
Derandomization in Catalytic Computation

Edward Pyne
MIT

epyne@mit.edu

November 14, 2023

Abstract

We obtain new catalytic algorithms for space-bounded derandomization. In the catalytic
computation model introduced by (Buhrman, Cleve, Koucký, Loff, and Speelman STOC 2013),
we are given a small worktape, and a larger catalytic tape that has an arbitrary initial configu-
ration. We may edit this tape, but it must be exactly restored to its initial configuration at the
completion of the computation. We prove that

BPSPACE[S] ⊆ CSPACE
[
S, S2

]
where BPSPACE[S] corresponds to randomized space S computation, and CSPACE [S,C] cor-
responds to catalytic algorithms that use O(S) bits of workspace and O(C) bits of catalytic
space. Previously, only BPSPACE[S] ⊆ CSPACE

[
S, 2O(S)

]
was known. In fact, we prove a

general tradeoff, that for every α ∈ [1, 1.5],

BPSPACE[S] ⊆ CSPACE
[
Sα, S3−α

]
.

We do not use the algebraic techniques of prior work on catalytic computation. Instead, we
develop an algorithm that branches based on if the catalytic tape is conditionally random, and
instantiate this primitive in a recursive framework. Our result gives an alternate proof of the best
known time-space tradeoff for BPSPACE[S], due to (Cai, Chakaravarthy, and van Melkebeek,
Theory Comput. Sys. 2006).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 168 (2023)

1 Introduction

In the catalytic logspace (CL) model, introduced by Buhrman, Cleve, Koucký, Loff, and Speel-
man [BCK+14], there is a machine M with O(log n) bits of standard working memory, and nc

bits of catalytic memory. This catalytic memory has an arbitrary initial configuration, and must
be returned to exactly this configuration at the end of the computation. Remarkably, [BCK+14]
showed that CL is likely to be strictly more powerful than L. In particular, it contains logspace-
uniform TC1 and thus NL. Motivated by this striking result, there have been several further works
exploring the power of catalytic computation [BKLS18,GJST19,DGJ+20,CM20,BDS22].

We parameterize catalytic computation by time, space, and catalytic space (similar notions
have been considered before, e.g. [BDS22]).

Definition 1.1. Let CTISP [T (n), S(n), C(n)] be the set of languages recognized by catalytic
machines that use O(S(n)) workspace and O(C(n)) catalytic space on inputs of size n, and run in
time poly(T (n)) in the worst case.

Note that the worst-case runtime must hold over every catalytic tape, as well as every input.
Prior work has studied the ability of catalytic space to substitute for randomness, in particular

in the setting of derandomizing space-bounded computation. Let BPL be the set of languages
recognized by randomized machines that run in space O(log n) on inputs of size n, and make
two-sided error. The result of [BCK+14] implies that

BPL ⊆ CTISP [n, log n, nc]

for some constant c. In fact, we are aware of two other proofs of this fact. An unpublished result
(see the recent survey of Mertz [Mer23] for a sketch) proves it by treating the catalytic tape as a
set of random walks, and the third follows from recent work on certified derandomization for BPL
[PRZ23,DPT23].

As our main result, we improve the amount of catalytic space needed to simulate BPL by a
superpolynomial amount.

Theorem 1.2.
BPL ⊆ CTISP

[
n, log n, log2 n

]
.

Our simulation of BPL is as time- and space- efficient as the frontier result of Nisan [Nis94],
which proves that BPL ⊆ TISP[n, log2 n], and moreover almost all the space used is catalytic.
Next, we incorporate this algorithm into a recursive framework to derive a (time-efficient) tradeoff
between the catalytic- and non-catalytic space consumption.

Theorem 1.3. For every α ∈ [1, 1.5],

BPL ⊆ CTISP
[
2log

α(n), logα(n), log3−α(n)
]
.

Interestingly, while previous work on algorithms for catalytic computation [BCK+14, CM20]
primarily used algebraic techniques involving reversible computation over a ring, our results take a
completely different approach based on conditional compressibility. We hope that our techniques
will have broader applications, both inside and beyond the model of catalytic computation. As one
example, we obtain a new proof of the result of Cai, Chakaravarthy, and van Melkebeek [CCvM06]
that BPL is contained in TISP[2log

α n, log3−α n] for every α ∈ [1, 1.5]. We give a more detailed com-
parison in Section 1.2 (and we note that their result does not seem to imply a catalytic algorithm).

1

1.1 Proof Overview for Theorem 1.2

A canonical (promise)-BPL complete problem is that of estimating transition probabilities in read-
once branching programs:

Definition 1.4. A read-once branching program (ROBP) B of width w and length n and
alphabet {0, 1}t is defined by a function B : [w]× {0, 1}t → [w].1 For x ∈ ({0, 1}t)n, define

B[i, x] = B[B[. . . B[B[i, x1], x2] . . .], xn−1], xn].

It is well known that to derandomize BPL, it suffices to estimate Prx←Un [B[1, x] = 1] up to
error 1/3 for an ROBP B of length n, width n and alphabet {0, 1}.

The Result of Nisan. We now recall the result of [Nis94], which itself begins with the PRG
of [Nis90]. In this PRG, we draw ℓ = log n hash functions h1, . . . , hℓ from a pairwise independent
hash family on t = O(log nw) bits. We recursively define the PRG as follows. Let NIS0(x) = x for
x ∈ {0, 1}t, and let NISi+1(x) = (NISi(x),NISi(hi+1(x))). To analyze this PRG, fix a branching
program B : ({0, 1}t)n → {0, 1} of width w, with transition function B. Viewing this construction
from the bottom up, the first hash function h1 is good if for every every a, b ∈ [w],

Pr
x,x′←Ut

[B[B[a, x], x′] = b] ≈ Pr
x←Ut

[B[B[a, x], h1(x)] = b],

i.e. the distribution (x, h1(x)) is indistinguishable from the distribution (x, x′) by the composition
of B with itself. Since B can only pass logw bits of information from the first to the second half,
this occurs with probability 1−w−c over h1 ← H (assuming t = O(logw) is sufficiently large). The
ultimate PRG is analyzed recursively using ℓ applications of essentially the same idea. Concretely,
at the second level of the construction, we now want a hash function h2 that fools the length n/2
program with transition function B′[a, x] = B[B[a, x], h1(x)].

While the Nisan PRG randomly selects ℓ hash functions at once, the insight of [Nis94] was that,
given a specific program B that we want to fool, we can search for good hash functions level by
level. At level i, we find a hash function hi that fools the relevant transition function. As this test
is easy to implement in time 2O(t) for a fixed h and there are 2O(t) such h to test, we can find such
a good hash function in time 2O(t) = poly(n) per level, giving a polynomial runtime overall.

An Algorithm From Conditional Compression. We transform this algorithm into a catalytic
algorithm as follows. Suppose we have a branching program B of width w and length n = 2ℓ, and a
catalytic tapew, with an arbitrary initial configuration. We interpretw as holding 2ℓ hash functions
h1, . . . , h2ℓ, each over t = O(log nw) bits (and note that each function can have description size
exactly 2t). Let V ∈ {0, 1, ∗}2ℓ and initialize V = ∗2ℓ to indicate the status of each block. We then
iterate through this list. Letting the ith hash function be h̃ and the previous good hash functions
be h⃗p, we check if h̃ is a good hash function, using the test as before.

• If h̃ is good, we set Vi = 1, indicating h̃ is part of the list of good hashes.

• If h̃ is not good, it must lie in the set FAIL(h⃗p) of hash functions that fail to fool the current

transition function. But as almost all h are good, the index of h̃ in FAIL(h⃗p) is a concise
description of h̃! We can then replace h̃ with this index, and free up Ω(log nw) bits on this
block of the tape. Finally, set Vi = 0 to indicate we have compressed this block.

1The standard definition of ROBPs permits the transition function to differ between the layers. However, as we
will always be dealing with programs where w ≥ n, and we are insensitive to polynomial losses in the width, we can
assume all transition functions are the same for clarity.

2

At the end of this phase, we have either found ℓ good hash functions, or have freed up ℓ ·Ω(log nw)
bits on the tape. In the latter case, we can simply search for a good set of hash functions (on
slightly fewer bits), exactly as in the algorithm of [Nis94], and store these in the free space of
the compressed blocks. Thus, in both cases we obtain a sequence of hash functions that together
constitute a good PRG for B, and hence can construct a generator NIS that does a good job
estimating walk probabilities on B. The final step of estimating these walks can be performed in
space O(t+ log nw) = O(log nw) with read-only access to the tape w.

Finally, to return the tape to its original configuration, we work backwards over the compressed
blocks, i.e. indices i where Vi = 0. For each block, we determine the preceeding good hash functions
h⃗p, read the index of the original hash (i.e. tape configuration) in FAIL(h⃗p), then find the hash
with this index by enumeration and write it to the tape.

1.2 Proof Overview for Theorem 1.3

To obtain a smooth tradeoff between the catalytic and non-catalytic space, our next idea is to unify
this with efficient composition of catalytic algorithms:

Composition of Catalytic Algorithms. Recall that in the conventional composition of space-
bounded algorithms, we can compute the composition of two algorithms running in space S(n) in
space c · S(n), for some constant c > 1. Our key observation is that for catalytic algorithms, we
can obtain composition with no increase in the length of the catalytic tape:

Theorem 1.5 (Composition of Catalytic Space-Bounded Algorithms). Given two catalytic algo-
rithms M1,M2 computing f1, f2 respectively, each using space S(n) ≥ log n, catalytic space C(n),
and time T (n), there is a catalytic algorithm M′ using time poly (T (n)), space O(S(n)), and cat-
alytic space C(n) that computes f2 ◦ f1.

The proof of this result modifies the standard composition of space-bounded algorithms. To
compute M2(M1(x)), we begin to simulate Mw

2 (f1(x)) (where the superscript notation denotes
running the machine with catalytic tape w). WheneverM2 reads a bit of the input, we simulate
Mw′

1 (x) to obtain the relevant bit of f1(x), where w′ is the current configuration of the catalytic
tape ofM2. SinceM1 is guaranteed to produce the correct answer for every starting tape, we have
that Mw′

1 (x) = f1(x). Moreover, as M1 is catalytic, it resets the tape to w′ before returning, so
M2 does not notice the call has occurred, and can continue its computation.

We remark that we are not able to apply this theorem as-is due to issues with (essentially) f1
being a relation with multiple valid outputs, so the actual statement we prove is more involved. In
particular, we must deal with safety reverting the catalytic tape if an intermediate call toM1 fails.

Derandomization via Repeated Powering. Going from this to Theorem 1.3 requires a fur-
ther ingredient, which is given by a variant of the Saks-Zhou recursive powering scheme. Saks-
Zhou [SZ99] divides computing the nth power of an n×n stochastic matrix M (a prBPL complete
problem) into r2 iterations of computing the 2r1th power, for any r1r2 = log n. For convenience,
let M0 = M and Mi = M2r1·i for i ∈ [r2]. In the original algorithm, all levels share a single set of
hash functions h⃗ = (h1, . . . , hr1), each on O(log n) bits. A random set of hash functions will do a
good job computing Mi from Mi−1 for every i, and so we can reuse this fixed set of hash functions
at every level.2 Unfortunately, such an argument is incompatible with searching for good hash

2There are additional complications from reusing the hash functions, but they are not the primary reason for the
high time complexity.

3

functions one by one. Since we use every hash function to produce an approximation to M1, if we
later discover a hash function is bad at powering Mi for i ≥ 1, seemingly we must destroy all partial
progress and try a new set of hash functions. Thus, the Saks-Zhou algorithm must enumerate over
h⃗ = (h1, . . . , hr1) all at once, incurring a runtime of 2Ω(r1·logn). As the algorithm incurs a runtime
of 2Ω(r2·logn) merely from the recursive composition of space bounded algorithms, the total runtime

is at least 2Ω(max{r1,r2}·logn) = 2Ω(log3/2 n) for any setting of parameters r1 and r2. We note that
the work of [CCvM06] also avoids this issue, and we explain their differing approach in more detail
in Section 1.2.

Composing Conditional Compression Algorithms. Our catalytic algorithm allows for a
more efficient approach. We follow the same recursive powering scheme as Saks-Zhou, but at each
level use the algorithm of Theorem 1.2 that treats w as a list of 2r1 candidate hash functions.3

Whenever we request an entry of a smaller power, we call the next level algorithm. If that level
sees that the hash functions currently on the tape are good, it uses them to compute the requested
entry. If not, it temporarily compresses the tape, finds good hash functions in time poly(n), uses
them to compute the requested entry, then resets the tape to exactly the same configuration the
calling algorithm was expecting before returning. Thus, every level can either use the tape as-is,
if it is suitable, or quickly compute a better set of hash functions on the fly and revert before
returning control. This eliminates the 2r1 logn term in the runtime. Moreover, the O(r1 log n) bits
used to store the hash functions can be treated as catalytic space, resulting in an algorithm that
uses only O(r2 log n) bits of workspace.

Finally, for every α ∈ [1, 1.5], we can choose r1 = log2−α(n) and r2 = logα−1(n) and obtain a
algorithm that uses O(r1 log n) = O(log3−α n) catalytic space, O(r2 log n) = O(logα n) workspace,
and runs in time poly (nr2) = 2O(logα n), as claimed.

Such an approach runs into a subtle technical issue. Since the algorithm at level i may be called
many times with different starting catalytic tapes, we must ensure that the algorithm returns the
same approximate power each time, as otherwise the composition would not be well defined. To
fix this, we first define a notion of catalytic algorithms that are allowed to return ⊥ for some initial
catalytic tapes, in addition to a fixed output that is independent of the catalytic tape. We then
show how these algorithms can be composed, while still maintaining the ability to revert the tape to
the original configuration in the worst case. Finally, we adopt the strategy of Saks and Zhou [SZ99],
and randomly perturb the matrices at each level. In our case, if a level of the algorithm determines
that a shift is bad (i.e. could produce ambiguous behavior) it aborts and returns ⊥. We show with
high probability over the shifts, this will never occur (i.e. we will not return ⊥) no matter the tape,
and so we can compose the algorithm with itself and find the desired output.

Showing that we can successfully avoid permanent damage to the tape in the case that the
shifts are bad requires further work. In particular, we ensure that our catalytic algorithms can
be reverted from any point, where our notion of reversibility requires that we do not introduce
any new configurations of the catalytic tape. We show that we can achieve this notion without a
substantial time cost, and moreover it is compatible with recursive composition. Using this tool,
we are able to return to the original tape configuration of a subroutine ever returns ⊥.

Comparison With [CCvM06]. The result of [CCvM06] likewise gives a version of the Saks-
Zhou result that does not incur the nr2 factor in runtime, which they use to obtain the result
that BPL ⊆ TISP[2log

α n, log3−α n] for every α ∈ [1, 1.5]. We briefly explain their approach, which

3We give a “non-black-box” explanation of the final algorithm here as it illustrates the actual idea, but our proof
uses a black-box statement regarding composition of catalytic algorithms.

4

does not seem to give a catalytic algorithm. Their result follows the following recursive framework.
We start with a set of hash functions h⃗ = (h1, . . . , hℓ) that produce a good approximation of

Mi (which we denote M̃i) from Mi−1 for every i ≤ r, but does not necessarily produce a good
approximation of Mr+1 from Mr. We then search for a new set of hash functions h⃗′ = (h′1, . . . , h

′
ℓ)

with the following two properties. First, h⃗′ is good at approximately powering Mi for every i ≤ r
(in particular, it produces a good approximation M̃ ′r+1). Second, after applying the random shift

and round operation to the approximations M̃i, M̃
′
i for i ≤ r produced by the old and new sets of

hash functions, we obtain the same matrices. After doing so, we replace h⃗ with h⃗′ and increment r.
The latter requirement allows us to make progress, as we can gradually find sets of hash functions
that are good for greater powers, without destroying progress by altering the “results” of prior
computation. However, this approach does not seem to give a catalytic algorithm (in particular, it
does not exploit the fact that bad hash functions are compressible).

1.3 Roadmap

In Section 2, we formally define the catalytic computation model, and prove Theorem 1.5. In Sec-
tion 3, we prove Theorem 1.2, and in Section 4, we prove Theorem 1.3. In Appendix A we provide
proofs of some cited lemmas.

2 Catalytic Machines and Composition

We first formally define a catalytic Turing machine.

Definition 2.1 (Catalytic Turing Machine [BCK+14]). A Turing machineM is a catalytic ma-
chine using time T (n), workspace S(n), and catalytic space C(n) if it has a work tape, a read-only
input tape, a write-only output tape, and a catalytic tape w. We require that for every input x
with |x| = n and every w, Mw(x) halts in time at most T (n), using at most S(n) cells on the
worktape and C(n) cells on w. Moreover, the final configuration of w must be equal to its initial
configuration, for every x and w.

We now define the notion of a catalytic machine that computes a function. We furthermore
define the notion of partially computing a function, where on some tapes w the machine can output
a special failure symbol ⊥.

Definition 2.2. For a function f : {0, 1}∗ → {0, 1}∗, we say a catalytic machineM (catalytically)
computes f if for every x and w, Mw(x) = f(x), and at the end of the computation w is in
its original state. We say that M partially (catalytically) computes f if for every x and w,
Mw(x) ∈ {⊥, f(x)}, and at the end of the computation (no matter the output) w is in its original
state.

Partial catalytic computation is trivial without further restrictions (as M can always output
⊥), but we require it as an intermediate step in our analyses. We require a further condition on our
machines, that they can revert the catalytic tape at any time without the catalytic tape traversing
any new configurations:4

Definition 2.3. A catalytic machineM is reversible if for every x and initial configuration w, at
any point during the execution ofMw(x), the machine can receive an external REVERT signal.

4There are existing results related to transforming catalytic algorithms into reversible catalytic algorithms [Mer23].
However, they do not appear to maintain worst-case runtime over the catalytic tape, which is crucial for our results.

5

Let P = P (w) denote all prior configurations of the catalytic tape during the execution ofMw(x).
After this signal, M must reset w to the original configuration, and moreover every intermediate
configuration of w during this process must lie in P . We require any time bound on M to hold
even in the case thatM is given the REVERT command at an arbitrary point.

2.1 Composition of Catalytic Algorithms

We state the main result of this section, which is that catalytic algorithms can be composed
without increasing the catalytic space usage. We must be careful when dealing with partial catalytic
machines, and in this case we only obtain composition if the machines are reversible (Definition 2.3).

Theorem 2.4 (Composition of Partial Catalytic Machines). Suppose reversible catalytic machines
M1,M2 partially compute f1, f2 : {0, 1}n → {0, 1}n respectively using workspace S(n) ≥ log(n),
catalytic space C(n), and time T (n). Then there is a reversible catalytic machine M that par-
tially computes f2 ◦ f1 using workspace O(S), catalytic space C, and time poly(T (n)). Moreover,
Mw(x) = ⊥ only ifMw

2 (f1(x)) = ⊥, or there exists w′ such thatMw′
1 (x) = ⊥.

Proof. We proceed roughly following the standard proof for composition of space-bounded algo-
rithms. We maintain two sections on the worktape of size S forM1 andM2, and a single catalytic
tape w.

The Simulation. We now begin to simulate Mw
2 . We first verify that Mw

1 (x) ̸= ⊥. As in
the conventional composition of space-bounded algorithms, every timeM2 reads its input, we run
Mw

1 (x) on a separate section of the worktape and return the relevant bit of its output, where w
is the same catalytic tape used byM2, in whatever its current configuration is at the time of the
tape read. Moreover, every timeM2 writes to the catalytic tape, resulting in a configuration w′,
we runMw′

1 (x) and verify that it does not produce ⊥.

Computing the Function. In the case that Mw′
1 (x) = f1(x) for every configuration w′ that

is encountered in this simulation and Mw
2 (f1(x)) = f2(f1(x)), it is easy to see that Mw(x) =

f2(f1(x)). Moreover, it is clear that in this case we successfully reset the tape. Otherwise, consider
the first point at whichMw′

1 (x) = ⊥. We first undo the most recent change to the catalytic tape,
and send the REVERT command to M2. Once M2 has finished reverting, return ⊥. We claim
that M2 successfully reverts the tape. This follows from the reversibility of M2, and the fact
that all callsM2 makes to its input during this process are correctly answered byM1. The latter
property follows as every timeM2 queries its input during the revert process, w is in a state that
was encountered during the forward pass, and henceM1(x) produced f1(x) when initialized with
this catalytic configuration (as otherwise we would have aborted sooner).

Reversibility. Essentially the same argument establishes thatM is reversible. If we receive the
REVERT command, let P (w) be the states of the catalytic tape that have been encountered so
far. First send REVERT to M1 (if operating), and once it has completed send the REVERT
command toM2. Moreover, whileM2 is reverting, we claim that w remains in P (w). This follows
from the fact thatM2 is reversible (as any configurations it creates will lie in P (w)), and moreover
every timeM2 queries its input, any computation done byM1 will likewise keep w in P (w), as we
already calledM1 with this starting configuration in the forward pass (andM1 will not produce
⊥, as otherwise we would have already aborted). Thus, the composed algorithm is reversible.

6

Time and Space. We now argue the space and time are as claimed. There are a constant number
of pointers (which we maintain on the worktape) to track the number of bits output byM1, current
tape heads, and other information. The fact that the catalytic tape size is preserved is immediate.
The call overhead adds at most a polynomial factor in the runtime, as we runM1 at most once per
step ofM2. Finally, ifM1 computes f1(x) for every catalytic tape andM2 computes correctly on
w, we successfully compute f2 ◦ f1 as claimed.

We derive an easy corollary in the case of multiple composition:

Corollary 2.5. Suppose a reversible catalytic machineM partially computes f : {0, 1}n → {0, 1}n
using workspace S(n) ≥ log n, catalytic space C, and time 2S. Then there exists a reversible
catalytic machine M′ that partially computes f ℓ using workspace O(ℓ · S), catalytic space C, and
time 2O(ℓ·S). Moreover, for x where Mw(f i(x)) = f(f i(x)) for every w and i ∈ {0, . . . , ℓ − 1},
M′w(x) = f ℓ(x).

3 Catalytic Derandomization From Conditional Compression

In this section we prove Theorem 1.2. We state all our results in terms of catalytic algorithms for
the stochastic matrix powering problem, as it is easily compatible with the recursive framework we
implement later. Recall a nonnegative matrix is stochastic (resp. substochastic) if all row sums
are 1 (resp. at most 1). For a set S, let US be the uniform distribution over S, and let Un = U{0,1}n .

Theorem 3.1. There is a CTISP
[
n, log n, log2 n

]
algorithm that, given n and a stochastic matrix

M ∈ [0, 1]n×n where each entry is specified with O(log n) bits of precision, outputs M̃ ∈ [0, 1]w×w

such that
∥∥∥M̃ −Mn

∥∥∥
1
≤ 1/n.

We recall the existence of efficient algorithms which canonicalize (sub)stochastic matrices, essen-
tially reducing the stochastic matrix powering problem to producing a PRG that fools a branching
program.

Lemma 3.2 ([SZ99,PP23,CDST23]). There is a constant c > 0 and a space O(log nw/ε) algorithm
which, given ε > 0 and n,w ∈ N where w ≥ n and a substochastic matrix M ∈ [0, 1]w×w with
O(logw) bits of precision, returns a branching program

B : [(w/ε)c]× {0, 1}m → [(w/ε)c]

where m = n · O(log(w/ε)) is a power of two satisfying the following. Letting M̃ ∈ [0, 1]w×w be

the (substochastic) matrix where for i, j ∈ [w] we define M̃i,j = Prx←Un [B[i, x] = j], we have∥∥∥M̃ −Mn
∥∥∥
1
≤ ε.

As this is not the way these results are stated, we provide a translation in Appendix A. We
next define the Nisan PRG, and recall several auxiliary lemmas.

The Nisan PRG. Given a branching program, we first define the larger alphabet program
obtained from duplicating each edge:

Definition 3.3. For t ∈ N, for B : [w] × {0, 1}n → [w] of width w, let Bt : [w] × ({0, 1}t)n → [w]
be the branching program of length n and width w over alphabet {0, 1}t with transition function
Bt[a, y] = B[a, y1]. Note that Bt can be constructed in space O(log tnw) given B, and furthermore
for every i, j ∈ [w], Prx←Un [B[i, x] = j] = Prx←U({0,1}t)n

[Bt[i, x] = j].

7

We recall a pairwise independent hash family with a very efficient description:

Fact 3.4. For every t ∈ N, there exists a pairwise independent hash family H : {0, 1}t → {0, 1}t
such that |H| = 22t, and h ∈ H (which we associate with h ∈ {0, 1}2t) can be evaluated in space
O(t).

Given a (hash) function h : {0, 1}t → {0, 1}t and a program B, we define an operator that
applies a single level of the Nisan construction with hash function h.

Definition 3.5. Given Bt : [w] × ({0, 1}t)n → [w] and h : {0, 1}t → {0, 1}t, let Bt,h : [w] ×
({0, 1}t)n/2 → [w] be the width w, length n/2 program with transition function

Bt,h[a, x] = Bt[Bt[a, x], h(x)].

Using a recursive application of hash functions, we can define the Nisan PRG as follows.

Definition 3.6. For (h1, . . . , hℓ) ∈ Ht, define NIS(h1,...,hℓ) : {0, 1}t → {0, 1}t·n inductively as
follows. Let NIS0(x) = x1, and for j ∈ [ℓ]

NIS(h1,...,hj)(x) = (NIS(h1,...,hj−1)(x)||NIS(h1,...,hj−1)(hj(x))).

Note that B[·,NIS(h1,...,hℓ)(·)] and Bt,(h1,...,hℓ)[·, ·] (as defined in Definition 3.5) are equal as functions.

To analyze the Nisan PRG, we define the notion of a hash function being good for composing
two functions, and a PRG being good for a function.

Definition 3.7. For every n,w, t ∈ N and δ > 0 and f : [w] × ({0, 1}t)n → [w] and G : {0, 1}t →
({0, 1}t)n, we say that G is δ-good for f if for every i, j ∈ [w],∣∣∣∣∣ Pr

x←Ut

[f [i, G(x)] = j]− Pr
x←U({0,1}t)n

[f [i, x] = j]

∣∣∣∣∣ ≤ δ.

Moreover, we say h ∈ H is δ-good (and δ-bad otherwise) for f : [w] × {0, 1}t → [w] if G(x) =
(x||h(x)) is δ-good for f [i, (x, y)] = f [f [i, x], y].

We recall that a random hash function is good with high probability.

Lemma 3.8 ([Nis90]). For every f , Prh←Ht [h is δ-good for f] ≥ 1− w5(1/δ)2/2t.

(We provide a proof in Appendix A.) Moreover, a hybrid argument establishes the following.

Lemma 3.9 ([Nis90]). For every Bt : [w] × ({0, 1}t)n → [w] and h⃗ = (h1, . . . , hℓ), suppose for
every i ∈ [ℓ], hi is δ-good for Bt,h1,...,hi−1

. Then NIS
h⃗
is δ · nw-good for B.

Catalytic Derandomization. We now state the main result that powers all of our derandom-
izations.

Theorem 3.10. There is a pair of reversible catalytic algorithms A,D that run in workspace
O(log nw/ε), catalytic space O(log(n) · log(nw/ε)), and time poly(nw/ε) and act as follows. Given
ε > 0 and a length n = 2ℓ, width w ROBP B : [w]× {0, 1}n → [w] where w ≥ n:

• The machine Aw(B) outputs V ∈ {0, 1}2ℓ and t = O(log nw/ε) and sets the catalytic tape to
w′, such that (w′, V) contains a (read-only) data structure supporting access to hash functions
h⃗ = (h1, . . . , hℓ) each on t bits, such that NIS

h⃗
is ε-good for B.

8

• The machine Dw′
(B, V) sets the final catalytic tape configuration to w.

To make our compression and decompression algorithms work, we require that we can determine
if a hash function is good for a branching program at a certain level of the Nisan construction,
given pointers to the hash functions at the previous levels:

Proposition 3.11. There is a space O(t+ log(w/δ)) algorithm that, given n,w, t ∈ N with w ≥ n
and h̃ ∈ {0, 1}2t and B : [w] × {0, 1}n → [w] and (read only) w and pointers p1, . . . , pr such that
w[pi,...,pi+2t] = hi represents a hash function on t bits, returns if h̃ is δ-good for Bt,(h1,...,hr).

We give a proof in Appendix A, as it essentially follows from the argument of [Nis94]. We can
then prove the theorem:

Proof of Theorem 3.10. We assume without loss of generality that n,w and 1/ε are powers of two.
Set

t0 = 60 log(w/ε), t1 = 25 log(w/ε), δ = ε/nw ≥ ε/w2,

and note that we choose t1 large enough such that a good series of hash functions on t1 bits always
exists. The algorithm works as follows. First, virtually divide the catalytic tape as:

w =
(
w1||w2|| · · · ||w2ℓ

)
where |wi| = 2t0, which we think of as initially holding h : {0, 1}t0 → {0, 1}t0 . Note that |w| =
ℓ · 4t0 = O(log(n) log(nw/ε)) as claimed.

Next, initialize V ∈ {0, 1, ∗}2ℓ to indicate if each block is compressed, uncompressed, or unpro-
cessed respectively. The first two cases correspond to the following two formats of the block:

wi =

{
h Vi = 1(
z||050 log(w/ε)

)
Vi = 0

Informally, the first corresponds to block i originally containing a good hash function for B, and the
second corresponds to block i originally containing a bad hash function, which is thus compressible
(in fact, z represents a compressed version of the original data). We define notation for the set of
blocks in each configuration:

Definition 3.12. For b ∈ {0, 1}, let Ib(V) ⊆ [2ℓ] correspond to the indices such that Vi = b, and
let Sb(V) = |Ib(V)|.

Next, we initialize a counter i = 1 for the current block. We then iterate over i = {1, . . . , 2ℓ}
until max{S1(V), S0(V)} = ℓ.5 For each i, the algorithm works as follows. Let h̃ = wi be the hash
function (on t0 bits) obtained from the current block. We then test if h̃ is δ-good for

f = B
t0,h⃗p

, where h⃗p =
(
wI1(V)1 , . . . ,w

I1(V)S1(V)

)
corresponds to the hash functions on the preceding good blocks, and B

t0,h⃗p
is defined as in Defini-

tion 3.5. As the index set I1(V) is easy to generate given V , this test can be performed in space
O(log nw/ε) without modifying the catalytic tape (and hence also in time poly(nw/ε)), by Propo-
sition 3.11.

Given the results of this test, we break into cases depending on if h̃ is good:

5If we exit before i = 2ℓ, set the remaining indices of V to an arbitrary value, which we ignore for clarity of
presentation.

9

• If h̃ is δ-good for f , set Vi = 1.

• If h̃ is δ-bad for f , set Vi = 0. Next, by enumeration over strings h ∈ {0, 1}2t0 (which we can
do using the workspace), determine the index of h̃ in the set

BADi =
{
h ∈ {0, 1}2t : h is δ-bad for B

t0,h⃗p

}
where we again perform this test using Proposition 3.11. Letting the index of h̃ in this set be
z, write

wi =
(
z||050 log(w/ε)

)
.

We denote the final 50 log(w/ε) bits as free space.

Finally, we claim that we can in fact write these quantities in space |wi| = 2t0. We have

|BADi| = 22t0 · Pr
h←H

[h is δ-bad for f]

≤ 22t0 · w5(1/δ)2/2t0 (Lemma 3.8)

≤ 22t0 · (w/ε)7−60

And thus log |BADi| ≤ 2t0 − 50 log(w/ε) = |wi| − 50 log(w/ε). Therefore, we can record all
required information as claimed.

After processing all blocks, we obtain a catalytic tape w′ and one of two cases:

• If S1(V) = ℓ, there exist h⃗ = (h1, . . . , hℓ) corresponding to the hash functions (on t0 bits) in
I1(V), and these functions are easy to recover from V .

• Else, we must have S0(V) = ℓ.

For i ∈ I0(V), let Fi be the 50 log(w/ε) free bits in wi. Note that a description of a hash
function h : {0, 1}t1 → {0, 1}t1 is of size |Fi|. Iterating over i ∈ I0(V) in increasing order, we
find (via brute force enumeration) a hash function h̃ that is δ-good for

f = B
t1,h⃗p

, where h⃗p =
(
wFI0(V)1

, . . . ,wFI0(V)i−1

)
.

corresponds to the (δ-good) hash functions stored on the free space in the preceding indices
of I0(V). Next, store h̃ in wFi . Such a good hash function always exists, by our choice of
t1 and Lemma 3.8, and moreover testing if each candidate is good can be computed in the
desired space and time by Proposition 3.11. After this processing,(

wFI0(V)1
, . . . ,wFI0(V)ℓ

)
contain ℓ good hash functions, which we can clearly access in read-only fashion given given
V and w′.

Thus, in both cases we obtain a set of hash functions h⃗ = (h1, . . . , hℓ) on t = O(log nw/ε) bits that
is δ-good for every one of the relevant tests, so by Lemma 3.9 we have that NIS

h⃗
is δ ·nw ≤ ε-good

for B.

10

Decompression and Reversibility. It suffices to show that at any point, the algorithm can
revert the tape to the original configuration w (and then D(B, V) simply issues the REVERT
command). No matter the present configuration, we iterate through I0(V) in descending order.
Letting the current index be b ∈ I0(V), recall this block is of form (w′)b = (z||∗). First write
050 log(w/ε) to the last indices (in reverse order to satisfy reversibility), such that we reach the
configuration after compressing the block. Then enumerate over h ∈ {0, 1}2t0 using workspace
O(t0 + log(w/ε)), until we find the hash with index z in BADi, where BADi and B

t0,h⃗p
are

defined as before (which we still have access to because we reset the tape in reverse order), and we
determine membership by Proposition 3.11.

Once we find this h, write (w′)b = h (in the reverse order to satisfy reversibility) and proceed to
the next highest index in I0(V). After this process has completed, it is clear from construction that
w has been reset to the original configuration, and that the tape never reaches a new intermediate
configuration during this process.

Time and Space. In every step of the computation, we perform at most poly(2t0nw/ε) work to
determine if a hash function is good, find the index of a bad hash function, or find a good hash
function. Moreover, as at every point we store at most a constant number of hash functions on the
worktape, the space consumption follows.

It is easy to go from Theorem 3.10 to Theorem 3.1.

Proof of Theorem 3.1. Let B : [poly(n)]×{0, 1}nc → [poly(n)] be the ROBP obtained from apply-
ing Lemma 3.2 to M with n = n, w = n, and ε = 1/2n. We then call Theorem 3.10 with B = B
and ε = 1/2n2. Let h⃗ = (h1, . . . , hc logn) be the hash functions obtained from this call, which we
have implicit access to via the current state of the catalytic tape w′ and V , and let t = O(log n)
be the domain of the hash functions. Then enumerate over x ∈ {0, 1}t and for i, j ∈ [w] let

M̃i,j = Pr
x←Ut

[
B[i,NIS

h⃗
(x)] = j

]
.

By Lemma 3.2 and Theorem 3.10, we have the guarantee that∥∥∥M̃ −Mn
∥∥∥
1
≤ 1

2n
+ n · 1

2n2
= 1/n.

4 Catalytic Recursive Matrix Powering

We now transform Theorem 3.10 into a parameterized algorithm for matrix powering.

Theorem 4.1. There is a catalytic machine that, given r1, r2 such that r1r2 = log(n) and a
stochastic matrix M ∈ [0, 1]n×n where each entry is specified with l = O(log n) bits of precision,

uses workspace O(r2 · log(n)), catalytic space O(r1 · log(n)), and time nO(r2), and outputs M̃ such

that ∥M̃ −Mn∥ ≤ 1/n.

Theorem 4.1 immediately implies Theorem 1.3 by setting r2 = logα−1(n) and r1 = log2−α(n)
for α ∈ [1, 1.5], and using the standard transformation of estimating the acceptance probability of
a BPL machine via stochastic matrix powering.

We first prove there exists an algorithm which computes a single intermediate power. We must
be careful to ensure that the algorithm satisfies the requirements of (partial) catalytic computation.
In particular, if the machine ever outputs an answer (rather than ⊥), this must be the only possible

11

answer for this input, over all possible catalytic tapes. Simultaneously, we must ensure that the
vast majority of inputs never return ⊥ no matter the initial catalytic tape configuration.

We achieve this dual guarantee using an idea from Saks and Zhou [SZ99]. For a given input
matrix M , we additionally take in a shift s ∈ [0, δ] for δ = 1/ poly(w/ε). After computing an
approximate power of M , we add s to each entry, and then truncate each entry to O(logw/ε) bits
of precision. In fact, we first verify that our shifted approximate power is sufficiently far from the
rounding threshold, and if not return ⊥. By doing so, we algorithmically verify that we will never
round to different thresholds over different w. Unfortunately, for some pairs (M, s) it may be the
case that we detect possible mis-rounding for some tapes w, even if all possible approximations lie
inside a single rounding interval. This can result in returning ⊥ on some tapes and a (consistent)
value otherwise. However, we show that we can choose the magnitude of s such that with high
probability over s this does not occur, and we always return a (consistent) value.

Theorem 4.2. For every n,w ∈ N and ε > 0 where w ≥ n ≥ logw and 2−n > ε > 0, there is a
reversible catalytic machine P that uses workspace O(logw/ε), catalytic space O(log(n) log(nw)),
and time poly(nw/ε). The machine takes input s ∈ {0, 1}O(log(w/ε)) and a substochastic matrix
M ∈ [0, 1]w×w, where each entry of M is specified with l = O(logw/ε) bits of precision. Moreover:

• For every (s,M), there is substochastic M̃s (defined without reference to w) with l bits of

precision satisfying
∥∥∥M̃s −Mn

∥∥∥
1
≤ ε such that for every w,

Pw(s,M) ∈
{
⊥, M̃s

}
.

• For every M , Prs[∃w, Pw(s,M) = ⊥] ≤ 1/w2.

Proof. Let B : [(w/δ)c] × {0, 1}m=n·O(log(w/δ)) → [(w/δ)c] be the result of Lemma 3.2 applied
to M with n = n and ε = δ to be chosen later. We compose the output of this algorithm
with Theorem 3.10, applied with B = B and w′ = (w/δ)c and n′ = m = O(n3) and ε = δ to be
chosen later. Let h⃗ = (h1, . . . , hℓ) be the hash functions obtained from this call, which we have
implicit access to via the current state of the catalytic tape w′ and V , and let t = O(logw/δ) be
the domain of the hash functions. Then enumerate over x ∈ {0, 1}t and for every i, j ∈ [w] let

M̃i,j = Pr
x←Ut

[
B
[
i,NIS

h⃗
(x)

]
= j

]
.

Next, define τ =
(
s · 2−2k

)
· J where J = 1w×w, interpreting s ∈ [2k]. We next check if any entry

of M̃ + τ is within 2δ of a multiple of 2−l, our rounding threshold. In this case, run Dw′
(B, V) to

reset the tape and return ⊥. Otherwise, let

M̃s =
⌊
M̃ + τ

⌋
l

where ⌊·⌋l rounds each entry down to l bits of precision, and decreases the largest entry per row

such that the final matrix is substochastic. Let this matrix be M̃s. Finally, run Dw′
(B, V), and

return M̃s.

Accuracy. By our choice of error in Theorem 3.10 and Lemma 3.2, we have that∥∥∥M̃ −Mn
∥∥∥
1
≤ 2wδ

12

and moreover M̃ has each row sum at most 1. Furthermore, perturbing by τ and rounding down
the largest entry causes an ℓ1 error of at most 2w · 2−k. Finally, rounding each entry down to a
multiple of 2−l causes a total error of at most w · 2−l, so∥∥∥M̃s −Mn

∥∥∥ ≤ 2wδ + 2w · 2−k + w · 2−l ≤ ε

Where the final inequality comes from choosing

l = O(log(w/ε)), k = 10 · l, δ = 2−2k.

Uniqueness. We claim that for every (s,M), there is at most 1 possible non-⊥ output over all

choices of w (which we denote M̃s in the theorem statement). Let M̃w, M̃w′ be the result of Theo-
rem 3.10 on M initialized with catalytic tapes w,w′. By the accuracy guarantee of Theorem 3.10,
for every i, j we have∣∣∣(M̃w + τ)i,j − (M̃w′ + τ)i,j

∣∣∣ ≤ ∣∣∣(M̃w + τ)i,j − (M + τ)i,j

∣∣∣+ ∣∣∣(M + τ)i,j − (M̃w′ + τ)i,j

∣∣∣ ≤ 2δ

Thus, if (M̃w′ + τ)i,j is greater than 2δ from a multiple of 2−l, we can be certain that no tape w′

will induce an estimate that falls on the other size of the threshold, and hence all non-⊥ outputs
will be rounded consistently.

Success Probability. Furthermore, we argue that for every M , with probability at least 1−1/w2

over s we return M̃s (not ⊥) for every initial tape configuration. Fixing arbitrary s and i, j ∈ [w],

if (M + τ)i,j is at least 3δ from every multiple of 2−l, every w will induce an estimate (M̃ + τ)i,j
that is at least 2δ from every multiple of 2−l, and hence for every w we will not produce ⊥ due to
this entry. This occurs for every i, j simultaneously with probability at least

w2 · 2l · 6δ · 2
k + 2

2k
≪ 1/w2.

Time and Space. It is clear the algorithm runs in the claimed time and space bound, given The-
orem 3.10.

Reversibility. As the only components of the algorithm that write to the catalytic tape are calls
to Theorem 3.10, reversibility follows immediately from the equivalent result for that algorithm.

We can then prove the main result.

Theorem 4.1. There is a catalytic machine that, given r1, r2 such that r1r2 = log(n) and a
stochastic matrix M ∈ [0, 1]n×n where each entry is specified with l = O(log n) bits of precision,

uses workspace O(r2 · log(n)), catalytic space O(r1 · log(n)), and time nO(r2), and outputs M̃ such

that ∥M̃ −Mn∥ ≤ 1/n.

Proof. Let s⃗ = (s1, . . . , sr2) ∈ {0, 1}r2·O(logn) be a vector of random shifts. Let M̃0 = M and for
i ∈ [r2] recursively define

M̃i = f
(
M̃i−1, si

)
,

13

where f is the function defined by Theorem 4.2 with ε = 1/n3 and n = 2r1 . An easy inductive
proof [PP23] establishes that, letting ∥∥∥M̃i −M2r1·i

∥∥∥
1
= δi

we have δi+1 ≤ 1/n3 + 2r1 · δi−1 ≤ 2r1+1 · δi−1, and hence δr2 ≤ 1/n.

The final algorithm iterates over s⃗ and computes M̃r2 by applying recursive composition of space-
bounded machines Corollary 2.5 to the algorithm of Theorem 4.2 as defined above.6 The algorithm
returns the first non-⊥ output. The fact that the algorithm is catalytic follows from Corollary 2.5
and Theorem 4.2. Next, we claim there is some s⃗ where the algorithm returns a value. Note that
si is chosen obliviously to M̃i−1, and so with probability at least 1/n2 over si, on input (M̃i−1, si)

the algorithm returns M̃i (i.e. not ⊥) when run with every possible catalytic tape. Thus, there is
some s⃗ where every level computes correctly.

Time and Space. Every application of Theorem 4.2 occurs with parameters n = 2r1 and w = n
and ε = 1/n3, such that the algorithm uses workspace O(r1 + log(n)) = O(log n), catalytic space
O(r1 · (r1 + log(n))) = O(r1 · log n), and time poly(n), and moreover the shift s for each level is of
length O(log n). Applying Corollary 2.5, we obtain that the composed algorithm uses workspace
O(r2 ·log(n)+|s⃗|) = O(r2 ·log n), catalytic space O(r1 ·log n), and runs in time nO(r2) as claimed.

5 Acknowledgements

A prior version of this paper mistakenly claimed time-space tradeoffs for BPL as a new result; I
am grateful to William Hoza for bringing the reference [CCvM06] to my attention. I thank Dean
Doron, Roei Tell, and Ryan Williams for helpful discussions and comments on the manuscript. I
thank Ian Mertz for helpful discussions about catalytic computing.

References

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.
Computing with a full memory: catalytic space. In Symposium on Theory of Computing,
STOC 2014, pages 857–866. ACM, 2014.

[BDS22] Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. On pure space vs catalytic
space. Theor. Comput. Sci., 921:112–126, 2022.

[BKLS18] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Catalytic space:
Non-determinism and hierarchy. Theory Comput. Syst., 62(1):116–135, 2018.

[CCvM06] Jin-yi Cai, Venkatesan T. Chakaravarthy, and Dieter van Melkebeek. Time-space trade-
off in derandomizing probabilistic logspace. Theory Comput. Syst., 39(1):189–208, 2006.

[CDST23] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating iterated
multiplication of stochastic matrices in small space. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC 2023, pages 35–45. ACM, 2023.

6We can define the machine to take the entire shift vector and a pointer to the index it should use, such that we
are recursively composing exactly the same machine, but we suppress this for clarity.

14

[CH22] Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of small
space. Theory of Computing, 18(21):1–32, 2022.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem. In
Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, pages 752–760. ACM, 2020.

[DGJ+20] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari.
Randomized and symmetric catalytic computation. In Computer Science - Theory and
Applications - 15th International Computer Science Symposium in Russia, CSR 2020,
pages 211–223. Springer, 2020.

[DPT23] Dean Doron, Edward Pyne, and Roei Tell. Personal communication, 2023.

[GJST19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unambiguous
catalytic computation. In 39th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2019, volume 150 of LIPIcs,
pages 16:1–16:13, 2019.

[Mer23] Ian Mertz. Reusing space: Techniques and open problems. Bulletin of EATCS, 141(3),
2023.

[Nis90] Noam Nisan. Psuedorandom generators for space-bounded computation. In Harriet Or-
tiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA, pages 204–212. ACM, 1990.

[Nis93] Noam Nisan. On read-once vs. multiple access to randomness in logspace. Theor.
Comput. Sci., 107(1):135–144, 1993.

[Nis94] Noam Nisan. RL <= SC. Comput. Complex., 4:1–11, 1994.

[PP23] Aaron (Louie) Putterman and Edward Pyne. Near-optimal derandomization of medium-
width branching programs. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, pages 23–34, 2023.

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. Certified hardness vs. randomness for log-space.
Electron. Colloquium Comput. Complex., TR23-040, 2023.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSpace(S) ⊆ DSPACE(S3/2). J. Comput. Syst.
Sci., 58(2):376–403, 1999.

A Proofs of Lemmas

We first prove that a hash function drawn from a pairwise independent hash family is good for a
function with high probability. To do this, we recall the hash mixing lemma:

Lemma A.1 ([Nis90]). Let A,A′ ⊆ {0, 1}t be arbitrary subsets of density ρ = |A|/2t and ρ′ =
|A′|/2t. Then for every δ > 0,

Pr
h←H

[∣∣∣∣ Pr
x←Ut

[x ∈ A, h(x) ∈ A′]− ρρ′
∣∣∣∣ ≥ δ

]
≤ (1/δ2)/2t.

15

Proof of Lemma 3.8. For every i, k ∈ [w], let Ai,k = {x ∈ {0, 1}t : f [i, x] = k} and let ρi,k =
|Ai,k|/2t. Note that for every i, j,

Pr
x,x′←Ut

[f [f [i, x], x′] = j] =
∑
k∈[w]

ρi,kρk,j .

Thus, for every h such that for every i, k, j, Prx←Ut [x ∈ Ai,k, h(x) ∈ Ak,j] − ρi,kρk,j | ≤ δ/w, we
have that h is δ-good for f . By Lemma A.1 this event occurs with probability 1− (w/δ)2/2t over
h← H for each pair of sets, and thus with probability 1−w3(w/δ)2/2t = 1−w5(1/δ)2/2t for every
tuple (i, j, k).

We recall there is a logspace algorithm which tests if a hash function is good, given oracle access
to the function we wish to fool. We remark that there is work [Nis93,CH22,PRZ23] on testing if
an entire PRG is good for a branching program, but we need a much weaker claim.

Lemma A.2 ([Nis94]). There is a space O(t + log(w/δ)) algorithm that, given oracle access to
f : [w]× {0, 1}t → [w] and h ∈ Ht and δ > 0, tests if h is δ-good for f .

Proof. The algorithm enumerates over i, j ∈ [w]. For every i, j, the algorithm computes pi,j =
Ex,x′←Ut [f [f [i, x], x

′]] (i.e. the correct probability) by enumeration over x, x′ in space O(t+ logw).
Then it computes p̃i,j = Ex←Ut [f [f [i, x], h(x)]] and rejects if the estimate is greater than δ from the
true value. Correctness and total space consumption are immediate.

We can then prove that we can test if a hash function is good, given B and pointers to preceding
hash functions.

Proposition 3.11. There is a space O(t+ log(w/δ)) algorithm that, given n,w, t ∈ N with w ≥ n
and h̃ ∈ {0, 1}2t and B : [w] × {0, 1}n → [w] and (read only) w and pointers p1, . . . , pr such that
w[pi,...,pi+2t] = hi represents a hash function on t bits, returns if h̃ is δ-good for Bt,(h1,...,hr).

Proof. By Lemma A.2, it suffices to show that given i ∈ [w] and x ∈ {0, 1}t, we can compute
Bt,(h1,...,hr)[i, x]. To do this, the algorithm maintains v ∈ [w] as its current position in the branching
program (initialized to v = i) and i ∈ [n] to track the current layer. To determine the next position,
it suffices to determine the ith block of the output of NIS(h1,...,hr)(x). It is well known that this can
be computed in space O(t+ log nw) given read-only access to the set of hash functions (by walking
down the binary expansion of i, denoted ⟨i⟩, and applying hj if ⟨i⟩j = 1), which we have via the
pointers.

Finally, we provide a translation of our quantization statement. We first recall a strict special-
ization of the statement of [PP23]:

Lemma A.3. There exists a canonicalizer algorithm Ct that, given n,w ∈ N with w ≥ n, takes
in ε > 0 and a sub-stochastic matrix M ∈ Rw×w with each entry represented by at most O(logw/ε)
bits, runs in space O(logw/ε), and returns a branching program B of length n and width w + 1

with alphabet {0, 1}t for t = O(log(w/ε)). Moreover, letting M̃ ∈ [0, 1]w×w be the matrix where for
i, j ∈ [w] we have

M̃i,j = Pr
x←U({0,1}t)n

[
B[i, x] = j

]
then ∥∥∥M̃ −Mn

∥∥∥
1
≤ ε.

16

We reduce the alphabet (and slightly increase the length) as follows. We transform B into a
branching program of width (w + 1) · 2t = poly(w/ε) and length n · t = n ·O(logw/ε), where each
set of t layers reads t bits, interprets these bits as σ ∈ {0, 1}t, and takes the transition labeled with
σ in B.

17
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

