
Tree Evaluation is in Space O(log n · log log n)

James Cook

falsifian@falsifian.org

Ian Mertz
University of Warwick

ian.mertz@warwick.ac.uk

November 15, 2023

Abstract

The Tree Evaluation Problem (TreeEval) (Cook et al. 2009) is a central candidate for
separating polynomial time (P) from logarithmic space (L) via composition. While space
lower bounds of Ω(log2 n) are known for multiple restricted models, it was recently shown
by Cook and Mertz (2020) that TreeEval can be solved in space O(log2 n/ log log n).
Thus its status as a candidate hard problem for L remains a mystery.

Our main result is to improve the space complexity of TreeEval to O(log n · log log n),
thus greatly strengthening the case that Tree Evaluation is in fact in L.

We show two consequences of these results. First, we show that the KRW conjecture
(Karchmer, Raz, and Wigderson 1995) implies L ̸= NC1; this itself would have many
implications, such as branching programs not being efficiently simulable by formulas. Our
second consequence is to increase our understanding of amortized branching programs,
also known as catalytic branching programs; we show that every function f on n bits
can be computed by such a program of length poly(n) and width 2O(n).

1 Introduction

In complexity theory, many fundamental questions about time and space remain open,
including their relationship to one another. We know that TIME(t) is sandwiched between
SPACE(log t) and SPACE(t/ log t) [HPV77], and both containments are widely considered to
be strict, but we have made little progress in proving this fact for any t.

1.1 The Tree Evaluation Problem

The Tree Evaluation Problem [CMW+12], henceforth TreeEval, has emerged in recent years
as a candidate for a function which is computable in polynomial time (P = TIME(nO(1)))
but not in logarithmic space (L = SPACE(O(log n))). This would resolve one of the two
fundamental questions of time and space, showing that TIME(t) strictly contains SPACE(log t)
in at least one important setting.

TreeEval is parameterized by alphabet size k and height h. The input is a rooted full
binary tree of height h, where each leaf is given a value in [k] and each internal node is given
a function from [k]× [k] to [k] represented explicitly as a table of k2 values. This defines a

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 174 (2023)

natural bottom-up way to evaluate the tree: inductively from the leaves, the value of a node
is the value its function takes when given the labels from its two children as input. The
output of a TreeEvalk,h instance is the value of its root node.

1.2 Hardness through composition

A TreeEvalk,h instance has size 2h · poly(k). The description of the problem as given defines
a polynomial time algorithm for TreeEvalk,h: evaluate each node starting from the bottom
and going up, spending poly(k) time at each of the 2h nodes.

But what about space? Evaluating the output node requires us to have the values of
both of its children, which themselves are obtained by computing their respective children,
and so on. Now imagine we have computed one of the children of the output node and
are moving to the other. This seems to require remembering the value we have computed
on one side, using log k bits of memory, and then on the other side computing a whole
new TreeEvalk,h−1 instance, for which the same logic applies. This would inductively give
a space Ω(h log k) algorithm, while TreeEvalk,h ∈ L would mean giving an algorithm using
only O(h+ log k) bits of memory.

Thus if our intuition is correct, this should be a separating example for L and P. This
led Cook, McKenzie, Wehr, Braverman, and Santhanam [CMW+12] to define TreeEval and
conjecture that Ω(h log k) space is optimal, a conjecture which has been backed up by
multiple subsequent works. [Liu13, EMP18, IN19]

This idea, known as composition or direct product theorems, is not only studied in
the context of space. The KRW conjecture of Karchmer, Raz, and Wigderson [KRW95]
states that a similar logic holds for formula depth, with the upshot being that TreeEval
separates P from the class of logarithmic depth formulas, known as NC1. Even more so
than space, the study of the KRW conjecture has yielded many partial results (see e.g.
[dRMN+20, CFK+21]) as well as encouraging useful parallel lines of work such as lifting
theorems [RM99, GPW18].

Thus the study of composition, and by extension TreeEval, is a very fruitful and well-
founded line of study, and it is of great interest as to when this logic holds and when it
fails.

1.3 Upper bounds

Nevertheless, the consensus and central composition logic of the space hardness of TreeEval
has faced a challenge ever since its inception. Buhrman, Cleve, Koucký, Loff, and Speel-
man [BCK+14] defined a new model of space-bounded computation called catalytic computing
in order to challenge a crucial assumption in our lower bound strategy: that the space
used for remembering old values in the tree cannot be useful for computing new values.
Building on the work of Barrington [Bar89] and Ben-Or and Cleve [BC92], they show that
the presence of full memory can in fact assist in space-bounded computation in a particular
setting (unless L can compute log-depth threshold circuits, which would imply many things
which are widely disbelieved, e.g. NL = L).

The catalytic computing model later received attention from a variety of works [BKLS18,

2

GJST19, DGJ+20, BDS22], but while it was in part motivated to challenge the conjecture of
[CMW+12], it did not immediately lead to any results about TreeEval. However, after a period
of quiet on both the upper and lower bound fronts, their objection was validated by Cook
and Mertz [CM20, CM21], who showed that the Ω(h log k) argument does not hold. They
proved that for any k and h, TreeEvalk,h can be computed in space O(h log k/ log h), which
translates to an algorithm using space at most O(log2 n/ log logn), shaving a logarithmic
factor off of the trivial algorithm using space O(log2 n).

This is a far cry from showing TreeEval ∈ L, but both the statement and proof of the
result undermine the central compositional logic behind the approach of [CMW+12] to
separate L from P.

1.4 Main result

In this work we give an exponential improvement on the central subroutine of [CM20, CM21],
which yields the following result.

Theorem 1. TreeEval can be computed in space O(log n · log logn).

Compared to having only a logarithmic factor improvement given by [CM20, CM21], we
are now only a logarithmic factor improvement away from showing TreeEval ∈ L.

Our proof relies on a few fundamental properties of primitive roots of unity over finite
fields. After defining the main preliminaries in Section 2, we go over these properties in
Section 3, with our main proof of Theorem 1 in Section 4. We then improve and generalize our
main subroutine, plus a discussion of the implications of these sharper results, in Section 5.

1.5 Implications

Our improvement has immediate consequences outside of studying space upper bounds on
TreeEval. We discuss two such results in this paper. All models and statements will be
formally defined in Sections 6 and 7 respectively.

1.5.1 The KRW Conjecture

First, we return to our brief discussion of the KRW conjecture, which we recall im-
plies that TreeEval /∈ NC1. The results of [CM20, CM21] gave a space upper bound of
O(log2 n/ log log n) for TreeEval, asymptotically the same as the lower bound on formula
depth implied by the KRW conjecture; thus it was possible that we could prove both the
KRW conjecture and L = NC1. This is no longer possible, as Theorem 1 makes these two
hypotheses incompatible.

Theorem 2. If the KRW Conjecture holds, then NC1 ̸= L.

We have not formally stated the KRW conjecture, and refrain from doing so until
Section 6; in fact one can define it in a variety of ways, some stronger than others. We should
note, however, that Theorem 2 is quite robust with respect to choosing weaker versions of

3

the conjecture; any statement that implies TreeEval requires formula depth ω(log n · log log n)
is sufficient for Theorem 2. The strongest (and most widely studied) version implies that
L requires formulas of depth Ω(log2 n/ log3 log n), which nearly meets the upper bound of
O(log2 n) given by L ⊆ NC2.

There are multiple important takeaways. First, the KRW conjecture now implies a much
sharper separation than P ̸= NC1. Second, the KRW conjecture gives a superpolynomial size
separation between formulas and branching programs, even in the uniform setting. Third,
proving formula lower bounds for TreeEval via KRW is formally no easier than proving the
same lower bounds for st-connectivity, even in the undirected case. And fourth, and most
philosophically, continued belief in the KRW conjecture is a bet that the ability to handle
composition is the factor that separates space and formulas.

1.5.2 Amortized branching programs

For our second result, we consider the question of amortized branching program size, or
equivalently catalytic branching program size.

This model, introduced by Girard, Koucký, and McKenzie [GKM15], essentially asks
whether we can find smaller branching programs for computing an arbitrary function f if
we only want to do so in an average sense. Potechin [Pot17] showed that this is possible in
the strongest way: every function has amortized branching program size O(n), where the
amount of amortization needed is 22

n
.

Reinterpreting and building on work of Potechin [Pot17] and an improvement by Robere
and Zuiddam [RZ21], Cook and Mertz [CM22] used the TreeEval argument of [CM20, CM21]
in the non-uniform setting to show that the amount of amortization can be reduced to
2O(2ϵn) for arbitrarily small constant ϵ > 0. By improving (a generalization of) the central
subroutine of [CM20, CM21] in Theorem 1, we show that a slight sacrifice in the length
gives a near-optimal improvement in the amount of amortization.

Theorem 3. For every function f on n bits, the following amortized branching program
size upper bounds exist, where m is the amount of amortization needed:

• amortized size O(n2+ϵ) with m = O(2(2+1/ϵ)n), for arbitrarily small ϵ > 0

• amortized size O(n3/ log2 n) with m = O(2(2+o(1))n)

• amortized size O(n2) with m = O(2(2+logn)n)

2 Preliminaries

In this work the base of logarithms will always be 2: log x := log2 x.

Our primary model of space will be that of register programs, a somewhat non-standard
model formally introduced by Ben-Or and Cleve [BC92] based on work of Coppersmith and
Grossman [CG75] and explored in a number of follow-up works [BCK+14, CM20, CM22].

4

Definition 1. A register program over ring R is a collection of memory locations R =
{R1 . . . Rs}, called registers, each of which can hold one element from R, plus an ordered
list of instructions in the form of updates to some register Ri based on the other registers.

Typically we will consider updates of the form

Ri ← Ri + p(R1, . . . , Ri−1, Ri+1, . . . , Rs)

where p is any polynomial over R.

Following [BCK+14], rather than directly writing their output to a register, our programs
will add their output to a register while leaving other registers untouched, a process we call
clean computation. This will be useful for making our algorithms space-efficient.

Definition 2. Let R be a ring and let f be a function whose output can be represented in
R. A register program over R with s registers cleanly computes f into a register Ro if for
all possible τ1, . . . , τs ∈ R, if the program is run after initializing each register Ri = τi, then
at the end of the execution

Ri = τi ∀i ̸= o

Ro = τi + f(x1, . . . , xn)

In the register programs we consider, the instructions themselves will sometimes depend
on the input. For example, a coefficient of the polynomial may be [yj = 1], meaning “this
coefficient is 1 if input yj = 1; otherwise the coefficient is 0”. However, all our register
programs, except in Section 7, will satisfy a uniformity condition:

Definition 3. A register program is space c uniform if there is an algorithm using space
c which, given an instruction index i and the input to the program, performs the i-th
instruction.

Thus when we describe an algorithm using a register program, the computation should
be thought of as having two parts: (a) an “outer” program which designs a register program
based on the input, and (b) an “inner” program which is that register program itself. The
space used by our algorithms can be computed by tracking these procedures, although it
can also be seen generically.

Proposition 4. Let c, s, t ∈ N, and let R be a ring. Let f be a Boolean function and let P
be a space c uniform register program with s registers over R and which has t instructions in
total, such that P cleanly computes f . Then f can be computed in space O(log t+s log |R|+c).

In our programs, the ring R will always be a finite field. For a prime number p and
positive integer a, we define Fpa to be the unique (up to isomorphism) field with pa elements.

Proposition 5. Every element of Fpa can be represented in space O(a log p), and all field
operations over Fpa can be carried out in space O(a log p).

Proof. Fix an irreducible degree-a polynomial f(x) ∈ Fp[x], so that Fpa is isomorphic to
Fp[x]/(f(x)). Then each field element is represented by a polynomial of degree less than
a, which we can store as an a-tuple of coefficients in Fp. It is then straightforward to add,
multiply and divide field elements in O(a log p) space. All this requires finding a suitable
f(x) to begin with; this can also be done in O(a log p) space by exhaustive search.

5

We will sometimes need a smaller field inside a larger finite field:

Proposition 6. For every prime number p and positive integers a, b, the field Fpa is
isomorphic to a subfield of Fpab.

Again it is computationally possible to find representions of Fpa and Fpab that agree1, so
that in effect Fpa ⊆ Fpab , and we treat it as such.

3 Roots of unity

Our work will use primitive roots of unity, and so we introduce them and some of their
properties before describing our algorithms. All definitions and statements appearing in this
section are standard and have been used many times before in the literature, but will be
crucial to the proof of our main results.

Definition 4. An element ω of a field F is a root of unity of order m if ωm = 1. It is a
primitive root of unity if additionally ωk ̸= 1 for every integer 0 < k < m.

Our algorithm relies on some properties of primitive roots of unity—naturally, first we
require that they exist, with the order we need:

Proposition 7. Every finite field F has a primitive root of unity of order |F| − 1.

This follows from the fact that the multiplicative group F× of a finite field is always a
cycle. For F = Fpa , such a primitive root of unity can be found in O(a log p) space through
exhaustive search.

We will use, and for completeness prove, a generalization of the fact that
∑m

j=1 ω
j
m = 0.

Proposition 8. Let ωm be a primitive root of unity of order m. Then for all 0 < b < m,

m∑
j=1

ωjb
m = 0

Proof. Let s =
m∑
j=1

ωjb
m. Then

ωb
ms =

m+1∑
j=2

ωjb
m =

 m∑
j=1

ωjb
m

+ ω(m+1)b
m − ωb

m = s+ ωmb
m ωb

m − ωb
m = s+ ωb

m − ωb
m = s

So either ωb
m = 1 or s = 0, but the former is ruled out because ωm is a primitive root of

unity and 0 < b < m.

1For example, one way to do that is to first find an irreducible polynomial f(x) ∈ Fp[x] such that Fpa is
isomorphic to Fp[x]/(f(x)), and then find g(y) ∈ Fpa [y] such that Fpab is isomorphic to Fpa [y]/(g(y)), with
elements of Fa being represented as constant (degree-0) polynomials in Fpa [y].

6

Corollary 9. Let F be a finite field and let m = |F| − 1. Then there exist elements m−1,
ωm in F such that for all 0 ≤ b < m,

m−1
m∑
j=1

ωjb
m = [b = 0]

where [b = 0] is the indicator function which takes value 1 iff b = 0 and 0 otherwise.

Proof. Let ωm be a primitive root of unity of order m (Proposition 7). The case of b ̸= 0 is
handled by Proposition 8. For b = 0 we have that over F ,

m∑
j=1

ωj0
m =

m∑
j=1

1 = m = −1

where the last equality holds because m ≡ −1 (mod p). To complete the proof, take
m−1 = −1 so m−1m = 1.

4 Main result: Tree Evaluation in low space

We now move on to the main goal of our paper, which is to prove Theorem 1. The following
statement is our main result for TreeEvalk,h, stated in terms of the two main parameters; it
implies Theorem 1 for any setting of k and h, and is stronger as k gets smaller with respect
to the total input size.

Theorem 10. Any TreeEvalk,h instance can be computed in space O((h+ log k) · log log k).

We will build our algorithm from the ground up, first showing how to compute each
individual node. In order to use the tools from Corollary 9, let K be a field, the necessary
properties of which we will uncover, and let m = |K| − 1.

Lemma 11. Let d < m, and let τi, xi be elements of K for i ∈ [d]. Then

m−1
m∑
j=1

d∏
i=1

(ωj
mτi + xi) =

d∏
i=1

xi

where m−1, ωm are given by Corollary 9.

Before going into the proof of Lemma 11, we should stress why it is useful. Our overall
goal is to compute the function fu at node u in our TreeEval instance while only using
clean access to its inputs, i.e. we only assume we can add some input bit xi to whatever τi
already exists in the target register Ri. Thus, when operating over registers Ri, we need
to remove the contributions of the τi values themselves when computing fu. Lemma 11
accomplishes just this for the AND function over d inputs, albeit using τi multiplied by m
different coefficients. After proving this lemma, we will move to the actual question, which
is to compute an arbitrary fu.

7

Proof. For a fixed j, expanding the inner product on the left hand side, we get

d∏
i=1

(ωj
mτi + xi) =

∑
S⊆[d]

(∏
i∈S

ωj
mτi

) ∏
i∈[d]\S

xi


=
∑
S⊆[d]

ωj|S|
m

(∏
i∈S

τi

) ∏
i∈[d]\S

xi


If we sum over all j and multiply both sides by m−1, then by switching the sums we get

m−1
m∑
j=1

d∏
i=1

(ωj
mτi + xi) =m−1

m∑
j=1

∑
S⊆[d]

ωj|S|
m

(∏
i∈S

τi

) ∏
i∈[d]\S

xi


=
∑
S⊆[d]

m−1
m∑
j=1

ωj|S|
m

(∏
i∈S

τi

) ∏
i∈[d]\S

xi


By Corollary 9 we have

m−1
m∑
j=1

ωj·|S|
m = [|S| = 0]

and thus the outer sum simplifies to the |S| = 0 term, which only has S = ∅:

m−1
m∑
j=1

d∏
i=1

(ωj
mτi + xi) =

(∏
i∈∅

τi

) ∏
i∈[d]\∅

xi

 =
∏
i∈[d]

xi

Thus the next step is to move from individual products to polynomials. This is accom-
plished by a simple corollary of Lemma 11.

Lemma 12. Let d,m,K be such that |K| − 1 = m > d, let p : Kn → K be a degree-d
polynomial, and let τi, xi be elements of K for i ∈ [n]. Then

m∑
j=1

m−1p(ωj
mτ1 + x1, . . . , ω

j
mτn + xn) = p(x1, . . . , xn)

Proof. Writing p as a sum of monomials we have

p(y1, . . . , yn) =
∑
I⊆[n]
|I|≤d

cI
∏
i∈I

yi

for some coefficients cI ∈ K and formal variables y1 . . . yn. Then by substituting ωj
mτi + xi

for each yi and summing over all j, Lemma 11 gives

m∑
j=1

m−1p(ωj
mτ1 + x1, . . . , ω

j
mτn + xn) =

m∑
j=1

m−1
∑
I⊆[n]
|I|≤d

cI
∏
i∈I

(ωj
mτi + xi)

8

=
∑
I⊆[n]
|I|≤d

cI ·m−1
m∑
j=1

∏
i∈I

(ωj
mτi + xi)

=
∑
I⊆[n]
|I|≤d

cI
∏
i∈I

xi

and the last line is p(x1, . . . , xn) by definition.

Finally, we show how to use Lemma 12 in a register program to compute our polynomial
fu in the way we described above, given an appropriate choice of K and m.

Lemma 13. Let m,K be such that |K| − 1 = m > 2⌈log k⌉. Let Pℓ, Pr be register programs
which cleanly compute values vℓ, vr ∈ {0, 1}⌈log k⌉ into registers Rℓ, Rr ∈ K⌈log k⌉, respectively,
and let P−1

ℓ , P−1
r be their inverses. Let fu : {0, 1}2⌈log k⌉ → {0, 1}⌈log k⌉ be the function at

node u in our TreeEvalk,h instance.

Then there exists a register program Pu which cleanly computes fu(vℓ, vr) ∈ {0, 1}⌈log k⌉
into registers Ru ∈ K⌈log k⌉, as well as an inverse program P−1

u . Both Pu and P−1
u make m

recursive calls each to Pℓ, Pr, P
−1
ℓ , and P−1

r , and use 5m⌈log k⌉ other basic instructions.

Proof. Our goal will be to use Lemma 12 in order to compute the output of fu using only
clean access to the values of its children. In order to do this, we first need to convert fu into
a tuple of polynomials. We can write the i-th bit of fu as:

(fu(y, z))i =
∑

α,β,γ∈[k]3
[αi = 1][fu(β, γ) = α][y = β][z = γ]

We will turn this into a polynomial whose 2⌈log k⌉ variables are the bits of y and z by

replacing [y = β] with the polynomial
∏⌈log k⌉

i=1 (1 − yi + (2yi − 1)βi), which equals [y = β]
when all yi ∈ {0, 1}, and making a similar substitution for [z = γ]. This gives the polynomial

∑
α,β,γ∈[k]3

αi=1

[fu(β, γ) = α]

⌈log k⌉∏
j=1

(1− βj + (2βj − 1)yj) · (1− γj + (2γj − 1)zj)

We call this qu,i(y, z) and note that it is multilinear and thus has degree at most 2⌈log k⌉.
Now given the conversion to polynomials qu,i, our register program will compute the left

hand side of Lemma 12, using one round of recursive calls and basic instructions per term
of the outer sum. For any tuple—of registers, polynomials, etc.—we use the subscript i to
denote the ith item.

1: for j = 1, . . . ,m do
2: for c ∈ {ℓ, r}, i = 1 . . . ⌈log k⌉ do
3: Rc,i ← ωj

m ·Rc,i

4: Pℓ, Pr

5: for i = 1 . . . ⌈log k⌉ do

9

6: Rv,i ← Rv,i +m−1 · qu,i(Rℓ, Rr)

7: P−1
ℓ , P−1

r

8: for c ∈ {ℓ, r}, i = 1 . . . ⌈log k⌉ do
9: Rc,i ← ω−j

m ·Rc,i

To make the inverse program P−1
u , replace the + on line 6 with −.

In each iteration of the loop we have

Rc,i = ωj
mτc,i + vc,i ∀c ∈ {ℓ, r}, i ∈ [⌈log k⌉]

and m is larger than the degree of each qu,i, and so correctness follows from Lemma 12 and
the fact that qu,i(y, z) = (fu(y, z))i when all yi, zi ∈ {0, 1}.

The above program can be made more efficient, as we will show in Lemma 14 in Section 5,
but even as stated Lemma 13 is sufficient to serve as our main TreeEval subroutine.

Proof of Theorem 10. We will show that our TreeEvalk,h instance can be cleanly computed
by a register program of length (4|K|)h⌈log k⌉ and using 3⌈log k⌉ registers over K, where
every instruction is computable in space O(|K|). By Proposition 4, our space usage will
ultimately be

O(h log |K|+ log k · log |K|+ log k)

which is O((h+ log k) log log k) by Proposition 5 if we pick K to be a field of prime power
size at most O(log k).

We build our register program by induction, showing that for every u of height d ≤ h
such a program of length (4|K|)d⌈log k⌉ computing fu exists. For d = 0, i.e. a leaf node, the
output can be computed by reading the leaf node directly, which gives a register program of
length

⌈log k⌉ = (4 · |K|)0⌈log k⌉

each instruction of which can be computed in space O(log |K|).
Now for a node u at height d+ 1, we will inductively assume we have register programs

Pℓ, Pr for the children ℓ, r of u, each of length (4 · |K|)d⌈log k⌉ and which use 3⌈log k⌉ registers.
We will organize our registers into tuples Rℓ, Rr, Ru, where Pℓ will compute fℓ into Rℓ and
Pr will compute fr into Rr; our goal then will be to compute fu into Pu.

Assuming |K| − 1 > 2⌈log k⌉, we apply Lemma 13 to u, inductively giving us a program
of length

(|K| − 1) · [4 · (4 · |K|)d⌈log k⌉+ 5⌈log k⌉] ≤ (4 · |K|)d+1⌈log k⌉

where each instruction can be computed in space O(log k) because we assume |K| = O(log k).

This completes the recursion. Finally we choose K = F2⌈log(2⌈log k⌉+2)⌉ . Our two conditions
are thus satisfied: 1) K has size O(log k), ensuring efficiency; and 2) |K| − 1 > 2⌈log k⌉,
ensuring correctness.

10

5 Improvements and generalizations

For the rest of this paper we will adapt the techniques used to other questions in complexity
theory. To do so, we will first state Lemma 13, which is our main subroutine, in a more
general and efficient form.

Lemma 14. Let K be a finite field with a subfield F ⊆ K, let f : Fa → F b be a function
where a(|F| − 1) < |K| − 1, and let Pg be a register program with at least a+ b registers over
K which cleanly computes a value g ∈ Fa into registers R1, . . . , Ra.

Then there exists a register program Pf which cleanly computes f(g) into registers
Ra+1, . . . , Ra+b. The length of Pf is (|K| − 1)(t(Pg) + 2a+ b) where t(Pg) is the length of
Pg, and Pf uses the same set of registers as Pg.

To see Lemma 13 as a special case2 of Lemma 14, take F = F2, a = 2⌈log k⌉ and
b = ⌈log k⌉, and let g be the concatenation of the values vℓ, vr, with Pg calling Pℓ then Pr.
Lemma 14 saves some time by avoiding the need to call the inverse program P−1

g .

The proof is essentially that of Lemma 13, and will appear at the end of this section.
First, we will use this statement to obtain our results in the next two sections.

To get a sense of the utility of this generalization, as a first application we show how
to reduce the space used by our TreeEval algorithm for storing registers. Our algorithm
currently uses space O(log n · log log n) both to keep track of time and to store the memory
in the registers. We can improve this to logspace for one of these two aspects, namely the
register memory.

Theorem 15. Any TreeEvalk,h instance can be computed in space O(h log log k + log k).

One consequence of this theorem is that only TreeEvalk,h instances of essentially maximal
height can possibly be used to prove space lower bounds.

Theorem 16. Any TreeEvalk,h instance such that h ≤ log k/ log log k can be computed in L.

Another consequence is that when converting our algorithms into layered branching
programs (see Section 7) computing TreeEvalk,h, we can reduce the width to poly(n) with
no asymptotic loss in length. We will not formally state or prove this result.

Proof of Theorem 15. The proof is similar to the proof of Theorem 10, except that instead
of representing elements of [k] in binary, we represent them as tuples of field elements for
some field F ⊆ K. The field K will be larger than in the proof of Theorem 10, and the
register program we produce will be longer, but it will use fewer registers and need less
space in total to store those registers.

Let F = F2r and K = F2rs where r and s will be determined later. By Proposition 6 we
may assume F ⊆ K. An element of [k] can be represented using ⌈log k/r⌉ elements of F ,
but our registers will hold values in the larger field K.

2Strictly speaking, it is not a special case, since Lemma 13 encodes values as bit strings (meaning F = F2

in terms of Lemma 14) but does not require F2 to be a subfield of K.

11

As before, we can show by induction that for any node u of height h′ ≤ h there is a
register program over K that cleanly computes the encoding of fu into ⌈log k/r⌉ registers.
The program will have length (2|K|)h′−1 poly(k) and use 3⌈log k/ log r⌉ registers.

The induction proof, after converting fu into polynomials qu,i as in the proof of Lemma 13,
is the same as for Theorem 10, except that instead of Lemma 13, we invoke Lemma 14
with the two fields F ⊆ K, and with fu : F2⌈log k/r⌉ → F⌈log k/r⌉ working with encodings as
elements of F instead of binary,.

Now we are ready to choose our fields F = F2r and K = F2rs . Our algorithm uses
3⌈log k/r⌉ registers, each needing rs bits to store, for a total of

3⌈log k/r⌉ · rs = O(s log k)

space devoted to storing registers. The register program has length |K|O(h) poly(k), so we
need

log((2rs)O(h) poly(k)) = O(hrs+ log k)

space to track our position in the program. In total, then, we need space

O(hrs+ log k) +O(s log k) = O(hrs+ s log k)

In order for the algorithm to work, Lemma 14 requires that a(|F| − 1) ≤ |K| − 1 where
a = 2⌈log k/r⌉, |F| = 2r, |K| = 2rs. In order words, we require 2⌈log k/r⌉(2r − 1) ≤ 2rs − 1.
Choosing r = ⌈log log k⌉ and then setting

s =

⌈
1

r
log

(
2

⌈
log k

r

⌉
(2r − 1) + 1

)⌉
=

⌈
1

log log k
log

(
O

(
log k

log log k

)
log k

)⌉
= O

(
log log k

log log k

)
= O(1)

results in an algorithm using space

O(hrs+ s log k) = O(h log log k + log k)

The rest of the paper will focus on applications of Lemma 14, as it will prove to be
stronger and more flexible than Lemma 13 as seen above. To end this section we will prove
it, with a proof closely mirroring that of Lemma 13.

Proof of Lemma 14. For each i = 1, . . . , b we define a polynomial pi(y1, . . . , yn) which
computes the i-th coordinate of f(y1, . . . , ya). Our inspiration will be the formula

fi(y1, . . . , yn) =
∑

(y′1,...,y
′
a)∈Fa

f(y′1, . . . , y
′
a)

a∏
i=1

[yi = y′i]

To make this a polynomial, we replace each indicator function [yi = z] with the polynomial

qi,z(y1, . . . , ya) = 1− (yi − z)|F|−1

12

By Fermat’s little theorem, qi,z(y1, . . . , ya) = [yi = z] for any yi, z ∈ F . Define

pi(y1, . . . , yn) =
∑

(y′1,...,y
′
a)∈Fa

f(y′1, . . . , y
′
a)

a∏
i=1

qi,y′i(y1, . . . , yn) (1)

pi is a polynomial of degree a(|F| − 1).

Now let m = |K| − 1 and let ωm be a primitive root of unity of order m (Proposition 7).
By assumption, a(|F| − 1) < |K| − 1, so m is greater than the degree of the polynomials pi.
Let τi ∈ K be the initial value of each register Ri. By Lemma 12,

m∑
j=1

m−1pi(ω
j
mτ1 + y1, . . . , ω

j
mτa + ya) = pi(y1, . . . , ya)

This leads to the following algorithm. It replaces the inefficient warm-up version presented
in the proof of Lemma 13 which required an extra m copies of P−1

g .

1: for j = 1, . . . ,m do
2: Ri ← (ω−1

m − 1)−1 ·Ri for i = 1, . . . , a
3: Pg

4: Ri ← (1− ωm) ·Ri for i = 1, . . . , a
5: Ra+i ← Ra+i +m−1 · pi(R1, . . . , Ra) for i = 1, . . . , b

We may assume m > 1 (otherwise pi has degree 0, so is a constant), so ωm ≠ 1 and
(ω−1

m − 1)−1 exists and can be used on line 2.

To analyse this algorithm, define τ ′i = τi − gi for i = 1, . . . , a. At the start of the i-th
iteration of the loop, the following invariants hold for j ∈ [a], k ∈ [b]:

Rj =ωi−1
m τ ′j + gj

Ra+k =τa+k +

i∑
i′=1

m−1pi(ω
i′
mτ ′1 + g1, . . . , ω

i′
mτ ′a + ga)

It is straightforward to verify this invariant holds after each iteration. After the last iteration,
Lemma 12 tells us that the output registers Ra+1, . . . , Ra+k hold the correct values, and the
first a registers are restored to Rj = ωm

mτ ′j + gj = τj .

This register program includes m copies of Pg and has a total length of m(2a+ b+ t(Pg)).
Each of the 2a instructions on lines 2 and 4 can be executed in O(log |K|) space, and using
(1), line 5 can be executed in space c2 +O(a log |F|+ log |K|) where c2 is the space needed
to compute f .

6 Application 1: The KRW conjecture separates L and NC1

We now move on to applications of the statement and proof of Theorem 1. In this section
we study its implications in the study of formula lower bounds.

13

6.1 KRW and TEP

To begin, we formally state the KRW conjecture to fit the discussion from Section 1.

Conjecture 1 (KRW Conjecture [KRW95]). For a function f , let depth(f) denote the
smallest depth of any fan-in two formula computing f . For any functions g1 : {0, 1}n1 →
{0, 1} and g2 : {0, 1}n2 → {0, 1}, define their composition to be

g1 ◦ g2(x11 . . . xn1n2) := g1(g2(x11 . . . x1n2) . . . g2(xn11 . . . xn1n2))

Then for almost all functions g1, g2, it holds that

depth(g1 ◦ g2) ≥ depth(g1) + depth(g2)−O(1)

We note that this conjecture can be weakened by increasing the O(1) subtractive term.

To see why this is connected to TreeEval, we need to consider the unbounded fan-in
version of TreeEval. A TreeEvalk,d,h instance is as before, a tree of height h and using alphabet
size k, but now each internal node has d children rather than 2. This version has input size
n = dhkd log k, and fixing k = 2 gives us log n = O(h log d+ d).

Lemma 17. The KRW Conjecture implies depth(TreeEval2,d,h) = Ω(dh), which implies
TreeEval2,d,h /∈ NC1 for dh = ω(log n).

Proof. For each layer ℓ ∈ [h], pick a random function fℓ : {0, 1}d → {0, 1}, and fix each
internal TreeEval2,d,h node at height ℓ to fℓ. By a counting argument, each fℓ requires
formula depth Ω(d) with high probability. We apply the KRW Conjecture first to g1 = f1
and g2 = f2, then g1 = f1 ◦f2 and g2 = f3, and so on h−1 times, until we ultimately get that
the composition of all fℓ—which is to say, the TreeEval2,d,h instance in question—requires
depth Ω(dh).

6.2 Space bounds for TreeEvalk,d,h

Using Lemma 14, we can generalize Theorem 1 to degrees d other than 2:

Theorem 18. Any TreeEvalk,d,h instance can be computed in space O((h+d log k) log(d log k)).

Note that the input to TreeEvalk,d,h is of length dh · kd log k, and thus Theorem 18 gives
us an algorithm using space O(log n · log logn) for every setting of k, d, and h.

Proof. The proof is the same as that of Theorem 1, using Lemma 14 but with F = F2 as in
Lemma 13. We will use the generalized fan-in to set a = d⌈log k⌉, with the input program
Pg being the concatenation of all d register programs P1 . . . Pd, where Pj cleanly computes
the jth child of v into a separate input register Rj . Furthermore we set K = F2r as before,
but now we fix

r = ⌈log(d⌈log k⌉+ 2)⌉

14

The result is a register program of length (d|K|)h poly(k) using (d+ 1)⌈log k⌉ registers over
K, which by Proposition 4 puts TreeEvalk,d,h in space

h(log d+ r) + log k + (d+ 1)(log k)r

which, for r = O(log(d log k)) is

O((h+ (d log k)) log(d log k))

This is all we need to prove Theorem 2.

Proof of Theorem 2. Assume for contradiction that L = NC1. We will show the KRW
conjecture does not hold.

Consider an instance of TreeEval2,d,h which we pad with 2(h+d) log d zeroes. By Theorem 18
this problem can be solved in logarithmic space, and so by the assumption that L = NC1

this gives a formula of depth O((h+ d) · log d) for TreeEval2,d,h, which is o(dh) for d = ω(1)
and h = ω(log d).

However, by Lemma 17, the KRW conjecture implies that TreeEval2,d,h requires depth
Ω(dh) for all values of d and h, which is a contradiction.

In fact, this proof gives a near-optimal separation between formulas and branching
programs, conditioned on the KRW conjecture being true.

Theorem 19. Assume Conjecture 1 holds. Then there exists a function f on n inputs
which can be computed by branching programs of size poly(n) but requires formula depth
Ω(log2 n/ log3 log n).

Proof. Consider the padded version of TreeEval2,d,h in the proof of Theorem 2, and fix
d = log n and h = log n/ log logn for n being the original input size of TreeEval2,d,h before
padding. Thus our new input size is

N = 2(h+d) log d = 2O(logn·log logn)

and this function is computable in space poly(N). As shown in Lemma 17, Conjecture 1
implies that our formula depth is at least

Ω(dh) = Ω

(
log2 n

log logn

)
= Ω

(
(logN/ log logN)2

log(logN/ log logN)

)
= Ω

(
log2N

log3 logN

)

7 Application 2: Near-optimal amortized branching programs

Our second contribution outside of TreeEval is to the study of amortized/catalytic branching
programs for computing arbitrary functions.

15

7.1 Amortized (or catalytic) branching programs

7.1.1 Definitions and motivation

We have thus far avoided discussing any syntactic space-bounded models except in passing.
While we assume familiarity on the part of the reader with branching programs in the usual
sense, to understand our second auxiliary result we must define the model of [GKM15] now.

Definition 5. Let n ∈ N and let f : {0, 1}n → {0, 1} be an arbitrary function. An
m-catalytic branching program is a directed acyclic graph G with the following properties:

• There are m source nodes and 2m sink nodes.

• Every non-sink node is labeled with an input variable xi for i ∈ [n], and has two
outgoing edges labeled 0 and 1.

• For every source node v there is one sink node labeled with (v, 0) and one with (v, 1).

We say that G computes f if for every x ∈ {0, 1}n and source node v, the path defined by
starting at v and following the edges labeled by the value of the xi labeling each node ends
at the sink labeled by (v, f(x)).

The size of G is the number of nodes in G. For this paper all branching programs will
be layered, meaning all nodes are organized into groups, called layers, where all edges from
layer i go to nodes in layer i+ 1 for all i. The width of G is the largest size of any layer,
while the length of G is the number of layers.

The (logarithm of the) size of an ordinary branching program computing f non-uniformly
corresponds to the space needed to compute f , as we need only remember where in the
program we currently are. By contrast, the reader should think of the m-catalytic branching
program model as providing some initial memory τ in the form of the label of some start
node, and the (logarithm of the) size of the program is the space required to compute f
while remembering this string τ .

Clearly this can be done with sm nodes, where s is the size of the smallest branching
program for f , by simply taking m disjoint copies of an optimal branching program for
f ; we are interested in when this value can be reduced. This corresponds to using the
space needed to store τ in a non-trivial way during the computation of f . This view also
motivated Potechin [Pot17] to alternately view catalytic branching programs as amortized
branching programs, as we can think of taking these m disjoint branching programs for f
and letting them share memory states, i.e. internal nodes, while still preserving the same
disjoint source-sink behavior.

7.1.2 Past results

In addition to characterizing m-catalytic branching programs as amortized branching pro-
grams, Potechin [Pot17] showed that, given enough amortization, every function can be
computed by branching programs of amortized linear size. Robere and Zuiddam [RZ21]

16

studied two different amortized branching program models, with one being catalytic branch-
ing programs, and concluded along with [Pot17] that a linear upper bound holds; they also
improved the amount of amortization needed for functions f that can be represented as
low-degree F2 polynomials.

Later, Cook and Mertz [CM22] showed the results of [Pot17, RZ21] can be captured by
clean register programs. As with traditional space, clean register programs can utilize this
initial memory τ as the setting of its registers at the beginning of the program, with the
clean condition exactly giving back the pairing between source and sink nodes.

Proposition 20. Let f : {0, 1}n → {0, 1} be a function, let F be a finite field of characteristic
p. Assume that there exists a register program P using t instructions—each of which only
reads one input bit3—and s registers over F , whose net result is to cleanly compute f into
some register. Then f can be computed by an m-catalytic branching program of width m · p
and length t, where m = |F|s/p.

Proof. Each of the |F|s nodes in a given layer will represent a unique setting to all the
registers. We will execute one instruction of the register program per layer, querying the
input bit corresponding to that instruction.

Finally, we will consider, for each source and sink node, the corresponding assignment to
the designated output register. Find a basis {e1, . . . , er} for F considered as a vector space
over Fp such that e1 is the field element 1 ∈ F . We delete all source nodes except those
whose first coordinate is 0—leaving us with |F|s/p source nodes as claimed—and similarly
we delete all sink nodes except those whose corresponding assignment to the first coordinate
is either 0 or 1. By construction, each source whose assignment is τ will reach the sink
node labeled by the same τ , except that if f(x1, . . . , xn) = 1, then 1 is added to the output
register, so that the its first coordinate is 1 instead of 0.

In [Pot17, RZ21], the amount of amortization required to achieve linear upper bounds
was 22

n
in the worst case. Using Proposition 20 plus the central TreeEval subroutines of

[CM20, CM21], [CM22] improved this to 22
ϵn

for any ϵ > 0. This is still the best known
result for achieving linear amortized braching program size.

We also mention in passing that the m-catalytic branching programs produced by
Proposition 20 can be made into permutation branching programs—a classic and much more
well-studied model—of the same width and length. In fact they are more restricted, and
for example only have one accepting vertex; recently, Hoza, Pyne, and Vadhan [HPV21]
and Pyne and Vadhan [PV21] showed a lower bound against the read-once version of such
programs for infinite width. See [CM22] for more discussion of the connections between
these models and of how close to read-once our programs can be made.

7.2 One-shot clean polynomials

Given our connection between register programs and m-catalytic branching programs, and
the fact that Lemma 14 gives us a way to cleanly compute arbitrary polynomials, it seems

3This is different from our earlier condition that each instruction be computable in small space. In
non-uniform models we can compute any function of the current space in one step.

17

natural to ask whether our techniques can improve the parameters of computing arbitrary
functions using m-catalytic branching programs. Using this idea to prove Theorem 3 will be
the subject of the rest of the section; we will prove a more general, fine-grained version.

Theorem 21. Let f be any function on n bits, and let r, s be positive integers such that

⌈n/r⌉(2r − 1) < 2rs − 1 (2)

Then there exists an m-catalytic branching program of width 2m and length 2rsn(1+2/r+3/n)
computing f , where m ≤ 2(n+2r)s.

Proof. Like in the proof of Theorem 15, let F = F2r and K = F2rs . We will group the input
into groups of r bits, and encode each group of bits as an element of F = F2r . This grouping
and encoding together define a function g : {0, 1}n → F⌈n/r⌉, which will play the role of g in
the statement of Lemma 14, with a = ⌈n/r⌉. The program Pg (which cleanly computes g)
can be implemented as a sequence of n instructions, reading each input once.

Applying Lemma 14 gives a register program of length

(|K| − 1)(t(Pg) + 2a+ b) = (2rs − 1)(n+ 2⌈n/r⌉+ 1)

< 2rsn(1 + 2/r + 3/n)

which uses
a+ b = ⌈n/r⌉+ 1

registers over K. By Proposition 20, this gives us an m-catalytic branching program of
length 2rsn(1 + 2/r + 3/n) and width 2m, where

m = |K|⌈n/r⌉+1/2 = (2rs)⌈n/r⌉+1/2 < 2(n+2r)s

Finally Lemma 14 requires a(|F| − 1) < |K| − 1; that is,

⌈n/r⌉(2r − 1) < 2rs − 1

which completes the proof.

Proof of Theorem 3. We analyze three ways to choose r and s to satisfy (2) corresponding
to the claims of the theorem.4

Constant s. Let s be any positive integer greater than 1, and set

r =

⌈
1

s− 1
log n

⌉
<

1

s− 1
log n+ 1

Then (2) is satisfied for sufficiently large n. Our length is less than

2rsn(1 + 2/r + 3/n) ≤ 2 · 2(s/(s−1)) logn · n · (1 + o(1))

4In what follows, all asymptotics (O(), o()) take n as the growing variable, with either r or s fixed and the
other a function of n.

18

= (2 + o(1))n
2s−1
s−1

and for m have

m < 2(n+2r)s

≤ 2(n+2)s · n
2s
s−1

We consider two settings, s = 2 and s ≥ 3. In the latter case, we can set ϵ = 1
s−1 ∈ (0, 1] so

s = 1 + 1/ϵ, which gives us length at most O(n2+ϵ) and m at most

O(2(n+2)(1+1/ϵ)n2(1+ϵ)) < O(2(1+2/ϵ)n)

which gives us the first program of Theorem 3.

For the second program, we move to the s = 2 case. Fix s = 2 and r = ⌈log n− log logn+
1⌉ < log n− log logn+2. Then (2) is satisfied for sufficiently large n. Our length is less than

2rsn(1 + 2/r + 3/n) ≤ 22(logn−log logn+2)n(1 + o(1))

= O

(
n3

log2 n

)
while for m we have

m < 22(n+2r)

< 4n+2 logn−2 log logn+4

= O

(
4n
(

n

log n

)4
)

Constant r. Let r be any positive integer greater than 1, and set

s =

⌈
log n− log r

r
+

1

n

⌉
+ 1 <

log n− log r

r
+

1

n
+ 2

Then (2) is satisfied for sufficiently large n. Our length is less than

2rsn(1 + 2/r + 3/n) = 2r((logn−log r)/r+1/n+2)n(1 + 2/r + o(1))

=
n

r
· 2r/n · 22r · n · (1 + 2/r + 3/n)

= O

(
22r
(
1

r
+

2

r2

)
n2

)
= O(n2)

and for r > 1 this leaves us with

m < 2(n+2r)((logn−log r)/r+1/n+2)

≤
(n
r

)n/r
· 2 · 22n ·

(n
r

)2
· 22r/n · 24r

= O

(
4n+r

(n
r

)n/r+2
)

< O(4nnn)

which gives us our third program and thus completes the proof.

19

8 Conclusion

The most immediate question left open by this work is whether or not TreeEval ∈ L. Both
answers are entirely possible, and it is no longer clear why one should be wholly convinced
of either.

There is also a broader question of how to apply our techniques to other problems in
space-bounded complexity. The result of Lemma 14, of cleanly and efficiently computing
arbitrary polynomials, seems to be a heavy hammer, but thus far it has only found a few
nails.

Recently, Mertz [Mer23] surveyed a number of techniques for space-bounded complexity,
including the use of clean register programs seen in this and previous papers. The survey
posed a host of open questions of how they can be further strengthened and applied, such
as showing the power of catalytic computing. To take one example where our results may
be relevant, they conjecture that an optimal improvement to Lemma 13 could also show
that catalytic logspace contains NC2. However, whether our more modest improvement in
this paper can be useful in making progress on this or any other questions posed remains
unknown.

Acknowledgements

The authors would like to thank Robert Robere and Bruno Loff for many insightful discussions,
as well as Igor Oliveira, Ninad Rajgopal, Pierre McKenzie, and the editors of ECCC
for feedback on the initial draft. The second author received support from the Royal
Society University Research Fellowship URF\R1\191059 and from the Centre for Discrete
Mathematics and its Applications (DIMAP) at the University of Warwick.

References

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs
recognize exactly those languages in nc1. J. Comput. Syst. Sci., 38(1):150–164,
1989.

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a
constant number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian
Speelman. Computing with a full memory: catalytic space. In Symposium on
Theory of Computing, STOC 2014, pages 857–866. ACM, 2014.

[BDS22] Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. On pure space vs
catalytic space. Theor. Comput. Sci., 921:112–126, 2022.

[BKLS18] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Catalytic
space: Non-determinism and hierarchy. Theory Comput. Syst., 62(1):116–135,
2018.

20

[CFK+21] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann
Pitassi. Query-to-communication lifting using low-discrepancy gadgets. SIAM
J. Comput., 50(1):171–210, 2021.

[CG75] Don Coppersmith and Edna K. Grossman. Generators for certain alternating
groups with applications to cryptography. Siam Journal on Applied Mathemat-
ics, 29:624–627, 1975.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem.
In Proceedings of the 52nd Annual ACM Symposium on Theory of Computing,
STOC 2020, pages 752–760. ACM, 2020.

[CM21] James Cook and Ian Mertz. Encodings and the tree evaluation problem.
Electron. Colloquium Comput. Complex., page 54, 2021. URL: https://eccc.
weizmann.ac.il/report/2021/054.

[CM22] James Cook and Ian Mertz. Trading time and space in catalytic branching
programs. In 37th Computational Complexity Conference, CCC 2022, volume
234 of LIPIcs, pages 8:1–8:21, 2022.

[CMW+12] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul
Santhanam. Pebbles and branching programs for tree evaluation. ACM Trans.
Comput. Theory, 3(2):4:1–4:43, 2012.

[DGJ+20] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath
Tewari. Randomized and symmetric catalytic computation. In CSR, volume
12159 of Lecture Notes in Computer Science, pages 211–223. Springer, 2020.

[dRMN+20] Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, and
Robert Robere. KRW composition theorems via lifting. In FOCS, pages 43–49.
IEEE, 2020.

[EMP18] Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. Hardness of
function composition for semantic read once branching programs. In 33rd
Computational Complexity Conference, CCC 2018, volume 102 of LIPIcs, pages
15:1–15:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[GJST19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unam-
biguous catalytic computation. In 39th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2019,
volume 150 of LIPIcs, pages 16:1–16:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[GKM15] Vincent Girard, Michal Koucký, and Pierre McKenzie. Nonuniform catalytic
space and the direct sum for space. Electronic Colloquium on Computational
Complexity (ECCC), 138, 2015.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication
vs. partition number. SIAM J. Comput., 47(6):2435–2450, 2018.

21

https://eccc.weizmann.ac.il/report/2021/054
https://eccc.weizmann.ac.il/report/2021/054

[HPV77] John E. Hopcroft, Wolfgang J. Paul, and Leslie G. Valiant. On time versus
space. J. ACM, 24(2):332–337, 1977.

[HPV21] William Hoza, Edward Pyne, and Salil Vadhan. Pseudorandom generators for
unbounded-width permutation branching programs. In 12th Innovations in
Theoretical Computer Science (ITCS’21), LIPIcs, 2021.

[IN19] Kazuo Iwama and Atsuki Nagao. Read-once branching programs for tree
evaluation problems. ACM Trans. Comput. Theory, 11(1):5:1–5:12, 2019.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth
lower bounds via the direct sum in communication complexity. Comput. Com-
plex., 5(3/4):191–204, 1995.

[Liu13] David Liu. Pebbling arguments for tree evaluation. CoRR, abs/1311.0293,
2013.

[Mer23] Ian Mertz. Reusing space: Techniques and open problems. B.EATCS, 141:57–
106, 2023.

[Pot17] Aaron Potechin. A note on amortized branching program complexity. In
Computational Complexity Conference, volume 79 of LIPIcs, pages 4:1–4:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions that beat all pseudorandom
generators (extended abstract). In 36th Computational Complexity Conference
(CCC’21). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy.
Comb., 19(3):403–435, 1999.

[RZ21] Robert Robere and Jeroen Zuiddam. Amortized circuit complexity, formal
complexity measures, and catalytic algorithms. In FOCS, pages 759–769. IEEE,
2021.

22
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

