hardness: $${\mathsf {A}}{\mathsf {C}}ˆ0$$, decision trees, and

streaming space-bounded tampering. In Jesper Buus Nielsen and Vincent Rijmen, editors,

Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018

Proceedings, Part III, volume 10822 of Lecture Notes in Computer Science, pages 618–650.

Springer, 2018.

[BDL22] M. Ball, D. Dachman-Soled, and J. Loss. (nondeterministic) hardness vs. non-malleability. In

Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,

volume 13507, pages 148–177, 2022.

[BGW19] Marshall Ball, Siyao Guo, and Daniel Wichs. Non-malleable codes for decision trees. In

Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO

2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August

18-22, 2019, Proceedings, Part I, volume 11692 of Lecture Notes in Computer Science, pages

413–434. Springer, 2019.

[BKS+10] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:

New constructions of condensers, ramsey graphs, dispersers, and extractors. J. ACM, 57(4),

2010.

42

[BOV07] B. Barak, S. J. Ong, and S. P. Vadhan. Derandomization in cryptography. SIAM J. Comput.,

37(2):380–400, 2007.

[BV17] N. Bitansky and V. Vaikuntanathan. A note on perfect correctness by derandomization. In

Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, volume 10211, pages 592–606, 2017.

[CG14] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and

split-state tampering. In Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of

Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceed-

ings, volume 8349 of Lecture Notes in Computer Science, pages 440–464. Springer, 2014.

[CG16] M. Cheraghchi and V. Guruswami. Capacity of non-malleable codes. IEEE Trans. Inf. Theory,

62(3):1097–1118, 2016.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with their

many tampered extensions. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the

48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,

USA, June 18-21, 2016, pages 285–298. ACM, 2016.

[CL17] Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth cir-

cuits, and affine functions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2017, Montreal, QC, Canada, June 19-23, 2017, pages 1171–1184. ACM, 2017.

[CL20] Eshan Chattopadhyay and Xin Li. Non-malleable codes, extractors and secret sharing for in-

terleaved tampering and composition of tampering. In Rafael Pass and Krzysztof Pietrzak,

editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,

USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in Com-

puter Science, pages 584–613. Springer, 2020.

[CT22] L. Chen and R. Tell. When arthur has neither random coins nor time to spare: Superfast

derandomization of proof systems. Electron. Colloquium Comput. Complex., TR22-057, 2022.

[DKO13] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from

two-source extractors. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology

- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-

22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer Science, pages

239–257. Springer, 2013.

[DKP21] D. Dachman-Soled, I. Komargodski, and R. Pass. Non-malleable codes for bounded parallel-

time tampering. In Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryp-

tology Conference, CRYPTO 2021, volume 12827 of Lecture Notes in Computer Science, pages

535–565. Springer, 2021.

[DMOZ22] D. Doron, D. Moshkovitz, J. Oh, and D. Zuckerman. Nearly optimal pseudorandomness from

hardness. J. ACM, 69(6):43:1–43:55, 2022.

[DPW18] S. Dziembowski, K. Pietrzak, and D. Wichs. Non-malleable codes. J. ACM, 65(4):20:1–20:32,

2018.

43

[Dru13] Andrew Drucker. Nondeterministic direct product reductions and the success probability of

SAT solvers. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS,

pages 736–745, 2013.

[FMVW16] S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-malleable codes and key

derivation for poly-size tampering circuits. IEEE Trans. Inf. Theory, 62(12):7179–7194, 2016.

[GMW17] Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Constant-rate non-malleable codes in

the split-state model. IACR Cryptol. ePrint Arch., page 1048, 2017.

[GMW19] Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Explicit rate-1 non-malleable codes

for local tampering. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in

Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Bar-

bara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture Notes in

Computer Science, pages 435–466. Springer, 2019.

[GS16] V. Guruswami and A. Smith. Optimal rate code constructions for computationally simple

channels. Journal of the ACM (JACM), 63(4):35, 2016.

[GST03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness

tradeoffs for arthur-merlin games. Computational Complexity, 12(3-4):85–130, 2003.

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive proce-

dures with advice, and lower bounds on hardness amplification proofs. In 59th IEEE Annual

Symposium on Foundations of Computer Science, pages 956–966, 2018.

[GW02] O. Goldreich and A. Wigderson. Derandomization that is rarely wrong from short advice that

is typically good. In APPROX-RANDOM, pages 209–223, 2002.

[HNY17] P. Hubácek, M. Naor, and E. Yogev. The journey from NP to TFNP hardness. In 8th In-

novations in Theoretical Computer Science Conference, ITCS, volume 67, pages 60:1–60:21,

2017.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandom-

izing the XOR lemma. In STOC, pages 220–229, 1997.

[JST21] F. G. Jeronimo, S. Srivastava, and M. Tulsiani. Near-linear time decoding of ta-shma’s codes

via splittable regularity. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of

Computing, pages 1527–1536, 2021.

[KOS17] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state non-

malleable codes with explicit constant rate. In Yael Kalai and Leonid Reyzin, editors, Theory

of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA, November

12-15, 2017, Proceedings, Part II, volume 10678 of Lecture Notes in Computer Science, pages

344–375. Springer, 2017.

[KOS18] Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable ran-

domness encoders and their applications. In Jesper Buus Nielsen and Vincent Rijmen, editors,

Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018

44

Proceedings, Part III, volume 10822 of Lecture Notes in Computer Science, pages 589–617.

Springer, 2018.

[KSS19] S. Kopparty, R. Shaltiel, and J. Silbak. Quasilinear time list-decodable codes for space bounded

channels. To appear in the 60th Annual Symposium on Foundations of Computer Science

(FOCS), 2019.

[KvM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs

unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source ex-

tractors. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,

Canada, June 19-23, 2017, pages 1144–1156. ACM, 2017.

[Li19] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions.

In Amir Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-20,

2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 28:1–28:49. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2019.

[Li23] Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. Electron.

Colloquium Comput. Complex., TR23-023, 2023.

[Lip94] R. J. Lipton. A new approach to information theory. In 11th Annual Symposium on Theoretical

Aspects of Computer Science, pages 699–708, 1994.

[LL12] Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.

In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 -

32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceed-

ings, volume 7417 of Lecture Notes in Computer Science, pages 517–532. Springer, 2012.

[MV05] P. Bro Miltersen and N. V. Vinodchandran. Derandomizing arthur-merlin games using hitting

sets. Computational Complexity, 14(3):256–279, 2005.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. JCSS: Journal of Computer and System

Sciences, 49, 1994.

[SS21a] R. Shaltiel and J. Silbak. Explicit list-decodable codes with optimal rate for computationally

bounded channels. Comput. Complex., 30(1):3, 2021.

[SS21b] R. Shaltiel and J. Silbak. Explicit uniquely decodable codes for space bounded channels that

achieve list-decoding capacity. In STOC ’21: 53rd Annual ACM SIGACT Symposium on The-

ory of Computing, pages 1516–1526, 2021.

[SS22] R. Shaltiel and J. Silbak. Error correcting codes that achieve BSC capacity against channels

that are poly-size circuits. In 63rd IEEE Annual Symposium on Foundations of Computer

Science, FOCS, pages 13–23, 2022.

[SS23] R. Shaltiel and J. Silbak. Explicit codes for poly-size circuits and functions that are hard to

sample on low entropy distributions. Electronic Colloquium on Computational Complexity

(ECCC), (149), 2023.

45

[SU05] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom

generator. J. ACM, 52(2):172–216, 2005.

[SU06] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. Com-

putational Complexity, 15(4):298–341, 2006.

[SU09] R. Shaltiel and C. Umans. Low-end uniform hardness versus randomness tradeoffs for am.

SIAM J. Comput., 39(3):1006–1037, 2009.

[TS17] A. Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th

Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 238–251, 2017.

[TV00] L. Trevisan and S. P. Vadhan. Extracting randomness from samplable distributions. In 41st

Annual Symposium on Foundations of Computer Science, pages 32–42, 2000.

[Vio12] E. Viola. The complexity of distributions. SIAM J. Comput., 41(1):191–218, 2012.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-

matic number. Theory Comput., 3(1):103–128, 2007.

46

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

