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Abstract

For an odd prime p, we say f(X) ∈ Fp[X] computes square roots in Fp if, for all nonzero perfect
squares a ∈ Fp, we have f(a)2 = a.

When p ≡ 3 mod 4, it is well known that f(X) = X(p+1)/4 computes square roots. This degree is
surprisingly low (and in fact lowest possible), since we have specified (p− 1)/2 evaluations (up to sign)
of the polynomial f(X). On the other hand, for p ≡ 1 mod 4 there was previously no nontrivial bound
known on the lowest degree of a polynomial computing square roots in Fp; it could have been anywhere
between p

4
and p

2
.

We show that for all p ≡ 1 mod 4, the degree of a polynomial computing square roots has degree at
least p/3. Our main new ingredient is a general lemma which may be of independent interest: powers
of a low degree polynomial cannot have too many consecutive zero coefficients. The proof method also
yields a robust version: any polynomial that computes square roots for 99% of the squares also has degree
almost p/3.

In the other direction, we also show that for infinitely many p ≡ 1 mod 4, the degree of a polynomial
computing square roots can be ( 1

2
− Ω(1))p.

1 Introduction

Let p be an odd prime, and let Fp be the finite field with p elements.

We say f(X) ∈ Fp[X] computes square roots in Fp, if for all nonzero perfect squares a ∈ Fp, we have:

f(a)2 = a.

When p ≡ 3 mod 4, then it is well known that f(X) = X(p+1)/4 computes square roots. This degree is
surprisingly low, since we are essentially interpolating a polynomial from (p − 1)/2 evaluations. We are
interested in whether there is a similar phenomenon for p ≡ 1 mod 4.

Concretely, we study the question: what is the smallest degree of a polynomial that computes square roots?
Despite being a basic and natural question, there were no nontrivial bounds known for this question for the
case of p ≡ 1 mod 4.

There is a very simple argument1 that shows that the degree of such a polynomial f(X) must be at least
p−1
4 ; indeed, the nonzero polynomial f(X)2 −X vanishes at all the p−1

2 nonzero perfect squares in Fp.
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1This argument works for all p, and thus we get that X(p+1)/4 is the lowest degree polynomial computing square roots for
p ≡ 3 mod 4.
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Our main result is that, unlike the case of p ≡ 3 mod 4, the degree of any polynomial computing square
roots in the case of p ≡ 1 mod 4 must be significantly higher, about 1

3 · p.

Theorem 1.1. Let p ≡ 1 mod 4. Then any polynomial that computes square roots in Fp has degree at least
p−1
3 .

Our proof is based on expressing the property of computing square roots as a polynomial relation (involving
some unknown polynomials), and then eliminating the unknown polynomials through a combination of taking
derivatives and truncations. Abstracting out the main steps, we get a general lemma (a special case of the
Mason-Stothers abc-theorem) which may be of independent interest: the powers of a low-degree polynomial
cannot have too many consecutive zero coefficients.

How does p mod 4 play a role in the proof? Our proof ends up showing that for all p, any polynomial f(X)
of degree less than p

3 that computes square roots must have f(X)2 = X(p+1)/2 (as a polynomial identity),
and this is not possible if p ≡ 1 mod 4.

A robust version

The degree of a polynomial computing a certain function is quite a brittle notion. Changing just a single
value of the function can change the degree drastically. By using the key idea of the Berlekamp-Welch
algorithm for decoding Reed-Solomon codes, we can strengthen the above result to get a robust version,
given below.

Theorem 1.2. Let p ≡ 1 mod 4. Then any polynomial that computes square roots in Fp on all but e
nonzero perfect squares in Fp must have degree at least p−1

3 − e.

The connection to decoding algorithms for Reed-Solomon codes is not such a surprise. The problem of
whether a low-degree polynomial can compute square roots is in fact a list-recovery problem for Reed-
Solomon codes [GS98]; our result effectively shows that a certain algebraic list recovery instance where each
input list has size 2 has no solutions. The difficulty is that this lies beyond the regime where we have a good
understanding of list-recoverability and list-decodability of Reed-Solomon codes.

More concretely, let C be the the Reed-Solomon code of degree d polynomials over Fp with evaluation set
D. Suppose for each x ∈ D we are given a set Sx ⊆ Fp with |Sx| ≤ 2. How can we certify that there
are no codewords c of C such that for each coordinate x ∈ D, we have cx ∈ Sx? It is not known how to
give an efficiently verifiable certificate of this in general when d =

(
1
2 +Ω(1)

)
|D|. In our setting D is the

set of perfect squares (so |D| = (p − 1)/2), and d is p/3, which is outside the range of known certification
methods [GS98].

Better upper bounds for special p

Complementing this, we show that for some p which are 1 mod 4, there is a polynomial computing square
roots with degree about 3

8 · p.

Theorem 1.3. Let p ≡ 5 mod 8. Then there is a polynomial that computes square roots in Fp with degree
at most 3p+1

8 .

We show this by digging into the Tonelli-Shanks algorithm [Sha73, Ton91] for computing square roots—it
yields a few polynomials of abnormally low degree, one of which is guaranteed to compute the square root
of any given input. Combining these into a single polynomial by the Chinese Remainder theorem gives us
Theorem 1.3.

There are similar phenomena with degree ( 12 −Ω(1))p for p in special residue classes mod 2j with j constant.
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Upper bounds for general p

Finally, we discuss upper bounds for the case of general p. First, a heuristic. There are 2(p−1)/2 different
square root functions (the choice of sign for each perfect square). If the unique interpolating polynomials
of degree < (p− 1)/2 for these functions had their coefficients behaving randomly, then we would expect a

polynomial of degree at most 1
2p− Ω

(
p

log p

)
that computes square roots.

Formalizing this intuition, we show that there is a polynomial computing square roots with degree 1
2p −

Ω̃(
√
p). This is done by getting explicit formulas for the coefficients of the interpolants and arguing their

pseudorandomness via the Weil bounds and some elementary Fourier analysis.

We also note that all our results have analogues for computing tth roots.

Conclusions and Questions

Computing square roots and understanding quadratic residuosity are central topics in algebraic computation
and pseudorandomness.

Perhaps the most interesting and fundamental open question in this area is that of deterministically comput-
ing square roots mod p in poly(log p) time. As we already saw, when p ≡ 3 mod 4, the simple deterministic
poly(log p) algorithm of raising x ∈ Fp to the power p+1

4 computes the square root of x. Our results show
that the p ≡ 1 mod 4 case is qualitatively different in some respects. See [BS96, VZGG13, Sho09] for what
is known about this computational problem and related number theoretic issues.

Other important questions include the problem of determining the size of the least quadratic residue mod
p (this is also connected to deterministic computation of square roots), and understanding the pseudoran-
domness of the Paley graph (for example, are Paley graphs Ramsey graphs?).

Finally, as mentioned above, our results can be viewed as showing that a certain list-recovery instance for
Reed-Solomon codes has no solutions. We close with a conjecture about the list-recoverability of Reed-
Solomon codes. The conjecture talks about prime fields; the results of Guruswami and Rudra [GR05] imply
that this assumption cannot be dropped.

Conjecture 1.1. Let Fp be a prime field. Let ℓ ∈ N, ϵ > 0 be constants. Suppose we are given, for each
x ∈ Fp, a set Sx with |Sx| ≤ ℓ. Then:

|{P (X) ∈ Fp[X] | deg(P ) ≤ (1− ϵ)p, and for all x ∈ Fp, P (x) ∈ Sx}| ≤ pOϵ,ℓ(1).

We hope that our methods can give some insight into understanding the list-recovery capacity of Reed-
Solomon codes, and in particular the above conjecture.

2 Lower bound for polynomials computing square roots

We now prove our first theorem about polynomials computing square roots mod p.

Theorem 1.1. Let p ≡ 1 mod 4. Then the degree of any polynomial that computes square roots in Fp is
at least p−1

3 .

Proof. Suppose f(X) is of degree d < p−1
3 and computes square roots in Fp. Then, since X(p−1)/2 − 1 is the

vanishing polynomial of the set of nonzero perfect squares in Fp, we have:

f(X)2 −X ≡ 0 mod (X(p−1)/2 − 1).
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Let A(X) be the polynomial of degree 2d− (p− 1)/2 such that

f(X)2 −X = A(X) · (X(p−1)/2 − 1).

Let B(X) = X −A(X). Then we get:

f(X)2 = A(X) ·X(p−1)/2 +B(X), (1)

where:

• deg(f(X)) = d.

• deg(A(X)),deg(B(X)) ≤ 2d− (p− 1)/2.

• A(X) ̸= 0. If A(X) = 0 then f(X)2 = X, which is impossible for a polynomial f(X).

• B(X) ̸= 0. Otherwise A(X) = X, and f(X)2 = X(p+1)/2, which is possible only if p ≡ 3 mod 4.

These conditions together will give us our lower bound on d.

Taking derivatives2 of both sides of (1), we get:

2f(X)f ′(X) = A′(X) ·X(p−1)/2 − 1

2
A(X)X(p−3)/2 +B′(X). (2)

Computing 2f(X)2f ′(X) in two ways using (1) and (2), we get:

2f ′(X)A(X)X(p−1)/2 + 2f ′(X)B(X) = f(X)

(
X ·A′(X)− 1

2
A(X)

)
X(p−3)/2 + f(X)B′(X).

Now, using our assumption on d, the degrees of 2f ′(X)B(X) and f(X)B′(X) are both at most 3d − (p −
1)/2− 1 < (p− 3)/2, and thus taking the above equation mod X(p−3)/2,

2f ′(X)B(X) = f(X)B′(X).

Since B(X) ̸= 0, we get 2f ′(X)
f(X) = B′(X)

B(X) . Since 2 deg(f),deg(B) < p, by a basic property of logarithmic

derivatives, this implies f(X)2 = λB(X) for some nonzero λ, contradicting the fact that A(X) ̸= 0. (See
Remark 1 in Section 2.2 for a precise statement and a proof.)

Thus our assumption that d < p−1
3 is wrong, and the theorem follows.

2.1 Consecutive zero coefficients in powers of polynomials

We isolate the key step above as the following lemma:

Lemma 2.1. Let F be a field of characteristic p. Let f(X), A(X), B(X) be in F[X]. Suppose

f(X)t = A(X) ·Xℓ +B(X) (3)

where:

• deg(f(X)) ≤ d < p
t ,

• deg(B(X)) ≤ b < p,

• A(X) ̸= 0,

• B(X) ̸= 0,

2Throughout this paper, we work with formal derivatives of polynomials.

4



Then d+ b ≥ ℓ.

In words, this says that if dt < p, the tth power of a polynomial of degree d cannot have d consecutive 0
coefficients.

Proof. Supose d+ b < ℓ. Observe that this implies that f(X) ̸= 0.

Taking derivatives of both sides of (3), we get:

tf(X)t−1f ′(X) = C(X)Xℓ−1 +B′(X), (4)

for some C(X) ∈ F[X].

Computing tf(X)tf ′(X) in two different ways using (3), (4), we get:

tA(X)f ′(X)Xℓ + tf ′(X)B(X) = f(X)C(X)Xℓ−1 + f(X)B′(X).

Since deg(tf ′(X)B(X)),deg(f(X)B′(X)) < d+ b ≤ ℓ− 1, by taking this equation mod Xℓ−1 we get:

tf ′(X)B(X) = f(X)B′(X),

and since f(X), B(X) are nonzero, we get that:

t
f ′(X)

f(X)
=
B′(X)

B(X)
.

By the logarithmic derivative, we get f(X)t = λB(X) for some nonzero λ, contradicting our assumption
that A(X) ̸= 0.

Thus d+ b ≥ ℓ as claimed.

2.2 Remarks

1. The key fact about logarithmic derivatives that we are using is that if f(X), B(X) ∈ Fp[X], t ·
deg(f),deg(B) < p, and:

t
f ′(X)

f(X)
=
B′(X)

B(X)
,

then f(X)t = λ ·B(X) for some constant λ ∈ Fp.

We recap a quick proof. The hypothesis implies that
(
f(X)t

B(X)

)′
= 0, and thus f(X)t

B(X) must be a polynomial

in Xp. Our assumption about the degrees implies the result.

2. The exact same proof also classifies when low-degree polynomials can compute square roots of very-
low-degree polynomials on a multiplicative group.

Theorem 2.2. Let G ⊆ F∗
p be a multiplicative subgroup of size m. Let C(X) ∈ Fp[X] have degree at

most m
3 . Suppose f(X) ∈ Fp[X] is such that f(a)2 = C(a) for all a ∈ G. Then one of the following

alternatives must hold:

• f(X)2 = C(X),

• f(X)2 = C(X) ·Xm,

• deg(f) ≥ 2m
3 .
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For C(X) being a constant and m = p − 1, this follows from a result of Biro [Bir00], who classified
low-degree polynomials that take two values on F∗

p. The proof from [Bir00] is a delicate investigation
of certain power sums. Our proof is quite different, and has the flexibility of allowing for the robust
version proved in the next section (which gives, for example, a classification of low-degree polynomials
that take only 2 values on 90% of F∗

p).

In this generality, the bound of 2m
3 is tight. If m is divisible by 3, then the polynomial f(X) =(

X2m/3 +Xm/3 − 1
2

)
is such that f(x)2 = 9

4 for all x ∈ G (since xm/3 is a cube root of 1).

3. The proof of Lemma 2.1 also applies as is to rational powers of f(X), where we now talk about
consecutive 0 coefficients in the power series. We only state it for characteristic 0; it says that the
power series expansion of f(X)r/s, for f(X) of degree d, does not have d consecutive 0 coefficients.
Precisely, we have:

Lemma 2.3. Let F be a field of characteristic 0. Let t be a rational number. Let f(X) ∈ F[X] be a
polynomial of degree at most d.

Then any (formal) power series expansion of f(X)t in F[[X]] does not have d consecutive zero coeffi-
cients.

This is stronger than the usual bound for this situation (which shows up in polynomial factoring
algorithms via the Hilbert irreducibility theorem [Kal91] and the Arora-Sudan low degree test [AS97]),
which goes as follows: Suppose f(X)1/s = A(X)Xℓ + B(X), where deg(f) = d,deg(B) = b and
A(X) ∈ F[[X]] is nonzero, then f(X) − B(X)s is a nonzero polynomial of degree at least ℓ, and so
ℓ ≤ max(sb, d). Thus if b is large, this bound only guarantees that there is a nonzero coefficient Xi for
i ∈ [b+ 1, sb] (instead of [b+ 1, b+ d] as guaranteed by Lemma 2.3).

4. Applying the same method, we can apply this method to the power series expansion of ef(X) too.

Lemma 2.4. Let F be a field of characteristic 0. Let f(X) ∈ F[X] be a polynomial of degree at most
d with constant term 0.

Then the (formal) power series expansion of ef(X) in F[[X]] does not have d consecutive zero coeffi-
cients.

5. The bounds of Lemma 2.1, Lemma 2.3 and Lemma 2.4 on the number of consecutive 0 coefficients are
tight, for example when f(X) is of the form αXd + β.

6. We can give another proof of Lemma 2.1 (but not Lemma 2.3 or Lemma 2.4 as far as we know) using
the Mason-Stothers abc-theorem for polynomials [Sto81, Mas84].

Indeed, note that f(X)t, A(X) ·Xℓ and B(X) all have degree at most dt. Furthermore, the radical of
their product divides f(X) ·A(X) ·X ·B(X), and thus has degree at most d+ (dt− ℓ) + 1+ b. By the
abc-theorem, we get that:

dt ≤ (d+ dt− ℓ+ 1 + b)− 1 = dt+ d− ℓ+ b,

and thus d+ b ≥ ℓ.

3 A robust version

Let p be a prime that is 1 mod 4. Let S be the set of nonzero perfect squares in Fp.

We say a polynomial f(X) ∈ Fp[X] computes square roots with error e if:∣∣{a ∈ S | f(a)2 ̸= a}
∣∣ ≤ e.

6



We show that any polynomial computing square roots even allowing Ω(p) error must have degree close to
p/3.

Theorem 1.2. Let p ≡ 1 mod 4. Suppose f(X) ∈ Fp[X] is a polynomial of degree d that computes square
roots with error e.

Then

d+ e ≥ p− 1

3
.

Proof. We use the idea of the Berlekamp-Welch Reed-Solomon decoding algorithm [WB83].

Let U ⊆ S be the set of a ∈ S where f(a)2 ̸= a.

Let E(X) ∈ Fp[X] be the vanishing polynomial of U , given by:

E(X) =
∏
u∈U

(X − u).

Note that E is a nonzero polynomial of degree at most e.

Then we have:
E(X)2 · f(X)2 ≡ E(X)2 ·X mod (X(p−1)/2 − 1).

Let A(X) be the polynomial of degree at most 2(e+ d)− (p− 1)/2 such that:

E(X)2 · f(X)2 − E(X)2 ·X = A(X) · (X(p−1)/2 − 1).

Let g(X) = E(X) · f(X), and B(X) = E(X)2 ·X −A(X).

Then
g(X)2 = A(X) ·X(p−1)/2 +B(X).

We have:

• deg(g) ≤ d+ e,

• deg(B) ≤ max(2e+ 1, 2(e+ d)− (p− 1)/2) = 2(e+ d)− (p− 1)/2,

• A(X) ̸= 0. Otherwise E(X)2 · f(X)2 = E(X)2 ·X =⇒ f(X)2 = X, which is impossible.

• B(X) ̸= 0. Otherwise E(X)2 ·X = A(X), and so E(X)2f(X)2 = E(X)2X(p+1)/2, which implies that
f(X)2 = X(p+1)/2. This is only possible if p ≡ 3 mod 4.

Plugging this into Lemma 2.1, we get

3(e+ d)− (p− 1)/2 ≥ (p− 1)/2,

which gives us
3(d+ e) ≥ (p− 1),

as desired.

Note that there is another simple lower bound (which applies for all p) of d + e
2 ≥ p−1

4 , which is better for

e ≥ p−1
6 . This is proved by considering the number of roots of the degree 2d polynomial f(X)2 −X.
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4 Upper bound for special p

In this section, we give an upper bound on the degree of polynomials computing square roots mod p, for
infinitely many p ≡ 1 mod 4. The upper bound is best when p ≡ 5 mod 8, and we only present this case.

Theorem 1.3. Let p ≡ 5 mod 8. Then there is a polynomial that computes square roots in Fp with degree
at most 3p+1

8 .

Proof. Since p ≡ 1 mod 4, we get that −1 is a perfect square mod p. Let i ∈ Fp be one of the square roots
of −1. Our main ingredient is the Tonelli-Shanks algorithm [Sha73, Ton91] computing square roots mod
p. For p = 4ℓ + 1, the algorithm essentially gives a formula for the square root depending on two cases.
Specifically, let u : S → Fp given by:

u(a) =

{
a(p+3)/8 a(p−1)/4 = 1,

i · a(p+3)/8 a(p−1)/4 = −1.

Then for all a ∈ Fp, u(a) is a square root of a.

This is already quite special; the set S is partitioned into two equal sized parts S0 and S1, and on each Si
we have a polynomial fi(X) computing the square root of degree about 1

2 |Si|. (This is the lowest possible
degree, since fi(X)2 −X is a nonzero polynomial that vanishes on all of Si.)

Usually if we have this kind of setup, even though the fi have unusually low degree, the unique polynomial f
(obtained from the Chinese remainder theorem) which restricts to fi on Si has no reason to have unusually
low degree. But in this case it does!

Using the usual Chinese remainder formula, we consider the polynomial f(X) ∈ Fp[X] given by:

f(X) =
1

2

(
X(p+3)/8(X(p−1)/4 + 1)− i ·X(p+3)/8(X(p−1)/4 − 1)

)
=

1− i

2
X(3p+1)/8 +

1 + i

2
X(p+3)/8.

By design, we have f(a) = u(a) for all a ∈ S. Finally, notice that deg(f) ≤ 3p+1
8 .

As a sanity check, we directly verify that f(X)2 ≡ X mod (X(p−1)/2 − 1). Indeed,

f(X)2 =

(
1− i

2

)2

X(3p+1)/4 + 2 · (1− i)(1 + i)

4
X(4p+4)/8 +

(
1 + i

2

)2

X(p+3)/4

= − i

2
X(3p+1)/4 +X(p+1)/2 +

i

2
X(p+3)/4

=

(
− i

2
X(p+3)/4 +X

)
· (X(p−1)/2 − 1) +X,

as desired.

5 Upper bounds for general p

In this section, we give a slightly nontrivial upper bound on the degree of polynomials computing square
roots for all p. We will show that there is a polynomial with degree somewhat less than p

2 which computes
square roots.

Theorem 5.1. For all odd primes p, for t = o
( √

p

log2 p

)
, there is a polynomial of degree p

2 − t which computes

square roots.
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Proof. Let m = (p − 1)/2. Let S ⊆ Fp be the set of nonzero perfect squares, and note that |S| = m. For
each α ∈ S, let δα(X) ∈ Fp[X] be the unique polynomial of degree ≤ (m− 1) such that for all β ∈ S:

δα(β) =

{
1 β = α,

0 β ̸= α.

Explicitly, we have:

δα(X) =
1

m

((
X

α

)m−1

+

(
X

α

)m−2

+ . . .+
X

α
+ 1

)
.

Then given a function u : S → Fp, the unique polynomial f(X) ∈ Fp[X] of degree at most m− 1 such that
f(α) = u(α) for all α ∈ S is given by:

f(X) =
∑
α∈S

u(α)δα(X).

Our goal is to pick u where each u(α) is one of the two square roots of α so that many of the leading
coefficients of f(X) equal 0.

We now use the structure of S. Let g be a generator of F∗
p. Then S = {g2j | 0 ≤ j < (p−1)/2}. Furthermore,

for α = g2j ∈ S, one of the two square roots of α is gj .

Thus, our problem can be reformulated as choosing a function v : S → {±1} such that:

f(X) =

(p−1)/2∑
j=0

v
(
g2j
)
· gj · δg2j (X)

has many leading coefficients equal to 0.

Observe that the coefficient of Xm−i in f(X) equals:

1

m

(p−1)/2∑
j=0

v(g2j)gj
(

1

g2j

)m−i

=
1

m

(p−1)/2∑
i=0

v(g2j)g(2i+1)j .

Thus, to get a polynomial f(X) of degree < m − t, we want to find a vector v ∈ {±1}m that lies in the
kernel of the Vandermonde-type matrix M ∈ Ft×mp , where:

Mi,j = g(2i+1)j .

(The row index i runs from 1 to t, the column index j runs from 0 to m− 1.)

For later use, for a vector y ∈ Ftp, we define Py(Z) ∈ Fp[Z] to be the polynomial:

Py(Z) =

t∑
i=1

yiZ
2i+1.

Thus for j ∈ {0, 1, . . . ,m− 1}, the jth entry of MT y equals Py(g
j).
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To show that there exists the desired ±1 vector, we count the number of such vectors using Fourier analysis.
Let ω be a pth root of unity in C. The number of such ±1 vectors equals:

N =
∑

v∈{±1}m

1Mv=0

=
∑

v∈{±1}m

Ey∈Ft
p

[
ω⟨y,Mv⟩

]

= Ey

[∑
v

ω⟨MT y,v⟩

]

= Ey

[∑
v

ω
∑m−1

j=0 (MT y)j ·vj

]

= Ey

∑
v

m−1∏
j=0

ω(MT y)j ·vj


= Ey

∑
v

m−1∏
j=0

ωPy(g
j)·vj

 .
For y = 0, the expression inside the expectation equals 2m. We will show that for the remaining pt−1 values
of y, the expression inside the expectation is very small.

Fix any y ̸= 0. The expression inside the expectation equals:

∑
v∈{±1}m

m−1∏
j=0

ωPy(g
j)·vj =

m∏
j=1

(
ωPy(g

j) + ω−Py(g
j)
)
. (5)

The next lemma (which uses the Weil bounds on mixed character sums) shows that for any nonzero y, the
evaluations of the polynomial Py at {1, g, g2, . . . , gm−1} are well distributed in Fp.

Lemma 5.2. Let 0 ≤ α < β ≤ 1. Let y ∈ Ftp \ {0}. Then:

Pr
j∈{0,1,...,m−1}

[
Py(g

j) ∈ [αp, βp]
]
= (β − α) +O

(
t log2 p
√
p

)
.

Assuming the lemma, we get that for t = o
( √

p

log2 p

)
, the product in Equation (5) is at most 2m · exp(−m).

Thus:

N ≥ 2m

pt
−max

y ̸=0

∣∣∣∣∣∣
m∏
j=1

(
ωPy(g

j) + ω−Py(g
j)
)∣∣∣∣∣∣

≥ 2m

pt
−O(2m exp(−m))

≥ 2m
(

1

pt
− exp(−m)

)
> 0,
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where the penultimate inequality holds since

t = o

( √
p

log2 p

)
≪ p

log p
= Θ

(
m

log p

)
.

This completes the proof.

5.1 Distribution of values of Py(g
j)

We now prove Lemma 5.2.

Proof. Let I be the interval [αp, βp]. Let J be the set {1, g, g2, . . . , gm−1}. Then the probability in the
statement of the lemma equals:

1

m

∑
z∈Fp

1I(Py(z))1J(z). (6)

I is an interval in the additive group of Fp By standard results, if we expand 1I in its additive Fourier
expansion:

1I =
∑
ψ

1̂I(ψ)ψ

(where the ψ are the additive characters), then:∑
ψ

|1̂I(ψ)| ≤ O(log p). (7)

Similarly, J is an interval in the multiplicative group of Fp. If we expand 1J in its additive Fourier expansion:

1J =
∑
ψ

1̃J(χ)χ

(where the χ are the multiplicative characters), then:∑
χ

|1̃I(χ)| ≤ O(log p). (8)

Then the probability in Equation (6) equals:

1

m

∑
z

∑
ψ

1̂I(ψ)ψ(Py(z))

(∑
χ

1̃J(χ)χ(z)

)

=
1

m

∑
ψ,χ

1̂I(ψ)1̃J(χ)

(∑
z

ψ(Py(z))χ(z)

)

=
1

m

 |I|
p

· |J |
p

· p+O

 ∑
(ψ,χ)̸=(1,1)

|1̂I(ψ)| · |1̃J(χ)| ·

∣∣∣∣∣∑
z

ψ(Py(z))χ(z)

∣∣∣∣∣


= (β − α) +
1

m
·O

 ∑
(ψ,χ)̸=(1,1)

|1̂I(ψ)| · |1̃J(χ)| ·

∣∣∣∣∣∑
z

ψ(Py(z))χ(z)

∣∣∣∣∣

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The Weil bound for mixed character sums (see [Sch06]) shows that whenever (ψ, χ) are not both trivial
characters, the inner expression is bounded:∣∣∣∣∣∑

z

ψ(Py(z))χ(z)

∣∣∣∣∣ ≤ O(t
√
p).

Combined with the bounds in Equations (7), (8), we get the desired bound on the probability.

6 tth roots

Now we discuss tth roots in place of square roots. We think of t as a constant, and the prime p growing. Let
p ≡ 1 mod t, so that the set of nonzero tth powers in Fp has size p−1

t .

Just like in the case t = 2, for special p there is a simple formula for computing the tth root; when p ≡ 1− t

mod t2, then a
p+t−1

t2 is a tth root of a whenever a is a perfect tth power in Fp. Thus there is a polynomial
of degree 1

t2 · p + O(1) computing tth roots. This matches the trivial lower bound of p−1
t2 on the degree of

polynomials computing tth root (proved by counting zeroes of the nonzero polynomial f(X)t −X).

An immediate generalization of Theorem 1.2 shows that for all other p (namely, p ̸≡ 1 − t mod t2, but we
still preserve the condition that p ≡ 1 mod t), any polynomial of degree d computing tth roots in Fp with
error e must satisfy

d+ e ≥ 2

t(t+ 1)
· p.

This is 2t
t+1 times (which is about double for large t) the trivial lower bound, but quite far from the obvious

upper bound (from Lagrange interpolation) of 1
t · (p− 1).

The best upper bound we know for p not of the special form p ≡ 1− t mod t2 is for p such that 2p ≡ 2− t

mod t2 (there are infinitely many such p for any odd t), and in this case the polynomial f(X) = X
2p+t−2

t2

computes tth roots. This is of the form 2
t2 · p+O(1), and thus somewhat close to our lower bound for large

t.

Closing these gaps seems like a very basic and interesting open question.
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