
Quantum Locally Recoverable Codes∗

Louis Golowich
UC Berkeley

lgolowich@berkeley.edu

Venkatesan Guruswami
UC Berkeley

venkatg@berkeley.edu

November 14, 2023

Abstract

Classical locally recoverable codes, which permit highly efficient recovery from localized
errors as well as global recovery from larger errors, provide some of the most useful codes for
distributed data storage in practice. In this paper, we initiate the study of quantum locally
recoverable codes (qLRCs). In the long term, like their classical counterparts, such qLRCs
may be used for large-scale quantum data storage. Furthermore, our results have concrete
implications for quantum LDPC codes, which are widely applicable to near-term quantum error-
correction, as local recoverability is a weakening of the LDPC property.

After defining quantum local recoverability, we provide an explicit construction of qLRCs
based on the classical LRCs of Tamo and Barg (2014), which we show have (1) a close-to-optimal
rate-distance tradeoff (i.e. near the Singleton bound), (2) an efficient decoder, and (3) permit
good spatial locality in a physical implementation. The analysis for both the distance and
the efficient decoding of these quantum Tamo-Barg (qTB) codes is significantly more involved
than in the classical case. Nevertheless, we obtain close-to-optimal parameters by introducing
a “folded” version of these qTB codes, which we then analyze using a combination of algebraic
techniques. We furthermore present and analyze two additional constructions using more basic
techniques, namely random qLRCs, and qLRCs from AEL distance amplification. Each of these
constructions has some advantages, but neither achieves all 3 properties of our folded qTB codes
described above.

We complement these constructions with Singleton-like bounds that show our qLRC con-
structions achieve close-to-optimal parameters. We also apply these results to obtain Singleton-
like bounds for qLDPC codes, which to the best of our knowledge are novel. We then show that
even the weakest form of a stronger locality property called local correctability, which permits
more robust local recovery and is achieved by certain classical codes, is impossible quantumly.

∗Research supported in part by a Simons Investigator award, and a UC Noyce initiative award. L. Golowich is
supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE 2146752.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 173 (2023)

mailto:lgolowich@berkeley.edu
mailto:venkatg@berkeley.edu

Contents

1 Introduction 1

1.1 Our Contributions . 2

1.1.1 Definition of Quantum Local Recoverability 2

1.1.2 Explicit Construction of qLRCs . 2

1.1.3 Singleton-Like Bound for qLRCs, with Implications for qLDCP Codes 3

1.1.4 Comparison to Basic Constructions . 4

1.1.5 Efficient Decoding Algorithms . 5

1.1.6 Impossibility of Quantum Locally Correctable Codes 7

1.2 Overview of (Folded) Quantum Tamo-Barg codes . 8

1.2.1 Background and Classical Tamo-Barg Codes 8

1.2.2 Quantum Tamo-Barg codes . 8

1.2.3 Folded Quantum Tamo-Barg Codes . 11

1.3 Open Questions . 11

2 Preliminaries 12

2.1 Notation . 12

2.2 Classical Codes . 13

2.3 Polynomial Evaluation Codes . 14

2.4 Quantum Codes . 15

3 Singleton-Like Bounds for qLRCs 18

4 Basic Constructions Using Known Techniques 22

4.1 Random qLRCs . 22

4.2 Explicit qLRCs from AEL Distance Amplification . 25

4.2.1 Review of AEL Technique . 25

4.2.2 Application to qLRCs . 26

5 Explicit Construction of qLRCs: Quantum Tamo-Barg Codes 29

5.1 Classical Tamo-Barg Codes . 29

5.2 Quantum Tamo-Barg Codes . 29

5.3 Folded Quantum Tamo-Barg Codes . 32

6 Bounding the Distance 33

6.1 Distance of Unfolded Quantum Tamo-Barg Codes 34

6.2 Distance of Folded Quantum Tamo-Barg Codes . 35

7 Efficient Decoding Algorithm 40

7.1 Unfolded Quantum Tamo-Barg Codes . 41

7.2 Folded Quantum Tamo-Barg Codes . 44

8 Impossibility of Quantum Locally Correctable Codes 48

9 Acknowledgments 50

A Technical Lemmas 53

B Omitted Proofs 55

1 Introduction

Classical locally recoverable codes (LRCs) provide one of the most important coding theoretic
tools for distributed data storage. Such codes are defined to permit highly efficient recovery from
common localized errors, as well as larger-scale recovery from rarer but more “catastrophic” global
errors.

In this paper, we initiate the study of quantum locally recoverable codes (qLRCs). In particular,
we define qLRCs, present and analyze constructions, and also prove fundamental limitations on
the achievable parameters and properties. While our constructions can be viewed as quantum
generalizations of classical constructions, the analysis becomes surprisingly intricate, and requires
new ideas that were not needed classically. Our results may also shed light on the study of locality
in quantum coding theory, for instance as it pertains to quantum LDPC codes.

Classically, the properties of a LRC are well suited for the needs of large datacenters, which can
cost billions of dollars to build and maintain, and must often account for localized server failures
while also handling occasional more global failures. Indeed, companies such as Microsoft [HSX+12]
and Facebook [MLR+14] have implemented LRCs to obtain improved performance for data storage.

Currently, experimental quantum computers remain at a vastly smaller scale than that of the
classical datacenters in which LRCs are often used in practice. However, it is not implausible that
quantum computing technology eventually follows its classical counterpart by growing to the scale
where codes such as qLRCs become an integral part of quantum data storage.

Furthermore, our study of qLRCs reveals the potential for more broad and near-term impli-
cations as well. Indeed, locality properties in quantum codes, such as the ability to decode using
local measurements (i.e. LDPC codes), are of particular importance for quantum error correction.
Yet such locality is notoriously difficult to achieve in the quantum setting. Indeed, the first linear-
distance quantum LDPC (qLDPC) codes were only recently constructed [PK22, LZ22, DHLV23],
and good quantum codes with stronger properties such as local testability have yet to be con-
structed. This difficulty of achieving locality is in contrast to the classical setting, where good
LDPC codes have been known for decades (e.g. [SS96]), good locally testable codes were recently
constructed [PK22, DEL+22], and other strong locality properties such as local correctability exist
in linear-distance, albeit low-rate codes.

From this perspective, our study of qLRCs provides a new angle to investigate locality properties
in quantum codes. Indeed, classical local recoverability requires each code component to participate
in one low-weight parity check, while quantum local recoverability requires each code component
to participate in two low-weight stabilizers. Thus local recoverability can be viewed as a weaking
of the LDPC property, in which each code component participates in many low-weight parity
checks/stabilizers. Our study of qLRCs can therefore be viewed as progress towards understanding
stronger locality properties possessed by qLDPC codes. One concrete example of this connection
is provided in Section 3, where we show that qLRCs, and therefore also qLDPC codes, of constant
locality r = O(1) must have relative distance bounded away from 1/2; to the best of our knowledge
such a bound for qLDPC codes had not been previously shown.

1

1.1 Our Contributions

In this section we present the contributions of our paper. For details on notation or basic definitions,
the reader is referred to Section 2.

1.1.1 Definition of Quantum Local Recoverability

To begin, we define qLRCs. Recall that a classical LRC (cLRC) is a classical code C such that for
every c ∈ C and every component i, the value of ci can be recovered by looking at the restriction
of c to just r − 1 other components.

Definition 1 (Informal statement of Definition 32). A quantum locally recoverable code
(qLRC) of locality r is a quantum code C such that if any single qudit of a code state |ψ〉 ∈ C
is erased (i.e. it experiences a completely depolarizing channel), the original code state |ψ〉 can be
recovered by applying a recovery channel that accesses only r − 1 other code state qudits.

For intuition, recall that a classical linear code is a cLRC of locality r if each component takes
part in a parity-check of weight ≤ r. Similarly, we show that a quantum CSS code C = CSS(CX , CZ)
is a qLRC if both CX , CZ are cLRCs, so that every qudit takes part in a low weight X-parity-check
and a low-weight Z-parity-check (see Corollary 34).

We remark that classically, there is also a notion of message locally recoverable codes (mLRCs),
which require that every message (instead of codeword) symbol can be recovered from r − 1 code-
word symbols. As any linear classical code has a systematic encoding, meaning that the first k
codeword symbols equal the message, classical mLRCs are strictly weaker than LRCs. However,
the local indistinguishability property of quantum codes (see Lemma 26) implies that local queries
to quantum codes cannot reveal anything about the message. Thus mLRCs do not exist quantumly,
at least in the regime where the locality is less than the distance.

1.1.2 Explicit Construction of qLRCs

One of our principal technical contributions is the following explicit construction of qLRCs.

Theorem 2 (Folded quantum Tamo-Barg codes; informal statement of Corollary 64 combined
with Lemma 56). For every prime number r and every 0 < R < 1, there exists an infinite explicit
family of qLRCs of locality r, rate ≥ R, relative distance

δ ≥ 1−R
2
−O

(
1√
r

)
,

and alphabet size nO(r2), where n denotes the block length.

In Theorem 2 (and in future informal result statements in Section 1), for readability we state
slightly looser bounds than the formal result statements. For instance, our actual distance bound
in Corollary 64 is stronger than than stated in Theorem 2 for high rates, and in particular shows
that δ ≥ Ω(1/r) for all R ≤ 1− 10/r.

We remark that while the alphabet size nO(r2) may seem large, in the LRC literature one
typically thinks of each code component as being a fairly large entity, so such a polynomial alphabet

2

size is not unreasonable. Classically each code component could for instance be a hard drive, while
quantumly each component would likely be itself a fault-tolerant quantum memeory.

We prove Theorem 2 by introducing a quantum CSS version of the classical LRCs of Tamo and
Barg [TB14], which achieve the optimal classical rate-distance-locality tradeoff [GHSY12]. The
classical Tamo-Barg (TB) codes are constructed as subcodes of Reed-Solomon codes by carefully
inserting low-weight parity checks.

Multiple complications arise when converting TB codes into CSS codes. Specifically, to ensure
the CSS orthogonality relations are satisfied, we define a quantum Tamo-Barg (qTB) code to be a
CSS code C = CSS(C,C) consisting of two copies of a classical code C that contains a TB code as a
subcode, but also contains some added low-weight codewords. These added low-weight codewords
also lie in C⊥, so they do not necessarily degrade the distance of C, which equals the minimum
weight of an element of C \ C⊥. However, these added low-weight codewords make the distance
analysis significantly more challenging, and we are only able to show a “Johnson-like” bound on
the distance of qTB codes:

Theorem 3 (Quantum Tamo-Barg codes; informal statement of Theorem 62). For every prime
number r and every 0 < R < 1, there exists an infinite explicit family of qLRCs of locality r, rate
≥ R, relative distance

δ ≥ 1−
√

1 +R

2
−O

(
1

r

)
,

and alphabet size n+ 1, where n denotes the block length.

To obtain the improved bound δ ≥ 1−(1+R)/2−O(1/
√
r) in Theorem 2, we “fold” together code

components, thereby reblocking the symbols into larger components. We then use a combination
of algebraic techniques to bound the distance of these folded qTB (fqTB) codes; the two main tools
are a root detection method involving a determinant polynomial, and an uncertainty principle over
finite fields.

In Section 1.2 below, we describe the formal construction of our (f)qTB codes, and outline the
proofs of Theorem 3 and Theorem 2. A more detailed description of these codes is provided in
Section 5, and the distance bounds are formally proven in Section 6.

1.1.3 Singleton-Like Bound for qLRCs, with Implications for qLDCP Codes

Our fqTB codes in Theorem 2 achieve an optimal rate-distance tradeoff as the locality r grows
large. In particular, we prove the following fundamental limitation on any qLRC.

Theorem 4 (Singleton-like bound; informal statement of Theorem 35). If C is a qLRC of locality
r and rate R, then C has relative distance

δ ≤ 1−R
2
− Ω

(
1

r

)
.

The reader is referred to Theorem 35 for the specific value of the constant hidden in the the
Ω(1/r) term above.

For comparison, recall that the ordinary quantum Singleton bound states that every quantum
code of rate R has relative distance δ ≤ (1−R)/2+O(1/n), where n denotes the block length. Thus

3

for a fixed rate, Theorem 4 shows that imposing local recoverability with locality r decreases the
optimal relative distance of a quantum code by at least Ω(1/r). Meanwhile, our explicit construction
in Theorem 64 has relative distance O(1/

√
r) below that of the Singleton bound.

Theorem 4 implies a fundamental difference between the classical and quantum cases for LRCs
of low rate. Classically, the ordinary Singleton bound says that a code of rate R has relative distance
δ ≤ 1−R+O(1/n), while for cLRCs of locality r this bound becomes δ ≤ 1−R ·r/(r−1)+O(1/n).
The TB codes achieve this latter bound, proving its tightness. Therefore in particular, for fixed
locality r, by letting the rate R → 0, we see that there exist classical LRCs of relative distance
δ → 1. In contrast, whereas there exist quantum codes of relative distance approaching 1/2,
Theorem 4 shows every qLRC has relative distance at most 1/2− Ω(1/r), which is bounded away
from 1/2 for fixed r.

As we mentioned previously, because every (q)LRC is a by definition a (q)LDPC code, it follows
that qLDPC codes of locality r have relative distance ≤ 1/2−Ω(1/r) for arbitrarily large alphabets.
To the best of our knowledge, such a bound has not been previously shown in the literature. This
result is in again in contrast to the classical case, where for instance the q-ary Hadamard code is
an LDPC code of locality 3 with relative distance approaching 1 as q grows large.

The discussion above raises the interesting question as to how tight Theorem 4 is for qLDPC
codes. That is, what is the additional cost to the optimal rate-distance tradeoff of requiring a
quantum code be LDPC, compared to just being an LRC?

1.1.4 Comparison to Basic Constructions

While our explicit fqTB codes in Theorem 2 are O(1/
√
r) below the Singleton-like bound in The-

orem 4, we show that a randomized construction improves this gap to O(1/r), at the cost of
explicitness and efficiency.

Proposition 5 (Random qLRCs; informal statement of Proposition 40). For every r ≥ 3 and
δ > 0, there exists a randomized construction that with high probability gives a qLRC of locality r,
rate R, relative distance

δ ≥ 1−R
2
−O

(
1

r

)
,

and alphabet size 2O(r).

The constant hidden in the O(1/r) term in Proposition 5 is larger than the constant in the
Ω(1/r) term in Theorem 4, so our bound on the randomized construction is still O(1/r) below that
of our Singleton-like bound.

Thus the randomized construction in Proposition 40 achieves relative distance O(1/r) below
our Singleton-like bound with has alphabet size 2O(r). These parameters improve upon our fqTB
construction, which has relative distance O(1/

√
r) below the Singleton-like bound, and has alphabet

size nO(r2).

However, the main disadvantage of the randomized construction is its non-explicitness. As a
result, we have no efficient algorithm to certify that a randomly sampled qLRC has good distance,
and we have no efficient decoding algorithm for errors in unknown locations. In contrast, our fqTB
codes are explicit, so their distance bound is guaranteed. Furthermore, we show that they have an
efficient decoding algorithm (see Section 1.1.5 below).

4

One way of derandomizing the random qLRCs in Proposition 5 is to use them as in inner code in
the concatenation and distance amplification scheme of Alon, Edmunds, and Luby (AEL) [AEL95].
This technique has been used extensively in classical coding theory [GI01, GI02, GI03, GR08,
HW18, KMRZS16, GKO+18, HRZW20], but has only recently been considered in the quantum
setting [BGG22, WLH23]. We show that applying AEL using a random qLRC as an “inner code,”
which is small enough to be found efficiently via brute force, yields the following result.

Proposition 6 (qLRCs from AEL; informal statement of Proposition 49). For every fixed 0 <
R < 1, it holds for all sufficiently large r ∈ N that there exists an infinite family of efficiently
constructable qLRCs of locality r, rate R, relative distance

δ ≥ 1−R
2
−OR

(
1

r1/4

)
,

and alphabet size q = 2O(r), where the OR above hides a constant depending on R.

As described in Remark 50, the codes in Proposition 6 are technically only efficiently con-
structable by a randomized algorithm with high probability, but can be made truly explicit by
using a slightly more complicated construction, with slightly worse parameters. Also, like our fqTB
codes, we show that these codes from AEL have efficient decoders from errors in unknown locations.

The alphabet size q = 2O(r) in Proposition 6 is smaller than the q = nO(r2) of our fqTB codes in
Theorem 2. However, qLRCs from AEL have worse rate-distance-locality tradeoff, as their relative
distance is OR(1/r1/4) below the Singleton-like bound, compared to only O(1/

√
r) for our fqTB

codes.

Our (f)qTB codes may have additional practical advantages over the qLRCs from AEL. For
instance, our (f)qTB codes can achieve locality as small as r = 3, whereas the the minimum pos-
sible locality in the qLRCs from AEL is r = 9. Furthermore, as one step in the AEL construction
redistributes code symbols according to the edges of an expander graph, the resulting size-r sets of
code components used for local recovery form an r-uniform hypergraph with a complex expanding
structure. In contrast, the recovery sets of our (f)qTB codes form a partition of the code com-
ponents, which is ideally suited for a physical implementation with good spatial locality. That is,
our (f)qTB codes can easily be implemented in 1, 2, or 3-dimensional space such that each local
recovery operation only involves code components that are close together; such a spatially local
implementation would be much less feasible for a qLRC from AEL.

1.1.5 Efficient Decoding Algorithms

This section presents our results on the decodability of our qLRCs. As we discussed previously, in
the classical setting, LRCs are typically used for data storage where errors correspond to events
such as server failures that are detectable. Such errors occur in known locations, so they can be
treated as erasures. Because every linear code can be efficiently decoded from a number of erasures
up to the distance using Gaussian elimination, the efficiency of decoding is often not a primary
concern for cLRCs. Note that all of our qLRC constructions are stabilizer (and in fact CSS) codes,
which can similarly be decoded efficiently from erasures.

However, in the quantum setting there are additional potential applications of efficient decoding
from errors in unknown locations. Due to the inherently noisy nature of quantum states, even if

5

a qLRC is used to store a large quantum state where each code component is itself stored in a
fault-tolerant memory, these individual fault-tolerant memories may eventually accumulate errors.
As such, it may be beneficial to occasionally perform a global decoding procedure to reduce the
overall error rate in the long term.

Furthermore, as we have previously discussed, qLRCs can be viewed as a stepping stone towards
better understanding stronger locality properties, such as the LDPC property, which are important
for near-term quantum error correction. As efficient decoding is critical for these error correction
applications, it is desirable that the qLRCs we study are also efficiently decodable.

Below we present a polynomial-time decoding algorithm for the fqTB codes in Theorem 2.

Theorem 7 (Decoding fqTB codes; informal statement of Corollary 72). The fqTB codes in The-
orem 2 of block length n, prime locality parameter r, and rate R can be decoded from errors acting
on an unknown

1

2

(
1−R

2
−O

(
1√
r

))
fraction of the code components in time nOr(1), provided the alphabet size is increased to some
sufficiently large q = nOr(1) with respect to r. Here Or(1) denotes a sufficiently large constant
depending only on r.

Theorem 7 provides a decoding algorithm for the fqTB codes with decoding radius up to half our
distance bound in Theorem 2, which is therefore optimal barring an improvement in the distance
bound. While the algorithm runs in polynomial time nOr(1) for fixed locality parameter r, this
algorithm is inefficient for growing r. We address this issue by providing the following decoding
algorithm for unfolded qTB codes, which therefore also applies to folded qTB codes, and whose
running time is a polynomial independent of r.

Theorem 8 (Decoding (f)qTB codes; informal statement of Theorem 69). An (unfolded or folded)
qTB code of block length n, prime locality parameter r, and rate R can be decoded from errors acting
on an unknown

1

2

(
1−

√
1 +R

2
−O

(
1

r

))
fraction of the code components in time nO(1).

The decoder in Theorem 8 simply performs r−1 calls to a classical Reed-Solomon (list) decoder,
and then performs some postprocessing on the resulting outputs (see Algorithm 1). Therefore
this algorithm should be efficient in practice, as Reed-Solomon decoders have been optimized for
practical use.

The decoding radius in Theorem 8 is half our distance bound in Theorem 3. Therefore this
decoding radius is optimal among decoders for qTB codes, barring an improvement to our distance
bound in Theorem 3. As

1−R
4
≤ 1−

√
1 +R

2
≤ 1−R

2
,

the unfolded qTB codes achieve distance and decoding radius within roughly a factor of 2 of the
optimal values as dictated by our Singleton-like bound in Theorem 4.

6

We prove both Theorem 8 and Theorem 7 using similar techniques as in the proof of Theorem 3.
Specifically, let C = CSS(C,C) denote the qTB code. The decoding task for C can be reduced to
the following problem: given a corrupted codeword a of C, we want an efficient algorithm the
recovers some c ∈ C that is close to a in Hamming weight. For this purpose, we show how every
c ∈ C can be modified to obtain some c′ that is a codeword of a Reed-Solomon code. Applying
the same modification to a, we obtain a corrupted Reed-Solomon codeword a′. We then apply a
Reed-Solomon (list) decoder to recover c′, which we can then map back to the desired codeword c.

To decode fqTB codes in Theorem 7, we use the same algorithm, except now we apply a folded
Reed-Solomon list decoder [GR08] to recover c′ from a′. As folded Reed-Solomon codes have a
larger list-decoding radius than ordinary Reed-Solomon codes, and our fqTB distance bound in
Theorem 2 is better than our qTB distance bound in Theorem 3, we obtain a larger decoding
radius in Theorem 7 than in Theorem 8.

1.1.6 Impossibility of Quantum Locally Correctable Codes

Our results on qLRCs described above indicate that while optimal local recoverability is more
nuanced and difficult to achieve quantumly than classically, there do exist constructions of qLRCs
approaching the optimal parameters. It is therefore natural to consider quantum analogues of
stronger forms of locality that exist classically.

Local correctability and local decodability provide particularly notable examples of such prop-
erties. Recall that an LRC of block length n and locality r has the property that any single code
component i ∈ [n] is erased, the value of a codeword at that component can be recovered from
≤ r − 1 unerased components. A locally correctable code (LCC) has the stronger property that
after a linear number Ω(n) of code components are erased, the value of a codeword at each erased
component i can be recovered from ≤ r − 1 unerased components.

Equivalently, an LRC requires the value of a codeword at each component i ∈ [n] to be recov-
erable from some recovery set of ≤ r − 1 other components. In contrast, an LCC requires each
component i ∈ [n] to have Ω(n) disjoint recovery sets, each of which contains ≤ r − 1 components
that can be used to recover the codeword’s value at i.

Local decodable codes (LDCs) are defined similarly, except they only need to support local
recovery for message components, rather than for codeword components.

The Hadamard and Reed-Muller codes provide examples of classical LCCs and LDCs. It is
therefore natural to ask whether there are quantum versions of these types of codes.

As local access to a quantum code of large distance cannot reveal any information about the
message, local decodability seems to make little sense quantumly, at least in the regime of large
distance and small locality. However, quantum local correctability may seem to be a reasonable
strengthening of quantum local recoverability.

We show below that quantum local correctability is impossible in a strong sense: if a quantum
code has even two disjoint recovery sets for a single qudit, then that qudit is unentangled with
the remainder of the code state, and contains no information about the message state. Recall
that LCCs are typically required to have linearly many such disjoint recovery sets for each code
component. Thus qLRCs, which have a single recovery set for each qudit, are in some sense the
limit of what is possible for quantum local correctability.

Theorem 9 (Impossibility of quantum LCCs; informal statement of Theorem 74). Let C be a

7

quantum code of block length n such that for some qudit i ∈ [n], there exist subsets I1
i , I

2
i ⊆ [n]

satisfying I1
i ∩ I2

i = {i} such that the following holds for each b = 1, 2: if qudit i of a code state
ψ ∈ C is erased (i.e. it experiences a completely depolarizing channel), the original code state ψ
can be recovered by applying a recovery channel that only accesses qudits in Ibi . Then there exists a
1-qudit state α such that every ψ ∈ C can be decomposed as ψ = αi ⊗ ψ[n]\{i}.

While we prove Theorem 9 for general quantum codes C ⊆ (Cd)⊗n, it is illustrative to consider
CSS or stabilizer codes. Recall from Section 1.1.1 that for a CSS code C = CSS(CX , CZ), a set Ii 3 i
can be used to recover qudit i if both CX and CZ have parity checks whose support contains i and
lies inside Ii. Thus if I1

i , I
2
i are both recovery sets for component i with I1

i ∩ I2
i = {i}, then there

are parity checks c′X ∈ C⊥X and c′Z ∈ C⊥Z such that i ∈ supp(c′X) ⊆ I1
i and i ∈ supp(c′Z) ⊆ I2

i . But
then supp(c′X) ∩ supp(c′Z) = {i}, so c′X · c′Z = (c′X)i(c

′
Z)i 6= 0, which contradicts the orthogonality

condition C⊥X ⊆ CZ required for C to be a well defined CSS code. Thus Theorem 9 holds for CSS
codes. A similar proof holds for stabilizer codes; In Theorem 74 we prove the more general result
for arbitrary quantum codes.

1.2 Overview of (Folded) Quantum Tamo-Barg codes

In this section, we provide more details on our (folded) quantum Tamo-Barg codes described in
Section 1.1.2, and we overview the techniques we use to prove the distance bounds in Theorem 2
and Theorem 3. The construction and analysis of these codes comprise one of the main technical
contributions of our paper.

1.2.1 Background and Classical Tamo-Barg Codes

Our qTB codes are CSS codes whose associated classical codes are polynomial evaluation codes
that are closely related to the classical LRCs of Tamo and Barg [TB14]. To describe these codes,
we use the following notation. For a subset S ⊆ Z≥0, let Fq[X]S = {

∑
i∈S aiX

i : a ∈ FSq } denote
the space of polynomials for which only monomials Xi for i ∈ S can have nonzero coefficients.

Then let ev : Fq[X]S → FF∗q
q
∼= Fq−1

q denote the evaluation map on nonzero points in Fq, so that
ev(f) = (f(x))x∈F∗q

With this notation, a classical Tamo-Barg (TB) code [TB14] specified by a prime power q, a
locality parameter r|(q − 1), and an integer ` ∈ [q] is given by ev(Fq[X]S) for

S = {i ∈ [`] : i 6≡ r − 1 (mod r)}.

[TB14] showed that this code has alphabet size q, block length q− 1, dimension `−bl/rc, distance
≥ q − `, and is locally recoverable with locality r.

1.2.2 Quantum Tamo-Barg codes

In this section, we define our quantum analogue of TB codes, and give an overview of the analysis.
For more details, the reader is referred to Section 5.2 and Section 6.1.

As described in Section 1.1.2, to define a qTB code, we must first modify the classical TB code
by adding some low-weight codewords in order to construct a well-defined associated quantum

8

CSS code. These added low-weight codewords can be interpreted as piecewise linear functions, as
described below.

Definition 10 (Quantum Tamo-Barg codes; restatement of Definition 53). For a prime power q, a
locality parameter r|(q−1) with r ≥ 3, and an integer ` ∈ [q], we define the quantum Tamo-Barg
(qTB) code to be the CSS code C = CSS(C,C) with C = ev(Fq[X]S) for

S = {i ∈ [`] : i 6≡ r − 1 (mod r)} ∪ {i ∈ [q − 1] : i ≡ 1 (mod r)}. (1)

By some basic algebraic manipulations (see Lemma 55), we show that C⊥ ⊆ C, so the qTB
code C = CSS(C,C) is indeed a well-defined quantum CSS code. Note that by construction C has
alphabet size q and block length q − 1. A straightforward calculation (see Lemma 56) shows that
C has dimension

k = 1 + |{q − ` ≤ i ≤ `− 1 : i 6≡ ±1 (mod r)}|

= (2`− q) ·
(

1− 2

r

)
+ ε

for some ε ∈ [−2, 2].

The code C in the definition above is by definition the sum of a classical TB code ev(Fq[X][`]\(−1+rZ))
with the code1 P := ev(Fq[X][q−1]∩(1+rZ)). We call this latter code P the space of piecewise linear
functions due to the following lemma.

Lemma 11 (Restatement of Lemma 57). Let Ωr = {x ∈ F∗q : xr = 1} denote the rth roots of unity.

Then P = ev(Fq[X][q−1]∩(1+rZ)) consists of all functions f : F∗q → Fq that can be expressed in the

form f(x) = βxΩr · x for some β ∈ FF∗q/Ωr
q .

Lemma 11 follows directly from the fact that the evaluation of a polynomial h(X) on inputs in
xΩr equals the evaluation of h(X) (mod Xr − xr) on such inputs. The lemma implies that every
function in P equals a linear function on the restriction to inputs in each coset xΩr.

We show in Lemma 55 that P ⊆ C⊥, from which we obtain the local recoverability of C:

Corollary 12 (Restatement of Corollary 58). The qTB code C = CSS(C,C) given in Definition 10
is locally recoverable with locality r.

Proof. As described in Section 1.1.1 and formalized in Corollary 34, it suffices to show that for each
α ∈ F∗q , there exists some f ∈ C⊥ such that α ∈ supp(f) and | supp(f)| ≤ r. But because P ⊆ C⊥
as described above, the piecewise linear function f : F∗q → Fq given by f(x) = x for x ∈ αΩr and
f(x) = 0 for x /∈ αΩr satisfies these criteria, as desired.

It only remains to bound the distance of the qTB code C. For this purpose, we show the
following result, which directly implies Theorem 3.

Theorem 13 (Restatement of Theorem 62). The qTB code C in Definition 10 with a prime locality
parameter r has distance at least

d = (q − 1)

(
1− 1

2r
−

√
1

4r2
+
r − 1

r
· `− 1

q − 1

)
. (2)

1In Section 5.3 we denote the code ev(Fq[X][q−1]∩(1+rZ)) by B⊥, but for simplicity of notation in this section we
denote it by P .

9

As r →∞, the bound in Theorem 13 gives

d

q − 1
→ 1−

√
`− 1

q − 1
.

As was mentioned in Section 1.1.2, this bound is reminiscent of the Johnson bound (see e.g. The-
orem 7.3.1 of [GRS22]), which in particular implies that a classical code of dimension ` and block
length q−1 whose distance approaches the Singleton bound is list-decodable from at least a fraction
of errors approaching 1−

√
`/(q − 1) as the alphabet size and block length grow large.

It is unclear if there is a deeper reason for this similarity between the Johnson bound and
Theorem 62. However, it is interesting that we are able to improve the distance beyond this
Johnson-like bound by folding our qTB codes, just as [GR08] introduced folded RS codes to improve
beyond the Johnson bound for the list-decoding radius of RS codes.

Proof sketch of Theorem 13. Recall that the distance of C = CSS(C,C) equals the minimum weight
of any element of C \ C⊥. As P ⊆ C⊥, it therefore suffices show that every element of C \ P has
weight at least the value d given in (2).

For this purpose, consider any ev(f) ∈ C \P . At a high level, the proof will proceed as follows.
We define a polynomial G such that whenever f has multiple roots in a coset xΩr ⊆ F∗q , G also has
many roots in that coset. We can then bound the number of roots of f by bounding the number
of roots of G, which we in turn bound by the degree of G. By constructing G to have low degree
relative to the number of roots of f , we obtain the desired result.

We now formally define G. By definition we may decompose f(X) = g(X) + h(X), where
g(X) ∈ Fq[X][`]\(±1+rZ) evaluates to a nonzero classical TB codeword, and h(X) ∈ Fq[X][q−1]∩(1+rZ)

evaluates to a piecewise linear function. Define the polynomial G(X) ∈ Fq[X] by

G(X) =

r−1∏
i=1

(ω−ir g(ωirX)− g(X)). (3)

By definition, the degree of G satisfies

deg(G) ≤ (r − 1)(`− 1). (4)

Meanwhile, we bound the number of roots of G as follows. For every x ∈ F∗q and every rth root of
unity ωir ∈ Ωr \ {1} such that f(x) = 0 and f(ωirx) = 0, then

ω−ir g(ωirx)− g(x) = −ω−ir h(ωirx) + h(x) = −h(x) + h(x) = 0,

where the second equality above holds because h is piecewise linear. Thus G has a root for every
ordered pair (x, ωirx) of roots of f whose ratio is an rth root of unity ωir. Summing over all such
pairs of roots of f (see Section 6.1 for details), we find that the total number of roots of G is at
least

r

q − 1
(q − 1− | ev(f)|)2 − (q − 1− | ev(f)|).

This expression must be bounded above by the RHS of (4); rearranging terms in the resulting
inequality yields the desired bound | ev(f)| ≥ d for d given in (2).

10

1.2.3 Folded Quantum Tamo-Barg Codes

As described in Section 1.1.2 and Section 1.2.2, we were only able to prove a “Johnson-like” bound
on the distance of qTB codes, which does not approach our Singleton-like bounds for qLRCs
described in Section 1.1.3. We address this issue by introducing a “folded” version of qTB codes,
for which we show the distance does approach the Singleton bound for large localities r. The proof
of this distance bound for folded qTB codes (Theorem 2) is quite involved, so in this section we
simply provide a brief description of the main ideas involved. The reader is referred to Section 6.2
for the full proof.

We define folded qTB codes by grouping together symbols of qTB codes as described below.

Definition 14 (Restatement of Definition 59). As in Definition 10, let C = CSS(C,C) be the qTB
code with parameters q, r, `. Given an additional folding parameter s|(q−1)/r, we define the folded
quantum Tamo-Barg (fqTB) code C̃ to be the quantum code of alphabet size qs and block
length (q−1)/s obtained as follows. Fix a generator ωq−1 for F∗q , and then for every i ∈ [(q−1)/s],

we block together the s components (each of alphabet size q) at positions {ωsiq−1, ω
si+1
q−1 , . . . , ω

si+s−1
q−1 }

in C into a single component (of alphabet size qs) of the folded code C̃.

A folded qTB code by construction inherits the rate and local recoverability of the underlying
unfolded qTB code. Thus to prove Theorem 2, we simply need to bound the distance of the fqTB
code. For this purpose, define S as in (1), so that the underlying unfolded qTB code C = CSS(C,C)
has C = ev(Fq[X]S). The distance of C̃ by definition equals the minimum over all codewords
ev(f) ∈ C \ C⊥ of the number of distinct blocks {ωsiq−1, ω

si+1
q−1 , . . . , ω

si+s−1
q−1 } (see Definition 14) in

which f takes at least one nonzero value.

At a high level, we bound this minimum distance by considering two types of message poly-
nomials f(X) =

∑
i∈S fiX

i ∈ Fq[X]S separately. For the first type of message polynomial, we
use a similar argument as described in the proof sketch of Theorem 13 in Section 1.2.2. We are
able to leverage the folding to replace the polynomial G(X) in (3) with another polynomial, which
consists of the composition of f with a determinant polynomial. This alternative choice of G(X)
detects roots of f more efficiently relative to its degree, and hence yields a better distance bound
(see Claim 68). However, this method breaks down when the coefficients fi of f are supported in
a small number of distinct values i (mod r), that is, when there are � r distinct values i (mod r)
among all i with fi 6= 0. The reason for the breakdown on these “bad” polynomials f stems from
the fact that we need G(X) to be a nonzero polynomial, which becomes more difficult when f has
fewer nonzero coefficients.

Fortunately, we can consider such “bad” message polynomials f separately, and instead apply an
uncertainty principle (Proposition 66) to bound the weight of the associated codeword (Claim 67).
Intuitively, this uncertainty principle implies that if the coefficients fi are zero for most values of i
(mod r), then most of the evaluation points in ev(f) must be nonzero, so ev(f) has large weight.

Combining our bounds from the two types of message polynomials described above, we obtain
a bound on the distance of the fqTB code C, which yields Theorem 2.

1.3 Open Questions

Our work leads the the following open questions:

11

• Can explicit qLRCs be constructed with a better rate-distance-locality tradeoff than given
by Theorem 2? Two approaches here are to improve our distance bound for fqTB codes in
Theorem 2, or to introduce new constructions of qLRCs for which stronger bounds can be
shown. In general, the goal is to close the gap to the Singleton-like bounds in Section 3.

• How does the optimal rate-distance-locality tradeoff of qLRCs differ from that of qLDPC
codes? As described in Section 1.1.3, our bounds on qLRCs imply bounds on qLDPC codes,
but it is an interesting question whether the additional structure in qLDPC codes can be used
to show stronger bounds. This question also points towards the more general line of inquiry
into relationships between notions of locality in quantum codes, of which local recoverability
and LDPC are two examples of interest.

2 Preliminaries

In this section, we introduce some notation, and then present preliminary definitions and results
pertaining to classical codes, quantum codes, and local recoverability.

2.1 Notation

For n ∈ N, we let [n] = {0, . . . , n− 1}.
For a prime power q, let Fq denote the finite field of order q. For n ∈ N and for x, y ∈ Fnq , let

x · y =
∑

i∈[n] xiyi denote the standard dot product.

Let F∗q = Fq \ {0} denote the multiplicative group of Fq. For r|(q − 1), we let ωr ∈ F∗q denote a
primitive rth root of unity, and we let Ωr = {1, ωr, . . . , ωr−1

r } denote the group of all rth roots of
unity. While the choice of ωr is not unique, we typically will think of fixing some (q − 1)st root of

unity ωq−1 ∈ F∗q , and then let ωr = ω
(q−1)/r
q−1 .

For a finite alphabet A, we denote the Hamming distance between two strings x, y ∈ An by
dis(x, y) = |{i ∈ [n] : xi 6= yi}|. For two sets X,Y ⊆ An, the minimum Hamming distance is
denoted dis(X,Y) = minx∈X,y∈Y dis(x, y). If A is an abelian group (e.g. A = Fq, or A = Fsq) we
denote the Hamming weight of a string x ∈ An by |x| = dis(0, x) = |{i ∈ [n] : xi 6= 0}|, so that
dis(x, y) = |x− y|.

We denote byM(A) the set of density matrices on a set A of qudits, where the local dimension
a of the qudits will be clear from context. Thus ρ ∈M(A) if ρ is a positive semi-definite Hermitian
operator ρ : (Ca)⊗A → (Ca)⊗A of trace 1. For a pure state |ψ〉 ∈ (Ca)⊗A, we let ψ = |ψ〉 〈ψ| ∈ M(A)
denote the associated density matrix. For a density matrix ρ ∈ M(A), if B ⊆ A is a subset of the
qudits, we denote the reduced density matrix ρB = TrA\B ρ ∈M(B).

A quantum channel K from qudits A to qudits B is a completely positive, trace preserving map
K : M(A) →M(B). Equivalently, a quantum channel is a map K : M(A) →M(B) that can be

expressed in the form K(ρ) =
∑

ν KνρK
†
ν for a set of operators {Kν : (Ca)⊗A → (Ca)⊗B}ν , called

Kraus operators, which satisfy
∑

ν K
†
νKν = I.

We let the weight of a quantum channel K : M(A) → M(A) refer to the number of distinct
qudits on which the channel acts nontrivially. Therefore if K has weight w, then there exists a
subset W ⊆ A of size |W | = w such that each Kraus operator Kν of K can be decomposed as
Kν = KW

ν ⊗ IA\W for KW
ν : (Ca)⊗W → (Ca)⊗W .

12

2.2 Classical Codes

Below we define the notion of a classical code.

Definition 15. A classical code of block length n, dimension k, and alphabet size a is a
subset C ⊆ [a]n of size |C| = ak.

The distance d of C is defined as the minimum Hamming distance d = minc 6=c′∈C dis(c, c′)
between any two distinct codewords c, c′ ∈ C.

We say that C is linear if a = q is a prime power so that [a] ∼= Fq and C ⊆ Fnq is a linear subspace.
Similarly, C is Fq-linear if a = qs for some prime power q so that [a] ∼= Fsq and C ⊆ (Fsq)n ∼= Fsnq
is linear subspace over the field Fq. The dual of a linear code is C⊥ = {c′ ∈ Fnq : c′ · c = 0∀c ∈ C}.
Nonzero elements of the dual code C⊥ are sometimes referred to as parity checks of C.

All classical codes satisfy that following fundamental limitation on the tradeoff between distance
and dimension, whose proof is a simple application of the pigeonhole principle.

Proposition 16 (Singleton bound). If C is a classical code of block length n, dimension k > 0,
and distance d, then

k ≤ n− (d− 1).

A classical (linear) code can be expressed as the image of a (linear) encoding map Enc : Fkq → Fnq
that maps messages to codewords encoding the messages. However, we will mostly consider the
space of codewords without reference to the encoding map.

Throughout this paper we restrict attention to linear or Fq-linear codes, as will be clear from
context. In particular, Fq-linear codes will arise from linear codes over Fq by “folding”, that is, by
grouping together symbols of the linear code into larger symbols.

Definition 17. A classical locally recoverable code (cLRC) of locality r, block length n,
and alphabet size a is a classical code C ⊆ [a]n together with a set of local recovery maps Reci
for every i ∈ [n] satisfying the following properties:

1. There exists a set Ii ⊆ [n] of size |Ii| ≤ r with i ∈ Ii such that Reci is a function Reci :
[a]Ii\{i} → [a].

2. It holds for every codeword c ∈ C that

Reci(c|Ii\{i}) = ci.

We specify that i ∈ Ii for notational convenience due to the following well known form of linear
cLRCs. However, we emphasize that an LRC with locality r can recover any given codeword symbol
from r − 1 other symbols.

Lemma 18 (Well known). If C ⊆ Fnq is a linear code such that every i ∈ [n] lies in the support of
some parity check of Hamming weight ≤ r, then C is locally recoverable with locality r.

Proof. Fix i ∈ [n], and let c′ ∈ C⊥ be a parity check of weight ≤ r with i ∈ Ii := supp(c′). Then by
definition every c ∈ C satisfies ci = −

∑
j∈Ii\{i}(c

′
j/c
′
i)cj , which gives the desired recovery function

for index i.

13

2.3 Polynomial Evaluation Codes

Below we describe a particularly useful type of classical linear code given by evaluations of poly-
nomials. Here we let Fq[X1, . . . , Xm] denote the ring of m-variate polynomials over Fq.

Definition 19. For a subset S ⊆ Z≥0, let

Fq[X]S =

{∑
i∈S

aiX
i : a ∈ FSq

}

denote the |S|-dimensional subspace of Fq[X] consisting of polynomials with zero coefficients for
all monomials Xi with i /∈ S. Define the polynomial evaluation map

ev : Fq[X]S → FF∗q
q
∼= Fq−1

q

by ev(f) = (f(x))x∈F∗q , so that ev(f) outputs the list of evaluations of f at all points in F∗q . The

image ev(Fq[X]S) of ev is a linear code, called a polynomial evaluation code, with alphabet
size q, block length q − 1, and dimension |S|.

Below, we present the well-known Reed-Solomon codes, along with their folded counterpart.

Definition 20. For a prime power q and an integer ` ∈ [q], the Reed-Solomon (RS) code is
the polynomial evaluation code C = ev(Fq[X][`]).

Given an additional folding parameter s|(q− 1), the folded Reed-Solomon (fRS) code C̃ is
the Fq-linear code of alphabet size qs and block length (q−1)/s obtained as follows. Fix a generator
ωq−1 for F∗q , and then for every i ∈ [(q − 1)/s], block together the s components (each an element

of Fq) at positions {ωsiq−1, ω
si+1
q−1 , . . . , ω

si+s−1
q−1 } in C into a single component (which is an element of

Fsq) of the folded code C̃.

By definition Reed-Solomon codes have block length q− 1, dimension `, and distance d = q− `.
Specifically, it holds that d ≥ (q − 1) − (` − 1) = q − ` because ever polynomial of degree < ` has
< ` roots, and d ≤ q − ` by the Singleton bound. Folded Reed-Solomon codes similarly have block
length (q − 1)/s, dimension `/s, and distance (q − `)/s.

Our decoding algorithm for the quantum LRCs we construct will rely on the efficient list-
decodability of the (folded) Reed-Solomon codes, as stated in the known results below. However,
we first must define list decoding.

Definition 21. Let C be a code of block length n over alphabet A, and let δ ≥ 0. An e-list-
decoding algorithm for C is an algorithm that takes as input a corrupted codeword b ∈ An, and
outputs the list of every codeword c ∈ C such that dis(b, c) ≤ e.

In the statements below, recall that the RS code has block length q− 1 and rate R = `/(q− 1),
while the fRS code has block length (q − 1)/s and rate R = `/(q − 1).

Theorem 22 ([GS98]). The RS code with parameters q, ` has an e-list-decoding algorithm that
runs in time qO(1) for

e = (q − 1)(1−
√
R)

14

Theorem 23 ([GR08]). The fRS code with parameters q, `, s has an e-list decoding algorithm that
runs in time qO(

√
s), where

e =
q − 1

s

(
1−

(
1 +

2√
s

)
R1−1/

√
s

)
− 2,

assuming that s ≥ s0 and q ≥ q0 = q0(s) for sufficiently large constants s0, q0(s).

Note that the running times of the above algorithms implicitly give bounds on the lengths of
the lists they output.

2.4 Quantum Codes

In this section, we describe relevant background on quantum codes.

Definition 24. A quantum code of block length n, dimension k, and local dimension (that
is, alphabet size) a is a ak-dimensional linear subspace C ⊆ (Ca)⊗n.

The definition above of a quantum code as a linear subspace of Hilbert space assumes a unitary
encoding map, as we may express C = {

∣∣Enc |φ〉
∣∣0n−k〉〉 : |φ〉 ∈ (Ca)⊗k} for a unitary encoding map

Enc : (Ca)⊗n → (Ca)⊗n. In this paper we restrict attention to codes with such unitary encodings
unless explicitly stated otherwise. However, there are more general coding schemes with arbitrary
channel encodings; we leave it as an open question whether such non-unitary encodings could be
beneficial for local recovery.

Below we define the distance of a quantum code as one plus the maximum number of erasures
that the code can correct.

Definition 25. Let C be a quantum code of block length n. Given a subset S ⊆ [n], we say that C
can decode from erasures in S if there exists a decoding channel DecS :M([n] \ S)→M([n])
that satisfies

DecS(ψ[n]\S) = ψ.

for every ψ ∈ C.
The distance of C is then defined as the maximum value d ∈ N such that C can decode from

erasures in every S ⊆ [n] of size |S| < d.

The well-known fact below (see e.g. Fact 2 of [AN22] for a proof) shows that for a quantum
code of distance d, any d−1 codeword symbols contain no information about the encoded message.
Note that there is no classical analogue to this fact, as classically every linear code has a systematic
encoding, meaning that the first k codword symbols equal the message.

Lemma 26 (Local indistinguishability). If C is a quantum code of block length n that can decode
from erasures in some set S ⊆ [n], then the reduced density matrix ψS is the same for all ψ ∈ C.

The following well known quantum analogue of Proposition 16 presents a tradeoff between
distance and dimension for quantum codes. See for instance Section 12.4.3 of [NC10] for a proof.

Proposition 27 (Singleton bound). If C is a quanum code of block length n, dimension k > 0,
and distance d, then

k ≤ n− 2(d− 1).

15

We next define stabilizer codes, a well-known class of quantum codes that are defined as the
simultaneous +1 eigenspace of a set of Pauli operators, called stabilizers. We will first need to
define the Pauli operators.

Definition 28. Let Fq be a finite field of characteristic p. For α ∈ Fq, define the q-ary Pauli
operators Xα, Zα ∈ CFq×Fq ∼= Cq×q so that for x ∈ Fq,

Xα |x〉 = |x+ α〉

Zα |x〉 = e(2πi/p) trFq/Fp (αx) |x〉 .

Observe that Paulis always commute up to a phase, and specifically e(2πi/p) trFq/Fp (αβ)XαZβ =
ZβXα.

For n ∈ N, an n-qudit Pauli is an operator of the form XαZβ =
⊗n

i=1X
αiZαi for α, β ∈ Fnq .

We take Pnq denote the group of n-qudit Paulis modulo the global phase, so that Pnq ∼= F2n
q . The

support supp(P) of an n-qudit Pauli P ∈ Pnq is defined as the set i ∈ [n] of qudits on which P

acts nontrivially. That is, supp(XαZβ) = {i ∈ [n] : (αi, βi) 6= (0, 0)}. The Hamming weight of
P is |P | = | supp(P)|.

As Pnq is isomorphic to F2n
q , it is a vector space where the action of γ ∈ Fq on XαZβ ∈ Pnq gives

XγαZγβ. We therefore let a subspace, or (by slight abuse of terminology) subgroup, of Pnq be any
subset that is a Fq-subspace under the isomorphism Pnq ∼= F2n

q . Therefore in particular we require a
“subgroup” of Pnq to be closed under the action of Fq. Furthermore, although we defined Pnq to be
the group of Paulis modulo a global phase, we abuse notation and call a subgroup of Pnq abelian if
all the operators in the subgroup commute with each other, taking into account the global phase.
We also denote (Psq)n = Psnq , which we interpret as the group of length-n strings of elements in Psq ;
this group will naturally arise when we consider folded stabilizer codes in Section 5.3.

Definition 29. For a vector space Fsq over a finite field, a stabilizer code of block length n over

the alphabet Fsq is a subgroup of the Hilbert space (CFs
q)⊗n that is specified as the simultaneous

+1 eigenspace of some abelian subgroup of (Psq)n. This abelian subgroup is called the stabilizer
group of the code, and its elements are the code’s stabilizers.

We will mostly be concerned with a specific type of stabilizer code called a CSS code, which is
specified by two classical codes satisfying an orthogonality condition.

Definition 30. Given classical codes CX , CZ ⊆ (Fsq)n such that C⊥X ⊆ CZ , the associated CSS

code C = CSS(CX , CZ) is given by C = span{
∑

y∈C⊥X
|x+ y〉 : x ∈ CZ} ⊆ (CFs

q)⊗n. Equivalently,

C is the stabilizer code with stabilizer group {XαZβ : α ∈ C⊥X , β ∈ C⊥Z }.

It is well known that to decode a CSS code C = CSS(CX , CZ), it is sufficient to have classical
decoders for CX and CZ , as stated below:

Proposition 31 (Well known). Let C = CSS(CX , CZ) be a CSS code of block length n over the
alphabet A = Fsq of size a = |A|. Let e ≥ 0 be an integer such that for each permutation (α, β) of
(X,Z), there exists a (classical) decoding algorithm Decα that takes as input a (classical) corrupted
codeword c + b for some c ∈ Cα and some corruption b ∈ An of Hamming weight |b| ≤ e, and
outputs some c′ ∈ Cα such that c′ − c ∈ C⊥β .

16

Then C has a decoding algorithm Dec that recovers from errors of weight e, so C has distance
d ≥ 2e + 1. Furthermore, if each Decα has running time Tα(n, a), then Dec has running time
TX(n, a) + TZ(n, a) +O(n3 poly log a).

Proof sketch. The result is standard, so we just provide a brief outline. Let CX = kerHX and
CZ = kerHZ . Given a corrupted code state ρ = E(ψ) for a code state ψ ∈ C and an error channel
E acting on ≤ e of the codeword qudits, the decoder Dec(ρ) first performs syndrome measurements
for HX , HZ to collapse ρ to EψE†, so that the error on ψ is collapsed to some Pauli E = XbXZbZ

of weight ≤ e, where sX = HXbX and sZ = HZbZ are the outputs of the syndrome measurements.
Then for each permutation (α, β) of (X,Z), the decoder performs Gaussian elimination to find some
aα such that Hαaα = sα, so that aα = cα+ bα for some (currently unknown) cα ∈ Cα. The decoder
then runs Decα(aα), which outputs cα+pα for some pα ∈ C⊥β . Letting b′α = aα−(cα+pα) = bα−pα
and E′ = Xb′XZb

′
Z , the decoder then applies E′† to output E′†EψE†E′ = ψ. This final equality

holds because by assumption XpX and ZpZ are stabilizers of C, so they preserve ψ.

The running time of Dec defined above is TX(n, a)+TZ(n, a)+O(n3 poly log a) because outside
of the calls to DecX and DecZ , all operations run in time O(n2 poly log a), except the Gaussian
elimination which runs in time O(n3 poly log a).

Definition 32. A quantum locally recoverable code (qLRC) of locality r, block length n,
and local dimension (i.e. alphabet size) a is a quantum code C ⊆ (Ca)⊗n together with a set of
local recovery channels Reci for every i ∈ [n] satisfying the following properties:

1. There exists a set Ii ⊆ [n] of size |Ii| ≤ r with i ∈ Ii such that Reci is a quantum channel
Reci :M(Ii \ {i})→M(Ii) with input qudits Ii \ {i} and output qudits Ii.

2. It holds for every code state ψ ∈ C that

Reci⊗I[n]\Ii(ψ[n]\{i}) = ψ.

That is, a qLRC permits local recovery against erasure of a single qudit, or equivalently, against
a corruption in a single known location.

Below, we present a quantum analogue of Lemma 18 for stabilizer codes.

Proposition 33. Let C be a stabilizer code with stabilizer group S ⊆ Pnq . Assume that for every

i ∈ [n], there exist stabilizers P = XαZβ, Q = XγZδ ∈ S with | supp(P) ∪ supp(Q)| ≤ r such that
(αi, βi) = (1, 0) and (γi, δi) = (0, 1). Then C is locally recoverable with locality r.

Proof sketch. The result is a standard application of the well-known fact that a stabilizer code
detects any Pauli error that anticommutes with one of the code’s stabilizers. We will therefore just
provide a brief proof sketch. For any given i ∈ [n], let P = XαZβ, Q = XγZδ ∈ S be the Paulis
given by the proposition statement, and let Ii = supp(P) ∪ supp(Q). We will construct a recovery
channel to revert the action of an arbitrary error channel (such as a totally depolarizing channel)
acting on qudit i. The recovery channel first performs syndrome measurements for P and Q,
specifically by performing measurements on the corrupted code state for the operators P η and Qη

for all η ∈ Fq. These measurements will collapse the error on qudit i to a simultaneous eigenspace
of these operators P η and Qη for η ∈ Fq, and the measurement outcomes (i.e. the syndrome) give
the eigenvalues of the projected state for each of these operators. That is, the error on qudit i is

17

projected to some single-qudit Pauli E = XeXZeZ for eX , eZ ∈ Fnq both supported in component i.

The syndrome measurement provides the phases (EP η)(P ηE)† and (EQη)(QηE)† for all η ∈ Fq.
These phases can be used to compute the symplectic inner products sP = eX · β − eZ · α and
sQ = eX · δ − eZ · γ. By the assumption that (αi, βi) = (1, 0) and (γi, δi) = (0, 1), it follows that
sP = −(eZ)i and sQ = (eX)i. That is, sP and sQ give the Z and X errors that occured on qudit i,
respectively. The recovery channel then simply applies X−eXZ−eZ to revert the error and recover
the original code state.

Proposition 33 immediately implies that a CSS code is locally recoverable if its two classical
codes are locally recoverable linear codes in the sense of Lemma 18:

Corollary 34. A CSS code C = CSS(CX , CZ) is locally recoverable with locality r if for every
i ∈ [n], there exist parity checks c′X ∈ C⊥X , c

′
Z ∈ C⊥Z such that i ∈ supp(c′X) ∩ supp(c′Z) and

| supp(c′X) ∪ supp(c′Z)| ≤ r.

3 Singleton-Like Bounds for qLRCs

This section presents Singleton-like bounds for qLRCs, by combining techniques for proving quan-
tum Singleton bounds (see for example Section 12.4.3 of [NC10]) and classical LRC Singleton-like
bounds [GHSY12].

Below, for a qLRC C of block length n and locality i, we let Ii ⊆ [n] denote the set of size r
with i ∈ Ii such that the local recovery map Reci for C recovers the ith code component from the
components in Ii \ {i}.

Theorem 35. Let C be a qLRC of block length n, dimension k > 0, distance d, and locality r.
Then

k ≤ n− 2(d− 1)−
⌊
n− (d− 1)

r

⌋
−

n− 2(d− 1)−
⌊
n−(d−1)

r

⌋
r

 ,
Omitting the last term in the bound in Theorem 35, it follows that k ≤ n− 2(d− 1)− (n− (d−

1))/r + 1, or equivalently,

d− 1 ≤
(
1− 1

r

)
n− k + 1

2 + 1
r

.

Thus for fixed locality r, even as the rate k/n → 0, the relative distance of a qLRC satisfies
d/n ≤ 1/2 − Ω(1/r). In contrast, general (non-LRC) quantum codes can have d/n → 1/2 as
k/n→ 0. Thus for codes of low rate, there is a fundamental cost to imposing a constant locality r
in quantum codes.

This fact differs from the classical case, as the classical Singleton-like bound [GHSY12] states
that every cLRC of block length n, dimension k > 0, distance d, and locality r satisifies

d ≤ n− k −
⌈
k

r

⌉
+ 2.

Tamo and Barg [TB14] provided an explicit construction of cLRCs that exactly meet this bound.
Therefore there exist cLRCs with k/n→ 0 and d/n→ 1, which approaches the classical Singleton
bound for general (non-locally-recoverable) codes.

18

Because all quantum LDPC stabilizer codes are by definition quantum LRCs, the above obser-
vation in particular implies that there is a cost (in terms of rate-distance tradeoff) to requiring a
quantum code be LDPC with some fixed locality. As for LRCs, letting the rate k/n→ 0 gives a dis-
connect between the quantum case and the classical case. Specifically, Theorem 35 implies that all
qLDPC codes with constant locality (i.e. check weight) r have relative distance d/n ≤ 1/2−Ω(1/r).
In contrast, classically there are LDPC codes with constant locality r and distance approaching 1,
such as the repetition code (r = 2) and the Hadamard code (r = 3) over a growing field size.

It is an interesting question to determine the optimal tradeoff between rate, distance, and
locality for qLDPC codes in addition to for qLRCs, and to classify the additional cost of requiring
a quantum code to be LDPC compared to just requiring local recoverability.

Proof of Theorem 35. We partition the code symbolsQ = [n] into five disjoint subsets S1, V1, S2, V2,W .
Here as a shorthand we denote A tB by AB, so we will have Q = S1V1S2V2W . To construct this
partition, we first construct S1, V1 as follows:

1. Initialize sets S1 = ∅ and T1 = ∅.

2. Repeat the following step

s1 =

⌊
n− (d− 1)

r

⌋
times: choose some i ∈ Q \ S1T1, add i to S1, and add all elements of Ii \ ({i} ∪ S1) to T1.
Note that by construction S1 ∩ T1 = ∅.

3. Set V1 to be any (d− 1)-element subset of Q \ S1T1.

The above procedure is guaranteed to successfully output S1, V1 with |S1| = s1 and |V1| = d − 1,
as each iteration in step 2 adds 1 element to S1 and adds at most r elements to S1T1, so after all
s1 iterations it still holds that |Q \ S1T1| ≥ n− rs1 ≥ d− 1.

Let Q1 = Q \ S1V1. For a code state ρ ∈ C, given access to the restriction ρQ1 = TrQ\Q1
ρ to

components in Q1, we may by construction pass through all i ∈ S1 one-by-one in the same order S1

was constructed, and apply Reci at each step, to recover ρQ1S1 . Then as Q \Q1S1 = V1, which has
size d − 1, the global decoding algorithm of C recovers ρ from ρQ1S1 . Thus the code components
in Q1 can be used to completely recover the entire codeword. It follows by Lemma 26 that the
reduced density matrix ρQ\Q1

= ρS1V1 is the same for all code states ρ ∈ C.
Now if |Q1| < d − 1, then the global decoding algorithm for C can recover a code state from

components in Q \ Q1 = S1V1. But as we showed above that a code state can also be recovered
from components in Q1, the code must have dimension k = 0, as otherwise we would be able to
clone a code state by breaking it into the parts S1V1 and Q1, and recovering the entire state from
each part. But we assumed k > 0, a contradiction, so it must be that |Q1| ≥ d− 1.

We then construct S1, V2 using a similar procedure as above, but on the restriction to compo-
nents in Q1:

1. Initialize sets S2 = ∅ and T2 = ∅.

2. Repeat the following step

s2 =

⌊
|Q1| − (d− 1)

r

⌋
=

⌊
n− 2(d− 1)− s1

r

⌋
=

n− 2(d− 1)−
⌊
n−(d−1)

r

⌋
r


19

times: choose some i ∈ Q1 \ S2T2, add i to S2, and add all elements of Ii \ ({i} ∪ S2) to T2.

3. Set V2 to be any (d− 1)-element subset of Q1 \ S2T2.

Note that the procedure above is guaranteed to successfully output S2, V2 with |S2| = s2 and
|V2| = d − 1 because |Q1| ≥ d − 1 as shown above, and each iteration of step (2) adds 1 element
to S2 and adds at most r elements to S2T2, so after all s2 iterations |S2| = s2 and |Q1 \ S2T2| ≥
|Q1| − |S2T2| ≥ |Q1| − rs2 ≥ d− 1. Letting Q2 = Q \ S2V2, then by similar reasoning as above for
Q1, the code components in S2V2 can be recovered from components in Q2, so all code states ρ ∈ C
have the same reduced density matrix ρQ\Q2

= ρS2V2 .

Now let W = Q \ S1V1S2V2, so that we have our desired partition Q = S1V1S2V2W . Let q be
the local dimension of C, and let A be a set of k additional qudits of local dimension q. Define

|ψ〉AQ =
1

qk

∑
x∈[q]k

|x〉A ⊗ (Enc |x〉)Q (5)

to be the state obtained by applying the encoding map Enc of C to one register from a maximally
entanged pair of message states

∑
x∈[q]k |x〉⊗ |x〉. Let ψ = |ψ〉 〈ψ| be the associated density matrix.

For B ⊆ AQ, let S(B) = S(ψB) = Tr
(
−ψB logq ψB

)
denote the von Neumann entropy of qudits

B in the state |ψ〉. Then

S(A) + S(S1V1) = S(AS1V1) = S(S2V2W) ≤ S(S2V2) + S(W)

S(A) + S(S2V2) = S(AS2V2) = S(S1V1W) ≤ S(S1V1) + S(W).
(6)

In both lines above, the inequality holds by the subadditivity of entropy. Meanwhile, the first
equality in both lines holds because for i = 1, 2, we showed above that all code states ρ ∈ C have the
same reduced density matrix ρSiVi , which must equal ψSiVi . Therefore ψASiVi = q−k

∑
k∈[q]k |x〉 〈x|⊗

ρSiVi = ψA ⊗ ψSiVi , and thus S(ψASiVi) = S(ψA) + S(ψSiVi) as entropy is additive over tensor
products.

Adding the two inequalities in (6) gives that S(A) ≤ S(W). Now ψA = q−k
∑

x∈[q]k |x〉 〈x|, so
S(A) = k. Meanwhile, S(W) ≤ |W | = n− |S1V2SwV2| = n− 2(d− 1)− s1 − s2. Thus

k = S(A) ≤ S(W) = n− 2(d− 1)−
⌊
n− (d− 1)

r

⌋
−

n− 2(d− 1)−
⌊
n−(d−1)

r

⌋
r

 ,
as desired.

While Theorem 35 applies for arbitrary qLRCs, our explicit construction of qLRCs in Section 5
has a specific structure: the recovery sets Ii form a partition of the code components [n], that is,
for all i, j ∈ [n] either Ii = Ij or Ii ∩ Ij = ∅.

Below, we show that if we assume the recovery sets Ii have this partition structure, then a
stronger Singleton-like bound than in Theorem 35 holds. We will assume for simplicity that all
recovery sets Ii have size exactly |Ii| = r, as is the case for our explicit constructions in Section 5;
a similar result also holds in the more general case where |Ii| ≤ r.

20

Theorem 36. Let C be a qLRC of block length n, dimension k > 0, distance d, and locality r.
Assume that for all i ∈ [n], |Ii| = r, and for all i, j ∈ [n], either Ii = Ij or Ii ∩ Ij = ∅. Then

k ≤
(

1− 2

r

)
n− 2

(
d− 1−

⌈
d− 1

r − 1

⌉)
.

Proof. The proof is similar to that of Theorem 35, except we choose the partition S1V1S2V2W of
the qudits more carefully. Specifically, again let Q = [n] denote the set of code qudits, and as a
shorthand denote AB = A tB for disjoint A,B ⊆ Q.

Because {Ii : i ∈ Q} forms a partition of Q = [n] with all |Ii| = r, we must have r|n. Denote
by J1, . . . , Jn/r the distinct partition elements, so {Ii : i ∈ [n]} = {Jj : j ∈ [n/r]} and therefore
[n] = J1 t · · · t Jn/r.

We define a partition Q = S1V1S2V2W of the qudits as follows. Let a = d(d− 1)/(r − 1)e, and
fix an arbitrary partition [n/r] = A1 tA2 tB such that |A1| = |A2| = a. Choose S1, S2 ⊆ [n] to be
a pair of disjoint subsets such that S1 consists of a single element of Jj for each j ∈ A1 t B, and
B consists of a single element of Jj for each j ∈ A2 tB. Note that because r ≥ 2 by definition, we
can indeed choose such S1, S2 that are disjoint.

Then define V1 to be any set of d − 1 elements in tj∈A2Jj \ S2, and define V2 to be any set
of d − 1 elements in tj∈A1Jj \ S2. Note that there exist such sets V1, V2 because by construction
| tj∈A2 Jj \ S2| = | tj∈A1 Jj \ S2| = (r − 1)a ≥ d− 1.

Finally define W = Q \ S1V1S2V2, so that by construction Q = S1V1S2V2W forms a partition
of Q = [n].

For b = 1, 2, if we are given access to components in Q \ SbVb of a code state ρ ∈ C, then as Vb
is by construction disjoint from ti∈Sb

Ii, we can apply the local recovery maps Reci for i ∈ Sb to
recover the components of ρ in Sb. Then we have all components of ρ in Q \ Vb, so as |Vb| = d− 1,
we can apply the global decoding map for C to recover ρ. It follows that the components in Q\SbVb
completely determine the code state ρ, so the reduced density matrix ρSbVb must be the same for
all ρ ∈ C.

We now proceed as in the proof of Theorem 35, though with different values for |S1|, |S2|. Define
|ψ〉 as in (5), so that (6) again holds here. Summing these inequalities in (6), we conclude as in the
proof of Theorem 35 that

k ≤ |W |
= n− 2(d− 1)− |S1| − |S2|
= n− 2(d− 1)− 2(a+ (n/r − 2a))

=

(
1− 2

r

)
n− 2

(
d− 1−

⌈
d− 1

r − 1

⌉)
,

as desired.

The separation between the bounds in Theorem 35 and Theorem 36 raises the possibility that
qLRCs could benefit from having recovery sets Ii that do not simply form a partition of [n]. Such
a situation would be in contrast to the classical case. Specifically, the classical LRCs of [TB14]
have recovery sets Ii forming a partition of [n], yet they exactly meet the Singleton-like bound
of [GHSY12], which applies to LRCs with arbitrary recovery structure (see also Chapter 19 of

21

[GRS22]). Note that the cLRCs of [TB14] have linear-sized alphabets; the case of smaller alphabets
is considered in [GXY19].

4 Basic Constructions Using Known Techniques

In this section, we describe how known techniques yield some basic qLRCs, and highlight the issues
with such techniques that our construction addresses.

In Section 4.1, we show how to randomly sample a qLRC whose rate is within O(1/r) of the
Singleton-like bounds in Section 3 over an alphabet of size q = 2O(r). However, this construction
is non-explicit, and as a result we have no efficient algorithm to certify the distance bound, and
no efficient algorithm to decode from errors in unknown locations. In contrast, our fqTB codes
presented in Section 5 below only have rate within O(1/

√
r) of the Singleton-like bound, and have

alphabet size growing polynomially in the block length. However, our fqTB codes are explicit, so
their distance bound is guaranteed, and we provide an efficient decoding algorithm against errors
in uknown locations in Section 7.

In Section 4.2, we then show how to explicitly construct an efficiently-decodable qLRC using
Alon-Edmunds-Luby (AEL) [AEL95] distance amplification and alphabet reduction. This construc-
tion concatenates a small random qLRC, which can be found efficiently via brute force, with a large
quantum code of high rate and constant relative distance. The key step of the AEL construction
is to then permute the symbols according to the edges of an expander graph, which amplifies the
relative distance to almost that of the inner code. The resulting construction (see Proposition 49
and the subsequent discussion) yields qLRCs whose rate is within O(1/r1/4) of the Singleton-lke
bounds in Section 3 over an alphabet of size q = 2O(r). In contrast, as mentioned above, our fqTB
codes in Section 5 have a better rate-distance-locality tradeoff, as their rate is within O(1/

√
r) of

the Singleton-like bound.

4.1 Random qLRCs

In this section, we analyze the following natural random construction of a qLRC.

Definition 37 (Random qLRC). Given a block length n, a locality parameter r|n, an integer
` ∈ [n/2−n/r], and an alphabet Fq, we define a random qLRC to be a CSS code C = CSS(CX , CZ)
that is sampled as follows. Initialize parity check matrices HX , HZ for CX , CZ respectively to be
n/r × n matrices such that for i ∈ [n] and j ∈ [n/r],

(HX)i,j =

{
1, j ∈ {ri, . . . , ri+ r − 1}
0, otherwise

(HZ)i,j =


−(r − 1), j = ri

1, j ∈ {ri+ 1, . . . , ri+ r − 1}
0, otherwise.

That is, HX , HZ are initialized so that CSS(kerHX , kerHZ) is a well-defined CSS code that is
a qLRC of maximal possible rate, whose recovery sets form a partition of the code components
[n]. We then sequentially add ` random rows to each of HX and HZ subject to the orthogonality
relations, as follows:

22

1. Repeat ` times: sample a uniformly random vector in row-span(HZ)⊥ \ row-span(HX) and
add it as a new row in HX .

2. Repeat ` times: sample a uniformly random vector in row-span(HX)⊥ \ row-span(HZ) and
add it as a new row in HZ .

Thus we have sampled matrices HX , HZ ∈ F(n/r+`)×n
q with orthgonal row-spans. Thus we may let

CX = kerHX , CZ = kerHZ , obtain our desired well-defined CSS code C = CSS(CX , CZ).

The following lemma is immediate from Definition 37.

Lemma 38. The random qLRC C in Definition 37 is a qLRC of locality r and dimension k =
n− 2(n/r + `). Furthermore, each i ∈ [n] has recovery set Ii = {ar, . . . , ar + r − 1} for a = bi/rc.

We now analyze this distance of these random qLRCs. We will need the following definition.

Definition 39. The q-ary entropy function Hq : [0, 1]→ [0, 1] is defined by

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

The following proposition bounds the distance of random qLRCs. The proof is similar to that
of the well-known Gilbert-Varshamov (GV) bound for truly random codes.

Proposition 40. Given any δ, ε > 0, the distance d(C) of a random qLRC C from Definition 37
with parameters n, r, and ` ≥ (Hq(δ) + ε)n over the alphabet Fq satisfies

Pr[d(C) ≥ δn] > 1− 2q−εn. (7)

In particular, if q ≥ 22/ε, then it holds for all ` ≥ (δ + ε)n that

Pr[d(C) ≥ δn] > 1− 2q−εn/2. (8)

Proof. We first prove (7). Consider any fixed nonzero y ∈ Fnq . We will first compute Pr
[
y ∈ CZ \ C⊥X

]
,

so we can then union bound over all low-weight y. After step 1 in the sampling procedure in Defi-
nition 37, then HX is fully constructed and C⊥X = row-span(HX). If y ∈ C⊥X then y /∈ CZ \ C⊥X , so

we will condition on y /∈ C⊥X . For 0 ≤ i ≤ `, let H
(i)
Z denote the matrix HZ after the ith iteration

of step 2 of the sampling procedure.

Now if y ∈ CZ \ C⊥X , then for every 0 ≤ i ≤ ` − 1, it must hold that y ∈ kerH
(i)
Z , and that

y ∈ kerH
(i+1)
Z , where H

(i+1)
Z is obtained from H

(i)
Z by adding a row given by a uniformly random

h ∈ CX \ row-span(H
(i)
Z). Because y /∈ C⊥X by assumption, exactly 1/q-fraction of the vectors in CX

are orthogonal to y. Conditioning on the event that y ∈ kerH
(i)
Z , then all vectors in row-span(H

(i)
Z)

are orthogonal to y. Thus less than 1/q-fraction of all h ∈ CX \ row-span(H
(i)
Z) are orthogonal to

y, that is,

Pr
[
y ∈ kerH

(i+1)
Z \ C⊥X | y ∈ kerH

(i)
Z \ C

⊥
X

]
= Pr

h∼Unif(CX\row-span(H
(i)
Z))

[y · h = 0] <
1

q
.

23

Therefore

Pr
[
y ∈ CZ \ C⊥X

]
= Pr

[
y /∈ C⊥X

]
· Pr
[
y ∈ kerH

(0)
Z |y /∈ C

⊥
X

]
·
`−1∏
i=0

Pr
[
y ∈ kerH

(i+1)
Z \ C⊥X |y ∈ kerH

(i)
Z \ C

⊥
X

]
<

1

q`
.

Union bounding over all y ∈ Fnq of Hamming weight |y| ≤ δn gives

Pr
[
∃y ∈ CZ \ C⊥X s.t. |y| ≤ δn

]
< |{y ∈ Fnq : |y| ≤ δn}| · q

q`

≤ qHq(δ)n−`

= q−εn,

where the second inequality above follows from the well-known fact that a radius-δn Hamming ball
in Fnq has volume ≤ qHq(δ)n (see for instance Proposition 3.3.3 in [GRS22]), and the final equality
follows from the assumption that ` ≥ (Hq(δ) + ε)n.

Now observe that the final distribution over codes C = CSS(CX , CZ) remains the same if we
swap the order of steps 1,2 in the sampling procedure in Definition 37, as in both cases by symmetry

we obtain a uniform distribution over pairs of matrices HX , HZ ∈ F(n/r+`)×n
q satisfying HXH

>
Z = 0

such that the first n/r rows of each matrix are as given in Definition 37. Thus swapping CX and
CZ in the above argument gives that

Pr
[
∃y ∈ CX \ C⊥Z s.t. |y| ≤ δn

]
< q−εn.

Then because d(C) = miny∈(CZ\C⊥X)∪(CX\C⊥Z) |y|, we conclude that

Pr[d(C) ≤ δn] ≤ 2q−εn.

It remains the prove the second claim in the proposition statement. That is, assuming that
q ≥ 22/ε and ` ≥ (δ+ ε)n, we want to prove that (8) holds. But by definition Hq(δ) ≤ δ+ 1/ log2 q,
so for q ≥ 22/ε then Hq(δ) ≤ δ + ε/2, which means that ` ≥ (δ + ε)n ≥ (Hq(δ) + ε/2)n. Then
applying (7) with ε/2 replacing ε gives

Pr[d(C) ≥ δn] > 1− 2q−εn/2,

as desired.

Letting the alphabet size q →∞, we immediately obtain the following corollary.

Corollary 41. For every fixed δ > 0 and for every alphabet size q, there exists ε = ε(q) > 0
with ε(q) → 0 as q → ∞ such that a random qLRC C from Definition 37 with parameters n, r,
` = d(Hq(δ) + ε/4)ne has dimension

k ≥
(

1− 2

r

)
n− 2d− εn,

and with high probability has distance d = δn.

24

Thus for large q, the dimension of these random qLRCs is within 2d/r of the Singleton-like
upper bound in Theorem 36.

Remark 42. For simplicity and consistency with the rest of the paper, we have chosen to consider
random CSS qLRCs. By not restricting to CSS codes and instead taking random stabilizer qLRCs,
one can obtain a slightly better dependence on alphabet size. That is, a smaller alphabet size q
would be needed to achieve any given rate-distance tradeoff dictated by Lemma 38 and Proposi-
tion 40. However, in the limit of large q, which is our primary concern, the rate-distance tradeoff is
the same whether or not we restrict to CSS codes. A similar phenomenon occurs with ordinary ran-
dom quantum codes (with no locality constraints), and is the reason that random stabilizer codes
(i.e. the quantum GV bound) have better distance than random CSS codes over small alphabets.

4.2 Explicit qLRCs from AEL Distance Amplification

In this section, we show how to construct explicit qLRCs using Alon-Edmunds-Luby (AEL) distance
amplification and alphabet reduction [AEL95]. This distance amplification technique has seen
extensive use in classical coding theory [GI01, GI02, GI03, GR08, HW18, KMRZS16, GKO+18,
HRZW20], but has only recently been studied in the quantum setting [BGG22, WLH23]. Here we
apply the AEL technique with an inner code given by a random qLRC from Section 4.1.

4.2.1 Review of AEL Technique

Here review the AEL distance amplification and alphabet reduction technique of [AEL95]. We
will subsequently specify how we parameterize it to obtain qLRCs. The construction will use the
following notion of an expander.

Definition 43. A ∆-regular bipartite graphG = (L,R,E) with |L| = |R| = n is λ-pseudorandom
if it holds for every S ⊆ L and T ⊆ R that∣∣∣∣|E(S, T)| − ∆|S||T |

n

∣∣∣∣ ≤ λ∆
√
|S||T |.

Recall that a λ-spectral expander is a graph for which the second largest absolute value of an
eigenvalue of the random walk matrix is ≤ λ. By the well-known expander mixing lemma (see for
instance Leamm 4.15 in [Vad12]), the double cover of a λ-spectral expander is λ-pseudorandom, so
the explicit near-Ramanujan graphs of [MOP21] prove the following.

Proposition 44 ([MOP21]). For every integer ∆ ≥ 3, there exists an infinite explicit family of
∆-regular λ-pseudorandom graphs for λ = 2/

√
∆.

We now describe the AEL construction. Let Cout and Cin be [[nout, kout = Routnout, dout =
δoutnout]]qout and [[nin, kin = Rinnin, din = δinnin]]qin quantum codes respectively such that qout =

qkinin . Let C� denote the [[noutnin, kout, kin]]qin concatenated code, so that its encoder

Enc� = Enc⊗nout
in ◦Encout

first applies the encoder for Cout, and then applies the encoder for Cin to each symbol of the
resulting codeword of Cout, where we use the assumption that qout = qkinin to view each such symbol
as a message for Cin.

25

Now for some ∆|nin, we partition each inner code block of size nin into nin/∆ subsets each of
size ∆, and we fold together the ∆ components in each subset to obtain a folded concatenated code
C̃�, which is a [[n = noutnin/∆, k = koutkin/∆]]q code of alphabet size q = q∆

in.

To construct our final [[n, k]]q code C, we permute the symbols of C̃� according to a ∆-regular
λ-pseudorandom bipartite graph G = (L,R,E) with |L| = |R| = ñ�. Formally, let πG : [n]× [∆]→
[n]× [∆] be the permutation that maps (i, j) ∈ [n]× [∆] to the unique (i′, j′) ∈ [n]× [∆] such that
the jth edge incident to vertex i ∈ L equals the j′th edge incident to vertex i′ ∈ R. Note that here
we have fixed some ordering of the edges incident to each vertex. We then let C have encoder

Enc = πG ◦ Enc�

that simply encodes the message into C�, and then permutes the symbols according to πG. That is,
for j ∈ [∆], the jth symbol of component i ∈ [n] in C̃� is mapped to the j′th symbol of component
i′ in C for (i′, j′) = πG(i, j). Thus for the composition here we view πG as an invertible map
Fn×∆
q → Fn×∆

q in the natural way.

The following lemma is immediate from the definition of the code C

Lemma 45. C has rate R = RoutRin.

.

The distance of C is given by the following proposition. The statement and proof of this
AEL distance bound follows from [AEL95], and was previously shown in the quantum setting by
[BGG22]; we repeat the proof in Appendix B for completeness in our specific setting. Below, we
use the definitions and notation from the AEL construction above. We also say a code has decoding
radius a if it has a (possibly inefficient) decoding algorithm that corrects against errors in up to a
unknown locations.

Proposition 46. If Cout and Cin have respective decoding radii αoutnout and αinnin, then C has
decoding radius at least αn for α = αin − λ

√
αin/αout. Furthermore, if the decoding algorithms for

Cout and Cin run in time poly(n log q), so does the decoding algorithm for C.

Because a code of distance d may be (possibly inefficiently) decoded from e errors for every
e < d/2, and a code with decoding radius e has distance > 2e, the following corollary is immediate.

Corollary 47. If Cout and Cin have respective distances δoutnout and δinnin, then C has distance at
least δn for δ = δin − 2λ

√
δin/δout.

4.2.2 Application to qLRCs

We now apply the AEL described above to qLRCs. In this section we again continue to use the
definitions and notation for the AEL construction from Section 4.2.1.

Lemma 48. Let the inner code Cin be a qLRC of locality rin|∆, whose recovery sets {Ii : i ∈ [nin]}
all have size rin and form a partition of [nin]. The AEL construction then yields a qLRC C of
locality ∆rin.

Proof. We may perform the folding step of the AEL construction described in Section 4.2.1 such
that all elements of each Ii are folded into the same length-∆ component in C̃�. The permutation πG

26

then sends these r elements of Ii to distinct components in C, assuming we choose a λ-pseudorandom
graphG arising from a 2-cover of a λ-spectral expander with no self-loops; the expanders of [MOP21]
described in Proposition 44 indeed have no self-loops. Thus each of the ∆ symbols of a component
of C can be recovered from rin symbols in other components, so C is a qLRC of locality rin∆.

In summary, if we apply AEL with a qLRC Cin of locality rin, we obtain a qLRC of locality
r = ∆rin that has rate R = RoutRin and relative distance at least δin − 2λ

√
δin/δout, where we can

take λ = 2/
√

∆.

To optimize the parameters for the resulting qLRC C, we can take Cout to be a quantum Reed-
Solomon code, which is the CSS code formed by two (generalized) Reed-Solomon codes2. This code
has alphabet size qout = O(nout) and lies on the quantum Singleton bound so that Rout ≥ 1−2δout.
Then taking a random qLRC from Section 4.1 as the inner code Cin, we obtain the following.

Proposition 49. For every rin,∆ ≥ 3 such that rin|∆, and for every δin, δout, ε > 0, there exists
an infinite family of qLRCs with locality r = rin∆, alphabet size q = 2O(∆/ε), rate

R = (1− 2δout)

(
1− 2δin −

2

rin
− 2ε

)
,

and relative distance at least

δ = δin − 4

√
δin
δout∆

.

Furthermore, a qLRC of block length n in this family can be constructed by a poly(n log q)-time
randomized algorithm with high probability, and can be decoded by a poly(n log q)-time algorithm
from up to δn/2 errors.

Proof. As described above, we instantiate the AEL construction with Cout to be a (generalized)
qRS code of relative distance at least δout, rate Rout = 1− 2δout, and alphabet size qout = O(nout),
and we instantiate Cin to be a random qLRC from Proposition 40 of relative distance at least
δin, rate Rin = 1 − 2δin − 2/rin − 2ε, locality rin, and alphabet size qin = 2O(1/ε). We take the
expander G to be given by Proposition 44. Taking C to be the resulting code from applying the
AEL construction, then the bounds on the parameters of C in the proposition statement follow
from Lemma 48, Proposition 40, Lemma 38, Lemma 45, and Corollary 47.

To efficiently construct C, we must simply find an inner code Cin satisfying the distance bound in
Proposition 40, as the code Cout and the expander G are by definition explicit. But because qout =
O(nout), in poly(n log q) time we may repeatedly generate a random qLRC Cin = CSS(CX , CZ) as
described in Section 4.1, and via brute force check every codeword in CX \ CZ and CZ \ CX to
compute the distance of Cin. By Proposition 40, with high probability a random such Cin will have
the desired distance δin, so we successfully construct Cin and therefore C with high probability. The

2If C is a length-(q − 1) classical RS code as defined in Definition 20, then indeed CSS(C,C) is a well-defined
CSS code of of alphabet size q that lies on the quantum Singleton bound. This construction can be extended to
general block lengths n (such that n + 1 is not a prime power) by using generalized RS codes. In a generalized RS
code, the messages are still low-degree polynomials, but the encoding map only evaluates the message polynomial at
some points in F∗q , and multiplies these evaluations by some fixed coefficients in F∗q . By choosing appropriate such
coefficients for generalized RS codes CX and CZ , we can ensure that the CSS orthogonality relations are satisfied,
so that CSS(CX , CZ) is a well-defined CSS code on the quantum Singleton bound. See for instance Section 3.1 of
[BGG22] for more details.

27

efficiency of the decoding algorithm follows from Proposition 46 along with the fact that RS (and
therefore also qRS) codes are known to have efficient decoders from errors of weight up to half the
distance (e.g. Theorem 22).

Remark 50. The codes in Proposition 49 are efficiently constructable, but not technically explicit.
This distinction arises because qout = Θ(nout), so while the number of possible inner codewords
qout = |Fkinqin | is polynomial in n log q, the number of possible inner codes Cin = CSS(CX , CZ) is
superpolynomial in n log q. We can resolve this issue to obtain explicit qLRCs C with AEL by
using an outer code Cout with a smaller alphabet size than a quantum RS code. For instance, the
alphabet size of Cout can be reduced with another application of AEL, at the cost of a small loss in
parameters.

The qLRCs of locality r and relative distance δ in Proposition 49 have rate

R ≤ (1− 2δout)

(
1− 2δ − 8

√
δ

δout∆
− 2∆

r
− 2ε

)

for any ε > 0 that determines the alphabet size q = 2O(∆/ε). The RHS above is maximized
when ∆ is chosen to minimize the expression 8

√
δ/δout∆ + 2∆/r; solving this minimization gives

∆ = (2r)2/3(δ/δout)
1/3, which in turn gives

R ≤ (1− 2δout)

(
1− 2δ − 6

(
4δ

δoutr

)1/3

− 2ε

)

≤ 1− 2δ − Ω

(
δ

r

)1/3

.

Thus the qLRCs constructed with AEL in Proposition 49 have rate at least Ω(δ/r)1/3 below the
Singleton-like bound in Theorem 35.

Furthermore, if we let 0 < δ < 1/2 be a fixed constant and let r grow large, then the above
inequality implies that

R ≤ 1− 2δ − Ω

(
δout +

1

(δoutr)1/3

)
.

The RHS above is maximized at δout = Θ(1/r1/4), giving

R ≤ 1− 2δ − Ω

(
1

r

)1/4

. (9)

Thus for fixed δ as r grows large, the qLRCs in Proposition 49 have rate at least Ω(r)1/4 below the
Singelton-like bound in Theorem 35.

The bound in (9) is tight, in the sense that if we fix 0 < δ < 1/2 in Proposition 49 and then
take δout = 1/r1/4, ∆ = r3/4, and ε = 1/r1/4, Proposition 49 gives qLRCs of relative distance δ and
rate

R ≥ 1− 2δ −O
(

1

r

)1/4

over an alphabet of size q = 2O(r).

28

5 Explicit Construction of qLRCs: Quantum Tamo-Barg Codes

In this section, we present our construction of qLRCs, and show that they are indeed locally
recoverable. The construction is essentially a quantum CSS version of the classical construction
of Tamo and Barg [TB14], though the quantum case is more involved due to issues surrounding
orthogonality and degeneracy.

5.1 Classical Tamo-Barg Codes

We begin by describing the classical LRC construction of Tamo and Barg [TB14]. Recall below
that for n ∈ N, we denote [n] = {0, . . . , n− 1}. We will also use the notation from Definition 19. In

particular, recall that the map ev : Fq[X]→ FF∗q
q maps a polynomial f to the list of its evaluations

on all inputs in F∗q .

Definition 51 ([TB14]). For a prime power q, a locality parameter r|(q − 1) with r ≥ 3, and an
integer ` ∈ [q], the Tamo-Barg (TB) code is the polynomial evaluation code ev(Fq[X]S) for

S = {i ∈ [`] : i 6≡ r − 1 (mod r)}.

The following proposition of [TB14] states that the TB code is a cLRC achieving the Singleton-
like bound.

Proposition 52 ([TB14]). The TB code in Definition 51 has alphabet size q, block length q − 1,
dimension `− bl/rc, distance ≥ q − `, and is locally recoverable with locality r.

Below we present a quantum analogue of TB codes that we show are also locally recoverable
(Corollary 58). The proof of local recoverability in both the classical and quantum cases simply
rely on some polynomial manipulations (Lemma 55 and Lemma 57 below).

5.2 Quantum Tamo-Barg Codes

We now introduce our quantum analogue of Tamo-Barg codes.

Definition 53. For a prime power q, a locality parameter r|(q − 1) with r ≥ 3, and an integer
` ∈ [q], we define the quantum Tamo-Barg (qTB) code to be the CSS code C = CSS(CX , CZ)
with CX = CZ = ev(Fq[X]S) for

S = {i ∈ [`] : i 6≡ r − 1 (mod r)} ∪ {i ∈ [q − 1] : i ≡ 1 (mod r)}. (10)

By construction C has local dimension q and block length q − 1.

To understand the definition of a qTB code, and to see that it gives a well defined CSS code,
consider the following general fact, which presents a certain kind of “intersection” of CSS codes.

Lemma 54. For CSS codes A = CSS(AX , AZ) and B = CSS(BX , BZ) of block length n over Fq,
there exists a CSS code C = CSS(CX , CZ) given by

CX = (AX ∩BX) +B⊥Z

CZ = (AZ ∩BZ) +B⊥X ,

29

so that

C⊥X = (A⊥X ∩BZ) +B⊥X

C⊥Z = (A⊥Z ∩BX) +B⊥Z .

Proof. By definition

C⊥X = ((AX ∩BX) +B⊥Z)⊥

= (AX ∩BX)⊥ ∩BZ
= (A⊥X +B⊥X) ∩BZ
= (A⊥X ∩BZ) +B⊥X ,

and by the same reasoning C⊥Z = (A⊥Z ∩ BX) + B⊥Z . Then because A⊥X ⊆ AZ , it follows that
C⊥X ⊆ CZ , so C is a well defined CSS code.

We then obtain the following.

Lemma 55. For r|(q − 1) with r ≥ 3 and ` ∈ [q], let

A = ev(Fq[X][`])

B = ev(Fq[X][q−1]\(−1+rZ)).

Then A ∩B is a TB code. Furthermore,

A⊥ = ev(Fq[X][q−`]\{0})

B⊥ = ev(Fq[X][q−1]∩(1+rZ)) ⊆ B.
(11)

If ` ≥ q/2, then A⊥ ⊆ A, so letting C = (A ∩B) +B⊥, then CSS(C,C) is a qTB code with

C⊥ = (A⊥ ∩B) +B⊥ = ev(Fq[X]T) ⊆ C.

for
T = {i ∈ [q − `] \ {0} : i 6≡ r − 1 (mod r)} ∪ {i ∈ [q − 1] : i ≡ 1 (mod r)}. (12)

Proof. It suffices to show the equalities in (11), as then the remaining claims in the lemma statement
follow from the definitions of TB and qTB codes along with Lemma 54.

The first equality in (11) simply states the well known fact that the dual of a Reed-Solomon
code is a (generalized) Reed-Solomon code. Formally, by dimension counting it suffices to show
that ev(Fq[X][q−`]\{0}) ⊆ A⊥. By using monomials as a basis for Fq[X][`] and for Fq[X][q−`]\{0}, it
then suffices to show that for every i ∈ [`] and j ∈ [q − `] \ {0}, we have ev(Xi) · ev(Xj) = 0. But

ev(Xi) · ev(Xj) =
∑
α∈F∗q

αi+j , (13)

which indeed equals 0 for i+ j 6≡ 0 (mod q − 1).

We now prove the second equality in (11). By dimension counting, it suffices to show that
ev(Fq[X][q−1]∩(1+rZ)) ⊆ B⊥. By using monomials as a basis for Fq[X][q−1]\(−1+rZ) and for Fq[X][q−1]∩(1+rZ),
it then suffices to show that for every i ∈ [q − 1] \ (−1 + rZ) and j ∈ [q − 1] ∩ (1 + rZ), we have
ev(Xi) · ev(Xj) = 0. But then (13) again holds, and i+ j 6≡ 0 (mod q− 1), so ev(Xi) · ev(Xj) = 0
as desired.

30

Lemma 55 implies that the qTB code C = CSS(C,C) satisfies C⊥ ⊆ C, so it is indeed a well
defined CSS code. Below we compute the dimension of this code.

Lemma 56. The qTB code C = CSS(C,C) with parameters q, r, ` has dimension

k = 1 + |{q − ` ≤ i ≤ `− 1 : i 6≡ ±1 (mod r)}|

= (2`− q) ·
(

1− 2

r

)
+ ε

for some ε ∈ [−2, 2].

Proof. Define S ⊆ [q − 1] as in (10) and T ⊆ S as in (12), so that C = Fq[X]S and C⊥ = Fq[X]T .
Then by definition C has dimension

k = dim(C)− dim(C⊥)

= |S \ T |
= |{0} ∪ {q − ` ≤ i ≤ `− 1 : i 6≡ ±1 (mod r)}|,

which proves the first equality in the lemma statement. The second equality in the lemma statement
then follows because |{q − ` ≤ i ≤ `− 1 : i 6≡ ±1 (mod r)}| can differ from (2`− q)(1− 2/r) by at
most 2.

We now show that the qTB code C = CSS(C,C) is locally recoverable. By Lemma 34, it suffices
to show that C⊥ contains low-weight parity checks whose supports cover all n code components.
As B⊥ ⊆ C⊥ (see Lemma 55), it in fact suffices to show that B⊥ contains such low-weight parity
checks, as is shown below.

Lemma 57. The code B⊥ = ev(Fq[X][q−1]∩(1+rZ)) as defined in Lemma 55 may be equivalently
characterized as follows. Let Ωr = {x ∈ F∗q : xr = 1} ⊆ F∗q denote the rth roots of unity. Then B⊥

consists of all functions f : F∗q → Fq that can be expressed in the form f(x) = βxΩr · x for some

β ∈ FF∗q/Ωr
q .

We refer to elements of B⊥ as piecewise linear functions, as Lemma 57 states that f ∈ B⊥
if and only if for each coset xΩr of Ωr, the function f(x) agrees with the linear function βxΩr ·x′ on
the restriction to inputs x′ ∈ xΩr. Note that these linear functions x′ 7→ βxΩr · x′ are truly linear
maps (not just affine linear).

Proof of Lemma 57. By dimension counting, it suffices to show that every ev(f(X)) ∈ B⊥ =

ev(Fq[X][q−1]∩(1+rZ)) is piecewise linear, that is, that f(x) = βxΩr · x for some β ∈ FF∗q/Ωr
q .

Fix some f(X) =
∑

i∈[q−1] fiX
i with ev(f) ∈ B⊥, so that

fi = 0 ∀i 6≡ 1 (mod r). (14)

For every coset αΩr ∈ F∗q/Ωr, then Xr−αr vanishes on all X ∈ αΩr, so g(X) := f(X) (mod Xr−
αr) agrees with f(X) on allX ∈ αΩr. But by definition g(X) =

∑
i∈[r] giX

i with gi =
∑

j∈[(q−1)/r] fi+rjα
rj ,

so (14) implies that gi = 0 for all i 6= 1. Thus for all X ∈ αΩr we have f(X) = g(X) = giX, so f
is indeed piecewise linear, as desired.

31

Lemma 57 immediately yields the result of [TB14] that TB codes are cLRCs (Proposition 52),
and similarly shows that qTB codes are qLRCs:

Corollary 58. The qTB code given in Definition 53 is locally recoverable with locality r.

Proof. By Lemma 34, it suffices to show that the qTB code C = CSS(C,C) has C (classically)
locally recoverable with locality r. Now by Lemma 55, C⊥ contains B⊥ = ev(Fq[X][q−1]∩(1+rZ)).
For every α ∈ F∗q , Lemma 57 implies that B⊥ contains the function

fα(x) =

{
x, x ∈ αΩr

0, x /∈ αΩr,

which has supp(f) = αΩr, that is, fα is supported on r components including α. Thus Lemma 18
implies that C is a cLRC with locality r, so C is a qLRC with locality r.

5.3 Folded Quantum Tamo-Barg Codes

We are not able to show that the qTB codes in Definition 53 have distance approaching the
Singleton-like bound. Rather, we will only obtain such near-optimal distance for the folded version
of these codes, defined below.

Definition 59. As in Definition 53, let C = CSS(CX , CZ) be the qTB code with parameters q, r, `,
so that CX = CZ = ev(Fq[X]S) for S ⊆ [q−1] given by (10). Given an additional folding parameter
s|(q− 1)/r, we define the folded quantum Tamo-Barg (fqTB) code C̃ to be the quantum code
of local dimension qs and block length (q − 1)/s obtained as follows. Fix a generator ωq−1 for F∗q ,
and then for every i ∈ [(q − 1)/s], we block together the s components (each of local dimension q)
at positions {ωsiq−1, ω

si+1
q−1 , . . . , ω

si+s−1
q−1 } in C into a single component (of local dimension qs) of the

folded code C̃. Let C̃X , C̃Z denote the Fq-linear codes obtained by similarly folding CX , CZ , so that
C̃ = CSS(C̃X , C̃Z).

As a point of notation, we will almost universally use α̃ to denote the s-folded version of an
object α, where s will be clear from context. Specifically, we denote F̃∗q = {{ωsiq−1, . . . , ω

si+s−1
q−1 } :

i ∈ [(q − 1)/s]} to be the partition of F∗q into the (q − 1)/s blocks of size s into which we folded

the qTB code in Defintion 59. For a function a : F∗q → Fq, we denote ã : F̃∗q → Fsq the associated

folded function given by ã(S) = (a(x))x∈S for S ∈ F̃∗q . For instance, if a is a codeword of the
classical code C associated to a qTB code C = CSS(C,C), then ã is a codeword of the folded code

C̃ associated to the fqTB code C̃ = CSS(C̃, C̃). We also extend this notation to subspaces V ⊆ FF∗q
q ,

so that Ṽ = {ã : a ∈ V }; thus indeed C̃ refers to the folded version of a code C, meaning that C̃
is obtained by replacing all codewords a ∈ C with their folded version ã. We furthermore define

ẽv : Fq[X] → (Fsq)F̃
∗
q by ẽv(f) = ẽv(f), meaning that ẽv for applies the evaluation map ev, and

then folds the output.

For a given x = ωbq−1 ∈ F∗q , we let Fx ∈ F̃∗q denote the unique element of F̃∗q that contains x, so
that

Fx = {ωbb/sc·s+jq−1 : j ∈ [s]}.

32

For a polynomial f(X) ∈ Fq[X], we will also let f̃(Fx) = ẽv(f)(Fx). Therefore in particular if ẽv(f)
is a folded codeword, then f̃(Fx) ∈ Fsq denotes the component of this folded codeword associated

to the partition element in F̃∗q that contains x ∈ F∗q .
Folding a code by definition preserves the rate, so a folded qTB code has the same rate as

the associated unfolded qTB code, which we computed in Lemma 56. Below, we use our proof in
Lemma 57 and Corollary 58 that qTB codes are qLRCs to show that folded qTB codes are also
qLRCs.

Corollary 60. The fqTB code give in Definition 59 is locally recoverable with locality r.

Proof. Let C = CSS(C,C) denote the qTB code, and let C̃ = CSS(C̃, C̃) denote the associated folded
qTB code. Our proof of Lemma 57 and Corollary 58 implies that for every x ∈ F∗q , component x
of C can be recovered from the components at positions in x(Ωr \ {1}).

Now for every Fx ∈ F̃∗q , component Fx of C̃ consists of the components x′ of C for all x′ ∈ Fx.
As stated above, each such component x′ of C can be recovered from the components in x′(Ωr \{1})
of C. But by definition the union of all these recovery sets x′(Ωr \ {1}) for x′ ∈ Fx equals the union
of the r − 1 partition elements Fxωi

r
for ωir ∈ Ωr \ {1}, that is,⊔

x′∈Fx

x′(Ωr \ {1}) = Fx(Ωr \ {1}).

Therefore component Fx of C̃ can be recovered from these r− 1 components Fxωi
r

for ωir ∈ Ωr \ {1}
by simply separately recovering the symbol at each position x′ ∈ Fx ⊆ F∗q from the symbols at

positions in x′(Ωr \ {1}) using the recovery maps for the unfolded qTB code C. Therefore C̃ is a
qLRC of locality r, as desired.

6 Bounding the Distance

In this section, we construct explicit qLRCs approaching the Singleton-like bound. We first bound
the distance of the qTB codes introduced in Definition 53 in Section 5. Interestingly, we are only
able to get a distance bound for these codes that is reminiscent of the Johnson bound, so that
this bound in particular only approaches the Singleton bound for codes of small rate. However,
we then show that the folded version of these qTB codes introduced in Defintion 59 have distance
approaching the Singleton bound for all rates, for sufficiently large locality parameters r. It remains
an open question whether the unfolded qTB codes have distance approaching the Singleton bound.

Note that classical Tamo-Barg codes are subcodes of Reed-Solomon codes, so their distance
bound immediately follows from the distance of RS codes. That is, the distance of a classical TB
code with parameters q, r, ` is at least the distance d = q− ` of a classical RS code with parameters
q, `. However, our quantum TB codes are not subcodes of RS codes due to the orthogonality
condition for CSS codes which necessitates extra high degree terms in the polynomials. As a result
our distance analysis in the quantum case is much more involved and delicate. Indeed, the following
corollary of Theorem 36 shows that the distance of a qTB code with parameters q, r, ` must be
strictly worse asymptotically than the distance d = q − ` of a qRS code with parameters q, `.

33

Corollary 61. The distance d of the qTB code C = CSS(C,C) with parameters q, r, ` satisfies

d ≤
(

1− 1

r

)
(q − `) + 5.

Proof. Plugging the expression for the dimension k of C from Lemma 56 into the bound in Theo-
rem 36 gives that

(2`− q)
(

1− 2

r

)
− 2 ≤

(
1− 2

r

)
(q − 1)− 2

(
1− 1

r − 1

)
(d− 1) + 2.

Rearranging terms in the above expression then yields the desired result.

Similar reasoning as in Corollary 61 also implies that the folded qTB code with parameters
q, r, `, s has asymptotically worse distance than the folded qRS code with parameters q, `, s, as the
folded qRS code lies on the quantum Singleton bound like its unfolded counterpart.

6.1 Distance of Unfolded Quantum Tamo-Barg Codes

We now show the following bound on the distance of the qTB codes from Definition 53. Recall
that the following result was stated informally as Theorem 3 in Section 1.1.2.

Theorem 62. The qTB code C in Definition 53 with a prime locality parameter r has distance at
least

d = (q − 1)

(
1− 1

2r
−

√
1

4r2
+
r − 1

r
· `− 1

q − 1

)
. (15)

The reader is referred to Section 1.2.2 for more context surrounding the above bound and its
apparent similarity to the Johnson bound.

Proof of Theorem 62. Let C = CSS(C,C) be a qTB code with parameters q, r, `. Fix an arbitrary
ev(f) ∈ C \ C⊥. Our goal is to show that | ev(f)| ≥ d.

For a high-level proof overview, the reader is referred to the proof sketch in Section 1.2.2. In
brief, we will define a polynomial G that has many roots associated to the roots of f , but also has
low degree. We then obtain the desired result by comparing bounds on the number of roots and
the degree of G.

We now give the formal proof. As C = ev(Fq[X]S) for S = ([`]\ (−1+rZ))∪ ([q−1]∩ (1+rZ)),
we may write f(X) = g(X) + h(X), where g(X) ∈ Fq[X][`]\(±1+rZ) and h(X) ∈ Fq[X][q−1]∩(1+rZ).
Then h(X) is piecewise linear by Lemma 57. As ev(h) ∈ C⊥ and by assumption ev(f) /∈ C⊥, we
must have g 6= 0.

Define a polynomial G(X) ∈ Fq[X] by

G(X) =
r−1∏
i=1

(ω−ir g(ωirX)− g(X)). (16)

Letting g(X) =
∑

j gjX
j , then by definition the jth coefficient of ω−ir g(ωirX)−g(X) equals (ω

i(j−1)
r −

1)gj . Because gj = 0 for all j ≡ 1 (mod r), and r is prime so that ω
i(j−1)
r 6= 1 for all j 6≡ 1 (mod r),

34

it follows that (ω
i(j−1)
r − 1)gj = 0 iff gj = 0. Therefore in particular deg(ω−ir g(ωirX) − g(X)) =

deg(g) ≤ `− 1, so deg(G) = (r − 1) deg(g) ≤ (r − 1)(`− 1). It also follows that G 6= 0.

We now bound the number of roots of G in terms of the number of roots of f . If f(x) = 0 and
f(ωirx) = 0 for some x ∈ F∗q and some 1 ≤ i ≤ r − 1, then

ω−ir g(ωirx)− g(x) = −ω−ir h(ωirx) + h(x) = −h(x) + h(x) = 0,

where the second equality above holds because h is piecewise linear.

Therefore letting Ωr = {1, ωr, . . . , ωr−1
r } denote the rth roots of unity in F∗q , then for every

ordered pair of distinct elements (x, y = ωirx) within some coset xΩr such that f(x) = f(y) = 0,
the polynomial G(X) has an associated root at X = x. Therefore G(X) has (r − | ev(f)|xΩr |)(r −
| ev(f)|xΩr | − 1) roots within a given coset xΩr, where | ev(f)|xΩr | denotes the Hamming weight of
the restriction of ev(f) to xΩr. Thus the total number of roots of G is at least∑

xΩr∈F∗q/Ωr

(r − | ev(f)|xΩr |)(r − | ev(f)|xΩr | − 1)

=
q − 1

r
ExΩr∼Unif(F∗q/Ωr)[(r − | ev(f)|xΩr |)2]− (q − 1− | ev(f)|)

≥ q − 1

r
ExΩr∼Unif(F∗q/Ωr)[(r − | ev(f)|xΩr |)]2 − (q − 1− | ev(f)|)

=
r

q − 1
(q − 1− | ev(f)|)2 − (q − 1− | ev(f)|).

But we showed above that G is a nonzero polynomial of degree ≤ (r − 1)(`− 1), so we must have

r

q − 1
(q − 1− | ev(f)|)2 − (q − 1− | ev(f)|) ≤ (r − 1)(`− 1).

Solving this quadratic equation and rearranging terms gives that | ev(f)| ≥ d for d given in (15),
as desired.

6.2 Distance of Folded Quantum Tamo-Barg Codes

In this section, we show the following bound on the distance of the fqTB codes from Definition 59.

Theorem 63. Let C̃ be the fqTB code in Definition 59 with parameters q, r, `, s such that r is prime
and such that the uncertainty principle in Proposition 66 holds for r over Fq. Then C̃ has distance
at least

d =
q − 1

s

(
1− `− 1

q − 1
− ε
)
. (17)

for

ε = max
1≤m≤r

min

{(
1− `− 1

q − 1

)
m− 1

r
,

1

m
+
m− 1

s

}
. (18)

Applying the technical Lemma 75 proved in Appendix A to bound the expression ε in (18)
yields us the following corollary.

35

Corollary 64. Let C̃ be the fqTB code in Definition 59 with parameters q, r, `, s such that r is
prime and such that the uncertainty principle in Proposition 66 holds for r over Fq. If s ≥ 2r2,
then C̃ has distance at least

d ≥ q − 1

s

(
1− `− 1

q − 1
−
(

1 +
r2

s

)√
1

r

(
1− `− 1

q − 1

))
.

Recall that an informal statement of Corollary 64 was given in Theorem 2 in Section 1.1.2,
which intuitively states the following. Because folding a code preserves its rate, Lemma 56 implies
that as q, r, `, s→∞, Corollary 64 provides a bound on the relative distance of a fqTB code of rate
R that approches

d

(q − 1)/s
→ 1−R

2
.

This bound indeed approaches the ordinary Singleton bound (Proposition 27) for general quantum
codes.

There is one subtlety with our bound from Theorem 63 and Corollary 64, namely, that we
require the uncertainty principle in Proposition 66 to hold for r over Fq. Proposition 66 shows
that for every fixed prime r, this uncertainty principle can only fail to hold for finite fields whose
characteristic lies in a finite set depending on r. Thus we must first fix the locality parameter r,
and then let the block length grow arbitrarily large. Specifically, by letting q be an arbitrary power
of an arbitrary prime outside of this bad finite set depending on r, we obtain our desired infinite
family of qLRCs satisfying the distance bounds described above.

To prove Theorem 63, we will use the following well known fact about determinants. For
completeness, a proof is provided in Appendix A.

Lemma 65 (Well known). For every m ∈ N, the determinant polynomial det ∈ Fq[(Xij)i,j∈[m]] has
a root of multiplicity m− t at every matrix (xij)i,j∈[m] of rank t.

We will also use the following uncertainty principle over finite fields. Below we use the following
notation for a finite field Fq and a prime r|(q − 1). For a polynomial f(X) =

∑
i∈[q] fiX

i ∈ Fq[X],
we let |f | denote the number of i ∈ [q] for which the coefficient fi is nonzero, while we let | ev(f)|Ωr |
denote the number of distinct rth roots of unity ωir ∈ Ωr ⊆ Fq for which f(ωir) is nonzero.

Proposition 66 ([GGI05]). For every fixed prime r, the following holds for all but finitely many
primes p: if Fq is a field of characteristic p with r|(q − 1), then every nonzero f ∈ Fq[X] of degree
< r satisfies

|f |+ | ev(f)|Ωr | ≥ r + 1.

Proposition 66 can be viewed as an uncertainty principle, as it says that if f has few nonzero
coefficients, then it has many nonzero evaluation points on rth roots of unity.

This uncertainty principle is implied by the statement that all minors of the Vandermonde ma-
trix (ωijr)i,j∈[r] are nonzero (a proof of this implication is given by [Tao04]). Over the complex field,
this Vandermonde matrix also has no vanishing minors, as was first proved by Chebotarëv; addi-
tional proofs have since been given, e.g. [EI76, Tao04, Fre04, GGI05]. The discussion in Section 6
of [GGI05] shows that for every fixed r, Chebotarëv’s theorem over C implies the same result over
finite fields of all but finitely many characteristics. Thus Proposition 66 holds. We remark that a
similar result is also shown in [Zha19].

36

Proof of Theorem 63. Let C = CSS(C,C) be a qTB code with parameters q, r, ` as in the theorem
statement, and let C̃ = CSS(C̃, C̃) be the folding of C for folding parameter s|(q − 1)/r. Fix an
arbitrary f(X) =

∑
i∈[q−1] fiX

i ∈ Fq[X] such that ev(f) ∈ C \C⊥, with associated folded codeword

ẽv(f) ∈ C̃ \ C̃⊥. Our goal is to show that |ẽv(f)| ≥ d.

Let M = {i ∈ [r] : ∃j ≡ i (mod r) with fj 6= 0} and m = |M |. In the two claims below, we
show two upper bounds on |ẽv(f)| ≥ d; the first bound is tighter when m is small, while the second
is tighter when m is large.

Claim 67.

|ẽv(f)| ≥ q − 1

s

(
1− `− 1

q − 1

)(
1− m− 1

r

)
.

Proof. We will show this bound on |ẽv(f)| by first bounding | ev(f)|, and then applying the fact
that |ẽv(f)| ≥ | ev(f)|/s. To bound | ev(f)|, we will use the uncertainty principle in Proposition 66.
Recall that for every x ∈ F∗q , then on the restriction to inputs in the coset xΩr, f agrees with
f (mod Xr − xr), as Xr − xr vanishes on all X ∈ xΩr. Now by definition f (mod Xr − xr) is a
polynomial of degree < r whose coefficients are supported within M . Therefore |f (mod Xr−xr)| ≤
m, so by Proposition 66, we have that either ev(f)|xΩr = 0 or | ev(f)|xΩr | ≥ r + 1−m.

We now bound the number of cosets xΩr ∈ F∗q/Ωr for which ev(f)|xΩr = 0. If M ⊆ {1} then

ev(f) ∈ C⊥ by Lemma 55, contradicting the assumption that ev(f) ∈ C\C⊥, so there must be some
i ∈M \ {1}. Then ev(f)|xΩr = 0 iff f (mod Xr − xr) = 0, which in turn can only occur if the ith
coefficient of f (mod Xr − xr) equals 0. But this ith coefficient is precisely

∑
j∈[(q−1)/r] fi+rj(x

r)j .

Now the polynomial
∑

j∈[(q−1)/r] fi+rjY
j has degree ≤ (`− 1)/r because fi+rj = 0 if i+ rj ≥ ` by

the definition of C. Thus this polynomial has ≤ (`− 1)/r roots, so there are ≤ (`− 1)/r values of
Y = xr for which

∑
j∈[(q−1)/r] fi+rj(x

r)j = 0, and thus there are ≤ (` − 1)/r cosets xΩr ∈ F∗q/Ωr

for which ev(f)|xΩr = 0.

Because we showed above that | ev(f)|xΩr | ≥ r + 1 −m whenever ev(f)|xΩr 6= 0, we may sum
over all cosets xΩr to conclude that

| ev(f)| =
∑

xΩr∈F∗q/Ωr

| ev(f)|xΩr |

≥
(
q − 1

r
− `− 1

r

)
(r + 1−m)

= (q − 1)

(
1− `− 1

q − 1

)(
1− m− 1

r

)
.

Then by definition

|ẽv(f)| ≥ | ev(f)|
s

≥ q − 1

s

(
1− `− 1

q − 1

)(
1− m− 1

r

)
.

Claim 68.

|ẽv(f)| ≥ q − 1

s

(
1− `− 1

q − 1
− 1

m
− m− 1

s

)
.

Proof. We show this bound on |ẽv(f)| using a similar method as in the proof of Theorem 62, except
we replace the polynomial G(X) in (16) with (19) below. At a high level, we obtain our improved

37

distance bound here by leveraging the code folding to more efficiently detect roots of f using a
certain determinant polynomial.

Our use of the determinant polynomial to detect roots of f is similar in spirit to analysis in
[GK16] of subspace designs based on folded RS codes. However, the details are different, and we
require a more involved argument to show that the polynomial G we obtain using the determinant
is nonzero.

As C = ev(Fq[X]S) for S = ([`] \ (−1 + rZ)) ∪ ([q − 1] ∩ (1 + rZ)), we have a decomposition

f(X) = g(X) + h(X)

for g(X) =
∑

i giX
i ∈ Fq[X][`]\(±1+rZ) and h(X) =

∑
i hiX

i ∈ Fq[X][q−1]∩(1+rZ). Because ev(f) /∈
C⊥ and ev(h) ∈ C⊥ by assumption, we must have g 6= 0.

Let det ∈ Fq[(Xij)i,j∈[m]] denote the determinant polynomial, which takes as input an m ×m
matrix of variables (Xij)i,j∈[m] over Fq, and outputs the determinant of the input matrix. Define
G(X) ∈ Fq[X] by

G(X) = det
(
ω−ir · g(ωirω

j
q−1 ·X)

)
i,j∈[m]

. (19)

As deg(det) = m, we have deg(G) ≤ m · deg(g) ≤ m(`− 1).

We next show that G(X) is a nonzero polynomial. As g(X) =
∑

a∈[`]\(±1+rZ) gaX
a, we may

decompose the matrix

A(X) :=
(
ω−ir · g(ωirω

j
q−1 ·X)

)
i,j∈[m]

=
∑
a

gaX
a
(
ω(a−1)i
r ωajq−1

)
i,j∈[m]

=
∑
a

gaX
a


1

ωa−1
r

ω
2(a−1)
r

...

ω
(m−1)(a−1)
r

 ·
(

1 ωaq−1 ω2a
q−1 · · · ω

(m−1)a
q−1

)

=
∑
i∈M


1

ωi−1
r

ω
2(i−1)
r

...

ω
(m−1)(i−1)
r

 ·
∑

a≡i (mod r)

gaX
a
(

1 ωaq−1 ω2a
q−1 · · · ω

(m−1)a
q−1

)
.

(20)

By definition A(X) is an m×m matrix with entries in the ring Fq[X], and G(X) = det(A(X)). To
show that G 6= 0, it therefore suffices to show that A has full rank m, for which it in turn suffices
to show that the sets of vectors


1

ωi−1
r

ω
2(i−1)
r

...

ω
(m−1)(i−1)
r

 : i ∈M


and


∑

a≡i (mod r)

gaX
a


1

ωaq−1

ω2a
q−1
...

ω
(m−1)a
q−1

 : i ∈M


(21)

38

from the rank-1 decomposition of A in (20) are linearly independent over Fq[X]. Here it is equiv-
alent to show linear independence over the field of rational functions Fq(X) and (as we may clear
denominators in any linear dependency) over the ring of polynomials Fq[X], so we will show the
latter.

Now the first set of vectors in (21) above form the columns of an m×m Vandermonde matrix,
which is known to have full rank. Meanwhile, if there is some nontrivial Fq[X]-linear dependency
among the second set of vectors in (21), then taking the highest-degree term of the associated
polynomials over X gives a nontrivial Fq-linear dependency among the vectors (ωajq−1)j∈[m] for m
distinct values of a. But these vectors again form the columns of an m×m Vandermonde matrix
and thus cannot have any nontrivial linear dependencies. Therefore both sets of vectors in (21) are
indeed linearly independent, so the decomposition in (20) expressing A(X) as the sum of m rank-1
matrices implies that A(X) has full rank m, and thus G(X) = det(A(X)) is a nonzero polynomial.

We now bound the number of roots of G(X) in terms of the Hamming weight of ẽv(f). For a

given x = ωbq−1 ∈ F∗q , recall that Fx = {ωbb/sc·s+jq−1 : j ∈ [s]} ∈ F̃∗q denotes the index of the folded

component of C̃ that contains the component x of C.
If b (mod s) ∈ {0, 1, . . . , s − m}, then because s|(q − 1)/r by assumption, it holds for each

i ∈ [m] that

{ωirω
j
q−1x : j ∈ [m]} = {ωb+i(q−1)/r+j

q−1 x : j ∈ [m]} ⊆ Fωi
rx
.

Thus the ith row of the matrix (ωirω
j
q−1x)i,j∈[m] consists of m elements all lying inside Fωi

rx
. Ap-

plying f to each component, it follows that that ith row of (f(ωirω
j
q−1))i,j∈[m] consists of m out of

the s components in the folded symbol ẽv(f)F
ωi
rx

.

Let Zx = {i ∈ [m] : ẽv(f)F
ωi
rx

= 0}. If b (mod s) ∈ {0, 1, . . . , s −m}, then for every i ∈ Zx,

the ith row of (f(ωirω
j
q−1))i,j∈[m] by definition consists of all zeros. In this case because f(X) =

g(X) + h(X), for every i ∈ Zx we have

(ω−ir g(ωirω
j
q−1x))j∈[m] = (−ω−ir h(ωirω

j
q−1x))j∈[m] = (−h(ωjq−1x))j∈[m],

where the second equality holds because h(X) is by definition piecewise linear. Now the left hand
side above equals the ith row of A(x) ∈ Fm×mq , while the right hand side is a vector that does not
depend on i. Thus we have shown that if b (mod s) ∈ {0, 1, . . . , s−m}, then the ith row of A(x)
is the same for all i ∈ Zx. Therefore in this case A(x) has rank ≤ m + 1 − |Zx|, so Lemma 65
implies that the m×m determinant polynomial has a root of multiplicity ≥ |Zx|−1 at A(x). Thus
G(X) = det(A(X)) has a root of multiplicity ≥ |Zx| − 1 at X = x.

Summing over all x = ωbq−1 ∈ F∗q , it follows that the number of roots (including multiplicities)
of G(X) is at least∑

b∈[q−1]:b (mod s)∈{0,...,s−m}

(|Zωb
q−1
| − 1) ≥

∑
x∈F∗q

(|Zx| − 1)− (q − 1)m

s
· (m− 1)

=
∑
x∈F∗q

|Zx| − (q − 1)

(
m(m− 1)

s
+ 1

)

= (q − 1− |ẽv(f)| · s) ·m− (q − 1)

(
m(m− 1)

s
+ 1

)

39

= (q − 1)m

(
1− |ẽv(f)| · s

q − 1
− 1

m
− m− 1

s

)
where the second equality above holds becuase |Zx| equals the number of elements x′ ∈ xΩr for
which ẽv(f)Fx′ = 0, so each of the q− 1− |ẽv(f)| · s values x′ ∈ F∗q with ẽv(f)Fx′ = 0 contributes 1
to the sum

∑
x∈F∗q |Zx| a total of m times, once for each x ∈ x′Ωr.

But we showed above that G is a nonzero polynomial of degree ≤ (`−1)m, so G has ≤ (`−1)m
roots, and thus

(q − 1)m

(
1− |ẽv(f)| · s

q − 1
− 1

m
− m− 1

s

)
≤ (`− 1)m.

Rearranging terms above then gives that

|ẽv(f)| ≥ q − 1

s

(
1− `− 1

q − 1
− 1

m
− m− 1

s

)
.

Combining the bounds in the two claims above immediately implies that |ẽv(f)| ≥ d for d
defined in (17), as desired.

7 Efficient Decoding Algorithm

This section presents an efficient decoding algorithm for the qLRCs constructed in Section 5. Note
that the local recovery algorithms Reci are by construction efficient, as they are a special case
of erasure-decoding for a CSS code. Here we present an efficient algorithm for the more difficult
task of globally decoding from errors at a number of unknown locations approaching half the code
distance. As in Section 5, we consider both unfolded and folded quantum Tamo-Barg codes. For
the unfolded codes our decoding algorithm is relatively simple but suboptimal. For the folded
codes, our decoding algorithm approaches the optimal possible decoding radius as the locality r
grows large.

Classical Tamo-Barg codes are subcodes of Reed-Solomon codes, so a classical Tamo-Barg code
can be efficiently decoded by simply running an efficient Reed-Solomon decoder, which was known
to exist. However, our (folded) quantum Tamo-Barg codes are not subcodes of quantum Reed-
Solomon codes due to duality conditions for CSS codes. Just as this distinction between the
quantum and classical cases made our distance analysis in Section 6 much more complicated than
that of classical TB codes, our decoding algorithm for the quantum case is also more involved,
though it does eventually reduce to Reed-Solomon decoding.

Note that in classical distributed storage applications of LRCs, errors often correspond to phe-
nomena like a server being unresponsive, and therefore occur at known locations in the codeword.
In such a case, it suffices to be able to decode from erasures, which can be done efficiently for
any linear code using Gaussian elimination. Similarly, quantum stabilizer codes, of which our
construction in Section 5 is an instance, can be efficiently decoded from erasures.

However, it is not implausible that decoding from errors in unknown locations would be useful
in applications of quantum LRCs. For instance, even if a qLRC is using in a distributed setting
where each code component is itself stored in a fault-tolerant memory, because quantum states are
naturally more error-prone than classical data, it is not unreasonable that occasional global error

40

correction could be beneficial to maintaining high fidelity for the encoded state, even if most errors
are caused by local failures in known locations.

7.1 Unfolded Quantum Tamo-Barg Codes

In this section we present an efficient decoding algorithm for the qTB codes in Definition 53. Our
algorithm is motivated by the proof of Theorem 62, and ultimately reduces decoding the qTB codes
to list decoding a classical Reed-Solomon code.

In particular, we apply Reed-Solomon list decoding up to the Johnson bound (Theorem 22
to obtain an efficient list decoder for our qTB codes, and then apply the qTB distance bound in
Theorem 62 to show that when the error is not too large, the list decoder in fact serves as a unique
decoder, that is, there are no extraneous list elements.

Algorithm 1: Classical decoding algorithm DecC for a qTB code C = CSS(C,C) with
parameters q, r, `. By Proposition 31, DecC can be used to obtain an efficient quantum
decoding algorithm for C from ≤ e errors in unknown locations. As a point of notation,
ListDecRS(q,`) refers to the Reed-Solomon list decoder in Theorem 22, whose output is a

list of message polynomials. Also, we let B⊥ = ev(Fq[X][q−1]∩(1+rZ)) as in (11) denote the
space of piecewise linear functions (see Lemma 57).

Input : Corrupted codeword a : F∗q → Fq with dis(a,C) ≤ e
Output: c′ ∈ C such that dis(c′ − a,C⊥) ≤ e
Function DecC(a):
L ← ∅
for i ∈ {1, . . . , r − 1} do

Define a(i) : F∗q → Fq by a(i)(x) = ω−ir a(ωirx)− a(x)

Li ← ListDecRS(q,`)(a
(i))

for g(i)(X) =
∑

j∈[`] g
(i)
j Xj ∈ Li do

if g
(i)
j = 0 for every j ≡ ±1 (mod r) then

Add ev
(
g(X) :=

∑
j∈[`](ω

(j−1)i
r − 1)−1g

(i)
j Xj

)
to L

return arg minev(g)∈L dis(ev(g)− a,B⊥)

Theorem 69. Let C be the qTB code in Definition 53 with a prime locality parameter r. Then C
can be decoded from errors in up to

e = (q − 1) · 1

2

(
1− 1

2r
−

√
1

4r2
+
r − 1

r
· `

q − 1

)
unknown locations in time qO(1).

Note that the error bound e in Theorem 69 above is just under half the distance bound d from
Theorem 62; replacing the ` above with ` − 1 gives the expression for d/2. Thus Theorem 69
shows that we can efficiently decode from adversarial errors up to nearly half the distance, which
is optimal.

41

To show that Algorithm 1 runs in polynomial time, we need the following lemma, which shows
that the distance computations dis(ev(g)−a,B⊥) in the final line of the algorithm can be performed
efficiently.

Lemma 70. Letting B⊥ = ev(Fq[X][q−1]∩(1+rZ)), there exists a O(q poly log q)-time algorithm that
takes as input b : F∗q → Fq, and outputs dis(b, B⊥).

Proof. To compute dis(b, B⊥) = minb′∈B⊥ |b−b′| efficiently, recall that B⊥ is the space of piecewise
linear functions by Lemma 57. Therefore we may simply find the closest linear function to b within
each coset xΩr ∈ F∗q/Ωr separately. Formally, for each coset xΩr ∈ F∗q/Ωr, we may compute
βxΩr := arg maxβ∈Fq

|{x′ ∈ xΩr : b(x′) = β · x′}|, and then we set b′(x′) = βxΩrx
′ for all x′ ∈ xΩr.

Then by construction dis(b, B⊥) = dis(b, b′).

Note that above each βxΩr can be computed in time O(r poly log q), as we may simply set βxΩr

equal to the mode value of β = b(x′)/x′ across all x′ ∈ xΩr. Thus dis(b, B⊥) may be computed in
time O(q poly log q).

Proof of Theorem 69. Let C = CSS(C,C) be a qTB code with parameters q, r, `. By Proposition 31,
it suffices to construct an algorithm DecC that takes as input a corrupted codeword a = c + b for
some c ∈ C and some corruption b ∈ F∗q → Fq of Hamming weight |b| ≤ e, and outputs some c′ ∈ C
such that c′ − c ∈ C⊥.

The desired algorithm is given in Algorithm 1. We first show it correctly decodes as described
above, and then analyze the running time.

Consider a corrupted codeword a = c+b for some codeword c = ev(f) ∈ C and some corruption
b : F∗q → Fq of weight |b| ≤ e. For a given 1 ≤ i ≤ r − 1, by definition a(i)(x) = ω−ir a(ωirx) − a(x)

equals c(i)(x) = f (i)(x) = ω−ir f(ωirx)−f(x) at every point x for which x, ωirx /∈ supp(b). Meanwhile,
within a given coset xΩr ∈ F∗q/Ωr, the number of ordered pairs of distinct points y, y′ ∈ xΩr such
that y, y′ /∈ supp(b) is precisely (r−|b|xΩr |)(r−|b|xΩr −1|). Thus the sum over all i ∈ {1, . . . , r−1}
of the number of points x ∈ F∗q where a(i)(x) = f (i)(x) satisfies

r−1∑
i=1

|{x ∈ F∗q : a(i)(x) = f (i)(x)}| ≥
r−1∑
i=1

|{x ∈ F∗q : x, ωirx /∈ supp(b)}|

=
∑

xΩr∈F∗q/Ωr

|{(y, y′) ∈ (xΩr)
2 : y 6= y′ and y, y′ /∈ supp(b)}|

=
∑

xΩr∈F∗q/Ωr

(r − |b|xΩr |)(r − |b|xΩr − 1|)

≥ q − 1

r
ExΩr∼Unif(F∗q/Ωr)[(r − |b|xΩr |)2]− (q − 1− |b|)

≥ q − 1

r
ExΩr∼Unif(F∗q/Ωr)[(r − |b|xΩr |)]2 − (q − 1− |b|)

=
r

q − 1
(q − 1− |b|)2 − (q − 1− |b|)

≥ r

q − 1
(q − 1− e)2 − (q − 1− e),

42

where the final inequality above holds becuase the function β 7→ r(q− 1− β)2/(q− 1)− (q− 1− β)
is decreasing for all β ≤ e ≤ (q − 1)/2. Then averaging over all i ∈ {1, . . . , r − 1}, there must be
some such i for which

|{x ∈ F∗q : a(i)(x) = f (i)(x)}| ≥ r(q − 1− e)2

(r − 1)(q − 1)
− q − 1− e

r − 1
. (22)

Recall by Lemma 55, we may decompose f(X) = g(X) + h(X) for g(X) =
∑

j gjX
j ∈

Fq[X][`]\(±1+rZ) and h(X) ∈ Fq[X][q−1]∩(1+rZ). Define g(i), h(i) analogouosly to f (i), so that f (i) =
g(i) + h(i). Then because

ω−ir (ωirX)j −Xj = (ωi(j−1) (mod r)
r − 1)Xj (23)

equals 0 for all j ≡ 1 (mod r), it follows that h(i) = 0 and thus f (i) = g(i). Therefore (22) is
equivalent to

|{x ∈ F∗q : a(i)(x) = g(i)(x)}| ≥ r(q − 1− e)2

(r − 1)(q − 1)
− q − 1− e

r − 1
. (24)

But by (23), the coefficients of g(i)(X) =
∑

j∈[`]\(±1+rZ) g
(i)
j Xj are given by g

(i)
j = (ω

i(j−1) (mod r)
r −

1)gj , and thus g and g(i) have coefficients of the same support, that is, gj = 0 if and only if g
(i)
j = 0.

In particular, it follows that deg(g(i)) = deg(g) < `. In other words, ev(g(i)) ∈ RS(q, `) is a Reed-
Solomon codeword, so (24) says that a(i) = ev(g(i)) + b(i) is a corrupted Reed-Solomon codeword
with the corruption b(i) of weight

|b(i)| = q − 1− |{x ∈ F∗q : a(i)(x) = g(i)(x)}|

≤ q − 1−
(
r(q − 1− e)2

(r − 1)(q − 1)
− q − 1− e

r − 1

)
= (q − 1)

(
1−

(
r

r − 1

(
1− e

q − 1

)2

− 1

r − 1

(
1− e

q − 1

)))
.

By Theorem 22, the output of running the list decoder ListDecRS(q,`)(a
(i)) is a list containing

ev(g(i)) as long as the right hand side above is at most (q− 1)(1−
√
`/(q − 1)), which simplifies to

needing that

e ≤ (q − 1)

1− 1

2r
−

√√√√ 1

4r2
+
r − 1

r
·

√
`

q − 1

 .

But the above holds by the definition of e along with Lemma 76, so the list Li in Algorithm 1
will contain g(i), and thus after the ith iteration of the for loop, the list L will contain ev(g(X)) =

ev(
∑

j(ω
(j−1)i
r − 1)−1g

(i)
j Xj). Thus if Algorithm 1 outputs ev(g′) ∈ L, then g′ ∈ Fq[X][`]\(±1+rZ)

and

dis(ev(g′)− a,B⊥) ≤ dis(ev(g)− a,B⊥) ≤ | ev(g + h)− a| = | ev(f)− a| = |b| ≤ e.

But as B⊥ ⊆ C⊥, it follows that dis(ev(g)− a,C⊥) ≤ e and dis(ev(g′)− a,C⊥) ≤ e, so dis(ev(g)−
ev(g′), C⊥) ≤ 2e. But by the definition of e along with Theorem 62, C has distance minc∈C\C⊥ |c| >

43

2e, so it follows that ev(g) − ev(g′) ∈ C⊥. Thus DecC(a) outputs some ev(g′) ∈ ev(g) + C⊥, as
desired.

It remains to show that Algorithm 1 runs in time qO(1). Theorem 22 implies that the calls
to ListDecRS(q,`) run in qO(1) time, while Lemma 70 implies that the arg min computation in the

final line of the algorithm runs in O(|L| · q poly log q) = qO(1) time. The rest of the algorithm by
definition also runs in qO(1) time, so the result follows.

7.2 Folded Quantum Tamo-Barg Codes

We now present an efficient decoding algorithm for the fqTB codes in Definition 59. The algorithm
is similar to the algorithm presented in Section 7.1 for the unfolded qTB codes, and decodes up
to an error fraction approaching half our distance bound in Theorem 63. Yet because the distance
bound in Theorem 63 approaches the quantum Singleton bound as the locality parameter r grows
large, our decoding algorithm for fqTB codes for large r tolerates error fractions approaching half
the quantum Singleton, which is optimal.

We obtain this improved error tolerance for fqTB decoding compared to qTB decoding by
leveraging the folding in two separate ways, namely, through the improved distance of fqTB codes
(Theorem 63) compared to qTB codes (Theorem 62), and through the improved list-decodability of
classical fRS codes (Theorem 23) compared to RS codes (Theorem 22). Combining these improve-
ments for folded codes, but otherwise following the proof of Theorem 69, we obtain the following
result.

Algorithm 2: Classical decoding algorithm DecC̃ for a fqTB code C̃ = CSS(C̃, C̃) with
parameters q, r, `, s. By Proposition 31, DecC̃ can be used to obtain an efficient quantum

decoding algorithm for C̃ from ≤ e errors in unknown locations. As a point of notation,
ListDecfRS(q,`) refers to the folded Reed-Solomon list decoder in Theorem 23, whose output

is a list of message polynomials. Also, we let B̃⊥ = ẽv(Fq[X][q−1]∩(1+rZ)) as in (11) denote
the folded space of piecewise linear functions (see Lemma 57).

Input : Corrupted codeword ã ∈ F̃F∗q
q with dis(ã, C̃) ≤ e

Output: c̃′ ∈ C̃ such that dis(c̃′ − ã, C̃⊥) ≤ e
Function DecC̃(ã):
L ← ∅
for i ∈ {1, . . . , r − 1} do

Define a(i) : F∗q → Fq by a(i)(x) = ω−ir a(ωirx)− a(x)

Li ← ListDecfRS(q,`,s)(ã
(i))

for g(i)(X) =
∑

j∈[`] g
(i)
j Xj ∈ Li do

if g
(i)
j = 0 for every j ≡ ±1 (mod r) then

Add ẽv(g) to L for g(X) :=
∑

j∈[`](ω
(j−1)i
r − 1)−1g

(i)
j Xj

return arg minẽv(g)∈L dis(ẽv(g)− ã, B̃⊥)

Theorem 71. Let C̃ = CSS(C̃, C̃) be the fqTB code in Definition 59 with parameters q, r, `, s such

44

that r is prime and such that the uncertainty principle in Proposition 66 holds for r over Fq. Then
C can be decoded from errors in up to

e = min

{
d

2
− 1, e′

}
(25)

unknown locations in time qO(
√
s), where d is defined as in (17) and e′ is defined as in (28).

For sufficiently large folding parameter s, we can simplify the decoding radius in (25) to obtain
the following bound, which approaches half the distance bound in Corollary 64.

Corollary 72. For any γ > 0, let C̃ = CSS(C̃, C̃) be the fqTB code in Definition 59 with parameters
q, r, `, s such that r is a prime for which the uncertainty principle in Proposition 66 holds for r over
Fq. Furthermore assume that s ≥ s0(γ, r) and q ≥ q0(s), where s0(γ, r) and q0(s) are some
sufficiently large numbers with respect to γ, r and s respectively. Then C can be decoded from errors
in up to

e ≥ q − 1

s
· 1

2

(
1− `− 1

q − 1
−

√
1

r

(
1− `− 1

q − 1

)
− γ

)
,

unknown locations in time qO(
√
s).

Specifically, Corollary 72 follows from showing that our current bound on d/2−1 in Corollary 64
is smaller than e′, so our distance bound is the limiting contraint on decoding radius. Thus if we
could show a tighter distance bound for fqTB codes than Theorem 63, we would immediately obtain
efficient decoding up to a larger radius. For instance, if we could show that the fqTB codes have
relative distance d/((q − 1)/s) ≥ 1 − `/(q − 1) − O(1/r), it would immediately follow that for all
sufficiently large s, q, Algorithm 2 decodes fqTB codes for errors on up to (1−`/(q−1)−O(1/r))/2
fraction of the qudits

Proof of Corollary 72. Letting s→∞ in the bound on the fqTB distance d in Corollary 64 and in
the expression for e′ in (28), we see that for all sufficiently large s relative to γ, r and sufficiently
large q relative to s, then

d

2
− 1 ≥ q − 1

s
· 1

2

(
1− `− 1

q − 1
−

√
1

r

(
1− `− 1

q − 1

)
− γ

)

and

e′ ≥ q − 1

s
·

(
1− 1

2r
−

√
1

4r2
+
r − 1

r
· `− 1

q − 1
− γ

2

)
.

Thus to show the desired inequality in the corollary statement, because e = min{d/2 − 1, e′} by
Theorem 71, it suffices to show that

q − 1

s
· 1

2

(
1− `− 1

q − 1
−

√
1

r

(
1− `− 1

q − 1

)
− γ

)
≤ q − 1

s
·

(
1− 1

2r
−

√
1

4r2
+
r − 1

r
· `− 1

q − 1
− γ

2

)
,

45

or equivalently, that

1

2

(
1− `− 1

q − 1
−

√
1

r

(
1− `− 1

q − 1

))
≤ 1− 1

2r
−

√
1

4r2
+
r − 1

r
· `− 1

q − 1
.

But the above inequality follows directly from Lemma 77.

To show that Algorithm 2 runs in polynomial time, we need the following analogue of Lemma 70
for the folded case, which shows that the distance computations dis(ẽv(g)− ã, B̃⊥) in the final line
of the algorithm can be performed efficiently.

Lemma 73. Letting B̃⊥ = ẽv(Fq[X][q−1]∩(1+rZ)), there exists a O(r · q poly log q)-time algorithm

that takes as input b̃ ∈ F̃F∗q
q , and outputs dis(b̃, B̃⊥).

Proof. To compute dis(b̃, B̃⊥) = minb̃′∈B̃⊥ |b̃− b̃
′| efficiently, recall that B⊥ is the space of piecewise

linear functions by Lemma 57. Therefore we may consider each FxΩr ∈ F̃∗q/Ωr separately, and

for each FxΩr we must compute the sequence of values β = (βyΩr)y∈Fx ∈ FFx
q that maximizes the

number w(β) of coset elements x′ ∈ xΩr for which all y′ ∈ Fx′ have b(y′) = βy′Ωr · y′; note here
that our notation suppresses the implicit dependence of β and w(β) on the choice of coset FxΩr.
Indeed, by definition we will then have dis(b̃, B̃⊥) = (q − 1)/s −

∑
FxΩr∈F̃∗q/Ωr

w(β(FxΩr)), where

β(FxΩr) denotes the optimal choice of β for a given FxΩr.

To compute the optimal β = β(FxΩr) for a given FxΩr ∈ F̃∗q/Ωr, observe that if w(β) > 0,
then there must be some x′ ∈ xΩr for which all y′ ∈ Fx′ have b(y′) = βy′Ωr · y′. Therefore
βy′Ωr = b(y′)/y′ for all y′ ∈ Fx′ , which completely determines the value of β. Thus we may
simply loop through the r coset elements x′ ∈ xΩr, and for each x′ compute w(β) for β given by
βy′Ωr = b(y′)/y′ for all y′ ∈ Fx′ ; then whichever of these r values of β maximizes w(β) is the optimal
value β = β(FxΩr). This algorithm by definition computes a given β(FxΩr) in time O(r2s poly log q)
time, so it computes all β(FxΩr) for FxΩr ∈ F̃∗q/Ωr in O(r · q poly log q) time. Thus we can compute

dis(b̃, B̃⊥) in O(r · q poly log q) time.

Proof of Theorem 71. The proof will follow closely the proof of Theorem 71, with the main differ-
ence our use of the folded RS list decoding algorithm in Theorem 23 and the folded qTB distance
bound in Theorem 63 in place of their unfolded counterparts.

By Proposition 31, it suffices to construct an algorithm DecC̃ that takes as input a corrupted

codeword ã = c̃ + b̃ for some c̃ ∈ C̃ and some corruption b̃ ∈ F̃F∗q
q of Hamming weight |b̃| ≤ e, and

outputs some c̃′ ∈ C̃ such that c̃′ − c̃ ∈ C̃⊥.

The desired algorithm is given in Algorithm 2. We first show it correctly decodes as described
above, and then analyze the running time.

Consider a corrupted codeword ã = c̃+ b̃ for some codeword c̃ = ẽv(f) ∈ C̃ and some corruption

b̃ ∈ F̃F∗q
q of weight |b̃| ≤ e. For a given 1 ≤ i ≤ r− 1, by definition a(i)(x) = ω−ir a(ωirx)− a(x) equals

c(i)(x) = f (i)(x) = ω−ir f(ωirx)− f(x) at every point x ∈ F∗q for which x, ωirx /∈ supp(b). Meanwhile,
within a given coset xΩr ∈ F∗q/Ωr, the number of ordered pairs of distinct points y, y′ ∈ xΩr such
that y, y′ /∈ supp(b) is precisely (r−|b|xΩr |)(r−|b|xΩr −1|). Thus the sum over all i ∈ {1, . . . , r−1}

46

of the number of points Fx ∈ F̃∗q where ã(i)(Fx) = f̃ (i)(Fx) satisfies

r−1∑
i=1

|{Fx ∈ F̃∗q : ã(i)(Fx) = f̃ (i)(Fx)}|

≥
r−1∑
i=1

|{Fx ∈ F̃∗q : Fx, ω
i
rFx /∈ supp(b̃)}|

=
∑

FxΩr∈F̃∗q/Ωr

|{(Fy, Fy′) ∈ (FxΩr)
2 : Fy 6= Fy′ and Fy, Fy′ /∈ supp(b̃)}|

=
∑

FxΩr∈F̃∗q/Ωr

(r − |b̃|FxΩr |)(r − |b̃|FxΩr − 1|)

≥ q − 1

rs
EFxΩr∼Unif(F̃∗q/Ωr)[(r − |b̃|FxΩr |)2]−

(
q − 1

s
− |b̃|

)
≥ q − 1

rs
EFxΩr∼Unif(F̃∗q/Ωr)[(r − |b̃|FxΩr |)]2 −

(
q − 1

s
− |b̃|

)
=

rs

q − 1

(
q − 1

s
− |b̃|

)2

−
(
q − 1

s
− |b̃|

)
≥ rs

q − 1

(
q − 1

s
− e
)2

−
(
q − 1

s
− e
)
,

where the final inequality above holds becuase the function β 7→ rs((q− 1)/s− β)2/(q− 1)− ((q−
1)/s− β) is decreasing for all β ≤ e ≤ (q − 1)/2s. Then averaging over all i ∈ {1, . . . , r − 1}, there
must be some such i for which

|{Fx ∈ F̃∗q : ã(i)(Fx) = f̃ (i)(Fx)}| ≥ rs

(r − 1)q − 1

(
q − 1

s
− e
)2

− 1

r − 1

(
q − 1

s
− e
)
. (26)

Recall by Lemma 55, we may decompose f(X) = g(X) + h(X) for g(X) =
∑

j gjX
j ∈

Fq[X][`]\(±1+rZ) and h(X) ∈ Fq[X][q−1]∩(1+rZ). Define g(i), h(i) analogouosly to f (i), so that f (i) =
g(i) + h(i). Then because the expression in (23) equals 0 for all j ≡ 1 (mod r), it follows that
h(i) = 0 and thus f (i) = g(i). Therefore (26) is equivalent to

|{Fx ∈ F̃∗q : ã(i)(Fx) = g̃(i)(Fx)}| ≥ rs

(r − 1)q − 1

(
q − 1

s
− e
)2

− 1

r − 1

(
q − 1

s
− e
)
. (27)

But by (23), the coefficients of g(i)(X) =
∑

j∈[`]\(±1+rZ) g
(i)
j Xj are given by g

(i)
j = (ω

i(j−1) (mod r)
r −

1)gj , and thus g and g(i) have coefficients of the same support, that is, gj = 0 if and only if g
(i)
j = 0.

In particular, it follows that deg(g(i)) = deg(g) < `. In other words, ev(g(i)) ∈ fRS(q, `) is a
folded Reed-Solomon codeword, so (27) says that ã(i) = ẽv(g(i)) + b̃(i) is a corrupted Reed-Solomon

47

codeword with the corruption b̃(i) of weight

|b̃(i)| = q − 1

s
− |{Fx ∈ F̃∗q : ã(i)(Fx) = g̃(i)(Fx)}|

≤ q − 1

s
−

(
rs

(r − 1)q − 1

(
q − 1

s
− e
)2

− 1

r − 1

(
q − 1

s
− e
))

=
q − 1

s

(
1−

(
r

r − 1

(
1− es

q − 1

)2

− 1

r − 1

(
1− es

q − 1

)))
.

By Theorem 23, the output of running the list decoder ListDecfRS(q,`,s)(ã
(i)) is a list containing

ẽv(g̃(i)) as long as the right hand side above is at most

q − 1

s

(
1−

(
1 +

2√
s

)(
`

q − 1

)1−1/
√
s
)
− 2,

which simplifies to needing that e ≤ e′ for

e′ =
q − 1

s

1− 1

2r
−

√√√√ 1

4r2
+
r − 1

r

((
1 +

2√
s

)(
`

q − 1

)1−1/
√
s

+
2s

q − 1

) . (28)

But the above holds by the definition of e, so the list Li in Algorithm 2 will contain g(i), and thus

after the ith iteration of the for loop, the list L will contain ẽv(g(X)) = ẽv(
∑

j(ω
(j−1)i
r −1)−1g

(i)
j Xj).

Thus if Algorithm 2 outputs ẽv(g′) ∈ L, then g′ ∈ Fq[X][`]\(±1+rZ) and

dis(ẽv(g′)− ã, B̃⊥) ≤ dis(ẽv(g)− ã, B̃⊥) ≤ |ẽv(g + h)− ã| = |ẽv(f)− ã| = |b̃| ≤ e.

But as B̃⊥ ⊆ C̃⊥, it follows that dis(ẽv(g)− ã, C̃⊥) ≤ e and dis(ẽv(g′)− ã, C̃⊥) ≤ e, so dis(ẽv(g)−
ẽv(g′), C̃⊥) ≤ 2e. But by the definition of e along with Theorem 63, C has distance minc∈C\C⊥ |c| >
2e, so it follows that ẽv(g) − ẽv(g′) ∈ C̃⊥. Thus DecC̃(ã) outputs some ẽv(g′) ∈ ẽv(g) + C̃⊥, as
desired.

It remains to show that Algorithm 2 runs in time qO(
√
s). Theorem 23 implies that the calls to

ListDecfRS(q,`,s) run in qO(
√
s) time, while Lemma 73 implies that the arg min computation in the

final line of the algorithm runs in qO(1) time. The rest of the algorithm by definition also runs in
qO(1) time, so the result follows.

8 Impossibility of Quantum Locally Correctable Codes

In this section, we show that quantum codes are inherently unable to perform local recovery from
a large number of erasures. Thus the local decoding capabilities of qLRCs is in some sense close
to optimal for quantum codes. This result is in constrast to the classical setting, where there
exist locally correctable codes (LCCs), which can recover every given code symbol from a constant
number r of other code symbols, even after a linear number of code symobls have been erased.

Our impossibility result is stated below. Informally, it states that any qudit in a quantum code
that can be recovered from two disjoint sets of other qudits must be useless for error correction;
that is, such a qudit is entirely unentangled from the remainder of the code state, and contains no
information about the encoded message.

48

Theorem 74. Let C be a quantum code of block length n and dimension k > 0. Assume that for
some i ∈ [n], there exist two subsets I1

i , I
2
i ⊆ [n] satisfying I1

i ∩ I2
i = {i} such that for each b = 1, 2,

there is an associated recovery channel Recbi : M(Ibi \ {i}) → M(Ibi) with the guarantee that for
every code state ψ ∈ C,

Recbi ⊗I[n]\Ibi
(ψ[n]\{i}) = ψ.

Then there exists a 1-qudit density matrix α ∈ M(1) such that every ψ ∈ C can be decomposed as
ψ = αi ⊗ ψ[n]\{i}.

In comparison, qLRCs require each qudit i ∈ [n] to be recoverable from just a single set Ii \ {i}
of other qudits. Thus Theorem 74 shows that it is impossible to extend a qLRC to even just have
a second disjoint recovery set for each qudit.

This result is in contrast to the classical case, where code components can be recovered from
many different disjoint subsets of components. Indeed, classically there exist locally correctable
code (LCCs), which have the property that even after erasing any constant fraction of the code
components, each erased component can be recovered from some consant number of unerased
components.

Theorem 74 shows that no such code LCC can exist quantumly. Specifically, assume a quantum
code C is such that each code qudit i can be recovered from qudits Ii \{i}. Then Theorem 74 shows
that for every i ∈ [n], if the qudits in Ii are erased, then it is impossible to locally recover qudit i
without performing a more global decoding operation that also recovers other qudits in Ii.

Proof of Theorem 74. Define two additional qudits i1 = n and i2 = n + 1. For b = 1, 2, define
Jb = Ibi ∪ {i1} \ {i}. Now for any given pure code state ψ = |ψ〉 〈ψ| ∈ C, let ρ ∈M([n+ 2]) be the
state obtained by applying Rec1

i but placing the recovered copy of qudit i in register i1, and also
applying Rec2

i but placing the recovered copy of qudit i in register i2. That is,

ρ = (Rec1
i)J1(Rec2

i)J2(ψ).

Note that by definition J1, J2, and {i} are all disjoint, so in particular (Rec1
i)J1 and (Rec2

i)J2 act
on disjoint sets of qudits and therefore commute. Letting ψ[n]\{i}∪{ib} denote the state ψ with qudit
i moved to position ib, it follows that

Tri1(Tri ρ) = (Rec2
i)J2 Tri1(Rec1

i)J1(ψ[n]\{i})

= (Rec2
i)J2 Tri1(ψ[n]\{i}∪{ib})

= (Rec2
i)J2(ψ[n]\{i})

= ψ[n]\{i}∪{i2}.

(29)

Therefore we have shown that tracing over i1 in Tri ρ yields the pure state ψ[n]\{i}∪{i2}
∼= ψ, and

thus there is a tensor decomposition

Tri ρ = αi1 ⊗ ψ[n]\{i}∪{i2}

for some 1-qudit density matrix α ∈M(1).

But the same reasoning used to show (29) also implies that Tri2(Tri ρ) = ψ[n]\{i}∪{i1}, so

ψ[n]\{i}∪{i1} = Tri2(Tri ρ)

= Tri2(αi1 ⊗ ψ[n]\{i}∪{i2})

= αi1 ⊗ ψ[n]\{i},

49

or equivalently,
ψ = αi ⊗ ψ[n]\{i}.

It remains to be shown that αi is the same for all ψ ∈ C. This conclusion follows Lemma 26,
which states that if a quantum code can recover from erasures on a given set of qudits (here Recbi
recovers from erasures on qudit i), then the reduced density matrix of a code state on those qudits
contains no information about the encoded message state.

9 Acknowledgments

We thank Thiago Bergamaschi for helpful discussions.

References

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly
optimal recovery. In Proceedings of IEEE 36th Annual Foundations of Computer
Science, pages 512–519, October 1995. ISSN: 0272-5428.

[AN22] Anurag Anshu and Chinmay Nirkhe. Circuit Lower Bounds for Low-Energy States
of Quantum Code Hamiltonians. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference (ITCS 2022), volume 215 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 6:1–6:22, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969.

[BGG22] Thiago Bergamaschi, Louis Golowich, and Sam Gunn. Approaching the Quantum Sin-
gleton Bound with Approximate Error Correction, December 2022. arXiv:2212.09935
[quant-ph].

[DEL+22] Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally
testable codes with constant rate, distance, and locality. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 357–
374, New York, NY, USA, June 2022. Association for Computing Machinery.

[DHLV23] Irit Dinur, Min-Hsiu Hsieh, Ting-Chun Lin, and Thomas Vidick. Good Quantum
LDPC Codes with Linear Time Decoders. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, STOC 2023, pages 905–918, New York, NY,
USA, June 2023. Association for Computing Machinery.

[EI76] R. J. Evans and I. M. Isaacs. Generalized Vandermonde Determinants and Roots of
Unity of Prime Order. Proceedings of the American Mathematical Society, 58(1):51–54,
1976. Publisher: American Mathematical Society.

[Fre04] P. E. Frenkel. Simple proof of Chebotarev’s theorem on roots of unity, July 2004.
arXiv:math/0312398 version: 3.

[GGI05] Daniel Goldstein, Robert M. Guralnick, and I. M. Isaacs. Inequalities for Finite
Group Permutation Modules. Transactions of the American Mathematical Society,
357(10):4017–4042, 2005. Publisher: American Mathematical Society.

50

[GHSY12] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the Lo-
cality of Codeword Symbols. IEEE Transactions on Information Theory, 58(11):6925–
6934, November 2012.

[GI01] V. Guruswami and P. Indyk. Expander-based constructions of efficiently decodable
codes. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 658–667, October 2001. ISSN: 1552-5244.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, STOC ’02, pages 812–
821, New York, NY, USA, May 2002. Association for Computing Machinery.

[GI03] Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list decodable
codes. In Proceedings of the thirty-fifth annual ACM symposium on Theory of com-
puting, STOC ’03, pages 126–135, New York, NY, USA, June 2003. Association for
Computing Machinery.

[GK16] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combina-
torica, 36(2):161–185, April 2016.

[GKO+18] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi
Saraf. Locally Testable and Locally Correctable Codes approaching the Gilbert-
Varshamov Bound. IEEE Transactions on Information Theory, 64(8):5813–5831, Au-
gust 2018.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit Codes Achieving List Decoding
Capacity: Error-Correction With Optimal Redundancy. IEEE Transactions on Infor-
mation Theory, 54(1):135–150, January 2008.

[GRS22] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft
available at http://www. cse. buffalo. edu/ atri/courses/coding-theory/book, 2022.

[GS98] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-
geometric codes. In Proceedings 39th Annual Symposium on Foundations of Computer
Science (Cat. No.98CB36280), pages 28–37, November 1998. ISSN: 0272-5428.

[GXY19] Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. How Long Can Optimal
Locally Repairable Codes Be? IEEE Transactions on Information Theory, 65(6):3662–
3670, June 2019.

[HRZW20] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local List Recovery of High-
Rate Tensor Codes and Applications. SIAM Journal on Computing, 49(4):FOCS17–
157, January 2020. Num Pages: FOCS17-195 Publisher: Society for Industrial and
Applied Mathematics.

[HSX+12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. Erasure Coding in Windows Azure Stor-
age. In Proceedings of the 2012 USENIX conference on Annual Technical Conference,
USENIX ATC’12, page 2, USA, June 2012. USENIX Association.

51

[HW18] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander
codes. Information and Computation, 261:202–218, August 2018.

[KMRZS16] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-
correctable and locally-testable codes with sub-polynomial query complexity. In Pro-
ceedings of the forty-eighth annual ACM symposium on Theory of Computing, STOC
’16, pages 202–215, New York, NY, USA, June 2016. Association for Computing Ma-
chinery.

[LZ22] Anthony Leverrier and Gilles Zémor. Quantum Tanner codes. In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 872–883.
IEEE Computer Society, October 2022.

[MLR+14] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin, Wei-
wen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang, and
Sanjeev Kumar. f4: Facebook’s Warm BLOB Storage System. In Proceedings of the
11th USENIX conference on Operating Systems Design and Implementation, OSDI’14,
pages 383–398, USA, October 2014. USENIX Association.

[MOP21] Sidhanth Mohanty, Ryan O’Donnell, and Pedro Paredes. Explicit Near-Ramanujan
Graphs of Every Degree. SIAM Journal on Computing, pages STOC20–1, February
2021. Num Pages: STOC20-23 Publisher: Society for Industrial and Applied Mathe-
matics.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, December 2010.

[PK22] Pavel Panteleev and Gleb Kalachev. Asymptotically good Quantum and locally
testable classical LDPC codes. In Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2022, pages 375–388, New York, NY,
USA, June 2022. Association for Computing Machinery.

[SS96] M. Sipser and D.A. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, November 1996.

[Tao04] Terence Tao. An uncertainty principle for cyclic groups of prime order, July 2004.
arXiv:math/0308286 version: 6.

[TB14] Itzhak Tamo and Alexander Barg. A Family of Optimal Locally Recoverable Codes.
IEEE Transactions on Information Theory, 60(8):4661–4676, August 2014.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science, 7(1–3):1–336, December 2012.

[WLH23] Adam Wills, Ting-Chun Lin, and Min-Hsiu Hsieh. Tradeoff Constructions for Quan-
tum Locally Testable Codes, September 2023. arXiv:2309.05541 [quant-ph] version:
1.

[Zha19] Guanghui Zhang. On the Chebotarëv theorem over finite fields. Finite Fields and
Their Applications, 56:97–108, March 2019.

52

A Technical Lemmas

Below we prove the technical lemmas used in the Section 6.2 for bounding the distance of the fqTB
codes.

The following proof of Lemma 65 is well known, and is included for completeness.

Proof of Lemma 65. To show that det has a root of multiplicity m− t at x = (xij)i,j∈[m] of rank t,
it suffices to show that all dth derivatives of det vanish at x for all d ∈ [m − t]. But by definition
every dth derivative of det(Xij)i,j∈[m] either vanishes, or is equal (up to a sign) of the derivative of

a (m− d)× (m− d) submatrix of (Xij)i,j∈[m]. For Xij = xij and d ∈ [m− t], every such submatrix
has rank at most rank(xij)i,j∈[m] = t < m−d, so every such submatrix is not full rank and therfore
has determinant 0. Thus every dth derivative of det(Xij)i,j∈[m] for d ∈ [m−t] vanishes at Xij = xij ,
and thus det has a root of multiplicity m− t at x.

The following lemma bounds the term ε defined by (18) in Theorem 63.

Lemma 75. Define ε as in (18). If we set s = cr2 for c ≥ 2 and let λ = 1− (`− 1)/(q − 1), then

ε ≤
(

1 +
1

c

)√
λ

r
. (30)

Proof. By definition

ε ≤ max
1≤m≤r

λ · m− 1

r
< λ.

Thus if λ ≤ 1/r, then

ε ≤ λ =
√
λ2 ≤

√
λ

r
,

from which (30) follows.

Therefore assume that λ ≥ 1/r. By definition

ε ≤ max
1≤m≤r

min

{
λ

r
·m, 1

m
+

1

s
·m
}
.

Because s = cr2 ≥ r2 by assumption, the expression 1/m+m/s is decreasing in m for 1 ≤ m ≤ r,
while the expression λm/r is increasing in m. Thus because m∗ = 1/

√
λ/r − 1/s is the unique

positive real number for which λm∗/r = 1/m∗ +m∗/s, it follows that

ε ≤ λ

r
·m∗ =

1

m∗
+

1

s
·m∗

=

√
λ

r
· 1√

1− r
λs

≤
√
λ

r
· 1√

1− 1
c

≤
(

1 +
1

c

)√
λ

r
,

53

where the second inequality above holds because s = cr2 and λ ≥ 1/r, and the final inequality
holds because 1/

√
1− x ≤ 1 + x for all x ≤ 1/2. Thus (30) holds.

The following bound is used in the proof of Theorem 69.

Lemma 76. For all real numbers 0 ≤ x ≤ 1/6 and 1/2 ≤ y ≤ 1, it holds that

1

2

(
1− x−

√
x2 + (1− 2x)y

)
≤ 1− x−

√
x2 + (1− 2x)

√
y.

Proof. Let f(x, y) denote the LHS minus the RHS of the inequality in the lemma statement. Letting
D = [0, 1/6] × [1/2, 1], then our goal is to show that f(x, y) ≤ 0 for all (x, y) ∈ D. By definition
f(x, 1) = 0 for all 0 ≤ x ≤ 1/6, so it is sufficient to show that ∂f

∂y ≥ 0 for all (x, y) ∈ D. Now by
definition

∂f

∂y
= − (1− 2x)/2

2
√
x2 + (1− 2x)y

+
(1− 2x)/(2

√
y)

2
√
x2 + (1− 2x)

√
y
,

so setting the above ≥ 0 and rearranging gives that we must show

(1− 2x− x2)y − (1− 2x)
√
y + x2 ≤ 0

But solving the quadratic equation on the LHS above gives roots at
√
y = 1 and

√
y = x2/(1 −

2x− x2) ≤ 1/23 for 0 ≤ x ≤ 1/6, so indeed the above inequality holds for all (x, y) ∈ D, and thus
all (x, y) ∈ D have ∂f

∂y ≥ 0 and therefore f(x, y) ≤ 0, as desired.

The following bound is used in the proof of Theorem 71.

Lemma 77. For all real numbers 0 ≤ x ≤ 1/6 and 0 ≤ y ≤ 1/2, it holds that

1

2
(y −

√
2xy) ≤ 1− x−

√
x2 + (1− 2x)(1− y).

Proof. Let f(x, y) denote the LHS minus the RHS of the inequality in the lemma statement. Letting
D[0, 1/6] × [1/2, 1], then our goal is to show that f(x, y) ≤ 0 for all (x, y) ∈ D. Computing the
partial derivatives

∂f

∂x
= − 1

2
√

2
·
√
y

x
+ 1− 1− x− y√

x2 + (1− 2x)(1− y)

∂f

∂y
=

1

2

(
1−

√
x

2y

)
− 1− 2x

2
√
x2 + (1− 2x)(1− y)

∂2f

∂x∂y
= − 1

4
√

2
· 1
√
xy
− (1− x− y)(1− 2x)

2(x2 + (1− 2x)(1− y))3/2
+

1√
x2 + (1− 2x)(1− y)

,

it follows that the statements below hold for all (x, y) ∈ D:

1. f(x, 0) = 0

2. f(0, y) = y/2 +
√

1− y − 1 ≤ 0

3. ∂f
∂x (x, 0) = 0

54

4. ∂
∂y

∂f
∂x (x, y) = ∂2f

∂x∂y (x, y) ≤ 0 if x ≤ 1/50 or y ≤ 1/20

5. ∂f
∂x (x, y) ≤ 1

6. ∂f
∂y (x, y) ≤ 1/2

Combining item 3 and item 4 above implies that ∂f
∂x (x, y) ≤ 0 for all (x, y) ∈ D such that either

x ≤ 1/50 or y ≤ 1/20. Combining this fact with item 2 above implies that f(x, y) ≤ 0 for all
(x, y) ∈ D such that either x ≤ 1/50 or y ≤ 1/20.

Therefore if we find some sufficiently large integer n ≥ 100 such that f(x, y) ≤ −2/n for
all (x, y) ∈ ([1/100, 1/6] ∩ Z/n) × ([1/40, 1/2] ∩ Z/n), then item 5 and item 6 above imply that
f(x, y) ≤ 0 for all (x, y) ∈ [1/50, 1/6]× [1/20, 1/2], which combined with our conclusion above that
f(x, y) ≤ 0 when x ≤ 1/50 or y ≤ 1/20, implies the desired inequality f(x, y) ≤ 0 for all (x, y) ∈ D.
But we may numerically verify that n = 1000 satisfies the desired property, which completes the
proof.

B Omitted Proofs

This section provides proofs that were omitted in the main text.

Proof of Proposition 46. The desired decoding algorithm for C simply applies π−1
G to unpermute

the symbols, then applies the decoder for Cin to each of the nout inner code blocks, and finally
applies the decoder for Cout to the resulting state. By definition this decoder runs in poly(n log q) if
the outer and inner codes’ decoding algorithms both run in poly(n log q) time. Thus we just need
to verify the correctness of this decoding algorithm.

Assume that the corruptions occur on some set T ⊆ [n] of |T | ≤ αn components of C. Also
assume for a contradiction that our decoder fo C fails to recover the original message, which can only
occur if after applying π−1

G , at least αoutnout of the inner code blocks have ≥ αinnin corruptions,
so that all of these inner code blocks are “overloaded” and their inner decodings fail to recover the
correct value of the outer code component. Let S ⊆ [n] ∼= [nout]× [nin/∆] denote the set of all the
folded components in in these overloaded blocks. Then because ≥ αoutnout inner code blocks are
overloaded, we have

|S| ≥ αoutnout ·
nin

∆
= αoutn (31)

while because each of the |S|∆/nin overloaded inner code block has ≥ αinnin of its nin symbols
corrupted, we have

|E(S, T)| ≥ |S|∆
nin

· αinnin = αin∆|S|,

as each corrupted inner code symbol in an overloaded inner code block corresponds to an edge from
S to T . But the expander mixing lemma implies that

|E(S, T)| ≤ ∆|S||T |
n

+ λ∆
√
|S||T |

≤ α∆|S|+ λ∆
√
|S| · αn

<

(
αin − λ

√
αin

αout

)
∆|S|+ λ∆

√
|S| · αinn,

55

where we have applied the definition of α = αin−λ
√
αin/αout. Combining the two above inequalities

gives that

αin∆|S| <
(
αin − λ

√
αin

αout

)
∆|S|+ λ∆

√
|S| · αinn,

which simplifies to
|S| <

√
αoutn,

contradicting (31). Thus the assumption that the decoder fails was false, so the decoder must
succeed in correcting errors on any set |T | of |T | ≤ αn components of C.

56

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

