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Abstract

Recent constructions of the first asymptotically good quantum LDPC (qLDPC) codes led
to two breakthroughs in complexity theory: the NLTS (No Low-Energy Trivial States) theorem
(Anshu, Breuckmann, and Nirkhe, STOC’23), and explicit lower bounds against a linear number
of levels of the Sum-of-Squares (SoS) hierarchy (Hopkins and Lin, FOCS’22).

In this work, we obtain improvements to both of these results using qLDPC codes of low
rate:

e Whereas Anshu et al. only obtained NLTS Hamiltonians from qLDPC codes of linear
dimension, we show the stronger result that qLDPC codes of arbitrarily small positive
dimension yield NLTS Hamiltonians.

e The SoS lower bounds of Hopkins and Lin are only weakly explicit because they require
running Gaussian elimination to find a nontrivial codeword, which takes polynomial time.
We resolve this shortcoming by introducing a new method of planting a strongly explicit
nontrivial codeword in linear-distance qLDPC codes, which in turn yields strongly explicit
SoS lower bounds.

Our “planted” qLDPC codes may be of independent interest, as they provide a new way of
ensuring a qLDPC code has positive dimension without resorting to parity check counting, and
therefore provide more flexibility in the code construction.

1 Introduction

Recent breakthrough constructions of asymptotically good quantum LDPC (qLDPC) codes [PK22,
LZ22, DHLV23| have led to major advances in complexity theory. Specifically, Anshu et al. [ABN23]
applied these codes to prove the NLTS theorem, which provides perhaps the most significant
progress to date towards the quantum PCP conjecture. Meanwhile, Hopkins and Lin [HL22] ap-
plied the same codes to obtain the first explicit lower bounds against a linear number of levels of
the Sum-of-Squares semidefinite programming (SoS SDP) hierarchy, which is one of the most pow-
erful algorithmic frameworks for approximating the satisfiability of constraint satisfaction problems
(CSPs).

In this paper, we improve upon both of these complexity theoretic results. Along the way,
we introduce a new method for ensuring a qLDPC code has positive dimension, which may be of
independent interest. Our contributions are therefore threefold:
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1. NLTS Hamiltonians from low-rate codes: The breakthrough construction of NLTS
Hamiltonians of [ABN23] from asymptotically good qLDPC codes relied on both the linear
dimension and distance of the codes. A promising approach [Nir23] for further progress
towards qPCP is to construct more general NLTS Hamiltonians with additional properties.
We make progress in this direction by constructing NLTS Hamiltonians from qLDPC codes of
arbitrary positive dimension, thereby removing the linear-dimension requirement in [ABN23].
Our result highlights the usefulness of local Hamiltonians with low-dimensional ground spaces
for studying qPCP. Our proof leverages techniques of [EH17], which conjecturally constructed
NLTS Hamiltonians from linear-distance quantum locally testable codes of arbitrary positive
dimension (which are not known to exist). However, we obtain the NLTS property without
assuming local testability nor linear dimension. Instead, the key ingredient ensuring NLTS
Hamiltonians is a small-set expansion property of the qLDPC codes.

2. Planted quantum LDPC codes: We show how to plant an explicit nontrivial codeword
in a linear-distance qLDPC code, which may have otherwise had rate 0. To the best of our
knowledge, this construction yields the first linear-distance qLDPC codes for which nontrivial
dimension is established without resorting to parity-check counting. It has been an open
question in the literature to develop new such techniques for bounding dimension (see for
instance Section 1.1 of [DLZ23], and also [DDHRZ20]).

3. Strongly explicit SoS lower bounds: We apply our planted gLDPC codes to obtain the
first strongly explicit family of CSPs that cannot be refuted by a linear number of levels of the
SoS hierarchy. This result strengthens the work of [HL22], which provided the first weakly
explicit construction of such an SoS lower bound using qLDPC codes. Our improvement
stems from the fact that our planted codes have planted codeword given by the all-1s vector,
which is strongly explicit.

These results together show new ways to both construct and apply qLDPC codes of low rate.
In the remainder of this section, after providing some background on qLDPC codes, we describe
each of these results in more depth. We then discuss open questions that arise from our results.

1.1 Background on qLDPC Codes

This section provides some definitions we will need to state our results. The quantum codes we
consider in this paper are quantum CSS codes. An n-qudit CSS code C = CSS(Cx, Cz) of alphabet
size (i.e. local dimension) ¢ is defined by a pair of classical codes Cx,Cy C [y such that C)L( C Cy.
The associated quantum code is then given by C = span{zy,ec)% ly+vy') : y € Cz}. This code
has dimension k& = dim(Cz) — dim(C5) and distance d = MiNy, ¢ 0,0\ 04 )U(Cx\C%) ly|, meaning it
encodes a k-qudit message into an n-qudit code state, and the message can be recovered from any
n—(d—1) code qudits. We assume C'x = ker Hx, C'z = ker Hz for associated parity check matrices
Hx € F'xX>*" Hyz € Fr2>". If every row and colum of Hy and Hyz has Hamming weight < /, we
say that C has locality £. A family of qLDPC codes is a family of codes with constant locality ¢
and growing block length n.

It was a longstanding open question to construct linear-distance qLDPC codes. This question
was resolved by Panteleev and Kalachev [PK22], who obtained qLDPC codes of linear distance and
linear dimension. Subsequent works [LZ22, DHLV23] provided additional related constructions.



These codes in fact possess! the following stronger notion of distance, which guarantees that
all low-weight errors have syndromes whose weight is linear in the error weight (as opposed to just
having nonzero syndromes). Below, for a code C, we denote |y|c = mingec |y +¥/|.

Definition 1 (Small-set (co)boundary expansion; restatement of Definition 16). Let C = CSS(Cx =
ker Hx,Cy = ker Hyz) be a CSS code given by parity check matrices Hx € Fy'x *"and Hy € F;”an.
For ¢1,co > 0, we say that C has (c1,c2)-small-set boundary expansion if it holds for every
y € Fy with [y| < c1n that

YloL
mz n

Similarly, C has (c1,c2)-small-set coboundary expansion if it holds for every y € Fy with
ly| < cin that

YloL
mx n

This notion of small-set (co)boundary expansion underlies both the NLTS Hamiltonians of
[ABN23] and the SoS lower bounds of [HL22]. Note that a code with (c;, ¢z)-small set boundary
and coboundary expansion by definition has distance > cin.

1.2 NLTS Hamiltonians from Low-Rate qLDPC Codes

The quantum PCP (qPCP) conjecture, which states that it is QMA-hard to compute a constant-
factor approximation to the ground energy of a local Hamiltonian, is a major open question in
quantum complexity theory that has remained largely elusive. Perhaps the most significant progress
towards this conjecture was the NLTS theorem, which was recently proven by Anshu, Breuckmann,
and Nirkhe [ABN23] using an application of asymptotically good qLDPC codes. This result provides
a family of local Hamiltonians that have “no low-energy trivial states” (NLTS), where a trivial
state is one computed by a constant-depth circuit. The NLTS theorem therefore provides local
Hamiltonians exhibiting a weaker form of hardness of approximation than required by qPCP, and
is indeed a necessary consequence of the qPCP conjecture under the widely believed assumption
that NP £ QMA.

Anshu et al. [ABN23] constructed their NLTS Hamiltonians using the asymptotically good
quantum Tanner codes of [LZ22]. In particular, their proof of NLTS relied on the codes having
both linear distance and dimension. It was an open question whether such linear dimension was
necessary for NLTS. This question is motivated by the suggestion [Nir23] that constructing more
general families of NLTS Hamiltonians may lead to further progress towards the qPCP conjecture.
Furthermore, some earlier partial progress towards NLTS used codes of smaller dimension [EH17],
which again raises the question of whether linear dimension is necessary. Our main result on NLTS
resolves this question, as we obtain NLTS Hamiltonians from qLDPC codes of arbitrary positive
dimension.

NLTS Hamiltonians are formally defined as follows. Recall that a family of Hamiltonians is
£-local if every H in the family can be expressed as a sum of Hamiltonians, each of which act

'[HL22] were the first to consider small-set (co)boundary expansion for linear-distance gLDPC codes, and showed
that the codes of [LZ22] possess this property. [DHLV23] later constructed additional good qLDPC codes for which
they proved this expansion property. We explain at the end of Section 3.4 why the decoder of [LZ23b, LZ23a] implies
that the codes of [PK22] also possess this expansion property.



nontrivially on < ¢ qubits. If £ = O(1) we say the family is local. We also say that a state p is an
e-approzimate ground state of a Hamiltonian H > 0 if Tr(pH) < e.

Definition 2 (NLTS Hamiltonians). A family of local Hamiltonians (H,,)n—00 with 0 < H,, < I
is NLT'S if there exists ¢ > 0 such that the minimum depth of any quantum circuit computing an
e-approximate ground state of H,, approaches co as n — oo.

Recall that for a CSS code C = CSS(Cx = ker Hyx,Cz = ker Hz), the associated code Hamil-
tonian is given by

1
H= i(HX +Hz)

for

1 I—-XVY
me- Ly
yerows(Hx )

1 I1-2zY
Hy; =—
Z my Z 2 9
yerows(Hyz)

where X and Z denote the respective Pauli operators. Thus in particular the ground space of H is
precisely the code space C = span{zy,ec)% ly+y'):yeCy}.

Anshu et al. [ABN23] showed that for every family of qLDPC codes with linear dimension
and constant small-set boundary and coboundary expansion, the associated code Hamiltonians are
NLTS. Thus for instance the quantum Tanner codes of [LZ22] yield NLTS code Hamiltonians.

Our result below improves upon this result of [ABN23] by removing the linear dimension re-
quirement.

Theorem 3 (NLTS from low-rate codes; informal statement of Corollary 26). Let (C(™), o, be an
infinite family of qLDPC' codes over the alphabet®> Fo of block length n and positive dimension that
have (c1, ca)-small set boundary and coboundary expansion for some constants c1,ca > 0. Then the
family of associated code Hamiltonians (H™),_, is NLTS.

Our proof of Theorem 3 follows the general framework of [EH17, ABN23] in showing circuit
lower bounds for code Hamiltonians. Specifically, Eldar and Harrow [EH17] showed that in order
to show the code Hamiltonians H are NLTS, it suffices to show that every distribution obtained
by measuring an approximate ground state of H in either the X or Z basis is well spread. Here a
distribution D over 4 is well spread if there exist sets Sp, S1 C F separated by a linear Hamming
distance dis(Sp, S1) > ©(n) such that D assigns constant probability D(Sy), D(S1) > ©(1) to both
sets.

Both [EH17, ABN23] show this well-spreadness property for code Hamiltonians by combining
a distance/expansion property of the code with an uncertainty principle. However, the two works
different use assumptions on the code as well as different uncertainty principles:

e [EH17] assumes the code is locally testable and of linear distance, which implies the approxi-
mate ground states have a certain linear structure. They then use an uncertainty principle (see
Lemma 21) that is able to leverage this linear structure and prove well-spreadness regardless
of the code dimension.

2For simplicity we restrict attention to the binary alphabet Fy in our proof of Theorem 3, though we suspect the
result should extend to arbitrary alphabets F,.



e [ABN23] assumes the code has small-set boundary and coboundary expansion, which is weaker
than local testability and therefore yields less structure in the approximate ground states.
They then use a different uncertainty principle with which they are still able to prove well-
spreadness, but only for codes of linear dimension.

Because linear-distance quantum locally testable codes are not known to exist, the NLTS Hamil-
tonians of [EH17] remain conjectural.

We prove Theorem 3 by combining these two approaches: we make the weaker assumption
that our code has small-set boundary and coboundary expansion, but show that the approximate
ground states still have enough linear structure to apply the uncertainty principle in Lemma 21.
We then conclude that the code Hamiltonians are NLT'S regardless of the code dimension.

At the core of our argument is the application of a “decoding” procedure for approximate
ground states of codes with small-set (co)boundary expansion, which is unintuitive in the sense
that far-apart approximate ground states may decode to the the same true ground state. However,
we are able to show that in some sense, the low-energy space of the code Hamiltonian acts similarly
enough to a true code space that the argument still goes through.

1.3 Planted Quantum LDPC Codes

This section presents our result on planting a nontrivial codeword in qLDPC codes.

The recent breakthrough constructions of linear-distance qLDPC codes ([PK22], followed by
[LZ22, DHLV23]) all bound the code dimension by counting parity checks. Specifically, these works
use the fact that if C = CSS(Cx = ker Hx,Cz = ker Hy) for Hy € Fj'**" Hy € F'#*", then C
has dimension k£ > n — mx — myz. However, this bound may not be tight if there are redundant
parity checks in Hy, Hz. Indeed, it has been an open question in the coding theory literature to
provide new ways of ensuring that LDPC codes have positive dimension; for instance, this question
was of central importance in the code constructions of [DDHRZ20, DLZ23].

Our result below makes progress on this question, by showing how to plant a nontrivial codeword
in the linear-distance quantum Tanner codes of [LZ22]. In fact, we show that like the codes of [LZ22]
our planted codes possess small-set (co)boundary expansion.

Theorem 4 (Planted quantum Tanner codes; restatement of Theorem 32). For every finite field
Fy, there exist constants c1,ca > 0 such that there is a strongly explicit infinite family (C(”))n_mO
of quantum LDPC CSS codes for which every C(™) = CSS(C%), C’(Zn)) with Cg), C’(Zn) C Fy has the
following properties:

1. C™ has (c1, c2)-small-set boundary and coboundary expansion, and therefore has distance
> cin.

1 1
2. The all-1s vector 1 € Fy lies in C'g?) \ C'(Zn) and in C(Zn) \C'g?) .

Theorem 3 implies that the code Hamiltonians of our planted quantum Tanner codes over the
binary alphabet F5 in Theorem 4 are NLTS. In Section 1.4 below, we present another complexity-
theoretic application of these codes, namely to SoS lower bounds, which crucially relies on the their
planted nature.

Our construction of planted quantum Tanner codes is motivated by a more basic classical
analogue. Recall that a classical Tanner code is specified by a A-regular graph I" and an inner code



Cin C FqA, where the code components correspond to edges of the graph, and the parity checks
impose the constraint that the local view of each vertex is a codeword in Cj,.

The standard method for ensuring a classical Tanner code C has positive rate is to require Cj,
to have sufficiently large rate > 1/2, and then to bound the number of resulting linear constraints
on C from the parity checks. However, we may alternatively simply require that Cj, contain the
all-1s vector 1 € FqA, so that C' then must contain the global all-1s vector 1 € Fy. If C' contains no
other nontrivial codewords, then it is a repetition code, which is typically unintersting classically.

However, we construct a quantum analogue of this construction, which is more nuanced, and
has interesting complexity theoretic implications. Indeed, whereas classically it is easy to achieve
linear distance and positive dimension by taking a repetition code, to the best of our knowledge
the only known quantum LDPC codes of linear distance and positive dimension are the recent
constructions of [PK22, 1.Z22, DHLV23|, which can in fact achieve linear dimension.

Recall that a quantum Tanner code C = CSS(Cx, Cz) [LZ22] is constructed by imposing con-
straints from a pair of classical codes C4,Cp C FqA on a square Cayley complex (V, E,Q), which is
a graph (V, E') with the additional high-dimensional structure of faces, or squares, in @; the qudits
of the code correspond to the n = |Q)| faces in Q.

To prove Theorem 4, we show that if we require the local all-1s vector 1 € FqA to lie in C'4 and
in C#%, and ¢ is relatively prime with n, then the global all-1s vector 1 € [y lies in C'z \ C)Jg and
Cx \ C’é, so in particular C = CSS(Cx, Cz) has dimension > 1.

The proof that 1 € Cly, Cﬁ implies 1 € C'x, Cz is immediate, as in the classical case. However,
we prove that 1 ¢ Cx, C# using a parity (or more generally, arity) mismatch: we argue that Cy
and C’é are spanned by vectors whose components sum to 0 € [, whereas the components of
1 € Fj do not sum to 0 by the assumption that ¢, n are relatively prime, so that the characteristic
p of IF, does not divide n.

The requirement that g, n are relatively prime requires some care to enforce. As n = |@Q| equals
the number of faces in an expanding square Cayley complex, it must be a multiple of the order of
a group on which there exist constant-degree Cayley expanders (see Section 3, and in particular
Section 3.3, for background on Cayley graphs and expansion). Therefore if we for instance focus
on the ¢ = 2 case, we need families of Cayley expanders over groups of odd order. However, many
well-known Cayley expanders, such as the Ramanujan graphs of [LPS88] and [Mor94], exclusively
use groups of even order. We therefore instead use the Cayley expanders given in Example 3.4 of
[LW93], for which the number of vertices is a power of any desired prime. While these graphs have
constant degree and constant expansion, we amplify the expansion to be almost-Ramanujan using
the techniques of [JMRW22].3

We still must show that the resulting planted quantum Tanner codes have good small-set
(co)boundary expansion and therefore good distance. By the results of [LZ22], it suffices to show
that the inner codes (C'4,Cp) can be chosen to possess a property called product-expansion (Def-
inition 8). This property was shown for random inner codes by [KP23, DHLV23|; we extend the
proof of [KP23] for our case of planted inner codes where 1 € C4,C%. As these inner codes are
constant-sized as n — 0o, the randomized construction can be made strongly explicit by a brute
force search.

An interesting consequence of our result is that we can construct planted quantum Tanner
codes C of positive dimension £ > 0 with inner codes C4,Cp of any desired respective rates

3This expansion amplification may be stronger than necessary, but for consistency with prior works and simplicity
of presentation, it is convenient for us to have almost-Ramanujan expansion.



Ry, Rp € (0,1); for instance, we can take R4 = Rp. In contrast, the prior technique of bounding
k by counting parity checks only implies that &k > —(1 — 2R4)(1 — 2Rp) - n, which never gives a
meaningful bound when R4 = Rp. Thus our construction allows instantiations in new parameter
regimes.

We also remark that while we only show how to plant a nontrivial codeword in the qLDPC
codes of [L.Z22], our techniques also apply to the codes of [PK22]; to avoid redundancy we do not
spell out the details.

1.4 Strongly Explicit SoS Lower Bounds

The Sum-of-Squares semidefinite programming hierarchy is one of the most powerful algorithmic
frameworks for approximating the satisfiability of CSPs (see [FKP19] for a survey). However, almost
all of the known hard instances (i.e. lower bounds) for this hierachy are given by randomized
constructions. Hopkins and Lin [HL22], building on the techniques of Dinur et al. [DFHT21],
constructed the first explicit unsatisfiable CSPs that cannot be refuted by a linear number of levels
of the SoS SDP hierarchy. In contrast, explicit lower bounds prior to their work applied to at best
a logarithmic number of levels of the SoS hierarchy.

Hopkins and Lin [HL22] proved their result by showing that hard instances for SoS can be ob-
tained from a family of qLDPC codes with small-set boundary and coboundary expansion. Explicit
such qLDPC codes, such as the quantum Tanner codes of [LZ22], then yield the desired explicit
hard CSPs.

Remark 5. The SoS lower bounds of [HL22] marked the first complexity theoretic application
of linear-distance qLDPC codes; the subsequent proof of the NLTS theorem [ABN23] provided a
second notable application. Such applications were perhaps surprising given that the construction
of asymptotically good qLDPC codes, first obtained by [PK22] and subsequently extended and
modified by [LZ22, DHLV23], was originally motivated in large part by applications to quantum
error correction.

However, the explicitness of the CSP construction in [HL22] was weak in the sense of Definition 6
below. One of the major questions left open by their work was to make this construction strongly
explicit [Hop23]. We apply our construction of planted quantum Tanner codes in Theorem 4 to
resolve this problem.

Definition 6 (Weak vs. strong explicitness). Let X = (x,)nen be an infinite family of objects
such that each z,, can be represented by a bitstring z,, € {0,1}%" of length a,,, where a, — oo as
n — o0o. We say that X is:

e weakly explicit (or simply “explicit”) if there exist a poly(ay,)-time algorithm A(n) that
outputs x,

e strongly explicit if there exists a poly(logn, log a, )-time algorithm A(n, i) that outputs the
ith bit of x,, for i € [ay].

We specifically say that a family of matrices is weakly (resp. strongly) explicit if for each n x m
matrix in the family, there is a poly(n,m) (resp. poly(logn,logm)) time algorithm to compute the
jth nonzero entry of the ith row, as well as the jth nonzero entry of the ith column.



Then a family of graphs is weakly (resp. strongly) explicit if the associated adjacency matrices
are weakly (resp. strongly) explicit. Similarly, a CSS code C = CSS(Cx = ker Hx,Cy = ker Hy)
is weakly (resp. strongly) explicit if the matrices Hx, Hz are weakly (resp. strongly) explicit.

As another relevant example, consider a family of CSPs given by ¢-LIN instances, which are
defined by n linear constraints on m variables over a fixed finite field IF;, such that each linear equa-
tion has < ¢ = O(1) nonzero coefficients. A family of such ¢-LIN instances is weakly (resp. strongly)
explicit if the ith linear equation can be computed in time poly(n,m) (resp. poly(logn,logm)).

Given a qLDPC code C = CSS(Cx = ker Hy,Cy = ker Hy) of locality ¢ and an arbitrary
element 3 € Cx \ Cz, Hopkins and Lin [HL22] considered the associated ¢-LIN instance Z¢ g with
m = my variables yi,...,yn and n linear constraints over IF, given by the system of equations
Hly = B for y = (y1,...,Ym). They showed that if C has (£(1),Q(1))-small-set boundary and
coboundary expansion, then at most 1 — (1) fraction of the constraints in Z¢ g can be satisfied,
but Z¢ g is hard to refute for 2(n) levels of SoS. Furthermore, they presented a reduction to reduce
the size of the constraints, thereby providing similarly unsatisfiable and hard instances of 3-LIN
over o, that is, of 3-XOR.

However, even if C comes from a strongly explicit family of qLDPC codes, the associated ¢-
LIN instance Z¢ g is only weakly explicit in general, as one must perform Gaussian elimination to
compute some 3 € Cx \ Cz, which takes poly(n,m) time.

Because our planted quantum Tanner codes in Theorem 4 by construction have 1 € Cx \ C’%,
they resolve this issue, and hence yield the following result.

Theorem 7 (Strongly explicit SoS lower bounds; restatement of Corollary 51 and Corollary 53).
The £-LIN instances Ic 1 for planted quantum Tanner codes C over any fized prime-sized alphabet
Fp, provide a family of strongly explicit instances such that each Zc1:

1. has ©(n) variables and constraints,
2. has satisfiability < (1 — (1)),
3. cannot be refuted by cn levels of the SoS hierarchy for a sufficiently small constant ¢ > 0.

Furthermore, there exists a strongly explicit family of 3-XOR (i.e. 3-LIN over Fy) instances that
also satisfies the three properties above.

We remark that [HL22] actually restricted attention to the binary alphabet ¢ = 2 case, though
their SoS lower bounds for /-LIN extend to larger prime alphabets. We suspect that their reduction
to 3-LIN similarly extends to larger alphabets, though for conciseness we do not check the details.

1.5 Open Questions

Our results raise the following open questions:

e Can our construction of NLT'S Hamiltonians from low-rate qLDPC codes lead to more progress
towards qPCP or hardness of approximation? For instance, perhaps the fact that low-rate
codes, which correspond to Hamiltonians with low-dimensional ground spaces, suffice for
NLTS will be helpful in constructing Hamiltonians with stronger hardness of approximation
guarantees.



e Our results highlight the usefulness of low-rate qLDPC codes, and suggest that for complexity
theoretic applications there is often little benefit to having high rate. However, to the best
of our knowledge, our planted quantum Tanner codes provide the only known “inherently”
low-rate qLDPC codes, and they still have high rate in some parameter regimes. In contrast,
there are many interesting classical low-rate LDPC codes such as Hadamard and Reed-Muller
codes, which have properties not shared by any high-rate codes. In the quantum case, can
similar stronger properties be obtained by allowing for low rate in qLDPC codes?

2 Notation

n

For a string y € Fy, we denote the Hamming weight by |y| = [{i € [n] : y; # 0}|. For subsets
S, T C Fy, we denote the Hamming distance by dis(S,T) = minseg et |s — /.

Unless explicitly stated otherwise, by a “code” we mean a linear subspace C' C Fy. The code
C has block length n, dimension k = dimp, (C), and distance d = minycc oy |y[, which can be
summarized by saying it is a [n, k, d], code. The dual code is C+ = {x € Fy:z-y=0vyeC}

For codes C; C ]FZZ’ for i = 1,2, the tensor code C; ® Cy C Fg”xm consists of all ny X ng
matrices where every column lies in € and every row lies in C. The dual of the tensor code is
(Cl ® CQ)J_ = Cf‘ ®F32 —I—FZI ® Cﬁ‘

Given a A-regular graph I' with n edges and an inner code Cj, C FqA, we denote the associated
classical Tanner code by C' = Tan(I', Ci,) C Fy, which is constructed as follows. We associate the
set of all edges in I' with the set [n], and we associate the set of edges incident to each vertex v in
I' with the set [A]. Then we define C' to be the set of all edge labelings y € Fy = FqE(F) such that
the labels of edges incident to each v € I' form a codeword in Cjy,.

For a pure quantum state [¢), we denote the density matrix by ¢ = [¢) (¢|. For a set S C Fy,
we let |S) = |S|1/2 Y scg |s) denote the uniform superposition over elements of S.

The quantum codes we consider in this paper are CSS codes, which are defined as follows.
For classical codes Cx,Cz C FZ]‘ such that C’)L( C (Y, the associated quantum CSS code C =
CSS(Cx,Cy) is defined by C = span{‘y + C)Jg> :y € Oz} C (C9®". This code has block length n,
dimension k = log, dim¢/(C) = dimg, (Cz)—dimg, (Cx), and distance d = Miny o\ cLuCx\CL) ly],
which can be summarized by saying that C is a [[n, k, d]]4 code.

If Cx = ker Hx and Cy = ker Hy for parity check matrices Hx, Hz in which each row and
column has Hamming weight < ¢, we say that C is a CSS code with check weight, or locality, < £.
A family of codes with constant locality £ = O(1) as n — oo is said to be LDPC. The family of
codes is (strongly) explicit if the associated families of parity check matrices Hx, Hz are (strongly)
explicit.

3 Review of Quantum Tanner Codes

In this section we review the construction and relevant properties of the asymptotically good quan-
tum LDPC codes of Leverrier and Zémor [LZ22, LZ23a], which are called quantum Tanner codes.
Although [LZ22, L.Z23a] present the construction over binary alphabets, we consider arbitrary finite
field alphabets; all their results and proofs extend to this more general case with just some ‘+’ signs
changed to ‘=’ signs for fields of characteristic # 2.



Recall that a classical Tanner code is constructed by imposing constraints from an inner code
on a graph (see Section 2). In contrast, a quantum Tanner code C is constructed by imposing
constraints from two inner codes on a higher-dimensional object called a square Cayley complex.
In particular, C = CSS(Cx, Cyz), where both Cx, Cy are classical Tanner codes on graphs obtained
from a square Cayley complex, with distinct inner codes.

3.1 Construction

We now desribe the construction of a quantum Tanner code C = CSS(Cx,Cyz). We first need to
define a square Cayley complex. Recall that for a group GG and a subset A C G, the Cayley graph
Cay(G, A) has vertex set G and edge set {(g,ag) : g € G, a € A}. As described below, a square
Cayley complex is a sort of 2-dimensional generalization of a Cayley graph.

A square Cayley complex consists a tuple (V, E, Q) of vertices, edges, and faces (or “squares”)
that is specified by a group G and two generating sets A, B C G as follows. We typically take
|A] = |B] = A = O(1) as |G| = ©(n) — oo, and assume that A = A1 and B = B~! are closed
under inversion. The complex then has vertex set V = G x {0,1}?, edge set E = E4 U Ep for

Ej = {(g,z()), (ag,il) g c G, 1€ {0, 1}, a € A}
Ep ={(9,0),(gb,1j) : g € G, j € {0,1}, b € B},

and face set
Q = {(g,00), (ag,01), (gb, 10), (agb,11) : g € G, a € A, b € B}.

For 7,5 € {0,1}, let V;; = G x (4,). Define bipartite graphs I'g = (Voo U V11,Q) and I'1 =
(Vo1 U Vip, @) whose edges are given by pairs of vertices that form a diagonal in a square in @Q;
for instance, I'g has an edge between v € Vg and v’ € Vi if v, v share a face in Q). Observe that
both I'y and I'; have a unique edge associated to each square in (). Furthermore, the I';-edges
incident to a vertex v correspond to the squares in @ that contain v; we let Q(v) denote the set
of these squares. But by definition Q(v) consists of an A x B grid of squares. For instance, for
v = (g,00) € Vo then

Q(v) = {(g,00), (ag,01), (gb, 10), (agb,11) : a € A, b € B}.

Therefore given a square Cayley complex (V, E, Q) of degree A = |A| = |B| along with classical
codes C'4 C IF;;‘ = ]FqA and Cp C FqB = IFqA, we may define a quantum Tanner code C = CSS(Cx, Cy)
by

Cx = Tan(Ty, (Ca ® Cp)™)
Cyz = Tan(Ty, (Cx ® Cp)1).
That is, Cx and Cy are classical Tanner codes on the graphs I'y and I'y respectively, where the

inner codes are given by dual tensor codes. Because E(I'g) = E(I'1) = @, both Cx and Cz are
subspaces of FqQ.
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3.2 Locality and Dimension

We now describe some basic properties of C. By definition C has block length n = |Q|. Parity
checks for C'x are given by tensor codewords in C'4 ® Cp supported in the neighborhood Q(vg)
of any vy € Voo U V1. Similarly, parity checks for C'; are given by tensor codewords in C’j ® Cﬁ
supported in the neighborhood Q(v1) of any v1 € V1 UVjp. Because any such Q(vg), Q(v1) are either
disjoint or intersect in a single row or column, the parity checks for C'x and Cz are orthogonal, so
Cx+ C Cy. Furthermore, as |Q(vg)| = |Q(v1)| = A2, the quantum Tanner code C is LDPC with
locality A2 = O(1) as n = |Q| — oo.

Counting parity checks to bound the number of linear constraints on C'x, C'z implies that C has
dimension k > —(1 — 2R4)(1 — 2Rp) - n, where R4 = dim(C4)/A and Rp = dim(Cp)/A denote
the rate of C4 and Cp respectively.

3.3 Distance

To present the distance bound for quantum Tanner codes, we need the following definition.

Definition 8 (Product-expansion). A pair of codes C1,Cy C Fy is p-product-expanding if every
T € (C’f‘ ® C'Ql)l =y ®Fy +Fy @ C can be decomposed as x = ¢ + 1 for some ¢ € C; ® Fy and
r € Fy ® Oy satisfying

’.’L“ > pn(|c‘col + ’T|row)7

where |c|co1 denotes the number of nonzero columns in ¢ and |r|;ow denotes the number of nonzero
rows in r.

It is immediate that product-expansion yields a bound on the distances of the associated codes:

Lemma 9 (Well known). If the pair C1,C2 C Fy is p-product expanding, then Cy and Ca have
distance > pn.

Proof. Let x € C1 ® Fy have its first column be a minimum-weight nonzero codeword of C1, and
have all other columns be 0. Then p-product-expansion implies that Cy has distance |z| > pn. A
similar argument holds for Cs. O

The following result bounding the product expansion of random pairs of codes was shown
independently by [KP23] and [DHLV23], though only the former explicitly considered non-binary
alphabets.

Proposition 10 ([KP23]). Fiz any finite field F,. For every fized € > 0, there exists a constant
p = p(e) >0 and a function 6(n) = d(n;e) — 0 as n — oo such that the following holds. For every
pair of integers ki, ka € (en, (1 — €)n), if C; € Fy for i = 1,2 is drawn uniformly at random from
the set of linear codes of dimension k;, then with probability > 1 — §(n) the pair (C1,C3) will be
p-product-expanding.

Applying Proposition 10 with a union bound over (C,Cs) and (Cf-, Cy) immediately yields
the following corollary.

Corollary 11 ([KP23]). Defining all variables as in Proposition 10, then with probability > 1 —
26(n) both (Cy1,Cs) and (Cf, Cy) will be p-product-expanding.

11



The distance bound for quantum Tanner codes will also rely on the Cayley graphs Cay(G, A)
and Cay(G, B) having sufficiently good expansion.

Definition 12. For a regular graph I' of degree A(T'), the (unnormalized) spectral expansion
A(T) is the second largest absolute value of an eigenvalue of the adjacency matrix of I'. If A(T") <
2y/A(T") — 1, then I' is Ramanujan. Meanwhile, if an infinite family of regular graphs I" all satisfy
AI) < A()Y/2+e() | then the family is almost Ramanujan. Here o(1) denotes any function of
A that approaches 0 as A — co.

Constructions of Ramanujan Cayley graphs have for instance been given by [LPS88] and
[Mor94]; the latter construction in particular is strongly explicit:

Theorem 13 ([Mor94]). For every prime power q > 3, there exists a strongly explicit family of
(¢ + 1)-regular Ramanujan Cayley graphs (I'y,)men with the number of vertices given by

[, =0 Gmoa2)
|V(Fm) - {qu(q4m _ 1)/2’ g=1 (mod 2).

The graphs in Theorem 13 can be used to instantiate strongly explicit linear-distance quantum
Tanner codes by [LZ22, LZ23a]. However, they are not quite sufficient for our purposes. Specifically,
using these graphs, our planted quantum Tanner codes and the resulting strongly explicit SoS
lower bounds described in Section 5 would hold only for alphabets I, of characteristic p > 7. This
restricton on the field size arises because the graphs in Theorem 13 have |V (I';,)| divisible by 2, 3,
and 5, but our results require Cayley expanders I' for which ¢ is relatively prime with |[V(T')|.

We therefore instead use the Cayley expanders given by Example 3.4 in [LW93], for which the
number of vertices is guaranteed to be a power of any desired prime. [LW93] showed that these
graphs have constant degree A and constant spectral expansion < A. By amplifying the expansion
to be near-Ramanujan by applying Theorem 1.2 in [JMRW22], we obtain the following result, which
we formally prove in Section 5.4.

Theorem 14 (Follows from [LW93, IMRW22]). For every prime p, there is an infinite set A C N
for which there exists a strongly explicit family of almost-Ramanugjan Cayley graphs (I'yy A)meN,AcA
where Uy A has |V (D a)| = p3™ vertices and has degree A. Furthermore, we may choose A such
that for every A € A, either A+1€ A or A—1¢€ A.

We are now ready the present the distance bound for quantum Tanner codes.

Theorem 15 ([LZ22, LZ23al). For every fixed p > 0, the following holds for all sufficiently large
A. Let C be a quantum Tanner code for which:

1. Cay(G, A),Cay(G, B) are almost-Ramanugjan graphs of degree A.
2. (Ca,Cp), (C%,Cp) are p-product-expanding.
Then C has distance d > cn for a constant ¢ > 0 depending only on p, A.

Recall that by Lemma 9, Condition 2 in Theorem 15 implies that C'4, Cp, Cj, C% have distance
> pA.

Condition 1 in Theorem 15 can be met using the strongly explicit Ramanujan graphs in The-
orem 13, or using the strongly explicit almost-Ramanujan graphs in Theorem 14. If C4,Cp CF qA
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are chosen to be random codes of some fixed rates 0 < R4, Rp < 1 for any sufficiently large con-
stant A, then Condition 2 is met by Corollary 11. Because A is a constant as n — 0o, we may
find Cy4,Cp in constant time by a brute force search, so the overall construction of C is strongly
explicit.

While [LZ22, LZ23a] only proved Theorem 15 in the case where Cay(G, A), Cay(G, A) are
Ramanujan graphs of degree A, their proof generalizes flawlessly to allow for almost-Ramanujan
graphs. Specifically, the proof of linear distance in Section 3 of [L.Z23a] defines “exceptional vertices”
using a parameter a = §2/256, where § denotes the relative distance of the inner codes. If we
for instance redefine a = 62/ A0 e can essentially carry through their exact same analysis
assuming Cay(G, A), Cay(G, B) are almost-Ramanujan. An additional factor of A/%0+o() arises
in the bound in their Lemma 10, and an additional A°®) factor arises in the bound in their
Lemma 11, but the proof of linear still goes through with these slightly worse parameters.

We suspect that almost-Ramanujan expansion A\ < Al/2+o() ig gtill stronger than necessary,
and it may in fact be sufficient to have spectral expansion A equal to some small constant fraction
of A. However, it is less transparent how to modify the proof of [LZ23a] for this case, so for
conciseness we do not pursue this direction.

3.4 Small-Set (Co)boundary Expansion

For our applications of quantum Tanner codes, we will need a stronger notion than distance, called
small-set (co)boundary expansion, which was first formally stated in the context of quantum codes
by Hopkins and Lin [HL22]. Below, for a code C, we denote |y|c = minycc |y + 7/|.

Definition 16 (Small-set (co)boundary expansion). Let C = CSS(Cx = ker Hx,Cz = ker Hz) be
a CSS code given by parity check matrices Hx € Fy***" and Hz € F;'2*". For c1,c2 > 0, we say
that C has (c1, cz)-small-set boundary expansion if it holds for every y € Fy with |y| < ein
that

YloL
|Hzy| > 62’ ‘CX'

mz
Similarly, C has (c1,c2)-small-set coboundary expansion if it holds for every y € Fy with
ly| < cin that

yles
Hxy| o, Wlog
mx

Small-set (co)boundary expansion immediately implies a bound on the distance of the code:

Lemma 17 (Well known). If C = CSS(Cx,Cz) of block length n has (c1,c2)-small set boundary
and coboundary expansion for ci1,co > 0, then C has distance > cin.

Proof. For every y € Fy \ Cx with |y| < ¢in, then ]y\c% > 0, so small-set boundary expansion
implies that |Hzy| > CQmZ‘y’C)L( /n > 0 and thus y ¢ Cz. An analogous argument shows that
Cx \ C’% has no elements of weight < ¢in. O

It was originally observed that quantum Tanner codes have small set (co)boundary expansion
in [HL22]. We remark that another proof is given implicitly by the decoder of Leverrier and

Zémor [LZ23a]. Specifically, there exists a constant ¢; > 0 such that for any errors ex,ez € F 1
of sufficiently low weight |ex|, |ez| < cin, the decoder of [LZ23a] takes as input the syndromes
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sx = Hxex and sz = Hzeyz, and outputs some e’y € ex +C5# and €/, € ez + Cx such that |e/y| <
Olsx). le5] < Olszl). Tt follows that lex|os < || < O(fsx]) and [ezles < || < O(fszl).
which are precisely the conditions required by small-set coboundary and boundary expansion,
respectively. The result below formally summarizes this small-set (co)boundary expansion.

Theorem 18 ([HL22, LZ23a]). For every fized p > 0, the following holds for all sufficiently large
A. Let C be a quantum Tanner code that satisfies Conditions 1, 2 in the statement of Theorem 15.
Then C has (c1, c2)-small-set boundary and coboundary expansion for constants c1,co > 0 depending
only on the values of p, A.

Note that Theorem 18 implies Theorem 15 by Lemma, 17.

As described in Section 3.3, [LZ23a] assume the Cayley graphs Cay(G, A), Cay(G, B) are Ra-
manujan, whereas we make the slightly weaker assumption that they are almost-Ramanujan. How-
ever, the decoding proof in [LZ23a] is similar to the distance proof, and the extension to almost-
Ramanujanness is nearly identical. Specifically, while Section 5 of [LZ23a] defines a parameter
a = 62€¢2 /219 we redefine this parameter to be 6262/A1/100, and carry through the rest of the proof
essentially as before. An additional factor of AY/?0+°(1) arises in the bound in their Lemma 15, and
an additional factor of A°1) arises in the bound in their Lemma 16, but otherwise the decoding
analysis goes through as before, with these slightly worse parameters.

Leverrier and Zémor [LZ23b] show how their decoder can also be used to decode the asymptoti-
cally good qLDPC codes of Panteleev and Kalachev [PK22]; again in this case the decoder outputs
an error whose weight is linear in the syndrome weight. Therefore a similar result as Theorem 18
holds for the codes of [PK22] as well.

4 NLTS Hamiltonians from Codes of Arbitrary Dimension

In this section, we show that quantum LDPC codes with linear distance and an appropriate cluster-
ing property yield NLTS Hamiltonians, regardless of the code dimension. This result improves upon
the prior construction of NLTS Hamiltonians of [ABN23], which required the stronger assumption
that the code dimension be linearly large. For simplicity in this section, we restrict attention to
binary alphabets, though we expect the results to generalize naturally to qudits for more general
alphabet sizes.

4.1 Setup of the Local Hamiltonian

We let C = CSS(Cx,Cz) = span{|y + Cx) : y € Cz} be an [[n, k, d]]2 quantum LDPC CSS code,
where all parity checks have weight < ¢. We assume C belongs to a family of such codes with
constant relative distance d/n = Q(1) and constant locality ¢ = O(1) as the block length n — oc.
We will also assume that C satisfies the clustering property described in Definition 19 below. The
main novel aspect of our proof is that it holds for any nonzero code dimension k > 0. In contrast,
the prior NLT'S proof [ABN23] assumed the rate k/n is constant as n — oo.

Recent good qLDPC codes, such as the quantum Tanner codes of [LZ22], satisfy all of the
conditions above, and have constant rate. Our planted quantum Tanner codes in Theorem 32 also
satisfy these conditions, but in some parameter regimes have dimension 1 (i.e. inverse linear rate).
Hence our planted quantum Tanner codes provide examples of qLDPC codes of subconstant rate
where our NLTS result applies.
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Denote the parity check matrices of Cx and Cz by Hx € Fy'X™™ and Hy € Fy'?™" respectively,
so that C'x = ker Hyx and C; = ker Hz. By assumption all rows of Hx, Hz have < ¢ nonzero entries.
Also define G = {y € Fy : |Hxy| < emz}, and define G5, analogously. We assume C satisfies the
following clustering property for G and G, which is stated as Property 1 in [ABN23]. Below, we
denote |y|c = minycc |y + ']

Definition 19 (Clustering property [ABN23]). For constants ci,ca2,€9 > 0, we say that C =
CSS(Cx,Cyz) exhibits (c1, ca, €9)-clustering if for all 0 < e < ¢, the following hold:

. ve S/ € i (1 1 < > 270,
€ . . < >

This clustering property follows from small-set (co)boundary expansion (Definition 16), as is
shown below.

Lemma 20. If C has (¢}, c)-small-set boundary and coboundary expansion, then C has (c1, ¢z, €)-
clustering for ¢1 = 1/c,, ca = ¢y, €g = 1.

Proof. Assume that y € G, satisfies |y L < con = n. Let ¥ be the minimum-weight element of
y+Cx, so that Hzy' = Hzy and || = |y| oL Then the small-set boundary expansion implies that
|Hzy'|/mz > - |y'|/n, so \y[c)% = 1y| < (n/cymz)|Hzy'| < en/cly = cien. Thus we have shown

the desired clustering for G; an analogous argument applies to G. O

For the remainder of Section 4, we assume that C satisfies (c1, c2, €p)-clustering for some con-
stants ¢y, co,€9 > 0 as n — oo.
Following [ABN23], we define our ¢-local Hamiltonian H to be the code Hamiltonian

1
H= i(HX —|—Hz)

for

1 I—-XY
Hy =—
x=oo 2
yerows(Hx)

R D

m
z y€erows(Hyz)

Thus in particular the ground space of H is precisely the code space C = span{}y + C)l(> cyeCy}

While our general proof will follow that of [ABN23], our use of an uncertainty principle instead
follows the earlier work of [EH17]. Below we state the uncertainty principle we will use, which
appears implicitly in [EH17].

Lemma 21 (Uncertainty principle [HT03, EH17]). Let A, B be Hermitian observables with AB +
BA =0 and A?> = B?> = 1. Then for every (possibly mized) state p, at least one of the inequalities
| Tr(Ap)| < 1/241/2v/2 or | Tr(Bp)| < 1/2 +1/2v/2 holds.

For completeness, we present a proof of Lemma 21 from the following result for pure states,
which is given as Lemma 37 in [EH17], but previously shown by [HT03].
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Lemma 22 ([HTO03]). Let A, B be Hermitian observables with AB + BA =0 and A> = B?> =1,
and let |1) be a pure state. Letting AA% = (ip| A2 |p) — (1| A |)?, then AA2 + AB2 > 1.

Proof of Lemma 21. Let p = 3_ py [¢)) be a decomposition of p into an ensemble of pure states [¢)).
By Lemma 22, it holds for each 1 that (1| A [)? + (| B [40)? < 1, so either | (1| A [¢) | < 1/v/2 or
| (0| B ) | < 1/4/2. Partition the pure states into sets A, B so that the former inequality holds for
1 € A and the latter for ¢ € B. Then either py := Z¢6pr >1/20r 1 —psg=pp:= Z¢63pw >
1/2. Assume that p4 > 1/2; the proof for pg > 1/2 is identical. Then the desired result follows by
applying the triangle inequality:

ITr(Ap)] = |5 pu (01 ALy + 3 ps (6] AJ) SpA-12+p

1 1
B-1< —+ 2.
peA beB V2 2v2 2

O

We follow prior works such as [EH17, ABN23] in estabilishing circuit lower bounds for ap-
proximate ground states of H by showing that the measurement distributions of these states are
well-spread, in the following sense.

Definition 23. For p,0 > 0, A probability distribution D over F% is (u,d)-spread if there exist
So, S1 C Fg such that D(Sp) > p, D(S1) > u, and dis(Sp, S1) > on.

We specifically use following result, which appears as Fact 4 in [ABN23] but is similar to an

earlier result of [EH17]. Below, for an n-qubit state v, we let D;p( and Dg denote the distributions
over Fy obtained by measuring ¢ in the X and Z bases respectively.

Lemma 24 (Circuit lower bound [EH17, ABN23]). Let ¢ be a (possibly mized) quantum state on
n qubits such that the Z-measurement distribution Dg is (u,0)-spread. Then any circuit (on > n
qubits) that constructs 1 must have depth at least

110 752”
3 %%\ 4001og(1/p) )
4.2 Statement of Main Result on NLTS Hamiltonians

In this section, we state our main technical result, which implies that the code Hamiltonian H for a
CSS code with linear distance that exhibits the clustering property is NLTS, that is, its approximate
ground states cannot be constructed by constant-depth circuits. Crucially, we only assume that
the dimension of the code is positive.

Specifically, our main technical result below shows that the measurement distribution of every
approximate ground state of H is well-spread in either the X or Z basis.

Theorem 25. Let H be the code Hamiltonian for a [[n,k,d]]s CSS code C = CSS(Cx,Cyz) of
positive dimension k > 0 that exhibits (c1, ca, €g)-clustering. For any

1 . €0 C2 d
— . S 1
= 1000 mm{2’4c1’2qn ’ (1)
let p be an e-approzimate ground state of H, so that Tr(Hp) < e. Then at least one of D% or DY,
is (p, 0)-spread for p = .02 and § = ca.
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Lemma 24 immediately yields the following corollary.

Corollary 26 (H is NLTS). Define €,pu,0, and H as in Theorem 25. Then no e-approzimate
ground state of H can be constructed by a circuit of depth less than

1 | 5n 1
—log | ——F+——
3%\ 10010g(1/)
Our proof of Theorem 25 is similar to [EH17] in that we combine an uncertainty principle with
a decoding procedure to obtain uncertainty for approximate ground states. We furthermore use
the clustering property of C similarly to [ABN23]. As such, the key novel aspect of our proof is

the use of a “decoding” procedure that handles clusters of approximate ground states which do not
correspond to any true codeword.

4.3 Proof of Well-Spreadness for Approximate Ground States

In this section, we prove Theorem 25. Throughout this section, we maintain the notation in the
statement of Theorem 25, so that C = CSS(Cx,Cz) is a [[n, k, d]]2 CSS code exhibiting (c1, ¢z, €0)-
clustering, p is an e-approximate ground state of H for € as in (1), and p = .02, § = co.

4.3.1 Reducing to Well-Spreadness of Pure States with Small Syndrome

We will first show that D% and D/, are mostly supported inside G)O((E) and Gg(ﬁ) respectively, so
that up to a small loss in parameters we may assume they are entirely supported inside these sets.
We will also show that it suffices to consider pure states ¢’ = [¢)') (|, rather than arbitrary mixed
states p.

Formally, we may decompose our Hilbert space H = (C?)®" into orthogonal subspaces as

H = @ Xez foxc7
ex+Cx€ly /Cx,ez+Cz€Fy /Cy

where the choices of coset representatives in the above sum does not matter because by definition
Xez7¢xC = C for cx € Cx, ¢z € Cy. Observe furthermore that each subspace X¢ZZ¢x( is by
definition an eigenspace of the code Hamiltonian H with eigenvalue |Hxex|/2mx + |Hzez|/2mz.

Set

¢ = 1000¢,
and let
cse = P Xz ZexC.
ex+CX:‘erX‘Sﬁ/mx,ez+CZ:|Hzez|§E’mZ

Therefore C=¢ is the span of some of the eigenspaces of energy < ¢, and contains all of the
eigenspaces of energy < € /2. Let II,<o denote projection onto this subspace. Note that by
definition, every |¢/) € C=¢ has supp(D;p(/) - Ggl( and supp(Dg/) - G%.

We now reduce the task of proving Theorem 25 to the following proposition. Below, recall that
we carry the definitions of H, p, €, 1, from Theorem 25.
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Proposition 27. There exist sets S%, 5%, 5%, S, C F% such that dis(S%, S%),dis(S%,S}) > dn,
and such that for every pure state [y € C=¢, either

DY (S%), DY (SX) > i or DY (S%), DY (Sy) >, 2)
where p' = 1/4 — 1/4/2.

Below, we first prove Theorem 25 assuming Proposition 27; this proof uses relatively standard
techniques, though it is slightly tedious. We will subsequently prove the proposition, which contains
the key ideas for our result.

Proof of Theorem 25. Fix any mixed state p with Tr(Hp) < e. Our goal is to use Proposition 27
to show that either

D5 (S%). D% (SX) > or  DY(S%),D5(Sy) > p

For this purpose, we first decompose p =3, py [1) (| into a classical ensemble of pure states 9.
Then

where we have used the fact that C=¢ contains all eigenspaces of H of eigenvalue < €’/2. Therefore

2
Zm (| e —1—Zp¢ (W1 (I ~Tgea) ) > 1— = (3)

€

Proposition 27 implies that (2) holds for every |¢) = H.<u |0) /||[TLo<e [0) ||. Therefore if we let
Ux denote the set of ¢ for which the first inequality in (2) holds for |¢) and ¥ the set of ¢ for
which the second inequality in (2) holds for [¢/’), then either

ZPZ or sz

PeWx Pevy

N |~
l\.')\r—t

Assume the latter of the two inequalities above holds; the proof for the former is analogous. For
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b= 0,1, let I1% denote orthogonal projection onto span{|y) : y € S%}. Then by definition

DY(84) = Tr (Myp)
= prHHbz ) 117

>Zp¢ (T [9") || = 1T () = [

> Zm (T [ ) =1 ) = [2") 11)?
»

>l Ty (W) 1P =2 pyll 1) — &) |17
P P

Now by defininition we can bound the first term on the RHS above by restricting to the sum over
1 € ¥y and applying (2) with Dg (S%) = ||T1% |¢') ||* to obtain

Zm\lﬂb Y122 S pely [ | >

Pev

l\.’JM—l

Meanwhile, we can bound the second term by expanding || [¢/) —|¢’) ||? as in inner product to obtain

23 pull ) = [8) 12 = 4 pu(1 = (¥/]v))
P ¥
=4Zp¢(1— (| Teen [1))
<4Zp( (Tcec w>>

<9.%
< o
4e

_7/7

€

where the first two equalities above apply the definition of [¢)') = Il,<o |¢) /||[H.<e 1) ||, and the
second inequality holds by (3). Thus we have shown that

fo4e 11 4
Dosyy > - -
28225~ =5 55 1000 "

as desired. O

4.3.2 Decoding Clusters of Small-Syndrome States

To prove Proposition 27, we begin by using the clustering property of C to partition Gg( and GGZ/
into clusters, for which we will subsequently choose representative elements that we will use to
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define a decoding map for states |¢)') with small syndrome. Below, we first analyze the clustering
of Gezl; the case of Gg{ will be exactly analogous.

We consider clusters defined similarly as in [ABN23]. However, to obtain our improvement
over [ABN23], we will leverage an additional linear structure in the set of clusters (Property 2 in
Lemma 2 below), which ultimately allows us to use the uncertainty principle in Lemma 21.

Given y € Gezl, define a cluster Y C G% by

Yy = {y € GCZ/ Sy + y/|C)L( < 2c1€'n}.
The following lemma follows directly from our definitions.

Lemma 28. The clusters Y} fory € GGZ/ form a partition of G% satisfying the following properties:
1. Every pair of distinct clusters Y} # YZy/ satisfies dis(Y), YZy/) > con.
2. For ce Cygz, then YZy+C =Y} + ¢, and in particular YZHC =Y/ if and only if c € Cx.

Proof. We first show that the cluters form a parition of G€ZI. Fix some y € G%. Then for every
y €Y}, it follows that every y” € Yg’ has |y" + y‘C)L( <l|y"+ y’]c)% + |y + y\c)% < 4c1€'n. But by
assumption (see the statement of Theorem 25) 2¢’ < g and 4c1€’ < co, so because y” +y € GQZGI,
the clustering property implies that |y” + y|C§ < 2¢1€'n, so that y” € Y. Thus we have shown
that every ¥ € Y/ has Ygl C Y/, and by the same reasoning Y C Yg, SO Ygl =Y. Thus every
pair of clusters is either equal or disjoint, so the clusters Y form a partition of GEZ/.

Now every pair of distinct clusters Y # Ygl satisfies dis(Y, YZy/) > con, as if this distance was
< can, the clustering property would imply that it is < 2¢1€/n, which then implies that Y/ = YZy/.

It remains to show Property 2 in the lemma statement. For every y € G% and ¢ € Cz, by
definition Hz(y+c) = Hzy and thus Y1 is also a cluster in G¢, which is isomorphic to Y under
the isomorphism ' + ¢ + ¢; that is, Y ™° = Y 4+ ¢. If ¢ € C, then |y + (y + C)‘C)L( = 0 so that
y + ¢ € Y} and therefore Yéﬁc = YJ. Meanwhile, if ¢ € Cz \ Cy, then YZerC # Y}, as otherwise
it would follow that |y + (y + c)\c)% = |c\c§ < 2¢1€'n. But by assumption (see Theorem 25) C has
distance d > 2¢1€'n, so ]c|C§ > 2c1€n. O

Lemma 28 implies that Y/ has distinct translates by all ¢ + C’)Jg eCy/ C)Jg, where all represen-
tatives of a given coset of C)L( yield the same translate. We denote the collection of these translates
for a given cluster YZy by

Yy
V2 ={Y T ceCy).

. Yy . .
For each such collection )V, = ),” of clusters, we fix an arbitrary representative Y, (Y, el,.

Now for a given syndrome s = Hzy € F5'Z of some y € G, so that |s| < ¢my, then the set of

Y
bit strings with syndrome s is precisely the coset y + Cz. By Lemma 28, (y + Cz) N YZ(JJ;Z ) is
a coset of C¥, and is in particular therefore nonempty. Thus we may associate to s an arbitrary

Y
representative ez(s) € (y+ Cz) N YZ()J;Z).
We now let Decy be a unitary acting on n+myz qubits with the following “decoding” property:
for every y € GGZ/, it holds that

Decz |y) ®10) = |y +ez(Hzy)) ® |Hzy) .
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We let Declz be the channel acting on n qubits that simply applies Decz and traces out the syndrome
register. Formally, for every y € G%, then

Decy(ly) (yl) = ly + ez(Hzy)) {y + ez(Hzy)|.

Equivalently, Declz is the channel that performs a Z-syndrome measurement on its input |y), and
then adds ez(s) to the post-measurement state, where s = Hzy was the measurement outcome.

The channel Dec}, performs a weak form of decoding in the following sense. Recall that an
ordinary decoder in the Z basis for a CSS code maps all bit strings near a given codeword ¢ € Cz
to some element of the coset c—}—C’)l(. In contrast, as shown below, the key property of our decoding
channel Declz is that it sends all bit strings in a given cluster Y to elements of the same coset
c+ C')l( € C'Z/C)L(, though this coset may be far away from the cluster Y.

Lemma 29. For every cluster Y} and every pair of elements y,y' € Y}, then y' + ez(Hzy') €
Y+ EZ(HZy) + C)L(.

Y
Proof. By definition ez(Hzy) € y+ Cz and ez(Hzy') € y' + Cz both lie in the cluster YZ(J);Z).

Yy
Therefore by Lemma 28, both ez (Hzy') and y'+(y+ez(Hzy)) belong to both ¢/ 4+Cz and Y, (ygz ),
and thus ez (Hzy') € y'+(y+ez(Hzy))+Cx, or equivalently, y'+ez(Hzy') € y+ez(Hzy)+Cx. O

To conclude this section, we extend all of the clustering terminology and results above for Gez,
to their analogues for Ggl(. Specifically, we similarly obtain a partition of Ggl( into clusters Yy for

/ . . / Y . .
y € G%. We again conclude that each cluster Y)Zé in G has a set y)Y(X of distinct translates by
all c+ C# € Cx/C%. We fix arbitrary representative clusters Yy (Vy) € Yy, and assign to each

syndrome s = Hxy for y € G§ an element ex(s) € (y + Cx) N YX(y;?). We then obtain an
X decoding unitary Decx and channel Dec%, which are defined analogously to their Z analogues,
except the syndrome measurement and error correction steps are performed in the X basis instead
of the Z basis. Observe that Deck and Dec}, commute, so we can define Dec! = Deck Decl, =
Dec}, Decl.

4.3.3 Applying Decoding to Prove Well-Spreadness

We now complete the proof of Proposition 27, which as shown above in turn implies Theorem 25,

by applying the uncertainty principle in Lemma 21 to the decodings of small-syndrome states for
H.

Proof of Proposition 27. Because C has dimension k > 0, the space Cz/Cx = (Cx/Cz)*’ is
nonzero, so there exist ¢x € Cx \ C%, éz € Cz\ C')L( such that ¢y - ¢z = 1. Fix an arbitrary
pair of such elements ¢x, ¢z, so that X := X and Z := Z°X are anticommuting logical operators
for the code C.

For b = 0,1, define

Sk ={ye G\ ¢z (y+ex(Hxy)) = b}
Sy ={y € Gy :ex - (y+ez(Hzy)) = b}.

Then by Lemma 29, for a given cluster Y/ in Ge, ally € Y/ have y' + ez (Hzy') lying in the same
coset y+ez(Hzy)+Cx, and thus all ' € Y have the same value of ¢x - (y' +ez(Hzy')) = ¢x - (y+

21



ez(Hzy)). Therefore ally’ € Y/ lie in the same set 5%, where b = ¢x - (y+ez(Hzy)). It follows from
Lemma 28 that dis(S%, SL) > con = dn. Analogous reasoning implies that dis(S%, S%) > con = dn.
It remains to be shown that (2) holds for every |¢') € C¢'. By Lemma 21, either | Tr (X Dec! ()| <
1/241/2v/2 or ]Tr(ZDec (¥))| < 1/2 4 1/2V/2. Assume the latter; the proof for the former is
analogous Now because Z by definition commutes with Decy, the distribution from measuring Z
on Dec!(¢) = Dec Deck ('), or equivalently on Decy (Deck (¢’ ® |O> D) Dec&, is the same as
the distribution from measuring Z on Decy(¢'). Therefore | Tr(Z Decy (¢'))| < 1/2+1/2v/2. But
by definition if we expand [¢') = ZyeGez' Yy |y), then it follows that

} n 2\7 > Tr(Z Decy (¢/))

= Tr((Z @ 1) Deez(|4') (/| @ [0) (0]) Dec))

(/| @ (0] Deck ) ((Z @ I) Decy [0') @[0))

= Z (y+ez(Hzy)| @ (Hzyl (%)T
yeGg

>y~ ezl 1y ey (Hyy)) @ |Hyzy)

yEG%
— cx-(y+ H 112
- Z (—1)°x (wtez( Zy))|%|
yGG?
=2 = 2 el
yesy yesy,

=Dy (5) = Dy (5}
Th?n becauselD? is supported inside G% = S% U S% by the definition of /', it follows that
DZ (S%) + Dg (S}) = 1, so we must have
1 /

1
4 4\/5 - ,U, ’
as desired. 0]

DY (5%), D} (S) >

5 Planting Codewords in QLDPC Codes

In this section, we show how to plant a nontrivial codeword in the quantum Tanner codes of [LZ22],
thereby ensuring the code has positive dimension regardless of other parameters in the instantiation.
For instance, when the inner codes Cy, C'p are chosen to be of rate 1/2 in the quantum Tanner code
construction, the only prior method for bounding dimension, namely by counting parity checks,
fails to ensure the dimension of the global code is positive (see Section 3). However, our planted
construction of quantum Tanner codes has positive dimension regardless of the rates of the inner
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codes, and thus provides a new way to ensure positive dimension, that works in previously unfeasible
parameter regimes. We remark that a similar technique also works for the codes of [PK22], though
we do not present the details to avoid redundancy.

Using the strongly explicit nature of the planted codeword, we apply our construction to improve
upon the explicit SoS lower bounds of [HL22] to obtain strongly explicit SoS lower bounds.

5.1 Intuition: Planted Classical Tanner Codes

In this section, we present the simpler case of how to plant a codeword in a classical Tanner code,
which motivates our construction in the quantum case.

Recall that a classical Tanner code C' = Tan(I', Cj,) C Fy is constructed from a A-regular graph
I" with n edges and an inner code Cj, C ]FqA as follows. We associate the set of all edges in I with
the set [n], and we associate the set of edges incident to each vertex v € I' with the set [A]. Then

we define C' to be the set of all edge labelings y € Fy = Ff () Such that the labels of edges incident
to each v € T form a codeword in Cj,.

The standard method for ensuring that the rate R of C' is positive (and in fact linear in n) is to
require that Cj, be a linear code of rate R;, > 1/2, so that by counting linear constraints it follows
that R > 1 —2(1 — Ryy).

However, if we only care about ensuring that R > 0, we may instead simply require that Cj,
contains the all-1s vector 1 € FqA, as then by definition the global all-1s vector 1 € Fj must lie
in C. If the resulting “planted” classical code has no other nontrivial codewords, it is simply a
repetition code, which is typically uninteresting classically.

However, below we construct a quantum analogue of such planted codes, which are more difficult
to construct than their classical counterparts, and yield interesting complexity theoretic applications
regardless of their rate. For instance, because the planted codeword is trivial to describe and
therefore strongly explicit, we improve the explicit SoS lower bounds of [HL22| to be strongly
explicit. Furthermore, in Corollary 26 of Section 4, we showed that such qLDPC codes of arbitrarily
small rate also yield NLTS Hamiltonians.

5.2 Construction of Planted Quantum Tanner Codes

In this section, we present our construction of planted quantum Tanner codes. This construction
can be viewed as a quantum analogue of the planted classical Tanner codes described in Section 5.1.
The quantum case requires significantly more care, as desribed below.

The following proposition presents our paradigm for planting a nontrivial codeword in a quan-
tum Tanner code

Proposition 30. Let C be a quantum Tanner code as defined in Section 3.1 such that the following
hold:

1. The all-1s vector 1 € }FqA lies in C4 and in Cﬁ.
2. n =1|Q| = |G||A]||B| is relatively prime with q.
Then the all-1s vector 1 € FqQ lies in Cz \ Cx and in Cx \ Cy.

Proof. Because 1 € (4, the components in every given codeword of C’j sum to 0. Therefore every
codeword in Cj ® O+, and thus also in C’é, has components summing to 0, as C’é is by definition
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spanned by codewords in C’j ® C’é supported in neighborhoods of vertices in the square Cayley
complex. Thus as the components of 1 € FqQ sum to n # 0 in [Fy, because n is relatively prime with
q, it follows that 1 ¢ Cé.

However, as 1 € IFqA lies in O, it follows that 1 € FQAXA lies in (Cy ® Cp)™*, and thus 1 € FqQ
lies in Cx = Tan(Ty, (Ca ® Cp)™).

Thus we have shown that 1 € Cx \ C%. Analogous reasoning shows that 1 € Cz \ Cx. O

To instantiate the construction in Proposition 30 such that Condition 1 is satisfied, we will
choose C'4 and Cé at random from the set of codes of some constant rate that contain 1. The
following result, which we prove in Section 5.3, shows that such random “planted” codes are still
product-expanding, thereby providing a planted analogue of Corollary 11.

Proposition 31. Fiz any finite field F,. For every fized e > 0, there exists a constant p = p(e) > 0
and a function 6(n) = d(n;e) — 0 as n — oo such that the following holds. For every pair of
integers ki, ke € (en, (1 —€e)n), if C; CFy for i = 1,2 is drawn uniformly at random from the set
of linear codes of dimension k; that contain 1 € ¥y, then with probability > 1 — d(n) both (Ch, Cy)
and (Ci-, Cy) will be p-product-expanding.

Meanwhile, to ensure that Condition 2 in Proposition 30 is satisfied, we will choose the graphs
Cay(G, A), Cay(G, B) to be almost-Ramanujan graphs from the family given by Theorem 14, which
we restate below and prove in Section 5.4:

Theorem 14 (Follows from [LW93, IMRW22]). For every prime p, there is an infinite set A C N
for which there ezists a strongly explicit family of almost-Ramanugjan Cayley graphs (I'y, A)men,AcA
where Ty A has |V (D a)| = p3™ vertices and has degree A. Furthermore, we may choose A such
that for every A € A, either A+1€ A or A—1€ A.

Combining the results above, we immediately obtain the following strongly explicit construction
of quantum Tanner codes with a planted all-1s vector.

Theorem 32 (Planted quantum Tanner codes). For every finite field Fy, there exist constants
c1,co > 0 such that there is a strongly explicit infinite family (C(”))nHOO of quantum LDPC CSS

codes for which every C = CSS(C’;?), C(Zn)) with C’E?), C(Zn) C Fy has the following properties:

1. C™ has (cy,co)-small-set boundary and coboundary expansion (and therefore has distance
> cin by Lemma 17).

) n lies in CN O and in O\ T
2. The all-1s vector 1 € Fy lies in Cx’ \ C,” and in C, "\ Cx’ .

In particular, for a sufficiently large constant A and a sufficiently small constant p > 0, such a
family (C™), oo is given by quantum Tanner codes, where we choose Cay(G,A) = Cay(G, B)
from a strongly explicit family of A-regular almost-Ramanujan graphs given by Theorem 14, and
the inner codes Cy,Cp C FqA are found by a brute force search to ensure that 1 € Cy, C’ﬁ and that

(Ca,Cg),(Cx,C%) are p-product expanding.

Proof. By Proposition 31, if p > 0 is sufficiently small and A > 0 is sufficiently large then we can
find codes Cy4,Cp C IFqA satisfying the criteria in the theorem statement, namely that 1 € Cy, C%
and that (Ca,Cg), (C%,C%) are p-product expanding.
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Furthermore, choose any fixed prime p relatively prime with ¢, and let Ag be sufficiently large
and ¢1, ¢ > 0 be sufficiently small constants such that Theorem 18 implies that all C(™ have (c1,¢2)-
small-set boundary and coboundary expansion as long as Cay(G, A) = Cay(G, B) is chosen to be
an almost-Ramanujan graph of degree A > Ay from the family (I';, A)men given by Theorem 14,
where |V (I, a)| = p*™. Because Theorem 14 guarantees that A C N is infinitely large and consists
of the union of pairs of consecutive integers, we can always find some sufficiently large A € A that
is relatively prime with ¢ and that satisfies A > Ag. Thus we indeed obtain the desired Cayley
expanders Cay(G, A) = Cay(G, B) = I',.a for m € N, where |G||A||B| = p®™A? is relatively prime
with q.

Now we have shown that the instantiation of quantum Tanner codes above satisfies Conditions 1,
2 in Proposition 30, so this proposition implies that 1 € Fy lies in Cg) \C(Zn)L and in C(Zn) \C'E?)L.
Meanwhile, as described above, Theorem 18 implies that €™ has (c1, c2)-small-set boundary and
coboundary expansion.

Because the almost-Ramanujan graphs in Theorem 14 are strongly explicit, and the inner codes
Ca,Cp have constant size beacuse A is constant as n — oo, the parity check matrices H (n), H(Zn)
for C'g?),C(Zn) respectively are strongly explicit, which by definition means that C( is strongly
explicit. ]

In Theorem 32, we may choose C4,Cp to have any fixed rates 0 < R4, Rp < 1 for sufficiently
large A. Because C has rate R > —(1 — 2R4)(1 — 2Rp) (see Section 3.2), it follows that we can in
fact ensure that the the codes in Theorem 32 have any desired constant rate 0 < R < 1.

However, our construction alternatively allows us to obtain quantum Tanner codes of positive
dimension for R4, Rp in previously impossible parameter regimes. Because Theorem 32 ensures
that 1 € Cz \ Cx, it follows that C always has dimension dim(C) = dim(Cz) — dim(Cx) > 1,
even when we choose R, Rp to be constants for which the bound R > —(1 — 2R4)(1 — 2Rp)
is meaningless. For instance, we can choose R4 = Rp, or take both R4, Rp < 1/2, in which
case counting parity checks fails to show that the resulting quantum Tanner code C has positive
dimension. Nevertheless the planted all-1s vector ensures that even in this case C must have
dimension > 1.

5.3 Proof of Product-Expansion for Planted Inner Codes

In this section we prove Proposition 31. We begin with the following lemma.

Lemma 33. If (C1,C4) is p-product expanding and C7 C Cy is a codimension-1 subcode, then
(C},Cy) is p*/2-product expanding.

Proof. Fix an arbitrary » € C]®Fy +F7 ®Ca. Our goal is to show that there exists a decomposition
x = c+r for some c € C] @ F and r € F} ® Cy satisfying

2
n
|$‘ > %(|C|Col + ‘r|row)- (4)

If |2| > p?n?, then any decomposition = = ¢ + r suffices, as the right hand side above is always at
most p?n/2 - 2n = p?n?.
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Therefore assume that || < p?n. By the p-product expansion of (Cf,C3), there exists some
decomposition z =c+r force C1 ® IFg and r € IF;‘ ® Cy such that

p°n > || > pn(lcleol + 7]row)- (5)

Meanwhile, by the definition of x, there exists some decomposition x = ¢ + ' for ¢ € C] ® Fy
and " € Fy ® Cy. Lettingy = c—c =7 —r, then y € C; @ F} and y € F} ® Cy, so y €
C1 ® Cy = C] ® Cy + span{a} ® Cy. Therefore we can decompose y = w + z for w € C] ® Cy
and z € span{a} ® Cy. It follows that ¢ = ¢’ +y = (¢ +w) + z, where ¢/ +w € C] ® F; and
z € span{a} ® Cy. That is, every column of ¢/ + w lies in C7, and every nonzero column of z is a
scalar multiple of a ¢ C]. Thus the ith column of ¢ is not in C] if and only if the ith column of z
is nonzero. But by Lemma 9, Cy has distance > pn, and therefore if z € span{a} ® C5 is nonzero
then z has > pn nonzero columns, which implies that ¢ has > pn columns that are not in C7, so in
particular ¢ has > pn nonzero columns. But this assertion that |c|co1 > pn contradicts (5), so our
assumption that z is nonzero must have been false. Therefore z = 0, so ¢ = ¢’ +w € C] ® F}. Thus
x = ¢+ provides our desired decomposition of z satisfying (4), as we have shown that ¢ € C] ®F q
and r € Fy ® Cy in fact satisfy the stronger inequality (5). O

In light of Lemma 33, we can reduce the problem of proving Propositive 31 to proving the
following result.

Proposition 34. For every fized ¢ > 0, there exists a constant p = p(e) > 0 and a function
d(n) = 6(n;e) — 0 as n — oo such that the following holds. For every pair of integers ki, ko €
(en, (1—e€)n), if C1 C Fy is drawn uniformly at random from the set of all linear codes of dimension
k1, and Cy C Fy is drawn uniformly at random from the set of linear codes of dimension ko that
contain 1 € Fy, then with probability > 1 — d(n) the pair (C1, Cs) will be p-product-expanding.

We first show how Proposition 34 implies Proposition 31, and then we will prove Proposition 34

Proof of Proposition 51. Let C1,Cy C Fy be random codes as in the statement of Proposition 31.
Let p be the probability that a random code in Fy of dimension k| = ki1 — 1 contains 1 € Fy. We
draw a k}-dimensional subcode C] C C} as follows:

e With probability 1 — p, C] is drawn uniformly at random from the codimension-1 subcodes
of C; that do not contain 1.

e With probability p, C{ is drawn uniformly at random from the codimension-1 subcodes of C}
that contain 1.

Then because C is a random k;j-dimensional code containing 1, by construction Cf is a uniformly
random k}-dimensional code (correlated with C1), as can be seen by conditioning on the events
that 1 € ] and 1 ¢ C]. Thus Proposition 34 implies that there is a sufficiently small constant
o = p'(e) > 0 such that (C{L,Cg) is p/-product-expanding with probability — 1 as n — oo.
Lemma 33 then implies that (Ci,Cs) is p := p’ 2 /2-product-expanding with probability — 1 as
n — 0.

By similar reasoning as above, (Cy,Cy) is also p = p/ 2 /2-product-expanding with probability
— 1 as n — oo. Then the desired result follows by union bounding over the events that both
(C{, C3) and (C1,Cs) are p-product expanding. O
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It remains to prove Proposition 34. For this purpose, we adapt the proof of Proposition 10
given by Kalachev and Panteleev [KP23]. Specifically, [KP23] show that a pair of random codes
(C1,C3) of any fixed rates < 1 are product-expanding with high probability for sufficiently large
block lengths; we want to show that (Cp,C3) are still product-expanding with high probability
when conditioning on the event that 1 € Cy. To avoid redundancy with [KP23|, we will simply
describe the necessary modifications to their proof of Proposition 10 (Theorem 1 in their paper
[KP23]) for this case where we condition on 1 € Cs.

To begin, we recall the following definitions from [KP23]. Below we denote the g-ary entropy
function by H, : [0,1] — [0, 1], so that

Hy(r) = xlog,(q¢ — 1) — zlog,x — (1 — x)log,(1 — x).

We also say that a subspace V' C Fy is a-sparse if it is spanned by vectors of Hamming weight
< an.

Definition 35 (Property (x) [KP23]). A code C' C Fy of dimension n —r has property (x) if the
following holds for o = H;'(r/8n): for every m € {1,...,r} and every a-sparse m-dimensional

subspace V' C Fy, then dim(C' NV) < m/2.

[KP23] prove Proposition 10 (their Theorem 1) by consider the following two events Ej, Ey for
a pair of random codes C1,Cy C Fy of respective dimensions ki, k2 € (en, (1 — €)n). Recall here
that € > 0 is any fixed constant, and p = p(e) > 0 is a sufficiently small constant depending only
on €.

1. Ey is the event that there exists z € C1 ® IE';- + IF;- ® Cy of weight |z| < 2pn? and of rank
rank(z) > e.

2. Ej is the event that Cy or Co does not have property ().
To prove Proposition 10, [KP23] show the following:

Lemma 36 ([KP23]). If C1,Cy C Fy are random codes of respective dimensions ki, ks € (en, (1 —
€)n), then for all sufficiently large n,

1. Pr[E;] < 5g<"*/8,
2. Pr[Es] < 16¢~"/8.
3. If Ey, Ey do not occur then (C1,C3) is p-product-expanding.

Lemma 36 directly implies Proposition 10. Similarly, the following lemma directly implies
Proposition 34:

Lemma 37 ([KP23]). If C1,Cy C Fy are random codes of respective dimensions ki, ks € (en, (1 —
e)n), and I denotes the event that 1 € Ca, then for all sufficiently large n,

1. Pr[E|F] < 5q~<'n*/8+n,
2. Pr[Ey|F] < 16¢g—"/64.

3. If Eq, By do not occur then (C1,C2) is p-product-expanding.
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Item 3 in Lemma 36 and item 3 in Lemma 37 are identical. Furthermore, as Pr[F| > ¢~ ",
then Pr[E|F] < Pr[Ey]/Pr[F] < Pr[E)] - ¢", so item 1 in Lemma 36 directly implies item 1 in
Lemma 37.

Therefore to prove Lemma 37 and therefore Proposition 34, it remains for us to prove item 2 of
Lemma 37. That is, it suffices to show that conditioned on F, each of C; and C5 has property (x)
with probability > 1 — 8¢~*/64. As (] is a random code, Lemma 5 in [KP23] (which they use to
show item 2 in Lemma 36) implies that Cy has property () with probability > 1 — 8¢~*/%. Thus
the following lemma completes the proof of Lemma 37, and therefore of Proposition 34, and in turn
of Proposition 31.

Lemma 38. If C C Fy us drawn uniformly at random from the set of k = (n — r)-dimensional
codes that contain 1 € Fy, then C has property (x) with probability at least

4q—r/64

1- 1— g /64"

To prove Lemma 38, we will use the following technical result, which appears as Lemma 3 in
[KP23].

Lemma 39 ([KP23]). For every v-dimensional subspace V. C Fy, the probability that a uniformly
random u-dimensional subspace U C Fg has dim(U NV) > w is < 4q_w(”+w_v_“).

We will also need the following result on random planted codes.

Lemma 40. Let C C Fy be drawn uniformly at random from the set of k-dimensional codes that
contain 1 € Fy. Then for every fired (n — 1)-dimensional subspace W C Fy such that 1 ¢ W, the
intersection C N W is a uniformly random (k — 1)-dimensional subspace of W.

Proof. Because 1 ¢ W and 1 € C, we must have dim(CNW) =k —1, so C =span{1} @& (CNW).
That is, C' is uniquely determined from C'N W, and each (k — 1)-dimensional subspace W/ C W
gives a distinct C' = span{1, W’}. Thus because C' is drawn uniformly from its allowable set of
vector spaces, Pr[C' N W = W] is the same for all W', O

We are now ready to prove Lemma 38.

Proof of Lemma 38. We simply modify the proof of Lemma 5 in [KP23] to account for the condition
that 1 € C. Recall that o = H L(r/8n). Let C C [y be a uniformly random code that contains
1 € Fy. We want to show that with high probability over the choice of C, it holds for every
m € {1,...,r} and every a-sparse m-dimensional subspace V' C Fy that dim(C'NV) < m/2.

Fix such an m and V. We will first show that

Pr[dim(C' N'V) > m/2] < dgs1™". (6)

Union bounding over all m and V' with this inequality will then give the desired result.

To prove (6), we consider the the cases of small m and large m separately. In both cases, we
will use Lemma 40 to relate C NV to the intersection of a truly random code with V', so that we
can apply Lemma 39 to bound Pr[dim(C' NV)] > m/2.

28



1. Assume that m < 1/a. As V has a basis consisting of m a-sparse vectors, all elements of V
are supported within < an-m < n components, so there is some component 7 € [n] on which
all z € V have z; = 0. That is, letting II; : Fj — F, denote projection onto component i,
then V' C II; 1(0).

Now as 1 ¢ II;'(0), Lemma 40 implies that C' N II; (0) is a uniformly random (k — 1)-
dimensional subspace of IT;(0).

Letting p be the probability that a random k-dimensional subspace of Fy lies inside H;I(O),
we may sample

7

Unif (IT; 1(F, \ {0})), with probability 1 — p,

)

{Unﬁarﬂm)\«jmrglm»% with probability p
C ~

so that the vector space
U := span{c, (C NTI;1(0))}

is a uniformly random k-dimensional subspace of Fy. Then because V' C II; L(0) so that
CNV=CcnI;(0)nvcuny,
it follows by Lemma 39 that
Pr[dim(CNV) >m/2] < Prl[dim(UNV) > m/2]
< 4q~ /2 (ntm/2=m—k)
< dgmm/A,

where the final inequality above holds because k =n —r and m € {1,...,r}. Thus (6) holds
in this case where m < 1/a.

2. Assume that m > 1/a. Again sampling U as in the m < 1/« case above, then U,C are
k-dimensional spaces with dim(U N C) > k — 1. Thus dim(CNV) < dim(U NV) + 1, so by
Lemma 39,

Pr[dim(CNV)>m/2] < Pr[dim(UNV)>m/2 —1]
< 4q~(m/2=D)(ndm/2=1-m—k)
< 4q~(1/2=e)m(n+(1/2—a)m—m—(n-r))
< 4g-im(r—im)
< 4q_%m7".
where the third inequality above holds because m > 1/« and kK = n — r, and the fourth

inequality holds because a = H,'(r/8n) < H,'(1/8) < 1/8, and the fifth inequality holds
because m € {1,...,r}. Thus (6) holds in this case where m > 1/a.

Now it is well-known that there are |[{z € Fy : [z] < an}| < q"a(®)" distinct a-sparse vectors
(see for instance Proposition 3.3.3 of [GRS22]), so there are at most ¢™Ha(®) = ¢m/8" Jistinct

a-sparse m-dimensional subspace V' C Fy, where we are using the definition of o = H L(r/8n).
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Union bounding over all such V', it follows from (6) that the probability that there exists an a-sparse
m-dimensional subspace V' with dim(C' N V') > m/2 is at most

qmr/Sn . 4q7%mr — 4qur/64'

Finally union bounding over m € {1,...,7}, we conclude that the probability that that there exists

some m € {1,...,r} with some a-sparse m-dimensional subspace V with dim(C' N'V') > m/2 is at
most
Z Ag—mr/6h < dqr/0t
- 11— q—r/64
Thus C has property (x) with probability > 1 — 4q=r/64 /(1 — g/ 64), as desired. O

5.4 Construction of Strongly Explicit Expanders

In this section, we present the proof of Theorem 14, which follows from the expander construction
of [LW93] along with the expansion amplification technique of [JMRW22]. However, there are
some details we need to verify to prove Theorem 14, specifically that the construction of [LW93] is
strongly explicit.

We begin by describing the Cayley expanders given in Example 3.4 of [LW93], which are notable
because the number of vertices equals a power of any desired prime p. In particular, by choosing
an odd prime, we obtain Cayley expanders on an odd number of vertices, which is important for
our planted quantum Tanner codes over Fo due to Condition 2 in Proposition 30. In contrast, the
Ramanujan Cayley graphs of [LPS88] and [Mor94| have an even number of vertices.

5.4.1 Base Expander Construction [LW93]

This section presents the Cayley expanders given in Example 3.4 of [LW93]. For simplicity we
restrict attention to expanders constructed over SLg, but [LW93] shows that a similar construction
over SLj for any k > 2 also yields Cayley expanders.

Fix a prime p. For every t € N, define

G(t) = ker(SLy(Z) — SLo(ZJtZ)),

where the homomorphism on the right hand side above simply maps all matrix entries to their
value (mod ¢). [LW93] shows that there exists a finite generating set S = S(p) for G(p). They
then define the Cayley graphs

m = Cay(G(p)/G(p™*), 5), (7)

for which they show the following:

Theorem 41 ([LW93]). There exists a constant X < A such that each Cayley graph T given
by (7) has spectral expansion < \. Furthermore, T, has p*™ vertices and is A = |S|-regular.
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5.4.2 Strong Explicitness of Base Expander Construction

In this section, we show that the expanders in Section 5.4.1 are strongly explicit.
We begin with the following well-known lemma. For completeness we present a proof.*

Lemma 42 (Well known). The map SLo(Z) — SLo(Z/tZ) is surjective.

Proof. Given any matrix A € SLo(Z/tZ), we can perform row reduction to obtain a diagonal matrix

A = <8 a91> for some a € Z/tZ, which means that A equals A’ times a product of elementary

matrices (i.e. matrices with all 1s on the diagonal, and with a single nonzero off-diagonal entry).
But it also holds that

v 265 66 )

Thus A € SLy(Z/t7Z) is a product of elementary matrices along with (possibly) the matrix <(1)

-1

')
But all of these matrices also belong to SLy(Z), so A is the image under the map SLy(Z) —
SLo(Z/tZ) of the product of these matrices in SL2(Z). Thus this map is surjective, as desired. [

We now show the following lemma, which provides a more tractable characterization of the
group G(p)/G(p™™1). The proof is fairly standard, but we provide it for completeness.

Lemma 43. The natural map G(p) — SLa(Z/p™ 1) induces an isomorphism
G(p)/G(p™*") = ker(SLa(Z/p™ ' Z) — SL2(Z/pL)). ®)
Proof. Consider the sequence of homormorphisms
SLy(Z) 25 SLo(Z)p™'Z) 22 SLy(Z)pEZ).

By Lemma 42, ¢1 and ¢20¢; are surjective, so ¢ is also surjective. By definition G(p™ 1) = ker ¢4
and G(p) = ker(¢2 o ¢1). Now the surjectivity of ¢1 implies that ¢; induces an isomorphism

¢1 : SLy(Z)/ ker ¢y = SLy(Z/p™ 7).

As G(p)/G(p™+!) = ker(¢o o ¢1)/ ker(¢) is a subgroup of SLs(Z)/ ker ¢1, we obtain a restricted
isomorphism

G(p)/G(pP™") = ker(¢s 0 ¢1)/ ker(¢1) = 1 (ker(¢o o ¢1)/ ker(¢r)).

But the right hand side above by definition equals ker(¢g), as it holds that = € ¢;(ker(py o
¢1)/ ker(¢1)) if and only if ¢o(z) is the identity. Thus we have shown that ¢; induces a natu-
ral isomorphism

G(p)/G(p™") = ker(¢2),
as desired. O

“This proof is fairly standard, though our presentation follows ideas sugggested by [Jull3, Ebel3].
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Let G, denote the group in (8), so that the expanders of [LW93] described in Section 5.4.1 are
Cayley graphs Cay(G,, S) for m € N. The following lemma shows that we can enumerate elements
of G, using 3-tuples of elements of Z/p™Z.

Lemma 44. There is a bijection
¢: (Z)p"Z)? — G = ker(SLo(Z/p™ 1 Z) — SLo(Z/pZ))

given by
sab)=r+p(t })

C

ford € Z/p™Z given by
d = (14 pa)~ (pbc — a). 9)

Proof. By definition 1+ pa is invertible in Z/p™Z, so d is well defined, and we have

¢(a,b,c) = det <I—|—p <CCL Z)) = (14 pa)(1+ pd) —p*be =1,

so indeed ¢ maps (a, b, c) to an element of G,,. We must verify that ¢ is injective and surjective.
To see that ¢ is injective, observe that if (a,b,c) # (a/, ¥, ), then (pa, pb, pc) and (pa’, pt/, pc’)

are distinct tuples in (Z/p™ )3, so ¢(a, b, c) and ¢(a’, ¥, ') are distinct matrices in (Z/p™+17Z)?*2.
To see that ¢ is surjective, consider that every matrix M € G,, = ker(SLy(Z/p™'Z) —

SLo(Z/pZ)) is by definition of the form M = I +p <Ccl Z) for some a,b,c,d € Z/p"7Z. Now

because this matrix has determinant 1, we have (1 + a)(1 + d) — bc = 1, which simplifies to (9), so
M = ¢(a,b,c). Thus ¢ is surjective, as desired. O

As a side note, Lemma 44 also recovers the fact that |G,,| = |Z/p™Z|* = p*™.
We are now ready to show that the expanders described in Section 5.4.1 are strongly explicit.

Proposition 45. For every fived p, the family of Cayley graphs (T9, = Cay(Gum,S))men presented
in Section 5.4.1 is strongly explicit.

Proof. By Lemma 43, we have G, = ker(SLo(Z/p™ 1 Z) — SLy(Z/pZ)), and the generating set S
consists of a fixed finite set of matrices in Z"*™, which can be viewed as matrices in G, by replacing
each entry with its value (mod p™*1). Note that S depends on p, but here we assume p is fixed,
and S does not depend on m (except for our interpretation of its entries as integers (mod p™*1)).

Now Lemma 44 implies that the elements of G, are index by tuples (a,b,c) € (Z/p™Z)3, or
equivalently, by tuples (a,b,c) € {0,1,...,p™ —1}3. Furthermore, we can go between the tuple rep-
resentation (a, b, ¢) and the matrix representation ¢(a,b, ¢) defined in Lemma 44 in poly(log p™) =
poly(m) time, as the conversion simply requires computing d = (1 +pa)~!(pbc — a) and then multi-

plying (i Z) by p and adding I; the reverse conversion (from matrix to tuple) is similarly efficient.

Thus we can perform group multiplication and inversion in time poly(m), as these operations are
simply given by matrix multiplication and inversion.

Thus we have shown that the group operations of Gy, run in poly(log|G,,|) time, and the
generating set S can be computed in constant time, so the family of Cayley graphs I'), = Cay (G, S)
for m € N is strongly explicit, as desired. O
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5.4.3 Amplifying the Expansion to Almost-Ramanujan

In this section, we prove Theorem 14 by applying the expansion amplification technique of [JMRW22].
In particular, [JMRW22] show the following (see for instance their Theorem 1.2).

Theorem 46 ([JMRW22]). Let (I'% = Cay(Gum, Sm))men be a strongly explicit family of Ao-
reqular Cayley graphs with spectral expansion bounded by some constant A < Ag. Then there exists
an infinite set A C N for which there is a strongly explicit family (I'y, A = Cay(Gm, Sm,A))meN,AcA
of almost-Ramanujan Cayley graphs, where I'y;, A has degree |Sp Al = A.

Theorem 14 now follows almost immediately from Proposition 45 and Theorem 46:

Proof of Theorem 1. We apply Theorem 46 to the Cayley graphs (I'), = Cay(Gp,S))men pre-
sented in Section 5.4.1. These graphs have constant degree by definition, have constant spectral
expansion A < A by Theorem 41, and are strongly explicit by Proposition 45. Therefore The-
orem 46 gives a strongly explicit family (I';;, A = Cay (G, Sm,A))men,aca of almost-Ramanujan
Cayley graphs over the groups G, given by (8), which have order p>™.

It only remains to ensure that A has the property that if A € A, then either A — 1 € A or
A+1 € A. For this purpose, for each graph I';,, A = Cay(Gy,, Sy a) in our family such that A € A
but A +1¢ A, we may also add the graph I';;, a+1 := Cay (G, Sm.a U {id}) obtained by adding
the identity element as a Cayley generator. The resulting family of graphs I',, A ranges over the
possible degrees A € A" := AU{A +1: A € A}, which has the desired property that if A € A/,
then either A—1€ A’ or A+1€ A’

We must verify that this larger family (I';; A)menacar is still almost-Ramanujan. Adding
the identity element as a Cayley generator increases the graph degree by 1, and increases the
spectral expansion by at most 1. This latter claim holds because adding the identity to the Cayley
generating set has the effect of adding the identity matrix to the adjacency matrix, which increases
all eigenvalues by 1, and thus increases the spectral expansion by at most 1. Therefore if the
original degree-A graphs I';, o have spectral expansion at most A(A) = AY/2+0o(1) then the added
degree-(A + 1) graphs have spectral expansion at most A(A + 1) := A(A) + 1, which still grows
as (A + 1)/2+°() Thus our final augmented family (T A)men,Acar is almost-Ramanujan, as
desired. Note that the strong explicitness of this augmented family is immediate from the strong
explicitness of the original family (I'y, A)men,aca- O

Remark 47. The expansion amplification of [JMRW22] in Theorem 46, along with our technique
of adding the identity to to the Cayley generating set in the proof above, assume that the Cayley
generating sets of our graphs are actually multisets. That is, we allow repeated Cayley generators, so
our Cayley graphs are actually multigraphs, meaning there can be multiple distinct edges between
the same two vertices.

Fortunately, all of our applications of these graphs apply equally well to multigraphs and simple
(non-multi) graphs. Indeed, just as there are no complications in defining a classical Tanner code
on a multigraph, there are no complications in defining a quantum Tanner code using multigraphs;
the edge and face sets simply become multisets.

5.5 Application to Strongly Explicit Sum-of-Squares Lower Bounds

In this section, we describe how we use our planted quantum Tanner codes to obtain strongly
explicit lower bounds against a linear number of levels of the SoS hierarchy, thereby improving
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upon the weakly explicit SoS lower bounds of Hopkins and Lin [HL22].

Hopkins and Lin [HL22] show that quantum LDPC codes with small-set boundary and cobound-
ary expansion yield CSPs that are hard for a linear number of levels of the Sum-of-Squares SDP
hierarchy. Specifically, the CSPs they use are instances of -LIN over Fy (or equivalently, /-XOR)
given in Definition 48 below.

Recall that in general, an instance of ¢-LIN consists of a vector of m variables y = (y1,...,Ym)
along with a set of n (affine) linear constraints over F,, each of which involves < ¢ variables.
Formally, such a system of equations can be expressed in matrix notation as Ay = [ for some
A € Fy*™ and some 3 € Fy, where each row of A has < ¢ nonzero entries.

Below, we let the locality of a CSS code C = CSS(Cx = ker Hx,Cy; = ker Hz) refer to the
maximum Hamming weight of any row or column of Hy or Hz. The qLDPC codes we consider by
definition have locality £ = O(1) as n — oc.

Definition 48 (¢-LIN instances from qLDPC codes [HL22]). Let C = CSS(Cx = ker Hy,Cz =
ker Hz) be a CSS code of locality ¢. Also fix any § € Cx \ C’? Then define the associated ¢-LIN
instance Z¢ g to have m = myz variables y1,...,¥yn € F,; and n linear constraints over F, given by
the system of equations H}y = [, where y = (y1, .- -, Ym)-

[HL22] instantiates this definition with quantum Tanner codes. Although quantum Tanner
codes are strongly explicit, meaning that the matrices Hx, Hz are strongly explicit, any ¢-LIN
instance Z¢ g from these codes requires a description of some 5 € Cx \ C%. Previously, the only
known method for finding such a codword was via Gaussian elimination, which runs in poly(n)
time, and thus only yields a (weakly) explicit construction of 8 and of Z¢ g.

In contrast, our planted quantum Tanner codes in Theorem 32 are guaranteed to have the all-1s
vector 1 € Cx \ C, which is by definition strongly explicit. As such, we immediately obtain the
following.

Lemma 49. If C is chosen from a family of planted quantum Tanner codes from Theorem 32 and
B =1, then Ic g gives a family of strongly explicit £-LIN instances for a constant £ = O(1).

Formally, [HL22] obtain their SoS lower bounds by showing the following result, which they
applied to quantum Tanner codes. Below, recall that an ¢-LIN instance is p-satisfiable if there
exists an assignment of the variables satisfying > p-fraction of the linear constraints. We refer to
[HL22] and the references within for background on the SoS SDP hierarchy.

Theorem 50 ([HL22]). Let C = CSS(Cx = ker Hx,Cz = ker Hz) be a quantum LDPC code of
locality £ with (c1, c2)-small-set boundary and coboundary expansion over a prime-sized alphabet ).
Then for every g € Cx \ Cé, the (-LIN instance Ic g with m = myz variables and n constraints
satisfies the following:

1. Soundness: Ic g is at most (1 — c1)-satisfiable.
2. Completeness: I¢ 3 cannot be refuted by cicom/4¢ levels of the SoS hierarchy.

Although Hopkins and Lin [HL22] only showed Theorem 50 for the binary alphabet Fa, their
same proof extends to arbitrary fields F, for prime p. Specifically, their proof uses small-set
(co)boundary expansion to establish a bound on refutation complexity, which was then shown
to imply an SoS bound for the binary alphabet Fy by Schoenebeck [Sch08], and for prime-sized
alphabets I}, by Tulsiani [Tul09].
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Thus as described above, [HL22] obtained (weakly) explicit, but not strongly explicit, lower
bounds against 2(n) levels of SoS by taking C to be a quantum Tanner code in Theorem 50. Mean-
while, applying our planted quantum Tanner codes in Theorem 32 with Lemma 49, we immediately
obtain the following corollary to Theorem 50.

Corollary 51 (Strongly explicit SoS lower bounds for ¢-LIN). The ¢-LIN instances Ic 1 for planted
quantum Tanner codes C over any fived prime-sized alphabet F), provide a family of strongly explicit
instances with satisfiability < (1 — (1)), such that no instance can be refuted by cn levels of the
SoS hierarchy for a sufficiently small constant ¢ > 0.

[HL22] also showed a reduction that used their £-XOR (i.e. {-LIN over F3) SoS lower bounds to
obtain 3-XOR SoS lower bounds, as stated below. Intuitively, the reduction works by introducing
dummy variables to reduce the sizes of constraints.

Proposition 52 (Follows from Claim 6.5 in [HL22]). Let (Z,,)n—00 be a strongly explicit family of
{-XOR instances such that each I,,:

1. has ©(n) variables and constraints,
2. has satisfiability < (1 — (1)),
3. cannot be refuted by cn levels of the SoS hierarchy for a sufficiently small constant ¢ > 0.

Then there exists a strongly explicit family (Z),)n—oo of 3-XOR instances that also satisfies the three
properties above.

While [HL22| only showed that the reduction behind Proposition 52 preserves weak explicit-
ness, it by definition also preserves strong explicitness, so Proposition 52 holds. As a corollary of
Proposition 52 and Corollary 51, we immediately obtain the following.

Corollary 53 (Strongly explicit SoS lower bounds for 3-XOR). There exists a strongly explicit
family (Z,)n—oo of 3-XOR instances such that each I, has O(n) variables and constraints, has
satisfiability < (1 — Q(1)), and cannot be refuted by cn levels of the SoS hierarchy for a sufficiently
small constant ¢ > 0.

We suspect a similar reduction should work for ¢-LIN over arbitrary fields IF,,, but for conciseness
we will not pursue this direction.
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