
Learning Arithmetic Formulas in the Presence of
Noise: A General Framework and Applications

to Unsupervised Learning

Pritam Chandra
Microsoft Research

t-pchandra@microsoft.com

Ankit Garg
Microsoft Research

garga@microsoft.com

Neeraj Kayal
Microsoft Research

neeraka@microsoft.com

Kunal Mittal
Princeton University

kmittal@cs.princeton.edu

Tanmay Sinha
Microsoft Research

t-tsinha@microsoft.com

November 13, 2023

Abstract

We present a general framework for designing efficient algorithms for unsuper-
vised learning problems, such as mixtures of Gaussians and subspace clustering.
Our framework is based on a meta algorithm that learns arithmetic formulas in
the presence of noise, using lower bounds. This builds upon the recent work of
Garg, Kayal and Saha (FOCS ’20), who designed such a framework for learning
arithmetic formulas without any noise. A key ingredient of our meta algorithm is
an efficient algorithm for a novel problem called Robust Vector Space Decomposition.
We show that our meta algorithm works well when certain matrices have suffi-
ciently large smallest non-zero singular values. We conjecture that this condition
holds for smoothed instances of our problems, and thus our framework would
yield efficient algorithms for these problems in the smoothed setting.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 170 (2023)



Contents

1 Introduction 1
1.1 Overview - Arithmetic Formula Learning algorithm. . . . . . . . . . . . . 5
1.2 Overview - Vector Space Decomposition algorithm . . . . . . . . . . . . . 8
1.3 Application 1: Subspace Clustering. . . . . . . . . . . . . . . . . . . . . . 11
1.4 Application 2: Learning Mixtures of Gaussians . . . . . . . . . . . . . . . 14
1.5 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . . . 17

2 Preliminaries 19

3 Robust Recovery from Scaling Maps (RRSM) 21
3.1 RRSM: Algorithm for the Noiseless Case . . . . . . . . . . . . . . . . . . . 22
3.2 RRSM: Algorithm for the Robust Case . . . . . . . . . . . . . . . . . . . . 22

4 Robust Vector Space Decomposition (RVSD) 25
4.1 RVSD: Algorithm for the Noiseless Case . . . . . . . . . . . . . . . . . . . 26
4.2 RVSD: Algorithm for the Robust Case . . . . . . . . . . . . . . . . . . . . 27
4.3 RVSD: Using a Common Tuple of Operators on a Larger Space . . . . . . 29

A Linear Algebra and Probability 33
A.1 Matrices and Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.1.1 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.1.2 Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.1.3 Distances Between Subspaces . . . . . . . . . . . . . . . . . . . . . 33

A.2 Matrix Perturbation Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.2.1 Perturbation bounds for Singular values and Singular vectors . . 34
A.2.2 Perturbation bounds for Eigenvalues and Eigenvectors . . . . . . 36
A.2.3 Perturbation bounds for Pseudo-Inverse . . . . . . . . . . . . . . 38

A.3 Anti-Concentration of Gaussian Linear Forms . . . . . . . . . . . . . . . 38

B Subspace Clustering 39
B.1 Robust Recovery from Symmetric Tensor Power . . . . . . . . . . . . . . 39

B.1.1 RRSTP: Noiseless Case . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.1.2 RRSTP: Robust Case . . . . . . . . . . . . . . . . . . . . . . . . . . 40

B.2 Subspace Clustering: Noiseless Case . . . . . . . . . . . . . . . . . . . . . 42
B.2.1 Structure of The Adjoint Algebra . . . . . . . . . . . . . . . . . . . 43
B.2.2 Completing the Proof . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.3 Subspace Clustering: Robust Case . . . . . . . . . . . . . . . . . . . . . . 46
B.3.1 Closeness of Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 48
B.3.2 Using RVSD and RRSTP . . . . . . . . . . . . . . . . . . . . . . . . 49

B.4 Singular Value Analysis for The Adjoint Algebra . . . . . . . . . . . . . . 50
B.5 Smoothed Analysis of Subspace Clustering . . . . . . . . . . . . . . . . . 51

C Learning Mixtures of Gaussians 54

D Learning Arithmetic Circuits in the Presence of Noise 58
D.1 Applying Robust Vector Space Decomposition . . . . . . . . . . . . . . . 60
D.2 Recovering the Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 61

i



E Analysis of the RRSM Algorithm 62
E.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
E.2 Condition Number Relations . . . . . . . . . . . . . . . . . . . . . . . . . 63
E.3 Canonical Decomposition and Random Sampling . . . . . . . . . . . . . 63
E.4 Bounding the Spectral Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
E.5 Analysis of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

E.5.1 Action on The Space of Scaling Maps . . . . . . . . . . . . . . . . 65
E.5.2 Perturbation Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 66
E.5.3 Recovering the Components . . . . . . . . . . . . . . . . . . . . . 67
E.5.4 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

E.6 Direct Sum Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

F Analysis of the RVSD Algorithm 68
F.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
F.2 Perturbation Bound on the Adjoint Algebra . . . . . . . . . . . . . . . . . 69
F.3 Applying RRSM and Recovering The Component Subspaces . . . . . . . 71
F.4 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

G Singular Values of the Adjoint Algebra Operator for Subspace Clustering 72
G.1 Adjoint Algebra Operators corresponding to Partial Derivatives on Ten-

sored Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
G.1.1 Matrix Representations of Derivatives and Shifts . . . . . . . . . . 73
G.1.2 Adjoint Algebra Operator in a Special Inner Product . . . . . . . 74
G.1.3 Singular Values of the Φ Operator . . . . . . . . . . . . . . . . . . 77

G.2 Adjoint Algebra Operator for Subspace Clustering . . . . . . . . . . . . . 80

ii



1 Introduction

Unsupervised learning involves discovering hidden patterns and structure in data
without using any labels or direct human supervision. Here we consider data that
has a nice mathematical structure or is generated from a mathematically well-defined
distribution. An example of the former is when the data points can be grouped into
meaningful clusters based on some similarity patterns and the goal is to find the un-
derlying clusters. An example of the latter is mixture modeling, which assumes that
the data is generated from a mixture of succinctly described probability distributions,
such as Gaussian distributions, and the goal is to learn the parameters of these distri-
butions from samples. A general framework for solving many unsupervised learning
problems is the method of moments, which leverages the statistical moments1 of the
data to infer the underlying structure or the underlying parameters of the model. For
many unsupervised learning problem scenarios wherein the underlying data has some
nice mathematical structure, the moments of the data are well-defined functions of the
parameters. Heuristic arguments then suggest that the converse should typically hold,
i.e. the parameters of the structure/distribution are typically uniquely determined by a
few low order moments of the data. In this broad direction, the main challenge then is
to design algorithms to (approximately) recover the underlying parameters from the
(empirical) moments2. We further want the algorithm to be efficient, noise-tolerant (i.e.
work well even when the moments are known only approximately rather than exactly)
and are even outlier-tolerant (i.e. work well even when a few data points do not con-
form to the underlying structure/distribution). But even the simplest problems in this
area tend to be NP-hard and remain so even when there is no noise and no outliers.
So one cannot realistically hope for an algorithm with provable worst-case guarantees.
But what one can hope are algorithms that are guaranteed to typically work well, i.e.
either for random problem instances or even more desirably for instances chosen in
a smoothed fashion. Accordingly, many different algorithms have been designed for
each such problem in unsupervised learning with varying levels of efficiency, noise-
tolerance, outlier-tolerance and provable guarantees. In this work we give a single
meta-algorithm that applies to many such unsupervised learning problems. The start-
ing point of our work is the observation that many such problems reduce to the task
of learning an appropriate subclass of arithmetic formulas.

Connecting unsupervised learning to arithmetic complexity. We now give a few
more details of how such a reduction works for the setting in which the data points
are drawn from a distribution having a nice mathematical structure. Let D be a dis-
tribution over points in Rn. We introduce n formal variables (x1, x2, . . . , xn) and de-
note it as x. For a suitably chosen integer d ≥ 2, form a degree-d polynomial f (x)

1Recall that moments are measures of the shape and variability of a data set. They are used to
describe the the location and dispersion of the data. When the dataset consists of a collection of points

A = {ai = (ai1, ai2, . . . , ain) ∈ Rn | i ∈ [N]},

some examples of (low-order) moments are E
ai∈A

[ai1], E
ai∈A

[ai1 · ai2], etc.

2In scenarios where the data is a finite sample drawn from a distribution D over Rn, the empirical
moments (which can be very easily and efficiently computed) are estimates of, but not equal to, the true
underlying moments.

1



which encodes the d-th order moments3 of the distribution in some suitable way.
For example, in some applications the coefficient of a monomial of f (x) is simply
(a canonically scaled version of) the corresponding moment. At this point, such a
formal polynomial is a mere bookkeeping device for the d-th order moments of D.
For many nice, well-structured distributions such as mixtures of Gaussians, however
this polynomial (or variants thereof) turns out to have a remarkable property - it can
be computed/represented by a small arithmetic formula! Special cases of this re-
markable phenomenon were noted earlier when it was observed that many problems
in (unsupervised) learning reduce to the problem of learning set-multilinear depth-
three formulas, better known as tensor decomposition. Such connection(s) inspired a
whole body of work on tensor decomposition with applications including indepen-
dent component analysis, learning Hidden Markov Models, learning special cases of
mixtures of Gaussians, latent Dirichlet allocation, dictionary learning, etc. (cf. the sur-
veys [Vij20, KB09, AGH+14]).

Noise-tolerance. Notice however that we are given a finite set of points sampled from
the distribution D, so we do not have the (d-th order) moments of D exactly but only
approximately. Thus for such applications we need the algorithm for learning arith-
metic formulas to also be noise-tolerant, i.e. given a polynomial f̃ (x) that is close to4 a
polynomial f (x) that has a small arithmetic formula ϕ, we want to learn/reconstruct a
arithmetic formula ϕ̃ from the same subclass as that of ϕ whose output polynomial is
close to f̃ (x) (and therefore to f (x) as well). Recently, [GKS20] gave a meta-algorithm
for learning many different subclasses of formulas including the ones relevant for un-
supervised learning (assuming that certain nondegeneracy conditions hold). But it
has one important shortcoming that was also pointed out in [BDJ+22]: the techniques
of [GKS20] were algebraic and it was unclear if they could handle noise arising out
of the fact that the moments are known only approximately and not exactly. Qual-
itatively, our main result builds upon and suitably adapts the algorithm [GKS20] to
make it noise-tolerant. Quantitatively, in the noisy setting, we provide bounds on
the quality of the output of our algorithm that depend on singular values of certain
matrices that underlie the algorithm. We expect that for most applications, the rele-
vant singular values would be well-behaved for random instances and maybe even for
smoothed/perturbed worst-case instances. If so, our algorithm would work and yield
good quality outputs on such instances. Accordingly, we then go on on to analyze the
singular values of the relevant matrices pertaining to subspace clustering5. We also
expect (suitable adaptations of) our algorithm to be tolerant to the presence of a few
outliers but we do not pursue this direction here and leave it for future work.

Illustrative example - mixtures of Gaussians. Let us make the above discussion con-
crete via the example of learning mixtures of Gaussians which in itself is a very well-
studied problem with history going back to more than a hundred years. Suppose we

3We are making the mild assumption here that the d-th order moments of D are bounded.
4Under a natural notion of distance between a pair of polynomials akin to Euclidean distance be-

tween the coefficient vectors of the pair of polynomials - see section 2.
5A recent work [BHKX22] analyzed the singular values of matrices arising in a related (but also

different) algorithm that was tailor-made for the mixtures of (zero-mean) Gaussians and verified that
for random instances the singular values are indeed well-behaved.

2



are given a dataset consisting of a finite set of points A ⊂ Rn

A = {ai = (ai1, ai2, . . . , ain) ∈ Rn | i ∈ [N]}. (1)

The points are drawn independently at random from an unknown mixture of s Gaus-
sians D := ∑s

i=1 wiN (µi, Σi), which means that the i-th component of the mixture has
weight6 wi ∈ [0, 1], mean µi ∈ Rn and covariance matrix Σi ∈ Rn×n. Our goal is to
estimate the parameters wi and µi and Σi (i ∈ [s]) from the given samples/data A.
Let x = (x1, x2, . . . , xn) be a tuple of formal variables and consider the polynomial
f (x) := Ea∼D

[
⟨x, a⟩d]. It is (a scalar multiple of) a slice of the formal moment gen-

erating function defined as Ea∼D [exp(⟨x, a⟩)] . Notice that the coefficients of a given
monomial (over x) in f (x) equals the corresponding moment of the distribution (upto
some canonical scaling). Then in this case, f (x) has the following small formula7:

f (x) = ∑
i∈[s]

wiGd(ℓi(x), Qi(x)),

where ℓi(x) := ⟨µi, x⟩, Qi(x) := 1
2xTΣix and Gd is a fixed bivariate polynomial depend-

ing on d. In the zero-mean case (i.e. when µ1 = µ2 = . . . = µs = 0), the formula for
f (x) is

f (x) = ∑
i∈[s]

d!
(d/2)!

wiQi(x)d/2

when d is even (and 0 if d is odd). In this way, if the sample size was infinite (or
equivalently that if we knew the true moments of the distribution), learning mixtures
of Gaussians would reduce to the problem of learning/reconstructing the subclass of
arithmetic formulas indicated by the rhs of the above expression for f (x). But we don’t
have access to the exact moments. Using the empirical moments, we can get hold of
an approximate version of f ,

f̃ (x) := Ea∼A

[
⟨x, a⟩d

]
=

1
N ∑

i∈[N]

[
⟨x, ai⟩d

]
.

We will have f̃ (x) = f (x) + η(x) for a noise polynomial η(x) whose magnitude will
be inversely proportional to square root of the number of samples N. In this way,
learning mixtures of Gaussians reduces to the problem of reconstructing the indicated
subclass of arithmetic formulas in the presence of noise.

Learning arithmetic formulas in the presence of noise - problem formulation. The
above discussion motivates us to consider the problem of learning (arbitrary sub-
classes of) arithmetic formulas in the presence of noise. In many practical settings
the output gate of the underlying formula is a (generalized8) addition gate so that the
problem can be formulated as follows. We are given a polynomial f̃ (x) of the form
f̃ (x) := T1(x) + · · ·+ Ts(x) + η(x), for structured polynomials Ti(x)’s and a noise poly-
nomial η(x). Our goal is to approximately recover each summand Ti(x). For example,

6The weights satisfy ∑i∈[s] wi = 1.
7This formula for f (x) can be inferred from the fact that for a single Gaussian distribution N(µ, Σ),

its moment generating function is in fact equal to exp(xT · µ + 1
2 xT · Σ · x).

8A generalized addition gate can compute any fixed linear combination of its inputs.

3



for the case of mixture of spherical Gaussians we would have Ti(x) = wi · ⟨µi, x⟩3

(see Remark 1). For the case of mixture of zero-mean Gaussians we would have
Ti(x) = wi · Qi(x)d/2 and so on. In the noiseless setting, i.e. when η(x) = 0, the
paper [GKS20] designed a meta-algorithm applicable to learning many interesting
subclasses using a general framework exploiting lower bound techniques in arith-
metic complexity theory. The algorithm worked under certain relatively mild non-
degeneracy assumptions. However, their algorithm had some algebraic components
and it was not clear how to design an algorithm in the noisy case when the noise
polynomial η(x) is non-zero.9 Our main contribution is that we show how to modify
the general framework in [GKS20] to the noisy setting. We also show how to use this
framework to design efficient algorithms for two well studied problems in unsuper-
vised learning: mixtures of (zero mean) Gaussians and subspace clustering.

Remark 1. (a). Simpler reductions. The ability to handle arbitrary subclasses of arith-
metic formulas not only yields a common (meta) algorithm that applies to a wide variety
of problems in unsupervised learning but it also often makes the reductions simpler. For
example, in the discussion above the reduction of learning mixtures of arbitrary Gaus-
sians to learning the appropriate subclass of arithmetic formulas is perhaps simpler than
the reduction of learning mixtures of spherical Gaussians10 to tensor decomposition. We
sketch this reduction now. Consider f (x) := Ea∼D

[
⟨x, a⟩3 − 3

(
∑i∈[n] x2

i

)
· ⟨x, a⟩

]
.

When D is a mixture of spherical Gaussians, expanding and simplifying this expression,
we can get that f (x) = ∑s

i=1 wi⟨µi, x⟩3.

(b). Mixtures of general Gaussians. We expect that our algorithm can be extended to
general mixtures of Gaussians (different means and/or covariance matrices) but its anal-
ysis will likely get much more cumbersome, so we avoid this more general case for the
sake of simplicity.

(c). Handling outliers. The ability to handle arbitrary subclasses of arithmetic formulas
can also allow the algorithm to be tolerant to the presence of outliers. To see this, consider
the case of zero-mean Gaussians and suppose that the given set of data points A contains
a subset Â ⊂ A of outliers of size N̂ ≪ N. In that case the empirical moment polynomial
f̃ (x) would have the following structure:

f̃ (x) =
N − N̂

N
· d!
(d/2)!

·

∑
i∈[s]

wiQi(x)d/2

+
1
N

·

 ∑
aj∈Â

(x · aj)
d

+ η(x).

We expect that our algorithm can be adapted to learn the class of formulas corresponding
to the right side of the above expression however the analysis of such an algorithm can
get cumbersome. For the sake of keeping the length of this paper to within reasonable
bounds, we do not do the analysis of the outlier tolerance of our algorithm.

(d). Other mixtures models. The connection between learning mixtures of Gaussians and
learning an appropriate subclass of arithmetic formulas arose out of the fact that (any

9In most settings, one would like the running time of the algorithm to be inverse polynomial in
the magnitude of the noise, to have a polynomial dependence on the number of samples in the final
learning problem.

10A spherical Gaussian is one where the covariance matrix Σi is the identity matrix.

4



slice of) the moment generating function of a multivariate Gaussian has a simple alge-
braic expression. For some other distributions also the (slices of) moment generating
function or some other related function like the cumulant generating function or the
characteristic function have a nice algebraic expression and we can expect our approach
to be applicable for such mixtures also.

(e). Mixtures of structured point sets and those sampled from probability distri-
butions. Consider a set of points A ⊂ Rn that can be partitioned into two subsets
A = A1 ⊎ A2 such that A1 is some structured set of points (such as being contained
in the union of a small number of low-dimensional subspaces for example) and A2 is
chosen from some mixture model (such as being chosen from a mixture of Gaussians for
example). When say the moment polynomials of both the structured set A1 and the sam-
pled set A2 admit small formulas from a tractable subclass of formulas, we can expect
our methods to apply. In particular, we expect (a suitable adaptation of) our algorithm
to be to handle the case where points in A1 are chosen from a union of low-dimensional
subspaces in an non-degenerate way without conforming to any nice distribution and
points in A2 conform to a (mixture of) Gaussians. We leave the task of handling such
mixed datasets and analyzing the relevant algorithms as a possible direction for future
work.

(f). Potential application - Topic Modeling. It turns out that there are some other prob-
lems in unsupervised learning which reduce to robustly learning an appropriate subclass
of arithmetic formulas. We expect that a suitable instantiation/adaptation of our algo-
rithm should apply for these applications but we do not pursue these applications here
and leave it as a direction for future work. One such problem is called topic modelling.
It is known that learning some simple topic models reduce to tensor decomposition. It
turns out that learning some general topic models as proposed in [Wal06] reduce to the
problem of learning set-multilinear formulas of larger depth.

(g). Potential application - Learning (Mixtures of) Polynomial Transformations.
Another such application is the problem of learning polynomial transformations as stud-
ied in [CLLZ23] which also reduces to learning a certain subclass of arithmetic formu-
las11. The generality of our approach makes us expect that it should apply to this task also
as well as to its generalizations like learning mixtures of polynomial transformations.
We do not pursue this potential application here but leave it as a direction for future
work.

1.1 Overview - Arithmetic Formula Learning algorithm.

Background. Arithmetic formulas are a natural model of computing polynomials us-
ing the basic operations of addition (+) and multiplication (×). A natural problem
about arithmetic formulas is that of learning: given a polynomial f (x)12, find the
smallest (or somewhat small) arithmetic formula computing f (x). We consider for-
mulas in their alternating normal form: i.e. the formula consists of alternating layers
of addition and multiplication gates. The learning problem boils down to recovering

11The work of [CLLZ23] does not state it this way but this can be inferred from the observations
underlying their work.

12There are various input models all of which lead to interesting questions. Some of the common
ones are as a black box or described explicitly as a list of coefficients.

5



the polynomials computed at each child of a node v given the polynomial computed
at v. When v is a multiplication node then generically, the polynomials computed at
its children are irreducible13 in which case the efficient multivariate polynomial factor-
ization algorithm of Kaltofen and Trager [KT90] recovers the children’s outputs. Even
when there is noise, the robust factorization algorithm of [KMYZ08] can recover the
factors approximately14. Thus the main challenge is to recover the children of addi-
tion gates. This connects us to the problem discussed in the previous section with the
structured polynomials being the polynomials computed at the children gates. In the
noiseless setting, a meta algorithm for this problem was given in [GKS20]. We provide
a meta algorithm in the noisy case and show worst-case bounds on the quality of the
output in terms of singular values of certain matrices 15. The abstract problem is as
follows. Given a polynomial f̃ (x) that can be expressed as

f̃ (x) = T1(x) + T2(x) + . . . + Ts(x) + η(x), (2)

where Ti’s are structured polynomials and the noise/perturbation polynomial η(x) has
small norm, can we approximately recover the Ti’s via an efficient algorithm?

Learning from lower bounds. [GKS20] showed how the linear maps used in the known
arithmetic formula lower bound proofs could be used to recover the Ti’s in the noise-
less (η = 0) setting, assuming that appropriate non-degeneracy conditions hold. [GKS20]
observed that the assumption that the Ti’s are structured can effectively be opera-
tionalized via the existence of a known set of linear maps L from the vector space
of polynomials to some appropriate vector space W1 such that dim(⟨L · Ti⟩) is16 small
for every simple polynomial Ti. When we apply such a set of linear operator L to (2)
with η = 0, we get:〈

L · f̃ (x)
〉
⊆ ⟨L · T1(x)⟩+ ⟨L · T2(x)⟩+ . . . + ⟨L · Ts(x)⟩ . (3)

[GKS20] observe that generically two things tend to happen.

Assumption 1.1. First blessing of dimensionality17. If ∑i∈[s] dim(⟨L · Ti(x)⟩) ≪ dim(W1)
then almost surely (over the independent random choice of the Ti’s), it holds that the subspaces
⟨L · Ti(x)⟩ form a direct sum, i.e.

dim(⟨L · T1(x)⟩+ ⟨L · T2(x)⟩+ . . . + ⟨L · Ts(x)⟩) = ∑
i∈[s]

dim(⟨L · Ti(x)⟩).

13Random multivariate polynomials are almost surely irreducible and with that as intuition, one
expects the output of a formula with output being an addition gate to almost surely be an irreducible
polynomial when the underlying field constants are chosen randomly. However proving this can be
technically involved for any given subclass of formulas.

14The work of [KT90] aims to devise a factorization algorithm that is empirically as robust as possible
and does not contain theoretical bounds on how much the output factors get perturbed as a function
of the noise added to a true factorization. Nevertheless such a bound can be inferred from their work.
The bound would depend on the appropriate singular values of an instance-dependent matrix called
the Ruppert matrix that comes up in their algorithm.

15The matrices whose singular values are used to bound the quality of the output depend on the
input instance as well as on the choice of linear operators used to instantiate our framework

16Here, ⟨S⟩ denotes the R-linear span of a set S that consists of vectors or linear maps. Also L · Ti
denotes the set of vectors obtained by applying each linear map in L to Ti.

17The intuition is that (pseudo)-randomly chosen small-dimensional subspaces of a large-
dimensional ambient space should form a direct sum.

6



Assumption 1.2. Second blessing of dimensionality18. If ∑i∈[s] dim(⟨L · Ti(x)⟩) ≪
dim(⟨L⟩) then almost surely (over the independent random choice of the Ti’s), it holds that for
all i ∈ [s]:

⟨L · (T1(x) + . . . + Ts(x))⟩ ⊇ ⟨L · Ti(x)⟩ .

Under these nondegeneracy assumptions we then have (for η = 0):

U def
=
〈
L · f̃ (x)

〉
= ⟨L · T1(x)⟩ ⊕ ⟨L · T2(x)⟩ ⊕ . . . ⊕ ⟨L · Ts(x)⟩ . (4)

We observe that in the noisy case, on input f̃ , finding the best (dim(U))-rank subspace
through the set of points (L ◦ f̃ ) yields a subspace Ũ that is pretty close to U (lemma
D.1 gives quantitative bounds). Coming back to the noiseless case, [GKS20] then ob-
serve that linear maps constructed for the purpose of proving lower bounds also yield
a set of linear maps B such that

V def
= ⟨B · U⟩ = ⟨B · U1⟩ ⊕ · · · ⊕ ⟨B · Us⟩, (5)

where Ui
def
= ⟨L · Ti(x)⟩. This motivated the following problem which they call Vector

Space Decomposition. Given a set of linear maps B between two vector spaces U and V,
find a (maximal) decomposition U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs s.t. B · Ui ⊆ Vi
for all i ∈ [s]. In most applications, such a decomposition turns out to be unique (up to
some obvious symmetries like permuting the subspaces) and hence an algorithm for
vector space decomposition finds the intended decomposition.

Reduction to Vector Space Decomposition in the noisy setting. We then formulate
and give an algorithm for a robust/noise-tolerant version of vector space decompo-
sition. But there is an important difficulty that crops up in trying to use the problem
of robust vector space decomposition as formulated below to the setting of learning
arithmetic formulas in the presence of noise. B is a collection of maps from W1 to W2
where U ⊆ W1, V ⊆ W2 and B · U equals V. However, B · Ũ will typically not be
contained in Ṽ. In fact the dimension of the image of Ũ under the action of B (de-
noted dim

(〈
B · Ũ

〉)
) will typically be much larger than the dimension of Ṽ (denoted

dim(Ṽ)). To overcome this difficulty, our idea is to compose maps in B with the projec-
tion19 map to Ṽ to obtain a tuple of maps B̃ from Ũ to Ṽ. In general such a composition
can completely spoil the structure of the set of maps B but our conceptual insight here
is that in this situation, one can set up a natural correspondence between Lin(U, V)

and Lin(Ũ, Ṽ) that can be used to infer that the projection-composed maps B̃ are slight
perturbations of the corresponding maps in B (lemma 4.1 gives quantitative bounds).

18The intuition is that in most applications when the underlying dimension n = |x| is large enough
then the dimension of the set of operators L is large relative to dim(⟨L · Ti(x)⟩) for any i. In such a
situation if the Ti’s are chosen generically then L tends to contain many operators that kill all the other
Tj’s (for j ̸= i) so that ⟨L · f (x)⟩ tends to contain each of the subspaces ⟨L · Ti(x)⟩.

19Projection to Ṽ here implicitly uses a decomposition of the ambient space W2 into Ṽ and its orthog-
onal complement (defined via some canonical inner product on W2 that is clear from context). It is the
unique map in Lin(W2, W2) which is identity on Ṽ and whose kernel is the the orthogonal complement
of Ṽ.

7



This insight gives us the reduction. Then, the robust vector space decomposition algo-
rithm yields a decomposition

Ũ = Ũ1 ⊕ Ũ2 ⊕ . . . ⊕ Ũs (6)

where Ũ1, Ũ2, . . . , Ũs are slightly perturbed versions of
⟨L · T1(x)⟩ , ⟨L · T2(x)⟩ , . . . , ⟨L · Ts(x)⟩ respectively (corollary 4.1 gives quantita-
tive bounds). In particular this implies that for each L ∈ L we can obtain a vector
close to L · T1(x) by projecting20 L · f̃ (x) to Ũ1. This implies that we can approximately
recover T1(x) itself via an appropriate pseudo-inverse computation. Similarly, we
can recover all the Ti(x)’s up to some error (Theorem 14 gives quantitative bounds).
Before stating the quantitative bound on this error (Theorem 1) let us discuss the
subroutine of robust vector space decomposition which is perhaps of interest in itself
and might have wider applicability.

1.2 Overview - Vector Space Decomposition algorithm

We refer to the noise-tolerant version of vector space decomposition as Robust Vector
Space Decomposition (RVSD). The setting is the following: let W1 and W2 be vector
spaces, and let U = U1 ⊕ · · · ⊕ Us ⊆ W1 and V = V1 ⊕ · · · ⊕ Vs ⊆ W2 be subspaces.
Let B = (B1, B2, . . . , Bm) be an m-tuple of linear operators, with each Bj : U → V being
a linear map from U to V. Suppose that, under the action of B, each Ui is mapped
inside Vi; that is, for each i ∈ [s], it holds that ⟨B · Ui⟩ ⊆ Vi. We consider the problem
of recovering the Ui’s approximately given noisy access to U, V and B. Specifically21

Robust Vector Space Decomposition (RVSD). We are given as input the integer s, two
vector spaces Ũ ⊆ W1 and Ṽ ⊆ W2, and a m-tuple of operators B̃ = (B̃1, B̃2, . . . , B̃m)

from Ũ to Ṽ, such that dist(Ũ, U), dist(Ṽ, V) and dist(B̃,B)22 are "small." Our goal is
to efficiently find an s-tuple Ũ = (Ũ1, Ũ2, . . . , Ũs) of subspaces in Ũ ⊆ W1, such that
(upto a reordering of the components) for each i ∈ [s], dist(Ũi, Ui) is "small"23.

Now we give some rough ideas that go behind our Robust Vector Space Decom-
position algorithm. For more details, the reader is referred to Section 4. Let us first
consider the noiseless setting, in which we are given an integer s, the vector spaces
U ⊆ W1, V ⊆ W2, and a m-tuple of operators B = (B1, . . . , Bm) from U → V; the goal
is to find a decomposition U = U1 ⊕ · · · ⊕Us and V = V1 ⊕ · · · ⊕Vs, such that each Ui
is mapped into Vi under the action of B, i.e.

U = U1 ⊕ U2 ⊕ . . . ⊕ Us and V = V1 ⊕ V2 ⊕ . . . ⊕ Vs, ⟨B · Ui⟩ ⊆ Vi ∀i ∈ [s]. (7)

20Projection to Ũ1 here refers to using the decomposition given by (6). It is applying the unique map
in Lin(Ũ, Ũ) which is identity on Ũ1 and whose kernel is (Ũ2 ⊕ Ũ3 ⊕ . . . ⊕ Ũs).

21As discussed above, it is often the case that a set of operators (B1, . . . , Bm), with each Bi : W1 → W2,
satisfying the above property are exactly known. In this case, we can instantiate the Robust Vector
Space Decomposition problem with suitable projections of these operators on the set of linear maps
from U → V, and Ũ → Ṽ respectively. For more details, the reader is referred to Section 4.3.

22In the formulation here, the distance dist(B̃,B) is defined by extending all operators to map W1
into W2.

23As we note in Remark 6, our algorithms can be used to find (V1, . . . , Vs) approximately as well, but
we omit that here since our applications do not need it.

8



The adjoint algebra and its properties. Based on [Qia18, CIK97], [GKS20] defined
a notion called the adjoint algebra24 whose structure can be used to understand (the
potentially many) decompositions. Let us recall this notion.

Definition 1.1. Adjoint algebra The adjoint algebra, corresponding to the vector spaces
U, V, and the tuple of operators B, denoted AdjU,V(B) is defined to be the set of all
tuples of linear maps (D, E), with D : U → U, E : V → V, such that Bj · D =
E · Bj for all j ∈ [m].

Observe that the adjoint algebra always contains the space of scaling maps25: that is,
the set of maps D : U → U, E : V → V such that D (resp. E) simply scales each Ui
(resp. Vi) by some scalar λi, for each i ∈ [s]. We observe that in most applications
these maps are all that the adjoint algebra contains, and in this case, there is a simple
algorithm to solve the vector space decomposition, and the obtained decomposition is
unique:

Proposition 1.1 (Proposition A.326 in [GKS20]). Suppose that U, V admit a decomposition
into direct sum of s spaces under the action of B as in (7). If dim(AdjU,V(B)) = s, then it
holds that:

1. AdjU,V(B) equals the set of scaling maps (as defined above) and,

2. The decomposition given by (7) is the unique irreducible decomposition, i.e. if

U = Û1 ⊕ Û2 ⊕ . . . ⊕ Ûŝ and V = V̂1 ⊕ V̂2 ⊕ . . . ⊕ V̂ŝ, ŝ ≥ s,

and 〈
B · Ûi

〉
⊆ V̂i, ∀i ∈ [ŝ],

then ŝ = s and upto reordering if necessary, Ûi = Ui and V̂i = Vi for all i ∈ [s].

Noiseless algorithm. Note that given B (and U, V) computing AdjU,V(B) is easy and
simply involves solving for D and E that satisfy the linear constraints specified in
definition 1.1. Further under the assumption that AdjU,V(B) equals the set of scaling
maps (this we refer to as strong uniqueness), the required subspaces U1, U2, . . . Us can
be obtained as the eigenspaces corresponding to distinct eigenvalues of the linear map
D : U 7→ U which is the component of a random element (D, E) of AdjU,V(B).

Making the algorithm robust. There is a relatively straightforward way to make this
algorithm robust: we use the maps in B̃ to compute a vector space27 that is in some
sense an approximation to the original adjoint algebra. Finally, we recover the Ui’s
approximately as (the sum of a few) eigenspaces of suitably chosen elements of this
approximate adjoint algebra. In the noiseless setting it suffices to chose random el-
ements of the adjoint algebra but in the noisy setting this does not work very well.

24The adjoint algebra is a generalization of the notion of the centralizer algebra in matrix/group
theory to the case when the image space of the set of linear maps is different from the domain space.

25This observation is due to [CIK97] and forms the starting point of the [GKS20] algorithm for vector
space decomposition.

26This proposition is a special case of the more general proposition A.3 in [GKS20] wherein the blocks
of AdjU,V(B) consist of scalar matrices only.

27This space is typically not closed under multiplication and so does not form an algebra.

9



This is because the error incurred in the recovery of an eigenvector/eigenspace of an
operator is inversely related to the corresponding eigengap(s) (see lemma A.8). Sim-
ply picking a random element of the adjoint algebra AdjU,V(B) leads to a rather small
eigengap and we therefore incur a rather large error both theoretically and practically
(i.e. in both the worst case noise scenario and the random noise scenarios). Our in-
sight here is that the multiplicative structure of the adjoint algebra can be exploited
to find operators in it with (some) large eigengaps and this yields an algorithm that
is more robust. Indeed, our initial experiments suggest that the resulting algorithm
when applied to tensor decomposition empirically performs better (in terms of error
in the output) than any of the known algorithms for tensor decomposition. The details
and quantitative bounds are provided in section 4.

Our Results. The noise-tolerance and performance of our meta-algorithm is captured
by the following theorem which bounds the error incurred in terms of various param-
eters involved.

Theorem 1 (Learning Noisy Arithmetic Circuits, Informal version of Theorem 14).
Let f (x) = T1(x) + · · · + Ts(x) be a polynomial such that each Ti ∈ R[x]=d belongs to a
circuit class C that admits operators L and B satisfying the following properties:

• L consists of linear maps L : R[x]=d → W1 such that U
def
= ⟨L · f ⟩ = U1 ⊕ · · · ⊕ Us,

dim(U) = dU, where Ui
def
= ⟨L · Ti⟩.

• B consists of linear maps B : W1 → W2 satisfying V
def
= ⟨B · L · f ⟩ = V1 ⊕ · · · ⊕ Vs,

dim(V) = dV , where Vi
def
= ⟨B · L · Ti⟩.

• The decomposition of (U, V) under B is strongly unique, i.e. dim(AdjU,V(B)) = s.

We also need the robust versions of the above assumptions and that L and B are appropriately
normalized. Let M, N be matrices with columns L · f , L ∈ L and B · L · f , B ∈ B, L ∈ L
respectively. Suppose that the dth

U and the dth
V largest singular values of M and N, respectively,

are bounded from below by some σ > 0. Similarly, for an appropriate operator corresponding
to the adjoint algebra, we need an appropriate singular value lower bounded by σ.

Let f̃ (x) = f (x) + η(x) be a polynomial such that ∥η∥ ≤ ϵ28. Then, there is an efficient
algorithm, which on input f̃ , recovers T̃1, T̃2, . . . , T̃s, such that for any δ > 0, with probability
at least 1 − δ, (upto reordering) for each i ∈ [s] it holds that∥∥∥Ti − T̃i

∥∥∥ ≤ poly (s, d, dU, dV , 1/δ, 1/σ) · ϵ.

Remark 2. 1) Error for random noise. The above bound on the output error is for the
case when the noise η(x) is chosen in an adversarial (i.e. worst-case) fashion, subject of
course to the indicated upper bound on its norm. In practice η(x) often behaves like a
random vector so that the output error is in practice significantly less29 than the worst-
case bound in the above theorem. Our intuition is that when η(x) is random the output

28Under an appropriate norm called the Bombieri norm as defined in Section 2. The Bombieri norm
is a suitably scaled version of the ℓ2 norm that has many desirable properties including being invariant
under a unitary transformation of the underlying variables.

29This situation is reminiscent of the well-studied spiked tensor problem in machine learning which
can be thought of as a very special case of our problem.

10



error should be less by a factor of poly(dim(⟨L⟩)) compared to when η(x) is adversari-
ally chosen. We leave it as a potential direction for future investigation.

2) Noise-tolerance. As noted earlier, our initial experiments indicate that for the well-
studied special case of tensor decomposition our algorithm seems to be more noise-tolerant
than existing algorithms. We remark here that for subspace clustering, one can have a
somewhat different reduction to vector space decomposition which also incorporates the
affinity-based information to obtain a more noise-tolerant clustering algorithm. It might
be interesting to do an empirical comparison of noise-tolerance of (such adaptations of)
our algorithm to existing algorithms for various applications of interest.

3) Running Time. The algorithm boils down to computing singular value decompositions
and/or pseudoinverses of certain matrices and thus its running time30 is upper bounded
by the cube of the dimension of the largest vector space involved.

4) We suggest a potential way to speed up the above algorithm in section 1.5.

1.3 Application 1: Subspace Clustering.

Subspace clustering is the following problem - we are given a set of N points A =
{a1, a2, . . . , aN} ⊆ Rn that admit a partition

A = A1 ⊎ A2 ⊎ . . . ⊎ As,

such that the points in each Aj (j ∈ [s]) span a low-dimensional (relative to the number
of points in Aj) space

〈
Aj
〉
. The goal is to find such a partition.

Even for n = 3, this problem is NP-hard in the worst case [MT82]. Despite this, it
has been intensely studied and we refer the reader to the surveys [PHL04], [QXCK23]
and the references therein. Most state of the art techniques rely on constructing an
affinity matrix, which measures how likely two points are to be in the same subspace,
followed by spectral clustering using the affinity matrix. Most such algorithms have
little theoretical analysis about the robustness and recovery guarantees.

A non-degeneracy condition and a reduction. Suppose now that the span of the Aj’s
satisfy the following non-degeneracy condition: they form a direct sum, i.e.

⟨A⟩ = ⟨A1⟩ ⊕ ⟨A2⟩ ⊕ . . . ⊕ ⟨As⟩ . (8)

We will see that in this case subspace clustering reduces to vector space decomposition
in the following way. For a point a = (a1, a2, . . . , an) ∈ Rn, let a · x ∈ R[x] denote the
linear form a1x1 + a2x2 + · · ·+ anxn, in the formal variables x = (x1, x2, . . . , xn). For
d ≥ 1 we denote by A⊗d the set

{
(a · x)d : a ∈ A

}
⊆ R[x]=d. Consider the space of

first-order partial differential operators B = ∂=1 acting on the subspace of polynomi-
als 〈

A⊗2
〉
=
〈
(a1 · x)2, (a2 · x)2, . . . , (aN · x)2

〉
⊆ R[x]=2.

The image space is then〈
A⊗1

〉
= ⟨(a1 · x), (a2 · x), . . . , (aN · x)⟩ ⊆ R[x]=1.

30This is in the model where operations over real numbers are of unit cost. A more precise bound on
the running time in terms of the dimensions of the various relevant vector spaces can be

11



Note that our non-degeneracy condition can be restated as saying that〈
A⊗1

〉
=
〈

A1
⊗1
〉
⊕
〈

A2
⊗1
〉
⊕ . . . ⊕

〈
As

⊗1
〉

.

This implies that the subspaces
〈

Aj
⊗2
〉

also form a direct sum. Its also easily seen

that the image of each
〈

Aj
⊗2
〉

under B = ∂=1 is precisely
〈

Aj
⊗1
〉

. Thus the vector

space
〈

A⊗2〉 admits a decomposition under the action of B. Furthermore, under the

additional mild assumption that each
〈

Aj
⊗2
〉

is indecomposable under the action of B
it turns out (using Corollary B.1) that the decomposition is unique and thus the sub-
space clustering problem reduces to the problem of vector space decomposition.

A weaker non-degeneracy condition. Note that the non-degeneracy condition given
by (8) is rather restrictive - it implies in particular that the number of subspaces s
cannot exceed n, the dimension of the ambient space. We can get a weaker non-
degeneracy condition by considering the action of first-order partial differential op-
erators B = ∂=1 on the space

〈
A⊗d〉 instead (for some suitable choice of d ≥ 2). The

image space is then
〈

A⊗(d−1)
〉

. As before, under the (now weaker) non-degeneracy
condition that〈

A⊗(d−1)
〉
=
〈

A1
⊗(d−1)

〉
⊕
〈

A2
⊗(d−1)

〉
⊕ . . . ⊕

〈
As

⊗(d−1)
〉

,

the vector space
〈

A⊗d〉 admits a decomposition under the action of B. Furthermore,

as before, under the additional mild assumption that each
〈

Aj
⊗d
〉

is indecomposable
under the action of B it turns out (Corollary B.1) that the decomposition is unique and
thus the subspace clustering problem reduces to the problem of vector space decom-
position (see Theorem 9).

Robust subspace clustering. The robust or noisy version of the subspace clustering
problem is the following. Given a set of points Ã = {ã1, ã2, . . . , ãN} ⊆ Rn suppose
that each point ãi is close to an (unknown point) ai ∈ Rn such that the resulting set of
points A = {a1, a2, . . . , aN} ⊆ Rn can be clustered using s subspaces, i.e.

A = A1 ⊎ A2 ⊎ . . . ⊎ As,

where each Aj spans a low-dimensional subspace
〈

Aj
〉
. The computational task is to

approximately recover each subspace
〈

Aj
〉
, that is, output W̃ = (W̃1, W̃2, . . . , W̃s) such

that (upto reordering) each W̃j is close to
〈

Aj
〉

for each j ∈ [s]. We can reduce this

problem to the robust vector space decomposition as follows. Let md
def
= dim(

〈
A⊗d〉)

and md−1
def
= dim(

〈
A⊗(d−1)

〉
). Given Ã we algorithmically compute the best fitting

subspace Ũ (resp. Ṽ) of dimension md (resp. md−1) to Ã⊗d (resp. to Ã⊗(d−1)). It turns
out then that Ũ (resp. Ṽ) is close to

〈
A⊗d〉 (resp. to

〈
A⊗(d−1)

〉
) (Lemmas B.7, B.8 give

the quantitative bounds). Applying the robust version of vector space decomposition
on (Ũ, Ṽ,B), the subspaces that we obtain are close to

〈
Aj

⊗d
〉

(j ∈ [s]) and from these

we can, in turn, also approximately recover
〈

Aj
〉

(Proposition B.1), as required. This
yields the following theorem.

12



Theorem 2 (Robust Subspace Clustering, Informal version of Theorem 10). Let A =
{a1, . . . , aN} ⊆ Rn be a finite set of N points of unit norm, which can partitioned as A =
A1 ⊎ · · · ⊎ As, where each ⟨Ai⟩ is subspace of dimension at most t.

Let d ≥ 2 be an integer, let U = (U1, . . . , Us) (resp. V = (V1, . . . , Vs)) be an s-tuple of
subspaces with Uj =

〈
Aj

⊗d
〉

(resp. Vj =
〈

Aj
⊗d−1

〉
) for each j ∈ [s]. Let U = ⟨U⟩ (resp.

V = ⟨V⟩) have dimension md (resp. md−1).
Suppose that:

• U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs, and for each j ∈ [s], it holds that dim(Uj) =

(
dim(⟨Aj⟩)+d−1

d ), dim(Vj) = (
dim(⟨Aj⟩)+d−2

d−1 ).

• σA is the minimum of σmd(MA, d) and σmd−1(MA, d−1), where MA,d (resp. MA, d−1) is
the matrix whose columns are the polynomials (ai · x)d (resp. (ai · x)d−1) (see Defini-
tion B.4).

• κ(U) denotes the condition number of the tuple of subspaces U (see Section 2).

• σ−(s+1)(A) is the (s+ 1)th smallest singular value of the adjoint algebra map (see Defini-
tion 4.2), corresponding to the action of B = (B1, . . . , Bn) on U, V, where Bi corresponds
to the operator ∂xi .

Let Ã = {ã1, ã2, . . . , ãN} ⊆ Rn be a set of unit norm vectors such that ∥ai − ãi∥2 ≤ ϵ for
each i ∈ [N]. Then, there is an algorithm, which on input Ã, runs in time poly(N, nd), and re-
covers subspaces (W̃1, W̃2, . . . , W̃s), such that with probability at least 1− δ, (upto reordering)
for each j ∈ [s] it holds that

dist(W̃j,
〈

Aj
〉
) ≤ poly

(
t, N, d, s, 1/δ, κ(U), 1/σA, 1/σ−(s+1)(A)

)
· ϵ.

We show how to lower bound σ−(s+1)(A) (Theorem 11). The main technical com-
ponent is an inductive argument to analyze singular values of basic adjoint operators,
which is inspired by the inductive argument in recent works on analyzing eigenvalues
for random walks on simplicial complexes (e.g. [ALGV19]). Next we see what our al-
gorithms would yield in the smoothed case and state some explicit conjectures about
singular values of relevant smoothed matrices.

Smoothed analysis of subspace clustering. We first describe the input model. For
simplicity, we assume that each of the subspaces have the same dimension (equal to
t).

1. Perturbation model for subspaces. We have a tuple of s hidden subspaces of Rn,
W = (W1, W2, . . . , Ws), each of dimension t. Let P1, P2, . . . , Ps ∈ Rn×t be matrices
with orthonormal columns, such that the column span of Pi is Wi. Each subspace
Wi is perturbed by perturbing Pi by a random (and independent) Gaussian ma-
trix Gi ∼ N (0, ρ2/n)n×t. Let P̂i = Pi + Gi, and Ŵ1, Ŵ2, . . . , Ŵs be the column
spans of P̂1, P̂2, . . . , P̂s respectively.

2. Perturbation models for points from each subspace. Sample (possibly adver-
sarially) sets of points A1, A2, . . . , As from Ŵ1, Ŵ2, . . . , Ŵs respectively, of unit
norm. For each i ∈ [s], perturb each point in Ai with respect to Ŵi to get the

13



set of points Âi. Formally, this means perturbing points in Ai by B̂i · v, where B̂i
is an n × t matrix describing an orthonormal basis for Ŵi and v ∼ N (0, ρ2/t)t

(independently generated for each point), and normalizing. Let Â = Â1 ∪ Â2 ∪
· · · ∪ Âs.

3. Adding noise. For each a ∈ Â, add noise (possibly adversarially) and normalize
to get a unit norm point a′ such that ∥a − a′∥2 ≤ ϵ. We are given as input Â′, the
set of noise-added points.

Given the set of points Â′, the goal is to recover subspaces W̃ = (W̃1, W̃2, . . . , W̃s)
such that dist(Ŵ, W̃) is small. Next we state a couple of conjectures about minimum
singular values of smoothed random matrices that we encounter:

Conjecture 1.1. Let vi1, . . . , vit be an orthonormal basis for Ŵi generated as above. Define the
linear forms ℓij(x) = ⟨vij, x⟩. Consider the (n+d−1

d )× s(t+d−1
d ) matrix M where the columns

are divided into s chunks and in the ith chunk, the columns are all the monomials of degree d in
the polynomials ℓi1, . . . , ℓit. Also suppose s(t+d−1

d ) ≤ (1 − δ)(n+d−1
d ) for a constant δ > 0.

Then for constant d, with high probability, σs(t+d−1
d )

(M) ≥ poly (ρ, 1/n).

Conjecture 1.2. Consider arbitrary vectors v1, . . . , vs ∈ Rt of unit norm and their smoothed
versions v̂1, . . . , v̂s, where v̂i = vi + gi, gi ∼ N (0, ρ2/t)t (and then further normalized to
unit norm). Consider the s × (t+d−1

d ) matrix M where the ith row contains the polynomial
⟨v̂i, x⟩d. Suppose s ≥ (1 + δ)(t+d−1

d ) for a constant δ > 0. Then for constant d, with high
probability, σ

(t+d−1
d )

(M) ≥ poly (ρ, 1/t).

Theorem 3 (Smoothed analysis of subspace clustering, Theorem 12 restated). Suppose
Conjectures 1.1 and 1.2 are true. Then for constant d, Algorithm 5 on input (Â′, d, s, md, md−1)

outputs W̃ = (W̃1, . . . , W̃s) such that with high probability,

dist(W̃j, Ŵj) ≤ poly (n, t, 1/ρ) · ϵ

Regarding the two conjectures, Conjecture 1.2 is closely linked to the paper [BCPV19].
There they considered the setting where s ≤ (1− δ)(t+d−1

d ) and proved a similar lower
bound for σs(M). In both the settings there is slack, so it is plausible that the techniques
of [BCPV19] can be adapted to prove Conjecture 1.2. But we don’t know how to do
that. In Conjecture 1.1, the matrix M is such that both the rows and columns share
random variables. Most of the smoothed analysis till now focuses on matrices where
either rows or columns have different sets of variables involved, and this makes it
amenable to the leave-one-out distance method. Still, in Conjecture 1.1, the sharing of
variables is not completely arbitrary. One can divide rows into chunks so that different
chunks have different sets of variables. However, even this setting seems to require
new techniques to analyze.

1.4 Application 2: Learning Mixtures of Gaussians

In this section we will see how the problem of computing the parameters of a mixture
of Gaussians reduces to (several instances of) vector space decomposition.

14



Reduction to a special case of formula learning. It is implicit in [GHK15] that learning
a mixture of s zero-mean Gaussians reduces to robustly expressing a given homoge-
neous polynomial p(x) as a sum of s powers of quadratics, i.e.

p(x) = p1(x)d + p2(x)d + . . . + ps(x)d, (9)

where the pi’s are homogeneous quadratic polynomials. Following the ideas in [GKS20],
we give a direct reduction31 to vector space decomposition as follows.

Obtaining a vector space that is the direct sum of unknown spaces. Following
[GKS20], we apply partial derivatives followed by a random projection to obtain a vector
space that is a direct sum of s unknown subspaces, one corresponding to each pi(x).
Specifically, let L be the set of operators corresponding to taking k-th order partial
derivatives followed by a random restriction32. Applying L to both sides of equation
(9), we get

⟨L · p(x)⟩ ⊆
〈
L · p1(x)d

〉
+
〈
L · p2(x)d

〉
+ . . . +

〈
L · ps(x)d

〉
,

It turns out that (Lemma C.1) under relatively mild nondegeneracy conditions on the
choice of the pi’s, the vector space sum on the right hand side of the above equation is
actually a direct sum and the containment is actually an equality, i.e.

⟨L · p(x)⟩ =
〈
L · p1(x)d

〉
⊕
〈
L · p2(x)d

〉
⊕ . . . ⊕

〈
L · ps(x)d

〉
.

We now carefully choose another set of operators B such that the subspace U def
=

⟨L · p(x)⟩ admits a unique decomposition under the action of B.

Choice of B. The set of operators L maps polynomials in x to polynomials in a subset
of variables y ⊆ x. Under the above mentioned nondegeneracy conditions, it also

turns out that for each i ∈ [s],
〈
L · pi(x)d〉 is of the form Ui

def
=
〈
y=k · qi(y)d−k〉 ⊆

R[y]=(2d−k). With this in mind, we choose B as the following set of operators: first
order partial derivatives followed by multiplication33 by polynomials of degree 1. In
detail: B consists of |y|2 operators with the (i, j)-th operator (i, j ∈ [|y|]) being

Bij : R[y]=(2d−k) 7→ R[y]=(2d−k), Bij · q(y) = yj · (∂yi q(y)) for any q(y) ∈ R[y]=(2d−k).

It turns out that for any i ∈ [s], under the action of B, the image of

Ui
def
=
〈

y=k · qi(y)d−k
〉

is the subspace Vi
def
=
〈

y=(k+2) · qi(y))d−k−1
〉

and that the Ui’s and Vj’s form direct sums (Lemma C.2). Furthermore, under mild
non-degeneracy conditions such a decomposition is unique (Corollary C.1) implying
that our vector space U has a unique decomposition into s subspaces under the action

31In [GKS20], there is an additional "multi-gcd" step which we avoid here.
32W can think of a random projection as keeping a subset y ⊆ x of the variables alive and setting the

rest to zero.
33The relevant literature on arithmetic formula lower bounds would refer to the set of operators B

as shifted partials and denote it by y=1 · ∂=1
y .

15



of B. Lastly, from each Ui we can recover the corresponding qi(y) which is a restriction
of pi(x) to a chosen subspace. Any polynomial can be recovered from its restriction to
a small number of chosen subspaces and we use this to recover each pi(x) (i ∈ [s]), as
required. In this way, the problem of learning mixtures of Gaussians reduces to robust
vector space decomposition.

Robust version. Our general algorithm for learning arithmetic circuits with noise
(Theorem 1) can be used to make the above algorithm robust. We will also need
to use the algorithm of [BHKX22] in this case to combine the various projections of
pi’s. Our algorithm will depend on condition numbers of certain matrices which can
be deduced from the operators used in the above algorithm. Lemmas C.1, C.2 and
C.3 show that at least the ranks of these matrices are as expected. Lemmas C.1 and
C.2 are from [GKS20]. Lemma C.3 is new and is the main technical contribution for
this section, and shows that the relevant adjoint algebra is of the correct dimension.
Also [BHKX22] analyze similar matrices corresponding to Lemmas C.1 and C.2 and
prove the required condition number bounds in the fully random case. For the sin-
gular values of the adjoint operator (robustification of Lemma C.3), we believe similar
techniques as Theorem 11 should work to give us a bound but the setting is more
challenging and we don’t know how to prove a bound here yet.

Comparison to [GKS20] and [BHKX22]. The algorithms of [GKS20, BHKX22] for
learning mixtures of Gaussians roughly proceed as follows (for simplicity, we only
consider the the noiseless case here).

Given a polynomial p(x) = ∑s
i=1 pi(x)d, where each pi is a quadratic polynomial:

1. Apply a set of operators L to p(x), where L corresponds to taking some k-th
order partial derivatives followed by a random restriction: as described before,
each ⟨L · pi(x)⟩ is of the form

〈
y=k · qi(y)d−k〉 ⊆ R[y]=(2d−k). This step is essen-

tially the same in both [GKS20, BHKX22].

We note however that [BHKX22] actually do not work under the non-degeneracy
condition of the spaces ⟨L · pi(x)⟩’s forming a direct sum, and instead explicitly
characterize the structure of the intersections ⟨L · pi(x)⟩ ∩

〈
L · pj(x)

〉
. This al-

lows them to deal with a broader range of parameters compared to [GKS20].

2. The next step is a "multi-gcd" step, which is used to find the vector space
〈
qi(y)d−k〉+

· · ·+
〈
qs(y)d−k〉. This step is already present in the algorithm of [GKS20], how-

ever [BHKX22] give a significantly simpler algorithm for this step, along with an
analysis for the robust version of this step.

3. The next step, which is in some sense the "main part" of the algorithm, is where
the two algorithms [GKS20] and [BHKX22] differ:

(a) The algorithm of [GKS20] considers another application of k-th order partial
derivatives + random restriction on this vector space, and uses vector space
decomposition with respect to this set of operators. This allows them to
recover the component polynomials.

(b) The algorithm of [BHKX22] follows the approach in [GHK15], and does
a "desymmetrization + tensor-decomposition" step. This roughly enables

16



them to convert the sum of polynomials to a sum of tensors, and then apply
standard tensor decomposition methods to obtain the required components.

4. The final step is to repeat the above procedure multiple times, using a differ-
ent random restriction each time, and then aggregating the obtained qi(y)’s into
pi(x), as described before.

Our algorithm essentially follows the same first and final step as both these algo-
rithms. It significantly deviates from the two algorithms in Steps 2 and 3:

1. While we follow the same vector space decomposition paradigm as [GKS20], our
algorithm completely eliminates the use of the multi-gcd step. Instead, we use
a very simple set of operators, namely order one partial derivatives + order one
shifts, directly on the vector space ⟨L · p(x)⟩. Hence, our approach provides a
much more direct reduction to vector space decomposition.

2. In comparison to [BHKX22], we first eliminate the use of the multi-gcd step,
and further we do not go through the desymmetrization step at all. Instead,
our framework of vector space decomposition allows us to deal with symmetric
polynomials throughout the algorithm; this inherently seems much more natural
since the inputs and outputs all deal only with polynomials (symmetric tensors).

Finally, we note the the above described simplification allows us to obtain a much
better range of parameters compared to [GKS20], whereas we still expect them to be
slightly worse than [BHKX22].

1.5 Conclusion and Future Directions

In this work we showed how to adapt the algorithm of [GKS20] for learning subclasses
of arithmetic formulas to make it noise-tolerant. This turns out to have a number of
applications arising out of the remarkable fact that in these applications, a suitably
defined polynomial formed out of the statistics of the data has a small arithmetic for-
mula. We feel that our approach has the potential to give algorithms which are fast,
noise-tolerant, outlier-tolerant and come with provable guarantees34 for many such
applications and is therefore worthy of further investigation. We now pose some prob-
lems that might encourage or guide such further study.

Making the vector space decomposition algorithm faster. Consider a set of operators
B mapping a real vector space U to another real vector space V. Our algorithm for
decomposition of U (and V) under the action of B involved computations with the
adjoint algebra which entailed working in the vector spaces of linear maps Lin(U, U)
and Lin(V, V). These spaces of linear maps have larger dimension than that of U and
V themselves and consequently, our approach for decomposing U has running time
pertaining to the cost of doing linear algebra over spaces of dimension (dim(U)2 +
dim(V)2). Let us first make an observation. Suppose that the decomposition induced
by B, namely:

U = U1 ⊕ U2 ⊕ . . . ⊕ Us, V = V1 ⊕ V2 ⊕ . . . ⊕ Vs

34For most such applications the worst-case instances are intractable so the best we can hope for are
algorithms whose performance can be bounded using singular values of certain instance-dependent
matrices.

17



had the property that the Ui’s (respectively also the Vi’s) were orthogonal comple-
ments of each other (under some canonical inner product on the spaces U and V). Con-
sider the collection of linear maps L ⊆ Lin(U, U) defined as L :=

{
BT

j · Bi : Bi, Bj ∈ B
}

.
Then each Ui is an invariant subspace (i.e. an eigenspace) of every operator in L. In
such a situation we typically expect the following simple algorithm to work: simply
pick three random maps B1, B2, B3 ∈ ⟨B⟩ and compute35 L := BT

2 · B1 and M := BT
3 · B1.

Then for each eigenvector u of L, compute the span of the orbit of u under the action
of M. The distinct subspaces so obtained should typically give us the required sub-
spaces U1, U2, . . . , Us. Clearly such an algorithm, when it works, would be much faster.
We expect that for most applications, the above algorithm should work but we don’t
know.

Problem 1. For problems such as subspace clustering and learning mixtures of Gaus-
sians, if the relevant Ui’s (respectively also the Vi’s) are orthogonal to each other, does
the above algorithm correctly recover the Ui’s?

Problem 2. Whats the best way to make this algorithm noise-tolerant?

Finally, in situations where the Ui’s (resp the Vi’s) are not orthogonal to each other
we can clearly make them so by using appropriate inner products on U and V. But
how do we find such an inner product? We expect the operator scaling algorithm
of [GGdOW20] to yield such an inner product(!)

Problem 3. For (noiseless) subspace clustering, does the operator scaling algorithm of
[GGdOW20] applied on the relevant B yield inner products under which the relevant
subspaces are orthogonal?

Mixture of Gaussians. As mentioned in remark 1(b) earlier, we expect that our algo-
rithm can be extended to handle general mixtures of Gaussians with differing means
and covariance matrices. Let us formally state this as an open problem.

Problem 4. Random instances of general mixtures of Gaussians. Let n, s ≥ n be
integers. For i ∈ [s] suppose that we pick µi ∈ Rn and covariance matrices Σi ∈
Rn×n independently at random36. Let D := ∑s

i=1
1
s · N (µi, Σi) be the equi-weighted

mixture of Gaussians with the above randomly chosen parameters. Design an efficient
algorithm that given samples from D recovers the µi’s and Σi’s approximately.

Our work as well as that of [BHKX22] leave open the problem of doing a smoothed
analysis of the corresponding algorithm for mixtures of zero-mean Gaussians. To en-
courage this direction of research, let us state this explicitly in the form of a conjecture.

Conjecture 1.3. Smoothed analysis of our algorithm for mixture of zero-mean Gaus-
sians. Our algorithm efficiently recovers the unknown parameters for smoothed instances of
mixtures of zero-mean Gaussians.

Handling outliers and other applications. In Remark 1, we conjectured that our ap-
proach/framework should enable the design of efficient algorithms that can handle
outliers and also be useful for many more applications in unsupervised learning. It
would be nice to have concrete results in such directions.

35The linear maps BT
2 , BT

3 from V to U are defined using the canonical inner products on these two
spaces.

36Any reasonable distribution would do but for concreteness say we pick µi ∼ N (0, In) and we pick
Σi = BT · B, where B ∼ N (0, 1)n×n

18



2 Preliminaries

We shall use [n] to denote the set {1, 2, . . . , n}.

Matrices, Norms, Pseudo-inverse. Let Rm×n denote the space of m × n matrices over
R. Given an m × n matrix M, we denote by ∥M∥2 its operator norm, and by ∥M∥F its
Frobenius norm. We shall use M† to denote its Moore-Penrose pseudo-inverse, and

we define its condition number as κ(M)
def
= ∥M∥2

∥∥M†
∥∥

2. We mention some relevant
properties of matrix norms and the pseudo-inverse in Section A.1.

Vector Spaces, Linear Operators, Projection Maps. Every vector space V that we
will deal with in this work will be a finite dimensional real vector space that comes
equipped with an inner product37 denoted ⟨·, ·⟩V , or simply ⟨·, ·⟩ when the underlying
vector space is clear from context. For two vector spaces U and V, Lin(U, V) shall
denote the set of linear maps from U to V.

Inner products on U and V can be used to generate an inner product on Lin(U, V),
called the Hilbert–Schmidt inner product: For A, B ∈ Lin(U, V), we define ⟨A, B⟩Lin(U,V)

= ∑i∈[dim(U)]⟨A · ei, B · ei⟩V where e1, . . . , edim(U) is an orthonormal basis of U with re-
spect to ⟨·, ·⟩U. It is shown easily that this inner product is independent of the choice
of the orthonormal basis, and it matches the usual Frobenius inner product on the
space of dim(U)× dim(V) matrices, when A and B are represented as matrices under
a choice of orthonormal basis for U and V.

For any linear map A ∈ Lin(U, V), we shall use ∥A∥2 to denote its operator norm,
and ∥A∥F = ⟨A, A⟩1/2

Lin(U,V)
to denote its norm under the Hilbert-Schmidt inner prod-

uct.
For any linear map A ∈ Lin(U, V), we use σn(A) to denote the nth largest singular

value of A. We also use σ−n(A) to denote the nth smallest singular value.
If U ⊆ V is a subspace, then U⊥ ⊆ V shall denote the subspace that is an the

orthogonal complement of U, and ProjU ∈ Lin(V, V) shall denote the projection onto
U, i.e.

U⊥ def
= {w ∈ V : ⟨u, w⟩ = 0} ⊆ V and

ProjU · v = u where u ∈ U, w ∈ U⊥ are the unique vectors such that v = u + w.

Tuples of subspaces. Let U = (U1, U2, . . . , Us), Ui ⊆ V, be an s-tuple of subspaces.
⟨U⟩ shall denote the span of the constituent subspaces, i.e.

⟨U⟩ def
= U1 + U2 + . . . + Us.

We will be interested in recovering the constituents of a subspace tuple U using oper-
ators acting on ⟨U⟩. Towards this end, we fix some relevant terminology.

Associated matrices, independent tuples of subspaces, condition numbers. Let U = (U1, U2, . . . , Us)
be an s-tuple of subspaces of an n-dimensional vector space V, and di = dim(Ui) and
d = ∑i∈[s] di. We will say that an n × d matrix M is a U-associated matrix if and only if

37Very often, V is a space of homogeneous multivariate polynomials in which case the inner product
is the Bombieri inner product.

19



the first set of d1 columns of M forms an orthonormal basis for U1, the next set of d2
columns forms an orthonormal basis for U2 and so on and the last set of ds columns
forms an orthonormal basis of Us. Any two U-associated matrices are equal up to right
multiplication by an orthogonal matrix and so the rank and condition number of all
matrices associated to U are the same.

We will say that U = (U1, U2, . . . , Us) is an independent tuple of subspaces if

⟨U⟩ = U1 ⊕ U2 ⊕ . . . Us.

In particular, U is an independent tuple of subspaces if and only if any U-associated
matrix has full rank. Motivated by this, we define a measure of the "robustness" of
independence of the Ui’s, called the condition number κ(U) of the tuple U, as the
condition number κ(M) of a U-associated matrix M.

Distances between Subpaces. The distance dist(U, V) between subspaces U, V ⊆ W
will be defined by

dist(U, V) =
∥∥ProjU − ProjV

∥∥
2 ,

and correspondingly we will say that these two subspaces are ϵ-close if dist(U, V) ≤ ϵ.
In particular, observe that for any two subspaces U, V ⊆ V, it holds that dist(U, V) ∈
[0, 1], and that dist(U, V) = 1 if dim(U) ̸= dim(V).

The distance between two s-tuples U = (U1, U2, . . . , Us) and V = (V1, V2, . . . , Vs)

of subspaces of a vector space W, is defined as dist(U, V)
def
= maxi∈[s] dist(Ui, Vi).

Tuples of operators. Let B = (B1, B2, . . . , Bm) ∈ (Lin(U, V))m be an m-tuple of linear
operators. For u ∈ U, ⟨B · u⟩ shall denote the space spanned by {Bi · u : i ∈ [m]}.
Similarly, for a subspace U′ ⊆ U, ⟨B · U′⟩ shall denote the space spanned by {Bi · u :
u ∈ U′, i ∈ [m]}.

Definition 2.1. Corresponding to any such m-tuple B = (B1, . . . , Bm) of operators, we
shall associate a linear map B̂ ∈ Lin(U, Vm), given by

B̂ · u = (B1 · u, . . . , Bm · u).

Further, we shall define the norm ∥B∥2 of the tuple of operators, to be the norm∥∥B̂
∥∥

2. More generally, we define the i-th singular value of B to be the i-th singular
value of B̂, and κ(B) =

∥∥B̂
∥∥

2 ·
∥∥B̂†

∥∥
2.

Note that it holds trivially that ∥B∥2 ≤
√

m · maxi∈[m] ∥Bi∥2.

Vector Spaces of Homogenous Polynomials. We denote by R[x]=d the space of de-
gree d homogenous polynomials in n variables x = (x1, . . . , xn). Let Nn

d denote the
set of multi-indices i.e. the set of n-tuples of non-negative integers α = (α1, α2, . . . , αn)
such that |α| = α1 + · · ·+ αn = d. Then, for α ∈ Nn

d , we use xα to denote the mono-
mial xα1

1 xα2
2 . . . xαn

n ∈ R[x]=d. These monomials form a basis of R[x]=d, and we have
dim R[x]=d = |Nn

d | = (n+d−1
d ).

We endow R[x]=d with the Bombieri inner product, defined on the monomials as
follows: 〈

xα, xβ
〉

B
=

{
α!
d! if α = β,
0 otherwise.

20



where α! = α1!α2! · · · αn!. The Bombieri basis i.e. the orthonormal basis with respect

to this inner product is the basis of scaled monomials: pα(x) =
√

d!
α!x

α, α ∈ Nn
d .

We use the following properties of the Bombieri inner product. For any homoge-
nous polynomials p, q, and any a, b ∈ Rn, it holds:

• ∥p · q∥B ≤ ∥p∥B ∥q∥B.

•
〈
(a · x)d, (b · x)d〉

B = ⟨a, b⟩d, where a · x = ∑i∈[n] aixi ∈ R[x]=1.

Lemma 2.1. Let p ∈ R[x]=d be any polynomial, where x = (x1, . . . , xn). Then, we have that
n

∑
i=1

∥∂xi p∥
2
B = d2 ∥p∥2

B .

Proof. Let p(x) = ∑α∈Nn
d

cαxα. Then, ∥p∥2
B = ∑α c2

α · α!
d! , and

∑
i∈[n]

∥∂xi p∥
2
B = ∑

i∈[n]
∑

α:αi>0
(αicα)

2 · α!/αi

(d − 1)!
= ∑

i∈[n]
∑
α

c2
α ·

α!
d!

· (dαi) = d2 · ∑
α

c2
α ·

α!
d!

.

3 Robust Recovery from Scaling Maps (RRSM)

In this section, we look at a special case of the robust vector space decomposition
problem, involving linear maps that correspond to scaling the component subspaces.
This shall later be used in our algorithm for the general robust vector decomposition
problem as a sub-routine.

Let U = (U1, U2, . . . , Us) be an independent s-tuple of subspaces in W and let U =
⟨U⟩ ⊆ W.

Definition 3.1. Space of Scaling Maps. The space of scaling maps S(U) ⊆ Lin(U, U)
is defined as:

S(U)
def
= {A ∈ Lin(U, U) : ∃ λ1, λ2, . . . , λs ∈ R

such that ∀i ∈ [s], ui ∈ Ui we have A · ui = λiui}.

In other words, in a basis of U obtained by concatenating the bases of Ui’s, the space
S(U) consists of block diagonal matrices wherein the i-th diagonal block is a scalar
multiple of the identity matrix of size dim(Ui). For ease of notation, we will use S to
denote S(U).

We are interested in the following problem:

Problem 5. Robust Recovery from Scaling Maps (RRSM). We are given as input the
integer s, a vector space Ũ ⊆ W, and a space S̃ ⊆ Lin(Ũ, Ũ) of linear operators on Ũ. It
is known that dist(Ũ, U) and dist(S̃, S(U)) are "small," and our goal is to efficiently find
an s-tuple Ũ = (Ũ1, Ũ2, . . . , Ũs) of subspaces in Ũ ⊆ W, such that (upto reordering)
dist(Ũ, U) is "small."

In the above formulation, dist(S̃, S)) is defined as follows: We extend the space S
(resp. S̃) to be a subspace of Lin(W, W), by extending each A ∈ S (resp. A ∈ S̃) to
be zero on U⊥ (resp. Ũ⊥). Then, the distance between S̃ and S is defined using the
Hilbert-Schmidt inner product on Lin(W, W).

21



3.1 RRSM: Algorithm for the Noiseless Case

First, we consider the noiseless case of Problem 5, in which Ũ = U and S̃ = S are
exactly known, and we wish to recover U1, . . . , Us exactly.

In this case it is trivially easy to recover the constituent Ui’s (up to permutation):

Exact Algorithm 1: pick a random A ∈ S, diagonalize it and output the eigenspaces
corresponding to distinct eigenvalues of A. For a random A, eigenvalues corre-
sponding to distinct Ui’s will be distinct with high probability, and the algorithm
answers correctly.

Next, we will give another (slightly more complicated) algorithm for this exact
case. We expect the robust version of this algorithm to have better tolerance to noise
(when the noise is random) compared to the algorithm described above.

Definition 3.2. Projection Maps. For each i ∈ [s], the projection map Pi ∈ Lin(U, U)
is defined as

Pi · (u1 + · · ·+ us) = ui,

where uj ∈ Uj for each j ∈ [s]. Further, we define the map M̂ : Rs → Lin(U, U) by

M̂(λ1, . . . , λs) =
s

∑
i=1

λiPi.

Note that the maps Pi’s do not correspond to orthogonal projections if the spaces Ui’s
are not orthogonal to each other.

Observe that:

1. The space of scaling maps S = span(P1, . . . , Ps) in Lin(U, U).

2. Recovering U = (U1, . . . , Us) is equivalent to recovering (P1, . . . , Ps).

Next, given any A ∈ S, we consider the action (by left multiplication) of this map
A on the space S itself:

Definition 3.3. Given any map A ∈ S ⊆ Lin(U, U), we define the map Â ∈ Lin(S, S)
by Â · B = A · B for all B ∈ S.

This map Â is well-defined since the space S is closed under composition of maps,
and, if A = ∑s

i=1 λiPi, then Â has eigenvalues λ1, . . . , λs with eigenvectors P1, . . . , Ps
respectively.

Exact Algorithm 2: pick a random A ∈ S, compute the map Â ∈ Lin(S, S), and di-
agonalize it. With high probability, its eigenvectors are P1, . . . , Ps (appropriately
scaled), and the spaces U1, . . . , Us are the images of these maps.

3.2 RRSM: Algorithm for the Robust Case

In the robust case, we are given a subspace Ũ which is "close" to U, and a space S̃ ⊆
Lin(Ũ, Ũ) which is "close" to S, and we wish to efficiently recover a tuple of subspaces Ũ
close to U. Formally, for the time complexity analysis, we shall assume that the input to
the algorithm is given as follows: Let dim(W) = n, dim(U) = d, dim(S) = s ≤ d. The

22



vector space Ũ ⊆ W is given as nd field elements, consisting of an orthonormal basis of
Ũ with respect to some fixed orthonormal basis of W. The vector space S̃ ⊆ Lin(Ũ, Ũ)

is given as sd2 field elements, consisting of an orthonormal basis of S̃ with respect to
the above orthonormal basis of Ũ. The total input size is N = nd + sd2.

Throughout this section, we shall let d∗ = maxi∈[s] dim(Ui) and d∗ = mini∈[s] dim(Ui).
Before giving an algorithm, we note that the performance of our algorithm will depend
on how "well-separated" the component U′

i s are. For this purpose, we shall be inter-
ested in two condition numbers, namely κ(U) and κ(M̂) (see Definition 3.2). These
satisfy the following relations:

Lemma 3.1. ∥∥M̂
∥∥

2 ≤ κ(U) ·
√

d∗, κ(M̂) ≤ κ(U) ·

√
d∗

d∗
.

Proof. We defer the proof of this Lemma to Section E.2.

We note that while the inequalities in the above lemma may be tight in the worst-
case, we expect κ(M̂) ≪ κ(U) in practice, since it sort of measures the "average sepa-
ration" between the component subspaces U′

i s.
Next, we shall give robust versions of both the exact case-algorithms. We note

that the performance of the robust version of the first exact-case algorithm depends
on κ(U), whereas that of the second case exact-case algorithm depends on κ(M̂). As
stated above, we expect κ(M̂) ≪ κ(U), and so the first algorithm is expected to be
worse than the second algorithm. For this reason, we will only analyze the second
algorithm formally in this work. It also turns out that the second algorithm is tech-
nically a bit easier to analyze: as we will see, it only requires perturbation bounds on
eigenvectors corresponding to simple eigenvalues (see Lemma A.8).

Robust Algorithm 1: pick a "random" (suitably defined) map Ã ∈ S̃ , "cluster" the
eigenvalues which are close together into s clusters, and output the eigenspaces
corresponding to each cluster. We expect that if S and S̃ are "sufficiently close"
then U and Ũ are "fairly close".

Next, we will describe the robust version of the second algorithm for the exact case.
First, we give an (approximate) analogue of Definition 3.3.

Definition 3.4. Given any map Ã ∈ S̃ ⊆ Lin(Ũ, Ũ), we define the map ˆ̃A ∈ Lin(S̃, S̃)
by ˆ̃A · B̃ = ProjS̃

(
Ã · B̃

)
, where ProjS̃ : Lin(Ũ, Ũ) → S̃ is the orthogonal projection

onto S̃.

Robust Algorithm 2: pick a random Ã ∈ S̃, compute the map ˆ̃A ∈ Lin(S̃, S̃), and
diagonalize it. Let its eigenvectors be P̃1, . . . , P̃s ∈ S̃38. For each i ∈ [s], let Ũi ⊆ Ũ
be the span of the left singular vectors of the map P̃i, with singular values "not
too small." Output Ũ = (Ũ1, . . . , Ũs).

The above algorithm is formally described as Algorithm 1 and it gets the following
guarantees:

38 We will show in the analysis that with high probability the eigenvalues of ˆ̃A are real and distinct,
and hence the eigenvectors lie in the real vector space S̃.

23



Theorem 4. Robust Recovery from Scaling Maps. Let U = (U1, . . . , Us) be an inde-
pendent s-tuple of subspaces in a vector space W, and let U = ⟨U⟩ ⊆ W. Let S = S(U) ⊆
Lin(U, U) be the space of scaling maps as defined in Definition 3.1, and let the map M̂ be as
defined in Definition 3.2.

Let Ũ ⊆ W and S̃ ⊆ Lin(Ũ, Ũ) be vector spaces, and let τ ∈ (0, 1) be such that:

1. dist(Ũ, U) < 1.

2. dist(S̃, S) ≤ ϵ < 1, where the distance is measured after extending both S, S̃ to sub-
spaces of Lin(W, W).

3. The parameter τ satisfies 1
3 ·

1
∥M̂∥2

< τ ≤ 2
3 ·

1
∥M̂∥2

.

Then, for any δ > 0, Algorithm 1, on input (W, Ũ, S̃, τ), runs in time O(s3 + s2dω +

sd3 + sd2n) = O(N5/3), and outputs an s-tuple Ũ = (Ũ1, . . . , Ũs) of subspaces in Ũ, such
that with probability at least 1 − δ, it holds (upto reordering) that for each i ∈ [s],

dist(Ui, Ũi) ≤ 300 · κ(M̂) ·
∥∥M̂

∥∥2
2 · s2

√
s + ln

s2

δ
· ϵ

δ

≤ 300 ·

√
d∗3

d∗
· κ(U)3 · s2

√
s + ln

s2

δ
· ϵ

δ
.

Proof. We defer the proof of the Theorem to Section E.

Remark 3. We notice that our algorithm uses an auxiliary parameter τ ∈ (0, 1) and the cor-
rectness of the algorithm depends on τ lying in a correct range. This is fine for our purposes,
since in applications one can usually check the correctness of the final solution obtained; so it is
possible to simply iterate over τ, halving it in each iteration, and checking the solution obtained
for correctness. The number of iterations is at most logarithmic in the condition number: The-
orem 4 shows that a valid τ is encountered in at most O

(
log2

∥∥M̂
∥∥

2

)
= O (log2 (κ(U) · d∗))

iterations. As the error bounds in Theorem 4 depend on κ(U), we will be mostly interested in
the case where this condition number is not too large, and hence the runtime blow up is small.
More formally, since we require κ(U)3 · ϵ ≪ 1, we will have a blow up of at most O(log2 1/ϵ).

Note that in Algorithm 1, there is another natural way to get Ũi once the map P̃i is known:
we can simply let Ũi be the span of the left singular vectors of the map P̃i, corresponding
to the dim(Ui) largest singular vectors. However, it turns out that in applications, each of
the s dimensions dim(Ui)’s may not be known. Hence, we use a single threshold parameter
τ ∈ (0, 1), and just consider all the singular vectors corresponding to singular value at least
τ.

24



Algorithm 1 RRSM: Robust Recovery From Scaling Maps.
Input: (W, Ũ, S̃, τ), Ũ ⊆ W is a subspace of vector space W, and S̃ ⊆ Lin(Ũ, Ũ) is a
subspace of dim(S̃) = s, and τ ∈ (0, 1).
Assumptions: U = (U1, U2, . . . , Us) is an independent s-tuple of subspaces in W,
and U = ⟨U⟩ , S = S(U) are such that:

1. dist(Ũ, U) < 1.

2. dist(S̃, S) ≤ ϵ < 1, where the distance is measured after extending both to
subspaces of Lin(W, W).

Output: s-tuple Ũ = (Ũ1, . . . , Ũs) of subspaces in Ũ ⊆ W such that dist(Ũ, U) is
small.

1: Pick a random element Ã ∈ S̃ with
∥∥Ã
∥∥

F = 1 as follows:

(a) Let s̃1, . . . , s̃s be any orthonormal basis of S̃.

(b) Pick α = (α1, . . . , αs) ∈ Rs, with each αi ∼ N (0, 1) chosen independently.

(c) Let Ã = ∑s
i=1

αi
∥α∥2

· s̃i.

2: Compute the map ˆ̃A ∈ Lin(S̃, S̃), as in Definition 3.4.
3: Compute the eigen-decomposition of ˆ̃A: Suppose that it has eigenvectors

P̃1, . . . , P̃s ∈ S̃, with
∥∥∥P̃i

∥∥∥
F
= 1 for each i ∈ [s]38.

4: For each i ∈ [s], let Ũi ⊆ Ũ be the span of all left singular vectors of P̃i, with
singular value at least τ.

5: Output Ũ = (Ũ1, . . . , Ũs).

Finally, we also show that if the error in Theorem 4 is small, then the recovered
subspaces form a direct sum.

Proposition 3.1. Let U = U1 ⊕ · · · ⊕ Us ⊆ W be the direct sum of s-subspaces of a vector
space W. Let Ũ ⊆ W be a subspace such that dist(U, Ũ) < 1, and let Ũ1, . . . , Ũs ⊆ Ũ be such
that for each i ∈ [s], dist(Ũi, Ui) ≤ γ < 1. If 2γ

√
s · κ(U) < 1, then Ũ = Ũ1 ⊕ · · · ⊕ Ũs.

Proof. We defer the proof to Section E.6.

4 Robust Vector Space Decomposition (RVSD)

Let W1 and W2 be real vector spaces, and let U = (U1, U2, . . . , Us) be an independent s-
tuple of subspaces in W1, and let V = (V1, V2, . . . , Vs) be an independent s-tuple of sub-

spaces in W2. Let U def
= ⟨U⟩ ⊆ W1 and V def

= ⟨V⟩ ⊆ W2, and let B = (B1, B2, . . . , Bm) ∈
(Lin(U, V))m be an m-tuple of linear operators from U to V. Suppose that each Ui
is mapped inside Vi under the action of B, that is, for each i ∈ [s], it holds that
⟨B · Ui⟩ ⊆ Vi.

We are interested in the following problem:

Problem 6. Robust Vector Space Decomposition (RVSD). We are given as input the
integer s, two vector spaces Ũ ⊆ W1 and Ṽ ⊆ W2 such that dist(Ũ, U) and dist(Ṽ, V)

25



are "small," and a tuple of operators B̃ = (B̃1, B̃2, . . . , B̃m) ∈ Lin(Ũ, Ṽ)m, such that B̃ is
close to B. Our goal is to efficiently find an s-tuple Ũ = (Ũ1, Ũ2, . . . , Ũs) of subspaces
in Ũ ⊆ W1, such that (upto a common reordering of the components) dist(Ũ, U) is
"small."

Remark 4. Note that in applications, it is usually sufficient to only find the tuple U approx-
imately and so we frame our problem in this form. If one wishes to find V approximately, our
algorithm can easily be extended to do that (see Remark 6).

In the above formulation, we formally define closeness between B̃ and B as follows:

Definition 4.1. Let B̂ ∈ Lin(U, Vm) (resp. ˆ̃B ∈ Lin(Ũ, Ṽm)) be the map correspond-
ing to B (resp. B̃) defined as in Definition 2.1. We say that B and B̃ are ϵ-close if∥∥∥B̂ − ˜̂B

∥∥∥
2
≤ ϵ ·

∥∥B̂
∥∥

2 = ϵ ∥B∥2, where the difference is taken by viewing B̂, ˜̂B as ele-

ments of Lin(W1, Wm
2 ) (by defining them to be zero on U⊥, Ũ⊥ respectively).

The exact version of the problem (where Ũ = U, Ṽ = V, B̃ = B, and we wish to
find U, V exactly) first appeared in in [GKS20], where they give an algorithm to solve
it efficiently (in some special cases), and use it to recover individual components in a
"sum of powers of low-degree polynomials." Building on the ideas in [GKS20], we give
a very general algorithm to solve this robust version of the vector space decomposition
problem.

4.1 RVSD: Algorithm for the Noiseless Case

We look at the exact version of RVSD where the spaces Ũ = U, Ṽ = V, B̃ = B are
exactly known. We follow the sketch defined in Section 1.1.

Definition 4.2. Map Corresponding to the Adjoint Algebra. The adjoint algebra map
corresponding to the subspaces U and V and the operator tuple B, denoted by AU,V(B) :
Lin(U, U)× Lin(V, V) → Lin(U, V)m, is defined as

AU,V(B) · (D, E) = (B1D − EB1, . . . , BmD − EBm).

For ease of notation, we shall simply use A to denote AU,V(B).

Definition 4.3 (Adjoint algebra, [CIK97, GKS20, Qia18]). The adjoint algebra, corre-
sponding to the vector spaces U, V, and the tuple of operators B, denoted AdjU,V(B) ⊆
Lin(U, U)× Lin(V, V), is defined to be the null space of the map A, given by

AdjU,V(B)
def
=
{
(D, E) : Bj · D = E · Bj for all j ∈ [m]

}
.

For ease of notation, we shall simply use Adj to denote AdjU,V(B). Also, we shall
use Adj1 ⊆ Lin(U, U) to denote the projection of Adj onto the "U-part," formally de-
fined as:

Adj1
def
= {D : ∃E such that (D, E) ∈ Adj} .

Definition 4.4. We define U × V to be the s-tuple of subspaces given by U × V =
(U1 × V1, . . . , Us × Vs), which satisfies ⟨U × V⟩ = U × V.

26



Observe that that the space of scaling maps S(U × V) (see Definition 3.1) is always
contained in the adjoint algebra Adj, that is, S(U × V) ⊆ Adj. The next proposition
shows that if the two are equal, then the decomposition of U and V into the s compo-
nents is unique, and further indecomposable.

Proposition 4.1 (Proposition A.3 in [GKS20]). If dim(Adj) = s, or equivalently, if Adj =
S(U × V), then:

The decomposition U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs is the unique irreducible decom-
position satisfying ⟨B · Ui⟩ ⊆ Vi for each i ∈ [s]. That is, if

U = Û1 ⊕ Û2 ⊕ . . . ⊕ Ûŝ and V = V̂1 ⊕ V̂2 ⊕ . . . ⊕ V̂ŝ, ŝ ≥ s,

and
∀i ∈ [ŝ]

〈
B · Ûi

〉
⊆ V̂i,

then ŝ = s and upto reordering if necessary, Ûi = Ui and V̂i = Vi for all i ∈ [s].

Also, the above implies that Adj1 = S(U), and that Vi = ⟨B · Ui⟩ for each i ∈ [s].

Based on the above proposition, the following simple algorithm recovers the Ui’s
and the Vi’s under the assumption that Adj = S(U × V):

Exact Algorithm 1: Compute the adjoint algebra Adj (by solving a system of linear
equations). Run the exact algorithm for RRSM (see Section 3.1) on Adj with re-
spect to the space U ×V; suppose that the output is T1, . . . , Ts ⊆ U ×V. For each
i ∈ [s], let Ui, Vi be the projection of Ti on the "U, V-parts" respectively.

We also give a slightly different variation of the above algorithm, which turns out
to be easier to analyze in the robust case.

Exact Algorithm 2: Compute the adjoint algebra Adj, and then compute Adj1. Run
the exact algorithm for RRSM on Adj1 with respect to the space U; the output is
(U1, . . . , Us). For each i ∈ [s], compute Vi = ⟨B · Ui⟩.

4.2 RVSD: Algorithm for the Robust Case

Next, we give a robust version of the (second) exact-case algorithm. We are given
a subspaces Ũ ≈ U, Ṽ ≈ V, and an m-tuple of operators B̃ ≈ B, and we wish
to recover a tuple of subspaces Ũ ≈ U. Formally, for the time complexity analysis,
we shall assume that the input to the algorithm is given as follows: Let dim(W1) =

n1, dim(W2) = n2, dim(U) = d1, dim(V) = d2. The vector space Ũ ⊆ W1 (resp.
Ṽ ⊆ W2) is given as n1d1 (resp. n2d2) field elements, consisting of an orthonormal ba-
sis of Ũ (resp. Ṽ), with respect to some fixed orthonormal basis of W1 (resp. W2). The
m-tuple of operators B = (B̃1, . . . , B̃m) ∈ Lin(Ũ, Ṽ)m is given as md1d2 field elements,
with each B̃i given as a matrix with respect to the above orthonormal basis of Ũ and
Ṽ. The total input size is N = n1d1 + n2d2 + md1d2.

Definition 4.5. (Approximate) Map Corresponding to the Adjoint Algebra. The (ap-
proximate) adjoint algebra map corresponding to the subspaces Ũ and Ṽ and the oper-
ator tuple B̃, denoted by ÃŨ,Ṽ(B̃) : Lin(Ũ, Ũ)× Lin(Ṽ, Ṽ) → Lin(Ũ, Ṽ)m, is defined
as

ÃŨ,Ṽ(B̃) · (D, E) = (B̃1D − EB̃1, . . . , B̃mD − EB̃m).

For ease of notation, we shall use Ã to denote ÃŨ,Ṽ(B̃).

27



Definition 4.6. (Approximate) Adjoint Algebra. The (approximate) adjoint algebra cor-

responding to the subspaces Ũ and Ṽ and the operator tuple B̃, denoted by ˜AdjU,V(B) ⊆
Lin(Ũ, Ũ)× Lin(Ṽ, Ṽ), is defined to be the vector space spanned by the right singular
vectors of the map Ã, corresponding to the s smallest singular values. Note that the
relevant inner product on Lin(Ũ, Ũ) × Lin(Ṽ, Ṽ) is the direct sum of the two inner
products in the natural way.

For ease of notation, we shall simply use Ãdj to denote ˜AdjU,V(B). Note that by
definition, the dimension of Ãdj is equal to s.

Further, we define Ãdj1
def
=
{

D : ∃E such that (D, E) ∈ Ãdj
}

.

Based on the above definitions, we next give an algorithm for the RVSD problem.
It relies on the problem of Robust Recovery from Scaling Maps (RRSM), which we
discussed in Section 3.

Robust Algorithm: Compute the map Ã and the adjoint algebras Ãdj and Ãdj1. Run
RRSM algorithm on Ãdj1 with respect to the space Ũ ⊆ W1; let the output be
(Ũ1, . . . , Ũs). Output Ũ = (Ũ1, . . . Ũs).

The above algorithm is formally described as Algorithm 2 and it gets the following
guarantees:

Theorem 5. Robust Vector Space Decomposition. Let U = (U1, . . . , Us) and V =
(V1, . . . , Vs) be independent s-tuple of subspaces in vector spaces W1 and W2 respectively, and
let U = ⟨U⟩ , V = ⟨V⟩. Let B = (B1, . . . , Bm) ∈ Lin(U, V)m be an m-tuple of operators
such that for each i ∈ [s], ⟨B · Ui⟩ ⊆ Vi.

Let the map M̂ : Rs → Lin(U, U) corresponding to the space U be defined as in Defi-
nition 3.2. Let σ−(s+1)(A) denote the (s + 1)th-smallest singular value of the adjoint-algebra
map A (see Definition 4.2), and let ∥B∥2 be defined as in Definition 2.1.

Suppose that Ũ ⊆ W1, Ṽ ⊆ W2, B̃ ∈ Lin(Ũ, Ṽ)m, and τ ∈ (0, 1) are such that:

1. dist(U, Ũ) ≤ ϵ1 < 1, dist(V, Ṽ) ≤ ϵ2 < 1, and that the operator tuples B, B̃ are
ϵ-close (see Definition 4.1).

2. dim(Adj) = s (see Definition 4.3).

3. The parameter τ satisfies 1
3 ·

1
∥M̂∥2

< τ ≤ 2
3 ·

1
∥M̂∥2

.

Then, for any δ > 0 we have that Algorithm 2, on input (W1, W2, s, Ũ, Ṽ, B̃, τ), runs in
time O(

(
md1d2 · (d2

1 + d2
2)
)3

+ sd2
1n1) = O(N6), and outputs an s-tuple Ũ = (Ũ1, . . . , Ũs)

of subspaces in Ũ, such that with probability at least 1 − δ, it holds (upto reordering) that for
each i ∈ [s],

dist(Ui, Ũi) ≤ 1800 · κ(M̂) ·
∥∥M̂

∥∥2
2 · s2

√
s + ln

s2

δ
· ϵ + ϵ1 + ϵ2

δ
· ∥B∥2

σ−(s+1)(A)

≤ 1800 ·

√
d∗3

d∗
· κ(U)3 · s2

√
s + ln

s2

δ
· ϵ + ϵ1 + ϵ2

δ
· ∥B∥2

σ−(s+1)(A)
.

Furthermore, if 2γ
√

s · κ(U) < 1, then Ũ = Ũ1 ⊕ · · · ⊕ Ũs, where γ denotes the above
error bound.

28



Proof. We defer the proof of the above theorem to Section F.

Remark 5. Note that the assumption that the integer s is given to the algorithm as input is
merely for simplicity. If s is not known, its value can be determined by looking at the singu-
lar values of the map Ã corresponding to the adjoint algebra: the smallest s singular values
are usually very close to zero, and are "much smaller" that the (s + 1)th smallest singular
value. Alternatively, we can just iterate over s, since in applications we can usually check the
correctness of the final solution obtained.

Also, the algorithm having access to the correct value of τ can be handled using the iteration
strategy mentioned in Remark 3.

Remark 6. Note that if we wish to find V = (V1, . . . , Vs) approximately as well, one can
run the RRSM algorithm on (W1 × W2, Ũ × Ṽ, Ãdj, τ), to recover approximate versions of
U1 × V1, . . . , Us × Vs. In this case, the error bounds will be the same as in Theorem 5, with
the definition of the map M̂ changed appropriately to M̂ : Rs → Lin(U × V, U × V).

Algorithm 2 RVSD: Robust Vector Space Decomposition.
Input: (W1, W2, s, Ũ, Ṽ, B̃, τ), where s is a positive integer, Ũ ⊆ W1, Ṽ ⊆ W2 are
subspaces of vector spaces W1, W2 respectively, B̃ = (B̃1, . . . , B̃m) ∈ Lin(Ũ, Ṽ)m is
an m-tuple of linear operators, and τ ∈ (0, 1).
Assumptions: U = (U1, . . . , Us) and V = (V1, . . . , Vs) are independent s-tuples of
subspaces in W1, W2 respectively, and U = ⟨U⟩ , V = ⟨V⟩, and B = (B1, . . . , Bm) ∈
Lin(U, V)m are such that:

1. For each i ∈ [s], it holds that ⟨B · Ui⟩ ⊆ Vi.

2. dist(U, Ũ) ≤ ϵ1 < 1 and dist(V, Ṽ) ≤ ϵ2 < 1.

3. B and B̃ are ϵ-close, according to Definition 4.1.

Output: s-tuple of subspaces Ũ = (Ũ1, . . . , Ũs) in Ũ ⊆ W1 such that dist(Ũ, U) is
small.

1: Compute a singular value decomposition of the adjoint algebra map Ã as defined
in Definition 4.5.

2: Compute the approximate adjoint algebra Ãdj ⊆ Lin(Ũ, Ũ) × Lin(Ṽ, Ṽ) and
Ãdj1 ⊆ Lin(Ũ, Ũ), as defined in Definition 4.6.

3: Run Robust Recovery from Scaling Maps (RRSM, Algorithm 1) on (W1, Ũ, Ãdj1, τ),
and let (Ũ1, . . . , Ũs) be the s-tuple of subspaces in Ũ ⊆ W1 it outputs.

4: Output Ũ = (Ũ1, . . . Ũs).

4.3 RVSD: Using a Common Tuple of Operators on a Larger Space

It is often the case in applications that a tuple of operators B = (B1, . . . , Bm) ∈ Lin(W1, W2)
m

are known exactly, and these satisfy ⟨B · Ui⟩ ⊆ Vi for each i ∈ [s]. In this case, we
work with the relevant projections of these operators to Lin(U, V) and Lin(Ũ, Ṽ) re-
spectively.

Definition 4.7. Projected Tuple of Operators. Let B = (B1, . . . , Bm) ∈ Lin(W1, W2)
m

be an m-tuple of operators from W1 to W2. For subspaces U ⊆ W1, V ⊆ W2, we define

29



the operator tuple C = (C1, . . . , Cm) ∈ Lin(W1, W2)
m as follows: For each j ∈ [m],

Cj = ProjV · Bj · ProjU,

where ProjU : W1 → W1, ProjV : W2 → W2 are the orthogonal projection maps onto
U, V respectively. Observe that each Cj maps the space U into V, and is the zero map
on U⊥.

Lemma 4.1. Let B = (B1, . . . , Bm) ∈ Lin(W1, W2)
m be an m-tuple of operators from W1

to W2, and let U, Ũ ⊆ W1 and V, Ṽ ⊆ W2 be subspaces satisfying dist(U, Ũ) ≤ ϵ1 and
dist(V, Ṽ) ≤ ϵ2. Let C (resp. C̃) be the projected tuple of operators with respect to U, V (resp.
Ũ, Ṽ) according to Definition 4.7.

Then, ∥C∥2 ≤ ∥B∥2, and C and C̃ are ϵ-close (see Definition 4.1), for ϵ = (ϵ1 + ϵ2) · ∥
B∥2
∥C∥2

.

Proof. By Definition 2.1 and Definition 4.7, we have for any w ∈ W1,∥∥∥(Ĉ − ˆ̃C) · w
∥∥∥

2
=
∥∥∥((ProjV · Bi · ProjU − ProjṼ · Bi · ProjŨ

)
· w
)m

i=1

∥∥∥
2

Then, using
∥∥ProjU − ProjŨ

∥∥
2 ≤ ϵ1,

∥∥ProjV − ProjṼ
∥∥

2 ≤ ϵ2, and the triangle inequality,
we get that ∥∥∥Ĉ − ˆ̃C

∥∥∥
2
≤ (ϵ1 + ϵ2) · ∥B∥2 .

Similarly, the fact ∥C∥2 ≤ ∥B∥2 follows easily.

Now, Lemma 4.1, combined with Theorem 5, immediately gives us the following
corollary:

Corollary 4.1. Suppose that a tuple of operators B = (B1, . . . , Bm) ∈ Lin(W1, W2)
m is

known exactly, where for each i ∈ [s], ⟨B · Ui⟩ ⊆ Vi. Then, under the assumptions of Theo-
rem 5, Algorithm 2 can recover the tuple U of subspaces, upto error

γ = 3600 · κ(M̂) ·
∥∥M̂

∥∥2
2 · s2

√
s + ln

s2

δ
· ϵ1 + ϵ2

δ
· ∥B∥2

σ−(s+1)(A)

≤ 3600 ·

√
d∗3

d∗
· κ(U)3 · s2

√
s + ln

s2

δ
· ϵ1 + ϵ2

δ
· ∥B∥2

σ−(s+1)(A)
,

where ∥B∥2 is as in Definition 2.1 (with respect to W1 and W2), and the adjoint algebra map
A is defined by the projection of operators in B onto Lin(U, V) (see Definition 4.7).

Furthermore, if 2γ
√

s · κ(U) < 1, then Ũ = Ũ1 ⊕ · · · ⊕ Ũs.

References

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and
Matus Telgarsky. Tensor decompositions for learning latent variable
models. Journal of Machine Learning Research, 15(1):2773–2832, jan 2014.

[ALGV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant.
Log-concave polynomials II: High-dimensional walks and an FPRAS for
counting bases of a matroid. In STOC’19—Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pages 1–12, 2019.

30



[BCPV19] Aditya Bhaskara, Aidao Chen, Aidan Perreault, and Aravindan Vija-
yaraghavan. Smoothed analysis in unsupervised learning via decou-
pling. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 582–610. IEEE, 2019.

[BDJ+22] Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K.
Kothari, and Santosh S. Vempala. Robustly learning mixtures of k ar-
bitrary Gaussians. In STOC ’22—Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1234–1247. ACM, New
York, 2022.

[BF60] F. L. Bauer and C. T. Fike. Norms and exclusion theorems. Numer. Math.,
2:137–141, 1960.

[BHKX22] Mitali Bafna, Jun-Ting Hsieh, Pravesh K Kothari, and Jeff Xu.
Polynomial-time power-sum decomposition of polynomials. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 956–967. IEEE, 2022.

[CIK97] Alexander L. Chistov, Gábor Ivanyos, and Marek Karpinski. Polyno-
mial time algorithms for modules over finite dimensional algebras. In
Proceedings of the 1997 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’97, Maui, Hawaii, USA, July 21-23, 1997, pages 68–
74, 1997.

[CLLZ23] Sitan Chen, Jerry Li, Yuanzhi Li, and Anru R. Zhang. Learning polyno-
mial transformations via generalized tensor decompositions. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pages 1671–1684. ACM, 2023.

[Ell69] W. J. Ellison. A ‘waring’s problem’ for homogeneous forms. Mathematical
Proceedings of the Cambridge Philosophical Society, 65(3):663–672, 1969.

[GGdOW20] Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi
Wigderson. Operator scaling: Theory and applications. Found. Comput.
Math., 20(2):223–290, 2020.

[GHK15] Rong Ge, Qingqing Huang, and Sham M. Kakade. Learning mixtures of
gaussians in high dimensions. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC, pages 761–770, 2015.
Open source version at https://arxiv.org/abs/1503.00424.

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers
of low-degree polynomials in the non-degenerate case. In 61st IEEE An-
nual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 889–899. IEEE, 2020. Open source
version at https://arxiv.org/abs/2004.06898.

[Jor75] Camille Jordan. Essai sur la géométrie à n dimensions. Bull. Soc. Math.
France, 3:103–174, 1875.

31

https://arxiv.org/abs/1503.00424
https://arxiv.org/abs/2004.06898


[KB09] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and appli-
cations. SIAM Review, 51(3):455–500, 2009.

[KMYZ08] Erich Kaltofen, John P. May, Zhengfeng Yang, and Lihong Zhi. Approxi-
mate factorization of multivariate polynomials using singular value de-
composition. Journal of Symboilic Computation, 43(5):359–376, 2008.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given
by black boxes for their evaluations: Greatest common divisors, factor-
ization, separation of numerators and denominators. Journal of Symboilic
Computation, 9(3):301–320, 1990.

[Lat05] R. Latala. Some estimates of norms of random matrices. Proceedings of
the American Mathematical Society, 133:1273–1282, 2005.

[LM00] B. Laurent and P. Massart. Adaptive estimation of a quadratic functional
by model selection. Ann. Statist., 28(5):1302–1338, 2000.

[MT82] Nimrod Megiddo and Arie Tamir. On the complexity of locating linear
facilities in the plane. Operations Research Letters, 1(5):194–197, 1982.

[PHL04] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace clustering for
high dimensional data: A review. SIGKDD Explor. Newsl., 6(1):90–105,
jun 2004.

[Qia18] Youming Qiao. Block diagonalization for adjoint action. Private com-
munication, 2018.

[QXCK23] Wentao Qu, Xianchao Xiu, Huangyue Chen, and Lingchen Kong. A sur-
vey on high-dimensional subspace clustering. Mathematics, 11(2), 2023.

[SGS90] G. W. Stewart and Ji Guang Sun. Matrix Perturbation Theory. Academic
Press, 1990.

[Sza91] Stanislaw J. Szarek. Condition numbers of random matrices. J. Complex.,
7(2):131–149, 1991.

[Vij20] Aravindan Vijayaraghavan. Efficient tensor decompositions. In Tim
Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms, pages
424–444. Cambridge University Press, 2020.

[Wal06] Hanna Wallach. Topic modeling: Beyond bag-of-words. In ICML 2006
- Proceedings of the 23rd International Conference on Machine Learning, vol-
ume 2006, pages 977–984, 01 2006.

[Wed72] Per-Åke Wedin. Perturbation bounds in connection with singular value
decomposition. BIT Numerical Mathematics, pages 99–111, 1972.

[Wed73] Per-Ȧke Wedin. Perturbation theory for pseudo-inverses. Nordisk Tidskr.
Informationsbehandling (BIT), 13:217–232, 1973.

[Wey12] Hermann Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte
linearer partieller Differentialgleichungen (mit einer Anwendung auf
die Theorie der Hohlraumstrahlung). Math. Ann., 71(4):441–479, 1912.

32



A Linear Algebra and Probability

A.1 Matrices and Subspaces

A.1.1 Matrix Norms

The following are some easy to verify properties of the Frobenius norm:

Proposition A.1.

1. (Sub-multiplicativity) For any m×n matrix M, and n× p matrix N, it holds ∥MN∥F ≤
∥M∥F · ∥N∥2 ≤ ∥M∥F · ∥N∥F .

2. Let the n × n matrix M have eigenvalues λ1, . . . , λn. Then, ∥M∥2
F ≥ ∑i∈[n] |λi|2 .

A.1.2 Pseudo-Inverse

Recall that for a matrix M, we use M† to denotes its Moore-Penrose pseudo-inverse.
This satisfies the following easy to check properties:

Proposition A.2. For any m × n matrix M with rank(M) = n ≤ m, it holds that:

1. M† = (M⊤M)−1M⊤, where M⊤ is the transpose of M.

2. M†M equals the identity matrix of size n.

3. M†(M†)⊤ = (M⊤M)−1.

4.
∥∥M†

∥∥
2 = 1/σn(M), where σn(M) denotes the nth largest (or the smallest non-zero)

singular value of M.

We will need also the following lemma about pseudo-inverses.

Lemma A.1. Let A, B be n × r matrices be matrices with rank(A) = rank(B) = r ≤ n, and
with the same column space. Then, A†B ∈ Rr×r is invertible, and (A†B)−1 = B† A.

Proof. Fix any x ∈ Rr. Then, there is a unique y ∈ Rr such that Ax = By, and it holds
that

(A†B) · (B† A) · x = (A†B)(B†B)y = (A†B) · y = A† Ax = x.

Hence, (A†B) · (B† A) must be the identity matrix.

A.1.3 Distances Between Subspaces

For any pair of subspaces in Rn, we can find a nice basis that relates how they are
situated with respect to each other in Rn, as follows:

Theorem 6. Canonical Decomposition and Angles Between Subspaces. ( [Jor75]; see
Theorem I.5.2 in [SGS90])

Let U, Ũ ⊆ Rn be two subspaces, each of dimension r, and let k = r − dim(U ∩ Ũ).
Then, there exists an orthonormal basis e1, . . . , ek, ek+1, . . . , er, f1, . . . , fk, h1, . . . , hn−(r+k) of
Rn, and angles π

2 ≥ θ1 ≥ · · · ≥ θk > 0, such that:

1. e1, . . . , er form an orthonormal basis of U.

33



2. ẽi, . . . , ẽr form an orthonormal basis of Ũ, where for each i ∈ [r],

ẽi =

{
cos(θi) · ei + sin(θi) · fi, i ≤ k
ei, o/w

.

Furthermore, it holds that:

1. dist(U, Ũ) =
∥∥ProjU − ProjŨ

∥∥
2 = sin(θ1).

2. Let α1, . . . , αr ∈ R be such that ∑k
i=1 |αi|2 = 1, and let u = ∑r

i=1 αi · ei ∈ U, ũ =

∑r
i=1 αi · ẽi ∈ Ũ. Then, it holds that ∥u − ũ∥2 ≤ 2 sin

(
θ1
2

)
≤ 2 sin(θ1) = 2 ·

dist(Ũ, U).

Note that for consistency, we define θ1 = 0 if k = 0.

Remark 7. Theorem 6 implies that, given subspaces U, V of Rn of dimensions r, there are
orthogonal matrices P, Q such that U = ⟨P⟩ , V = ⟨Q⟩ and PTQ = C, where C is a diagonal
matrix with entries Cii = cos(θi). In the case when the dimensions of the subspaces are
different, C is a rectangular matrix of shape dim(U)×dim(V), the principal diagonal having
elements cos(θ1), . . . , cos(θr) where r = min(dim(U), dim(V)).

We will need also the following lemma:

Lemma A.2. Let U, Ũ ⊆ Rn be subspaces of dimension d such that for each ũ ∈ Ũ, ∥u∥ = 1,
dist(ũ, U) ≤ η. Then, dist(U, Ũ) ≤ η.

Proof. Consider the Canonical Decomposition as in Theorem 6. We have that

dist(U, Ũ) = sin(θ1) = ∥ẽ1 − cos(θ1) · e1∥2 = dist(ẽ1, U) ≤ η.

A.2 Matrix Perturbation Bounds

A.2.1 Perturbation bounds for Singular values and Singular vectors

If we slightly perturb an m× n matrix A to obtain Ã = A+ E, how "far" are the singular
values and singular spaces of Ã from those of A? A satisfactory answer (which is
asymptotically the best possible in the worst case) is provided by a theorem due to
Wedin.

Lemma A.3. (Weyl’s Inequality [Wey12]) Let A, E be m × n matrices with m ≥ n, and let
Ã = A + E. Then, for each i ∈ [n], it holds that∣∣∣σi(Ã)− σi(A)

∣∣∣ ≤ ∥E∥2 ,

where σi denotes the ith largest singular value.

Lemma A.4. Perturbation of singular spaces (Wedin [Wed72]; see Theorem V.4.4 in
[SGS90]). Let A, E be m × n matrices with m ≥ n, and let Ã = A + E, and suppose their
singular value decomposition is as follows:

A =
[

U1 U2 U3
]  Σ1 0

0 Σ2
0 0

 [ V⊤
1

V⊤
2

]
, Ã =

[
Ũ1 Ũ2 Ũ3

]  Σ̃1 0
0 Σ̃2
0 0

 [ Ṽ⊤
1

Ṽ⊤
2

]

34



where the first block of the above decomposition corresponds to the top r singular values and
the second block to the bottom (n − r) singular values.

Let δ > 0 be such that δ ≤ mini∈[r](Σ1)i,i − maxj∈[n−r](Σ2)j,j. Then, it holds that

dist(⟨U1⟩ ,
〈

Ũ1

〉
) ≤ 2 ∥E∥2

δ
, dist(⟨V1⟩ ,

〈
Ṽ1

〉
) ≤ 2 ∥E∥2

δ
.

Proof. Theorem V.4.4 in [SGS90] shows that the above distances are bounded by ∥E∥2
η ,

where η
def
= mini∈[r](Σ1)i,i − maxj∈[n−r](Σ2)j,j. The result then follows from Weyl’s

inequality (Lemma A.3), which says that for each i ∈ [r],
∣∣(Σ1)i,i − (Σ̃1)i,i

∣∣ ≤ ∥E∥2,
and so η ≥ δ − ∥E∥2.

We remark that result over C (as is proven in [SGS90]) also implies the same over
R.

As an immediate corollary we have:

Corollary A.1. (lemma G.5 in [GHK15]) Let A, E be m × n matrices with m ≥ n. Suppose
that A has rank r and the smallest (non-zero) singular value of A is given by σr(A). Let S, S̃
(resp. T, T̃) be the subspaces spanned by the top r right (resp. left) singular vectors of A and
Ã = A + E respectively. Then we have:

dist(S, S̃) ≤ 2 ∥E∥2
σr(A)

, dist(T, T̃) ≤ 2 ∥E∥2
σr(A)

.

The above bounds are hold true for even when the perturbation matrix E is chosen
in a worst-case/adversarial fashion and can be rather pessimistic. In many applica-
tions, E is more like a random matrix in which the case the perturbation of singular
values and spaces will be significantly less.

Lemma A.5. (cf. [Lat05, Sza91]) For a random real matrix E ∼ (N
(
0, ρ2))m×n, we have

that almost surely
∥E∥2 = Θ

(
ρ ·

√
m + n

)
.

Lemma A.6. For i ∈ {1, 2}, let Si ⊆ Rni be a subspace of dimensions si ≤ ni and let
ProjSi

: Rni 7→ Rni be the corresponding projection map. Then for a random matrix E ∼
(N

(
0, ρ2))n2×n1 , we have that almost surely∥∥∥ProjS2

· E · ProjS1

∥∥∥
2
= Θ

(
ρ ·

√
s1 + s2

)
.

Proof. The probability density function for random Gaussian matrices is invariant un-
der orthogonal change of basis of either the domain space or the target space. Con-
sequently we can assume without loss of generality that S1 (resp. S2) is spanned by the
first s1 (resp. s2) canonical unit vectors of Rn1 (resp. of Rn2). Then

∥∥∥(ProjS2
· E · ProjS1

)
∥∥∥

2
=

∥B∥2, where B ∈ Rs2×s1 is the top-left (s2 × s1)-dimensional submatrix of E. Thus
B ∼ (N

(
0, ρ2))s2×s1 and hence the conclusion follows from an application of lemma

A.5.

35



A.2.2 Perturbation bounds for Eigenvalues and Eigenvectors

If we slightly perturb a matrix A ∈ Rn×n to obtain Ã = A + E, how "far" are the
eigenvalues and eigenvectors of Ã from those of A? We show quantitative bounds
when all eigenvalues of A are simple (have multiplicity 1), and ∥E∥2 is small.

First, we state a result that shows that the eigenvalues of any complex matrix

vary continuously with the error ∥E∥2. For λ ∈ C, ϵ > 0, we define D(λ, ϵ)
def
=

{ζ ∈ C : |ζ − λ| ≤ ϵ}.

Theorem 7. (See Theorem IV.1.1 in [SGS90]) Let A, E ∈ Cn×n and Ã = A + E. Let λ be
an eigenvalue of A with algebraic multiplicity m. Then, for any (small enough) ϵ > 0, there
exists a δ > 0, such that if ∥E∥2 < δ, the disk D(λ, ϵ) contains exactly m eigenvalues of Ã.

Proof Idea. The theorem follows by noticing that the the characteristic polynomial of
any matrix is a continuous function of the matrix entries, and then applying Rouché’s
Theorem.

Theorem 8. (Bauer-Fike [BF60]) Let A = X · Λ · X−1 ∈ Cn×n be a diagonalizable matrix
with X ∈ Cn×n, and Λ ∈ Cn×n diagonal. Let E ∈ Cn×n and Ã = A + E. Then, for each
eigenvalue λ̃ of Ã, there is an eigenvalue λ of A such that

∣∣λ̃ − λ
∣∣ ≤ κ(X) · ∥E∥2, where

κ(X) = ∥X∥2 ·
∥∥X−1

∥∥
2 is the condition number of X.

Lemma A.7. Perturbation of Eigenvalues. Let A = X · Λ · X−1 ∈ Cn×n be a diagonal-
izable matrix, with X ∈ Cn×n, and Λ = diag(λ1, . . . , λ1︸ ︷︷ ︸

m1 times

, . . . , λk, . . . , λk︸ ︷︷ ︸
mk times

) and ∑k
i=1 mi = n.

Let δ = mini,j∈[k],i ̸=j
∣∣λi − λj

∣∣ > 0, and let κ(X) = ∥X∥2 ·
∥∥X−1

∥∥
2 be the condition number

of X.
Let E ∈ Cn×n be such that κ(X) · ∥E∥2 < δ/2, and let Ã = A + E. Then,

1. The eigenvalues of Ã can be grouped into k groups λ̃1,1, . . . , λ̃1,m1 , . . . , λ̃k,1, . . . , λ̃k,mk

such that for each i ∈ [k], j ∈ [mi], it holds that
∣∣λ̃i,j − λi

∣∣ ≤ κ(X) · ∥E∥2 < δ/2.

2. Suppose that all of A, E, X, Λ ∈ Rn×n are real matrices. Let i ∈ [n] be such that λi has
multiplicity 1 (that is mi = 1). Then, it holds that λ̃i,1 is real.

Proof. 1. For each i ∈ [k], let Di = D(λi, κ(X) · ∥E∥2) ⊊ D(λi, δ/2). We know that
the Di’s are disjoint from each other, and for each i ∈ [k], Di contains exactly
mi eigenvalues of A0 = A. By the Bauer-Fike theorem (Theorem 8), we know

that for each τ ∈ [0, 1], each eigenvalue of Aτ
def
= A + τE lies in ∪i∈[k]Di. Then,

by Theorem 7, it must hold that for each τ ∈ [0, 1], each Di contains exactly
mi eigenvalues of Aτ, since the eigenvalues can "never jump" from one Di to
another. We leave the formal details of the last sentence to the reader.

2. Suppose that all of A, E, X, Λ ∈ Rn×n. Without loss of generality, we assume that
λ1 is the eigenvalue multiplicity 1. It holds that

∣∣λ̃1,1 − λ1
∣∣ < δ/2, and for each

i ∈ [k], i ̸= 1, j ∈ [mi], that∣∣λ̃i,j − λ1
∣∣ ≥ |λi − λ1| −

∣∣λi − λ̃i,j
∣∣ > δ − δ/2 = δ/2.

36



That is, λ̃1,1 is the unique eigenvalue of Ã that is within δ/2 distance of λ1. But,
the complex conjugate ¯̃λ1,1 is also an eigenvalue of Ã satisfying

∣∣∣ ¯̃λ1,1 − λ1

∣∣∣ =∣∣λ̃1,1 − λ1
∣∣ < δ/2. Hence, λ̃1,1 = ¯̃λ1,1 ∈ R.

Lemma A.8. Perturbation of Eigenvectors of Simple Eigenvalues for Real Matri-
ces. Let A = X · Λ · X−1 ∈ Rn×n be a real diagonalizable matrix, with X ∈ Rn×n,
and where Λ = diag(λ1, . . . , λ1︸ ︷︷ ︸

m1 times

, . . . , λk, . . . , λk︸ ︷︷ ︸
mk times

) ∈ Rn×n with ∑k
i=1 mi = n. Let δ =

mini,j∈[k],i ̸=j
∣∣λi − λj

∣∣, and let κ(X) = ∥X∥2 ·
∥∥X−1

∥∥
2 be the condition number of X.

Let E ∈ Rn×n be such that κ(X) · ∥E∥2 < δ/2, and let Ã = A + E. Then,

1. The eigenvalues of Ã can be grouped into k groups λ̃1,1, . . . , λ̃1,m1 , . . . , λ̃k,1, . . . , λ̃k,m1 ∈
C such that for each i ∈ [k], j ∈ [mi], it holds that

∣∣λ̃i,j − λi
∣∣ ≤ κ(X) · ∥E∥2.

2. Let x1, . . . , xn ∈ Rn be the columns of X, and suppose that λ1 is a simple eigenvalue of
A (that is, it has multiplicity m1 = 1), with x1 as the corresponding eigenvector.

Let λ̃1
def
= λ̃1,1 be the unique eigenvalue of Ã such that

∣∣λ̃1 − λ1
∣∣ < δ/2. Then, λ̃1 is

real. Further, suppose that x̃ ∈ Rn, ∥x̃∥2 = 1 is an eigenvector of Ã with eigenvalue λ̃1.
Then, there exists ζ ∈ {−1, 1} such that∥∥∥∥x̃ − ζ · x1

∥x1∥2

∥∥∥∥
2
≤ 4κ(X) ∥E∥2

δ
.

Proof. The first part follows from first part of Lemma A.7. Similarly, in the second part,
the fact that λ̃1 is real follows form the second part in Lemma A.7.

Now, suppose that x̃ ∈ Rn, ∥x̃∥2 = 1 is an eigenvector of Ã with eigenvalue λ̃1. Let
α ∈ Rn be such that x̃ = Xα = ∑n

i=1 αixi. Then, we know

λ̃1Xα = λ̃1x̃ = Ãx̃ = (A + E)Xα = XΛα + Ex̃.

Rearranging, we get
(Λ − λ̃1 I)α = −X−1Ex̃.

We know that for each i ∈ [k], i ̸= 1,∣∣λi − λ̃1
∣∣ ≥ |λi − λ1| −

∣∣λ1 − λ̃1
∣∣ > δ/2 > 0.

Setting P = diag
(

0, 1
Λ2,2−λ̃1

, . . . , 1
Λn,n−λ̃1

)
∈ Rn×n, we know ∥P∥2 ≤ 2

δ , and

x̃ − α1x1 = X
(

α − [α1, 0, . . . , 0]⊤
)
= −XPX−1Ex̃,

and

∥x̃ − α1x1∥2 ≤
∥∥∥XPX−1Ex̃

∥∥∥
2
≤ 2κ(X) ∥E∥2

δ

def
= γ.

37



We can assume that γ < 1, or else the statement we wish to prove is true trivially by
triangle inequality. This, in particular implies that α1 ̸= 0, and∥∥∥∥x̃ − α1x1

∥α1x1∥2

∥∥∥∥
2
≤ ∥x̃ − α1x1∥2 +

∥∥∥∥α1x1 −
α1x1

∥α1x1∥2

∥∥∥∥
2

= ∥x̃ − α1x1∥2 + |1 − ∥α1x1∥2|
≤ 2 ∥x̃ − α1x1∥2

≤ 2γ.

Choosing ζ = α1/ |α1|, this proves the desired result.

A.2.3 Perturbation bounds for Pseudo-Inverse

Lemma A.9. (Wedin [Wed73]; see Theorem III.3.9 in [SGS90]) Let A, E be m × n matrices
with m ≥ n, and let Ã = A + E. If rank(A) = rank(Ã) = n, then∥∥∥A† − Ã†

∥∥∥
2
≤

√
2
∥∥∥A†

∥∥∥
2

∥∥∥Ã†
∥∥∥

2
∥E∥2 .

Corollary A.2. Let A, E be m× n matrices with m ≥ n, and let Ã = A+ E. If rank(A) = n
and ∥E∥2 ≤ σn(A)/2, then we have∥∥∥A† − Ã†

∥∥∥
2
≤ 3

∥∥∥A†
∥∥∥2

2
∥E∥2 .

Proof. By Weyl’s inequality (Lemma A.3), we know σn(Ã) ≥ σn(A)−∥E∥2 ≥ σn(A)/2 >

0. Hence, rank(Ã) = n, and
∥∥∥Ã†

∥∥∥
2
= 1/σn(Ã) ≤ 2/σn(A). Plugging this into

Lemma A.9, we get the desired result.

A.3 Anti-Concentration of Gaussian Linear Forms

We show an anti-concentration bound for linear forms in independent Gaussian ran-
dom variables.

Lemma A.10. Let x = (x1, . . . , xn) ∈ Rn be such that for each i ∈ [n], xi ∼ N (0, 1) is
chosen independently, and let y = x/ ∥x∥2. Then, for any a ∈ Rn, a ̸= 0 and any δ ≥ 0, it
holds that

Pr

∣∣∣a⊤y
∣∣∣ ≤ δ ∥a∥2

6
√

n + ln 1
δ

 ≤ δ.

Proof. Let a ∈ Rn, a ̸= 0. We can assume ∥a∥2 = 1.

1. Note that a⊤x ∼ N (0, 1), and so for any η ≥ 0,

Pr
[∣∣∣a⊤x

∣∣∣] = Pr
g∼N (0,1)

[|g| ≤ η] =
1√
2π

∫ η

−η
e−t2

dt ≤ 1√
2π

· 2η ≤ η.

2. By concentration bounds on chi-square random variables [LM00], we have for
any c ≥ 1 that

Pr
[
∥x∥2 > 3c

√
n
]
≤ e−c2n.

38



Combining the above inequalities, we get

Pr

∣∣∣a⊤y
∣∣∣ ≤ δ

6
√

n + ln 1
δ

 ≤ Pr
[∣∣∣a⊤x

∣∣∣ ≤ δ

2

]
+ Pr

[
∥x∥2 > 3

√
n ·
√

1 +
1
n

ln
1
δ

]

≤ δ

2
+ δe−n ≤ δ.

B Subspace Clustering

In this section, we will consider the problem of Subspace Clustering. Following the
outline in Section 1.3, we will show a reduction to vector space decomposition. In
Section B.1, we solve a problem which we call Robust Recover from Symmetric Tensor
Power, which we later use as a subroutine in our subspace clustering algorithm. Then,
in Section B.2 and Section B.3 we analyze the noiseless and the robust case of subspace
clustering.

B.1 Robust Recovery from Symmetric Tensor Power

For any set A ⊆ Rn, and any d ∈ N, we define the set A⊗d def
=
{
(a · x)d : a ∈ A

}
⊆

R[x]=d, where x = (x1, . . . , xn) are formal variables. We consider the following prob-
lem:

Robust Recovery from Symmetric Tensor Power (RRSTP). Let A = {a1, . . . , aN} ⊆
Rn be a set of N points, and let d ∈ N. We are given as input a subspace Ũ ⊆ R[x]=d

such that dist
(

Ũ,
〈

A⊗d〉) is "small," and our goal is to efficiently find a subspace Ṽ ⊆
R[x]=1 such that dist(Ṽ, ⟨A⟩) is "small."

Note that we are working with the Bombieri inner product over R[x]=d and R[x]=(d−1).
Informally speaking, the goal is to (approximately) recover the subspace ⟨A⟩, when
given as input the subspace

〈
A⊗d〉 (approximately).

For the rest of this section, we fix a set A = {a1, . . . , aN}. Let V def
= ⟨A⟩ and r =

dim(V), and let U def
=
〈

A⊗d〉 and R = dim(U).

B.1.1 RRSTP: Noiseless Case

We first consider the noiseless case, in which the input is the space U. Let (u1, . . . , uR)
be an arbitrary orthonormal basis of the space U.

Definition B.1. We define the partial derivative map T : Rn → (R[x]=(d−1))R by

T(c) =

(
n

∑
i=1

ci · ∂xiu1, . . . ,
n

∑
i=1

ci · ∂xiuR

)
= (∂cu1, . . . , ∂cuR) .

Lemma B.1.
ker(T)⊥ = ⟨A⟩ .

39



Proof. We show the equivalent fact that ker(T) = ⟨A⟩⊥, which is implied by the fol-
lowing:

c ∈ ker(T) ⇐⇒ ∂cui = 0 for all i ∈ [R]
⇐⇒ ∂cu = 0 for all u ∈ U

⇐⇒ ∂c(ai · x)d = 0 for all i ∈ [N]

⇐⇒ c · ai = 0 for all i ∈ [N]

⇐⇒ c ∈ ⟨A⟩⊥.

The above lemma gives a natural algorithm for the noiseless case: Compute the map T
(using any orthonormal basis of

〈
A⊗d〉), and output ker(T)⊥. Further this algorithm

is efficient: if the input is given as an orthonormal basis of
〈

A⊗d〉, of size R · (n+d−1
d ) ≤

R · nd, the algorithm runs in time poly(nd).

B.1.2 RRSTP: Robust Case

Next, we provide a robust version of the above algorithm. We are given as input a vec-
tor space Ũ ⊆ R[x]=d of dimension R, such that dist(Ũ, U) is small. Let (ũ1, . . . , ũR) be
an arbitrary orthonormal basis of Ũ. We define a noisy version of the partial derivative
operator in Definition B.1.

Definition B.2. We define the partial derivative map T̃ : Rn → (R[x]=(d−1))R by

T̃(c) =

(
n

∑
i=1

ci · ∂xi ũ1, . . . ,
n

∑
i=1

ci · ∂xi ũR

)
= (∂cũ1, . . . , ∂cũR) .

Our algorithm is then formally described as Algorithm 3.

Algorithm 3 Robust Recovery from Symmetric Tensor Power.

Input: Ũ is a subspace of dimension R, where Ũ ⊆ R[x]=d with d ∈ N and x =
(x1, . . . , xn) .
Assumptions: There is a set A ⊆ Rn of size N, such that dist(Ũ,

〈
A⊗d〉) ≤ ϵ.

Output: Subspace Ṽ ⊆ Rn such that dist(Ṽ, ⟨A⟩) is small.

1: Let (ũ1, . . . , ũR) be an orthonormal basis for Ũ (with respect to the Bombieri inner
product).

2: Let T̃ : Rn → (R[x]=(d−1))R be the (directional-derivative) map defined as in Def-
inition B.2.

3: Let r be such that R = (r+d−1
d ).

4: Let Ṽ ⊆ Rn be the space spanned by the right singular vectors of T̃, corresponding
to the top r singular values.

5: Output Ṽ.

We shall prove that the algorithm gets the following guarantees. We shall work
with the extra assumption that R = (r+d−1

d ), which for example is satisfied when N is
large and the set A is chosen in some random manner.

40



Proposition B.1. Let d ∈ N, and let A = {a1, . . . , aN} ⊆ Rn be a set of N points. Let
V = ⟨A⟩ be of dimension r, and let U =

〈
A⊗d〉 ⊆ R[x]=d be of dimension R. Suppose that:

1. R = (r+d−1
d ).

2. Ũ ⊆ R[x]=d is a subspace such that dist(Ũ, U) ≤ ϵ < 1.

Then, Algorithm 3, on input Ũ, runs in time poly(nd), and outputs a subspace Ṽ ∈ Rn such
that

dist(Ṽ, V) ≤ 4ϵ
√

r.

Before we prove our main proposition, we show that the choice of basis does not
affect the above algorithm in any way.

Lemma B.2. The singular value decomposition of the operator T (resp. T̃) does not depend
on the choice of the orthonormal basis (u1, . . . , uR) (resp. (ũ1, . . . , ũR)) for the vector space U
(resp. Ũ).

Proof. For any c, d ∈ Rn, we have that

⟨Tc, Td⟩ =
R

∑
k=1

⟨∂cuk, ∂duk⟩B .

This is the Hilbert-Schmidt inner product between ∂c and ∂d over the vector space
Lin(U, R[x]=(d−1)), which does not depend on the choice of orthonormal basis of U.
Hence, the singular value decomposition of T is independent of this choice of basis as
well.

The same proof shows the result for Ũ as well.

We will also need the following singular value lower bound.

Lemma B.3. Let T be as defined in Definition B.1 with respect to an arbitrary orthonormal
basis (u1, . . . , uR) for U. If R = (r+d−1

d ), then it holds that

σr(T) = d ·
√

R
r

.

Proof. Let c ∈ Rn, ∥c∥2 = 1 be such that c ∈ ker(T)⊥ = ⟨A⟩ = V (see Lemma B.1). We
wish to lower bound

⟨T(c), T(c)⟩ =
R

∑
i=1

∥∂cui∥2
B .

Note that by Lemma B.2, the singular value does not depend on the choice of (u1, . . . , uR).
Hence, we will choose a convenient basis to work with.

First, consider an orthonormal basis (v1 = c, . . . , vr) of V. Then, based on the
variables x = (x1, . . . , xn), we define the variables y = (y1, . . . , yr) by yi = vi · x for
each i ∈ [r]. This allows us to view

〈
A⊗d〉 = U ⊆ R[y]=d in a natural way: for each

polynomial p(x) ∈ U, there is a corresponding polynomial q(y) ∈ R[y]=d such that
p(x) = q(v1 · x, . . . , vr · x). Furthermore, since the Bombieri norm is preserved under
isometries, it holds that ∥p(x)∥B = ∥q(y)∥B (where the norms are with respect to the
spaces R[x]=d and R[y]=d respectively).

41



Now, since dim(U) = R = (r+d−1
d ), we know U = R[y]=d, and so we can choose

the orthonormal basis (qα(y) =
√

d!
α!y

α)α∈Nr
d
. Then,

⟨T(v1), T(v1)⟩ = ∑
α∈Nr

d

∥∂v1qα(v1 · x, . . . , vr · x)∥2
B .

= ∑
α∈Nr

d

∥∥∂y1qα(y)
∥∥2

B

= ∑
α∈Nr

d :α1>0

d!
α!

· α2
1 ·

α!
α1 · (d − 1)!

= d · ∑
α∈Nr

d

α1 = d · Rd
r

.

Proof of Proposition B.1. Observe that by Lemma B.2 , we can work with any orthonor-
mal basis for the vector space Ũ, and the corresponding operator T̃. By the Canonical
Decomposition (Theorem 6), we can choose a basis (u1, . . . , uR) for U, and (ũ1, . . . , ũR)

for Ũ, such that ∥ũi − ui∥B ≤ 2ϵ for each i ∈ [R]. Let T and T̃ be the operators as de-
fined in Definition B.1 and Definition B.2 with respect to these basis, and let M and M̃
be the matrices corresponding to these operators. Then, by Lemma 2.1, we have

∥∥∥M̃c − Mc
∥∥∥2

F
=

R

∑
i=1

n

∑
j=1

∥∥∥∂xj(ũi − ui)
∥∥∥2

B
= d2 ·

R

∑
i=1

∥ũi − ui∥2
B ≤ 4ϵ2d2R.

Now by Corollary A.1 and Lemma B.3, we get

dist(Ṽ, V) ≤
2 ·
∥∥∥M̃c − Mc

∥∥∥
F

σr(M)
≤ 2 · 2ϵd

√
R

d
√

R
r

= 4ϵ
√

r.

Runtime: We observe that R ≤ dim(R[x]=d) = (n+d−1
d ) = poly(nd). Hence, the

map T̃ and its singular value decomposition can also be computed in time poly(nd).

B.2 Subspace Clustering: Noiseless Case

We begin by considering the noiseless version of the subspace clustering problem.
Recall that we are given a set of N points A = {a1, a2, . . . , aN} ⊆ Rn, which admit a
partition

A = A1 ⊎ A2 ⊎ . . . ⊎ As,

such that the points in each Aj span a low-dimensional space
〈

Aj
〉
. Our goal is to find

this partition.
For each i ∈ [N], we define ℓi ∈ R[x]=1 as the linear form ℓi(x) = (ai · x) in

the formal variables x = (x1, . . . , xn). For any d ∈ N, we define the set A⊗d def
={

(a · x)d : a ∈ A
}

⊆ R[x]=d. Proceeding as in Section 1.3, we devise an algorithm
(Algorithm 4) for this problem, via a reduction to vector space decomposition.

42



Algorithm 4 Subspace Clustering: Noiseless Case.
Input: (A, d) where A ⊆ Rn is a set of size N, and d ≥ 2 is a positive integer.
Assumptions: The set A admits a partition A = A1 ⊎ A2 ⊎ . . . ⊎ As such that each
Ai spans a low-dimensional subspace.
Output: The partition (A1, . . . , As).

1: Compute the spaces U =
〈

A⊗d〉 , V =
〈

A⊗(d−1)
〉

and the tuple of operators B =

(B1, . . . , Bn) ∈ Lin(U, V)n, where Bi corresponds to the operator ∂xi : U → V.
2: Run RVSD Algorithm (Noiseless Case) on (U, V,B), and obtain the spaces〈

Aj
⊗d
〉

, for each j ∈ [s].
3: For each j ∈ [s], run RRSTP Algorithm (Noiseless Case; see Section B.1.1) on〈

Aj
⊗d
〉

to obtain
〈

Aj
〉
.

4: For each j ∈ [s], compute Aj = A ∩
〈

Aj
〉
.

5: Output (A1, . . . , As).

Next, we state our assumptions, and then analyze our algorithm.

Definition B.3. (Subspace Clustering: Non-degeneracy conditions) We say that the
partition A = A1 ⊎ A2 ⊎ . . . ⊎ As, is non-degenerate with respect to the integer d ≥ 2
if the following conditions are satisfied:

1. 〈
A⊗(d−1)

〉
=
〈

A1
⊗(d−1)

〉
⊕
〈

A2
⊗(d−1)

〉
⊕ . . . ⊕

〈
As

⊗(d−1)
〉

.

2. For each j ∈ [s], the space
〈

Aj
⊗d
〉

is irreducible with respect to the action of

first order partials ∂=1. That is, we cannot write
〈

Aj
⊗d
〉

= Uj,1 ⊕ Uj,2 and〈
Aj

⊗(d−1)
〉
= Vj,1 ⊕ Vj,2, with all Uj,1, Uj,2, Vj,1, Vj,2 non-zero, such that ∂=1 maps

Uj,1 into Vj,1 and Uj,2 into Vj,2.

Theorem 9. Let A ⊆ Rn be set of size N, and d ≥ 2 be an integer. Let

A = A1 ⊎ A2 ⊎ . . . ⊎ As

be a partition of A that it is non-degenerate with respect to d (see Definition B.3). Then, on
input (A, d), Algorithm 4 runs in time poly(N, nd), and outputs the partition (A1, . . . , As).

In the remainder of this section, we shall analyze our algorithm and prove the
above theorem.

B.2.1 Structure of The Adjoint Algebra

In this section, we analyze Step 2 of Algorithm 4.
Fix some d ∈ N, such that the non-degeneracy conditions in Definition B.3 are

satisfied. Let
U def

=
〈

A⊗d
〉
=
〈
ℓd

1, ℓd
2, . . . , ℓd

N

〉
⊆ R[x]=d

43



and
V def

=
〈

A⊗(d−1)
〉
=
〈
ℓd−1

1 , ℓd−1
2 , . . . , ℓd−1

N

〉
⊆ R[x]=(d−1).

Let B = (B1, . . . , Bn) ∈ Lin(U, V)n be the n-tuple of operators corresponding to the
action of first-order partial derivatives; that is, Bi corresponds to the operator ∂xi . The
adjoint algebra is then

Adj = {(D, E) : ∂xi · D = E · ∂xi for all i ∈ [n]} ⊆ Lin(U, U)× Lin(V, V).

To show the correctness of Step 2, it is sufficient to show that under the non-
degeneracy condition, the adjoint algebra has dimension s.

Proposition B.2.
dim(Adj) = s.

Note that the above proposition along with Proposition 4.1 implies the uniqueness
of the decomposition of U as a direct sum of s subspaces.

Corollary B.1. Let A ⊆ Rn be set of size N, and d ≥ 2 be an integer. Let

A = A1 ⊎ A2 ⊎ . . . ⊎ As

be a partition of A that it is non-degenerate (see Definition B.3) with respect to d.
Then, the decomposition〈

A⊗d
〉
=
〈

A1
⊗d
〉
⊕
〈

A2
⊗d
〉
⊕ . . . ⊕

〈
As

⊗d
〉

of
〈

A⊗d〉 under the action of ∂=1 is unique.

We start by proving a few lemmas characterizing the structure of the adjoint alge-
bra.

Lemma B.4. Let (D, E) ∈ Adj be any element in the adjoint algebra. Then, there exist field
constants c1, c2, . . . , cN ∈ R, such that for all i ∈ [N] we have

D · ℓd
i = ci · ℓd

i , and E · ℓd−1
i = ci · ℓd−1

i .

Proof. Without loss of generality, suppose that i = 1. Further, after making a suit-
able change of variables, we can assume that ℓ1 = x1 (note that the space of partial
derivatives is closed under change of variables).

Now, for any j ∈ [N] \ {1}, we must have by the definition of the adjoint algebra
that

∂xj · D · xd
1 = E · ∂xj · xd

1 = 0.

This means that (D · xd
1) ∈ R[x]=d is a homogeneous degree d polynomial depend-

ing only on the variable x1. Hence, there exists c1 ∈ R such that (D · xd
1) = c1 · xd

1.
Consequently, we also have

E · xd−1
1 =

1
d
· E · ∂x1 · xd

1 =
1
d
· ∂x1 · D · xd

1 =
1
d
· ∂x1 · c1xd

1 = c1 · xd−1
1 .

Lemma B.5. Let (D, E) ∈ Adj be any element in the adjoint algebra, and let the constants
c1, c2, . . . , cN ∈ R be as in Lemma B.4. Suppose that I ⊆ [N] is a minimal set such that{
ℓd−1

i : i ∈ I
}

are linearly dependent. Then, ci = ci′ for all i, i′ ∈ I.

44



Proof. Without loss of generality we can assume that I = {1, 2, . . . , r}. By the minimal-
ity of I, let α1, . . . , αr ̸= 0 be such that

α1 · ℓd−1
1 + α2 · ℓd−1

2 + . . . + αr · ℓd−1
r = 0. (10)

Then, we have

E · (α1 · ℓd−1
1 + · · ·+ αr · ℓd−1

r ) = 0

=⇒ α1 · c1 · ℓd−1
1 + · · ·+ αr · cr · ℓd−1

r = 0

=⇒ α2 · (c2 − c1) · ℓd−1
2 + · · ·+ αr · (cr − c1) · ℓd−1

2 = 0 (using 10).

Since each αi ̸= 0, the minimality of I implies that for each i ∈ [r] \ {1}, we have
ci = c1.

Lemma B.6. Let (D, E) ∈ Adj be any element in the adjoint algebra, and let the constants
c1, c2, . . . , cN ∈ R be as in Lemma B.4. Fix any j ∈ [s], and suppose that

〈
Aj

⊗d
〉

is irreducible

(see Condition 2 in Definition B.3) under the action of B. Let Ij =
{

i ∈ [N] : ℓi ∈ Aj
}

. Then,
it holds that ci = ci′ for each i, i′ ∈ I.

Proof. Fix any (D, E) ∈ Adj and let c1, c2, . . . , cN ∈ R be as in Lemma B.4. Let Ij ={
i ∈ [N] : ℓi ∈ Aj

}
and Cj =

{
ci : i ∈ Ij

}
, and let t =

∣∣Cj
∣∣.

Suppose for the sake of contradiction that t > 1, and Cj = {c̃1, . . . , c̃t}. Let Uj =〈
Aj

⊗d
〉

, Vj =
〈

Aj
⊗(d−1)

〉
. Now, for each k ∈ [t] define Uj,k =

〈{
ℓd

i : i ∈ Ij, ci = c̃k
}〉

,

Vj,k =
〈{

ℓd−1
i : i ∈ Ij, ci = c̃k

}〉
. Then, by definition B maps each Uj,k into Vj,k. Fur-

ther, it holds that Vj = Vj,1 ⊕ · · · ⊕ Vj,t is a direct sum: if we concatenate the bases of
(Vj,k)k∈[t], the list must be linearly independent, or else by Lemma B.5, some of the
c̃′s must be equal, which is false by definition. This also implies the weaker condi-
tion that Uj = Uj,1 ⊕ · · · ⊕ Uj,t is a direct sum, and this contradicts the irreducibility
assumption.

Next, we prove our main proposition regarding the dimension of the adjoint alge-
bra.

Proof of Proposition B.2. Since U, V admit a decomposition into s subspaces, the dimen-
sion of the adjoint algebra is at least s (recall the adjoint algebra always contains the
scaling maps; see comment after Definition 4.3). Suppose for the sake of contradiction
that dim(Adj) = t > s.

By Lemma B.4, it holds that for each (D, E) ∈ Adj, there exist c1, . . . , cN ∈ R such
that for each i ∈ [N], we have D · ℓd

i = ci · ℓd
i and E · ℓd−1

i = ci · ℓd−1
i . Now, since

dim(Adj) = t, there exists an element (D, E) ∈ Adj such that at least t of c1, . . . , cN are
distinct (for example, any generic element satisfies this). On the other hand, the irre-
ducibility of each component

〈
Aj

⊗d
〉

under the action of B, along with Lemma B.6,
implies that there can be at most s distinct elements among c1, . . . , cN. This is a contra-
diction.

45



B.2.2 Completing the Proof

Proof of Theorem 9. The above subsection shows that Step 2 correctly obtains the sub-
spaces

〈
Aj

⊗d
〉

for j ∈ [s]. Then, Step 3 correctly obtains the subspaces
〈

Aj
〉

for each
j ∈ [s] (see Section B.1.1).

Now, observe that the non-degeneracy condition
〈

A⊗(d−1)
〉
=
〈

A1
⊗(d−1)

〉
⊕
〈

A2
⊗(d−1)

〉
⊕

. . . ⊕
〈

As
⊗(d−1)

〉
implies that for each i ∈ [N], there is a unique j ∈ [s] such that

ai ∈ Aj. Hence, it holds that Aj =
〈

Aj
〉
∩ A. This completes the proof of correctness.

Runtime: Our algorithm deals with the set A of size N, and works with elements
in the space R[x]=d. The efficiency of the RVSD algorithm, and the efficiency of the
RRSTP algorithm implies that Algorithm 4 runs in time poly(N, nd).

B.3 Subspace Clustering: Robust Case

In the noisy version of the subspace clustering problem, we are given the set A ap-
proximately, and we wish to cluster the points such that each cluster is close to a low-
dimensional subspace. More formally, the problem is described as follows:

Problem 7. We are given as input an integer s ∈ N, and a set Ã = {ã1, ã2, . . . , ãN} ⊆
Rn, where each ãi is close to an (unknown) point ai ∈ Rn, such that the resulting set of
points A = {a1, a2, . . . , aN} ⊆ Rn can be clustered using s low-dimensional subspaces,
i.e.

A = A1 ⊎ A2 ⊎ . . . ⊎ As,

where each Aj satisfies dim(Aj) ≤ t. Our goal is to efficiently find an s-tuple of sub-
spaces W̃ = (W̃1, W̃2, . . . , W̃s) such that (upto reordering) for each j ∈ [s], it holds that
dist(W̃j,

〈
Aj
〉
) is small.

Proceeding as in Section 1.3, we devise an algorithm (Algorithm 5) for this problem,
via a reduction to robust vector space decomposition.

46



Algorithm 5 Subspace Clustering.

Input: (Ã, d, s, md, md−1) where Ã ⊆ Rn is a set of size N, and d ≥ 2, md, md−1 are
positive integers.
Assumptions: There is a set A ⊆ Rn of size N, such that

• For each point a ∈ A, there a unique point ã ∈ Ã, such that ∥ã − a∥2 ≤ ϵ.

• The set A admits a partition A = A1 ⊎ A2 ⊎ . . . ⊎ As, where each ⟨Ai⟩ is of
dimension at most t.

Output: W̃ = (W̃1, W̃2, . . . , W̃s) such that (upto reordering) for each j ∈ [s],
dist(W̃j,

〈
Aj
〉
) is small.

1: Compute the matrices MÃ,d and MÃ,d−1 as in Definition B.4. Let Ũ (resp. Ṽ) be the
subspace spanned by the left singular vectors of MÃ,d (resp. MÃ,d−1), correspond-
ing to the top md (resp. md−1) singular values.

2: Let W1 = R[x]=d, W2 = R[x]=(d−1), and let B = (B1, . . . , Bn) ∈ Lin(W1, W2)
n,

where Bi corresponds to the operator ∂xi : W1 → W2.
Run RVSD Algorithm on (W1, W2, s, Ũ, Ṽ,B)39(see Algorithm 2; use projections as
defined in Section 4.3), and let the output be Ũ = (Ũ1, . . . , Ũs).

3: For each j ∈ [s], run RRSTP (Algorithm 3) on Ũj, and let the output be W̃j.
4: Output W̃ = (W̃1, . . . , W̃s).

The above algorithm gets the following guarantees:

Theorem 10. Let A = {a1, . . . , aN} ⊂ Rn be a finite set of N points of unit norm, which can
partitioned as A = A1 ⊎ · · · ⊎ As, where each ⟨Ai⟩ is subspace of dimension at most t.

Let d ≥ 2 be an integer, let U = (U1, . . . , Us) (resp. V = (V1, . . . , Vs)) be an s-tuple of
subspaces with Uj =

〈
Aj

⊗d
〉

(resp. Vj =
〈

Aj
⊗d−1

〉
) for each j ∈ [s]. Let U = ⟨U⟩ (resp.

V = ⟨V⟩) have dimension md (resp. md−1).
Suppose that:

• U = U1 ⊕ · · · ⊕ Us, V = V1 ⊕ · · · ⊕ Vs, and for each j ∈ [s], it holds that dim(Uj) =

(
dim(⟨Aj⟩)+d−1

d ), dim(Vj) = (
dim(⟨Aj⟩)+d−2

d−1 ).

• σA is the minimum of σmd(MA, d) and σmd−1(MA, d−1), where MA,d (resp. MA, d−1) is
the matrix whose columns are the polynomials (ai · x)d (resp. (ai · x)d−1) (see Defini-
tion B.4).

• κ(U) denotes the condition number of the tuple of subspaces U (see Section 2).

• σ−(s+1)(A) is the (s+ 1)th smallest singular value of the adjoint algebra map (see Defini-
tion 4.2), corresponding to the action of B = (B1, . . . , Bn) on U, V, where Bi corresponds
to the operator ∂xi .

Let Ã = {ã1, ã2, . . . , ãN} ⊆ Rn be a set of unit norm vectors such that ∥ai − ãi∥2 ≤ ϵ

for each i ∈ [N]. Let δ > 0. Then, Algorithm 5, on input (Ã, d, s, md, md−1), runs in time

39See Remark 8 for the parameter τ ∈ (0, 1)

47



poly(N, nd) and outputs W̃ = (W̃1, . . . , W̃s) such that with probability at least 1− δ, it holds
(upto reordering) that for each j ∈ [s],

dist(W̃j,
〈

Aj
〉
) ≤ O

(
t2
√

Nd2 · s2

δ

√
s + ln

s2

δ
· κ(U)3 · 1

σA
· 1

σ−(s+1)(A)
· ϵ

)

= poly

(
t, N, d, s,

1
δ

, κ(U),
1

σA
,

1
σ−(s+1)(A)

)
· ϵ.

Remark 8. In Theorem 10, we assume that the algorithm gets as input numbers md =
dim

(〈
A⊗d〉), and md−1 = dim

(〈
A⊗d−1〉) as input. Further, we implicitly assume that

the algorithm knows a parameter τ ∈ (0, 1) needed for the RVSD Algorithm (Algorithm 2)
that lies in the correct range (see Theorem 5).

As mentioned in Remark 3, for the final algorithm, we can iterate over the parameter τ,
and similarly over md, md−1, and stop when the output W̃ = (W̃1, W̃2, . . . , W̃s) gives a valid
clustering of the points in the set Ã into s low-dimensional subspaces; that is:

1. For each j ∈ [s], it holds dim(W̃j) ≤ t.

2. For each i ∈ [N], there exists j ∈ [s] such that ãi is close to W̃j.

The actual inputs to the algorithm in this case will be (Ã, d, s, t). The blow-up in the run time
due to this iteration is O(md · md−1 · log2 (κ(U) · t)) = poly

(
s, td, log2 (κ(U))

)
. Assuming

that we have good upper bounds on the condition number log2 (κ(U)), as is required for the
error bounds of Theorem 10, we can safely ignore this in the theorem statement.

Similar to the other parameters above, we may also iterate over s, if we know that the input
to the problem can be clustered into a relatively small number of subspaces (also see Remark 5).

The remainder of this section is devoted to the proof of Theorem 10. The runtime
guarantees follow from the guarantees of each of the individual steps., and we shall
omit the details for that.

We shall fix the set Ã = {ã1, ã2, . . . , ãN} ⊆ Rn. Let A = {a1, . . . , aN} = A1 ⊎ · · · ⊎
As be as above, and let md = dim

(〈
A⊗d〉) and md−1 = dim

(〈
A⊗d〉).

B.3.1 Closeness of Subspaces

Definition B.4. Consider the space R[x]=d with the Bombieri inner product, and of
dimension md = (n+d−1

d ) (see Section 2). We define MA, d ∈ Rmd×N (resp MÃ, d) to
be the matrix whose ith column is the polynomial (ai · x)d ∈ R[x]=d (resp. (ãi · x)d)
written with respect to the Bombieri basis.

Similarly, we also define md−1 = (n+d−2
d ), and MA, d−1 ∈ Rmd−1×N (resp. MÃ, d−1)

with columns (ai · x)d−1 (resp. (ãi · x)d−1).

Then, U def
=
〈

A⊗d〉 ⊆ R[x]=d corresponds to the column-span of the matrix MA, d.
Let Ũ be the md-dimensional subspace of MÃ, d closest to U: this equals the vector
space spanned by the left-singular vectors of MÃ, d, corresponding the top md singular
values.

48



Lemma B.7.

dist(U, Ũ) ≤ 2
√

Ndϵ

σmd(MA, d)
,

where σmd(MA, d) is the md
th largest singular value of MA, d.

Proof. We have∥∥∥MA, d − MÃ, d

∥∥∥2

F
=

N

∑
i=1

∥∥∥(ai · x)d − (ãi · x)d
∥∥∥2

B

=
N

∑
i=1

∥∥∥∥∥(ai · x − ãi · x)

(
d−1

∑
j=0

(ai · x)j(ãi · x)d−1−j

)∥∥∥∥∥
2

B

≤
N

∑
i=1

∥ai · x − ãi · x∥2
B

∥∥∥∥∥
(

d−1

∑
j=0

(ai · x)j(ãi · x)d−1−j

)∥∥∥∥∥
2

B

≤ Nϵ2d2

where we use the submultiplicativity and triangle-inequality of the Bombieri norm,
and the fact that

∥∥(b · x)k
∥∥

B = ∥b∥k
2 for all b ∈ Rn, k ∈ N. Now, by Corollary A.1, we

get

dist(U, Ũ) ≤
2
∥∥∥MA, d − MÃ, d

∥∥∥
F

σmd(MA, d)
≤ 2

√
Ndϵ

σmd(MA, d)
.

In a similar manner, let V =
〈

A⊗d−1〉, and let Ṽ be space spanned by the left
singular values of MÃ,d−1, corresponding to the top md−1 singular values. Then, we
get

Lemma B.8.

dist(V, Ṽ) ≤ 2
√

Ndϵ

σmd−1(MA, d−1)
.

B.3.2 Using RVSD and RRSTP

Let U = (U1, . . . , Us), where Uj =
〈

Aj
⊗d
〉

for each j ∈ [s]. Also, let (Ũ1, . . . , Ũs), be
the output of RVSD in Step 2 of Algorithm 5.

Let δ > 0. Then, by Corollary 4.1, we get that with probability at least 1 − δ, (upto
reordering) for each j ∈ [s],

dist(Ũj, Uj) ≤ O

(
t3/2 · κ(U)3 · s2

√
s + ln

s2

δ
· ϵ1 + ϵ2

δ
· ∥B∥2

σ−(s+1)(A)

)
,

where we have that

1. σ−(s+1)(A) is the (s + 1)th smallest singular value of the relevant adjoint algebra
map.

2. B = (B1, . . . , Bn) ∈ Lin
(

R[x]=d, R[x]=(d−1)
)n

, with Bi being the map corre-
sponding to the operation ∂xi . Note that by Definition 2.1 and Lemma 2.1, we
have ∥B∥2 = d.

49



3. By Lemma B.7 and Lemma B.8, dist(Ũ, U) ≤ ϵ1 = 2
√

Ndϵ
σmd (MA, d)

and dist(Ṽ, V) ≤

ϵ2 = 2
√

Ndϵ
σmd−1 (MA, d−1)

.

Simplifying, we get

dist(Ũj, Uj) ≤

O
(

t3/2
√

Nd2 · s2

δ

√
s + ln s2

δ · κ(U)3 · 1
min{σmd (MA, d), σmd−1 (MA, d−1)} · 1

σ−(s+1)(A)
· ϵ

)
.

Now, for each j ∈ [s], let Wj =
〈

Aj
〉
. Then, assuming that dim(Uj) = (

dim(Wj)+d−1
d ),

we have by Proposition B.1, that the output W̃j of the RRSTP algorithm satisfies

dist(W̃j, Wj) ≤

O
(

t2
√

Nd2 · s2

δ

√
s + ln s2

δ · κ(U)3 · 1
min{σmd (MA, d), σmd−1 (MA, d−1)} · 1

σ−(s+1)(A)
· ϵ

)
.

B.4 Singular Value Analysis for The Adjoint Algebra

Analysis of the singular values of the adjoint algebra operator can be tedious. How-
ever, for subspace clustering we can obtain substantial lower bounds for σ−(s+1)(A)
which reveal how the geometry of the original subspaces affect the robustness of the
algorithm. We dedicate section G to this analysis. We proceed by defining a special in-
ner product for linear maps on sums of subspaces. This allows an inductive approach
to separately bound the contributions of the diagonal and off-diagonal blocks of A to
its smallest non-zero singular value. In particular we get the following theorem.

Theorem 11 (Theorem 15 restated). For subspaces U, V of dimension t, let fd be defined as
fd (U, V) = d

t

[
∑k∈[t] sin2 θk + (d − 1) sin2 θt

]
for d ≥ 2, where θ1 ≥ θ2 ≥ · · · ≥ θt are the

canonical angles between U, V. Then, if A represents the adjoint algebra map corresponding
to the subspace clustering problem for subspaces ⟨A1⟩ , ⟨A2⟩ , . . . , ⟨As⟩ with parameter d, we
have

σ2
−(s+1)(A) ≥

[
d

κ(U,V)2

]2
· min{σdiag, σoff-diag}

where the above quantities are defined as follows:

σdiag
def
=

√
d

t∗ + d − 1

(
1 −

√
1 − 1

d
t∗

t∗+d−1

)
,

σoff-diag
def
= min

j ̸=k

√
d

tk + d − 1

(
1 −

√
1 − 1

d
tk

tk+d−1 · fd(
〈

Aj
〉

, ⟨Ak⟩)
)

,

where κ(U, V) = max {σ1(U), σ1(V)} / min {σ−1(U), σ−1(V)}, and t1, . . . , ts are dimen-
sions of ⟨A1⟩ , . . . , ⟨As⟩ respectively, with t∗ = maxi∈[s] ti.

Refer to section G for the proof of Theorem 11.

50



B.5 Smoothed Analysis of Subspace Clustering

We analyse our algorithm for subspace clustering in a smoothed setting. We first de-
scribe the input model for our problem. For simplicity, we assume that each of the
subspaces has the same dimension.

1. We have a tuple of s hidden subspaces of Rn, W = (W1, W2, . . . , Ws), each of
dimension t. Let P1, P2, . . . , Ps ∈ Rn×t be matrices with orthonormal columns,
such that the column span of Pi is Wi. Each subspace Wi is perturbed by perturb-
ing Pi by a random Gaussian matrix Gi ∼ N (0, ρ2/n)n×t. Let P̂i = Pi + Gi, and
Ŵ1, Ŵ2, . . . , Ŵs be the column spans of P̂1, P̂2, . . . , P̂s respectively.

2. Sample sets of points A1, A2, . . . , As from Ŵ1, Ŵ2, . . . , Ŵs respectively, of unit
norm. For each i ∈ [s], perturb each point in Ai with respect to Ŵi to get the
set of points Âi. Formally, this means perturbing points in Ai by B̂i · v, where B̂i
is an n × t matrix describing an orthonormal basis for Ŵi and v ∼ N (0, ρ2/t)t,
and normalizing. Let Â = Â1 ∪ Â2 ∪ · · · ∪ Âs.

3. For each a ∈ Â, add noise (and normalize) to get point a′ such that ∥a − a′∥2 ≤ ϵ.
We are given Â′, the set of noise-added points.

Given the set of points Â′, the goal is to recover subspaces W̃ = (W̃1, W̃2, . . . , W̃s)

such that dist(Ŵj, W̃j) is small for each j ∈ [s].
Algorithm 5 gets the following guarantees in the above smoothed setting.

Theorem 12. Let W = (W1, . . . , Ws) , Â′ and Â = Â1 ⊎ · · · ⊎ Âs be as generated above,
with smoothening parameter ρ ∈ (0, 1). Let Û = (Û1, . . . , Ûs) and V̂ = (V̂1, . . . , V̂s) be
s-tuples such that Ûj =

〈
Â⊗d

j

〉
, V̂j =

〈
Â⊗d−1

j

〉
for each j ∈ [s], for some d ≥ 2. Further,

for each j ∈ [s], let MÂj,d
= Cj,d · MB̂j,d

and MÂj,d1
= Cj,d−1 · MB̂j,d−1 where Cj,d (resp.

Cj,d−1) is a matrix with columns as an orthonormal basis of Ûj (resp. V̂j), and Bj ⊂ Rt.
Let Û =

〈
Û
〉

, V̂ =
〈
V̂
〉
, and md = dim(Û), md−1 = dim(V̂). Let δ > 0 and t > d.

Then, Algorithm 5 on input (Â′, d, s, md, md−1) outputs W̃ = (W̃1, . . . , W̃s) such that with
probability 1 − δ − s2 exp(−Ω(ρ2n)),

dist(W̃j, Ŵj) ≤ O

(
√

N · s2

δ

√
s + ln

s2

δ
· κ6 · 1

σ
· t3/4 · d3/4 · n1/2 · ϵ

ρ

)
where

κ =
max {σ1(U), σ1(V)}

min {σ−1(U), σ−1(V)} , , σ = min
j∈[s]

min
{

σ−1(MB̂j,d
), σ−1(MB̂j,d−1)

}
, and N = |Â′|.

The rest of this section is devoted to the proof of Theorem 12.
We first show that the perturbed subspaces generated by the above procedure are

well separated, with high probability.

Lemma B.9. Let V be a subspace of Rn of dimension t < n. Let V̂ be the perturbed sub-
space generated from V by perturbing an orthonormal basis of V by vectors sampled from
N (0, ρ2/n)n. Then, if U is another subspace of dimension t, we have, with high probability,

dist(U, V̂) ≥ 1
5
· ρ√

1 + ρ2
·
√

1 − t
n

51



Proof. Without loss of generality, we can assume that U = ⟨e1, e2, . . . , et⟩. Let V =
⟨v1, v2, . . . , vt⟩ be an orthonormal basis for V, and V̂ = ⟨v̂1, v̂2, . . . , v̂t⟩, where v̂i =
vi + bi, and bi ∼ N (0, ρ2/n)n. We have

dist(U, V̂) =
∥∥ProjU − ProjV̂

∥∥
2

≥
∥∥ProjU · v̂1 − ProjV̂ · v̂1

∥∥
2

∥v̂1∥2

=

∥∥ProjU · v̂1 − v̂1
∥∥

2
∥v̂1∥2

.

Since v1 has unit norm, we have that

Pr
[
∥v̂1∥2

2 ≥ 1 + 5ρ2
]
≤ exp(−Ω(ρ2n)).

Also, since U = ⟨e1, e2, . . . , et⟩, if v̂1 = ∑i∈[n] v̂1iei, then ProjU · v̂1 = ∑i∈[t] v̂1iei. There-
fore,

∥∥ProjU · v̂1 − v̂1
∥∥2

2 =
n

∑
i=t+1

v̂2
1i.

Thus, we have

Pr
[∥∥ProjU · v̂1 − v̂1

∥∥2
2 ≤ 2ρ2

5
·
(

1 − t
n

)]
≤ exp(−Ω(ρ2n)).

Therefore, we have, with probability at least 1 − exp(−Ω(ρ2n)),∥∥ProjU · v̂1 − v̂1
∥∥2

2

∥v̂1∥2
2

≥ 2ρ2

25(1 + ρ2)
·
(

1 − t
n

)
≥ 1

25
· ρ2

1 + ρ2 ·
(

1 − t
n

)
.

As a corollary, we get a lower bound on the smallest non-zero singular value of the
adjoint algebra for subspace clustering, in the smoothed setting.

Corollary B.2. Let the subspaces Ŵ1 =
〈

Â1
〉

, . . . , Ŵs =
〈

Âs
〉

be generated as given above.

Let U =
(〈

Â1
⊗d
〉

, . . . ,
〈

Âs
⊗d
〉)

, V =
(〈

Â1
⊗d−1

〉
, . . . ,

〈
Âs

⊗d−1
〉)

, for d ≥ 2. Let A
be the adjoint algebra map corresponding to action of the derivative maps on U, V. Then, we
have, with probability at least 1 − s2 exp(−Ω(ρ2n)),

σ2
−(s+1)(A) ≥

1
50κ4 · d5/2

(t + d − 1)3/2 · ρ2

1 + ρ2 · 1
n

.

where κ = κ(Û, V̂).

52



Proof. By Theorem 11, we have

σ2
−(s+1)(A) ≥

d2

κ4 · min{σdiag, σoff-diag},

where

σdiag =

√
d

t + d − 1

(
1 −

√
1 − 1

d
· t

d − 1 + t

)

≥ 1
2
· t

d1/2 · (t + d − 1)3/2

and

σoff-diag = min
i ̸=j

√
d

t + d − 1
·
(

1 −
√

1 − 1
d
· t

d − 1 + t
· fd
(
Ŵi, Ŵj

))

≥ 1
2
· t

d1/2 · (t + d − 1)3/2 · min
i ̸=j

fd(Ŵi, Ŵj).

For subspaces U, V with canonical angles θ1 ≥ θ2 ≥ · · · θt ≥ 0, we have

fd (U, V) =
d
t

 ∑
k∈[t]

sin2 θk + (d − 1) sin2 θt

 ≥ d
t
· sin2(θ1) =

d
t
· dist(U, V)2.

Thus, by Lemma B.9, we have, with probability 1 − s2 exp(−Ω(ρ2n)),

fd(Ŵi, Ŵj) ≥
1

25
· d

t
· ρ2

1 + ρ2 · (1 − t
n
).

for all i, j ∈ [s] such that i ̸= j. Since t ≤ n − 1, we have the required expression.

Using the above, and the fact that W, W̃ will be close with high probability, we have
our result.

Proof of Theorem 12. By Corollary B.2 and Theorem 10, if Algorithm 5 returns sub-
spaces W̃ = (W̃1, . . . , W̃s), we have, with probability 1 − δ − s2 exp(−Ω(ρ2n)),

dist(W̃j, Wj) ≤ O

(
√

N · s2

δ

√
s + ln

s2

δ
· κ5 · 1

σ′ · t3/4d3/4n1/2 · ϵ

ρ

)

and σ′ = min
{

σmd(MÂ,d)
, σmd−1(MÂ,d−1)

}
.

Note that we can write MÂ,d as

MÂ,d =
[
C1,d . . . Cs,d

]
·

MB̂1,d
. . .

MB̂s,d

 .

We can similarly write an expression for MÂ,d−1. Thus, we get that

σ′ ≥ 1
κ

min
j∈[s]

min
{

σ−1(MB̂j,d
), σ−1(MB̂j,d−1)

}
.

This gives us the required result.

53



C Learning Mixtures of Gaussians

In this section we give the proofs of technical claims pertaining to section 1.4.

Lemma C.1. [ [GKS20]] Blessing of Dimensionality for sums of powers of quadrat-
ics. Let positive n, k, d, s be non-negative integers satisfying the following constraints.

s ·
(

n + k − 1
k

)
≪
(

n + 2d − k − 1
2d − k

)
.

Then with high probability over the random choice of p1(x), p2(x), . . . , ps(x) ∈ R[x] we have

⟨L · p⟩ =
〈

y=k · qd−k
1

〉
⊕
〈

y=k · qd−k
2

〉
⊕ . . . ⊕

〈
y=k · qd−k

s

〉
,

where for each i ∈ [s], qi(y) ∈ R[y] is a restriction of pi, and |y| = n.

Remark 9. The constraints/bounds on the parameters for which the conclusion of the above
lemma holds is likely suboptimal and the conclusion is likely to hold for a larger range.

Lemma C.2. [ [GKS20]] Blessing of Dimensionality for shifted spaces of powers of
independent quadratics. Let positive n, k, e, s be non-negative integers satisfying the fol-
lowing constraints.

s ·
(

n + k − 1
k

)
≪
(

n + 2e + k − 1
2e + k

)
.

Then with high probability over the random choice of q1(y), q2(y), . . . , qs(y) ∈ R[y], |y| = n
we have〈

y=k · qe
1

〉
+
〈

y=k · qe
2

〉
+ . . . +

〈
y=k · qe

s

〉
=
〈

y=k · qe
1

〉
⊕
〈

y=k · qe
2

〉
⊕ . . . ⊕

〈
y=k · qe

s

〉
Remark 10. The constraints/bounds on the parameters for which the conclusion of the above
lemma holds is likely suboptimal and the conclusion is likely to hold for a larger range.

Lemma C.3. The adjoint algebra A for the action of B has dimension s. In other words
for any (D, E) ∈ A there exists (λ1, λ2, . . . , λs) ∈ Rs such that for all i ∈ [s], f (y) ∈
R[y]=k, g(y) ∈ R[y]=(k+2)

D · (qi(y)e · f (y)) = λi · (qi(y)e · f (y))

and
E · (qi(y)e−1 · g(y)) = λi · (qi(y)e−1 · g(y)).

Corollary C.1. The decomposition of U under the action of B is unique.

We need a couple of technical lemmas.

Lemma C.4. Fix any (D, E) in A. Then there exist R1, R2, . . . Rs ∈
〈

qd−k
1 , qd−k

2 , . . . , qd−k
s

〉
such that for all f (y) ∈ R[y]=k we have D · (qe

i · f (y)) = Ri · f (y).

Lemma C.5. Let q1(y), q2(y), . . . , qs(y) be independently chosen random quadratic forms.
For all i ∈ [s], there exists Bi ∈ B and ℓi ∈ R[y]=k such that Bi · (qe

i · ℓk
i ) = Bi · ℓi = 0 and

moreover for all j ∈ [s] \ {i}, we have Bi · (qe
j · ℓk

i ) ̸= 0.

54



Proof of Lemma C.3. Let (D, E) be any element of the adjoint algebra A. By lemma C.4,
there exist R1, R2, . . . Rs ∈

〈
qd−k

1 , qd−k
2 , . . . , qd−k

s

〉
such that for all f (y) ∈ R[y]=k we

have D · (qe
i · f (y)) = Ri · f (y). Let Ri = ci1qe

1 + ci2qe
2 + . . . + cisqe

s. For an arbitrary
i ∈ [s], let Bi ∈ B, ℓi ∈ R[y]=k be as provided by lemma C.5. Now

Bi · (qe
i · ℓk

i ) = 0

=⇒ E · Bi · (qe
i · ℓk

i ) = 0

=⇒ Bi · D · (qe
i · ℓk

i ) = 0

=⇒ Bi · (Ri · ℓk
i ) = 0

=⇒ Bi · (( ∑
j∈[s]

cijqe
j) · ℓk

i ) = 0

=⇒ ∑
j∈[s]

cij · Bi · (qe
j · ℓk

i ) = 0

=⇒ ∀j ∈ [s] : cij · (Bi · (qe
j · ℓk

i )) = 0 (as Vj’s form a direct sum)

=⇒ ∀j ∈ ([s] \ {i}) : cij = 0 (using the property of Bi, ℓi from lemma C.5)

Thus Ri(y) = cii · qi(y)e and so that for all f ∈ R[y]=k, g ∈ R[y]=(k+2) we have D · qe
i ·

f = cii · qe
i · f and E · qe−1

i · g = cii · qe−1
i · g. In particular, the adjoint algebra for B is

s-dimensional.

We will now provide the proofs of lemmas C.4 and C.5. For this we will in turn need
a couple more preliminary observations.

Existence of nice basis. Let us first observe that the space of homogeneous polynomi-
als admits a basis consisting of very simple polynomials for pretty much any definition
of what is a very simple polynomial. In particular let us work with the specific notions
below of what a very simple polynomial is. If a polynomial g(x) ∈ R[x]=k is of the
form g(x) = ℓ(x)k for some linear form ℓ(x) ∈ R[x]=1, let us call it as a power of linear
form and in short refer to it as a homogeneous-Σ

∧
polynomial. The following is a

classical result.

Theorem 13. Ellison [Ell69]. There exists a basis of R[x] consisting of homogeneous-Σ
∧

polynomials.

We will need variants of the above theorem for some other notions of what constitutes
a very simple polynomial. If a polynomial g(x) ∈ R[x]=k is of the form

g(x) = ℓ1(x) · ℓ2(x) · . . . · ℓk(x),

ℓ1(x), ℓ2(x), . . . , ℓk(x) ∈ R[x]=1 are coprime linear forms let us call it as a product
of coprime linear forms and in short refer to it as a homogeneous-ΠcoprimeΣ poly-
nomial. For an integer r ≥ 2 we further call such a polynomial as a homogeneous-
Πcoprime, r-spanΣ polynomial if we also have dim(⟨ℓ1(x), ℓ2(x), . . . , ℓk(x)⟩) = r.

Claim C.1. There exists a basis of R[x]=k consisting of homogeneous-Πcoprime, 2-spanΣ poly-
nomials.

55



Proof. By induction on the number of variables n = |x|.

Base case. For the base case of n = 2, let α1, α2, . . . , αk+1 ∈ R be any set of k + 1

distinct field elements. Let p(x1, x2)
def
= (x1 + α1x2) · (x1 + α2x2) · . . . · (x1 + αk+1x2). Let

pi ∈ R[x]=k be defined as pi(x1, x2)
def
= ∏j ̸=i(x1 + αjx2) =

p
(x1+αix2)

. We claim that the

pi’s (i ∈ [k + 1]) form the required basis of R[x]=k. Each of them is clearly a product of
coprime linear forms and so it suffices to show they are linearly independent. Suppose
that

c1p1 + c2p2 + . . . + ck+1pk+1 = 0.

Making the substitution x1 = −α1x2 in the above identity we get that

c1 · (−α1x2 + α2x2) · (−α1x2 + α3x2) · . . . · (−α1x2 + αk+1x2)

+ c2 · 0 + c3 · 0 + . . . + ck+1 · 0 = 0

from which we infer that c1 = 0. Similarly we can infer ci = 0 for all i ∈ [k + 1] imply-
ing that the pi’s are linearly independent, as required.

Inductive step. Suffices to show that any monomial m ∈ R[x]=k can be expressed
as a linear combination of homogeneous-Πcoprime, r-spanΣ polynomials. Suppose that

m = xe1
1 · xe2

2 · . . . · xen
n where ∑i∈[n] ei = k. By theorem 13 let m1

def
= xe2

2 · xe3
3 · . . . · xen

n
admit a representation as a sum of powers of linear forms as

m1 = ∑
i
ℓi(x2, x3, . . . , xn)

r, where r = e2 + e3 + . . . + en.

So it suffices to show that for any i, (xe1
1 · ℓr

i ) can be expressed as a sum of homogeneous-
Πcoprime, 2-spanΣ polynomials. By making a suitable change of variables we can assume
that ℓi = x2 and then we can infer the previous statement from the base case above.

Now consider a linear form ℓ(x) ∈ R[x]=1 that divides a product of two polynomials
q(x) and p(x). If q is coprime to ℓ we can infer that ℓ divides p. Now suppose that ℓ
divides ∂1(q(x) · p(x)). We would still like to infer that ℓ divides p. This is not true
in general but with some mild conditions (a slightly more general version of) it does
hold.

Claim C.2. Let q(x) ∈ R[x]=d be a homogeneous polynomial of degree d and p(x) ∈ R[x]=k

be a homogeneous polynomial of degree k. Let ℓ(x) ∈ R[x]=1 be a linear form. For a =

(a1, a2, . . . , an) ∈ Rn, let (a · ∂)
def
= (a1∂1 + a2∂2 + . . . + an∂n) ∈

〈
∂=1〉 be a first order

differential operator. Suppose that there exists positive constants c1, c2 ∈ R>0 such that

ℓ | (c1((a · ∂)q) · p + c2q · ((a · ∂)p)). (11)

If
gcd(q, (a · ∂)q) = 1 (mod ℓ(x))

then ℓ | p.

Proof. By making a suitable change of variables if needed, we can assume without
loss of generality that ℓ(x) = x1 and a = (0, 1, 0, 0, . . . , 0) so that (a · ∂) is simply ∂2,

56



i.e. the derivative with respect to the variable x2. Let p̂ def
= p(0, x2, x3, . . . , xn) and

q̂ def
= q(0, x2, x3, . . . , xn). The conclusion of the above claim can be restated as claiming

that p̂ = 0. Suppose not. Then we can write p̂ as p̂ = q̂r · f , for some polynomial
integer r ≥ 0 and some polynomial f ∈ R[x2, x3, . . . , xn] which is not divisible by q̂.
Now equation (11) implies that

c1 · (∂2q̂) · p̂ + c2 · q̂ · (∂2 p̂) = 0
=⇒ (c1 + rc2) · (∂2q̂) · f + c2 · q̂ · (∂2 f ) = 0

from which we can infer that q̂ divides (c1 + rc2) · (∂2q̂) · f . But (c1 + rc2) is positive
and hence nonzero and by assumption gcd(q̂, (∂2)q̂) = 1 so that q̂ must divide f , a
contradiction. Thus we must have p̂ = 0, or equivalently that ℓ(x) divides p.

A nondegenerate quadratic form (specifically, one which has rank at least 5) satisfies
the desired property above.

Corollary C.2. Let ℓ(x) ∈ R[x]=1 be a linear form. For a = (a1, a2, . . . , an) ∈ Rn, let

(a · ∂)
def
= (a1∂1 + a2∂2 + . . . + an∂n) ∈

〈
∂=1〉 be a first order differential operator. If q(x) ∈

R[x]=2 is a quadratic form of rank at least 5 and ℓ(a) = 0 then it must hold that

gcd(q, (a · ∂)q) = 1 (mod ℓ(x)).

Consequently, for any polynomial p(x) ∈ R[x]=k, if ℓ(x) divides (a · ∂)(q · p) then ℓ(x)
divides p.

Proof. By making a suitable change of variables we can assume without loss of gen-
erality that ℓ(x) = x1 and that the differential operator (a · ∂) is ∂2 and that q(x) =
x1 · p1(x) + x2 · p2(x3, x4, . . . , xn) + c3 · x2

3 . . . + cr · x2
r , where p1(x), p2(x) are linear

forms and r is the rank of q. Then we have:

gcd(q, (a · ∂)q) (mod ℓ(x)) = gcd(x2 · p2 + c3 · x2
3 . . . + cr · x2

r , p2)

= gcd(c3 · x2
3 . . . + cr · x2

r , p2)

= 1, (as (c3 · x2
3 . . . + cr · x2

r ) is irreducible for r ≥ 5)

The second conclusion follows from claim C.2 above.

We are now ready to prove our main technical lemmas.

Proof of Lemma C.4. Suffices to show that there exist constants c11, c12, . . . , c1s ∈ R such
that D · qe

1 · f = (c11qe
1 + c12qe

2 + . . . + c1sqe
s) · f for all polynomials f ∈ R[x]=k. Using

the existence of nice bases of R[x]=k as provided by claim C.1, it suffices to prove the
lemma for polynomials f (x) ∈ R[x]=k of the form

f (x) = ℓ1 · ℓ2 · . . . · ℓk,

where the ℓi’s are coprime linear forms spanning only 2 dimensions. By making a suit-
able change of variables we can assume that each ℓi is a linear form over the variables
x1 and x2 only. Let

D · (qe
1 · f ) = qe

1 · p1 + qe
2 · p2 + · · ·+ qe

s · ps, and
D · (qe

1 · x4ℓ2ℓ3ℓk) = qe
1 · p̂1 + qe

2 · p̂2 + · · ·+ qe
s · p̂s.

57



where the pi’s and p̂j’s are in R[x]=k. Now since f is a polynomial over only x1 and x2
we have ∂3 f = 0 which implies that

x4 · ∂3 · (qe
1 · ℓ1ℓ2 . . . ℓk) = ℓ1 · ∂3(qe

1 · x4ℓ2ℓ3 · ℓk)

=⇒ E · (x4 · ∂3 · (qe
1 · ℓ1ℓ2 . . . ℓk)) = E · (ℓ1 · ∂3(qe

1 · x4ℓ2ℓ3 · ℓk))

=⇒ (x4 · ∂3)(D · (qe
1 · ℓ1ℓ2 . . . ℓk)) = (ℓ1 · ∂3)(D · (qe

1 · x4ℓ2ℓ3 · ℓk))

=⇒ ∑
i∈[s]

((x4 · ∂3) · (qe
i pi)− (ℓ1 · ∂3) · (qe

i · p̂i)) = 0

=⇒ ∀i ∈ [s] : ((x4 · ∂3) · (qe
i pi)− (ℓ1 · ∂3) · (qe

i · p̂i)) = 0
(as (x4 · ∂3) · (qe

i pi) ∈ Vi and (ℓ1 · ∂3) · (qe
i · p̂i) ∈ Vi and the Vi’s form a direct sum)

=⇒ ∀i ∈ [s] : ℓ1 | (x4 · ∂3) · (qe
i pi)

=⇒ ∀i ∈ [s] : ℓ1 | (∂3) · (qe
i pi)

=⇒ ∀i ∈ [s] : ℓ1 | pi.

Similarly, we can show for all j ∈ [k] and i ∈ [s] that ℓj|pi. The ℓj’s are coprime and
hence ∀i ∈ [s] : (∏j∈[k] ℓj)|pi. But the pi’s are of degree k and hence we must have
pi = c1i ∏j∈[k] ℓj for some c1i ∈ R. Moreover it also follows that the c1i’s are in fact
independent of the choice of f and so we must have that D · (qe

1 · f ) = (c11qe
1 + c12qe

2 +

. . . + c1sqe
s) · f for all polynomials f ∈ R[x]=k.

Proof of Lemma C.5. Assume without loss of generality that i = 1. Now, quadratic
forms correspond to symmetric matrices which can be diagonalized over R by orthog-
onal matrices. So Suppose that q1(y) = c1ℓ1(y)2 + c2ℓ2(y)2 + . . . + cnℓn(y)2, where the
ℓj’s are pairwise orthogonal linear forms. By making a suitable orthonormal change of
variables we can assume without loss of generality that

q1(y) = c1y2
1 + c2y2

2 + . . . + cny2
n.

Consider the operator B1
def
= (c1y1∂2 − c2y2∂1) and let us apply it to polynomials of the

form qj(y)e · xk
3. We have

B1 · (qe
j · xk

3) = e · qe−1
j · xk

3 · (c1 · y1 · (∂2qj)− c2 · y2 · (∂1qj))

Thus B1 · (qe
1 · xk

3) = 0 and B1 · (qe
j · xk

3) ̸= 0 unless y1|(∂1qj) and y2|(∂2qj). For j ̸= 1,
with probability 1, this latter condition does not hold when qj is chosen randomly and
independent of q1 and so B1 · (qe

j · xk
3) ̸= 0.

D Learning Arithmetic Circuits in the Presence of Noise

In this section, we will consider the problem of learning arithmetic circuits in the pres-
ence of noise, and follow the sketch in Section 1.1. Our algorithm is given below as
Algorithm 6 and it gets the guarantees given by Theorem 14. Throughout this section,
we shall assume that all vector spaces are inner product spaces, and we will work with
appropriate orthonormal bases for the vector spaces.

58



Algorithm 6 Reconstructing the children of addition gates in the presence of noise.

Input: ( f̃ (x), s, dU, dV), where f̃ (x) ∈ R[x]=d is a polynomial, and s, dU, dV are posi-
tive integers.
Assumptions: f (x) = T1(x) + T2(x) + . . . + Ts(x) ∈ R[x]=d is a polynomial such
that each Ti(x) belongs to a circuit class C that admits operators L,B as follows:
There are vector spaces W1, W2, and a collection L of linear maps L : R[x]=d → W1,
and a collection B of linear maps B : W1 → W2 such that:

• Let U = ⟨L · f ⟩, and Ui = ⟨L · Ti⟩ for each i ∈ [s]. Then, U = U1 ⊕ · · · ⊕ Us.

• Let V = ⟨B · U⟩ = ⟨B · L · f ⟩, and Vi = ⟨B · Ui⟩ = ⟨B · L · Ti⟩ for each i ∈ [s].
Then, V = V1 ⊕ · · · ⊕ Vs.

• The decomposition of (U, V) under B is strongly unique i.e. dim(AdjU,V(B)) =
s.

The given integer inputs dU and dV are the dimensions of U and V respectively. The
polynomial f̃ (x) is such that f̃ (x) = f (x) + η(x), with ∥η∥ ≤ ϵ.
Output: T̃1, T̃2, . . . , T̃s ∈ R[x]=d such that

∥∥∥Ti − T̃i

∥∥∥ is "small" for each i ∈ [s] (upto
reordering).

1: Compute Ũ ⊆ W1 spanned by top dU left-singular vectors of M̃, the matrix with
columns (L · f̃ )L∈L.

2: Compute Ṽ ⊆ W2 spanned by top dV left-singular vectors of Ñ, the matrix with
columns (B · L · f̃ )B∈B, L∈L.

3: Run RVSD algorithm on (W1, W2, s, Ũ, Ṽ,B)40; let the output be Ũ = (Ũ1, . . . , Ũs),
where Ũ = Ũ1 ⊕ · · · ⊕ Ũs.

4: Let L̂ : R[x]=d → Wt
1 be as in Definition 2.1, where |L| = t.

For each i ∈ [s], let P̃i : W1 → W1 be the map which is identity on Ũi, zero on each
Ũj for j ̸= i, and zero on Ũ⊥.
For each i ∈ [s], let Idt ⊗ P̃i : Wt

1 → Wt
1 be the map given by Idt ⊗ P̃i · (w1, . . . , wt) =

(P̃i · w1, . . . , P̃i · wt).
For each i ∈ [s], compute T̃i = L̂† · (Idt ⊗ P̃i) · L̂ · f̃ .

5: Output T̃1, T̃2, . . . , T̃s.

Theorem 14. Let f (x) = T1(x) + T2(x) + · · ·+ Ts(x) with ∥ f ∥ = 1 be a polynomial such
that each Ti ∈ R[x]=d belongs to a circuit class C that admits operators L,B as follows.

Let W1, W2 be vector spaces, let L be a collection of linear maps L : R[x]=d → W1, and let
B be a collection of linear maps B : W1 → W2, such that:

• Let U = ⟨L · f ⟩, and Ui = ⟨L · Ti⟩ for each i ∈ [s]. Then, U = U1 ⊕ · · · ⊕ Us.

• Let V = ⟨B · U⟩ = ⟨B · L · f ⟩, and Vi = ⟨B · Ui⟩ = ⟨B · L · Ti⟩ for each i ∈ [s]. Then,
V = V1 ⊕ · · · ⊕ Vs.

• The decomposition of (U, V) under B is strongly unique i.e. dim(AdjU,V(B)) = s.

Consider the following:

40See Remark 11 for the parameter τ ∈ (0, 1)

59



• Let U = (U1, . . . , Us), V = (V1, . . . , Vs). Let dU = dim(U), dV = dim(V), and let
d∗ = maxi∈[s] dim(Ui), d∗ = mini∈[s] dim(Ui).

• Let M and N be matrices with columns (L · f )L∈L and (B · L · f )B∈B, L∈L respectively,
and let σM,N = min

{
σdU(M), σdV (N)

}
.

• Let A be the adjoint algebra map corresponding to (U, V,B) (see Definition 4.2; consider
the restriction of maps in B to Lin(U, V)).

• Let the collections L,B be normalized such that ∥L∥2 = 1 and ∥B∥2 = 1. Further, let
L̂ (see Definition 2.1) be injective, and let κ(L) be the condition number κ(L̂).

• Let δ > 0 be arbitrary, and let θ = 106 ·
√

d∗3

d∗
· s5/2

δ

√
s + ln s2

δ · κ(U)5 · κ(L) · 1
σM,N

·
1

σ−(s+1)(A)
· ϵ < 1.

Suppose that f̃ (x) = f (x) + η(x) such that ∥η∥ ≤ ϵ. Then, Algorithm 6, on input
( f̃ , s, dU, dV), runs in time poly(nd, dim W1, dim W2), and outputs T̃1, T̃2, . . . , T̃s such that
with probability at least 1 − δ, it holds (upto reordering) that for each i ∈ [s],∥∥∥Ti − T̃i

∥∥∥ ≤ θ.

Remark 11. We note that it is possible to iterate over the parameter τ ∈ (0, 1) (which is
the input to the RVSD algorithm), and also the parameters dU, dV , s, assuming that there is a
way to check the validity of the polynomials T̃1, . . . , T̃s obtained (which is usually the case in
applications). The reader is referred to Remark 3, Remark 5, and Remark 8 for more details.

In the remainder of this section, we shall prove Theorem 14. It is not hard to see
that the runtime is poly(nd, dim W1, dim W2): we work with orthonormal bases for
all the vector spaces throughout, and also assume (without loss of generality) that all
operators in L and B are linearly independent. We will omit the details for this.

Throughout, we will be following the notation defined in in the statement of The-
orem 14. Also, let the operators L̂, B̂ be as defined in Definition 2.1.

D.1 Applying Robust Vector Space Decomposition

As defined in Algorithm 6, let M̃ and Ñ be the matrices whose columns are (L · f̃ )L∈L
and (B · L · f̃ )B∈B, L∈L respectively. Let Ũ (resp. Ṽ) be the vector space spanned by the
top dU (resp. dV) left singular vectors of M̃ (resp. Ñ).

Lemma D.1.
dist(U, Ũ) ≤ 2ϵ

σdU(M)
.

dist(V, Ṽ) ≤ 2ϵ

σdV (N)
.

Proof. Observe that U (resp. V) is the column space of the matrix M (resp. N). Then,
by Corollary A.1,

dist(U, Ũ) ≤
2
∥∥∥M − M̃

∥∥∥
2

σdU(M)
, dist(V, Ṽ) ≤

2
∥∥∥N − Ñ

∥∥∥
2

σdV (N)
.

60



Further, we have∥∥∥M − M̃
∥∥∥2

F
= ∑

L∈L

∥∥∥L · ( f − f̃ )
∥∥∥2

=
∥∥L̂ · η

∥∥2 ≤ ∥L∥2
2 · ∥η∥2 ≤ ∥L∥2

2 · ϵ2 = ϵ2.

Similarly,∥∥∥N − Ñ
∥∥∥2

F
= ∑

B∈B
∑

L∈L
∥B · L · η∥2 ≤ ∑

L∈L
∥B∥2

2 · ∥L · η∥2 ≤ ∥B∥2
2 · ∥L∥

2
2 · ϵ2 = ϵ2.

Now, suppose that the output of the RVSD algorithm is Ũ = (Ũ1, . . . , Ũs). Then,
Lemma D.1, along with Corollary 4.1 gives the following: For any δ > 0, with proba-
bility at least 1 − δ, we have (upto reordering) that for each i ∈ [s],

dist(Ui, Ũi) ≤ 15000 ·

√
d∗3

d∗
· s2

δ

√
s + ln

s2

δ
· κ(U)3 · 1

σM,N
· 1

σ−(s+1)(A)
· ϵ

def
= γ.

Further, assuming that 2γ
√

s · κ(U) < 1, we know Ũ = Ũ1 ⊕ · · · ⊕ Ũs; note that this
assumption follows from the assumption that θ < 1 in the theorem statement.

D.2 Recovering the Polynomials

It remains to analyze the final step of the algorithm. We shall assume that γ
√

s · κ(U) <
1/4 (which follows from the assumption that θ < 1 in the theorem statement).

For each i ∈ [s], let Pi : W1 → W1 (resp. P̃i) be the map which is identity on Ui
(resp. Ũi), zero on each Uj (resp. Ũj) for j ̸= i, and zero on U⊥ (resp. Ũ⊥); note that
these exist since U = U1 ⊕ · · · ⊕ Us and Ũ = Ũ1 ⊕ · · · ⊕ Ũs.

Suppose that |L| = t (that is, L has t operators). For each i ∈ [s], let Idt ⊗ Pi : Wt
1 →

Wt
1 (resp. Idt ⊗ P̃i) be the map given by Idt ⊗ Pi · (w1, . . . , wt) = (Pi · w1, . . . , Pi · wt)

(resp. Idt ⊗ P̃i · (w1, . . . , wt) = (P̃i · w1, . . . , P̃i · wt)).

Lemma D.2. For all i ∈ [s], it holds that

∥Pi∥2 ≤ κ(U),
∥∥∥Pi − P̃i

∥∥∥
2
≤ 14γ

√
s · κ(U)2.

Proof. Without loss of generality, we assume W = Rn with the usual inner product.
For each i ∈ [s], let di = dim(Ui); by the canonical decomposition (Theorem 6), we find
an orthonormal basis ui,1, . . . , ui,di ∈ Rn of Ui and ũi,1, . . . , ũi,di ∈ Rn of Ũi. Let MU ∈
Rn×dU (resp. MŨ) be the U (resp. Ũ)-associated matrix with columns (ui,j)i∈[s],j∈[di]

(resp. (ũi,j)i∈[s],j∈[di]
). Then, by the properties of the canonical decomposition, we have∥∥MU − MŨ

∥∥
2 ≤ 2γ

√
s (note that this is essentially the same as Claim E.1).

Now, let Λi ∈ RdU×dU be a diagonal matrix defined as follows: let the dU diagonal
elements be split into s groups, of sizes d1, . . . , ds respectively; define Λi to have all
ones in the ith group, and zero otherwise. Then, we can write Pi = MU · Λi · M†

U and
P̃i = MŨ · Λi · M†

Ũ
. This gives us

1.
∥Pi∥2 ≤ κ(MU) · ∥Λi∥2 = κ(U) · 1.

61



2. We assumed that 2γ
√

s ≤ 1
2κ(U)

≤ σd(MU)
2 < 1. Then,

∥∥MŨ

∥∥
2 ≤ ∥MU∥2 +

2γ
√

s ≤ 2 ∥MU∥2. Further, by Corollary A.2, we get∥∥∥Pi − P̃i

∥∥∥
2
≤
∥∥∥(MU − MŨ) · Λi · M†

U

∥∥∥
2
+
∥∥∥MŨ · Λi · (M†

U − M†
Ũ)
∥∥∥

2

≤
∥∥MU − MŨ

∥∥
2 · ∥Λi∥2 ·

∥∥∥M†
U

∥∥∥
2
+
∥∥MŨ

∥∥
2 · ∥Λi∥2 ·

∥∥∥M†
U − M†

Ũ

∥∥∥
2

≤ 2γ
√

s · 1 · 1
σd(MU)

+ 2 ∥MU∥2 · 1 · 3 · 2γ
√

s
σd(MU)2 .

≤ 2γ
√

s
σd(MU)

+
12γ

√
s · κ(U)

σd(MU)
≤ 14γ

√
s · κ(U)2.

Proof of Theorem 14. Fix any i ∈ [s]. Observe that for each L ∈ L, we have L · Ti =
Pi · L · Ti = Pi · (L · T1 + · · ·+ L · Ts) = Pi · L · f . Hence, L̂ · Ti = (Idt ⊗ Pi) · L̂ · f , and
since L̂ is injective,

Ti = L̂† · (Idt ⊗ Pi) · L̂ · f .

This gives us∥∥∥Ti − T̃i

∥∥∥
2
=
∥∥∥L̂† · (Idt ⊗ Pi) · L̂ · f − L̂† · (Idt ⊗ P̃i) · L̂ · f̃

∥∥∥
2

≤
∥∥∥L̂†

∥∥∥
2
·
∥∥∥(Idt ⊗ Pi) · L̂ · f − (Idt ⊗ P̃i) · L̂ · f̃

∥∥∥
2

≤
∥∥∥L̂†

∥∥∥
2
·
(∥∥∥(Idt ⊗ Pi) · L̂ · ( f − f̃ )

∥∥∥
2
+
∥∥∥(Idt ⊗ Pi − Idt ⊗ P̃i) · L̂ · f̃

∥∥∥
2

)
≤ κ(L) ·

(
∥Idt ⊗ Pi∥2 ·

∥∥∥ f − f̃
∥∥∥

2
+
∥∥∥Idt ⊗ Pi − Idt ⊗ P̃i

∥∥∥
2
·
∥∥∥ f̃
∥∥∥

2

)
= κ(L) ·

(
∥Pi∥2 ·

∥∥∥ f − f̃
∥∥∥

2
+
∥∥∥Pi − P̃i

∥∥∥
2
·
∥∥∥ f̃
∥∥∥

2

)
≤ κ(L) ·

(
κ(U) · ϵ + 14γ

√
s · κ(U)2 · 2

)
≤ 30 · κ(L) · γ

√
s · κ(U)2.

Here we used Lemma D.2,
∥∥∥ f̃
∥∥∥ ≤ ∥ f ∥+ ∥η∥ ≤ 1 + ϵ ≤ 2, and γ > ϵ. Plugging in the

value of γ, we get the desired result.

E Analysis of the RRSM Algorithm

In this section, we will analyze our algorithm for the Robust Recovery from Scaling
Maps problem, and prove Theorem 4.

In the following subsections, first we fix some notation, and give a simple proof of
Lemma 3.1. Then, we will show some general properties about random matrices in
the space of scaling maps. We analyze the algorithm in Section E.5. Finally, we prove
the direct sum property in Section E.6.

E.1 Notation

Let U = (U1, . . . , Us) be an independent s-tuple of subspaces of W, and U = U1 ⊕
U2 ⊕ . . . Us ⊆ W. Let dim(W) = n, dim(Ui) = di, and dim(U) = d = d1 + . . . ds. Let

62



d∗ = maxi∈[s] dim(Ui) and d∗ = mini∈[s] dim(Ui). Since the algorithm is invariant to
an orthogonal basis change, for the sake of the analysis, we can assume W = Rn with
the canonical inner product.

Let M ∈ Rn×d be a U-associated matrix whose first d1 columns form an orthonor-
mal basis of U1, the next d2 columns form an orthonormal basis of U2, and so on. In
particular, we have κ(U) = κ(M).

For λ = (λ1, . . . , λs)⊤ ∈ Rs, define Λ(λ) = diag(λ1, . . . , λ1︸ ︷︷ ︸
d1 times

, . . . , λs, . . . , λs︸ ︷︷ ︸
ds times

) ∈ Rd×d.

For each i ∈ [s], let Pi = M · Λ(ei) · M† ∈ Rn×n, where ei ∈ Rs is the vector whose
ith coordinate is 1 and all other coordinates are 0. That is, the matrix Pi corresponds to
the linear map which is identity on Ui, and zero on each Uj for j ̸= i, and zero on U⊥.
Then, the matrices (P1, . . . , Ps) form a basis of the space S = S(U) ⊆ Rn×n of scaling
maps (when extended to Rn×n appropriately; see Definition 3.1 and Definition 3.2).

We define vec : Rn×n → Rn2
to be the linear operator that maps n × n matrices

to their corresponding flattened out matrix in Rn2
. Let M̂ ∈ Rn2×s be a matrix whose

columns are vec(P1), . . . , vec(Ps) (see Definition 3.2).

The algorithm has access to a subspace Ũ ⊆ Rn, and S̃ ⊆ Rn×n such that dist(S, S̃) ≤ ϵ,
and dist(U, Ũ) < 1. Assuming ϵ < 1, we know that dim(Ũ) = d and dim(S̃) = s.

E.2 Condition Number Relations

Now that we have established some notation, we begin by giving a simple proof of
Lemma 3.1

Recall that M̂ ∈ Rn2×s is the matrix whose columns are vec(P1), . . . , vec(Ps), where
for each i ∈ [s], Pi = M · Λ(ei) · M† ∈ Rd×d. Then, we have for each λ ∈ Rs,∥∥M̂λ

∥∥
2 =

∥∥∥M · Λ(λ) · M†
∥∥∥

F
≤ κ(M) · ∥Λ(λ)∥F ≤ κ(M) ·

√
max
i∈[s]

di · ∥λ∥2 ,

∥∥M̂λ
∥∥

2 =
∥∥∥M · Λ(λ) · M†

∥∥∥
F
≥
√

∑
i∈[s]

diλ
2
i ≥

√
min
i∈[s]

di · ∥λ∥2 .

The inequality in the second line above follows from Proposition A.1.

In particular, we get that
∥∥M̂

∥∥
2 ≤ κ(M) ·

√
maxi∈[s] di, and κ(M̂) ≤ κ(M) ·

√
maxi∈[s] di
minj∈[s] dj

.

E.3 Canonical Decomposition and Random Sampling

Now, we start analyzing the algorithm. Observe that the algorithm, in the first step,
choose a random matrix Ã ∈ S̃. Using the canonical decomposition, we show that
such a random matrix can be coupled with a random matrix A ∈ S, in a natural way.

Let k = s − dim(S ∩ S̃). Then, by Theorem 6, we can find an orthonormal basis
E1, . . . , Es, F1, . . . , Fk, H1, . . . , Hn2−(r+k) of Rn×n, and π

2 ≥ θ1 ≥ · · · ≥ θk > 0 such that:

1. E1, . . . , Es form an orthonormal basis of S.

63



2. For i ∈ [k], let Ẽi = cos(θi) · Ei + sin(θi) · Fi, and for i ∈ [s] \ [k], let Ẽi = Ei. Then,
Ẽ1, . . . , Ẽs form an orthonormal basis of S̃.

3. sin(θ1) = dist(S, S̃) ≤ ϵ.

Under the above decomposition, we can couple random elements of S and S̃, as
follows:

Definition E.1. (Coupled Random Matrices) Let α = (α1, . . . , αs) ∈ Rs, with each
αi ∈ N (0, 1) chosen independently. Let β = (β1, . . . , βs) ∈ Rs, with βi = αi/ ∥α∥2 for
each i ∈ [s]. Define A = ∑s

i=1 βiEi ∈ S and Ã = ∑s
i=1 βiẼi ∈ S̃.

Note that these satisfy ∥A∥F =
∥∥∥Ã
∥∥∥

F
= 1 almost surely.

Observe that the distribution of the matrix Ã is independent of the choice of the
orthonormal basis for S̃, and so the algorithm, in the first step, samples Ã from the
same distribution.

Lemma E.1. ∥∥∥A − Ã
∥∥∥

F
≤ 2ϵ.

Proof. This follows from Theorem 6 after observing that the relevant norm on Rn×n is
the Frobenius norm.

E.4 Bounding the Spectral Gap

As we will see later, the correctness of the algorithm depends on the gap between the
eigenvalues of Â being large, and in this subsection we shall establish this fact.

Let E ∈ Rn2×s be the matrix whole columns are given by vec(E1), . . . , vec(Es).
Recall that M̂ ∈ Rn2×s is a matrix whose columns are vec(P1), . . . , vec(Ps).

Let β be as in Definition E.1, and let λ = (λ1, . . . , λs)⊤ be such that Eβ = vec(A) =
vec

(
M · Λ(λ) · M†) = M̂λ, or equivalently, λ = M̂†Eβ. Define

Gap(λ) def
= min

{
min

i,j∈[s],i ̸=j

∣∣λi − λj
∣∣ , min

i∈[s]
|λi|
}

.

Lemma E.2. For any δ > 0, it holds that

Pr

Gap(λ) ≤ δ

6 ·
∥∥M̂

∥∥
2 · s2

√
s + ln s2

δ

 ≤ δ.

Proof. For each i ∈ [s], let ei ∈ Rs be the vector whose ith coordinate is 1 and all other
coordinates are 0. Then, for each i, j ∈ [s], i ̸= j, it holds that

|λi| = e⊤i M̂†Eβ,
∣∣λi − λj

∣∣ = (ei − ej)
⊤M̂†Eβ.

Now, observe that

1. For each i, j ∈ [s], i ̸= j,∥∥∥e⊤i M̂†E
∥∥∥

2
≥ σs(M̂†E),

∥∥∥(ei − ej)
⊤M̂†E

∥∥∥
2
≥

√
2σs(M̂†E) ≥ σs(M̂†E).

64



2. Observe that E, M̂ ∈ Rn2×s are both rank s matrices, each with column space S.
Hence, by Lemma A.1, we have

σs(M̂†E) =
1∥∥∥(M̂†E)
)−1
∥∥∥

2

=
1∥∥E⊤M̂
∥∥

2

≥ 1∥∥E⊤
∥∥

2 ·
∥∥M̂

∥∥
2

=
1∥∥M̂
∥∥

2

.

Then, the result follows from Lemma A.10, and a union bound over the s(s+ 1)/2 ≤ s2

inequalities.

From now on, we shall consider fixed δ > 0, and fixed λ1, . . . , λs, and assume that
Gap(λ) > δ

6·∥M̂∥2
·s2
√

s+ln s2
δ

(by Lemma E.2, this occurs with probability at least 1 − δ).

E.5 Analysis of the Algorithm

E.5.1 Action on The Space of Scaling Maps

We consider matrices Â, ˆ̃A ∈ Rn2×n2
as follows: these are the matrices corresponding

to the linear maps defined in Definition 3.3 and Definition 3.4 (and extending the maps
to be zero on S⊥, S̃⊥ respectively), under the usual flattening of matrices by the map
vec. Formally, we have that for each B ∈ Rn×n,

Â · vec(B) = vec
(
ProjS(A · ProjS(B))

)
,

ˆ̃A · vec(B) = vec
(

ProjS̃(Ã · ProjS̃(B))
)

,

where ProjS, ProjS̃ : Rn×n → Rn×n are the orthogonal projections onto S, S̃ respec-
tively.

Lemma E.3. ∥∥∥Â − ˆ̃A
∥∥∥

2
≤ 4ϵ.

Proof. For each B ∈ Rn×n, we have∥∥∥( ˆ̃A − Â) · vec(B)
∥∥∥

2
=
∥∥∥ProjS(A · ProjS(B))− ProjS̃(Ã · ProjS̃(B))

∥∥∥
F

≤
∥∥(ProjS − ProjS̃)(A · ProjS(B))

∥∥
F +

∥∥∥ProjS̃((A − Ã) · ProjS(B))
∥∥∥

F

+
∥∥∥ProjS̃(Ã · (ProjS − ProjS̃)(B))

∥∥∥
F

.

Then, using that
∥∥ProjS − ProjS̃

∥∥
2 = dist(S, S̃) ≤ ϵ, and Lemma E.1, we have for

∥B∥F = 1 that ∥∥∥( ˆ̃A − Â) · vec(B)
∥∥∥

2
≤ ϵ + 2ϵ + ϵ = 4ϵ.

65



E.5.2 Perturbation Bound

Let γ
def
= 300 · κ(M̂) ·

∥∥M̂
∥∥2

2 · s2
√

s + ln s2

δ · ϵ
δ be such that γ < 1, or else Theorem 4 holds

trivially. Let η
def
= 100 · κ(M̂) ·

∥∥M̂
∥∥

2 · s2
√

s + ln s2

δ · ϵ
δ . Then, we have η ≤ γ

3∥M̂∥2
< 1,

since
∥∥M̂

∥∥
2 ≥ ∥P1∥F ≥ 1.

Following Definition 3.3, we can write

Â = M̂ · diag(λ1, . . . , λs) · M̂†.

This shows that Â has exactly s distinct non-zero eigenvalues (each with multiplicity
one), which are equal to λ1, . . . , λs, and these have eigenvectors vec(P1), . . . , vec(Ps)
respectively.

Lemma E.4. 1. The matrix ˆ̃A ∈ Rn2×n2
has s non-zero, distinct eigenvalues, each of which

is real and occurs with multiplicity 1. The eigenvalue 0 occurs with multiplicity n2 − s,
and so all the eigenvalues (and hence eigenvectors) are real.

2. Let vec(P̃1), . . . , vec(P̃s) ∈ Rn2
be eigenvectors of ˆ̃A corresponding to the distinct non-

zero eigenvalues, with
∥∥∥P̃i

∥∥∥
F
= 1 for each i ∈ [s]. Then, (upto reordering) for each

i ∈ [s], there exists ζi ∈ {−1, 1} such that∥∥∥∥ζiP̃i −
Pi

∥Pi∥F

∥∥∥∥
F
≤ η.

Proof. 1. Let θ > 0 be any number such that σs(M̂) ≤ θ ≤ σ1(M̂). We can write

Â = M̂′ · diag(λ1, . . . , λs, 0, . . . , 0︸ ︷︷ ︸
n2−s times

) · (M̂′)−1,

where M̂′ ∈ Rn2×n2
is the matrix whose first s columns are the same as that of

M̂, and the remaining columns are an arbitrary orthogonal basis of S⊥ with each
column having ℓ2-norm equal to θ > 0. The singular values of M̂′ are precisely
the singular values of M̂, along with the value θ which occurs as a singular value
n2 − s times. By the choice of θ, we have κ(M̂′) = κ(M̂).

Now, since κ(M̂′) · (4ϵ) < Gap(λ)/2 (which is implied by η < 1), by Lemma E.3
and Lemma A.7 we know that the eigenvalues of ˆ̃A can be written as λ̃1, . . . , λ̃n2 ∈
C such that

• For each i ∈ [s], it holds that λ̃i ∈ R, and that
∣∣λ̃i − λi

∣∣ < Gap(λ)/2. In
particular, the eigenvalues (λ̃i)i∈[s] are distinct.

• For each i ∈ [n2] \ [s], it holds that
∣∣λ̃i
∣∣ < Gap(λ)/2. In fact, since ˆ̃A is

defined to be zero on S̃⊥, we know that the eigenvalue 0 occurs with multi-
plicity at least n2 − s. Hence, each such λ̃i = 0.

The above implies the first part of the Lemma.

2. This follows directly from Lemma A.8:∥∥∥∥ζiP̃i −
Pi

∥Pi∥F

∥∥∥∥
F
≤ 4κ(M̂′) · 4ϵ

Gap(λ)
=

16κ(M̂) · ϵ

Gap(λ)
≤ η.

66



E.5.3 Recovering the Components

Fix some i ∈ [s], and let di = dim(Ui).
We know that rank(Pi) = di, and so by Lemma E.4 and Weyl’s inequality (Lemma A.3),

the first di singular values of P̃i (equal to those of ζiP̃i) are at least
σdi

(Pi)

∥Pi∥F
− η ≥ 1

∥M̂∥2
−

η, where as the remaining ones are at most η. Here, we used the following observa-
tions

1. ∥Pi∥F = ∥vec(Pi)∥2 ≤
∥∥M̂

∥∥
2.

2. σdi(Pi) ≥ 1 since the map Pi equals the identity map on the di-dimensional space
Ui.

Hence, if η < τ ≤ 1
∥M̂∥2

− η, then the algorithm sets Ũi to be the span of the left

singular vectors of P̃i (or equivalently, of ζiP̃i), corresponding to the top di singular
vectors. For instance, this happens when η ≤ 1

3 ·
1

∥M̂∥2
and 1

3 ·
1

∥M̂∥2
< τ ≤ 2

3 ·
1

∥M̂∥2
.

Then, by Lemma E.4 and Wedin’s theorem (see Corollary A.1), we get that:

dist(Ũi, Ui) ≤
2 ·
∥∥∥ζiP̃i − Pi

∥Pi∥F

∥∥∥
F

σdi

(
Pi

∥Pi∥F

) ≤ 2η · ∥Pi∥F
σdi(Pi)

≤ 2η ·
∥∥M̂

∥∥
2 ≤ γ.

E.5.4 Runtime Analysis

In this section, we analyze the runtime of the algorithm. Recall that n = dim(W), d =

dim(U) = dim(Ũ), s = dim(S) = dim(S̃), and let di = dim(Ũi). The input is given
as N = dn + sd2 field elements, consisting of an orthonormal basis of Ũ ⊆ W and an
orthonormal basis of S̃ ∈ Lin(Ũ, Ũ). The time taken by each step of the algorithm is
as follows:

1. The random map Ã ∈ S̃ can be computed as a d × d matrix in time O(sd2), by
taking a random linear combination of the basis elements of S̃.

2. The map ˆ̃A ∈ Lin(S̃, S̃) can be computed as an s × s matrix with respect to the
orthonormal basis of S̃: If the basis is s̃1, . . . , s̃s ∈ Rd×d, for i, j ∈ [s], the (i, j)th

entry of this matrix equals
〈

Ã · s̃i, s̃j

〉
F
, and can be computed in time O(dω),

where ω is the matrix multiplication constant. So the total time taken in this step
is O(s2dω).

3. The eigen-decomposition of ˆ̃A can be computed in time O(s3).

4. Computing the eigenvectors P̃1, . . . , P̃s as matrices in Rd×d, by taking appropriate
linear combinations of the S̃ basis elements takes time O(s · sd2).

5. For each i ∈ [s], the singular-value decomposition of P̃i can be computed in time
O(d3), and then computing the basis vectors of Ũi as vectors in Rn takes time
O(d · dn). Therefore, the total time to compute the basis elements for all the Ũ′

i s
is O(sd3 + sd2n).

Finally, we get that the total runtime is O(s3 + s2dω + sd3 + sd2n) = O(N5/3), using
s ≤ d ≤ n.

67



E.6 Direct Sum Property

We give a short proof of Proposition 3.1. It suffices to show that Ũ1, . . . , Ũs form a direct
sum. The sum then equals Ũ by counting dimensions; note that dim(U) = dim(Ũ)

and dim(Ui) = dim(Ũi) for each i ∈ [s].
For each i ∈ [s], by the canonical decomposition (Theorem 6), we can find an or-

thonormal basis ui,1, . . . , ui,di ∈ Rn of Ui and ũi,1, . . . , ũi,di ∈ Rn of Ũi such that for each
α1, . . . , αdi ∈ R, we have∥∥∥∥∥∑

j∈di

αjui,j − ∑
j∈di

αjũi,j

∥∥∥∥∥
2

≤ 2γ ·
√

∑
j∈[di]

α2
j .

Let N ∈ Rn×d (resp. Ñ) be the U (resp. Ũ)-associated matrix with columns
(ui,j)i∈[s],j∈[di]

(resp. (ũi,j)i∈[s],j∈[di]
).

Claim E.1. ∥∥∥N − Ñ
∥∥∥

2
≤ 2γ

√
s.

Proof. Let α ∈ Rd be indexed by i ∈ [s], j ∈ [di]. Then, we have

∥∥∥(Ñ − N) · α
∥∥∥

2
=

∥∥∥∥∥∥ ∑
i∈[s],j∈[di]

αi,j(ũi,j − ui,j)

∥∥∥∥∥∥
2

≤ ∑
i∈[s]

∥∥∥∥∥∥ ∑
j∈[di]

αi,j(ũi,j − ui,j)

∥∥∥∥∥∥
2

≤ ∑
i∈[s]

2γ ·
√

∑
j∈[di]

α2
i,j

≤ 2γ ·
√

s ·
√

∑
i∈[s],j∈[di]

α2
i,j.

Now, using Claim E.1 along with Weyl’s inequality (Lemma A.3), we get

σd(Ñ) ≥ σd(N)− 2γ
√

s ≥ 1
κ(U)

− 2γ
√

s > 0,

under the assumption 2γ
√

s · κ(U) < 1. This completes the proof.

F Analysis of the RVSD Algorithm

In this section, we will analyze Algorithm 2 and prove Theorem 5.

68



F.1 Notation

Let W1, W2 be two vector spaces with dim(W1) = n1, dim(W2) = n2. Without loss of
generality (by an orthogonal transformation), we can assume W1 = Rn1 and W2 = Rn2

with the canonical inner products on the two spaces.
Let U = (U1, . . . , Us) and V = (V1, . . . , Vs) be independent s-tuples of subspaces in

W1 and W2 respectively, and let U = U1 ⊕ U2 ⊕ . . . Us ⊆ Rn1 , V = V1 ⊕ V2 ⊕ . . . Vs ⊆
Rn2 be such that dim(U) = d1, dim(V) = d2. Let B = (B1, . . . , Bm) ∈ (Rn2×n1)

m be an
m-tuple of operators, with each Bj being the zero map on U⊥, and such that for each
i ∈ [s], it holds that ⟨B · Ui⟩ ⊆ Vi.

The algorithm has access to a subspaces Ũ ⊆ Rn1 and Ṽ ⊆ Rn2 such that dist(U, Ũ) ≤
ϵ1 and dist(V, Ṽ) ≤ ϵ2; assuming ϵ1, ϵ2 < 1, we have dim(Ũ) = d1, dim(Ṽ) = d2. We
also know B̃ = (B̃1, . . . , B̃m), with each B̃j being the zero map on Ũ⊥, such that B and

B̃ are ϵ-close: Let B̂ ∈ Rmn2×n1 (resp. ˆ̃B ∈ Rmn2×n1) be matrices formed by stacking the
rows of B1, . . . Bm (resp. B̃1, . . . B̃m). Then,

∥∥∥ ˆ̃B − B̂
∥∥∥

2
≤ ϵ

∥∥B̂
∥∥

2 (see Definition 2.1).

F.2 Perturbation Bound on the Adjoint Algebra

Let ProjU, ProjŨ ∈ Rn1×n1 and ProjV , ProjṼ ∈ Rn2×n2 denote the orthogonal projections
onto U, Ũ, V, Ṽ respectively. These also give us the orthogonal projection maps on
the spaces of linear maps, for example, ProjLin(U,U) : Rn1×n1 → Rn1×n1 is given by
ProjLin(U,U)(D) = ProjU · D · ProjU, where we think of Lin(U, U) as a subspace of
Rn1×n1 in the natural way.

Let A : Rn1×n1 × Rn2×n2 → (Rn2×n1)m be the map defined as in Definition 4.2,
extended to be the zero map on Lin(U, U)⊥ × Lin(V, V)⊥, given by

A(D, E) =
(

Bi ·
(
ProjU · D · ProjU

)
− (ProjV · E · ProjV) · Bi

)m
i=1

Letting K = ker(A). Then, we have that Adj = K ∩ (Lin(U, U)× Lin(V, V)) ⊆
Rn1×n1 × Rn2×n2 (see Definition 4.3). Here, we think of Lin(U, U) as a subspace of
Rn1×n1 , by extending each map to be zero on U⊥, and similarly we think of Lin(V, V)
as a subspace of Rn2×n2 .

Note that assuming dim(Adj) = s, we have that dim(K) = (n2
1 − d2

1) + (n2
2 − d2

2) +

s. We shall use σ−(s+1)(A) to denote (dim(K)+ 1)th smallest singular value of A (this is
also the smallest non-zero singular value). Note that this equals the value σ−(s+1)(A)
as defined in Theorem 5.

In a similar manner, we define Ã : Rn1×n1 × Rn2×n2 → (Rn2×n1)m as in Defini-

tion 4.5, extended to be the zero map on Lin(Ũ, Ũ)
⊥ × Lin(Ṽ, Ṽ)

⊥
, given by

Ã(D, E) =
(

B̃i ·
(
ProjŨ · D · ProjŨ

)
−
(
ProjṼ · E · ProjṼ

)
· B̃i

)m

i=1

Further, by Definition 4.5, letting K̃ denote the space spanned by the right singular
vectors of Ã, corresponding to the (n2

1 − d2
1) + (n2

2 − d2
2) + s smallest singular values,

we have Ãdj = K̃∩
(

Lin(Ũ, Ũ)× Lin(Ṽ, Ṽ)
)

, where again we think of Lin(Ũ, Ũ) and

Lin(Ṽ, Ṽ) as subspaces of Rn1×n1 and Rn2×n2 respectively.

69



Lemma F.1. ∥∥A− Ã
∥∥

2 ≤ 2(ϵ + ϵ1 + ϵ2) ∥B∥2 .

Proof. Let (D, E) ∈ Rn1×n1 × Rn2×n2 be such that ∥D∥2
F + ∥E∥2

F = 1. Then, by triangle
inequality, and sub-multiplicativity of Frobenius norm (see Proposition A.1), we have
that∥∥Ã(D, E)−A(D, E)

∥∥
2 ≤

∥∥∥ ˆ̃B − B̂
∥∥∥

2
· ∥D∥F

+
∥∥∥ ˆ̃B − B̂

∥∥∥
2
· ∥E∥F + 2

∥∥B̂
∥∥

2 ·
∥∥ProjŨ − ProjU

∥∥
2 · ∥D∥F + 2

∥∥B̂
∥∥

2 ·
∥∥ProjṼ − ProjV

∥∥
2 · ∥E∥F .

The lemma then follows.

Lemma F.2.

dist(K̃,K) ≤ 4(ϵ + ϵ1 + ϵ2) ∥B∥2
σ−(s+1)(A)

.

Proof. This follows from Lemma F.1 and Corollary A.1.

Lemma F.3.

dist(Ãdj, Adj) ≤ 4(ϵ + ϵ1 + ϵ2) ∥B∥2
σ−(s+1)(A)

+ 2ϵ1 + 2ϵ2 ≤ 6(ϵ + ϵ1 + ϵ2) ∥B∥2
σ−(s+1)(A)

.

Proof. We have

dist(Ãdj, Adj) = dist
(
K̃∩

(
Lin(Ũ, Ũ)× Lin(Ṽ, Ṽ)

)
,K∩ (Lin(U, U)× Lin(V, V))

)
≤ dist(K̃,K) + dist

(
Lin(Ũ, Ũ)× Lin(Ṽ, Ṽ), Lin(U, U)× Lin(V, V)

)
≤ dist(K̃,K) + dist

(
Lin(Ũ, Ũ), Lin(U, U)

)
+ dist

(
Lin(Ṽ, Ṽ), Lin(V, V)

)
.

The first term is bounded by Lemma F.2. For the second term, we observe that for any
D ∈ Rn1×n1 with ∥D∥F = 1, we have∥∥∥ProjLin(Ũ,Ũ)(D)− ProjLin(U,U)(D)

∥∥∥
2
=
∥∥ProjŨ · D · ProjŨ − ProjU · D · ProjU

∥∥
F ≤ 2ϵ1.

The third term is bounded similarly.
For the last inequality, it suffices to show that σ−(s+1)(A) ≤ ∥B∥2: For any (D, E),

with E = 0, ∥D∥F = 1, and D ∈ Lin(U1, U2) ⊆ Rn1×n1 , we have (D, E) ∈ K⊥ and so

σ−(s+1)(Ã) ≤ ∥A · (D, E)∥2 =
∥∥B̂ · D

∥∥
2 ≤

∥∥B̂
∥∥

2 = ∥B∥2 .

Note that we assumed s ≥ 2, which is without loss of generality, as in the s = 1 the
RVSD problem is trivial.

This also gives the following:

Lemma F.4.

dist(Ãdj1, Adj1) ≤
6(ϵ + ϵ1 + ϵ2) ∥B∥2

σ−(s+1)(A)
.

70



F.3 Applying RRSM and Recovering The Component Subspaces

By Theorem 4, we get the following: Let M̂ : Rs → Lin(U, U) be as defined in Defini-
tion 3.2, and suppose that τ ∈ (0, 1) satisfies that 1

3 ·
1

∥M̂∥2
< τ ≤ 2

3 ·
1

∥M̂∥2
. Then, for

any δ > 0, with probability at least 1 − δ, we get (upto reordering) that for each i ∈ [s],

dist(Ui, Ũi) ≤ 300 · κ(M̂) ·
∥∥M̂

∥∥2
2 · s2

√
s + ln

s2

δ
· 1

δ
· 6(ϵ + ϵ1 + ϵ2) ∥B∥2

σ−(s+1)(A)
.

The direct sum property Ũ = Ũ1 ⊕ · · · ⊕ Ũs follows by Proposition 3.1.

F.4 Runtime Analysis

In this section, we analyze the runtime of the Algorithm 2. Recall that n1 = dim(W1),
n2 = dim(W2), d1 = dim(U) = dim(Ũ), d2 = dim(V) = dim(Ṽ). The input is
given as N = n1d1 + n2d2 + md1d2 field elements, consisting of an orthonormal basis
of Ũ ⊆ W1 and Ṽ ⊆ W2, and a description of m-tuple B = Lin(Ũ, Ṽ)m as matrices with
respect to the above basis of Ũ and Ṽ. The time taken by each step of the algorithm is
as follows.

1. The adjoint algebra map can be computed as a (md1d2)× (d2
1 + d2

2) matrix. Set-
ting K = md1d2 · (d2

1 + d2
2), this can be done in time O(K), as each entry is simply

(±1 times) some entry of some Bj, j ∈ [m].

2. The singular value decomposition of Ã can be computed in time O(K3), from
which a basis of Ãdj can be obtained in time O(s · (d2

1 + d2
2)), and further a basis

of Ãdj1 can be obtained in time O(sd2
1).

3. Assuming we run the second algorithm for RRSM (see Algorithm 1, Theorem 4),
the last step takes time O(s3 + s2dω

1 + sd3
1 + sd2

1n1).

Finally, we get that the total runtime is O(
(
md1d2 · (d2

1 + d2
2)
)3

+ sd2
1n1) = O(N6),

using s ≤ d1 ≤ n1 and s ≤ d2 ≤ n2.

71



G Singular Values of the Adjoint Algebra Operator for
Subspace Clustering

Section B discusses the problem of Subspace Clustering and culminates in theorem 10
where the robustness of the proposed algorithm is quantified. The quantity σ−(s+1)(A)
appears in the bounds. In this section we will compute a lower bound for this quantity.

The high level procedure for getting the bound is as follows. Let U = U1 ⊕ . . . ⊕Us
and V = V1 ⊕ . . . ⊕ Vs. Since the operators B map each Ui to Vi, the action of the
adjoint algebra operator A on input matrices (D, E) ∈ Lin(U, U)× Lin(V, V) can be
separated into independent actions of smaller adjoint algebra operators Ajk acting on
matrices (Djk, Ejk) ∈ Lin(Uk, Uj)× Lin(Vk, Vj), for k, j ∈ [s]. Now, choosing a slightly
modified inner product on these smaller spaces ensures that the map AT

jkAjk can be
roughly expressed as (I − Ψjk). These new maps Ψjk depend on the scaled partial
derivative operators whose transposes turn out to be a sum of shifts. Here, we make
the crucial observation that the derivatives of shifts on a polynomial space of degree
d + 1 can be converted to shifts of derivatives on a polynomial space of degree d. This
leads to an intricate inductive argument to calculate the singular values of Ψjk by in-
duction on the degree d of the homogeneous polynomial space Uk. These singular
values naturally fetch the required singular values of A, besides also allowing us to
meaningfully relate them to the geometry of the underlying subspaces.

We prove the following theorem in the coming sections.

Theorem 15. Let A, U and V be as in theorem 10 for clustering the collection A = {a1, . . . , aN}
into subspaces ⟨A1⟩ , . . . , ⟨As⟩. For subspaces

〈
Aj
〉

, ⟨Ak⟩ with canonical angles θ1 ≥ · · · ≥
θt between them, define f jk = fd(

〈
Aj
〉

, ⟨Ak⟩) = d+1
t
[
∑t

k=1 sin2 θk + d sin2 θt
]
. Then,

σ2
−(s+1)(A) ≥

(d+1)2

κ4(U,V)
· min{σdiag, σoff-diag}

where the above quantities are defined as follows:

σdiag
def
=

√
(d+1)(t∗+d)−

√
(d+1)(t∗+d)−t∗

t∗+d ,

σoff-diag
def
= min

j ̸=k

√
(d+1)(tk+d)−

√
(d+1)(tk+d)−tk· f jk

tk+d .

Here t1, . . . , ts are the dimensions of ⟨A⟩1 , . . . , ⟨A⟩s and t∗ = maxi∈[s] ti.

Further, remark 13 provides further interpretation of the relation between the quan-
tity fd and σ−(s+1)(A). Note that in the statement of Theorem 15 we assume that
⟨U⟩ ⊆ R[x]=d+1 and ⟨V⟩ ⊆ R[x]=d.

G.1 Adjoint Algebra Operators corresponding to Partial Derivatives
on Tensored Spaces

We will begin by estimating the singular values of the adjoint algebra operator corre-
sponding to a simplified subspace clustering instance when s = 1 (refer to section 1.3).

72



This means that we study the relevant operators on homogeneous polynomial spaces
like R[x]=d, instead of a direct sum of many such spaces. As mentioned in the section
overview, we will eventually relate the operators on the summed spaces to simpler
operators which we will study here. We will take the aid of a special inner product to
ease our calculations.

G.1.1 Matrix Representations of Derivatives and Shifts

Let W =
[
w1 . . . wm

]
, where wi ∈ Rn be a matrix with orthonormal columns. Given

the set of variables x = (x1, . . . , xn) and positive integer d define the following:

y def
= WT · x a new set of variables,

U def
= R[y]=d+1 of dimension m(d+1) = (m+d

d+1 ),

V def
= R[y]=d of dimension m(d) = (m+d−1

d ). (12)

For i ∈ [n] we would like to compute the matrix representation of the scaled partial
derivatives {Li} =

{
∂i

d+1

}
on U with respect to xis.

Let {pα}α and {qβ}β be the Bombieri basis of U and V respectively with respect to
the variables y. Note here that

(Li)βα =
〈
qβ, Li pα

〉
= 1

d+1

√
(d+1)!

α!

〈
qβ, ∂iyα

〉
=
√

d!
α!(d+1)

〈
qβ,

m

∑
j=1

αjyα−jwji

〉
,

where wji is the i-th coordinate of wj. Now, note that given α and β there may exist a
j for which αk = βk for k ̸= j, and αj = β j + 1. This condition is compactly written as
α = β ∪ j or β = α − j. In this case, such a j is unique. If no such j exists, yβ and yα−j

are orthogonal. This gives the matrix representation of Li as

(Li)βα =

{
wji

√
αj

d+1 if ∃j ∈ [m] such that α = β ∪ j,

0 otherwise.
(13)

Using the above representation we can find the action of LT
i on qβ as follows:

LT
i qβ = ∑

α

(LT
i )αβ · pα =

m

∑
j=1

wji

√
β j+1
d+1 · pβ∪j =

m

∑
j=1

wjiyj · qβ

=⇒ LT
i qβ =

(
m

∑
j=1

wjiyj

)
qβ. (14)

Now, to distinguish the scaled partial derivatives acting on U and V we denote
them L̄i and

¯
Li respectively. Then for any q ∈ V we have(

L̄i L̄T
j

)
q =

∂i

d + 1

(
m

∑
k=1

wkjyk · q

)

=
1

d + 1

[
m

∑
k=1

wkj wki · q +
m

∑
k=1

wkjyk · ∂iq

]

=

[
rij

d + 1
+

d
d + 1 ¯

LT
j ¯

Li

]
q,

73



where rij
def
= ∑m

k=1 wkjwki. Further, for any monomial yα and the operator Li (irrespec-
tive of the degree of its polynomial domain) we have.(

n

∑
i=1

LT
i Li

)
yα =

m

∑
j=1

n

∑
i=1

αjwji · LT
i yα−j

=
1

d + 1

m

∑
j,k=1

αjyα−j+k

(
n

∑
i=1

wjiwki

)

=
1

d + 1

m

∑
j=1

αjyα

= yα.

Hence the above equations give the following:

L̄i L̄T
j =

rij

d + 1
I +

d
d + 1 ¯

LT
j ¯

Li and
n

∑
i=1

LT
i Li = I. (15)

Subsequently, we use the above identities with appropriate dimensions to get

n

∑
i=1

L̄i L̄T
i =

I
d + 1

n

∑
i=1

rii +
d

d + 1

n

∑
i=1 ¯

LT
i ¯

Li =
m + d
d + 1

I =
m(d+1)

m(d)
I. (16)

The above relations will turn out to be crucial in the following sections for the
singular value analysis of relevant operators.

G.1.2 Adjoint Algebra Operator in a Special Inner Product

Let x, y be vectors in an arbitrary l-dimensional vector space H. Then for positive
numbers t1, . . . , tl, the bilinear map

⟨x, y⟩τ
def
=

l

∑
i=1

xi · yi

ti
(17)

defines an inner product. The following lemma builds on this special inner product.

Lemma G.1. Let A ∈ Lin(H, H). Let τ1(A), . . . , τl(A) denote the singular values of A with
respect to the special inner product as defined in equation 17. Then for all i ∈ [l]

t∗
t∗

σ2
i (A) ≤ τ2

i (A) ≤ t∗

t∗
σ2

i (A).

where t∗ = mini ti and t∗ = maxi ti. The above inequality is tight.

Proof. Let us first prove the above inequality for the largest singular values σ1(A) and
τ1(A). For any vector x ∈ H let ∥x∥τ denote its norm that arises from the special inner
product. Then

∥x∥2
τ =

l

∑
i=1

x2
i

ti
.

74



As all the numbers involved above are positive we immediately get the inequality

∥x∥2

t∗
≤ ∥x∥2

τ ≤ ∥x∥2

t∗
.

Then observe that

∥Ax∥2
τ ≤ 1

t∗
∥Ax∥2 ≤ 1

t∗
σ2

1 (A) ∥x∥2 ≤ t∗

t∗
σ2

1 (A) ∥x∥2
τ .

Similarly we also get ∥Ax∥2 ≤ t∗
t∗ τ2

1 (A) ∥x∥2. These two inequalities give us

t∗
t∗

σ2
1 (A) ≤ τ2

1 (A) ≤ t∗

t∗
σ2

1 (A). (18)

In order to prove the inequality for other singular values we rely on the following
characterisation of the (i + 1)-st singular value.

σi+1(A) = min
B : rank(B)=i

σ1(A − B).

The above holds for all inner products. Pick any i ≥ 1. Let B be the matrix of rank
i that minimizes the above for τi+1(A). Then using equation 18 we get

σ2
i+1(A) ≤ σ2

1 (A − B) ≤ t∗
t∗

τ2
1 (A − B) = τ2

i+1(A).

A similar strategy obtains the inequality τ2
i (A) ≤ t∗

t∗ σ2
i (A). This proves the required

inequality.

To show tightness it is sufficient to show the tightness of equation 18. Without loss
of generality assume that t∗ = t1 and t∗ = tl. Consider a matrix A with σ1(A) = 1
which maps the canonical basis vector e1 to el. Then

∥Ae1∥2
τ

∥e1∥2
τ

=
t1

tl
=⇒ τ2

1 (A) ≥ t1

tl
=

t1

tl
σ2

1 (A).

Similarly considering a matrix A with τ1(A) = 1 which maps the vector
√

tlel to
√

t1e1
we get

∥Ael∥2

∥el∥2 =
t1

tl
=⇒ σ2

1 (A) ≥ t1

tl
=

t1

tl
τ2

1 (A).

This completes the proof of the lemma.

Now, we will adopt the special inner product to the context of our polynomial
spaces. Let W = [w1 . . . wm] and Ω = [ω1 . . . ωt] be two matrices with orthonormal
columns with wi, ωi ∈ Rn. The set of variables y and z are defined as as y = WT · x
and z = ΩT · x. Further,

U1 = R[y]=d+1, V1 = R[y]=d,

U2 = R[z]=d+1, V2 = R[z]=d. (19)

75



And, for i ∈ [n], the collections {Li1} and {Li2} are scaled partial derivatives (with
respect to x) on the spaces U1 and U2 respectively. That is

Li1 =
∂i

d + 1

∣∣∣∣
U1

and Li2 =
∂i

d + 1

∣∣∣∣
U2

.

Imitating the definition 17 we define the special inner product ⟨·, ·⟩τ on a space of
linear operators by scaling the standard inner product by the dimension of the domain.
For example, for E1, E2 in Lin(V2, V1), the inner product is given by

⟨E1, E2⟩τ =
⟨E1, E2⟩
dim V2

=
⟨E1, E2⟩

t(d)
. (20)

For this inner product on a sum of spaces of linear operators, we scale each component
as above. For example, for the space Lin(U2, U1)× Lin(V2, V1), we have

⟨(D1, E1), (D2, E2)⟩τ = ⟨D1, D2⟩τ + ⟨E1, E2⟩τ =
⟨D1, D2⟩

t(d+1)
+

⟨E1, E2⟩
t(d)

. (21)

With the above inner product in place, we can define a new operator Φ which we
will see is closely connected to the adjoint algebra operator. Let

Φ : Lin(V2, V1) → Lin(U2, U1) with Φ(E) def
=

n

∑
i=1

LT
i1ELi2. (22)

We can calculate the adjoint of this map with respect to the inner product defined
above as done below:

Tr Φ∗(D)TE = dim V2 · ⟨Φ∗(D), E⟩τ

= dim V2 · ⟨D, Φ(E)⟩τ

=
dim V2

dim U2
· Tr

n

∑
i=1

(
Li1DLT

i2

)T
E.

This yields that

Φ∗(D) =
t(d)

t(d+1)

n

∑
i=1

Li1DLT
i2. (23)

Now recall that the adjoint algebra map A : Lin(U2, U1)×Lin(V2, V1) → Lin(U2, V1)
n

is given by
A(D, E) = (L11D − EL12, . . . , Ln1D − ELn2) .

Quickly note here that when W = Ω, that is, Li1 = Li2 for all i ∈ [n], we have A(I, I) =
0. Thus, the bottom singular value of A is 0 in this case. Going forward we analyze the
other singular values by looking at the eigenvalues of ATA. We note that

∥A(D, E)∥2
F =

n

∑
i=1

∥Li1D − ELi2∥2
F

= Tr DT

[
n

∑
i=1

LT
i1Li1

]
D + Tr ETE

[
n

∑
i=1

Li2LT
i2

]

− Tr DT

[
n

∑
i=1

LT
i1ELi2

]
− Tr ET

[
n

∑
i=1

Li1DLT
i2

]

= t(d+1)

〈[
E
D
]

,

[
I

t(d+1) 0
0 I

t(d)

] [
I −Φ

−Φ∗ I

] [
E
D
]〉

,

76



where the map Φ is as defined in definition 22 and its adjoint Φ∗ is taken according to
the special inner product as defined in 23. Renaming (D, E) to X and giving appropri-
ate names to the matrices appearing in the above equality, we obtain〈

X,ATAX
〉
= t(d+1)⟨X, ΥΨX⟩,

where Υ is the diagonal matrix. Note here that the matrix ΥΨ is Hermitian in the
standard inner product. This gives us

ATA = t(d+1)ΥΨ.

Let τi(Φ) and τ−i(Φ) be used to index the singular values of Φ in decreasing and in-
creasing orders respectively. From here we obtain the crucial relation between σ−i(A)
and τi(Φ) as follows:

σ2
−i(A) = σ−i(A

TA)

≥ t(d+1) σ−1(Υ) σ−i(Ψ)

≥
(

t(d)
t(d+1)

)1/2

τ−i(Ψ)

=⇒ σ2
−i(A) ≥

√
d+1
t+d (1 − τi(Φ)) . (24)

Here we have used lemma G.1 and the following facts. For any two matrices A, B we
have σi(AB) ≥ σ−1(A)σi(B). And the eigenvalues of the Hermitian matrix Ψ (with
respect to the special inner product)is the set {1 ± τi(Φ)}.

G.1.3 Singular Values of the Φ Operator

We immediately delve into finding τi(Φ) following the definition of ⟨·, ·⟩τ in 20 and Φ
in 22. Recall that U1, V1 and U2, V2 are homogeneous polynomial spaces with respect
to the variables y and z defined by the matrices W and Ω respectively, as given in 19.

The map Φ is defined on Lin(V2, V1) which are linear maps on spaces of homoge-
neous polynomials of degree d. To emphasize this dependence on the degree we call
Φ as Φd, and subsequently, for different ds the domain and the co-domain of the map
Φd changes. In this spirit, to distinguish the scaled derivatives of larger and smaller
spaces we imitate the notation in 15 as follows:

L̄i1 =
∂i

d + 1

∣∣∣∣
U1

, L̄i2 =
∂i

d + 1

∣∣∣∣
U2

,
¯
Li1 =

∂i

d

∣∣∣∣
V1

,
¯
Li2 =

∂i

d

∣∣∣∣
V2

.

Therefore the above scaled derivatives define different Φ maps as follows:

Φd(E) =
n

∑
i=1

L̄T
i1EL̄i2 and Φd−1(E) =

n

∑
i=1 ¯

LT
i1E

¯
Li2.

These identifications allow an inductive approach to calculate the relevant singular
values, inspired by the inductive argument in recent works on analyzing eigenvalues
for random walks on simplicial complexes (e.g. [ALGV19]).

77



Lemma G.2. Let WTΩ = diag(cos θ1, . . . , cos θt) (appended with 0s if necessary) where
θ1, . . . , θt are the canonical angles between ⟨W⟩ and ⟨Ω⟩ according to remark 7. Let fd (⟨W⟩ , ⟨Ω⟩)
= d+1

t
[
∑t

k=1 sin2 θk + d sin2 θmin
]

and g(W, Ω) = 1
t ∑t

k=1 cos2 θk. Then the top m · t sin-
gular values of Φd (with respect to the inner product defined in 20) are given by

τ2
i (Φd) ≤ 1 − 1

d + 1
t

t + d

[
g + fd − τ2

i (Φ0)
]

.

Further, if W = Ω, then the above inequality is an equality with g = 1 and fd = 0.

Proof. We proceed with induction on d. Define operators Φ∧
d and Φ∨

d on Lin (V2, V1) as
follows:

Φ∨
d = Φd−1Φ∗

d−1 and Φ∧
d = Φ∗

dΦd.

Then, using the definition of Φ∗ from 23 we can write Φ∨
d and Φ∧

d as follows:

Φ∨
d (D) =

d
t + d − 1

n

∑
i,j=1 ¯

LT
i1 ¯

Lj1D
¯
LT

j2 ¯
Li2 and Φ∧

d (D) =
d + 1
t + d

n

∑
i,j=1

L̄i1 L̄T
j1DL̄j2 L̄T

i2.

Recalling the relation for converting derivatives of shifts to shifts of derivatives from
15, we obtain

(d + 1)(t + d)Φ∧
d (D) =

n

∑
i,j=1

(
rij I + d

¯
LT

j1 ¯
Li1

)
D
(

qij I + d
¯
LT

i2 ¯
Lj2

)
=

n

∑
i,j=1

[(
rij · qij

)
D + d · qij

(
¯
LT

j1 ¯
Li1

)
D + d · rij · D

(
¯
LT

i2 ¯
Lj2

)
+ d2

(
¯
LT

j1 ¯
Li1D

¯
LT

i2 ¯
Lj2

)]
= (tg · D + GD + DH) + d(t + d − 1)Φ∨

d (D), (25)

where the involved quantities are defined as follows:

rij = ∑
k∈[m]

wkiwkj, qij = ∑
k∈[t]

ωkiωkj, G = d
n

∑
i,j=1

qij · ¯
LT

j1 ¯
Li1 and H = d

n

∑
i,j=1

rij · ¯
LT

i2 ¯
Lj2,

which further yields the following relation used above:

n

∑
i,j=1

rijqij =
m

∑
k=1

n

∑
i,j=1

(wkiωki)(wkjωkj) =
m

∑
k=1

⟨wk, ωk⟩2 =
t

∑
k=1

cos2(θk) = tg.

Now, we express the matrices G and H in terms of the canonical angles θks. Use
the matrix representation of

¯
Lj1 from 13 to obtain(

n

∑
j=1

ωkj ¯
Lj1

)
βα

=
n

∑
j=1

ωkjwl j

√
αl
d

=

⟨ωk, wl⟩
√

αl
d only when ∃l such that α = β ∪ l, and 0 otherwise,

cos θk

√
αk
d only when α = β ∪ k, and 0 otherwise.

78



From here, observe that G can also be written as

G = d
n

∑
i,j=1

qij · ¯
LT

j1 ¯
Li1 = d

m

∑
k=1

(
n

∑
j=1

ωkj ¯
Lj1

)T ( n

∑
j=1

ωkj ¯
Lj1

)
.

Plugging the appropriate quantities calculated above, and calculating similarly for H,
we get

G = diag

{
m

∑
k=1

αk cos2 θk

}
α

and H = diag

{
t

∑
k=1

γk cos2 θk

}
γ

where αs and βs are multi-indices for the basis of d-degree homogeneous polynomials
on m and t variables respectively.

Now, computing the i-th singular value from the equation 25, we get the following
recurrence relation:

(d + 1)(t + d) · τi(Φ
∧
d ) ≤ tg + ∥G∥+ ∥H∥+ d(t + d − 1) · τi(Φ

∨
d )

=⇒ (d + 1)(t + d) · τ2
i (Φd) ≤ tg + 2d cos2 θmin + d(t + d − 1) · τ2

i (Φd−1).

Solving the above recurrence yields the required result. In the case when W = Ω, we
have θk = 0 for all k, implying G = H = dI and g = 1. Now, as Φ∧

d and Φ∧
d−1 differ by

a scaled identity, they are both diagonalizable in the same basis, and hence we get the
following exact relation:

(t + d)(d + 1) · Φ∧
d = (t + 2d) · I + (t + d − 1) · Φ∨

d .

Computing the singular values from the above recurrence gives the required result for
this case. This completes the proof of the lemma.

Base case. Note that Φ0 is a map defined as Φ0 : R → Rt×m such that

Φ0(c) · p = c
n

∑
i=1

LT
i1Li2 · p

= c
n

∑
i=1

m

∑
k=1

t

∑
j=1

wjiωki pkyj

= c
m

∑
j=1

[
t

∑
k=1

〈
wj, ωk

〉
pk

]
yj

= c · WTΩ · p

Therefore, with respect to our scaled inner product, we obtain

τ2
1 (Φ0) =

1
t

∥∥∥WTΩ
∥∥∥2

F
=

1
t ∑

k∈[t]
cos2 θk = g. (26)

Now, as Φ0 is defined on R it admits at most 1 non-zero singular value. This shows
that τi(Φ0) = 0 for all i ≥ 2. Clubbing the base case with the above lemma gives us
the following remarks.

79



Remark 12. We get the following singular values of the Φ operator in the particular cases
stated below:

1. When W = Ω, we have τ1(Φ0) = 1. This gives τ1(Φ) = 1.

2. Also, when W = Ω, plugging τ2(Φ0) = 0 gives τ2
2 (Φ) = 1 − 1

d+1
t

t+d .

3. When W ̸= Ω, we plug τ2
1 (Φ0) = g. This gives us τ2

1 (Φ) = 1 − 1
d+1

t
t+d · fd.

G.2 Adjoint Algebra Operator for Subspace Clustering

Recall the setting of subspace clustering problem in section B where we have a set of
N points A = {a1, . . . , aN} ∈ Rn clusterable to the subspaces ⟨A1⟩ , . . . , ⟨As⟩. These
subspaces ⟨Ai⟩ of dimension ti are also expressed as ⟨Wi⟩, where the columns of Wi
are orthonormal. Let U and V be such that

U = (U1, . . . , Us) =
(〈

A1
⊗d+1

〉
, . . . ,

〈
A1

⊗d+1
〉)

and V = (V1, . . . , Vs) =
(〈

A1
⊗d
〉

, . . . ,
〈

A1
⊗d
〉)

.

The section 1.3 tells us that the tuples U and V along with the differential operators
B = {∂i, . . . , ∂n} form an instance of the vector space decomposition problem. Follow-
ing the conventions set in the equations in 12, the spaces Ui and Vi have dimensions
t(d+1)
i and t(d)i respectively. Further, we know that there exist bases P and Q, which

are U-associated and V-associated matrices (as defined in section 2), such that in these
bases the scaled derivatives, which are the operators we have studied in the above
section, are block diagonal operators. That is

L = {L1, . . . , Ln} with Li = diag (Li1, . . . , Lis) where Lij =
∂i

d + 1

∣∣∣∣
Uj

.

Thus, the adjoint algebra operator A = A(B) in 10 can be expressed as follows:

A(D, E) = (d + 1) ·
(

QLiP−1D − EQLiP−1
)

i∈[n]

= (d + 1) · Q ·
(

Li(P−1DP)− (Q−1EQ)Li

)
i∈[n]

· P−1.

The above establishes the following relationship between A and the adjoint algebra
operator AL with respect to the operator collection L:

A = (d + 1) · Γ2 ◦AL ◦ Γ1

where

Γ1(D, E) = (P−1DP, Q−1EQ) and Γ2(X1, . . . , Xn) = Q · (X1, . . . , Xn) · P−1.

This immediately yields that

σ−(s+1)(A) ≥ (d + 1) · σ−(s+1) (AL) · σ−1(Γ1) · σ−1(Γ2). (27)

80



One can compute σ−1(Γ1) and σ−1(Γ2) from the definition of Γ1 and Γ2 to obtain

σ−1(Γ1) · σ−1(Γ2) ≥
1

κ2(U, V)
where κ(U, V)

def
=

max{σ1(U), σ1(V)}
min{σ−1(U), σ−1(V)} . (28)

We now focus on computing the quantity σ−(s+1)(AL). We exploit the block diago-
nal structure of the matrices in the collection L. Treating D and E also as block matri-
ces [Djk] and [Ejk], we note that the Frobenius norm of AL can be separated across the
blocks as follows:

∥AL(D, E)∥2
F =

n

∑
i=1

∥LiD − ELi∥2
F =

s

∑
j,k=1

n

∑
i=1

∥∥LijDjk − EjkLik
∥∥2

F
def
=

s

∑
j,k=1

∥∥Ajk(Djk, Ejk)
∥∥2

F ,

where each Ajk : Lin
(
Uk, Uj

)
× Lin

(
Vk, Vj

)
→ Lin

(
Uk, Vj

)t is a block adjoint algebra
operator defined as follows:

Ajk(Djk, Ejk) =
(

L1jDjk − EjkL1k, . . . , LnjDjk − EjkLnk
)

.

Therefore we note that the adjoint algebra map AL has the following block structure:

AT
LAL =

s⊕
j,k=1

AT
jkAjk, (29)

where the notation above implies that the map ATA acts separately as AT
jkAjk on differ-

ent independent subspaces of the domain. This immediately implies that the singular
values of the adjoint algebra operator A are the singular values of the block adjoint
algebra operators Ajk collected together.

Now recall that equation 24 gives

σ2
−i(Ajk) ≥

√
d+1
t+d (1 − τi(Φjk)),

where the Φjk maps are related to scaled derivatives on polynomial spaces on vari-
ables WT

j x and WT
k x respectively. Now, as σ−1(Ajj) = 0 for all j ∈ [s] with (I, I) in its

null space, we conclude that σ−(s+1)(AL) must be σ−2(Ajj) for some j, or σ−1(Ajk) for
some j ̸= k. Thus, combining all the components above with remark 12 we establish
theorem 15.

Finally, we end with a remark on how the function fd helps relate σ−(s+1)(A) to the
geometry of the underlying input subspaces.

Remark 13. Recall for given subspaces ⟨Ai⟩ and
〈

Aj
〉

we have

fd(⟨Ai⟩ ,
〈

Aj
〉
) = d+1

t

[
t

∑
j=1

sin2 θk + d sin2 θmin

]

where θks are the canonical angles between ⟨Ai⟩ and
〈

Aj
〉
.

81



1. For any pair of subspaces note that

0 ≤ t · fd ≤ (t + d)(d + 1).

Further, fd = 0 if and only if θk = 0 for all k, implying ⟨Ai⟩ ⊆
〈

Aj
〉
. Thus, excluding

the degenerate cases when one of the subspaces is contained in another subspace, we
always have σs+1(A) > 0, thereby ensuring that the Adjoint algebra has dimension
exactly equal to s.

2. Observe that we can write fd ≥ (d+1)(t+d)
t sin2 θmin. Substituting this in σoff-diag, we

get
σoff-diag ≥ 1 − cos θmin,

where θmin is the smallest canonical angle between any pair of distinct subspaces. This
is a good heuristic for the contribution of the off-diagonal blocks of A to its (s + 1)-st
smallest singular value in the case when the subspaces have trivial pairwise intersection.

3. When fd > 1 for all pairs of distinct subspaces ⟨Ai⟩ and
〈

Aj
〉
, then σdiag is smaller than

each term involved in the minimum in σoff-diag. This gives

σ−(s+1)(A)
2 ≥ (d+1)2

κ4(U,V)
· σdiag.

This is a bound that doesn’t depend on geometry of the subspaces. This also shows that
for any non-degenerate instance, one can choose d large enough so that σ2

−(s+1)(A) has
the form as above.

82
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


