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Abstract

In the world of space-bounded complexity, there is a strain of results
showing that space can, somewhat paradoxically, be used for multiple pur-
poses at once. Touchstone results include Barrington’s Theorem and the
recent line of work on catalytic computing. We refer to such techniques, in
contrast to the usual notion of reclaiming space, as reusing space.

In this survey we will dip our toes into the world of reusing space. We do
so in part by studying techniques, viewed through the lens of a few highlight
results, but our main focus will be the wide variety of open problems in the
field.

In addition to the broader and more challenging questions, we aim to
provide a number of questions that are fairly simple to state, have clear
practical and theoretical implications, and, most importantly, that a new-
comer with little background experience can still sit down and play with for
a while.
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The first subroutine I coded, learning the principles of object oriented pro-
gramming in a CS 101 course, was the swap function. Every coder knows it by
heart: three lines—their syntax is nearly universal across all languages—and only
using the two input variables in question plus one additional:

temp = x
x = y
y = temp

Years later I was adding the same function as part of the preamble to a larger
assignment, when the TA gave me a puzzle: can you swap two bits without the
temp register? Yes, and with no increase in the length of the program:

x = x ⊕ y
y = x ⊕ y
x = x ⊕ y

While not as ubiquitous as the standard program, no shortage of experienced
coders have encountered this problem before; indeed it is one of many gateways
to the wide world of bit-tricks. But like all good hammers, the answer, an elegant
improvement to one of the standard subroutines in all of computer science, begs
one to go looking for nails, or, better still, more hammers of a similar ilk.

1 Introduction: TCS Wants YOU (To Reuse Space)

1.1 Who, me?
Why should we think about reusing space? Consider some clickbait-ized head-
lines for the successes of the field thus far:

• any function can essentially be computed using just three bits of memory

• access to a hard drive can be more powerful than non-determinism, even
when it’s full

• our central approach to separating P from L contains a fatal flaw

• the max flow rate is not an upper bound on the size of messages that can be
sent through a network

These are sensational highlights, and for those working in space-bounded
complexity or similar fields they may warrant scrutiny on their own merit. But
in this work, rather than giving a status report on a distant field, we seek to invite
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a broader audience to consider coming into the fold themselves, and so our focus
will be slightly different.

The survey will be split into two parts. For the readers in search of hammers,
we will give an overview of the major techniques in the field, which should be
sufficiently general and straightforward so as to spark the reader’s imagination.
And for the readers who enjoy a good nail, we will present a broad swath of open
problems in the field, from puzzles to be worked on over an idle lunch to the titanic
central problems in space complexity.

Part I will give some background into the existing techniques on reusing space.
This part will follow more of the typical pattern of a survey, but with all proofs
kept at a fairly high level with minimal definitions or details; we eschew all formal
preliminaries of basic objects—e.g. circuits, branching programs, etc.—in favor
of brief descriptions of relevant characteristics, as our goal is simply to give the
reader a taste for past arguments. We also include a number of exercises to the
reader1, whose answers can be found in the appendix at the end.

In Part II we lay out a number of open problems in the world of reusing space.
These sections will give a flavor of the problem itself, known results and tech-
niques, possible hindrances, and consequences of solving them. Again the details
will be left fairly light, focusing on breadth rather than depth in order to appeal
to many types of problem solvers, as well as to avoid personal biases as much as
possible, although in the latter aim I admit to have largely failed.

1.2 Reducing via Reusing (beyond Recycling)
Per the title, we focus on reusing, rather than simply saving, space, even though
proving upper bounds through space-saving algorithms is our ultimate aim. Let
us disambiguate these terms now.

What could reuse mean, beyond reclaiming space as it becomes available? The
latter is something we understand quite well. When we study the space complex-
ity of some function, we naturally focus on what the algorithm needs to remember
during the computation, and so we design algorithms with the aim of remember-
ing, at any point in time, as little information as possible.

In this survey we study a slightly different question: can we store lots of in-
formation but do so using much less space? By this we do not mean a simple
question of compression, for which the same information theoretic bottlenecks
still hold sway. We ask a more suggestive question: can we use space for two
things at the same time?

1Typically we write “this is left as an exercise to the reader” to denote either something trivial
or something technical but lacking in key ideas; in any event, something to be glossed over. In this
survey it means precisely the opposite: readers who want to get comfortable with the techniques
presented are highly encouraged to try them out and check their work.
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We prime the reader to this possibility by mentioning two distinct uses of space
as a resource writ large: storage and work. At any moment in a computation, there
may be information concerning the global computation that must be written down
for future use, while simultaneously there are local computations that must be
performed with the aid of the tape as well.

The question of whether these need occupy separate places in memory—what
one could call the composition question for space—may at first glance appear
trivially true, but this is not the case. In Section 2 we will see how memory can be
used for two such purposes at once by analyzing the proof of Barrington’s seminal
result [Bar89], as adapted from a follow-up work of Ben-Or and Cleve [BC92].

1.3 Our test module: catalytic computing
Our goal in this survey is to appeal to a broad audience within theoretical (and
possibly even applied) computer science about the intriguing mysteries of reusing
space. Thus as much as possible we will refrain from narrowing the focus to one
model or another.

However, we cannot avoid introducing a model of space which has been inter-
twined with such questions for many years now, and which seems a natural first
stop: catalytic computing.

Consider the two uses alluded to in the previous section: storage space and
work space. How can we focus on separating out these uses? The simplest way is
to imagine a situation where the work space we seek to use stores information that
is completely unrelated to any computation at hand; in fact, we go a step further
and consider a work tape populated with arbitrary bits, and see whether or not
such a tape can still be useful for computation.

To focus on this question, imagine a space-bounded machine in the usual
sense, but now we also give it access to a second work space, which we call the
catalytic tape. While our main work tape is initialized to be empty, our catalytic
tape is initialized to be full; what information fills the tape is arbitrary and out of
our control, and while we allow the machine to use the catalytic tape however it
chooses, we stipulate that the machine should return this memory to its original
state at the end of the computation.2

Seeing if clever use of the catalytic memory allows us to exceed the power of
a typical bounded space machine is one clear way to test our ability to reuse space
without simply reclaiming memory used for past computations. In Section 3 we

2The term catalytic refers to a catalyst in chemistry, which is a chemical unrelated to, and
ultimately preserved in quantity by, a given reaction, but whose presence is nevertheless necessary
for the reaction to occur. We also note that there are multiple unrelated definitions of “catalytic
computing” circulating in the CS literature, including one for network systems and another in
quantum computing; all of these models, however, are named for the same physical phenomenon.
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will mention some key results in catalytic computing, and more importantly the
techniques used in these results, which shows that such reuse is not only possible
but quite powerful.

1.4 Many flavors of questions
Given these preliminary motivations, there are many types of problems we can
ask. We loosely group these into four categories. In Section 4, we tackle the
basic premise of our field by looking to apply the techniques of reusing space to
answer questions in space-bounded complexity. In Section 5, we ask how the cat-
alytic computing model compares with traditional complexity classes, both space-
bounded and otherwise. Section 6 asks similar questions but comparing catalytic
classes to one another in an attempt to flush out a parallel structural theory of
space. Finally in Section 7 we go beyond space-bounded complexity classes and
consider when the techniques we have seen in this work may apply to alternative
computational models; in this section in particular we invite the reader to think
about their own research and build novel connections to the framework of reusing
space.

1.5 The purpose of this survey
Writing a survey article is a chance for the author to bring a new and (person-
ally) exciting field to the reader’s attention, and to isolate the central and furthest
reaching successes therein. It can appeal to the utility of such results and proofs,
ones the reader, a researcher with a full schedule and their own field and goals,
may have never even heard of. It is, then, a way to plant the seed of interest while
respecting the reader’s time.

Why, then, do we focus not on the use to the reader, but rather to beg them
to drop their own work and spend time on an alien set of questions? One answer
is that the former duty has already been discharged in the 2016 edition of this
column by Michal Koucký [Kou16]; while there have been exciting results since
then, another review only seven years later is hardly warranted. We will spend
Part I of our survey covering some of the basics that appeared in this excellent
work, but it will be for the sake of definition and intuition; for all other purposes,
we refer the reader therein.

Another answer, which was alluded to in the preamble, is that the nascent
field finds itself in a very fortunate position: many of the existing open ques-
tions in reusing space can be described, motivated, and attacked with very little
background. Some revolve around basic arithmetic; some involve drawing small
graphs. There are no shortage of questions that ask for a slight twist on some
fundamental theorem from an introductory complexity course. Hence they may
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be appropriate for those looking for “toy” (but still consequential) problems to
play with, such as early career researchers—I have even given some problems to
undergraduates in the past—or those who enjoy doing puzzles at dinner.

Lastly, we hope that beyond the specific problems at hand, the reader will take
with them, back to their own specific subfield, the question of how one might use
space, or indeed any other resource, in more than one way at once, and to what
end. The faith that motivates this survey is that the question of reusing space will
both benefit and benefit from researchers from a wide variety of fields; We will
present one approach to solving one type of question, but more than pushing this
particular angle forward, what the field needs, and potentially offers, is a greater
variety of approaches to, and understandings of, its central tenets.
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Part I

WHAT WE KNOW (THE BASICS)
2 An introductory example: Barrington’s Theorem

2.1 Statement and proof
In order to calibrate ourselves to the task of reusing space, let us see one simple
but foundational example of what this actually looks like.

Our adversary will be the circuit, a classical model of computation wherein an
input x is fed bit by bit into a network of AND, OR, and NOT gates. Let C be
a circuit taking n inputs; to simplify matters, we remove every OR gate from C
using De Morgan’s laws, and assume every AND gate takes two inputs.

“Theorem”: C can be computed using effectively three bits of memory.

The statement “C can be computed using three bits of memory” is, of course,
assuredly false; the proof of our “theorem” will fall short of this, due to a vari-
ety of technical considerations, including uniformity, counters for runtime, etc.
However, it is correct in a moral sense, one which can be converted into useful
statements and algorithms, and, more important at the present, provides the basis
for our view of reusing space throughout the rest of this survey.

The proof is self-contained and only relies on basic modular arithmetic, and
thus we state the proof first and save the background and intuition for the rest of
the section.

Proof sketch. Our argument will be by induction on the gates of the circuit C.
Let (R0,R1,R2) be our three bit memory, initialized to (0, 0, 0), and fix the input x
under consideration. Our inductive statement is as follows:

Lemma 1. Let (R0,R1,R2) be in some state (τ0, τ1, τ2) ∈ {0, 1}3, and let g be a
gate in C which takes value vg on input x. Then for i ∈ {0, 1, 2}, there is a program
Pg(i) which transforms the memory as follows:

R j = τ j ⊕ vg j = i
R j = τ j j , i

We see that this is sufficient to compute f . Our first recursive call will be to
the output gate out of C, say Pout(0), and here (τ0, τ1, τ2) is the initial blank tape,
i.e. (0, 0, 0); thus at the end of the computation, R0 will be in state 0 ⊕ vout = f (x).

So now we take up this task. From here on out we view everything through
the lens of arithmetic modulo 2, meaning + denotes ⊕. We use notation R += v

6



to mean R ← R + v, and so our goal is to design, for every gate g ∈ C and
i ∈ {0, 1, 2}, a program Pg(i) which computes Ri += vg while leaving all other
memory untouched.

The base case is simple enough: if g is one of the inputs to the global function
f , say x j, then we can simply add the relevant input to whichever register we
please and we are done:

Ri += x j

Now let g be an internal gate in the circuit, i.e. either NOT or AND. NOT is
simple enough: let g = ¬h, let vh be the value of h, and by induction let Ph(i) be a
program computes Ri += vh. Then simply running Ph(i) and then adding 1 yields

Ri = τi + vh + 1 = τi + ¬vh = τi + vg

Thus our last case is to compute g = g1 ∧ g2, and without loss of generality we
focus on Pg(0), as Pg(1) and Pg(2) can be accomplished by relabeling.

Let g1 and g2 take values v1 and v2, and by induction let P1(1) and P2(2) be
programs which send R1 to τ1 + v1 and R2 to τ2 + v2, respectively. The following
program sends R0 to τ0 + v1v2; the relevant memory states are listed inline, with
brackets separating out the previous memory state and the new additions:

1. P1(1) R1 = [τ1] + [v1]

2. R0 += R1R2 R0 = [τ0] + [(τ1 + v1)(τ2)]
= τ0 + τ1τ2 + v1τ2

3. P2(2) R2 = [τ2] + [v2]

4. R0 += R1R2 R0 = [τ0 + τ1τ2 + v1τ2] + [(τ1 + v1)(τ2 + v2)]
= τ0 + τ1v2 + v1v2

5. P1(1) R1 = [τ1 + v1] + [v1]
= τ1 ✓

6. R0 += R1R2 R0 = [τ0 + τ1v2 + v1v2] + [(τ1)(τ2 + v2)]
= τ0 + τ1τ2 + v1v2

7. P2(2) R2 = [τ2 + v2] + [v2]
= τ2 ✓

8. R0 += R1R2 R0 = [τ0 + τ1τ2 + v1v2] + [(τ1)(τ2)]
= τ0 + v1v2 ✓

which completes the proof, as R0 = τ0 + vg and Ri = τi for i = 1, 2. □

The statement and proof above are adaptations of the seminal works of Bar-
rington [Bar89] and Ben-Or and Cleve [BC92]. We give a more exact statement
at the end of this section, turning now to focus on a higher level understanding of
their technique.
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2.2 Back to basics
Let us now rewind and build back towards our “theorem” from the ground up.
Our goal is to demystify the proof we have just seen, and in the process to begin
thinking about how these principles can be be extended.

2.2.1 Circuits and space

∧

∧ ¬

. . .

x3 x9
. . .

x1

Fig.: circuit

In the world of Boolean functions, circuits are one of
the most fundamental computational models, and are
universal in the sense that any function has a corre-
sponding circuit. However, we typically consider the
class of functions f which are efficiently computable
by circuits, both with respect to total time, measured
by the number of gates, and parallel time, measured by
the longest path from any input wire to the output of
the circuit. We say the size of a circuit is the number
of gates, while the depth of a circuit is the length of the
longest input-output path.

More specifically, consider a family of functions
f = { fn}n∈N, each fn taking in n input bits. Let f be computable by a family
of circuits C = {Cn}n∈N, where each Cn has size sn and depth dn. Our goal will be
to design a machine which computes fn using the minimal possible space.

As should be clear from the initial statement, we will not be rigorous about
which operations are allowed and such; we will assume that our machine has
knowledge of Cn, and that at each step it makes use of all available information—
by which we mean the circuit, the input, and the current state of our memory—to
progress in the computation.

We begin with a sanity check: each fn can be computed without reusing any
space, and the space complexity corresponds to the size of Cn.

Claim 1. fn can be computed in space sn.

Proof sketch. We assign to each gate in Cn a spot on our work tape, and progress
through the circuit in order writing down the value of each gate. If the gate uses
any input bits directly we take them from the input tape, while if it takes previously
computed gates as input we read their values from the work tape. The final gate
will compute the output of Cn, and thus the value of fn. □

This procedure is simplicity itself, and yet clearly wasteful. As soon as some
internal gate of Cn becomes irrelevant to future computation, we could reclaim
this space to use for later gates.
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Alternatively, we can throw away information about a gate even if it is required
for later use, as long as we are willing to pay to recompute it in the future, perhaps
when more space is at our disposal.

Can this logic be exploited when we know nothing about Cn besides its size
and depth? Indeed we can, if we consider how and when computations are reused.
Thus we can reduce the space complexity from the total runtime of Cn to its par-
allel runtime, from size to depth.

Claim 2. fn can be computed in space dn.

Proof sketch. For each gate g ∈ Cn, we define the level of g to be the length of the
longest finite path any input of the circuit takes to get to g. Since every input takes
at most dn steps to reach the output of the circuit, every gate is at level at most dn,
and the output gate is at level dn exactly.

We will inductively prove that any gate at level k can be computed with space
k, thus proving the claim by considering the output gate at level dn. For any gate g
at level 1, the inputs to g simply come from the input itself, and thus we can write
down the value of g directly from considering the input tape.

Now for gate g at level k, let g1 and g2 be the inputs to g, each of which occur
at some level strictly less than k. To compute g we first compute g1, which by
induction can be done in space at most k − 1. Now we erase the entire work tape
save for the output of g1, and we then compute g2 in the free space on our tape.
This again can be done in space at most k − 1, and combining this with the output
of g1 we saved earlier gives us space k to compute g itself. □

2.2.2 Constant space: who could expect it?

Here we see that a careful view of how the internal computation of a circuit works
can point us towards lowered space. Can this be pushed further?

While it may seem bold to press on, we may take heart from observing that at
any moment in time, only two bits of the work tape are relevant to the computation
at hand, no matter where in the recursion we may find ourselves. Thus the true
test of our resolve is to ask: can we compute f using only a constant amount of
memory?

On the face of things, this task is manifestly impossible. It is certainly true
that only two bits are needed at any moment in time; yet this is making a similar
oversimplification as saying only the output gate of Cn is truly important for com-
puting the value of fn. Each internal computation is unimportant alone, but is vital
for the next step, and as such it is not just which bits are relevant in this step, but
also which bits will be relevant in later steps. For a concrete example, during the
computation of g2 in the proof of Claim 2, it may be correct to say the value of g1
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is irrelevant now, but to erase it would clearly be shooting ourselves in the foot in
a moment’s time.

Thus to begin, we must ask whether we can broaden our horizons in defining
what it means to reuse space. So far we have limited ourselves to reclaiming space
and using it as if it were fresh. A more daring idea is to reuse space in situ, or in
other words to use space for more than one purpose at the same time.

Here we focus on two distinct uses of space during the computation: space as
providing inputs to the current computation and space as storage for future com-
putation. If a bit of memory could play both roles simultaneously—to again use
our previous proof as a concrete reference, if we imagine that the space storing g1

could be used in parallel for computing g2—then our previous objection becomes
weaker.

2.3 Proof redux
We are now ready to challenge our “theorem” once again. By building our ideas
of how to reuse space from the ground up, we will once again reach the proof
given at the beginning of this section.

Naturally we will once again attempt an inductive approach, computing the
circuit gate by gate. The proof lies in two insights: first, in the way that it arrives
at an algebraic definition for reusing space which can be turned into a suitable
recursive statement; and second, in the way that definition’s algebraic nature sug-
gests the method by which the statement can be achieved, if one tries at every step
to do what immediately brings them closer to the goal.

2.3.1 Idea 1: modular arithmetic

As suggested by the discussion from the previous section, we need to choose a
recursive statement whereby g is successfully added in memory while not erasing,
and in fact in a formal sense preserving, its current state.

The term “adding” in the previous statement should immediately call to mind
one such potential definition: XORing the value of g to memory. To figure out our
exact statement, let us put ourselves in a moment within the computation.

With respect to memory as storage, we will imagine our three-bit memory,
whose bits we will refer to as R0,R1,R2, is in some state (τ0, τ1, τ2) ∈ {0, 1}3, the
exact value of which will be dictated by the recursion thus far; rather than subject
ourselves to working out an exact statement for the values τi, we consider them to
be arbitrary and out of our control.

With respect to memory as computation, our goal will be to send one of these
bits, say τ0, to the value τ0+vg mod 2, where again vg is the value of g in question.
This statement suggests that recursively we should assume we have the ability to
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do the same below us, namely that we can send τi to τi + vh mod 2 for any gate h
which is an input to g.

Furthermore, in order to respect the stored values τi, we will design our pro-
gram in such a way that after computing vg into R0, the values stored in R1 and R2,
namely τ1 and τ2, are left unchanged, and whereby recomputing vg allows us to
recover τ0, i.e. to restore our last piece of memory R0.

This brings us squarely to our choice of recursion statement as given by Lemma 1.
Given this concrete goal, and with the assurance that proving it is sufficient to
proving the “theorem”, we may be encouraged by how simply the base case, i.e.
the input layer, as well as the case of g = ¬h, can be dismissed with.

This only leaves us with proving the recursive statement for g = g1 ∧ g2. The
reader is invited to pause here and take stock by attempting to do so themselves;
it is the certainly the trickiest part of the argument once Lemma 1 is formulated,
but, knowing that it is possible, it can be accomplished with a little trial and error.

2.3.2 Idea 2: handling multiplication

It seems that the only place to start is adding g1 ∧ g2 to τ0 in any way we can, and
then seek to fix things up from there. The most natural way to do this is to execute
P1(1) and P2(2), and add the AND of the resulting memory to τ0. Viewing AND
as multiplication modulo 2 and expanding the product, we get

τ0 + (τ1 + g1)(τ2 + g2) = τ0 + τ1τ2 + τ1g2 + g1τ2 + g1g2

which contains exactly the terms we want, namely τ0 + g1g2, as well as three junk
terms, namely τ1τ2 + τ1g2 + g1τ2.

To remove these terms, let us start with τ1g2, which suggestively does not
contain g1. Executing P1(1) sends τ1 + g1 to τ1 + g1 + g1 = τ1, and thus the AND
of our two work bits is τ1(τ2+g2) = τ1τ2+τ1g2. We add this to our target memory.

We can take care of g1τ2 similarly, executing P2(2) to remove g2 and P1(1) to
get back g1, and then adding R1R2 = (τ1 + g1)τ2 to our target register. Thus our
memory contains

(τ0 + g1g2 + τ1τ2 + τ1g2 + g1τ2) + (τ1τ2 + τ1g2) + (τ1τ2 + g1τ2) = τ0 + g1g2 + τ1τ2

at which point we can simply reset our “external memory” by executing P1(1) one
last time, and then adding the AND of R1 and R2 one last time seals the deal.3

After all is said and done we have not only added g1∧g2 to τ0, but in fact have
set R1 and R2 back to their original values, thus fulfilling the other requirement of
our recursive call.

3Note that our original proof was more efficient in terms of recursive calls; our only instructions
are recursive calls and R0 += R1R2, meaning the order in which we add our terms is irrelevant.
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2.4 Afterword: next steps
The techniques involved in this section are crucial to understanding many of the
arguments at the forefront of reusing space. Thus we will use this opportunity
to give the reader their first exercise; since the solution can be found earlier in
this section, the solutions manual will only contain an alternate analysis of the
multiplication program.

Exercise 1. Watch an episode of Gilligan’s Island4, then come back and attempt
to reprove our “theorem”.

We also dismiss with the tedious use of “theorem” by stating the actual result
in question. This statement, the true form of Barrington’s Theorem [Bar89], fol-
lows by a more optimized variant of Lemma 1, while Ben-Or and Cleve [BC92]
devised Lemma 1 essentially as stated to prove a more general theorem.

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

Fig.: branching program

Space-bounded computation has a very
well-studied syntactic model to call its
own: branching programs. A branching
program is an directed acyclic graph with
a start (source) node and two potential end
(sink) nodes, one for each output of the
function, where each node is labeled with
an input variable x j and has one outgoing
edge for each potential value of x j, i.e. 0 or
1. Computation is done in the natural way,
starting at the source and at each node fol-
lowing the edge whose label agrees with
the value of the x j labeling the node itself,
until we reach an output node whose value
is declared the output of the function.

While space is formally captured by the log of the size of the branching pro-
gram, i.e. the number of bits needed to keep track of where in the graph we are at
each moment in time, we have more fine-grained notions that are relevant. We say
the program is layered if the nodes can be arranged into layers, starting with the
source at layer 0, such that the edges coming out of any node at layer i go to nodes
at layer i + 1. In this case we can speak of time and space as being the length and
width of the program, i.e. the number of layers and the largest size of any layer,
respectively.

4Any activity lasting a half hour or more and which does not involve mathematics will do; I
suggest a cup of tea and a nice book. However, as this strategy was originally taught to me as “the
Gilligan’s Island method” (by a professor whose age was betrayed therein) I have preserved it as
such.
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Theorem 1 (Barrington’s Theorem). Let C be a circuit of depth d. Then there
exists a layered branching program of length 4d and width 5 computing the same
function as C.

Lemma 1 immediately gives Theorem 1 with width 23 = 8 instead of 5 (as well
as some loss in the length). It can also be used to prove a more general arithmetic
statement, which was the original motivation and result of [BC92]. This leads in
to one of the key ideas in the upcoming section, and so we encourage readers to
attempt this generalization for themselves.

Exercise 2. Let C be an arithmetic circuit of depth d, meaning a circuit whose
inputs are from a ring R instead of {0, 1} and whose gates are + and × over R.
Extend Theorem 1 to show that there exists a layered branching program of length
4d and width |R|3 computing the same polynomial as C.

3 A brief primer on catalytic computing
The proof in the previous section gave us a taste of how one could use full memory,
represented in Lemma 1 by the arbitrary values τi in Ri, in a non-trivial way. We
now broaden the scope of such ideas to discuss our central, although certainly not
exclusive, model for testing the reuse of space: catalytic computation.

3.1 The basic definitions

. . .

work tape

0 1 1 . . . 0 1

catalytic tape

x1 x2 . . . xn

input tape output

Fig.: catalytic Turing Machine

We start with the definition of Buhrman et
al. [BCK+14], who first introduced the concept of
catalytic computation.

Definition 1. A catalytic Turing Machine with
space s := s(n) and catalytic space c := c(n) is
a Turing Machine M with two read-write tapes,
which we call the work tape and the catalytic tape,
which have lengths s and c respectively.

In addition to the usual restrictions on space-
bounded Turing Machines, M obeys the following
additional property: for any τ ∈ {0, 1}c, if we ini-
tialize the catalytic tape to τ, then on any input, M
contains τ on the catalytic tape when it halts.

This definition gives rise to a natural complexity class, which is a variant of
the ordinary class SPACE(s).
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Definition 2. The class CSPACE(s, c) is the set of all functions which can be
computed by a catalytic Turing Machine which has space s and catalytic space c.

CSPACE(s, c) sits between SPACE(s) and SPACE(s + c), with neither con-
tainment known to be strict in any interesting setting. Showing CSPACE(s, c)
is strictly more powerful than SPACE(s) would be a validation of our ideas of
reusing full space, even in the generic setting where we make no considerations
of what the full memory actually contains.

The most well-studied variant of CSPACE is catalytic logspace, where s is
logarithmic and c is polynomial. For most of this survey we frame our discus-
sions around this class, but the reader should be aware that almost all results and
problems we pose can be scaled up to pertain to other CSPACE(s, c) classes ac-
cordingly.

Definition 3. The class CL is defined as CSPACE(O(log n), nO(1)).

Following our earlier discussion, CL sits somewhere between L and PSPACE.
Since these two classes are not equal by the space hierarchy theorem, one of these
two inclusions must be strict; current evidence, which we now turn to, suggests
that in fact strictness holds for both containments.

3.2 Upper bounds
3.2.1 Compression: useful even when it fails

Let us disregard the techniques we saw in Section 2 and consider the definition of
CSPACE at face value.

It is a natural knee-jerk reaction to think that CSPACE(s, c) must be approx-
imately the same as SPACE(s) for any c. The only obvious approach to refuting
such a statement would be applying some type of compression to the catalytic
tape, and when one considers that such compression must succeed for any initial-
ization of the catalytic tape—never mind the technical hurdles needed to imple-
ment such an approach—even this seems unlikely to help.

However, failure to compress such a string does not leave us with only free
space s; it leaves us with free space s plus an incompressible string, hardly a
trivial object to come by. Such a string may suggest many uses, but perhaps the
first one that comes to mind is to use it as a source of entropy, i.e. randomness.

This insight can be pushed all the way through for simulating randomized
space, due to a few peculiarities in how randomized space-bounded algorithms
are defined. This proof [Lof] is unpublished as it was quickly subsumed by a very
different argument, one which we turn to in the next subsection. We neverthe-
less reproduce it here because it is one of the few techniques which is known for
catalytic space.
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Update: a more sophisticated version of this argument has now appeared in
published work of Pyne [Pyn23].

Theorem 2. BPL ⊆ CL

Proof sketch. Let us recall the definition of BPL: these are the functions f for
which there exists a logspace machine B taking in an input x and which can gen-
erate a polynomial amount of randomness r, such that for every x, B(x) outputs
f (x) with probability at least 2/3 over all choices of r. Furthermore, we have the
crucial restriction that B can only read each bit of randomness once; any bits of r
that it wishes to use in the future must be stored on the logspace work tape.

Let B be a BPL machine, fix an input x to B, and without loss of generality
assume B reads a bit of its random tape at every time step during its execution. To
start thinking about derandomizing B, we must ask what a random string r needs
to look like in order to be useful to B.

Nisan [Nis93] provided the following test for a collection of strings R. Con-
sider running B on each r ∈ R up to a fixed time step i, and partition up R based
on which configuration σ—meaning the contents of the work tape, location of all
tape heads, etc—B ends up in at this step. Essentially, Nisan’s condition is that
no matter which i and σ we look at, the i + 1st bit should be fairly unbiased, i.e.
roughly half 0 and half 1. This condition is checkable in logspace, and should it
succeed then Nisan proves that a majority of strings in R will output the correct
answer to B(x).

We will let our catalytic tape be large enough that it can be broken into a
collection R of candidate random strings. Using Nisan’s criteria, we can use the
normal work tape to check if the condition holds for each i and σ, and if it does
then we simply run B on x using each r ∈ R and take a majority vote. Note that in
this case we never alter the catalytic tape, so we fulfill our additional requirement
by default.

If this condition fails, then we can identify a timestep i and a configuration σ
for which it fails. We let Γ be our set of strings from R which put B in configuration
σ at step i, and by making |R| sufficiently large we ensure that Γ has sufficiently
many more strings with b ∈ {0, 1} than ¬b in the i + 1st location. Note that
membership in Γ can be identified by running the BPL machine up to step i on our
logspace worktape, and so by extension we can form a subtape T of the catalytic
tape which exactly contains the i + 1st locations of strings in Γ, with this tape
containing, without loss of generality, polynomially more zeroes than ones.

Because of the severe imbalance of T , we can compress it in place and free up
a polynomial number of cells.5 At this point we can simulate our BPL machine B

5We will not cover the details of this procedure. It is not difficult, but also not the style of
argument we are concerned with in this survey.
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Fig.: compress-or-random argument

in a brute force manner, by using the empty cells of T to try every possible random
string and take a majority vote. Afterwards, we save the answer on the smaller
work tape, and before halting we run the inverse of our previous compression
algorithm to return the catalytic tape to its original state. □

Throughout the rest of this survey, we refer to this proof as the compress-or-
random argument. In thinking about the compress case, it seems like we have
moved back from the goal of reusing space to that of simply saving space in the
traditional sense. However, the real insight is coming from the random case, where
the space that is being used for storage, i.e. the catalytic tape, is also being mobi-
lized for a computational purpose.

3.2.2 Transparency and arithmetic

From the simple insight that incompressability gives us non-trivial power, we ob-
tained a surprising use of catalytic machines. For this, we made essential use of
the initial values stored in the catalytic tape. We now return to the ideas from
Section 2 and take a different path to the power of full memory, one where we
formally cancel out the contributions of the initialized catalytic tape without ever
inspecting its values.

For this approach, we will define a toy model based on the statement in Lemma 1,
in order to focus on the nature of our approach as both recursive and mathemat-
ical. Let R be a ring, which for our purposes is simply a set of values equipped
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with + and × operations which act in an expected way, e.g. x + 0 = x · 1 = x,
x · 0 = 0, are associative, etc.

Definition 4. A register program P with space s := s(n) and time t := t(n) is
comprised of a set of s blocks of memory, or what we will call registers, R1 . . .Rs,
each of which can hold a single value from R, plus a list of t instructions, each
of which updates a single register by adding to its current value some polynomial
over all the other registers.

Ri ← Ri + p(x j,R1 . . .Ri−1,Ri+1 . . .Rs)

Often we will allow the program P to execute some other program P′ in place of
an instruction. In this case, we will usually keep two separate notions of time: the
number of basic instructions and the number of recursive calls.

Clearly this definition captures the algorithms defined in Lemma 1; for exam-
ple, for gate g = g1∧g2, our program P := Pg(0) used three registers over F2, four
basic instructions, and four total recursive calls to the programs P1(1) and P2(2).

These programs had an essential characteristic which made them useful to re-
cursion as well as the ultimate task of reusing space: they worked even when all
the registers Ri were initialized to ring values τi, and at the end of the computa-
tion they left all but one register untouched. This was given explicit attention by
Buhrman et al. [BCK+14] for its use in building recursive procedures.

Definition 5. A transparent register program P is one in which all registers Ri are
initialized to some value τi ∈ R. The result of the program is that for some register
Ri,

Ri = τi + v

If our transparent register program further fulfills the property that

R j = τ j ∀ j , i

then we say it is a clean register program. In both cases we say that v is the value
that P computes and Ri is the target register, and write

P : Ri ← Ri + v

to indicate the function of P. We also occasionally say that P computes v into Ri.
We also assume that for every clean register program P there exists a clean

register program P−1 such that

P−1 : Ri ← Ri − v

for the same Ri and v as P.6

6This can be proven to exist by the definition of a register program—in essence, run the in-
structions in reverse order and flip all signs—and allows us to reset the one piece of memory left
altered by a clean register program.
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To put this definition to use in the catalytic setting, let us rephrase Lemma 1
in our new language.

Lemma 2. Let P1 and P2 be clean register programs over F2 computing g1 and g2

into target registers R1 and R2 respectively. There exist clean register programs

P¬ : R0 ← R0 + ¬g1

P∧ : R0 ← R0 + (g1 ∧ g2)

P¬ uses only the two registers R1 and R0, and makes one recursive call to P1 plus
two basic instructions. P∧ uses only the three registers R1, R2, and R0, and makes
two recursive calls each to P1 and P2 plus four basic instructions.

Moving to the regime of CL allows us to consider a polynomial number of
registers, rings of larger size, and so on. Thus we can ask what other functions
can be computed by clean register programs using efficient time and space. For
example, we could apply the principles of Lemma 1 at a larger scale to handle
arbitrarily large products.

Exercise 3. Let P1 . . . Pd be clean register programs over F2, where Pi computes
gi into register Ri for each i. Prove there exists a clean register program

P∧ : R0 ← R0 + ∧igi

where P∧ uses only O(d) registers and makes at most 2O(d) recursive calls in total
plus 2O(d) basic instructions.

This exercise in fact has two solutions, both of which can be derived from a
consideration of the program found in Lemma 1; one is both more straightfor-
ward and exponentially more efficient than the other, but we encourage readers to
search for both, as the second solution has a separate practical utility.

Focusing on circuit models for which our recursively-structured register pro-
grams may be useful, the first stop above L would be AC1, which contains un-
bounded fan-in ANDs, or perhaps VP, which contains unbounded fan-in + and
fan-in two × over Z. We will skip ahead to a much greater prize: unbounded
fan-in majority.

Theorem 3. CL ⊇ TC1(⊇ NL)

This statement is clear evidence of the power of catalytic computing; the cat-
alytic tape captures the power of non-determinism, and likely much more.
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TC1 is defined as log depth circuits with unbounded
fan-in majority gates, or, equivalently, log depth cir-
cuits with unbounded fan-in g=ℓ gates for every ℓ,
where g=ℓ outputs 1 iff the number of 1-inputs is ex-
actly ℓ. This characterization allows us to reduce The-
orem 3 to a simple statement about register programs,
plus a bit of care in the application.

Lemma 3. Let m ∈ N and let p > m be a sufficiently
large prime. For i ∈ [m], let Pi be a clean register
program over Fp computing

Pi : Ri ← Ri + vi

Then for every ℓ ∈ [m] there exists a clean register program P=ℓ which cleanly
computes the indicator function

P=ℓ : R0 ← R0 +

∑
i

vi = ℓ


P=ℓ uses O(m) registers and makes eight total calls to each Pi plus O(p) basic
instructions.

We include an outline of proof below with a number of exercises for readers
who want to get a feel for crafting register programs, although readers who want
to see the full program for themselves will accordingly find it in the appendix.

Proof sketch. P=ℓ works in two parts. First, we define program PΣ which cleanly
computes

PΣ : RΣ ← RΣ +
∑

i

vi

given the programs Pi. Second, given a program Pv which cleanly computes some
value v into Rv, we define program Pk which cleanly computes

Pk : R0 ← R0 + vk

There are two straightforward tasks and one more difficult one. First, construction
P=ℓ given PΣ and Pk is almost immediate from Fermat’s Little Theorem; since
p >

∑
i vi: ∑

i

vi = ℓ

 ≡ 1 −

ℓ −∑
i

vi

p−1

mod p
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We first define our function Pv; as with Lemma 1 our notation is to list instructions
on the left and their effect on memory—with brackets separating previous values
and updates—on the right:

1. P−1
Σ

RΣ = [τΣ] −

∑
i

vi


2. RΣ += ℓ RΣ =

τΣ −∑
i

vi

 + [ℓ]

= τΣ +

ℓ −∑
i

vi


and thus with Pv being our subroutine to Pk—using v = ℓ−

∑
i vi and Rv = RΣ—and

choosing k = p − 1, the following program computes P=ℓ:

1. P−1
p−1 R0 = [τ0] −


ℓ −∑

i

vi

p−1
2. R0 += 1 R0 =

τ0 −

ℓ −∑
i

vi

p−1 + [1]

= τ0 +

1 −
ℓ −∑

i

vi

p−1 ✓

which completes our program by the previous equation and the fact that our pro-
gram is over Fp.

Now we need only construct PΣ and Pk, both of which we leave as exercises.
PΣ is almost immediate and should not be overthought.

Exercise 4. Construct PΣ making one call to each Pi and one call to each P−1
i .

Pk is a bit trickier, but it follows nicely from the following observation:

vk = (τv − (τv − v))k =

k∑
j=0

(
k
j

)
(τv) j(−1)k− j(τv − v)k− j

The utility of this equation is that we always have access to either τv (at the start
of the program) or τv − v (after running P−1

v ). This is a variant of Lemma 1, but
it takes a bit of clever thinking, plus using some external memory besides Rv and
R0.

Exercise 5. Construct Pk making one call each to Pv and P−1
v .
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When all is said and done there is a solution using m+ p+ 2 = O(m) registers,
eight calls to each program Pi or its inverse, and roughly 2p + 12 = O(p) basic
instructions, although anything in this ballpark works fine. □

We refer to this and similar proofs as register program arguments. Such argu-
ments are at the forefront of our knowledge with regards to catalytic computation,
as we have not proven a stronger result using compress-or-random up to this point.

3.3 Lower bounds

3.3.1 The average catalytic tape

We began our discussion of the power of catalytic computation with the obser-
vation that even an incompressible tape can be useful. We now turn to the other
side of the same coin: the average catalytic tape is incompressible. This has a
surprisingly simple implication for the runtime of our machines.

Theorem 4. CL ⊆ ZPP

If Theorem 3 gives a strong indication that CL is strictly more powerful than
L, Theorem 4 is an even stronger signal that CL is exponentially weaker than
PSPACE.

Proof sketch. Recall the argument that L ⊆ P: there are at most 2O(log n) = poly n
possible machine configurations, and if any such configuration ever repeats then
they must repeat ad infinitum, a contradiction.

Despite having an exponential number of configurations, the same argument
applies to CL, albeit only in an average sense. Fix an input x, and consider the
configuration graph of our CL machine; rather than a single line of polynomial
length emanating from the all zeroes starting node, as in the case of L, there are
as many lines as there are starting configurations τ of the catalytic tape, a number
which we call m. By extension, the total number of configurations is at most
m · 2O(log n).

One further observation is needed, and it comes from the catalytic restoration
property: no two lines coming from different initial catalytic tapes may cross, for
if they did then at most one of the two intersecting paths can correctly reset its
catalytic tape. Thus the average length of a computation path is poly n as before.

Hence we can simulate our CL machine by a randomized P machine by choos-
ing a random catalytic tape and running for a polynomial number of steps. The
zero errorness, i.e. inclusion in ZPP rather than BPP, follows because the ma-
chine never errs; we declare failure only if the machine takes too long. □
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Note that the above argument does not give us a guaranteed poly time bound
on the runtime of a catalytic algorithm. Thus it is unknown whether CL ⊆ P,
and Theorem 4 gives us little guidance in solving this problem, as coming up
with random strings seems as hard as derandomizing polynomial time classes
themselves.

3.3.2 Reversibility

As with many upper bounds against space-bounded classes, Theorem 4 prompts us
to look at the structure and size of the configuration graph of a catalytic machine.
There is a nice extension of the observation that such graphs, after fixing the input,
are simply collections of lines, which is a reversibility property. Reversibility as a
technique developed across many papers, most notably those by Bennett [Ben73,
Ben89]; we refer the interested reader to the catalytic survey by Koucký [Kou16]
for an historic overview.

For our purposes, this is not so much a direct lower bound as a tool used in
results similar to Theorem 4, which we will discuss more in the next section. It
also makes formal the intuition that a catalytic machine must undo all its work
at the end of a computation. This version of the proof originally appeared in
unpublished work by Dulek [Dul] and was later proven by Datta et al. [DGJ+20].

Theorem 5. Let C be a deterministic catalytic machine. Then there is another
deterministic catalytic machine C′, computing the same function and using the
same amount of work and catalytic space as C, such that at any point in the
execution of C′ on some input x, there is both a unique forward instruction and a
unique backward instruction.

We note that while the theorem of Lange et al. [LMT00]—from which the
proof of Theorem 3.3.2 was adapted—allows us to make any Turing Machine
reversible, we only know how maintain efficiency with respect to space; it is un-
known, for example, how to make a TIME(t) machine reversible in anything less
than time exp t.

Proof sketch. In the proof of Theorem 4 we noted that after fixing an input x, no
two configuration paths coming from different initial catalytic tape configurations
can ever meet; hence we called such paths “lines”. If the configuration graph was
truly a collection of lines then we would be done; at every state there is at most
one way forward and one way back.

This view is almost correct, but slightly off: there may be configurations un-
reachable from any start state but that nevertheless hang off the side of a path;
namely, if we were given such an illegal configuration and were asked to take
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a step forward, we may end up on a legal path. This is no issue when running
forwards, but causes some concern when running in reverse.

The solution is to have our new machine C′ take an Eulerian tour around the
configuration graph of C. Hence as it travels along such forward lines, it may in
fact stray into a branch of illegal configurations, but eventually it will work its
way around and make it back to the original path. The key point is that it will
never reach any state with the wrong answer—we start by altering C to make sure
all accept/reject states have outdegree zero—nor any other path coming from a
different initial catalytic tape by our earlier discussion.

The details of how to modify the transitions of C to allow this tour to happen,
and how to use the right hand rule to avoid infinite loops, are mostly technical
curios which we omit. Recall that for our deterministic machine C each transition
only relies on a constant amount of information. Some other small tweaks to C
may be in order. □

The upshot is that without loss of generality we can assume a catalytic machine
runs forward until it discovers the output, then switches direction and runs the
same algorithm in reverse until it returns to the beginning.

3.4 Variants of CSPACE

In defining a basic catalytic space-bounded computation class, we invariably have
opened the door to a whole parallel complexity hierarchy, both of the basic CSPACE
classes and of augmentations therein. We mention some of these variants and their
highlights now.

3.4.1 Choices of s and c

In this survey we mostly focus on the case where s = log c, but this is not the only
possible consideration. Bisoyi et al. [BDS22] consider many different regimes,
from the high end where s = cϵ , to the low end where s = log log c or even
s = O(1), which they call CR since it corresponds to regular languages with
catalycity. Their investigation was preliminary, and so we do not discuss these
results in more detail, but the low end regime will come back in some form during
our discussion of branching programs in Section 6.

3.4.2 Randomized and non-deterministic computation

Two fundamental resources, both of which we have already seen in the classic
space-bounded setting, are randomness and non-determinism. The randomized
class CBPL was introduced by Datta et al. [DGJ+20] in relation to Theorem 5,

23



while CNL was defined by Buhrman et al. [BKLS18] in a follow-up to their orig-
inal work.

In both cases there is an immediate question to be answered: when does the
catalytic tape need to be reset? The answer given by both [DGJ+20] in the ran-
domized case and [BKLS18] in the non-deterministic case is the safe one: the
catalytic tape must always be reset, whether or not the correct answer is returned.

So far we do not have many results about the additional power of either CBPL
or CNL. Structurally we have a few results in the non-deterministic world that mir-
ror the traditional space-bounded setting, such as a (conditional) catalytic Immer-
man-Szelepcsényi Theorem [Imm88, Sze88], i.e. CNL = coCNL [BKLS18], and
a conditional reduction of CNL to its unambiguous variant CUL [GJST19].

One other note about both models is that because we have no explicit runtime
restrictions, our catalytic machines are allowed to use a superpolynomial amount
of randomness or non-determinism as they so choose. It is then quite surprising
that using both our upper bound techniques in tandem, namely average catalytic
tapes and reversibility, gives us a way to upper bound both classes in ZPP just as
with CL.

Exercise 6. Use ideas from Theorems 4 and 5 to show that CBPL and CNL are
contained in ZPP.

Similar arguments can show various other results, such as 1) CBPL is con-
tained in CZPL if we are allowed to read the randomness twice in the latter case;
or 2) CL gains no power when we allow it to err during the resetting of the catalytic
tape in O(1) spots.

3.4.3 Non-uniform computation

One nice aspect of space complexity is that it is syntactically captured by the
branching program model, which in particular gives a straightforward way to think
about non-uniform computation. How does this model translate to the catalytic
world?

Girard et al. [GKM15] define catalytic branching programs in the following
way: rather than having a single start node and going to two different end nodes,
we have m different start nodes, each with their own label τ, and 2m end nodes
which are each labeled with both an output to the function and a start node τ. The
catalytic property, naturally, states that on input x, each start node τ must reach
exactly the end node labeled with f (x) and τ.

If the program has size s · m, we can think of this non-uniformly computing
CSPACE(log s, log m): we use log sm bits to remember the current node, but log m
of which are set at the start and must be reset at the end.
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Notice that we no longer need to address into the catalytic tape using the work
tape, and so unlike with CSPACE it makes sense to talk about m as being much
greater than 2s. In fact, Potechin [Pot17] showed that for m = 22n

, s = O(n) is
sufficient for any function f , a non-uniform CSPACE(log n, 2n) = ALL theorem.

Exercise 7. Let P1 . . . Pn be clean register programs where Pi computes xi into
Ri for each i. Show that for any function f (x1 . . . xn) there exists a clean register
program P f computing f into R0, where P f uses 2O(n) registers and makes O(1)
recursive calls to each Pi.

This is optimal in terms of “work space” s, while follow up works of Robere
and Zuiddam [RZ21] and Cook and Mertz [CM22] have improved on the “cat-
alytic space” m needed as well.

In the spirit of connecting catalytic computation to broader questions in com-
plexity, we mention that Potechin [Pot17] also made a nice connection of catalytic
branching programs to a notion of amortized space-bounded complexity. For a
catalytic branching program B with m start nodes of size s · m computing f , we
can think of s as being the average size of a branching program needed to com-
pute f , where the averaging is over the m “different branching programs” (one
start node, two end nodes) for f embedded inside B. Thus the previous results
also show that the amortized branching program size of any function is linear, and
the question remains how much amortization is necessary to achieve this.

3.5 Afterword: eyes on the prize
We take a step back once again before moving to the open problems. We have
now introduced catalytic computation, with catalytic Turing Machines and a set
of complexity classes, plus some results.

Without any prompting from us, readers to whom this definition appeals can
begin to form a network of open problems for themselves. We will leave one last
exercise to these readers to start them on their way.

Exercise 8. Pick your favorite function inside TC1—STConn,
⊕

, Tribes,...—
and give a CL algorithm for it directly. You can use compress-or-random, register
programs, or anything else you like, as long as you use the catalytic tape in an
interesting way.

However, our goal is ultimately to study reusing space, and so we turn back
to the reader who is interested in techniques and applications to classical space-
bounded classes rather than this new exotic definition. To reiterate: catalytic com-
putation is a test bed for how to use memory both as storage and as computation
simultaneously. Thus, for example, when we say
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“problem x is computable in catalytic logspace”

we may take this to mean a variety of things aside from what is stated. Practically
it could mean

“if we need to compute x as a subroutine many many times to compute problem
y, the space to do so need not compound linearly”

or in terms of studying x itself it could mean

“while x may require a lot of space, it can be quite well-structured with regards
to its space usage”

et cetera. Similarly, if we show that problem x is in, for example, CBPL or CNL,
this means that a space-bounded algorithm with access to randomness or non-
determinism can implement space reuse techniques to compute x as above.

Any statement about catalytic computation, even structural results, may be
looked at in this way, and we encourage readers to interpret catalytic questions
and results in whatever light is most useful.
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Part II

WHAT WE DON’T KNOW (YET)
We now move to our second, and main, purpose in this work: a curated list of
some of the open questions in the field. Below is the complete list of problems,
presented in the order in which they will appear.

Most of the problems we state will rely on terminology introduced in the previ-
ous sections, but some will need some definitions later; in either case we endeavor
to keep the statements themselves at a high level, and we then expound upon each
of them in rough detail in the remainder of the survey. Readers who would prefer
to see the problems in their proper context are free to skip to Section 4.

We make no attempt to segregate them by perceived difficulty or concreteness,
but we provide this loose table of contents for readers who have a certain type of
question in mind, or alternatively for those who want to get a broad sense of what
questions are being asked before diving into specifics.

The list of problems
1. Give a simple, direct proof of uSTConn ∈ L.

2. Give a simple, direct proof of uSTConn ∈ CL.

3. Give a simple, direct proof of STConn ∈ CL.

4. Try to improve Savich’s Theorem: prove NSPACE(s) ⊆ SPACE(o(s2)).

5. Improve the deterministic space complexity of BPSPACE(s).

6. Decide the space complexity of TreeEval.

7. Give a clean register program for computing any polynomial p(x1 . . . xn)
using O(n) registers over a constant size ring R and O(1) recursive calls to
the input x.

8. Show that for any branching program B of sufficiently large width w = Ω(1)
and length ℓ, there exists a branching program B′ of width w/2 and length
O(ℓ) computing the same function.

9. Show that for any branching program B of sufficiently large width w and
length ℓ, there exists a branching program B′ of width w − 1 and length
poly (ℓ) computing the same function.
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10. Find any function whose optimal space algorithm can be made almost en-
tirely catalytic, i.e. a function requiring—or even that we only know how to
do in—SPACE(s) but which is computable in CSPACE(≪ s,≈ s).

11. Prove CL ⊆ P.

12. Show that P ⊈ L/poly implies CL ⊆ P.

13. Show that CL ⊆ P would give strong evidence ZPP ⊆ P.

14. Show that NC2, or even any circuit of ω(log n) depth, can be computed in
CL.

15. Give a clean register program for computing xk in the non-commutative
setting using linear space and a constant number of recursive calls to x.

16. Show that BPNC1 ⊆ CL.

17. Design a catalytic branching program with 2O(n) start nodes and total size
2O(n) · O(n) for any function f .

18. What is the power of CL/poly , and does it have a natural syntactic charac-
terization?

19. Show the existence of an oracle D such that CLD = EXPD.

20. Extend the BPL ⊆ CL simulation to show CBPL ⊆ CL.

21. Show that CL is equivalent even if we allow ω(1) many errors on the cat-
alytic tape at the end, or alternatively if we allow O(1) such errors in expec-
tation over all inputs x and catalytic tapes τ.

22. Utilize non-determinism in conjunction with catalytic computing in a non-
trivial way.

23. Prove CNSPACE(s, c) ⊆ CSPACE(s2, c2).

24. Implement a catalytic algorithm such that it is actually useful.

25. What does quantum catalytic space look like?

26. Devise a register program using basic instructions inspired by unitary com-
putation, and use it to show non-trivial results for e.g. BQP.

27. Devise a circuit that uses known results from space reuse and catalytic com-
puting to efficiently solve some problem in a way that we do not know how
to do directly.
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28. Show TC1 ⊆ VP.

29. Is the network coding conjecture true or false?

30. Prove or disprove the network coding conjecture when all nodes are re-
stricted to sending linear transformations of their incoming messages.

31. Is there a meaningful notion of a catalytic data structure, or is there anything
to be gained from a data structure stored in catalytic memory?

32. Show CL is contained in some subclass of P, perhaps NC, given a believable
cryptographic assumption.

33. Show evidence against objects in cryptography based on techniques in reusing
space.

34. Show the existence, conditional or otherwise, of a natural class of crypto-
graphic objects by using clean computation.

35. Prove that the existence of one-way functions in CL, or even any one-way
function computable by a poly-size poly-length register program, implies
the existence of one-way functions in NC0.

4 What can be done with reusing space?
We first turn our attention to questions in pure (i.e. non-catalytic) space-bounded
complexity. Most of these problems will be well-known to the reader, and our
only exhortation is to turn the tools seen in this survey upon them for a fresh look.

4.1 Connectivity
Reingold’s brilliant result [Rei08] shows that uSTConn ∈ L, thus resolving the
connection between logspace and symmetric logspace. The algorithm uses tools
such as zig-zag product, which are pretty heavy hitting and incur large losses in
both time and space. This is in contrast to e.g. the standard RL algorithm, which
solves uSTConn efficiently with very high probability simply by taking a random
walk on the graph.

Can reusing space be used to give a simpler, more efficient deterministic al-
gorithm for uSTConn? This would be a useful addition to our study of space-
bounded complexity.

Problem 1. Give a simple, direct proof of uSTConn ∈ L.
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Perhaps less ambitiously, consider the case of CL. Both compress-or-random
and register programs are enough to show uSTConn ∈ CL, but besides being
fairly lossy in the constants, as of now neither technique can be nicely described
in terms of uSTConn itself.

A simple, efficient, and clear algorithm for uSTConn ∈ CL would be a useful
way of illustrating the counterintuitive power of catalytic space to newcomers in
the field, as well as potentially providing an angle on Problem 1.

Problem 2. Give a simple, direct proof of uSTConn ∈ CL.

We also know that NL ⊆ CL, meaning we can drop the undirected restriction
and still have a CL algorithm for connectivity via register programs. If Problem 2
can be solved, we can hope it also is amenable to such a change.

Problem 3. Give a simple, direct proof of STConn ∈ CL.

4.2 Savitch’s Theorem
Taking a space reuse-style approach to STConn may also give us insights on one
of the major unsolved questions in structural space complexity. Savitch’s The-
orem [Sav70], which states that NSPACE(s) ⊆ SPACE(O(s2)), is one of the
bedrocks of space complexity, but it is not known to be tight. After over fifty
years, it may be time to seriously revisit this question, with reusing space being
one of the new tools in our arsenal.

Problem 4. Try to improve Savitch’s Theorem: prove NSPACE(s) ⊆ SPACE(o(s2)).

If Problem 2 gives us a way to solve Problem 1, then perhaps Problem 3 will
point the way to attacking Problem 4 in similar fashion.

4.3 Derandomizing space
Derandomizing BPL is a longstanding open problem with a flurry of recent work.
There is a wide pool of techniques to draw from, including targeted and weighted
PRGs, approximate matrix inversion, certified derandomization, and more; we
refer readers to an excellent survey by Hoza [Hoz22] on the topic. Perhaps our
techniques will be useful as well.

Problem 5. Improve the deterministic space complexity of BPSPACE(s).

We state Problem 5 less specifically than other problems in this survey because
it is an active line of research, and so any target we lay out may be obsolete by
the time the reader reaches this survey, and for reasons having nothing to do with
reusing space. For example, Hoza [Hoz21] recently improved on the best known
upper bound of SPACE(s3/2), due to Saks and Zhou [SZ99], for the first time in
twenty years.
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4.4 The Tree Evaluation Problem
Another key question in the study of space-bounded computation is how it com-
pares to time-bounded computation. One central question is whether logspace is
strictly contained in polynomial time or not.

v1

1 2
2 1

v2

2 1
2 2

v4

2
v5

1

v3

2 1
1 1

v6

1
v7

1

Fig.: TreeEval

Cook et al. [CMW+12] proposed that a function
known as the Tree Evaluation Problem, or TreeEval for
short, may be the key to separating L from P. The func-
tion is defined, for an alphabet size k and height h, by a
height h rooted full binary tree, where leaves are given
values in [k] and internal nodes are labeled with func-
tions from [k] × [k] to [k]. In other words, it is a sort
of alternate circuit model where the values come from
a broader alphabet than just {0, 1}, and the topology is
fixed but the functions at each gate are given as input.

Problem 6. Decide the space complexity of TreeEval.

The logic for thinking TreeEval < L relies exactly
on not being able to use space both for memory and
for computation. Building on ideas we have seen pre-
viously, and in particular a generalization of Lemma 1
first to larger products (see Exercise 3) and then to arbitrary polynomials, Cook
and Mertz [CM20, CM21] gave an algorithm for computing TreeEval more ef-
ficiently than Cook et al. conjectured. An optimal version of their key register
program remains open, and would be sufficient to show TreeEval ∈ L for all val-
ues of k and h.

Problem 7. Give a clean register program for computing any polynomial p(x1 . . . xn)
using O(n) registers over a constant size ring R and O(1) recursive calls to the in-
put x.7

Update: Cook and Mertz [CM23] recently improved the state of the art for
Problems 6 and 7, showing programs of space n + 1 (over a linear size ring R)
and using O(n) recursive calls. This implies that TreeEval ∈ SPACE(O(log n ·
log log n). Both problems, however, are still open.

4.5 The power of formulas?
Barrington’s Theorem allows us to characterize the class NC1 of all polynomial
size formulas as functions computable by branching programs of polynomial length

7We are assuming a batched version of the type of access to the input as in Lemma 1, i.e. a
program Px (as well as its inverse) whose effect is to add input x j to register R j for every j.
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and constant width. This is in contrast to L, whose branching programs can be
polynomial in both length and width.

Just as [CMW+12] aimed to use composition to separate P from L, so too has
composition been a central player in attempts to separate P from NC1. Problem 7
has been posed in the world of formulas as the KRW conjecture [KRW95], a depth-
based composition theorem that states that no “depth reuse” in the vein of our
results should be possible. Resolving the KRW conjecture in the affirmative while
also showing TreeEval ∈ L would separate L from NC1, an extremely fine-grained
separation.

On the other hand, we have seen the surprising power of constant space, and so
it is entirely possible that not just L but even NC1 can implement our techniques. In
fact, by the characterizations laid out above, a length-width tradeoff for branching
programs would be sufficient.

Problem 8. Show that for any branching program B of sufficiently large width
w = Ω(1) and length ℓ, there exists a branching program B′ of width w/2 and
length O(ℓ) computing the same function.

Problem 8 would show NC1 = L. We note that a Savitch-style argument may
work if we relax the length requirement to poly (ℓ), which would only reprove that
L ⊆ NC2. We formulate an even weaker version of the question just to get the ball
rolling.

Problem 9. Show that for any branching program B of sufficiently large width
w and length ℓ, there exists a branching program B′ of width w − 1 and length
poly (ℓ) computing the same function.

In Section 7 we return to the question of other models that may be able to
implement our techniques.

5 Where does catalytic fit in to complexity theory?
Moving from catalytic techniques to catalytic computing itself, the most impactful
questions remain those relating catalytic computing to more traditional complex-
ity classes. While we already have a reasonably narrow range where classes such
as CL can possibly sit, there are many important details to be resolved, as well as
orthogonal questions about the use of catalytic computing.

5.1 Space versus catalytic space
At first glance, [BCK+14] settles the question of CSPACE in relation to SPACE
once and for all. On one hand, for those that believe that L , NL, there are many
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natural classes sitting inside CSPACE(s, 2s) and outside SPACE(s). Even more
widely believed is that ZPP , PSPACE; in fact, it seems dubious that CL can
even contain any class SPACE(s) where s = ω(log n), as such classes are widely
believed to be separate from P.

Yet if we put aside entire complexity classes for a moment, we can still look
to individual problems and ask concrete questions about what catalytic space can
offer. Perhaps the most natural such question is to ask an instance-wise version of
CL versus PSPACE.

Problem 10. Find any function whose optimal space algorithm can be made al-
most entirely catalytic, i.e. a function requiring—or even that we only know how
to do in—SPACE(s) but which is computable in CSPACE(≪ s,≈ s).

This question, while interesting in its own right, is not a mere curio. Recently
Doron and Tell [DT23] gave derandomization with almost no memory overhead
conditioned on a few natural assumptions, but to get the optimal result requires a
function computable by CSPACE(ϵs, s) but not by SPACE((1−ϵ)s); an affirmative
answer to our problem would also make this assumption hold unconditionally by
padding. Note that here “almost entirely catalytic” means we cannot tolerate even
a factor of 2 in the simulation; this is truly CSPACE(s, c) versus SPACE(s + c).

5.2 The catalytic holy grail: CL versus P

Problem 11. Prove CL ⊆ P.

Throughout this survey I have (hopefully without confusion) used hyperbole
for stylistic flair, and calling any problem the “holy grail” of a nine-year-old field
is as blatant as hyperbole can be. Nevertheless, resolving the relationship between
CL and P has proved as fascinating as tenacious, and I can think of no better way
to study the structure of catalytic machines than to attempt to resolve Problem 11.

For starters, even a conditional result—short of derandomizing ZPP, of course—
could be very useful. It would be interesting to go outside the realm of derandom-
ization in general, or at least to start from an earlier point, such as a novel use
of the hardness-versus-randomness paradigm (see e.g. Pyne et al. [PRZ23] for a
discussion of such techniques in the space-bounded setting).

Problem 12. Show that P ⊈ L/poly implies CL ⊆ P.

On the flip side, there may be barrier results that make the proof difficult even
for those who believe ZPP = P. Buhrman et al. [BCK+14] made initial progress
on the relativization barrier, showing oracles A and B such that CLA = PSPACEA

and NLB ⊈ CLB. Perhaps a more direct barrier result is possible.

Problem 13. Show that CL ⊆ P would give strong evidence ZPP ⊆ P.
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5.3 The power of CL

For those more interested in the power of catalytic computing, the frontier of CL
stands at Theorem 3. There is a long way to go even for those who believe CL ⊆ P.

The next clear challenge is going beyond logarithmic depth. Consider that
when studying alternate problems such as Tree Evaluation, the register program
technique has no obvious way of moving beyond objects of logarithmic depth,
as recursively computing and uncomputing the inputs to a subroutine leads to
runtime costs which are exponential in the recursion depth.

NC circuits contain only fan-in two AND and OR gates—Lemma 1 is meant
to handle these circuits specifically—and so looking at log2 n depth NC circuits
allows us to focus on overcoming the depth barrier. Moving beyond logarithmic
depth in any capacity would then allow us to consider bootstrapping or other such
techniques.

Problem 14. Show that NC2, or even any circuit of ω(log n) depth, can be com-
puted in CL.

There is one proposition to Problem 14 that skirts around the difficulty of
higher depth: compress many layers into one, and then handle the resulting func-
tions directly using register programs as before. For example, using the fact that
NC1 is contained in L, for which matrix powering is complete, an extension of
Lemma 3 to the non-commutative realm could be sufficient to prove NC2 ⊆ CL.

Problem 15. Give a clean register program for computing xk in the non-commutative
setting using linear space and a constant number of recursive calls to x.

To connect this to an earlier problem, all state-of-the-art approaches to Prob-
lem 7—i.e. register programs for arbitrary polynomials—work in the non-commuta-
tive setting as well, and thus optimal improvements therein may yield non-commuta-
tive powering as a special case.

There are other classes we could study in relation to CL, not linearly up from
TC1 but still interesting. One odd gap in our understanding is that of read-multiple
randomness. It is well-known that while NC1 ⊆ L, the same is not known for
their randomized variants, because BPL has the restriction of only reading its
random bits once. This is also the key to using Nisan’s argument as it appeared in
Theorem 2, and thus the following question is still open.

Problem 16. Show that BPNC1 ⊆ CL.

If we treat the catalytic tape as a potential source of randomness à la The-
orem 2, we can in fact read these “random” bits as many times as we need to
compute the circuit. Thus Problem 16 boils down to understanding what proper-
ties of randomness are enough to fool circuits, and how to compress when these
properties are not met.
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5.4 Non-uniform catalytic computation
Moving to the non-uniform setting, we are free from many of the restrictions on
CL that we previously faced. While many individual problems can be posed,
it seems likely that non-uniform CL is universal even for the strictest setting of
parameters, i.e. linear catalytic space and a log space work tape free of constant
multipliers. This would obviate most other results that could be proposed.

Problem 17. Design a catalytic branching program with 2O(n) start nodes and
total size 2O(n) · O(n) for any function f .

As with Problem 15, this would follow directly from an optimal improvement
to Problem 7.

Update: by improving Problem 7, Cook and Mertz [CM23] gave an orthog-
onal result for Problem 17, giving a catalytic branching program with 2O(n) start
nodes and total size 2O(n) · poly (n) for any function f .

However, we should note that calling this class “non-uniform CL” is somewhat
of a misnomer. If we consider the class CL/poly , the equivalence of syntactic
models and advice breaks down, as it is not at all obvious that this can capture
such a class of exponential-sized branching programs; in fact considering CL ⊆
ZPP and ZPP/poly = P/poly , ALL, these are clearly not equivalent modulo
Problem 17. It is worth understanding the actual non-uniform CL in its own right.

Problem 18. What is the power of CL/poly , and does it have a natural syntactic
characterization?

5.5 Oracle results
As mentioned briefly before, Buhrman et al. [BCK+14] also give a few oracle
results that complicate our potential attempts to resolve e.g. Problem 11. Oracle
results in the world of space-bounded computation are notoriously finicky, and
so they may not end up being of much use in the end, but for now it is useful to
increase our understanding of catalytic computation.

One result we mentioned previously was an oracle A such that CLA = PSPACEA;
the oracle in question is essentially an optimal compress-or-random object, which
takes in a string w and either gives a compression of w if it has low entropy or the
answer to a PSPACE-complete problem if it has high entropy. This kind of “pass-
word oracle” is similar to the one showing ZPPB = EXPB.8 It seems plausible
that the two approaches can be merged into one.

8This is commonly attributed to Heller [Hel86], but according to Morgan Shirley the result as
stated is actually unpublished and only appeared during a conference talk for a related paper. Very
similar results and proofs do however exist in the literature, and it has been subsumed by Beigel
et al. [BBF98]. My thanks to him for finding this information as well as the proof itself.
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Problem 19. Show the existence of an oracle D such that CLD = EXPD.

Note that this would make resolving Problem 11 much more difficult, as it
would give an oracle with respect to which CLD , PD by the relativized time
hierarchy theorem. In particular, this would imply that any attempt to resolve
Problem 11 must be non-relativizing.

6 Structural catalytic complexity
The second set of questions we have regarding catalytic computing is the struc-
tural complexity of catalytic computing itself, as a parallel to the hierarchy of
traditional logspace-bounded classes. Since [BCK+14] introduced catalytic com-
putation, this structural theory has seen the most exposition, and so there are many
possible questions to study. We again refer the reader interested in catalytic com-
putation in its own right to the survey of Koucký [Kou16].

6.1 Randomness
Problem 5 posed the question of derandomization for space-bounded complexity
classes. We can also ask a catalytic version: if we cannot solve derandomize BPL
into L, can we at least do the same with their catalytic variants?

Problem 20. Extend the BPL ⊆ CL simulation to show CBPL ⊆ CL.

In the catalytic world, we have the compress-or-random argument from The-
orem 2 in addition to all the tools coming from the study of BPL. This technique
is worth regarding for Problem 20 for at least two reasons: 1) it is likely that
variants of the argument can accommodate other derandomization techniques in
tandem; and 2) considering CL has a catalytic tape itself, working against BPL
with a catalytic tape may not be much harder than working against BPL.

Recall that CBPL ⊆ ZPP, meaning that we can remove the two-sided error
from CBPL; in fact the argument only used randomness to pick an initial catalytic
tape. [DGJ+20] Thus if CL can find a “good” catalytic tape, we are already done.
However, there is an exponentially large configuration graph to consider if we pick
the wrong tape. Furthermore our compress-or-random argument now has to work
for random tapes that are useful against CBPL rather than CL, a harder condition
to quantify.

There is a related question, which is the robustness of the catalytic definition
to small errors. Every bit of the catalytic tape forgotten is a bit that can be used
for free memory, and so we cannot expect CL to remain the same with too many
errors, but as of now we only know how to recover from a constant number of
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errors on the catalytic tape9, while intuitively even a logarithmic number should
hardly be earth-shattering. An alternative result would be to show that CL can
recover from only having a constant number of errors on average, rather than for
every input and catalytic tape.

Problem 21. Show that CL is equivalent even if we allow ω(1) many errors on
the catalytic tape at the end, or alternatively if we allow O(1) such errors in ex-
pectation over all inputs x and catalytic tapes τ.

6.2 Non-determinism
Despite our structural results in the non-deterministic setting, we have no natural
problems which have been placed in CNL but that are not known to be in CL. Right
now non-deterministic catalytic computation seems to be a definition in search of
an application.

Problem 22. Utilize non-determinism in conjunction with catalytic computing in
a non-trivial way.

As a sign of our paucity of knowledge with regards to CNL, we do not yet
have an equivalent of Savitch’s Theorem in the catalytic world. This is one of the
most fundamental questions remaining in importing the structural theory space
complexity to the catalytic computing world.

Problem 23. Prove CNSPACE(s, c) ⊆ CSPACE(s2, c2).

As in Problem 20, the tableau method of Savitch’s original proof will result in
an exponential number of configurations being considered, which seems to be the
major obstacle. Even putting this aside, however, such a tableau of configurations
of the original CNSPACE machine would have to be kept on the catalytic tape of
the simulating CSPACE machine, to be written and read off without issue.

With that said, we note that CNSPACE(s, c) has the same ZPTIME(2s) upper
bound as CSPACE(s, c) [DGJ+20], and there has been no work to suggest it is
significantly stronger.

7 Reusing space beyond space
Our last set of problems is more speculative than the rest. In a word, we ask
where techniques involving space reuse may find traction outside the study of
space-bounded complexity itself.

9This result is originally due to Jain et al. and will appear in upcoming work. The proof
can once again be seen by taking an Eulerian tour around the configuration graph, while keeping
track of the (polynomially bounded, since there are only O(1) errors possible on the catalytic tape)
number of starting configurations we pass so we can find the correct one to go back to.
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There are as many proposals to do so as there are fields, and throughout this
survey the reader has been encouraged to think to their own research, of which
the author certainly knows very little. These are just the ones I personally see as
having potential.

7.1 Practical implementations
When Buhrman et al. [BCK+14] introduced catalytic computation, they began
with a fun illustration of the potential of the model:

Imagine the following scenario. You want to perform a computation
that requires more memory than you currently have available on your
computer. One way of dealing with this problem is by installing a
new hard drive. As it turns out you have a hard drive but it is full with
data, pictures, movies, files, etc. You don’t need to access that data at
the moment but you also don’t want to erase it. Can you use the hard
drive for your computation, possibly altering its contents temporarily,
guaranteeing that when the computation is completed, the hard drive
is back in its original state with all the data intact?

Before considering any theoretical models beyond Turing machines, we should
see if the algorithms we already have in the abstract can be put into concrete use.

Problem 24. Implement a catalytic algorithm such that it is actually useful.

James Cook [Coo21] has already taken a stab at streamlining the program
in Theorem 3 for STConn and seeing how it does on an actual computer; his
program involves concrete tricks from programming, such as replacing addition
with rotation. If we take seriously the promise of using hard disk space as our
catalytic memory, there are many optimizations that would need to happen in
order to make such algorithms practical.

7.2 Quantum computation
As stated in Theorem 5, catalytic computation is built from reversible operations.
This calls to mind another complexity setting where every operation is invertible:
evolution by unitaries, i.e. quantum computation.

There are many potential ways of approaching the potential connection be-
tween quantum and catalytic computation. One is to observe that the one-clean
qubit model, known as DQC1 [KL98], is a catalytic-looking quantum model that
has been widely studied for many years. Another is to think about how efficient
space simulation of circuits may carry over when intermediate circuit computa-
tions no longer have the locality we exploited to get down to constant space in
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Section 2. A third is more optimistic: what other reversible tools for space reuse
can come from the wide toolbox of unitaries?

Before jumping the gun, the precise definition of quantum catalytic computing
has to be nailed down.

Problem 25. What does quantum catalytic space look like?

Even more so than with CBPL and CNL, care needs to be taken to get the right
definition. Probably the most standard model in quantum computation is that of
quantum circuits, capturing such classes as BQP. However, a circuit has a fixed
notion of time, i.e. depth, and as we saw in Theorem 4, while we can reason
about the average time a catalytic algorithm could take, there is no subexponen-
tial guarantee on the worst-case runtime of algorithms such as the compress-or-
random argument in Theorem 2. Thus the quantum Turing Machine model of
Watrous [Wat99], while somewhat non-standard, may be more appropriate.

Instead of focusing on catalytic computing per se, we could also look to ex-
isting models of quantum computation and ask what techniques such as register
programs could buy us.

Problem 26. Devise a register program using basic instructions inspired by uni-
tary computation, and use it to show non-trivial results for e.g. BQP.

7.3 Circuits
Recall that our main examples of space reuse, such as our “theorem” in Section 2,
were about space-efficient computation of circuits. In the hierarchy of syntac-
tic models, it is known that circuits can efficiently simulate branching programs,
while there are separations known in the other direction; hence why results such
as Theorem 3 are so interesting.

However, if we consider the power of circuits to simulate branching programs,
this means that in some ways a circuit class of sufficient power should be able
to implement the space reuse techniques we have seen. It is unclear what that
actually looks like when we convert our branching programs over, or if it is even
necessary or interesting to do so.

Problem 27. Devise a circuit that uses techniques from space reuse and catalytic
computing to solve some problem in low size or depth in a way that we do not
know how to do directly.

With all the circuit classes sitting between L and P, there is also the question
of whether or not implementing catalytic-style techniques can help clean up this
landscape.
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For example, a longstanding conjecture of Immerman and Landau [IL95]
states that the determinant of integral matrices is complete for TC1. It is known
that the determinant is complete for the class of log-depth arithmetic circuits
whose + gates have unbounded fan-in and whose × gates have fan-in two, a class
known as VP. Given that Theorem 3 states that TC1 can be simulated by register
programs, and such programs are arithmetic in nature, perhaps VP can implement
our theorem as well.

Problem 28. Show TC1 ⊆ VP.

7.4 Network coding
Our first example of saving space in this survey was the XOR trick for swapping
values. Between this and our register program technique, it makes sense to look
at areas where bit tricks and XOR tricks come in handy.

s1 s2

t2 t1

m1 m2

m1 m2m1 ⊕ m2

Fig.: network coding
(directed counterexample)

One such area is the network coding conjec-
ture. In essence, the question is whether or not, for
a given undirected graph with capacities on each
edge and a set of source-sink pairs, we can send
more message bits from each source to its corre-
sponding sink than the network flow should allow
if we think of the messages as being generic com-
modities instead. While this seems implausible,
we note that this is in fact possible in the directed
graph setting, as alluded to in our bulleted list in
Section 1, and the counterexample uses an XOR
trick.

Problem 29. Is the network coding conjecture true
or false?

Resolving Problem 29 in the affirmative, i.e. showing that no tricks are possi-
ble for sending more bits than the network flow, would lead to circuit lower bounds
for a number of fundamental problems such as sorting [FHLS20] and multiplica-
tion [AFKL19].

There are many potential approaches to Problem 29 beyond XOR tricks, but
for our purposes it is sufficient to focus on this case for starters. Such “lin-
ear” strategies are known to not be optimal in terms of how many bits can be
sent [DFZ05], but to the best of our knowledge we still have not resolved the
network coding conjecture even in this case.

Problem 30. Prove or disprove the network coding conjecture when all nodes are
restricted to sending linear transformations of their incoming messages.
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7.5 Data structures
One setting where space usage is a key metric to study is that of data structures.
Unlike in the usual complexity setting, the balance of time and space is sepa-
rated into two phases: first, a preprocessing phase where some amount of space is
consumed in order to prepare useful information about the input; and second, we
receive a list of queries about the input that we want to answer quickly, using both
the input itself as well as whatever we prepared in the first phase.

This two-phase process somewhat muddies the waters when it comes to think-
ing about space reuse, which is all about recomputing things many times, usually
at the cost of time, in order to avoid some bottleneck in the information we have
to store. It seems to be an orthogonal style of question.

Nevertheless, with space as one of the main players in the world of data struc-
tures, it seems that at least a basic investigation may be warranted.

Problem 31. Is there a meaningful notion of a catalytic data structure, or is there
anything to be gained from a data structure stored in catalytic memory?

7.6 Cryptography
As with quantum computing, there are many ways to approach the possible link
between reusing space and cryptography.

An obvious consequence of Theorem 4, as well as other explicit results [BKLS18,
GJST19], is that cryptography implies lower bounds against catalytic computing,
as an appropriate pseudorandom generator would show CL and many of its vari-
ants are contained in P. Such results could also resolve many of our questions
about randomized computation without using any of our space reuse techniques;
from the perspective of this survey this would be somewhat disappointing, but in
the end results are results.

Problem 32. Show CL is contained in some subclass of P, perhaps NC, given a
believable cryptographic assumption.

There is also the contrapositive side to Problem 32, of whether reusing space
provides a potential barrier against cryptography just as it was a barrier against
composition for space. For example, the notion of proofs of space, a variant of
the proofs of work paradigm used in cryptocurrency, was complicated by Pietrzak
[Pie19], who showed that a stronger object known as catalytic proofs of space
would be necessary to constitute an actual “proof of work”.

Problem 33. Show evidence against objects in cryptography based on techniques
in reusing space.
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To again err on the side of optimism however, we prefer to ask not what cryp-
tography can do for catalytic computing, but rather what catalytic computing can
do for cryptography.

While compress-or-random seems like the more relevant argument for ran-
domized computation, we would like to draw attention to the register program
argument at this juncture. Consider our proof of e.g. Lemma 1 again, and now
let our initial values τi be chosen i.i.d. from {0, 1}. Then a clear consequence is
that at every individual point in the execution of our algorithm, our memory is
distributed i.i.d. as well, i.e. (τ0, τ1, τ2) is distributed uniformly across {0, 1}3.

In other words, our memory at every point in time reveals no secrets about the
computation of f . This calls to mind potential applications such as homomorphic
encryption, leakage resilience, etc. There are definitions and problems to be cod-
ified, and more steps may be needed for this approach to work; for example, any
two points in time together may tell quite a bit about the computation of f .

Problem 34. Show the existence, conditional or otherwise, of a natural class of
cryptographic objects by using clean computation.

A more concrete problem would be to extend the results of Applebaum et
al. [AIK06] to show that cryptography in CL implies cryptography in NC0. The
warm-up for their result is based on Barrington’s Theorem, i.e. our “theorem”
from Section 2, and so it seems natural to believe that register programs in general
could be turned into one-way functions with appropriate tinkering.

Problem 35. Prove that the existence of one-way functions in CL, or even any
one-way function computable by a poly-size poly-length register program, implies
the existence of one-way functions in NC0.
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8 Conclusion: to a broader theory
This brings an end to our list of open questions. We will conclude this survey, just
as we began, with an entreaty, and my gratitude, to the reader who has made it to
the end.

The two most important questions in the field of reusing space are also the
most general: to develop new techniques and to develop new applications. New
techniques may involve using more cutting-edge tools in complexity, group the-
ory, etc., or they may simply be new ways of approaching the model beyond
compression or arithmetic-style reuse. New applications could be with questions
that have to do with space, or it could be that the techniques we have described in
this work have a home in a very different model.

This survey was an attempt to solve a third, no less important problem: to
develop new interest. I hope to have provided the reader with enough of a peek
at this burgeoning field to garner interest, and to have provided at least a few
problems which can be played with without too much further context. With any
luck these techniques and problems will be only a prelude to the exploration of a
wider world of reusing space.
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Exercise solutions
Solution 1. As stated, we will only seek to reprove the correctness of the program for g1 ∧ g2.
Define y1 = τ1 + g1 and y2 = τ2 + g2; in other words, before running P1 the register R1 contains
τ1, while afterwards it contains y1, and likewise for P2. Then by simple arithmetic

g1g2 ≡ y1y2 + y1τ2 + τ1y2 + τ1τ2 mod 2

Thus we can add g1g2 to R0 by adding each of the four monomials in this expansion to R0, one by
one, each obtained by running a combination of P1 and P2.

In fact, by ordering them as

g1g2 ≡ τ1τ2 + τ1y2 + y1y2 + y1τ2 mod 2

this can be done using only four recursive calls as presented in the original proof of Lemma 1,
rather than however many were in our subsequent exposition.

Solution 2. We will use the same recursive statement as Lemma 1, with two changes. First, we
will need a program to handle gates of the form g = g1 + g2. This is clearly accomplished by the
following program Pg(i):

1. P1(i) Ri = [τi] + [v1]
2. P2(i) Ri = [τi + v1] + [v2] = τi + v1 + v2 ✓

Before moving on to × gates, we need to handle the fact that executing Pg(i) twice no longer resets
memory, as we are no longer over F2. To handle this, we will extend our recursion to state that
in addition to Pg(i) we also have a program P−1

g (i) whose function is to subtract vg from Ri. This
is clearly true at the leaves since reading inputs is atomic, and swapping P1(i) and P2(i) for their
inverses in our + program above gives P−1

g (i).
Now we can move on to g = g1g2. Our program from Lemma 1 works almost directly for

× gates, with the only catch being that we convert + into − in some places in order to get the
cancellations to work. Concretely our program Pg(0) is as follows:

1. P1(1) R1 = [τ1] + [v1]

2. R0 += −R1R2 R0 = [τ0] + [−(τ1 + v1)(τ2)]
= τ0 − τ1τ2 − v1τ2

3. P2(2) R2 = [τ2] + [v2]

4. R0 += R1R2 R0 = [τ0 − τ1τ2 − v1τ2] + [(τ1 + v1)(τ2 + v2)]
= τ0 + τ1v2 + v1v2

5. P−1
1 (1) R1 = [τ1 + v1] + [−v1]

= τ1 ✓
6. R0 += −R1R2 R0 = [τ0 + τ1v2 + v1v2] + [−(τ1)(τ2 + v2)]

= τ0 − τ1τ2 + v1v2
7. P−1

2 (2) R2 = [τ2 + v2] + [−v2]
= τ2 ✓

8. R0 += R1R2 R0 = [τ0 − τ1τ2 + v1v2] + [(τ1)(τ2)]
= τ0 + v1v2 ✓

and it is easy to show that running the same program with all signs flipped gives P−1
g (0) as well.

Once again all other programs P−1
g (i) can be obtained by relabeling.
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Solution 3. As mentioned, there are in fact two solutions, both of which has its own advantage.
The first is to execute Lemma 1 on a tree of fan-in two ∧ gates of height log d; this can be done in
place using very few registers and 4log d = d2 recursive calls.

The second solution is much less efficient in terms of recursion:

for all S ⊆ [d] :
1. Pi ∀i ∈ S

2. R0 +=

d∏
i=1

Ri

3. P−1
i ∀i ∈ S

This follows by a generalization of the alternate analysis given in the previous exercise, namely

d∏
i=1

gi ≡
∑

S⊆[d]

∏
i∈S

τi + xi


∏

i<S

τi


by inclusion-exclusion.

In terms of utility, the first is clearly much more efficient with respect to time. However, it
turns out that the second is more useful for some generalized applications, in particular when we
want to compute not just one product but an arbitrary number of products in parallel. The first
algorithm must be scaled linearly in terms of time or space, while it turns out the latter can be
modified to work with no increase in either. See [CM20, CM21] for more details.

Solution 4. The following program computes PΣ:

1. Pi ∀i Ri = [τi] + [vi] ∀i

2. RΣ +=
∑

i

Ri R0 = [τ0] +

∑
i

(τi + vi)


= τ0 +

∑
i

τi +
∑

i

vi

3. P−1
i ∀i Ri = [τi + vi] + [−vi] ∀i

= τi ∀i ✓

4. RΣ += −
∑

i

Ri R0 =

τ0 +
∑

i

τi +
∑

i

vi

 + −∑
i

τi


= τ0 +

∑
i

vi ✓

We note that this also gives a program P−1
Σ

by running the program in reverse order and flipping
all signs.

Solution 5. The following program computes Pk given Pv, and uses k registers R′1 . . .R
′
k in addition

to R0 and Rv:

1. P−1
v Rv = [τv] + [−v]

2. R′j += (Rv) j ∀ j = 0...k R′j = [τ′j] + [(τv − v) j] ∀ j = 0...k
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3. Pv Rv = [τv − v] + [v]
= τv

4. R0 +=

k∑
j=0

(
k
j

)
(Rv) j(−1)k− jR′k− j R0 = [τ0] +

 k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j + (τv − v)k− j)


= τ0 +

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j)

+

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τv − v)k− j

5. P−1
v Rv = [τv] + [−v]

6. R′j += −(Rv) j ∀ j = 0...k R′j = [τ′j + (τv − v) j] + [−(τv − v) j]
= τ′j ∀ j = 0...k ✓

7. Pv Rv = [τv − v] + [v]
= τv ✓

8. R0 += −

k∑
j=0

(
k
j

)
(Rv) j(−1)k− jR′k− j R0 = [τ0 +

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j)

+

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τv − v)k− j]

+

− k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j)


= τ0 +

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τv − v)k− j

= τ0 + vk ✓

As before we get an inverse program by running in reverse and flipping all signs.

Solution 6. The same averaging argument as Theorem 4 shows that a random catalytic tape will
only have a polynomial size component in the configuration graph, even when this component is
no longer a line and can branch based on randomness or non-uniformity. We choose a random
catalytic tape using the randomness of ZPP, copy it to remember where we started, and then take
an Eulerian tour of the given component in the same way as Theorem 5.

To simulate CNL it is enough to look for any accept state we see before returing to our starting
configuration, while for CBPL we keep a list of how many accept and reject states we encounter
and take a majority vote. Note that in either case we will never get the wrong answer, although
as before we may have to declare “I don’t know” if we pick a bad starting catalytic tape and the
procedure takes too long.

Solution 7. As in our alternate proof of Lemma 1 (see the solution to Exercise 1, given above),
define yi = τi + xi for each i. Let p f (x1 . . . xn) be the F2 polynomial computing f given by interpo-
lation, and let q f (τ1 . . . τn, y1 . . . yn) be defined by substitution into p f , namely

q f (τ1, . . . , τn, y1, . . . , yn) = p f (y1 − τ1, . . . , yn − τn)

Given this substitution, consider all monomials in q f , i.e.

q f =
∑

S ,T⊆[n]

cS ,T (
∏
i∈S

τi)(
∏
i∈T

yi)
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for some constants cS ,T ∈ F2. Note that by construction we need only consider disjoint S and T ,
since p f is over F2 and thus is multilinear. For convenience we relabel these products τS and yT

respectively.
We will use registers Ri for each i as well as registers RS ,τ and RT,y for each S ,T ⊆ [n]. Our

idea is to store each τS into the corresponding RS ,τ and similarly for y, so that

RS ,τ · RT,y = (τS ,τ + τ
S )(τT,y + yT ) = τS ,ττT,y + τS ,τyT + τS τT,y + τ

S yT

and as in Lemma 1 we use four rounds to cancel out the various junk terms to get exactly τS yT .
Thus the following program computes P f :

1. RS ,τ +=
∏

i∈S Ri ∀S ⊆ [n] RS ,τ = [τS ,τ] + [τS ] ∀S ⊆ [n]

2. R0 +=
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0] +

 ∑
S ,T⊆[n]

cS ,T (τS ,τ + τ
S )(τT,y)


= τ0 +

∑
S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S τT,y)

3. Pi ∀i ∈ [n] Ri = [τi] + [vi] ∀i ∈ [n]

4. RT,y +=
∏

i∈T Ri ∀T ⊆ [n] RT,y = [τT,y] + [yT ] ∀T ⊆ [n]

5. R0 +=
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0 +
∑

S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S τT,y)]

+

 ∑
S ,T⊆[n]

cS ,T (τS ,τ + τ
S )(τT,y + yT )


= τ0 +

∑
S ,T⊆[n]

cS ,T (τS ,τyT + τS yT )

6. RS ,τ +=
∏

i∈S Ri ∀S ⊆ [n] RS ,τ = [τS ,τ + τ
S ] + [τS ] ∀S ⊆ [n]

= τS ,τ ∀S ⊆ [n] ✓

7. R0 += +
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0 +
∑

S ,T⊆[n]

cS ,T (τS ,τyT + τS yT )]

+

 ∑
S ,T⊆[n]

cS ,TτS ,τ(τT,y + yT )


= τ0 +

∑
S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S yT )

8. Pi ∀i ∈ [n] Ri = [τi + vi] + [vi] ∀i ∈ [n]
= τi ∀i ∈ [n] ✓

9. RT,y += +
∏

i∈T Ri ∀T ⊆ [n] RT,y = [τT,y + yT ] + [yT ] ∀T ⊆ [n]
= τT,y ∀T ⊆ [n] ✓

10. R0 += +
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0 +
∑

S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S yT )]

+

 ∑
S ,T⊆[n]

cS ,TτS ,ττT,y


= τ0 +

∑
S ,T⊆[n]

cS ,Tτ
S yT = τ0 + q f ✓

Solution 8. The world is your oyster.
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