
A Technique for Hardness Amplification Against AC0

William M. Hoza∗

Department of Computer Science
The University of Chicago

williamhoza@uchicago.edu

Abstract

We study hardness amplification in the context of two well-known “moderate” average-case
hardness results for AC0 circuits. First, we investigate the extent to which AC0 circuits of depth
d can approximate AC0 circuits of some larger depth d+ k. The case k = 1 is resolved by H̊astad,
Rossman, Servedio, and Tan’s celebrated average-case depth hierarchy theorem (JACM 2017).
Our contribution is a significantly stronger correlation bound when k ≥ 3. Specifically, we show
that there exists a linear-size AC0

d+k circuit h : {0, 1}n → {0, 1} such that for every AC0
d circuit

g, either g has size exp(nΩ(1/d)), or else g agrees with h on at most a (1/2 + ε)-fraction of inputs
where ε = exp(−(1/d) · Ω(log n)k−1). For comparison, H̊astad, Rossman, Servedio, and Tan’s
result has ε = n−Θ(1/d). Second, we consider the majority function. It is well known that the
majority function is moderately hard for AC0 circuits (and stronger classes). Our contribution is
a stronger correlation bound for the XOR of t copies of the n-bit majority function, denoted
MAJ⊕t

n . We show that if g is an AC0
d circuit of size S, then g agrees with MAJ⊕t

n on at most a

(1/2 + ε)-fraction of inputs, where ε =
(
n−1/2 ·O(logS)d−1 ·

√
log n

)t
.

To prove these results, we develop a hardness amplification technique that is tailored to a
specific type of circuit lower bound proof. In particular, one way to show that a function h is
moderately hard for AC0 circuits is to (a) design some distribution over random restrictions or
random projections, (b) show that AC0 circuits simplify to shallow decision trees under these
restrictions/projections, and finally (c) show that after applying the restriction/projection, h is
moderately hard for shallow decision trees with respect to an appropriate distribution. We show
that (roughly speaking) if h can be proven to be moderately hard by a proof with that structure,
then XORing multiple copies of h amplifies its hardness. Our analysis involves a new kind of
XOR lemma for decision trees, which might be of independent interest.

1 Introduction

1.1 Average-Case Circuit Lower Bounds

Circuit lower bounds are at the heart of computational complexity theory. To understand the
limitations of (extremely) efficient computation, we seek to prove that certain explicit functions
cannot be computed by certain interesting classes of Boolean circuits. In fact, ideally, we want to
prove average-case circuit lower bounds, also known as correlation bounds. That is, we would like to
prove that circuits in some class C cannot compute some function h : {0, 1}n → {0, 1} on more than
a (1/2 + ε)-fraction of inputs for some small value ε > 0:

For every g ∈ C, Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1

2
+ ε. (1)

∗Part of this work was done while the author was visiting the Simons Institute for the Theory of Computing.
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We would like ε to be as small as possible. For example, one motivation for trying to minimize ε
comes from the Nisan-Wigderson framework for converting correlation bounds into pseudorandom
generators (PRGs) [NW94]. In this framework, a bound of the form (1) implies a PRG with error
εn, and in particular, the framework requires ε < 1/n.

In this work, we focus on the case that C consists of AC0 circuits, i.e., circuits made up of AND
and OR gates with unbounded fan-in, with literals and constants at the bottom. The size of the
circuit is the number of AND and OR gates, and the depth of the circuit is the length of the longest
path from the output gate to an input gate. We refer to an AC0 circuit of depth d as an “AC0

d

circuit.” We are especially interested in the constant-depth regime; this class of circuits can be
viewed as a model of constant-time parallel computation. Some of the most celebrated theorems in
circuit complexity are lower bounds on the size of AC0 circuits computing various explicit functions.
For example, if g is an AC0

d circuit, then g famously cannot compute the parity function on n bits
or the majority function on n bits, unless g has size at least exp(cd · n1/(d−1)) [FSS84; Ajt83; Yao85;
H̊as86a; H̊as86b].

1.2 Hardness Amplification and Yao’s XOR Lemma

One appealing approach for proving strong correlation bounds is to first construct a function h
that is “moderately hard” (e.g., maybe we have ε = 1/

√
n), and then apply some kind of hardness

amplification scheme that converts h into a “very hard” function (e.g., maybe now we can take
ε = n−ω(1)). The most famous method for hardness amplification is Yao’s XOR Lemma [Yao82;
Lev87; Imp95; GNW11]. Starting from a hard function h : {0, 1}n → {0, 1}, this lemma considers
the new hard function h⊕t : {0, 1}nt → {0, 1} defined by h⊕t(x(1), . . . , x(t)) =

⊕t
i=1 h(x

(i)). One
well-known version1 of Yao’s XOR Lemma says that if h is moderately hard for MAJ ◦ C circuits,
where MAJ denotes the majority function, then h⊕t is very hard for C circuits.

In the context of relatively weak classes such as AC0, the distinction between C and MAJ ◦ C is
extremely important. Proving lower bounds on the size of MAJ ◦ C circuits is generally much more
difficult than proving lower bounds on the size of C circuits. For this reason, there is a great deal of
interest in “removing the majority gate” from Yao’s XOR Lemma. For example, we can ask the
following.

Question 1 (Does XORing amplify hardness for AC0?). Let h : {0, 1}n → {0, 1} and let t = log n.
Assume that every constant-depth subexponential-size AC0 circuit g satisfies

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1

2
+ n−Ω(1).

Does it follow that every constant-depth polynomial-size AC0 circuit g satisfies

Pr
x∈{0,1}nt

[g(x) = h⊕t(x)] ≤ 1

2
+ n−ω(1)?

Several recent papers have developed and applied a refined version of Yao’s XOR Lemma
featuring an “approximate linear sum” gate instead of the traditional majority gate [CLW20; CL21;
CLLO21; HV21; Che23; CHLR23]. This clever approach has been fruitful, but it is still not
applicable if we start with a function that is hard merely for AC0 circuits. Unfortunately, there are
strong barrier results saying that every “black-box” hardness amplification scheme must involve
some nontrivial computational overhead [Vio06; GR08; SV10; GSV18; Sha23]. As a special case,

1See, for example, Viola’s work [Vio20].

2



this line of work implies that Question 1 cannot be resolved affirmatively via a “black-box” hardness
amplification scheme. Thus, we have an ironic state of affairs: we have a rich toolkit for proving
lower bounds on the size of AC0 circuits, because we are able to exploit these circuits’ weaknesses,
but at the same time, specifically because these circuits are too weak, we cannot use Yao’s XOR
Lemma to amplify our lower bounds.2

1.3 Our Contributions

In this work, we develop a non-black-box method for hardness amplification, applicable to some (but
not all) moderate hardness results for AC0 circuits. We use our method to amplify two well-known
average-case hardness results, discussed next.

1.3.1 Correlation Bounds for Depth Reduction Within AC0

Our first application of our hardness amplification technique concerns the role of depth in circuit
complexity. To what extent are deeper circuits more powerful than shallower circuits? In other
words, what is the marginal utility of time for parallel computation?

Surprisingly, it turns out that in many contexts, circuits can be generically and nontrivially
simulated by shallower circuits. For example:

• NC1 circuits (i.e., circuits of depth O(log n) with bounded fan-in) can be simulated by AC0
d

circuits of size exp(nO(1/d)) [Val77; Vio09; Vio17; Tel20].

• ACC0
d circuits (i.e., AC0

d circuits augmented with MODm gates) of size S can be simulated by
SYM ◦ AND circuits of size exp((logS)O(d)) [Tod91; All89; AH94; Yao90; AG94; BT94; Wil14;
CP19].

• AC0 circuits can be approximated in various ways by low-degree polynomials [Raz87; Smo87;
Smo93; BRS91; Tar93; LMN93; Bop97; H̊as01; Baz09; Raz09; Bra10; Tal17; KS18; HS19],
which can be viewed as a “depth-two” model of computation.

In light of these remarkable “depth reduction” results and their numerous applications, we would
like to know precisely when, and to what extent, depth reduction is possible. Indeed, there is a
longstanding interest in thoroughly understanding the hardness of circuit depth reduction within
AC0. Early work shows that there exists a linear-size AC0

d+1 circuit h : {0, 1}n → {0, 1} such that

every AC0
d circuit computing h must have size exp(nΩ(1/d)) [Sip83; Yao85; H̊as86a]. For several

decades, it was a stubborn open problem to prove a similar hierarchy theorem in the average-case
setting. O’Donnell and Wimmer essentially resolved the depth-2 vs. depth-3 case [OW07], and then
finally H̊astad, Rossman, Servedio, and Tan resolved the general depth-d vs. depth-(d+ 1) case in a
breakthrough last decade [HRST17]:

Theorem 1 (The average-case depth hierarchy theorem [HRST17]). Let n, d ∈ N with d ≤ α logn
log logn ,

where α > 0 is a suitable constant. There is an explicit3 AC0
d+1 circuit h : {0, 1}n → {0, 1} of size

O(n) such that for every AC0
d circuit g : {0, 1}n → {0, 1}, either g has size exp(nΩ(1/d)), or else the

following correlation bound holds:

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1

2
+ n−Ω(1/d). (2)

2The exception, of course, is if we start from a lower bound against a stronger class such as MAJ ◦AC0. See Klivans’
work [Kli01].

3I.e., the circuit h can be constructed in poly(n) time, given the parameters n and d.
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Theorem 1 asserts that h is moderately hard for AC0
d circuits. H̊astad, Rossman, Servedio, and

Tan identified two obstacles preventing significant improvement of the n−Ω(1/d) correlation bound
in (2):

• The “hard function” h in Theorem 1 is monotone. By the Kahn-Kalai-Linial theorem [KKL88],
every monotone Boolean function can be approximated by a constant or a variable with success
probability 1/2 + ω(1/n).

• By the discriminator lemma [HMPST93], every linear-size AC0
d+1 circuit h, whether monotone

or not, can be approximated by a linear-size AC0
d circuit with success probability 1/2+Ω(1/n).

(See Hatami, Hoza, Tal, and Tell’s work for further details of these two arguments [HHTT23,
Appendix A].)

In this work, we overcome both obstacles by using a different, non-monotone hard function
h with depth slightly greater than d + 1. We prove an average-case lower bound for the task
of simulating AC0

d+k circuits using AC0
d circuits, with a correlation bound that gets significantly

stronger as k gets larger.

Theorem 2 (AC0
d circuits cannot approximate AC0

d+k circuits). Let n, d, k ∈ N with k ≥ 3 and dk ≤
α logn
log logn , where α > 0 is a suitable constant. There is an explicit AC0

d+k circuit h : {0, 1}n → {0, 1}
of size O(n) such that for every AC0

d circuit g : {0, 1}n → {0, 1}, either g has size exp(nΩ(1/d)), or
else the following correlation bound holds:

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1

2
+ exp

(
−1

d
· Ω(log n)k−1

)
.

Our hard function h is the XOR of approximately logk−2 n many copies of H̊astad, Rossman,
Servedio, and Tan’s hard function [HRST17]. By combining Theorem 2 with the Nisan-Wigderson
framework [NW94] and a reduction due to Li and Zuckerman [LZ19], we obtain new constructions of
seedless randomness extractors that are computable by small AC0

d+O(1) circuits and that can extract

from sources that are “recognizable” by large AC0
d circuits. See subsection 4.4 for details.

1.3.2 Correlation Bounds for XOR of Majority

Our second application of our hardness amplification technique concerns the n-bit majority function
(MAJn). It is well known that the majority function is moderately hard for AC0 circuits and more
generally for AC0[⊕] circuits, i.e., AC0 circuits augmented with parity gates.4 Specifically, based
on the seminal works of Razborov and Smolensky [Raz87; Smo87; Smo93], we have the following
correlation bound.

Theorem 3 (Majority is moderately hard for AC0
d[⊕] circuits). Let n, d, S ∈ N with S ≥ n. Let

g : {0, 1}n → {0, 1} be an AC0
d[⊕] circuit of size S. Then

Pr
x∈{0,1}n

[g(x) = MAJn(x)] ≤
1

2
+

O(logS)d−1

√
n

.

We emphasize that we are considering the problem of computing the majority function on a
(1/2+ ε)-fraction of n-bit inputs, which is distinct from the perhaps more famous “promise majority”

4Even more generally, we can consider MODq gates where q is a power of a prime – but let us focus on parity gates
for simplicity.
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problem in which we wish to compute the majority function on all inputs with relative Hamming
weight outside the interval 1/2± ε. It seems that O’Donnell and Wimmer were the first to explicitly
consider correlation bounds for the majority function [OW07].

The specific quantitative bound in Theorem 3 is actually a log-factor improvement over what
was known before, to the best of our knowledge. We therefore include a proof of Theorem 3 in
Appendix A. (We also present a matching AC0 construction based on prior work, showing that
Theorem 3 is tight.) That being said, our main focus is on the qualitative distinction between
functions that are “moderately hard” and functions that are “very hard.” The fact that the majority
function is moderately hard for AC0[⊕] circuits – for example, the correlation bound above is
Θ̃(1/

√
n) in the constant-depth polynomial-size regime – was already well-understood prior to this

work.
Remarkably, this weak correlation bound is the best bound known on the correlation between

AC0[⊕] circuits and any hard function in NP.5 It is a major open problem to construct an explicit
function that is provably “very hard” for AC0[⊕] circuits. The function MAJ⊕t

n , perhaps with
t = polylog(n), seems like a reasonable candidate.

Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman recently proved that XORing amplifies
the hardness of MAJn for constant-degree F2-polynomials [CHHLZ20], which can be considered a
special case of polynomial-size AC0

2[⊕] circuits. In this work, we consider a different special case
of AC0[⊕] circuits, namely AC0 circuits. Our contribution is a proof that XORing amplifies the
hardness of MAJn for AC0 circuits, albeit with an extra factor of

√
log n.

Theorem 4 (MAJ⊕t
n is hard for AC0

d circuits). Let n, t, d, S ∈ N and let g : {0, 1}nt → {0, 1} be an
AC0

d circuit of size S. Then

Pr
x∈{0,1}nt

[
g(x) = MAJ⊕t

n (x)
]
≤ 1

2
+

(
O(logS)d−1 ·

√
log n√

n

)t

.

1.4 Our Technique

1.4.1 XOR Lemmas for Decision Trees

Our correlation bounds are based on XOR lemmas for decision trees. Before explaining the connection
between AC0 circuits and decision trees, let us discuss the XOR lemmas for decision trees themselves
– a fascinating subject in its own right. Let h be a Boolean function that is moderately hard for
shallow decision trees: every depth-D decision tree agrees with h on at most a (1/2 + ε)-fraction of
inputs.

It is not hard to show that decision trees of that same depth D can compute h⊕t on at most a
(1/2 + ε′)-fraction of inputs, where ε′ = 1

2 · (2ε)t. (For example, this is a special case of Shaltiel’s
analysis of “fair” decision trees [Sha03].) It turns out that a slight generalization of that simple
analysis suffices for proving our correlation bound for depth reduction within AC0 (Theorem 2).

On the other hand, to get the best parameters in Theorem 4 (on the hardness of MAJ⊕t
n ), it

turns out that we need a more sophisticated XOR lemma for decision trees, in which we allow the
tree attempting to compute h⊕t to have depth significantly larger than D.

This problem has been previously studied by Drucker [Dru12]. Focusing on one setting of
parameters, Drucker showed that for every constant α > 0, there is a value D′ = Ω(Dt) such
that trees of depth D′ cannot compute h⊕t on more than a (1/2 + ε′)-fraction of inputs, where
ε′ = O(ε)(1−α)·t [Dru12]. Although it comes close, this result is not quite sufficient to prove

5If we permit hard functions that satisfy less stringent explicitness conditions, then better correlation bounds are
known against AC0[⊕] and even stronger classes [Vio20; CR22; CLW20; Che23].
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Theorem 4 because of the (1 − α)-factor loss in the exponent. Furthermore, unfortunately, the
(1− α)-factor loss is unavoidable in general, due to counterexamples identified by Shaltiel [Sha03].
The idea behind these counterexamples is that although h is hard for decision trees of depth D, it
might nevertheless be easy for decision trees of depth D + 1. In this case, for any constant c > 0, a
decision tree of depth cDt can successfully compute h on Ω(t) independent instances.

To circumvent Shaltiel’s counterexamples [Sha03], we strengthen the assumption. We assume
that h is moderately hard for depth-D decision trees for all D simultaneously, with a correlation
bound ε that scales with the depth D according to some log-concave function ε(D). Under this
assumption, we prove the decision trees of depth Ω(Dt) have correlation at most O(ε)t with h⊕t.

Lemma 1 (XOR lemma for decision trees under a robust hardness assumption). Let h : {0, 1}n →
{0, 1} be a function and let ε : [0,∞) → (0,∞) be a log-concave function. Assume that for every
D ∈ N and every decision tree T : {0, 1}n → {0, 1} of depth at most D, we have

Pr
x∈{0,1}n

[T (x) = h(x)] ≤ 1

2
+ ε(D).

Then for every D, t ∈ N and every decision tree T : {0, 1}nt → {0, 1} of depth at most Dt/2, we have

Pr
x∈{0,1}nt

[T (x) = h⊕t(x)] ≤ 1

2
+O(ε(D))t.

(See Lemma 3 for a more general statement.)

1.4.2 Amplifying the Average-Case Depth Hierarchy Theorem

Now we briefly explain how we use an XOR lemma for decision trees to prove Theorem 2 (our
correlation bound for depth reduction within AC0). Our analysis builds on H̊astad, Rossman,
Servedio, and Tan’s proof of the average-case depth hierarchy theorem [HRST17]. Recall that their
lower bound proof is based on the concept of random projections, which generalize traditional random
restrictions. (A traditional restriction assigns values to some input variables while keeping others
“alive.” A projection can additionally merge living variables.) To prove that their hard function
h is moderately hard for AC0

d circuits, H̊astad, Rossman, Servedio, and Tan carefully designed a
distribution R over projections and a distribution µ over inputs and showed the following [HRST17].

1. (Completion to the uniform distribution.) For every function f : {0, 1}n → {0, 1}, plugging a
uniform random x ∈ {0, 1}n into f is equivalent to first sampling a projection π ∼ R, then
independently sampling an input y ∼ µ, and finally plugging y into f |π.

2. (Simplification.) For every AC0
d circuit g, either g has size exp(nΩ(1/d)), or else with high

probability over π ∼ R, the circuit g simplifies under π in the sense that g|π can be computed
by a shallow decision tree.

3. (Maintaining structure.) With high probability over π ∼ R, the hard function h maintains
structure in the sense that h|π is moderately hard for shallow decision trees with respect to µ.

Taken together, the three steps above imply that h is moderately hard for AC0
d circuits with respect

to a uniform random input. We call this proof structure the random simplification method for
proving correlation bounds.

As mentioned previously, our hard function is h⊕t, where h is H̊astad, Rossman, Servedio, and
Tan’s hard function and t ≈ logk−2 n. To prove that h⊕t is very hard for AC0

d circuits, we use the
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random simplification method. We apply R to each of the t input blocks of h⊕t independently. By
H̊astad, Rossman, Servedio, and Tan’s analysis [HRST17], each copy of h is likely to be moderately
hard for shallow decision trees after the projection. Therefore, by a suitable XOR lemma for decision
trees, h⊕t is likely to be very hard for shallow decision trees after the projection. Meanwhile, H̊astad,
Rossman, Servedio, and Tan’s simplification arguments [HRST17] extend to the case of several
independent copies of R, completing the proof.

1.4.3 Amplifying the Hardness of the Majority Function

There are at least three known proofs that the majority function is moderately hard for AC0 circuits:
one using the Razborov-Smolensky method [Fil10; Kop13] (see also Appendix A), one due to
O’Donnell and Wimmer [OW07], and one due to Tal [Tal17]. However, none of these proofs fits
into our framework of “random simplification arguments,” so it is not clear how to combine them
with our amplification technique. (The latter two proofs do use switching lemmas, but only in an
indirect Fourier-analytic way.) For this reason, in subsection 5.1, we present yet another proof that
the majority function is moderately hard for AC0

d circuits. Unfortunately, the correlation bound we
get is worse than the optimal bound by a factor of

√
log n, but the important thing is that our proof

is a random simplification argument. Furthermore, crucially, the “robust hardness assumption” of
Lemma 1 is satisfied in our proof. Therefore, we are able to apply our new XOR lemma for decision
trees to complete our analysis of MAJ⊕t

n .

1.5 Related Work

Hardness amplification for weak circuit classes. Goldwasser, Gutfreund, Healy, Kaufman,
and Rothblum designed a method for converting worst-case hardness into moderate average-case
hardness in the context of weak circuit classes [GGHKR07], which complements our work in some
ways. One contrast between their work and ours is that they merely construct a hard function with
a very weak explicitness guarantee, namely membership in EXP, whereas we study an extremely
explicit hardness amplification method, namely XORing. More recently, Chen, Lu, Lyu, and Oliveira
developed a method for constructing very hard functions for weak circuit classes starting from
relatively weak assumptions [CLLO21] – but once again, their hard functions only satisfy weak
explicitness guarantees such as membership in E.

Klivans’ proof that parity is average-case-hard for AC0 circuits. A long sequence of works
has established strong bounds on the correlation between the parity function and AC0 circuits [FSS84;
Ajt83; Yao85; H̊as86a; H̊as86b; Bab87; Kli01; Vio09; BIS12; IMP12; H̊as14]. One of these works, by
Klivans [Kli01], is especially relevant for us. Klivans’ proof is based on a result by Aspnes, Beigel,
Furst, and Rudich, who showed that if g is a MAJ ◦ AC0

d circuit, then either g has size exp(nΩ(1/d)),
or else g disagrees with the parity function on a constant fraction of inputs [ABFR94]. Klivans
combined this result with Yao’s XOR Lemma to re-prove a strong (albeit not optimal) bound on
the correlation between AC0

d circuits and the parity function [Kli01]. Klivans’ proof is the only
prior work we are aware of that uses hardness amplification methods to prove an unconditional AC0

circuit lower bound.

XOR lemmas for decision trees. Many prior works have studied XOR lemmas for various types
of decision trees, along with the closely related “direct product” and “direct sum” problems [IRW94;
BAN95; NRS99; Sha03; KŠW07; Špa08; AŠW09; JKS10; Dru12; She12; LR13; BK18; BB19;

7



BKLS20]. However, as far as we are aware, we are the first to consider the case that we have
hardness for all depths simultaneously.

1.6 Organization

After some preliminaries, we present our XOR lemma for decision trees (Lemma 1) in Section 3.
Then, in Section 4, we present our correlation bound for depth reduction within AC0 (Theorem 2),
including our application to randomness extractors. Finally, in Section 5, we present our correlation
bound for MAJ⊕t

n (Theorem 4).

2 Preliminaries

We write N to denote the set of non-negative integers.

2.1 Boolean Functions

In the introduction, we worked with functions f : {0, 1}n → {0, 1}. Going forward, it will be
more convenient to encode a bit b ∈ {0, 1} as the value (−1)b. Thus, we will work with functions
f : {±1}n → {±1}. However, we will still use notation that is more typical for {0, 1}-valued variables,
namely: ∧

i

xi := max
i

xi∨
i

xi := min
i

xi⊕
i

xi :=
∏
i

xi

MAJ(x) := sign

(∑
i

xi

)
.

We use the following notation for combining several copies of a Boolean function, generalizing
the notation h⊕t that we discussed in the introduction.

Definition 1 (Combining many copies of a Boolean function). Let h : {±1}n → {±1} be a function,
let □ ∈ {⊕,∧,∨}, and let t ∈ N. We define h□ t : {±1}nt → {±1} by the rule

h□ t(x(1), . . . , x(t)) = h(x(1)) □ · · · □ h(x(t)).

We rely on the following upper bound on the size of AC0 circuits computing the parity of a few
bits.

Proposition 1 (AC0
d upper bound for parity [H̊as86b]). Let t ≥ 1 and k ≥ 2 be integers. The parity

function on t bits can be computed by an AC0
k circuit of size O(2t

1/(k−1) · t(k−2)/(k−1)). The output
gate can be either an AND gate or an OR gate.

We use the following notation to describe decision trees.

Definition 2 (Decision trees). For a function f : {±1}n → {±1}, we define DTDepth(f) to be the
minimum depth of a decision tree computing f . In the other direction, for a parameter D ∈ N,
we define DTDepth[D] to be the class of all functions f : {±1}n → {±1} that can be computed by
depth-D decision trees. (The parameter n will always be clear from context.)
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2.2 Probability and Correlation

We denote random variables using boldface. We write x ∼ µ to indicate that the random variable
x is sampled from the distribution µ. If x,x′ are discrete random variables taking values in Ω,
then we consider the “total variation distance” between x and x′ to be the maximum difference
|Pr[x ∈ S]− Pr[x′ ∈ S]| over all S ⊆ Ω. We use the following notation for product distributions.

Definition 3 (Tensor product of probability distributions). Let µ1, . . . , µt be probability distributions
over the spaces Ω1, . . . ,Ωt. Sample x1 ∼ µ1, . . . ,xt ∼ µt independently. The tensor product
µ1 ⊗ · · · ⊗ µt is the probability distribution of (x1, . . . ,xt). As a special case, we define

µ⊗t = µ⊗ µ⊗ · · · ⊗ µ︸ ︷︷ ︸
t copies

.

We use the following standard definition to reason about average-case hardness of {±1}-valued
functions.

Definition 4 (Correlation). Let g, h : {±1}n → {±1} be functions and let µ be a distribution over
{±1}n. We define

Corrµ(g, h) = E
x∼µ

[g(x) · h(x)].

More generally, if C is a class of functions g : {±1}n → {±1}, then we define

Corrµ(C, h) = max
g∈C

Corrµ(g, h).

If µ is omitted, then by default it is assumed to be the uniform distribution over {±1}n.

A bound |Corr(g, h)| ≤ ε is equivalent to the statement that g agrees with h on at most a
(1/2 + ε/2)-fraction of inputs, because for any two {0, 1}-valued random variables a,b, we have
Pr[a = b] = 1

2 + 1
2 E[(−1)a · (−1)b].

2.3 Generalized Restrictions

To formulate our hardness amplification technique in the clearest and most general way possible, we
work with a notion of generalized restrictions that includes restrictions and projections as special
cases. A generalized restriction, formally defined below, consists of an arbitrary “preprocessing”
step that can be applied to a Boolean function of interest.

Definition 5 (Generalized restriction). A generalized restriction is a function π : {±1}r → {±1}n.
If f : {±1}n → {±1} is a Boolean function, then we define g|π to be the composition g ◦ π. That is,
g|π : {±1}r → {±1} is given by g|π(x) = g(π(x)).

Traditional restrictions can be viewed as a special case of generalized restrictions as follows.

Definition 6 (Traditional restrictions as generalized restrictions). A restriction is a string ρ ∈
{+1,−1, ⋆}n. For every r ≥ |ρ−1(⋆)|, we identify ρ with a generalized restriction π : {±1}r → {±1}n
as follows. Given y ∈ {±1}r, we let π(y) be ρ, except that the i-th star is replaced with yi for every
i.

Note that for convenience, we allow r (the number of variables that are “syntactically alive”) to
be greater than |ρ−1(⋆)| (the number of variables that are “semantically alive”). Next, we consider
distributions over generalized restrictions, and we explain how to interpret the tensor product of
such distributions.
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Definition 7 (Tensor product of generalized restriction distributions). Let r, n ∈ N, and let R be a
distribution over generalized restrictions π : {±1}r → {±1}n. Let π1, . . . ,πt be independent samples
from R, and define π⃗ : {±1}rt → {±1}nt by concatenating, i.e.,

π⃗(y(1), . . . , y(t)) = (π1(y
(1)), . . . ,πt(y

(t))).

Then the tensor product R⊗t is the distribution of the random variable π⃗.

2.4 Logarithmic Concavity

We recall the following standard definition.

Definition 8 (Log-concave). A function f : [0,∞) → (0,∞) is log-concave if log f is concave, i.e.,
for every x, y ∈ R+ and λ ∈ (0, 1), we have f(x)λ · f(y)1−λ ≤ f(λx+ (1− λ)y).

Note that if f : [0,∞) → (0,∞) is concave, then it is also log-concave, since log(x) is concave
and monotone. Furthermore, by induction on t, if f is log-concave, then

∏t
i=1 f(xi) ≤ f(x)t where

x = 1
t

∑t
i=1 xi.

3 XOR Lemmas for Decision Trees

In this section, we present our XOR lemma for decision trees. We begin by stating a simple XOR
lemma, in which the decision tree attempting to compute h⊕t has the same depth as the decision
tree attempting to compute h.

Lemma 2 (Basic XOR lemma for decision trees). Let h1, . . . , ht : {±1}r → {±1} be functions, and
define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y

(i)). Let µ be a distribution over {±1}r. For every D ∈ N, we
have

Corrµ⊗t(h,DTDepth[D]) ≤
t∏

i=1

Corrµ(hi,DTDepth[D]).

We were unable to find a reference for the specific statement of Lemma 2, but it has no significant
novelty. It is closely related to Shaltiel’s analysis of “fair” decision trees [Sha03]. It can also be
viewed as a special case of Claim 2 that we prove below. As discussed in subsection 1.4, Lemma 2 is
sufficient for our analysis of depth-d approximators to AC0

d+k circuits (Theorem 2). However, for
our analysis of MAJ⊕t

n (Theorem 4), we need a more sophisticated XOR lemma, stated next.

Lemma 3 (XOR lemma for decision trees under robust hardness assumptions, general version). Let
h1, . . . , ht : {±1}r → {±1} be functions, and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y

(i)). Let µ1, . . . , µt

be distributions over {±1}r, and define µ = µ1 ⊗ · · · ⊗ µt. Let ε : [0,∞) → (0,∞) be a log-concave
function, and assume that for every i ∈ [t] and every D ∈ N, we have

Corrµi(hi,DTDepth[D]) ≤ ε(D).

Then for every D ∈ N, we have

Corrµ(h,DTDepth[Dt/2]) ≤ O(ε(D))t.

The first step of the proof of Lemma 3 is the following claim, which enables us to relate the
success probability of a tree to the success probabilities of its subtrees.
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Claim 1 (Law of total correlation). Let h, T,E : {±1}r → {±1}. Let µ be a distribution over
{0, 1}r and let j∗ ∈ [r]. For each b ∈ {±1}, let pb = Pry∼µ[E(y) = b], and let µb be the conditional
distribution (y ∼ µ | E(y) = b). Suppose that T can be decomposed in the form

T (y) =

{
T+1(y) if E(y) = +1

T−1(y) if E(y) = −1

for some T+1, T−1 : {±1}r → {±1}. Then

Corrµ(h, T ) =
∑

b∈{±1}

pb · Corrµb(h, Tb).

Proof.

Corrµ(h, T ) = E
y∼µ

[h(y) · T (y)]

=
∑

b∈{±1}

pb · E
y∼µ

[h(y) · T (y) | E(y) = b] (Law of total expectation)

=
∑

b∈{±1}

pb E
y∼µb

[h(y) · Tb(y)].

Next, we consider the following notion of “fair” decision trees due to Shaltiel [Sha03].

Definition 9 ((D1, . . . , Dt)-fair decision trees [Sha03]). Let T : {±1}rt → {±1} be a decision tree
and let D1, . . . , Dt ∈ N. We say that T is (D1, . . . , Dt)-fair if for every input y⃗ = (y(1), . . . , y(t)) ∈
({±1}r)t, for every i ∈ [t], the computation T (y⃗) makes at most Di queries to y(i).

The key to proving Lemma 3 is to generalize Definition 9 to the case of a set of tuples (D1, . . . , Dt).

Definition 10 (Q-fair decision trees). Let T : {±1}rt → {±1} be a decision tree and let Q ⊆ Nt.
We say that T is Q-fair if for every input y⃗ = (y(1), . . . , y(t)) ∈ ({±1}r)t, there is some tuple
(D1, . . . , Dt) ∈ Q such that for every i ∈ [t], the computation T (y⃗) makes at most Di queries to y(i).

We emphasize that the tuple (D1, . . . , Dt) is permitted to vary from one input y⃗ to another.
Therefore, the fact that a tree is Q-fair does not necessarily imply that there is some (D1, . . . , Dt) ∈ Q
such that the tree is (D1, . . . , Dt)-fair. Given the concept of Q-fairness, it is relatively straightforward
to prove the following claim by induction on the depth of T . The claim generalizes the analysis
by Shaltiel [Sha03], who considered the case of (D1, . . . , Dt)-fair decision trees and focused on the
uniform distribution.

Claim 2 (XOR lemma for Q-fair decision trees). Let h1, . . . , ht : {±1}r → {±1} be functions,
and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y

(i)). Let µ1, . . . , µt be distributions over {±1}r, and define
µ = µ1 ⊗ · · · ⊗ µt. Let Q ⊆ Nt and let T : {±1}rt → {±1} be a Q-fair decision tree. Then

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi,DTDepth[Di]).

Proof. Assume without loss of generality that T never queries the same variable twice. For the base
case, if T has depth 0, then T is a constant function, so

|Corrµ(h, T )| =
t∏

i=1

∣∣∣∣ E
y(i)∼µi

[hi(y
(i)]

∣∣∣∣ = t∏
i=1

Corrµi(hi,DTDepth[0]).
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Since T is Q-fair, Q must be nonempty. The lemma follows because Corrµi(hi,DTDepth[0]) ≤
Corrµi(hi,DTDepth[Di]) for every Di ∈ N. For the inductive step, let y

(i∗)
j∗

be the variable queried
by the root of the tree. Let T+1 and T−1 be the children of the root, corresponding to the cases

y
(i∗)
j∗

= +1 and y
(i∗)
j∗

= −1 respectively. Define

Q′ = {(D1, . . . , Di∗−1, Di∗ − 1, Di∗+1, . . . , Dt) : (D1, . . . , Dt) ∈ Q and Di∗ ̸= 0}.

Then T+1 and T−1 are both Q′-fair.
For each b ∈ {±1}, define

pb = Pr
y(i∗)∼µi∗

[
y
(i∗)
j∗

= b
]
.

Let µb
i∗ be the conditional distribution (y(i∗) ∼ µi∗ | y(i∗)

j∗
= b), and for i ̸= i∗, let µb

i = µi. Let

µb = µb
1 ⊗ · · · ⊗ µb

t . By Claim 1 and the induction hypothesis, we have

Corrµ(h, T ) =
∑

b∈{±1}

pb · Corrµb(h, Tb)

≤
∑

b∈{±1}

pb ·
∑

(D1,...,Dt)∈Q′

t∏
i=1

Corrµb
i
(hi,DTDepth[Di])

=
∑

(D1,...,Dt)∈Q′

 ∑
b∈{±1}

pb · Corrµb
i∗
(hi∗ ,DTDepth[Di∗ ])

 ·
∏

i∈[t],i ̸=i∗

Corrµi(hi,DTDepth[Di]).

Now we bound the inner sum. By Claim 1, for any Di∗ , we have

Corrµi∗ (hi∗ ,DTDepth[Di∗ + 1]) ≥
∑

b∈{±1}

pb · Corrµb
i∗
(hi∗ ,DTDepth[Di∗ ]),

because we can approximate hi∗ with respect to µi∗ by first querying y
(i∗)
j∗

and then using optimal
subtrees of depthDi∗ . For every (D1, . . . , Dt) ∈ Q′, we have (D1, . . . , Di∗−1, Di∗+1, Di∗+1, . . . , Dt) ∈
Q. Therefore,

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi,DTDepth[Di]).

Given Claim 2, our XOR lemma for decision trees under a robust hardness assumption (Lemma 3)
readily follows, as we now show.

Proof of Lemma 3. Let T : {±1}rt → {±1} be a decision tree of depth at most Dt/2. Let Q be the
set of t-tuples (D1, . . . , Dt) ∈ Nt such that (1) D1+ · · ·+Dt ≤ Dt and (2) Di is an integer multiple of
⌈D/2⌉ for every i. We claim that T is Q-fair. Indeed, let y⃗ = (y(1), . . . , y(t)) be any input, and let Di

be the number of queries that T (y⃗) makes to y(i). Let D′
i be the smallest integer multiple of ⌈D/2⌉

such thatDi ≤ D′
i. ThenD′

i ≤ Di+(⌈D/2⌉−1), and henceD′
1+· · ·+D′

t ≤ Dt/2+t·(⌈D/2⌉−1) ≤ Dt,
showing that (D′

1, . . . , D
′
t) ∈ Q.

Therefore, by Claim 2,

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi,DTDepth[Di]).
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For any (D1, . . . , Dt) ∈ Q, we can define (D′
1, . . . , D

′
t) such that D′

i ≥ Di and D′
1+ · · ·+D′

t is exactly
Dt rather than being at most Dt. Then Corrµi(hi,DTDepth[Di]) ≤ Corrµi(hi,DTDepth[D′

i]), so

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi,DTDepth[D′
i])

≤
∑

(D1,...,Dt)∈Q

t∏
i=1

ε(D′
i)

≤
∑

(D1,...,Dt)∈Q

ε(D)t (Log-concavity)

= |Q| · ε(D)t.

To bound |Q|, observe that if (D1, . . . , Dt) ∈ Q, then we can write Di = ci · ⌈D/2⌉ for some
nonnegative integers c1, . . . , ct. Furthermore, Dt ≥

∑
i ci ·⌈D/2⌉ ≥ (D/2) ·

∑
i ci, so c1+ · · ·+ct ≤ 2t.

Therefore, |Q| is at most the number of ways that 2t can be partitioned into t + 1 nonnegative
integers, which is precisely

(
3t
t

)
. Thus,

Corrµ(h, T ) ≤
(
3t

t

)
· ε(D)t ≤ O(ε(D))t.

4 Correlation Bounds for Depth Reduction Within AC0

In this section, we prove our result about the average-case hardness of AC0
d+k circuits for AC0

d circuits
(Theorem 2). We begin by proving a general “XOR lemma for the random simplification method,”
which formalizes the simplest version of our hardness amplification technique. Then we review the
basic structure of H̊astad, Rossman, Servedio, and Tan’s proof of the average-case depth hierarchy
theorem [HRST17]. Finally, we combine the two to complete the proof of Theorem 2.

4.1 Basic XOR Lemma for the Random Simplification Method

Lemma 4 (XOR lemma for the random simplification method, basic version). Let n, t, r,D ∈ N and
ε, δ > 0. Let h : {±1}n → {±1} and g : {±1}nt → {±1} be Boolean functions, let R be a distribution
over generalized restrictions π : {±1}r → {±1}n, let µ be a distribution over {±1}r, and assume
the following.

1. (The distribution µ completes R to the uniform distribution) If we sample π ∼ R and y ∼ µ
independently, then π(y) is a uniform random element of {±1}n.

2. (The function g simplifies under R⊗t) We have

Pr
π⃗∼R⊗t

[
DTDepth(g|π⃗) > D

]
≤ δ.

3. (The function h retains structure under R) We have

E
π∼R

[
Corrµ(h|π,DTDepth[D])

]
≤ ε.

Then Corr(g, h⊕t) ≤ εt + δ.
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Proof. Sample π⃗ = (π1, . . . ,πt) ∼ R⊗t and y⃗ ∼ µ⊗t independently. LetT be g|π⃗ if DTDepth(g|π⃗) ≤
D; otherwise, let T be the constant-one function. Either way, T is a decision tree of depth at most
D. Assumption 1 implies that π⃗(y⃗) is distributed uniformly over {±1}nt. Therefore,

Corr(h⊕t, g) = E
π⃗

[
Corrµ⊕t(h⊕t|π⃗, g|π⃗)

]
(Assumption 1)

≤ δ + E
π⃗

[
Corrµ⊕t(h⊕t|π⃗,T)

]
(Assumption 2)

≤ δ + E
π⃗

[
t∏

i=1

Corrµ(h|πi ,DTDepth[D])

]
(Lemma 2)

= δ +

(
E

π∼R
[Corrµ(h|π,DTDepth[D])]

)t

(Independence)

≤ δ + εt (Assumption 3.)

Remark 1 (Amplifying ε but not δ). When t = 1, the assumptions of Lemma 4 imply Corr(g, h) ≤
ε + δ. When t > 1, we would therefore like to be able to say that Corr(g, h⊕t) is at most roughly
(ε+ δ)t. Unfortunately, the conclusion of Lemma 4 has the weaker bound εt + δ. To address this
weakness, later we will prove a more sophisticated version of our XOR lemma (Lemma 8) with a
stronger bound, albeit under stronger assumptions. As we will see, Lemma 4 is already sufficient
for proving Theorem 2, because the bottleneck in H̊astad, Rossman, Servedio, and Tan’s correlation
bound [HRST17] is in their “retaining structure” step rather than their “simplification” step. That
is, in their argument, δ is much smaller than ε.

Remark 2 (Simplification under R⊗t rather than R). In Lemma 4, we assume that g simplifies
under R⊗t. In general, proving that circuits simplify under R⊗t could potentially be more difficult
than proving that circuits simplify under R. Thankfully, in the cases we consider, the distinction
between R and R⊗t does not cause any serious difficulties.

4.2 Review of H̊astad, Rossman, Servedio, and Tan’s Argument [HRST17]

Having proven our XOR lemma, to prove our correlation bound, our remaining job is to explain
how H̊astad, Rossman, Servedio, and Tan’s argument [HRST17] fits into the assumptions of our
XOR lemma. Let us therefore review their argument.

4.2.1 The Sipser Functions

To prove their average-case depth hierarchy theorem [HRST17], H̊astad, Rossman, Servedio, and
Tan used a hard function called the “Sipser function,” which is a variant of the hard function used
to prove the earlier worst-case hierarchy theorems [Sip83; Yao85; H̊as86a]. The construction is
parameterized by the depth of the hard function, denoted d + 1, and a parameter m ∈ N that
determines the number of variables. To clarify the aspects of their argument that are important for
us, we use slightly non-traditional notation to describe this construction below.

Definition 11 (The USipser functions [HRST17]). For m, d ≥ 1, we inductively define

USipserd,m : {±1}nd,m → {±1}

as follows. Let fd,m be a parameter that we will specify momentarily.

• If d = 1, then USipserd,m is an AND of fd,m distinct variables.

14



• If d > 1 and d is even, then USipserd,m = USipser
∨fd,m
d−1,m.6

• If d > 1 and d is odd, then USipserd,m = USipser
∧fd,m
d−1,m.

In each case, the fan-in parameter fd,m is chosen to be the smallest positive integer such that

Pr
x
[USipserd,m(x) = (−1)d] ≤ 2−2m.

Thus, USipserd,m is a monotone read-once formula of depth d with AND gates adjacent to the input
variables.

Observe that under a uniform random input, USipserd,m has acceptance probability roughly
equal to either 2−2m or 1− 2−2m, depending on whether d is odd or even. The BSipser functions,
defined below, correct this imbalance by adjusting only the fan-in of the output gate.7

Definition 12 (The BSipser functions [HRST17]). For m, d ≥ 1, we define

BSipserd+1,m : {±1}n
′
d+1,m → {±1}

as follows. Let f ′
d+1,m be a parameter that we will specify momentarily.

• If d+ 1 is even, then BSipserd+1,m = USipser
∨f ′

d+1,m

d,m .

• If d+ 1 is odd, then BSipserd+1,m = USipser
∧f ′

d+1,m

d,m .

In each case, the fan-in parameter f ′
d+1,m is chosen to be the smallest positive integer such that

Pr
x
[BSipserd+1,m(x) = (−1)d+1] ≤ 1

2
.

Thus, BSipserd+1,m is a monotone read-once formula of depth d+ 1 with AND gates adjacent to the
input variables.

The hard function h in H̊astad, Rossman, Servedio, and Tan’s average-case depth hierarchy
theorem (Theorem 1) is BSipserd+1,m for a suitable parameter m ≈ logn

2d .

4.2.2 H̊astad, Rossman, Servedio, and Tan’s Random Projections [HRST17]

H̊astad, Rossman, Servedio, and Tan prove the average-case hardness of BSipser using a carefully-
engineered distribution over random projections. These projections are based on a special type of
projection that we will call fully-merging projections. By definition, a fully-merging projection first
applies a restriction and then merges all living variables to a single remaining variable. We give the
definition below in terms of our “generalized restriction” formalism.

Definition 13 (Fully-merging projection). A fully-merging projection is a generalized restriction
π : {±1} → {±1}n such that for every i ∈ [n], either π(+1)i = π(−1)i (“variable i has been assigned
a value”), or else π(+1)i = +1 and π(−1)i = −1 (“variable i is alive”).

6Recall the notation h∨f from Definition 1.
7The “U” and “B” in USipser and BSipser stand for “Unbalanced” and “Balanced” respectively.
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Let nd,m be the number of input variables to USipserd,m. In H̊astad, Rossman, Servedio, and
Tan’s work, for each d and m, they carefully design a probability distribution Rd,m over fully-merging
projections π : {±1} → {±1}nd,m . The inductive definition of Rd,m is fairly complicated, so we
will refrain from reviewing the precise details. Instead, we merely cite the properties of these
distributions that are important for our analysis.

The first crucial property of these projections is that plugging a uniform random input into
USipserd,m is equivalent to first applying a random projection, and then assigning the one remaining
variable a random bit with a suitable bias.

Proposition 2 (Random projections complete to uniform [HRST17, Lemmas 7.3 and 8.4]). For
every d,m ∈ N, there exists a distribution µd,m over {±1} such that if we sample π ∼ Rd,m and
y ∼ µd,m independently, then π(y) is distributed uniformly over {±1}nd,m.

The next crucial property of H̊astad, Rossman, Servedio, and Tan’s random projections is that
AC0

d circuits simplify under tensor products of these projections.

Theorem 5 (Simplification of AC0 circuits under random projections [HRST17]). Let m, d, ℓ ∈ N
and assume that m is sufficiently large. Let g : {±1}nd,m·ℓ → {±1} be an AC0

d+1 circuit of size S
with bottom fan-in at most m/4. Then

Pr
π⃗∼R⊗ℓ

d,m

[
DTDepth(g|π⃗) > 2m/2−4

]
≤ S · 2−2m/2−4

.

Theorem 5 is not quite stated in the form above anywhere in H̊astad, Rossman, Servedio, and
Tan’s work [HRST17], but it follows from their analysis; see the proof of their “Theorem 10.1” for
details.

Remark 3 (The role of ℓ). In H̊astad, Rossman, Servedio, and Tan’s analysis, they first fix d and
m, and then they define projection distributions R1, . . . ,Rd−1, each of which operates on the input
variables of BSipserd,m. They prove switching lemmas [HRST17, Lemmas 9.2 and 9.5] which analyze

the effects of R1, . . . ,Rd−1 on AC0
2 circuits, and an inductive argument demonstrates the effect of

Rd−1 on AC0
d−1 circuits (or more generally AC0

d circuits with bounded bottom fan-in).
The relationship between their notation R1, . . . ,Rd−1 and our notation Rd,m is given by Ri =

R⊗ℓ
i,m, where ℓ = ℓ(i,m, d) is the number of gates in BSipserd,m at distance i from the inputs. Their

analysis is in fact applicable to R⊗ℓ
i,m for an arbitrary parameter ℓ, as indicated in Theorem 5. One

quick way to convince oneself of this fact, without needing to go through their proofs line-by-line, is
to observe that limd→∞ ℓ(i,m, d) = ∞. Therefore, for any i,m, ℓ, there exists a large enough d such
that our claim about R⊗ℓ

i,m (Theorem 5) follows from H̊astad, Rossman, Servedio, and Tan’s analysis
of BSipserd,m [HRST17]. Here we are relying on the fact that the projection distribution Ri,m does
not depend in any way on the depth d of the “ambient” BSipser formula, and the conclusions of
H̊astad, Rossman, Servedio, and Tan’s switching lemmas [HRST17, Lemmas 9.2 and 9.5] have no
dependence on d.

Recall that the formula defining BSipserd+1,m has top fan-in f ′
d+1,m, and hence the total number

of variables is f ′
d+1,m · nd,m. The final crucial property of H̊astad, Rossman, Servedio, and Tan’s

random projections is that BSipserd+1,m maintains structure under R
⊗f ′

d+1,m

d,m . Specifically, with high
probability, after applying the projection, the circuit is still mildly hard for shallow decision trees
with respect to the relevant distribution:
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Proposition 3 (Sipser function maintains structure under random projections [HRST17]). Let

d,m ∈ N, sample π⃗ ∼ R
⊗f ′

d+1,m

d,m , and let µ = µ
⊗f ′

d+1,m

d,m , where µd,m is the distribution from
Proposition 2. Then

Pr
π⃗

[
Corrµ

(
(BSipserd+1,m)|π⃗,DTDepth[2m/2]

)
≤ O(2−m/4)

]
≥ 1−O(2−m/2).

Again, Proposition 3 does not appear in H̊astad, Rossman, Servedio, and Tan’s work [HRST17]
in the form above, but it follows from their analysis; see the proof of their “Theorem 10.1.”

4.3 Applying Our XOR Lemma

Plugging H̊astad, Rossman, Servedio, and Tan’s analysis into our XOR lemma yields the following
correlation bound.

Theorem 6 (Correlation bound for parity of Sipser functions). Let m, d, t, S ∈ N. Let h =
BSipserd+1,m, and let n be the number of input variables to h⊕t. For every AC0

d circuit g : {±1}nt →
{±1} of size S, we have

Corr(g, h⊕t) ≤ O(2−m/4)t + S · 2−2m/2−4
.

Proof. We apply Lemma 4 with R = R
⊗f ′

d,m

d,m and µ = µ
⊗f ′

d,m

d,m . The first assumption of the lemma is

satisfied by Proposition 2. The second assumption is satisfied with D = 2m/2−4 and δ = S · 2−2m/2−4

by Theorem 5. The third assumption is satisfied with ε = O(2−m/4) by Proposition 3.

Finally, to prove our correlation bound for depth reduction within AC0 (Theorem 2), essentially
all that remains is to pick parameters.

Proof of Theorem 2. Define

m =

⌊
log n

3d

⌋
and t =

⌊
logk−2

(
n

logk−3 n

)⌋
.

Our hard function h is given by h = BSipser⊕t
d+1,m. Note that due to our assumption on k, we have

logk n ≤ nα, and therefore t ≥ Ω(log n)k−2 and t ≤ nα.
The function BSipserd+1,m has 22dm ·md ·2O(d) variables [HRST17], which is bounded by n2/3+O(α)

by our choice of m and our assumption on d. Therefore, h has n2/3+O(α) variables, which is at most
n if we choose α to be a small enough constant (and we assume n is sufficiently large).

Recall that BSipserd+1,m is a monotone read-once formula, so in particular it is an AC0
d+1

circuit of size n2/3+O(α). The parity of t bits can be computed by an AC0
k−1 circuit of size

O(2t
1/(k−2) · t(k−3)/(k−2)) (Proposition 1), which is bounded by O(n) by our choice of t. Therefore, h

can be computed by an AC0
d+1+k−1 circuit of size O(n) + 2t · n2/3+O(α) = O(n).

Finally, let g : {±1}n → {±1} be an AC0
d circuit of size S. If S ≥ 22

m/2−5
, then we are done,

because 2m/2−5 = nΩ(1/d). Assume now that S ≤ 22
m/2−5

. Then the last term of the correlation
bound in Theorem 6 is at most 2−2m/2−5

= 2−nΩ(1/d)
, which is at most 2− logk n by our assumption

dk ≤ α logn
log logn , provided we choose α to be a small enough constant. Meanwhile, the O(2−m/4)t term

is clearly bounded by 2−
1
d
·Ω(logn)k−1

, completing the proof.
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Remark 4 (Depth complexity of our hard function). In the proof above, we argued that the hard
function h can be computed by a linear-size AC0

d+k circuit. There is a temptation to try to argue
that a circuit of depth d+ k − 1 suffices, by merging the bottom layer of the parity circuit with the
top gates of the BSipser formulas. Unfortunately, this argument does not work. The issue is that
parity is not monotone, so the parity circuit has negations. After propagating the negations down
through the BSipser formulas, some of the BSipser formulas have AND gates on top whereas others
have OR gates on top.

4.4 Application: Extractors for AC0-Recognizable Sources

In this section, to illustrate the qualitative difference between our inverse-quasipolynomial correlation
bound (Theorem 2) and H̊astad, Rossman, Servedio, and Tan’s greater-than-(1/n) correlation bound
(Theorem 1), we explain how to use our new correlation bound to construct new seedless randomness
extractors. Specifically, we construct extractors for recognizable sources, a concept introduced by
Shaltiel [Sha11]. We review the definition below.

Definition 14 (Extractor for recognizable sources [Sha11]). Let n ∈ N and let C be a class of
Boolean functions g : {±1}n → {±1}. For each g ∈ C, let Ug denote the uniform distribution over
g−1(−1). Let κ ∈ N, and let ε > 0. A (κ, ε)-extractor for sources recognizable by C is a function
E : {±1}n → {±1}m such that for every g ∈ C, if Ug has min-entropy8 at least κ, then E(Ug) is
ε-close to the uniform distribution over {±1}m in total variation distance.

Shaltiel’s initial motivation for studying extractors for recognizable sources was an application to
typically-correct derandomization [Sha11]. Later, Applebaum, Artemenko, Shaltiel, and Yang used
extractors for recognizable sources to construct incompressible functions [AASY16]. We believe that
the concept of an extractor for recognizable sources is interesting in its own right. We construct
an extractor, computable by near-linear-size AC0

d+O(1) circuits, for sources that are recognizable by

AC0
d circuits of size up to exp(nΘ(1/d)).

Theorem 7 (Extractors for (AC0
d)-recognizable sources, computable by AC0

d+k circuits). For every

constant γ > 0, there is a constant α > 0 such that for every n, d, k ∈ N with k ≥ 4 and dk ≤ α logn
log logn ,

there exists an explicit AC0
d+k circuit9 E : {±1}n → {±1}n−nγ

of size n1+γ such that E is an
(n −∆, 2−∆)-extractor for sources that are recognizable by AC0

d circuits of size at most S, where
∆ = 1

d · Ω(log n)k−2 and S = exp(nΩ(1/d)).

Remark 5 (Prior extractors for AC0-recognizable sources). Li and Zuckerman constructed extractors
for sources recognizable by AC0

d circuits based on the hardness of the parity function [LZ19], improving
a prior construction by Shaltiel [Sha11]. The entropy and error parameters of their extractor
are superior to ours. However, if we wish to extract from sources recognized by circuits of size
S = exp(nΩ(1/d)), then computing their extractor involves computing the parity of nΩ(1) bits, and
hence their extractor has much higher computational complexity than ours.10

Another approach for constructing an extractor for (AC0
d)-recognizable sources would be to

combine H̊astad, Rossman, Servedio, and Tan’s weak correlation bound (Theorem 1) with Shaltiel’s

8By definition, a random variable x has min-entropy at least κ if Pr[x = x] ≤ 2−κ for every x.
9Note that E is a multi-output function. An m-output AC0

d circuit is a list of m single-output AC0
d circuits. The

size of the m-output circuit is the sum of the sizes of the constituent single-output circuits.
10Li and Zuckerman [LZ19] and Shaltiel [Sha11] also consider sources recognizable by smaller AC0 circuits. In this

setting, their extractors have lower computational complexity. For example, if we are only trying to extract from
sources recognized by circuits of size S = poly(n), then their extractors can indeed be implemented by polynomial-size
AC0 circuits, because such circuits can compute the parity of polylogn bits.
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non-PRG-based extractor construction [Sha11]. The main weakness of this approach is that the
extractor’s output length would only be nO(1/d), even though the extractor would require an input
with n−Θ(1d log n) bits of entropy. In contrast, note that our extractor has an additive entropy loss
of only nβ bits.

The first step of the proof of Theorem 7 is to use the Nisan-Wigderson framework [NW94] to
convert our correlation bound (Theorem 2) into a PRG. We emphasize that this step is possible
only because our correlation bound is less than 1/n. We begin by recalling the formal definition of
a PRG.

Definition 15 (PRGs). Let n ∈ N, let C be a class of functions g : {±1}n → {±1}, let G : {±1}s →
{±1}n be a function, and let ε > 0. We say that G is a PRG that fools C with error ε if for every
g ∈ C, we have ∣∣∣∣ E

x∈{±1}n
[g(x)]− E

x∈{±1}s
[g(G(x))]

∣∣∣∣ ≤ ε.

The parameter s is called the seed length of G.

We are interested in seed-extending PRGs, a concept introduced by Kinne, van Melkebeek, and
Shaltiel [KMS12].

Definition 16 (Seed-extending PRGs [KMS12]). A PRG G : {±1}s → {±1}n is seed-extending if
there is some function G′ : {±1}s → {±1}n−s such that for every seed x, we have

G(x) = (x,G′(x)).

By applying the standard Nisan-Wigderson framework to our correlation bound, we get a PRG
with the following parameters.

Theorem 8 (Seed-extending PRG fooling AC0
d, computable in AC0

d+k). For every n, d, k, S ∈ N
with k ≥ 4, S ≥ n and for every ε > 0, there exists a seed-extending PRG G : {±1}s → {±1}n that
fools AC0

d circuits of size S with error ε and seed length

s = (logS)O(d) + exp
(
O
(
(d · log(n/ε))1/(k−2)

))
+ exp (O(dk · log(dk))) ,

such that for every i ∈ [n], there is an explicit AC0
d+k circuit Gi : {±1}s → {±1} of size s computing

the function Gi(x) = G(x)i.

Proof. Let h : {±1}r → {±1} be our AC0
d+k circuit such that Corr(g, h) ≤ δ for every AC0

d+1 circuit

g of size S0, where δ = exp(−Ω(1d log
k−2 r), S0 = 2r

Ω(1/d)
, and the parameter r will be specified

later. Let I1, . . . , In ⊆ [r2] be a polynomial-time-constructible family of sets such that |Ii| = r for
every i and |Ii ∩ Ij | < log n whenever i ̸= j; such families exist provided r is a power of two [Nis91;
NW94]. Let s = r2, and define G : {±1}s → {±1}s+n by

G(x) = (x, h(x|I1), h(x|I2), . . . , h(x|In−s)).

The standard Nisan-Wigderson analysis [NW94] shows that G fools AC0
d circuits of size S0 − 2n2

with error δn. We must choose r large enough to satisfy three constraints:

• We must ensure that (d+ 1) · (k − 1) ≤ α log r
log log r as required by Theorem 2.

• We must ensure that S0 − 2n2 ≥ S so that G fools all AC0
d circuits of size S.
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• We must ensure that δn ≤ ε so that G has error at most ε.

We can satisfy all three of those conditions with a suitable choice

r = exp(O(d · k · log(dk))) + (logS)O(d) + exp
(
O(d log(n/ε))1/(k−2)

)
.

Clearly, each individual output bit of G can be computed by an explicit AC0
d+k circuit of size

O(r) ≤ s.

Remark 6 (Strongly explicit PRGs). In Theorem 8, we construct a separate circuit for each index
i ∈ [n]. With slightly more effort and slightly worse parameters, one can construct a single circuit
of size s computing the function G(x, i) := G(x)i.

Remark 7 (Prior PRGs in AC0 that fool AC0 circuits). Our PRG should be compared to several
prior unconditional PRGs. If we focus on fooling polynomial-size AC0

d circuits, then classic PRGs
such as Nisan’s PRG [Nis91] can be computed by polynomial-size AC0

d+O(1) circuits, and in fact

Viola constructed a PRG that is computable by polynomial-size AC0
2 circuits [Vio12]. In this paper,

we are primarily interested in the challenge of fooling much larger AC0
d circuits, namely circuits of

size exp(nΩ(1/d)). In this regime, prior work by Mossel, Shpilka, and Trevisan is relevant [MST06].
They constructed “small-bias” PRGs that are computable in NC0, i.e., each bit of the PRG’s output
depends on only a constant number of bits of the seed. Their PRGs have exponentially small bias,
and every δ-biased distribution is (δ · nk)-close to a k-wise independent distribution [AGM03], and
k-wise independent distributions ε-fool AC0

d circuits of size S when k = (logS)O(d) · log(1/ε) [Baz09;
Raz09; Bra10; Tal17; HS19]. As a result, the Mossel-Shpilka-Trevisan PRG [MST06] fools AC0

d

circuits of size exp(nΩ(1/d)), similar to what we get using the Nisan-Wigderson framework [NW94].
However, a crucial distinction is that because we construct our PRG with the Nisan-Wigderson
framework, our PRG is seed-extending. This enables us to construct our randomness extractor. The
Mossel-Shpilka-Trevisan PRG [MST06] is not seed-extending.

Next, we use the following reduction due to Li and Zuckerman [LZ19] (improving earlier work
by Kinne, van Melkebeek, and Shaltiel [KMS12]) showing how to convert any seed-extending PRG
into an extractor for recognizable sources.

Theorem 9 (Seed extending PRG =⇒ extractor for recognizable sources [LZ19, Theorem 8]).
Let n ∈ N and let C be a class of functions g : {±1}n → {±1}. Assume that C is “flip-invariant,”
i.e., for every g ∈ C and every y ∈ {±1}n, the function h(x) := g(x1y1, . . . , xnyn) is also in C.
Let G : {±1}s → {±1}n be a seed-extending ε-PRG for C, namely G(x) = (x,G′(x)), and define
E : {±1}n → {±1}n−s by the formula E(x, y) = G′(x) ⊕ y (where ⊕ denotes bitwise product of
{±1} values). Then for every ∆ > 0, the function E is an (n−∆, 2∆ε)-extractor for C-recognizable
sources.

Theorem 7 follows by combining our PRG (Theorem 8) with Li and Zuckerman’s reduction
(Theorem 9):

Proof of Theorem 7. Let G : {±1}s → {±1}n be the seed-extending (2−2∆)-PRG for AC0
d circuits

of size S from Theorem 8. Choose S = 2n
Ω(1/d)

and ∆ = 1
d · Ω(log n)k−2 = ω(log n) such that the

seed length s is at most nβ. Since G is seed-extending, we can write it as G(x) = (x,G′(x)). The
extractor is given by E(x, y) = G′(x)⊕ y. By Theorem 9, E is an (n−∆, 2−∆)-extractor for sources
recognizable by AC0

d circuits of size S. All that remains is to verify the computational complexity of
E.
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Each output bit of G′ can be computed by an AC0
d+k circuit of size nβ. The i-th output bit

of E(x, y) is given by G′(x)i ⊕ yi. Naively, this looks like a circuit of depth d + k + 2. To avoid
paying the “+2” penalty for the XOR with yi, we recall the structure of the circuit computing G′.
The top k − 2 layers of the circuit computing G′ simply consist of a circuit computing the parity of
t = Θ(logk−3 n) bits. We can incorporate one more input variable (yi) into this parity computation
without increasing the depth of the circuit and with no asymptotic increase in the size.

5 Correlation Bound for XOR of Majority

In this section, we prove our correlation bound for the MAJ⊕t
n function (Theorem 4). More generally,

recall that a function h : {±1}n → {±1} is symmetric if h(x) depends only on the number of +1
values in x. We prove the following correlation bound for h⊕t where h is any symmetric function:

Theorem 10 (XORing amplifies hardness for symmetric functions). Let n, t, d, S ∈ N. Let
h : {±1}n → {±1} be a symmetric function, and let g : {±1}nt → {±1} be an AC0

d circuit of
size S. Then

Corr(g, h⊕t) ≤
(
O

(∣∣∣∣ E
x∈{±1}n

[h(x)]

∣∣∣∣)+
O(logS)d−1 ·

√
log n√

n

)t

.

Theorem 10 implies Theorem 4, because if h = MAJn, then |Ex[h(x)]| is either 0 (if n is odd) or
O(1/

√
n) (if n is even).

To prove Theorem 10, we begin by presenting a new random-restrictions-based proof that MAJn
(and more generally any near-balanced symmetric function) is moderately hard for AC0

d circuits.
Then, we prove a more sophisticated variant of our XOR lemma for the random simplification
method based on our more sophisticated XOR lemma for decision trees (Lemma 3). Combining
these two ingredients will complete the proof.

5.1 Correlation Bound for Majority via a Random Simplification Argument

5.1.1 AC0 circuits simplify under suitable random restrictions

We use the following notation for truly random restrictions.

Definition 17 (Truly random restriction Rp,n). Let Rp,n denote the following distribution over
{+1,−1, ⋆}n. To sample ρ ∼ Rp,n, for each coordinate i ∈ [n] independently, we set

ρi =


⋆ with probability p

+1 with probability (1− p)/2

−1 with probability (1− p)/2.

To prove our correlation bound for the majority function, we use a slightly different distribution
over restrictions. To define this distribution, let us introduce some convenient notation that we will
use throughout this section. For a string ρ ∈ {+1,−1, ⋆}∗, we define Σ(ρ) = |ρ−1(+1)| − |ρ−1(−1)|.
We will frequently apply this definition in the special case x ∈ {±1}n; in this case Σ(x) =

∑n
i=1 xi.

If n ∈ N, p > 0, and (1− p)n is an even integer, then we define

Ep,n = {x ∈ {±1}n : |Σ(x)| > pn}
Rp,n =

{
x ∈ {+1,−1, ⋆}n : |x−1(⋆)| = pn and Σ(x) = 0

}
.
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Definition 18 (Random restrictions tailored to majority). Let n ∈ N and p > 0 such that
(1 − p)n is an even positive integer. We define R̃p,n, a distribution over generalized restrictions
π : {±1}pn → {±1}n, by the following sampling procedure.

1. With probability |Ep,n|/2n, output a uniform random element of Ep,n (an assignment to all n
variables).

2. With probability 1−|Ep,n|/2n, output a uniform random element of Rp,n (a balanced assignment
to (1− p)n variables).

Note that if we sample π ∼ R̃p,n and apply it to a function f : {±1}n → {±1}, then according
to our definitions, f |π is a function on {±1}pn, even in the rare case that π assigns values to all
variables (in which case f |π is constant). See Definition 6 for a reminder of how elements of Ep,n

and elements of Rp,n can all be interpreted as generalized restrictions π : {±1}pn → {±1}n.
To analyze R̃p,n, we use the following estimate of the maximum value of the binomial distribution

probability mass function, which follows from Stirling’s approximation.

Proposition 4 (Probability of getting exactly pn heads among n tosses of a coin with bias p). Let
x1, . . . ,xn be independent {0, 1}-valued random variables such that Pr[xi = 1] = p for every i, where
p ∈ (0, 1/2] and pn is an integer. Then Pr[

∑
i xi = pn] = Θ(1/

√
pn).

Now we show that AC0
d circuits simplify under (tensor products of) this distribution R̃p,n. This

follows readily as a consequence of prior work studying Rp,n:

Lemma 5 (Simplification of AC0
d circuits under restrictions tailored to the majority function). Let

n, t, S, d be positive integers, and let g : {±1}nt → {±1} be an AC0
d circuit. There exists a value

p = 1/O(logS)d−1 such that (1− p)n is an even positive integer and for every D ∈ N,

Pr
π⃗∼R̃⊗t

p,n

[DTDepth(g|π⃗) > D] ≤ O(n)t · 2−D.

Proof. First we prove the theorem for the case that π⃗ is sampled uniformly from Rt
p,n. We have

Pr
π⃗∈Rt

p,n

[DTDepth(g|π⃗) > D] = Pr
ρ⃗∼Rp,nt

[DTDepth(g|ρ⃗) > D | ρ⃗ ∈ Rt
p,n]

≤
Prρ⃗∼Rp,nt

[DTDepth(g|ρ⃗) > D]

Prρ⃗∼Rp,nt
[ρ⃗ ∈ Rt

p,n]
.

First consider the numerator. Building on H̊astad’s switching lemma and multi-switching lemma [H̊as86a;
H̊as14], Rossman showed that Prρ⃗∼Rq,nt

[DTDepth(g|ρ⃗) > D] ≤ (q ·O(logS)d−1)D [Ros17], which is

at most 2−D for a suitable choice q = 1/O(logS)d−1. In the extreme case q ≤ 3/n, we let p = 1/n
or p = 2/n, whichever ensures that (1 − p)n is an even positive integer. Then every restriction
π⃗ ∈ Rt

p,n leaves at most 2t variables alive, so trivially DTDepth(g|ρ) ≤ 2t, completing the proof. In
the more important case that q > 3/n, pick p ∈ [q − 2/n, q] to ensure that (1− p)n is even positive
integer and note that p = Ω(q).

Now consider the denominator. The probability that a restriction drawn from Rp,n lands in Rp,n

is Θ( 1
n
√
p) ≥ Ω(1/n) by Proposition 4. Therefore, Prρ⃗∼Rp,nt

[ρ⃗ ∈ Rt
p,n] ≥ Ω(1/n)t, completing the

proof for this case. (A similar argument was used by Oliveira, Santhanam, and Srinivasan [OSS19].)
Now we prove the theorem for the case that π⃗ is sampled from R̃⊗t

p,n. We can sample from R̃⊗t
p,n

by the following procedure.

22



1. Sample e1, . . . , et ∈ {0, 1} independently, where Pr[ei = 1] = |Ep,n|/2n for each i.

2. For every i such that ei = 1, pick a uniform random element of Ep,n and assign it to the i-th
block of the variables. Let t′ be the number of i such that ei = 0.

3. Sample π⃗′ ∈ Rt′
p,n uniformly at random and use it to assign values to (1 − p)n variables in

each remaining block.

After performing steps 1 and 2, we have an AC0
d circuit of size S on n · t′ variables, so applying our

analysis of Rt′
p,n completes the proof.

5.1.2 Completion to the uniform distribution

Recall that R̃p,n leaves pn variables “syntactically alive,” i.e., R̃p,n is a distribution over generalized
restrictions π : {±1}pn → {±1}n. (Rarely, π is a constant function, in which case we could say that
the pn variables are not “semantically alive.”) Now we define a distribution µp,n over {±1}pn that

“completes” R̃p,n to the uniform distribution.

Definition 19 (Residual distribution for R̃p,n). Let n ∈ N and p > 0 such that (1− p)n is an even
positive integer. We define µp,n, a distribution over {±1}pn, by the following sampling procedure.

1. Sample x ∈ {±1}n \ Ep,n uniformly at random.

2. Sample y uniformly at random from the set {y ∈ {±1}pn : Σ(y) = Σ(x)}.

3. Output y.

Lemma 6 (Completion to the uniform distribution). Let n ∈ N and p > 0 such that (1− p)n is
an even positive integer. Sample π ∼ R̃p,n and y ∼ µp independently. Then ρ(y) is distributed
uniformly over {±1}n.

Proof. Looking at the definitions, we see that ρ(y) can be sampled by the following procedure.

1. Sample x ∈ {±1}n uniformly at random.

2. If x ∈ Ep,n, then output x. Otherwise:

3. Permute the coordinates of x to form a string x′ consisting of (1 − p)n/2 many +1 values,
followed by (1− p)n/2 many −1 values, followed by the remaining ±1 values in an arbitrary
order.

4. Sample a uniform random permutation σ : [n] → [n], and output the string (x′
σ(1), . . . ,x

′
σ(n)).

(The indices σ−1(1), . . . ,σ−1((1 − p)n) are the positions that are assigned values by π.) This
procedure clearly generates a uniform random string.

5.1.3 Majority retains structure under restrictions

Now we show that with high probability over π ∼ R̃p, the function (MAJn)|π is moderately hard for
shallow decision trees with respect to µp,n. More generally, we will bound Corrµp,n(h,DTDepth[D])
for any symmetric function h. We rely on the following bound, which can be proven using Pinsker’s
inequality.
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Proposition 5 (Fair coin vs. biased coin). Sample x1, . . . ,xD ∈ {±1} independently and uniformly
at random. Let ε ∈ (0, 1/2], and sample x̃1, . . . , x̃D ∈ {±1} independently such that Pr[x̃i = +1] =
1/2+ε for every i. Then the total variation distance between x := (x1, . . . ,xD) and x̃ := (x̃1, . . . , x̃D)
is at most O(ε

√
D).

We also rely on the following bound by Diaconis and Freedman [DF80] relating sampling without
replacement to sampling with replacement.

Theorem 11 (Sampling with vs. without replacement [DF80]). Let Ω be a finite alphabet, let y ∈ Ωr,
and let D ≤ r. Sample indices i1, . . . , iD ∈ [r] uniformly at random without replacement, and sample
indices ĩ1, . . . , ĩ1 ∈ [r] uniformly at random with replacement (i.e., uniformly and independently).
Then the total variation distance between x := (yi1 , . . . , yiD) and x̃ := (ỹ

i1
, . . . , ỹ

iD
) is at most

|Ω|D/r.

Finally, we rely on the following standard estimate of the expected distance of a one-dimensional
random walk from the origin.

Proposition 6 (Expected distance traveled by one-dimensional random walk). Sample x ∈ {±1}n

uniformly at random. Then E
[
|Σ(x)|

]
= Θ(

√
n).

Now we are ready to prove the correlation bound.

Lemma 7 (Majority is moderately hard for shallow decision trees with respect to µp,n). Let
n,D ∈ N and p > 0 be such that (1− p)n is an even positive integer. Let h : {±1}pn → {±1} be a
symmetric function. Then

Corrµp,n(h,DTDepth[D]) ≤
∣∣∣∣ E
y∼µp,n

[h(y)]

∣∣∣∣+O

(
1

p
·
√

D

n

)
.

Proof. Let T : {±1}pn → {±1} be a decision tree of depth at most D. Assume without loss of
generality that D ≤ pn, T always makes precisely D queries, and T never queries the same variable
twice.

Independently sample a string y ∼ µp,n and a uniform random permutation σ : [pn] → [pn]. For
y ∈ {±1}pn, let σ(y) denote the string (yσ(1), . . . , yσ(pn)). Observe that σ(y) is still distributed
according to µp,n, just like y itself. Therefore, instead of analyzing T (y), it suffices to analyze
T (σ(y)).

Let us first analyze T (σ(y)) for a fixed y ∈ {±1}pn. We can imagine that the permutation σ is
determined “on the fly,” i.e., when T queries position i of its input, then the index σ(i) is chosen
uniformly at random from among the unused indices. Thus, we have T (σ(y)) = f(yi1 , . . . , yiD),
where i1, . . . , iD ∈ [pn] are chosen uniformly at random without replacement and f(z) is the label of
the leaf reached by starting at the root of T and traversing the edges labeled z1, . . . , zD.

Sample ĩ1, . . . , ĩD ∈ [pn] uniformly at random with replacement. By Theorem 11, the total
variation distance between the sequence (yi1 , . . . , yiD) and the sequence (ỹ

i1
, . . . , ỹ

iD
) is at most 2D

pn .

Furthermore, sample z ∈ {±1}D uniformly at random; by Proposition 5, the total variation distance

between (ỹ
i1
, . . . , ỹ

iD
) and z is at most O( |Σ(y)|

√
D

pn ). Therefore,

E[T (σ(y)) · h(σ(y))] = E[f(yi1 , . . . , yiD) · h(y)]

≤ E[f(z)] · h(y) +O

(
D + |Σ(y)| ·

√
D

pn

)
.
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Recalling now that y ∼ µp,n and y is independent of z, we have

Corrµp,n(h, T ) = E[T (σ(y)) · h(σ(y))]

≤ E[f(z)] · E[h(y)] +O

(
D + E

[
|Σ(y)|

]
·
√
D

pn

)

≤ |E[h(y)]|+O

(
D + E

[
|Σ(y)|

]
·
√
D

pn

)
.

Furthermore,
E
[
|Σ(y)|

]
= E

x∈{±1}n\Ep,n

[
|Σ(x)|

]
≤ E

x∈{±1}n

[
|Σ(x)|

]
≤ O(

√
n)

by Proposition 6. Therefore,

Corrµp,n(h, T ) ≤ |E[h(y)]|+O

(
D +

√
Dn

pn

)
= |E[h(y)]|+O

(
1

p
·
√

D

n

)
.

Corollary 1 (Majority retains structure under R̃p,n). Let n ∈ N and p > 0 be such that (1− p)n is

an even positive integer. Let h : {±1}n → {±1} be a symmetric function. If we sample π ∼ R̃p,n,
then except with probability 2 exp(−p2n/2), for every D ∈ N, we have

Corrµp,n(h|π,DTDepth[D]) ≤
∣∣∣∣ E
x∈{±1}n

[h(x)]

∣∣∣∣+O

(
1

p
·
√

D

n

)
.

Proof. Since h is symmetric, there is some function f : Z → {±1} such that h(x) = f(Σ(x)) for
every x. By Hoeffding’s inequality, |Ep,n|/2n ≤ 2 exp(−p2n/2). Whenever π ∈ Rp,n, we have
h|π(y) = f(Σ(y)), since π is balanced. In this case, Lemma 7 gives us

Corrµp,n(h|π,DTDepth[D]) ≤
∣∣∣∣ E
y∼µp,n

[f(Σ(y))]

∣∣∣∣+O

(
1

p
·
√

D

n

)
. (3)

If we sample x ∈ {±1}n uniformly at random, then the total variation distance between Σ(y) and
Σ(x) is at most |Ep,n|/2n. Therefore, (3) implies

Corrµp,n(h|π,DTDepth[D]) ≤ |E[f(Σ(x)]|+ 4 exp(−p2n/2) +O

(
1

p
·
√

D

n

)

= |E[h(x)]|+O

(
1

p
·
√

D

n

)
.

For clarity, let us see how our analysis so far implies a correlation bound for majority, i.e., the
t = 1 case of Theorem 10.

Theorem 12 (Majority is moderately hard for AC0
d circuits). Let h : {±1}n → {±1} be a symmetric

function, and let g : {±1}n → {±1} be an AC0
d circuit of size S.

Corr(g, h) ≤
∣∣∣∣ E
x∈{±1}n

[h(x)]

∣∣∣∣+ O(logS)d−1 ·
√
log n√

n
.
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Proof. Let ζ = |Ex[h(x)]|. Let p = 1/O(logS)d−1 be the value from Lemma 5. Let D be a parameter
that we will choose later. Let δ = O(n) · 2−D be the failure probability from Lemma 5 (with t = 1),

let ε = ζ +O(1p ·
√

D
n ) be the correlation bound from Corollary 1, and let γ = 2 exp(−p2n/2) ≪ ε

be the failure probability from Corollary 1. Sample π ∼ R̃p,n. Let T = g|π if DTDepth(g|π) ≤ D
and let T be a trivial decision tree otherwise. Then

Corr(h, g) = E
π
[Corrµp,n(h|π, g|π)] (Lemma 6)

≤ δ + E
π
[Corrµp,n(h|π,T)] (Lemma 5)

≤ δ + E
π

[
Corrµp,n(h|π,DTDepth[D])

]
≤ δ + γ + ζ + ε (Corollary 1)

= ζ +O(n) · 2−D +
O(logS)d−1 ·

√
D√

n
.

Pick D = O(log n) to complete the proof.

5.2 Improved XOR Lemma for the Random Simplification Method

To amplify the hardness of majority, we will present a more sophisticated version of our XOR lemma
for the random simplification method, based on our XOR lemma for decision trees (Lemma 3). We
use the following standard fact.

Proposition 7 (Concave =⇒ subadditive). Let f : [0,∞) → (0,∞) be a log-concave function, and
assume that f(0) ≥ 1. Then f(x+ y) ≤ f(x) · f(y) for every x, y ∈ [0,∞).

Proof. First, suppose x = y = 0. Then f(x) · f(y) = f(0)2 ≥ f(0) = f(x + y) because f(0) ≥ 1.
Now, suppose x+ y > 0. Since f is log-concave, for any z, λ ∈ [0,∞), we have

f(λz) = f(λz + (1− λ)0) ≥ f(x)λf(0)1−λ ≥ f(z)λ.

Therefore, letting z = x+ y > 0 and λ = x/z, we have

f(x) · f(y) = f(λz) · f((1− λ)z) ≥ f(z)λ · f(z)1−λ = f(z).

We also rely on the following trivial fact, which says that computing an XOR of functions can
only get more difficult if we introduce more functions into the XOR.

Proposition 8 (Computing the XOR of more functions is harder). Let h1, . . . , ht : {±1}r → {±1}
be functions, let µ1, . . . , µt be distributions over {±1}r, and let I ⊆ [t]. Define h : {±1}rt → {±1}
by h(y(1), . . . , y(t)) =

∏t
i=1 hi(y

(i)), and define hI : {±1}r|I| → {±1} by h((y(i))i∈I) =
∏

i∈I hi(y
(i)).

Let µ = µ1 ⊗ · · · ⊗ µt, and let µI =
⊗

i∈I µi. Then for any D ∈ N, we have

Corrµ(h,DTDepth[D]) ≤ CorrµI (hI ,DTDepth[D]).

Proof. Let T : {±1}rt → {±1} be any decision tree of depth D. Let J = [t] \ I. For simplicity, if
y⃗I ∈ {±1}r|I| and y⃗J ∈ {±1}r|J |, we will write (y⃗I , y⃗J) to denote the string in {±1}rt obtained by
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using y⃗I to fill in the blocks in I and using y⃗J to fill in the blocks in J . Then

Corrµ(h, T ) = E
y⃗∼µ

[h(y⃗) · T (y⃗)]

= E
y⃗J∼µJ

[
hJ(y⃗J) · E

y⃗I∼µI

[hI(y⃗I) · T (y⃗I , y⃗J)]

]
≤ E

y⃗J∼µJ

[ ∣∣∣∣ E
y⃗I∼µI

[hI(y⃗I) · T (y⃗I , y⃗J)]

∣∣∣∣ ]
≤ E

y⃗J∼µJ

[CorrµI (hI ,DTDepth[D])] ,

because depth-D decision trees are closed under restricting variables and complementing the output
value.

Now we can state and prove our improved XOR lemma for the random simplification method.

Lemma 8 (Tighter XOR lemma for the random simplification method). Let n, t ∈ N and let
h : {±1}n → {±1} and g : {±1}nt → {±1} be Boolean functions. Let r ∈ N, let R be a distribution
over generalized restrictions π : {±1}r → {±1}n, and let µ be a distribution over {±1}r. Let
ε, δ : [0,∞) → (0,∞) and γ > 0. Assume the following.

1. If we sample π ∼ R and y ∼ µ independently, then π(y) is distributed uniformly over {±1}n.

2. For every D ∈ N, we have

Pr
π⃗∼R⊗t

[DTDepth(g|π⃗) > D] ≤ δ(D).

3. With probability 1−γ over π ∼ R, for every D ∈ N, we have Corrµ(h|π,DTDepthµ[D]) ≤ ε(D).

4. The functions ε(D) and δ(D) are log-concave, and δ(0) ≥ 1.

Then for every integer D ≥ 2, we have

Corr(g, h⊕t) ≤ O
(√

γ + ε(4D) + δ(D)
)t
.

Proof. Sample π⃗ = (π1, . . . ,πt) ∼ R⊗t. Let I be the set of i ∈ [t] such that h|πi is hard for
decision trees as described in Assumption 3, i.e., i ∈ I if and only if for every D ∈ N, we have
Corr(h|πi ,DTDepth[D]) ≤ ε(D). Identify I with its indicator function, i.e., I(i) = 1 ⇐⇒ i ∈ I. We
define a decision tree T as follows.

• If DTDepth(g|π⃗) ≤ Dt and |I| ≥ t/2, then we let T = g|π⃗.

• Otherwise, we let T be the constant one function (a depth-zero tree).

Observe that the second case occurs with probability at most δ(Dt) + 2tγt/2. Furthermore, in either
case, the depth of T is at most 2D · |I|. Define hI : {±1}r|I| → {±1} by

hI((y
(i))i∈I) =

∏
i∈I

h|πi(y
(i)).
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Then

Corr(h⊕t, g) = E
π⃗
[Corrµ⊗t(h⊕t|π⃗, g|π⃗)]

≤ δ(Dt) + 2tγt/2 + E
π⃗

[
Corrµ⊗t(h⊕t|π⃗,T)

]
≤ δ(Dt) + 2tγt/2 + E

π⃗

[
Corrµ⊗t

(
h⊕t|π⃗,DTDepth

[
2D · |I|

])]
≤ δ(Dt) + 2tγt/2 + E

π⃗

[
Corrµ⊗|I|

(
hI,DTDepth

[
2D · |I|

])]
(Proposition 8)

≤ δ(Dt) + 2tγt/2 + E
π⃗

[
O(ε(4D))|I|

]
(Lemma 3)

= δ(Dt) + 2tγt/2 + E
π⃗

[
t∏

i=1

O(ε(4D))I(i)

]

= δ(Dt) + 2tγt/2 +
t∏

i=1

E
π⃗
[O(ε(4D))I(i)] (Independence)

≤ δ(Dt) + 2tγt/2 + (γ +O(ε(4D)))t.

By Proposition 7, we have δ(Dt) ≤ δ(D)t. Simplifying, we get a bound of

δ(D)t + (2
√
γ)t + (γ +O(ε(4D))t ≤ O

(√
γ + ε(4D) + δ(D)

)t
.

Combining this XOR lemma with our random-restrictions-based proof that majority is average-
case-hard for AC0

d circuits will complete the proof of Theorem 10:

Proof of Theorem 10. Let ζ = |Ex∈{±1}n [h(x)]|. By Lemma 5 and Corollary 1, the assumptions

of Lemma 8 are satisfied with R = R̃p,n, p = 1/O(logS)d−1, µ = µp,n, δ(D) = O(n) · 2−D,
ε(D) = ζ + O( 1

p
√
n
) ·

√
D, and γ = 2 exp(−2p2n) ≪ 1

p2n
. Note that δ(D) and ε(D) are both

log-concave and δ(0) ≥ 1. Therefore, Lemma 8 gives us a correlation bound of

O

(
ζ +

√
D

p ·
√
n
+ n · 2−D

)t

.

Choosing D = O(log n) completes the proof.

6 Directions for Further Research

The main open question related to our work is whether XORing always amplifies hardness for AC0

circuits (cf. Question 1). We wish to also highlight the problem of proving tight correlation bounds
for depth reduction within AC0 (cf. Theorem 2). That is, what is the correlation between linear-size
AC0

d+k circuits and near-exponential-size AC0
d circuits?

For simplicity, let us consider the case that d and k are both constants. As discussed previously,
the extreme case k = 1 (i.e., using AC0

d circuits to approximate AC0
d+1 circuits) is resolved by H̊astad,

Rossman, Servedio, and Tan’s work [HRST17] to within polynomial factors; the optimal correlation
bound is nΘ(1). Prior work also implies near-matching upper and lower bounds in the opposite
extreme case d = 1 (i.e., using AC0

1 circuits to approximate AC0
1+k circuits). In this case, it turns
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out that the optimal correlation bound is exp
(
−Θ̃(logk n)

)
. (The approximators are based on the

Linial-Nisan-Mansour theorem [LMN93]; see Appendix B for details.)
Based on those two extreme cases, it is tempting to conjecture that for all d and k, the optimal

correlation bound should be exp
(
−Θ̃(logk n)

)
, but in truth it is not at all clear that this is the

best guess. Arguably the most interesting case is k = 2, i.e., the problem of using AC0
d circuits to

approximate AC0
d+2 circuits. On the one hand, the best method we know for constructing such

an approximator is simply to use an optimal AC0
1 approximator. On the other hand, the best

correlation bound we know for this case is H̊astad, Rossman, Servedio, and Tan’s bound [HRST17].
We therefore have a considerable gap between the upper and lower correlation bounds for this case,

namely n−Ω(1) vs. n−Õ(logd n).
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[AŠW09] Andris Ambainis, Robert Špalek, and Ronald de Wolf. “A new quantum lower bound
method, with applications to direct product theorems and time-space tradeoffs”. In:
Algorithmica 55.3 (2009), pp. 422–461. issn: 0178-4617. doi: 10.1007/s00453-007-
9022-9.
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A Tight Correlation Bounds for Majority

In this section, we present tight bounds on the correlation between the majority function and AC0
d

or AC0
d[⊕] circuits.
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A.1 Hardness of Majority

We begin by proving Theorem 3, which says that if g is an AC0
d[⊕] circuit of size S ≥ n, then

Corr(g,MAJn) ≤ O(logS)d−1/
√
n. A slightly weaker bound of O(logS)d/

√
n is a known consequence

of the standard Razborov-Smolensky method [Fil10; Kop13]. O’Donnell and Wimmer proved the
stronger bound O(logS)d−1/

√
n for the special case of AC0

d circuits [OW07], and Tal presented
another proof for the special case of AC0

d circuits where S is not too large [Tal17].
Our proof is a slight variation on the known Razborov-Smolensky argument. We rely on standard

probabilistic F2-polynomials for the AND and OR functions.

Lemma 9 (Probabilistic polynomials for AND and OR [Raz87]). For every n ∈ N and ε > 0, there
exists a distribution over polynomials p : Fn

2 → F2 of degree at most O(log(1/ε)) such that for every
x ∈ Fn

2 ,
Pr
p
[p(x) = AND(x1, . . . , xn)] ≥ 1− ε.

Similarly, there exists a distribution over polynomials p : Fn
2 → F2 of degree at most O(log(1/ε))

such that for every x ∈ Fn
2 ,

Pr
p
[p(x) = OR(x1, . . . , xn)] ≥ 1− ε.

We also rely on the known bound on the correlation between the majority function and low-degree
F2-polynomials.

Lemma 10 (Optimal bound on correlation between majority and low-degree polynomials over
F2 [Smo87; Sze89; Smo93; Vio19]). If p : Fn

2 → F2 is a polynomial of degree at most k, then

Pr
x∈Fn

2

[p(x) = MAJn(x)] ≤
1

2
+O(k/

√
n).

Finally, we rely on standard bounds on the Fourier coefficients of the AND and OR functions.

Lemma 11 (Fourier L1 bounds for AND and OR). Let f : {±1}n → {±1} be either the AND
function (i.e., MAX) or the OR function (i.e., MIN). Then it is possible to write f in the form

f(x) =
∑
S⊆[n]

cS ·
∏
i∈S

xi

(a multilinear polynomial over R) where
∑

S⊆[n] |cS | ≤ O(1).

Proof of Theorem 3. First, assume that the output gate of g is a parity gate. For this first part, it
is most convenient to think of all wires as carrying {0, 1} values, so g is a function g : Fn

2 → F2. For
each gate ϕ of g other than the output gate independently, sample a probabilistic polynomial pϕ

that simulates ϕ via Lemma 9 with error ε = 1/(Sn). Since parity is sum mod two, the output gate
can be computed exactly by a polynomial of degree 1. Therefore, by composing these polynomials,
we get a random polynomial p : Fn

2 → F2 such that Prp[p(x) = g(x)] ≥ 1− 1/n, and the degree of
p is at most O(logS)d−1. Therefore,

Pr
x∈Fn

2

[g(x) = MAJn(x)] ≤ Pr
x,p

[g(x) ̸= p(x)] + Pr
x,p

[p(x) = MAJn(x)] ≤
1

2
+O(logS)d−1/

√
n+ 1/n,

completing the proof in this case.
Next, suppose the output gate is AND or OR. For this part, it is most convenient to think of

all wires as carrying {±1} values, so g is a function g : {±1}n → {±1}. By Lemma 11, we can
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write g =
∑

i cigi, where each gi is an AC0
d[⊕] circuit of size S with a parity gate on top (note that

the product of {±1} values is the parity of the corresponding {0, 1} values) and
∑

i |ci| ≤ O(1).
Therefore,

Corr(g,MAJn) =
∑
i

ci · Corr(gi,MAJn) ≤
∑
i

|ci| ·O(logS)d−1/
√
n ≤ O(logS)d−1/

√
n.

A.2 Tightness: AC0 Circuits That Correlate with Majority

We now show that the correlation bound of Theorem 3 is tight. The proof is based on a construction
due to Rossman and Srinivasan [RS19], building on prior work by O’Donnell and Wimmer [OW07]
and Amano [Ama09]. Rossman and Srinivasan constructed an AC0

d circuit for solving the so-called
“coin problem” with the following parameters.

Theorem 13 (AC0
d circuits solving the coin problem [RS19]). For every γ, δ > 0 and d ∈ N

such that 2 ≤ d ≤ α log(δ/γ)
log log(δ/γ) for a suitable constant α > 0, there exists a monotone AC0

d circuit

g : {±1}r → {±1} of size

exp

((
1

γ

)1/(d−1)

·O
(
1

δ

)1−1/(d−1)

· log(1/δ)

)

such that if x1, . . . ,xr ∈ {±1} are independent and identically distributed bits with Pr[xi = +1] =
1/2 + γ for every i, then for every b ∈ {±1}, we have

Pr[g(b · x) = b] ≥ 1− δ.

Prior work starting with O’Donnell and Wimmer [OW07] has shown that monotone circuits
solving the coin problem imply circuits that compute the majority function on a large (1−δ)-fraction
of inputs; indeed, Rossman and Srinivasan stated their result in terms of the latter problem [RS19].
We now show by a similar argument that monotone circuits solving the coin problem imply relatively
small circuits that have nontrivial correlation with the majority function, i.e., they successfully
compute the majority function on slightly more than half of inputs. Since the vanishing-failure-
probability case is covered by Rossman and Srinivasan’s work [RS19], the theorem below focuses
only on the case that the success probability is at most 3/4.

Theorem 14 (AC0
d circuits for majority with optimal correlation). For every n, d, S ∈ N where

d ≤ α logn
log logn for a suitable constant α > 0, there exists an AC0

d circuit g : {±1}n → {±1} of size at
most S such that

Corr(g,MAJn) ≥ min

{
Ω(logS)d−1

√
n

,
1

2

}
.

To prove Theorem 14, we rely on the following estimate for near-central binomial coefficients.

Proposition 9 (Lower bound on near-central binomial coefficients). Let n,∆ be positive integers
such that n is even and ∆ ≤ n/4. Then(

n

n/2 + ∆

)
≥ Ω

(
2n√

n · exp(4∆2/n)

)
.
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Proof. It is well-known that
(

n
n/2

)
= Θ(2n/

√
n). Furthermore,(

n
n/2

)(
n

n/2+∆

) =
(n/2 + ∆)! · (n/2−∆)!

(n/2)! · (n/2)!
=

n/2 + ∆

n/2
· n/2 + ∆− 1

n/2− 1
· · · n/2 + 1

n/2−∆+ 1

=

(
1 +

∆

n/2

)
·
(
1 +

∆

n/2− 1

)
· · ·
(
1 +

∆

n/2−∆+ 1

)
≤
(
1 +

4∆

n

)∆

≤ exp(4∆2/n).

Proof of Theorem 14. If d = 1, then the theorem can be proven by taking g(x) = x1, so assume
d ≥ 2. Let δ be a small enough constant, and let γ = 1/Θ(logS)d−1 be the smallest value such
that the size bound exp(O((1/γ)1/(d−1))) in Theorem 13 is at most S. Let g : {±1}r → {±1} be
the corresponding circuit of size S. If δ2/γ2 ≤ n/2, then let m be the largest positive integer such
that m ≤ δ2/γ2 and n−m is even; otherwise let m = n. Sample a list of indices i ∈ [m]r uniformly
at random. Let g : {±1}m × {±1}n−m → {±1} be the random circuit defined by

g(x, y) = g(xi) = g(xi1 , . . . , xir).

We use the notation Σ(x) =
∑

i xi introduced in Section 5. We can write the correlation between g
and MAJn as follows.

E
x,y,g

[g(x,y) ·MAJn(x,y)]

=
m∑

Σ=−m

Pr
x
[Σ(x) = Σ] · E

x,i,y
[g(xi) ·MAJn(x,y) | Σ(x) = Σ]

=
m∑

Σ=−m

Pr
x
[Σ(x) = Σ] · E

x,i
[g(xi) · sign(Σ) | Σ(x) = Σ]︸ ︷︷ ︸

(*)

·E
y
[sign(Σ + Σ(y)) · sign(Σ)]︸ ︷︷ ︸

(**)

.

Let us consider a fixed Σ ∈ {−m,−m+1, . . . ,m}. Let Σ∗ = ⌈2γm⌉, and let ε∗ = Ey[sign(Σ∗+Σ(y))].
If |Σ| ≥ Σ∗, then the quantity (*) is at least 1− 2δ by the correctness of g and the quantity (**) is
at least ε∗. Meanwhile, if |Σ| < Σ∗, then quantity (*) is at least −1 and quantity (**) is at most ε∗.
Therefore, we get

E
x,y,g

[g(x,y) ·MAJn(x,y)] ≥ (1− 2δ) · ε∗ · Pr
x
[|Σ(x)| ≥ Σ∗]− ε∗ · Pr

x
[|Σ(x)| < Σ∗].

We have Prx[|Σ(x)| < Σ∗] ≤ O( Σ∗√
m
) = O(δ) because every binomial coefficient

(
m
k

)
is at most

O(2m/
√
m). Therefore,

E
x,y,g

[g(x,y) ·MAJn(x,y)] ≥ (1− 2δ) · ε∗ · (1−O(δ))− ε∗ ·O(δ) > ε∗ · (1−O(δ)).

The best case is at least as good as the average case, so there is some fixing g of g such that

Corr(g,MAJn) ≥ ε∗ · (1−O(δ)).

Observe that
ε∗ = Pr

y
[|Σ(y)| ≤ Σ∗].
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Now we split into two cases. First, suppose Σ∗ ≤
√
2 ln(1/δ) · (n−m). Then n − m ≥ n/2, so

(assuming n is sufficiently large) we have Σ∗/2 ≤ (n−m)/4, and hence we may apply Proposition 4
to get

ε∗ ≥
⌊Σ∗/2⌋∑

∆=−⌊Σ∗/2⌋

(
n−m

(n−m)/2 + ∆

)
· 2−(n−m) ≥ Σ∗√

n−m · exp(O(ln(1/δ)))
≥ γ · δO(1)

√
n

=
Ω(logS)d−1 · δO(1)

√
n

.

On the other hand, if Σ∗ >
√
2 ln(1/δ) · (n−m), then Hoeffding’s inequality gives ε∗ ≥ 1− 2δ, and

hence we get correlation at least 1/2 provided we choose δ to be a small enough constant.

B Near-Tight Bounds for Approximations by Depth-One Circuits

In this section, we show that prior work readily implies nearly-matching upper and lower bounds
regarding the task of approximating an AC0

1+k circuit by an AC0
1 circuit. We begin with the

construction, showing that AC0
1 circuits can nontrivially approximate AC0

1+k circuits. Previously,
Hatami, Hoza, Tal, and Tell observed [HHTT23, Proposition A.3] that this follows from the Linial-
Mansour-Nisan theorem [LMN93]. The proposition below slightly refines their argument to get a
tighter bound. We assume k is a constant for simplicity.

Proposition 10 (Using AC0
1 circuits to approximate AC0

1+k circuits). Let k ∈ N be a constant. Let
h : {±1}n → {±1} be an AC0

1+k circuit of size S. There exists an AC0
1 circuit (i.e., a conjunction or

disjunction of literals) g with 1 gate and O(logk S) wires such that

Corr(g, h) ≥ exp
(
−O

(
(logS)k · log logS

))
.

Proof. We rely on bounds on the Fourier spectrum of h [LMN93; Bop97; H̊as01; Tal17]. Every
function computable by an AC0 circuit is concentrated on a relatively small collection of Fourier
coefficients. In particular, Tal showed that there is a collection T of subsets T ⊆ [n] such that
|T | ≤ exp(O((logS)k · log logS)) and

∑
T∈T ĥ(T )2 ≥ 2/3 [Tal17]. Furthermore, every function

computable by an AC0 circuit is concentrated on its low-degree Fourier coefficients. In particular, Tal
showed that there is a value ℓ = O(logk S) such that

∑
T⊆[n],|T |>ℓ ĥ(T )

2 ≤ 1/3 [Tal17]. Combining

these two bounds, we see that
∑

T∈T ,|T |≤ℓ ĥ(T )
2 ≥ 1/3. Therefore, there is some T∗ ⊆ [n] such that

|T∗| ≤ ℓ and ĥ(T∗)
2 ≥ 1

3|T | .

The fact that ĥ(T∗) is relatively large means that h is approximated reasonably well by the
parity function

χT∗(x) :=
∏
i∈T∗

xi.

To get an AC0
1 approximation, we now write χT∗ as a linear combination of (the {±1}-valued versions

of) conjunctions of literals. For each string a ∈ {±1}|T∗|, define MATCHa : {±1}n → {±1} by the
rule

MATCHa(x) =

{
−1 if xT∗ = a

1 otherwise.

Then ∑
a

MATCHa(x) ·
∏
i∈T∗

ai =
∑
a

∏
i

ai − 2 · χT∗(x),

39



and hence

χT∗(x) = −1

2
·
∑
a

MATCHa(x) ·
∏
i

ai.

Therefore,

ĥ(T∗) = Corr(h, χT∗) = −1

2
·
∑
a

Corr(h,MATCHa) ·
∏
i

ai,

and so there must be some a∗ ∈ {±1}|T∗| such that |Corr(h,MATCHa)| ≥ 2 · 2−ℓ · |ĥ(T∗)|. Depending
on whether Corr(h,MATCHa) is positive or negative, we either let g = MATCHa (a conjunction of
literals) or g = −MATCHa (a disjunction of literals). Either way, we get

Corr(g, h) ≥ 2 · 2−ℓ√
3|T |

= exp
(
−O

(
(logS)k · log logS

))
.

Now we show that AC0
1 circuits cannot approximate AC0

1+k circuits significantly better than the
construction of Proposition 10. The proof is rather trivial: the hard function is the parity function
on an appropriate number of bits. Again, for simplicity, we assume k is a constant.

Proposition 11 (Hardness of approximating AC0
1+k circuits using AC0

1 circuits). Let k ∈ N be a
constant. There exists an AC0

1+k circuit h : {±1}n → {±1} of size O(n) such that for every AC0
1

circuit g, we have

Corr(g, h) ≤ exp
(
−Ω

(
logk n

))
.

Proof. Let t = ⌊logk(
√
n)⌋, and let h(x) be the parity of the first t bits of x. Then h can be

computed by an AC0
1+k circuit of size Õ(

√
n) (Proposition 1). Now let g be any AC0

1 circuit. Without
loss of generality, we assume that only the first t variables appear in g, and we assume that each
variable appears in g at most once. If g reads fewer than t variables, then it is easy to see that
Corr(g, h) = 0, so we may assume that each of the first t variables appears exactly once in g. Let b
be the less-likely output value of g, i.e., b = −1 if g is a conjunction and b = +1 if g is a disjunction.
Then

Pr[g(x) = h(x)] = Pr[g(x) = h(x) = +1] + Pr[g(x) = h(x) = −1]

≤ Pr[h(x) = −b] + Pr[g(x) = b]

=
1

2
+ 2−t.
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