
New Graph Decompositions and Combinatorial Boolean Matrix

Multiplication Algorithms

Amir Abboud∗ Nick Fischer† Zander Kelley‡ Shachar Lovett§ Raghu Meka¶

Abstract

We revisit the fundamental Boolean Matrix Multiplication (BMM) problem. With the invention
of algebraic fast matrix multiplication over 50 years ago, it also became known that BMM can
be solved in truly subcubic O(nω) time, where ω < 3; much work has gone into bringing ω closer
to 2. Since then, a parallel line of work has sought comparably fast combinatorial algorithms
but with limited success. The näıve O(n3)-time algorithm was initially improved by a log2 n
factor [Arlazarov et al.; RAS’70], then by log2.25 n [Bansal and Williams; FOCS’09], then by
log3 n [Chan; SODA’15], and finally by log4 n [Yu; ICALP’15].

We design a combinatorial algorithm for BMM running in time n3/2Ω(7
√
logn)—a speed-up

over cubic time that is stronger than any poly-log factor. This comes tantalizingly close to
refuting the conjecture from the 90s that truly subcubic combinatorial algorithms for BMM are
impossible. This popular conjecture is the basis for dozens of fine-grained hardness results.

Our main technical contribution is a new regularity decomposition theorem for Boolean
matrices (or equivalently, bipartite graphs) under a notion of regularity that was recently intro-
duced and analyzed analytically in the context of communication complexity [Kelley, Lovett,
Meka; arXiv’23], and is related to a similar notion from the recent work on 3-term arithmetic
progression free sets [Kelley, Meka; FOCS’23].

∗Weizmann Institute of Science. This work is part of the project CONJEXITY that has received funding from the
European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme
(grant agreement No. 101078482). Supported by an Alon scholarship and a research grant from the Center for New
Scientists at the Weizmann Institute of Science. Email: amir.abboud@weizmann.ac.il

†Weizmann Institute of Science. Supported by the project CONJEXITY as above. Email: nick.fischer@

weizmann.ac.il
‡Department of Computer Science, University of Illinois at Urbana-Champaign. Supported by NSF CAREER

award 2047310. Email: awk2@illinois.edu
§Department of Computer Science and Engineering, University of California, San Diego. Supported by NSF DMS

award 1953928, NSF CCF award 2006443, and a Simons investigator award. Email: slovett@ucsd.edu
¶Department of Computer Science, University of California, Los Angeles. Supported by NSF AF 2007682 and

NSF Collaborative Research Award 2217033. Email: raghum@cs.ucla.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 180 (2023)

mailto:amir.abboud@weizmann.ac.il
mailto:nick.fischer@weizmann.ac.il
mailto:nick.fischer@weizmann.ac.il
mailto:awk2@illinois.edu
mailto:slovett@ucsd.edu
mailto:raghum@cs.ucla.edu

1 Introduction

Boolean Matrix Multiplication (BMM) is one of the most basic and fundamental combinatorial
problems. It can be solved in O(nω) time, where 2 ≤ ω < 2.3716 [33, 74] is the exponent of (integer)
matrix multiplication. The algebraic technique underlying Strassen’s [66] and all subsequent “fast
matrix multiplication” algorithms have several limitations (discussed in Section 1.1) related to
generalizability, elegance, and practical efficiency. Therefore, in addition to the line of work trying
to enhance this algebraic machinery aiming to reach ω = 2, a parallel line of work aims to match
(or improve) these subcubic bounds with different combinatorial techniques.

The first result in this direction is the “Four-Russians” algorithm by Arlazarov, Dinic, Kron-
rod, and Faradžev [12] that achieves o(n3) complexity by precomputing the answers to small sub-
instances. This approach can give O(n3/ log2 n) time, but nothing faster [11]. After many decades,
Bansal and Williams [13] used regularity lemmas to gain an additional log0.25 n factor speed-up.
The usefulness of graph regularity techniques was undermined a few years later when Chan [23]
gave a better, O(n3/ log3 n) bound only using simple divide-and-conquer. Yu [75] optimized the
divide-and-conquer method to achieve an O(n3/ log4 n) bound that stood since 2015.1

A pessimistic conjecture that has been popular since the 90s [65, 56] states that truly subcubic
running times are impossible for combinatorial algorithms; that is, one may be able to shave some
more logarithmic factors, but we cannot reach O(n3−ϵ) time with ϵ > 0.

Conjecture 1.1 (Combinatorial BMM). There is no combinatorial algorithm for BMM running
in time O(n3−ϵ), for any ϵ > 0.

This conjecture has served as the basis for many conditional lower bounds. Refuting it would re-
open the quest for polynomially faster combinatorial algorithms for a host of fundamental discrete
problems [64, 72, 7, 8, 27, 24, 22, 25, 20, 58, 21, 30, 1, 19, 31, 5, 18, 16, 50, 49]2.

Main Result. In this paper, we prove a new regularity decomposition theorem that leads to a
quasi-polynomial3 saving for BMM, combinatorially, coming much closer than before to refuting
Conjecture 1.1.

Theorem 1.2 (Combinatorial BMM). There is a deterministic combinatorial algorithm computing
the Boolean product of two n× n matrices in time n3/2Ω(7√logn).

We immediately get a similar combinatorial super-poly-logarithmic saving for many other prob-
lems (that can be reduced to BMM). The list includes central problems in their domains such as
context-free grammar parsing from formal languages [68], computing the transitive closure of a
directed graph [35, 60], join-project queries from databases [10, 69], parameterized problems such
as k-clique [61] and k-dominating-set [34], and various matrix product problems [59, 29, 70].

Our (and most previous) results are obtained by designing algorithms for the simpler triangle
detection problem and then using a well-known subcubic equivalence with BMM [72]. Therefore,
we focus on triangle detection below.

1All running times in this paragraph are up to log-log-factors.
2Some of these references assume the stronger Combinatorial k-Clique Conjecture, that would also be refuted if

Conjecture 1.1 is false.
3Recall that bounds of the form 2(logn)c are called quasi-polynomial. In our case, c < 1.

1

A New Regularity Decomposition Theorem. In abstract terms, a graph is regular if it be-
haves somewhat pseudo-randomly, and a regularity decomposition theorem states that any graph
can be decomposed into a “small” number of regular subgraphs. Such results are interesting math-
ematically because they say that any graph can be simplified dramatically, and also algorithmically
because they let us reduce a problem from arbitrary to (the often easier) random-like graphs. The
possibility and efficiency of such results depend on the precise notion of regularity; generally, there
is a trade-off between strength (i.e. how close “regular” is to random) and efficiency (i.e. the number
of subgraphs in the decomposition).

For example, the celebrated Szemerédi’s Regularity Lemma [67] yields a decomposition into
subgraphs with very strong pseudo-random properties, but to achieve meaningful results for graphs
with density δ, the number of parts inherently scales as a tower function of height poly(1/δ) [42].4

A comparable but weaker notion of regularity due to Frieze and Kannan [38] admits decompositions
into fewer, but still exponentially many parts (specifically, 2O(δ−2)). At the other end of the spec-
trum, expander decompositions use a much weaker notion of pseudo-randomness, but significantly
gain in efficiency.

Considering a specific problem, e.g. triangle detection, the challenge is finding a sweet spot in
which the regularity notion is strong enough to make the problem algorithmically easy, yet weak
enough to make the decomposition efficient. Unfortunately, expanders are too weak [6]. Based on
Szemerédi-regularity and Frieze-Kannan-regularity, Bansal and Williams [13] indeed scored non-
trivial algorithmic improvements for Boolean Matrix Multiplication: A (log∗(n))Ω(1)-shave based
on Szemerédi’s Regularity Lemma,5 and a (log n)1/4-shave based on Frieze-Kannan regularity. In
both cases, however, due to the excessive number of pieces in the regularity decomposition, it seems
hopeless to go beyond log-shaves.

In this paper we employ a regularity notion called grid regularity that was recently introduced by
Kelley, Lovett and Meka [52] in the context of communication complexity and is based on similar
results in the work of Kelley and Meka [53] on 3-term arithmetic progressions. This regularity
notion is weak but still useful for triangle detection and BMM. Phrased in terms of matrices, the
key takeaway from their work is that a single grid-regular matrix is not necessarily very random,
but the product of two grid-regular matrices is very random (see Theorem 2.1). Equivalently, in a
3-layered graph in which both edge sets are grid regular, the number of 2-paths from left to right
behaves randomly. Our main contribution is that we (1) establish a decomposition theorem for this
notion of regularity into quasi-polynomially many parts (specifically, 2O((log δ−1)7)), and (2) provide
an efficient deterministic algorithm to compute this decomposition.

1.1 On Combinatorial Algorithms

Despite the large number of papers on combinatorial algorithms for BMM, there is currently no
satisfying and precise definition for this notion. The main reason for this, we believe, is that there
are multiple strong motivations for seeking combinatorial algorithms (discussed below) that are
not necessarily consistent with one another. A simple algorithm need not be practical, or vice
versa, and an algorithm that generalizes to one setting may not generalize to another. Therefore,
one can either focus on precise definitions that are limited to one motivation or embrace a more
inclusive but loose definition. Many examples of the former approach exist (see below), and they

4I.e., f(δ) ≤ 22
2...

where the tower has height poly(δ−1).
5In fact, their algorithm is based on the Triangle Removal Lemma which can be proven via Szemerédi’s Regularity

Lemma, but could in principle (and, in fact, does) admit better quantitative bounds [36].

2

give rise to interesting research questions. The latter, however, is more popular in the community:
we currently have no truly subcubic algorithm for BMM other than Strassen’s algorithm (and its
successors) so we should first seek to break Conjecture 1.1 by any other technique and hope that
at least one of the motivations gets satisfied.

To help shed light on this, let us review the limitations of the existing algebraic technique that
motivate us to seek other algorithms. The first two may be more well-known, but the third is
more pressing for fine-grained complexity and algorithm design. Along the way, we discuss to what
extent our algorithm satisfies each consideration.

• Simplicity: Strassen’s algorithm (and even more so for its successors) exploits cancellations
using formulas that may be considered unintuitive; consequently, the values manipulated at
intermediate stages of the computation are quite uninterpretable. Instead, one may hope for
techniques that are simpler and more interpretable; this is probably the historical reason for
the name “combinatorial”. Some works have proposed precise definitions along these lines,
e.g. for solving triangle detection an algorithm can only generate sets by basic operations
on the neighborhoods of nodes, and strong lower bounds exist [11, 32]. Unfortunately, the
current definitions are not flexible enough to capture the regularity decomposition techniques
of Bansal-Williams [13] and of our paper, nor even the simple divide-and-conquer of Chan [23]
and Yu [75], even though these techniques are widely-considered “combinatorial” (even by
the authors proposing the definitions). In particular, our algorithm decomposes the graph by
repeatedly finding and removing irregular pieces (i.e., that contain too many bicliques) and
then uses a brute-force algorithm on the (sparse) parts.

• Practical Efficiency: Here, one should make a distinction between Strassen’s n2.81 al-
gorithm, and its successors that have reduced ω much further. The latter algorithms are
considered “galactic” and the interest in them is mostly theoretical. On the other hand,
Strassen’s algorithm has been used in practice, but the gains are limited; some reasons in-
clude its bad locality (generating too many cache misses) and the need to manipulate large
numbers. For many decades, researchers have sought techniques that are more efficient in
practice and also have worst-case guarantees.6 The lack of success in finding such algorithms
partly motivated Conjecture 1.1 in the 90s [65, 56, 9]. A definition of this notion has to
be empirical, and determining if our algorithm satisfies it requires experiments. Regularity
decompositions are infamously impractical, but our underlying paradigm of decomposing the
input into pseudo-random parts has the potential to be practical.

• Generalizability: Much of the interest in BMM and triangle detection is because they are
simplified special cases of more difficult, important problems. A technique that only solves
the special case is not satisfying. In the following, we give four examples of such problems
where (1) for well-established reasons, Strassen’s technique does not give a truly subcubic
algorithm, and (2) a truly subcubic algorithm that does generalize would be groundbreaking
as it would refute a popular conjecture in fine-grained complexity that has nothing to do with
“combinatorial algorithms”, i.e. we do not know how to refute it with any algorithms. In each
case, a precise definition of “combinatorial” in the sense of generalizing to that particular
setting can readily be made: it is an algorithm that solves the corresponding problem.

6Note that the latter requirement is crucial because very fast matrix multiplication algorithms do exist in practice,
but are due to highly optimized implementations of the cubic time solution and to special-purpose hardware whose
sole purpose is to perform these implementations. Needless to say, a real algorithmic speedup is still desirable.

3

– To refute the famous All-Pairs Shortest-Paths (APSP) Conjecture, it is enough (in fact,
equivalent) to solve weighted generalizations of BMM and triangle detection in truly
subcubic time: (min,+)-matrix-multiplication and Negative-Triangle [72]. The issue
with Strassen’s technique is that it exploits cancellations by subtracting numbers, and
min does not have an inverse.

– To refute the Online Matrix-Vector (OMV) Conjecture [48], we need to solve BMM in
an online setting in which the columns of the second matrix arrive one by one and, at
each step, we must output the answer before seeing the next column, in a total time
that is truly subcubic. The issue with Strassen’s algorithm is that its formulas depend
on later columns.

– To refute the Hyper-Clique Conjecture [58], we need a generalization to hypergraphs
that lets us detect a 4-clique in a 3-uniform hypergraph. A technique entirely different
from Strassen’s is needed because formulas that reduce the number of multiplications
provably do not exist—the border rank of the corresponding tensor matches the trivial
upper bound [58].

– To refute the famous 3-SUM Conjecture [62, 54] (and also the APSP Conjecture [73]), it
is enough to obtain a generalization to the (witness) reporting setting. In particular, we
would like an algorithm that preprocesses a graph in truly subcubic time and can then
enumerate all triangles with constant delay. Unfortunately, the witness information is
lost under the cancellations that are exploited in Strassen’s algorithm.

Does our new algorithm and, more generally, the regularity decompositions technique
generalize to these four settings? For the first three, it is unclear and left for future research
(there was much less incentive to do it before this work since it was outperformed by divide-
and-conquer).7 For the reporting setting, Abboud, Fischer, and Shechter [4] recently observed
that the ideas in the Bansal-Williams algorithm can give a triangle enumeration algorithm
with n3/ log2.25 n preprocessing and constant delay, which is the state-of-the-art even when
using algebraic techniques. Building on our new decomposition theorem, we give an improved
bound, demonstrating that our techniques are useful beyond “combinatorial” algorithms.

Theorem 1.3 (Triangle Enumeration Algorithm). There is a deterministic algorithm that
preprocesses a given graph in time n3/(log n)6 · (log log n)O(1) and then enumerates all trian-
gles with constant delay.

It should appear strange that we shave only a log6 n factor and not a super-poly-log. The
reason for this is that O(n3/ log6 n) is the best we know how to achieve (using any technique)
for triangle enumeration even on random graphs (see Section 7.1). Thus, it is a natural
limit for any technique (like ours) based on a reduction to random-like instances. Moreover,
due to the reduction from 3-SUM to triangle enumeration [62, 54], shaving any additional
logϵ n factor over our bound would improve on the longstanding upper bound for (integer)
3-SUM [14] (see Section 7.4).

7For the first [71] and second [55] settings, breakthrough works have already managed to shave a quasi-polynomial
factor by fancy reductions to matrix multiplication (and then using the algebraic methods); nonetheless, achieving
such improvements with our combinatorial methods would be interesting. For the third setting, it is a big open
question.

4

2 Preliminaries

We write [n] = {1, . . . , n} and poly(n) = nO(1). Occasionally, we write a = b ± ϵ to express that
|a− b| ≤ ϵ.

2.1 Machine Model

We assume the standard Word RAM model with word size Θ(log n) (where n is the input size).
Since, for most of our algorithmic results, additional log-factors in the running times would not
matter, the choice of the machine model is not crucial. Only in Section 7, when we care about
log-factors, this choice matters.

2.2 Graphs and Matrices

We typically denote sets (of nodes) by X,Y, Z and matrices by A,B,C. Moreover, we typically
view binary matrices A ∈ {0, 1}X×Y as bipartite graphs on the node sets X,Y , where an edge (x, y)
is present if and only if A(x, y) = 1.

Let A ∈ RX×Y
≥0 and B ∈ RY×Z

≥0 be matrices. We denote by AB their standard matrix product,
and by A ◦B a scaled matrix product defined by

(A ◦B)(x, z) = E
y∈Y

A(x, y)B(y, z) =
1

|Y |
·
∑
y∈Y

A(x, y)B(y, z).

Following the bipartite graph analogy, for setsX ′ ⊆ X and Y ′ ⊆ Y , we let A[X ′, Y ′] ∈ RX×Y
≥0 denote

the submatrix restricted to the rows in X ′ and the columns in Y ′—that is, the subgraph induced
by X ′ ∪ Y ′. Let AT denote the transpose of A—that is, the subgraph obtained by exchanging the
sides X and Y . We call

E[A] = E
x∈X
y∈Y

A(x, y) =
1

|X| |Y |
·
∑
x∈X
y∈Y

A(x, y)

the density of A. For nodes x ∈ X and y ∈ Y , we define their (relative) degrees as

degA(x) = E
y∈Y

A(x, y) =
1

|Y |
·
∑
y∈Y

A(x, y),

degA(y) = E
x∈X

A(x, y) =
1

|X|
·
∑
x∈X

A(x, y).

We say that A is ϵ-left-min-degree or simply ϵ-min-degree if minx∈X degA(x) ≥ (1− ϵ)E[A]. (The
symmetric notion of ϵ-right-min-degree is never used in the paper.) Moreover, for α, ϵ, δ ≥ 0, we
say that A is (α, ϵ, δ)-uniform if

P
(x,y)∈X×Y

[(1− ϵ)α ≤ A(x, y) ≤ (1 + ϵ)α] ≥ 1− δ.

5

2.3 Grid Regularity

Recall that we abstractly consider a graph regular if it behaves somewhat pseudo-randomly.8 In
this paper we employ the following formal notion of regularity, defined via the “grid norm” of a
matrix. Specifically, for a matrix with non-negative entries A ∈ RX×Y

≥0 and integers k, ℓ ≥ 1, we
define its (k, ℓ)-grid norm as

∥A∥U(k,ℓ) =

 E
x1,...,xk∈X
y1,...,yℓ∈Y

∏
i∈[k]
j∈[ℓ]

A(xi, yj)

1
kℓ

;

note that equivalently

∥A∥kℓU(k,ℓ) = E
x1,...,xk∈X

 E
y∈Y

∏
i∈[k]

A(xi, y)

ℓ

= E
y1,...,yℓ∈Y

 E
x∈X

∏
i∈[ℓ]

A(x, yj)

k

.

Strictly speaking, ∥ · ∥U(k,ℓ) is not necessarily a norm, but we will nevertheless intuitively treat it
as such.9 In combinatorial terms, the grid norm of a bipartite graph A ∈ {0, 1}X×Y measures (up
to normalization) the number of (k, ℓ)-bicliques that occur as subgraphs of A (including subgraphs
in which some nodes of the biclique coincide).

Note that the grid norm ∥A∥U(k,ℓ) ranges from E[A] to 1, and thereby constitutes some mea-
sure of pseudo-randomness: On the one hand, purely random bipartite graphs (with edge den-
sity E[A]) have grid norm ∥A∥U(k,ℓ) ≈ E[A], whereas structured graphs (e.g., graphs with large
induced subgraphs of increased density) often have larger grid norms. In this spirit, we say that A
is (ϵ, k, ℓ)-regular if

∥A∥U(k,ℓ) ≤ (1 + ϵ)E[A].

For specific constant values of k and ℓ, grid norms have appeared in many previous mathematical
works (e.g., [43, 44]), and also implicitly in recent algorithmic structure-to-randomness reduc-
tions [3, 2, 51].

2.4 Kelley-Lovett-Meka’s Structural Theorem

What makes grid norms useful for us? In a recent result, Kelley, Lovett and Meka [52] use analytical
methods to obtain the following structural result, linking the regularity of two graphs A and B to
their product matrix.

Theorem 2.1 (Regular Matrices Have Uniform Products [52, Lemma 4.8]). Let A ∈ RX×Y
≥0 and

B ∈ RY×Z
≥0 , let ϵ ∈ (0, 1

80), let d ≥ 2/ϵ and assume that

(a) A and BT are (ϵ, 2, d)-regular, and

(b) A and BT are ϵ-min-degree.

Then A ◦B is (E[A]E[B], 80ϵ, 2−ϵd/2)-uniform.
8This concept is not related to degree-regularity (where each node in the graph has the same number of neighbors).
9It is however known that ∥ · ∥U(k,ℓ) is a semi-norm whenever k and ℓ are even [47, Theorems 2.8 and 2.9].

6

3 Technical Overview

Theorem 2.1 is the starting point Our goal in the following is to exploit this structural theorem
algorithmically and derive an improved combinatorial algorithm for Boolean matrix multiplication.
In this section we describe our key ideas.

Boolean Matrix Multiplication and Triangle Detection. Recall that the Triangle Detection
problem is to test whether a given undirected, tripartite graph (X,Y, Z,A,B,C) (with vertex
parts X,Y, Z and edge parts A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , C ∈ {0, 1}X×Z) contains a triangle
(that is, a vertex triple (x, y, z) ∈ (X,Y, Z) with A(x, y) = B(y, z) = C(x, z) = 1). While at
first glance Triangle Detection appears to be a simpler problem than BMM (note that the output
consists of a single bit versus n2 bits), it is known since the early days of fine-grained complexity
that both problems are, in fact, equivalent in terms of subcubic algorithms [72]. Specifically, if
Triangle Detection can be solved in time O(n3/f(n)), then Boolean Matrix Multiplication is in
time O(n3/f(n1/3)). This reduction is essentially loss-less for the quasi-polynomial speed-up that
we aim for in this paper. Therefore, we focus on designing an efficient algorithm for Triangle
Detection in the following exposition.

Triangle Detection on Regular Graphs. We start by describing a dream scenario to under-
stand how Kelley-Lovett-Meka’s structural theorem [52] comes into play.

Our aim is to solve Triangle Detection in time n3/2Ω(d) for some parameter d. Moreover,
let ϵ > 0 be a small constant (say, ϵ = 1

160). For the dream scenario suppose that the edge parts A
and B are regular in the sense of Theorem 2.1:

(a) A and BT are (ϵ, 2, d)-regular, and

(b) A and BT are ϵ-min-degree.

Under these assumptions, Theorem 2.1 yields that the scaled matrix product A◦B is (E[A]E[B], 80ϵ,
2−ϵd/2)-uniform. Explicitly, for our choice of ϵ = 1

160 , this means that at least a (1−2−ϵd/2)-fraction
of the entries of A ◦ B fall in the range [12 E[A]E[B], 32 E[A]E[B]]. In particular, the matrix A ◦ B
(and thereby also AB) has zeros in at most a 2−ϵd/2-fraction of its entries (assuming that A and B
are nonzero).

This puts us in a win-win situation: Either the matrix C is sparse (E[C] ≤ 2−ϵd/2), in which case
we can detect a triangle in time n3/2Ω(d) (by enumerating all n2/2Ω(d) edges in C and all remaining
nodes y ∈ Y). Or the matrix C is dense (E[C] > 2−ϵd/2), and it follows from the uniformity that AB
and C have a common nonzero entry. Note that this certifies that there is a triangle without the
need to compute anything further.

Our Regularity Decomposition. Of course, we cannot simply assume the dream scenario
where A and B satisfy the regularity and min-degree conditions. Instead, we hope to decompose A
and B into regular pieces in the same flavor as Szemerédi’s or Frieze-Kannan’s regularity lemmas.
For grid regularity, unfortunately, such a decomposition theorem was not known.

One of our key contributions is such a decomposition theorem, see Theorem 3.1. We emphasize
that this theorem is novel even existentially (i.e., even without the extra requirement that the
decomposition must be computed efficiently).

7

Theorem 3.1 (AB-Decomposition). Let A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , let ϵ ∈ (0, 1) and d ≥ 1.
There is an algorithm ABDecomposition(X,Y, Z,A,B, ϵ, d) that computes a collection of tuples
{(Xk, Yk, Zk, Ak, Bk)}Kk=1, where Xk ⊆ X, Yk ⊆ Y , Zk ⊆ Z, Ak ∈ {0, 1}Xk×Yk , Bk ∈ {0, 1}Yk×Zk

such that

1. AB =
∑K

k=1AkBk.

2. For all k ∈ [K]:

(i) E[Ak] ≤ 2−d or E[Bk] ≤ 2−d, or

(ii) Ak and BT
k are both (ϵ, 2, d)-regular and ϵ-min-degree.

3.
∑K

k=1 |Xk| |Yk| |Zk| ≤ 2(d+ 2)2 · |X| |Y | |Z|.

4. K ≤ exp(d7 poly(ϵ−1)).

The algorithm is deterministic and runs in time n2 · exp(d7 poly(ϵ−1)) (where n = |X|+ |Y |+ |Z|).

To illustrate how these four properties become useful, we complete the description of the Triangle
Detection algorithm. We first precompute the decomposition as in the theorem. Additionally,
define Ck = C[Xk, Zk]. Property (1) of the theorem states that AB =

∑
k AkBk (here, by slight

abuse of notation, in the sum we interpret each term AkBk as the X×Z-matrix by extending AkBk

with zeros). Therefore, the set of triangles in the original graph is exactly the disjoint union of the
triangles in the tripartite subgraphs (Xk, Yk, Zk, Ak, Bk, Ck). It thus remains to detect a triangle
in any of these subgraphs.

For each such subgraph, we are again in a win-win situation: If at least one of the edge parts
is sparse (i.e., E[Ak] ≤ 2−d or E[Bk] ≤ 2−d or E[Ck] ≤ 2−ϵd/2), then we can solve the subinstance
efficiently in time |Xk| |Yk| |Zk| / 2Ω(d). Otherwise, Property (2) of the theorem implies that we are
in the dream scenario that Ak and BT

k are (ϵ, 2, d)-regular and ϵ-min degree. Following the same
argument as before, building on the structural Theorem 2.1, it follows that AkBk and Ck share a
common nonzero entry, which entails the existence of a triangle. In summary, the algorithm solves
each sparse subinstance in time |Xk| |Yk| |Zk| / 2Ω(d) and stops as soon as it encounters a dense
subinstance.

The remaining Properties (3) and (4) are necessary to bound the running time of this algorithm.
On the one hand, by Property (3) solving all sparse instances takes total time

K∑
k=1

|Xk| |Yk| |Zk|
2Ω(d)

≤ |X| |Y | |Z| · poly(d)
2Ω(d)

≤ n3

2Ω(d)
.

On the other hand, precomputing the decomposition, and testing for each subinstance, whether
it is dense or sparse, takes time n2 · exp(d7 poly(ϵ−1)) = n2 · 2O(d7). By choosing d = Θ(7

√
log n)

sufficiently small such that the precomputation time becomes O(n2.1), say, the total running time
becomes n3/2Ω(7√logn) as claimed.

The remainder of this overview is devoted to a proof overview of Theorem 3.1.

8

3.1 Enforcing Regularity and Min-Degree

Towards proving the decomposition theorem, our first milestone is to develop tools to enforce the
(a) regularity and (b) min-degree conditions.

Both tools follow a common theme: To achieve some property we either certify that (a large
part of) the given graph already satisfies the property, or that we can alternatively find a large
induced subgraph which is substantially denser than average (density increment). In the former
case we have been successful, and in the latter case we will simply recurse on the selected denser
piece. Since the density increases with each recursive call, we control the recursion depth and the
loss we thereby incur. More details follow in Sections 3.2 and 3.3.

Enforcing Min-Degree. Let us start with the conceptually easier min-degree property. Here,
specifically, we would like to ensure the ϵ-min-degree condition, i.e. that all nodes x ∈ X satisfy
degA(x) ≥ (1−ϵ)E[A]. In fact, it is enough for us if we can find a subgraph of, say, half the total size
that satisfies that it is ϵ-min-degree. An easy algorithm is to repeatedly remove low-degree nodes x
until the remaining graph becomes ϵ-min-degree. If this algorithm terminates before removing
half the nodes, then we have succeeded in finding a large ϵ-min-degree subgraph. If instead the
algorithm removes half the nodes in X and the graph A′ is still not ϵ-min-degree, then we claim
that the remaining graph has density E[A′] ≥ (1+ ϵ

2)E[A]—i.e., we have found a density increment.
For more details, see Lemma 5.1.

Enforcing Regularity. The more challenging task is to ensure that a graph is regular (or that
we can alternatively find a density increment). Following the terminology from [52] (which in turn
originates from [53]), we refer to this step as “sifting”. Specifically, we rely on the following theorem
that we will later apply with k = 2 and ℓ = d:

Theorem 3.2 (Sifting). Let A ∈ {0, 1}X×Y , let ϵ > 0 and k, ℓ ≥ 1. There is an algorithm
Sift(X,Y,A, ϵ, k, ℓ) that returns either

1. “regular”, in which case A is (ϵ, k, ℓ)-regular, or

2. sets X ′ ⊆ X,Y ′ ⊆ Y with |X ′| |Y ′| ≥ ϵ
16 · E[A]kℓ · |X| |Y | and E[A[X ′, Y ′]] ≥ (1 + ϵ

2)E[A].

The algorithm is deterministic and runs in time n2 · (ϵE[A]/k)−O(kℓ(k+ℓ)) (where n = |X|+ |Y |).

The existential claim of Theorem 3.2 was already established by Kelley, Lovett and Meka [52]
(up to insignificant changes in the parameters) by a simple “one-shot” proof. While it is possible to
turn their ideas into a randomized sifting algorithm, we follow a different proof that can ultimately
be turned into a deterministic algorithm. The rough idea is to prove that whenever A is not (ϵ, k, ℓ)-
regular, then either many nodes x ∈ X have exceptionally high degree degA(x) ≥ (1 + ϵ

2)E[A] (in
which case we can return the set X ′ of such high-degree nodes and Y ′ = Y), or we can find a large
induced subgraph of A that is (ϵ, k− 1, ℓ)-irregular (see Lemma 4.2). In the latter case, we recurse
on that subgraph, so after at most k recursive calls we find a density increment.

In order to detect this exceptionally irregular subgraph, it is necessary to obtain an accurate
estimate of its grid norm. To this end, we prove that any grid norm ∥A∥U(k,ℓ) can be approximated
up to some additive error α > 0 in time n2 · α−O(kℓ(k+ℓ)) by a deterministic algorithm (Lemma 4.6).
Here we crucially build on the technology of oblivious samplers. We defer further details to Section 4.

9

3.2 Decomposing A

As a warm-up and building block towards Theorem 3.1, let us first focus on decomposing a single
bipartite graph A ∈ {0, 1}X×Y . Specifically, we establish the following decomposition with four
analogous properties to Theorem 3.1.

Theorem 3.3 (A-Decomposition). Let A ∈ {0, 1}X×Y , let ϵ ∈ (0, 1) and d ≥ 1. There is an al-
gorithm ADecomposition(X,Y,A, ϵ, d) computing tuples {(Xℓ, Yℓ, Aℓ)}Lℓ=1 with Xℓ ⊆ X, Yℓ ⊆ Y ,
and Aℓ ∈ {0, 1}Xℓ×Yℓ such that:

1. A =
∑L

ℓ=1Aℓ.

2. For all ℓ ∈ [L]:

(i) E[Aℓ] ≤ 2−d, or

(ii) Aℓ is (ϵ, 2, d)-regular and ϵ-min-degree.

3.
∑L

ℓ=1 |Xℓ| |Yℓ| ≤ (d+ 2) · |X| |Y |.

4. L ≤ exp(d3 poly(ϵ−1)) and minLℓ=1 |Xℓ| |Yℓ| ≥ exp(−d3 poly(ϵ−1)) · |X| |Y |.

The algorithm is deterministic and runs in time n2 · exp(d3 poly(ϵ−1)) (where n = |X|+ |Y |).

Theorem 3.3 in itself is already an interesting regularity decomposition, which we believe will
likely find further applications in the future. The proof of the theorem is along the following lines.
First of all, if E[A] ≤ 2−d, then we simply return the trivial decomposition {(X,Y,A)}. So assume
from now on that E[A] ≥ 2−d.

Consider the following subtask (see Lemma 5.2): The goal is to find X∗ ⊆ X and Y ∗ ⊆ Y such
that the induced subgraph A[X∗, Y ∗] is (ϵ, 2, d)-regular and ϵ-min-degree; we call X∗ × Y ∗ a good
rectangle. We can find a good rectangle using the density increment technique. First, make half ofX
satisfy the min-degree condition. Then, apply Theorem 3.2 to certify that this remaining graph is
(ϵ, 2, d)-regular. If both steps succeed we have successfully identified a good rectangle (namely, the
entire remaining graph). Otherwise, if either step fails and instead returns a large subgraph with
density at least (1 + ϵ

2)E[A], we simply recurse on the denser subgraph to find a good rectangle.
With each recursive call the density strictly increases, and thus this process eventually terminates.
In fact, the recursion depth is bounded by O(d/ϵ) given that the initial density is E[A] ≥ 2−d. Since
with each recursive call we reduce the number of vertices to a (ϵE[A])−O(d) = exp(−d2 poly(ϵ−1))-
fraction (by Theorem 3.2), the returned good rectangle covers at least a exp(−d3 poly(ϵ−1))-fraction
of the original graph.

Coming back to Theorem 3.3, we can compute the decomposition using density decrements.
Namely, we repeatedly find good rectangles X∗ × Y ∗ as in the previous paragraph, take the sub-
graph (X∗, Y ∗, A[X∗, Y ∗]) as one part in the decomposition, and then remove all edges in the
rectangle X∗ × Y ∗ from A. Eventually A becomes 2−d-sparse and at this point we return the
remaining trivial decomposition {(X,Y,A)}. In each step we remove exp(−d3 poly(ϵ−1)) · |X| · |Y |
edges from A, and therefore this process leads to at most L ≤ exp(d3 poly(ϵ−1)) many parts.

So far we have neglected Property 3, but it turns out that a closer inspection of this process
indeed yields that

∑L
ℓ=1 |Xℓ| |Yℓ| ≤ O(d) · |X| |Y |. Proving this statement builds on the critical

10

insight that, for any good rectangle that we remove, we always have E[A[X∗, Y ∗]] ≥ E[A]. Specif-
ically, let Aℓ denote the remaining matrix A before the ℓ-th step of the algorithm, and let L1 be
the smallest index such that E[AL1] ≤ 1

2 E[A]. Then we can express

E[A] =

L1−1∑
ℓ=1

E[Aℓ] ·
|Xℓ| |Yℓ|
|X| |Y |

+ E[AL1] ≥
E[A]
2
·
L1−1∑
ℓ=1

|Xℓ| |Yℓ|
|X| |Y |

,

using that E[Aℓ] ≥ E[Aℓ] >
1
2 E[A]. It follows that

∑L1−1
ℓ=1 |Xℓ| |Yℓ| ≤ 2 · |X| |Y |. We can apply

the same argument to analyze the algorithm in phases. That is, letting Li be the smallest step
with E[ALi] ≤ 1

2i
E[A], we can similarly bound

∑Li+1−1
ℓ=Li

|Xℓ| |Yℓ| ≤ 2 · |X| |Y | for each phase. After
the d-th phase the process has reduced the density of the remaining graph to at most 2−d, and the
process terminates. Therefore, all in all, we have

∑L
ℓ=1 |Xℓ| |Yℓ| ≤ 2d · |X| |Y |. (In the formal proof

we obtain a slightly sharper bound.)

3.3 Decomposing AB

We finally turn to the full decomposition from Theorem 3.1. The idea is to use the one-part decom-
position developed in the previous subsection as a black-box to decompose A, and to decompose B
via density increments/decrements. Unfortunately, the details of this step are much more intricate.

Let us first sketch an approach that will not work out as planned. In light of the previous subsec-
tion, the hope is that we can find a good rectangle Y ∗×Z∗ in B along with a regularity decomposi-
tion {(Xℓ, Yℓ, Aℓ)}Lℓ=1 of A[X,Y ∗], such that additionally each subgraph B[Yℓ, Z

∗] is (ϵ, 2, d)-regular
and ϵ-min-degree (see Lemma 5.3). We loosely refer to Y ∗, Z∗, {(Xℓ, Yℓ, Aℓ)}Lℓ=1 as a good cube. If
there was an algorithm to find good cubes, then we would easily obtain the desired decomposition:
We repeatedly find a good cube Y ∗, Z∗, {(Xℓ, Yℓ, Aℓ)}Lℓ=1, emit {(Xℓ, Yℓ, Z

∗, Aℓ, B[Yℓ, Z
∗])}Lℓ=1 as

parts in the decomposition and remove the edges in Y ∗ × Z∗ from B.
However, we face serious problems trying to find a good cube. The natural idea is to use

the density increment technique to find Y ∗ × Z∗ ⊆ Y × Z such that B[Y ∗, Z∗]T is (ϵ, 2, d)-
regular and ϵ-min-degree. Then we can apply Theorem 3.3 to decompose the matrix A[X,Y ∗]
into pieces {(Xℓ, Yℓ, Aℓ)}Lℓ=1. However, the subgraphs B[Yℓ, Z

∗] are not necessarily (ϵ, 2, d)-regular
and ϵ-min-degree. The first issue is fixable: Using the sifting algorithm we can test whether all
subgraphs B[Yℓ, Z

∗] are (ϵ, 2, d)-regular—if any such subgraphs fails this test, then Theorem 3.2
instead returns a denser subgraph of B[Yℓ, Z

∗]. We thus recurse on that subgraph to find a good
cube. The second issue, that B[Yℓ, Z

∗] is not ϵ-min-degree, is more serious. In contrast to the
regularity condition we cannot enforce the min-degree condition for the whole graph B[Yℓ, Z

∗], but
only for a subgraph B[Yℓ, Zℓ], where Zℓ ⊆ Z∗ is large.

Our solution to this issue is somewhat reminiscent to the divide-and-conquer approaches for
Triangle Detection. As outlined before, we can compute a good cube Y ∗, Z∗, {(Xℓ, Yℓ, Zℓ, Aℓ)} such
that each subgraph B[Yℓ, Zℓ] is (ϵ, 2, d)-regular and ϵ-min-degree. By tweaking the parameters of
the min-degree lemma, we can further achieve that |Zℓ| ≥ (1− γ)|Z∗| for some parameter γ to be
determined soon. As before, for each good cube we emit {(Xℓ, Yℓ, Zℓ, Aℓ, B[Yℓ, Zℓ])} as one part
of the decomposition, and then remove the edges in Y ∗ × Z∗ from B and repeat. However, we
additionally recurse on all subinstances on the vertex parts (Xℓ, Yℓ, Z

∗ \ Zℓ) to cover the edges
missed in the previous parts. To control the cost caused by this additional layer of recursion we

11

need to guarantee that

L∑
ℓ=1

|Xℓ| |Yℓ| |Z∗ \ Zℓ| ≤ 1
2 · |X| |Y | |Z|,

say. And indeed, using that
∑L

ℓ=1 |Xℓ| |Yℓ| ≤ poly(d)·|X| |Y | and by setting γ = 1
poly(d) small enough

this can be achieved. The overhead nevertheless leads to a significant blow-up in the dependence
on d, from exp(d3) to exp(d7). See Section 5 for the details.

3.4 Further Improvements?

While we have successfully achieved quasi-polynomial savings combinatorially for BMM (and many
other problems), Conjecture 1.1 still stands, and the question remains whether we can do better.
E.g., can we achieve savings of the form 2Θ(

√
logn) rather than 2Θ(7√logn), or possibly even truly

polynomial savings?
Over random matrices in which each entry is 1 with probability p, we can solve BMM in Õ(n2.5)

time,10 which means that the general framework of worst-case to random-case reductions via regu-
larity decompositions could go much further. However, it is not clear whether the specific notion of
grid regularity can go beyond 2Θ(

√
logn) savings, because the known lower bounds for Triangle Re-

moval (à la Behrend’s construction [15, 76]) seem to apply as well. We have focused on presenting
our new technique in an easy and modular fashion rather than on optimizing the constant in the
quasi-polynomial savings. It remains an interesting open question to fine-tune the parameters.

4 Sifting

In this section we describe the “sifting” algorithm that, given a graph A, either determines that A
is regular or finds a subgraph of A that is denser than average. Kelley, Lovett and Meka [52]
have proved this statement via a non-algorithmic proof that can rather easily be turned into a
randomized algorithm. Our approach here differs from that original version, as our more ambitious
goal is to obtain a deterministic sifting algorithm. We start with a simple inverse of Markov’s
inequality:

Lemma 4.1 (Inverse of Markov’s Inequality). Let Z be a random variable that takes values in [0, 1].
Then, for any α ∈ [0, 1],

P[Z ≥ α] ≥ E[Z]− α.

Proof. Observe that 1(Z ≥ α) ≥ Z − α. Thus, P[Z ≥ α] = E[1(Z ≥ α)] ≥ E[Z]− α.

The high-level idea behind the sifting algorithm is that we can either (1) find a denser sub-
graph by simply taking the high-degree nodes, or (2) recurse on a smaller subgraph with parame-
ter k − 1. This idea is recorded in the next lemma. Here and for the remainder of this section we
write Yx = {y ∈ Y : A(x, y) = 1} and Ax = A[X,Yx].

Lemma 4.2 (Recursive Sifting). Let A ∈ {0, 1}X×Y , let δ, ϵ > 0 and k, ℓ ≥ 1 and assume that
∥A∥U(k,ℓ) ≥ (1 + ϵ)δ. Then one of the following two cases applies:

10For p ≫ 1/
√
n the answer is the all-ones matrix with good probability, and otherwise the matrices are sparse.

12

1. |{x ∈ X : degA(x) ≥ δ}| ≥ ϵ
2 · δ

kℓ · |X|,

2. or k > 1 and there is some x ∈ X such that:

• degA(x) ≥ δk, and

• ∥Ax∥U(k−1,ℓ) ≥ (1 + ϵ)δ.

Proof. First consider the case k = 1. We prove that case 1 applies by sampling x ∈ X uniformly at
random, and showing that with probability at least ϵ · δℓ this choice satisfies degA(x) ≥ δ. Indeed,
using the inverse Markov inequality:

P
x∈X

[
degA(x)

ℓ ≥ δℓ
]
≥ E

x∈X
degA(x)

ℓ − δℓ = E
x∈X

(
E

y∈Y
A(x, y)

)ℓ

− δℓ

= ∥A∥ℓU(1,ℓ) − δℓ ≥ (1 + ϵ)ℓδℓ − δℓ ≥ ϵ · δℓ.

Next, let k > 1 and suppose that case 1 does not hold. We prove that selecting a uniformly
random element x ∈ X satisfies case 2 with positive probability. In fact, we prove that a uniformly
random element x ∈ X satisfies the following two stronger properties with positive probability:

(i) degA(x) ≤ δ,

(ii) degA(x) · ∥Ax∥k−1
U(k−1,ℓ) ≥ (1 + ϵ)k−1δk.

Clearly, (i) fails with probability at most ϵ
2 · δ

kℓ (by the assumption that case 1 of the lemma
statement does not hold). Considering property (ii), we first bound the following expectation:

E
x∈X

degA(x)
ℓ · ∥Ax∥(k−1)ℓ

U(k−1,ℓ)

= E
x∈X

E
x2,...,xk∈X

(
degA(x) · E

y∈Yx

k∏
i=2

A(xi, y)

)ℓ

Recall that Yx is the set of neighbors of x. Hence, for any function f we can rewrite the expecta-
tion degA(x) · Ey∈Yx f(y) as Ey∈Y f(y) ·A(x, y), and thus

= E
x1,...,xk∈X

 E
y∈Y

∏
i∈[k]

A(xi, y)

ℓ

= E
x1,...,xk∈X
y1,...,yℓ∈Y

∏
i∈[k]
j∈[ℓ]

A(xi, yj)

= ∥A∥kℓU(k,ℓ).

13

Therefore, by the inverse Markov inequality, for a uniformly random x ∈ X property (ii) holds with
probability at least

P
x∈X

[
degA(x) · ∥Ax∥k−1

U(k−1,ℓ) ≥ (1 + ϵ)k−1δk
]

= P
x∈X

[
degA(x)

ℓ · ∥Ax∥(k−1)ℓ
U(k−1,ℓ) ≥ (1 + ϵ)(k−1)ℓδkℓ

]
≥ E

x∈X
degA(x)

ℓ · ∥Ax∥(k−1)ℓ
U(k−1,ℓ) − (1 + ϵ)(k−1)ℓδkℓ

≥ ∥A∥kℓU(k,ℓ) − (1 + ϵ)(k−1)ℓδkℓ.

≥ (1 + ϵ)kℓδkℓ − (1 + ϵ)(k−1)ℓδkℓ

≥ ϵ · δkℓ.

By a union bound, both properties (i) and (ii) hold simultaneously with positive probability at
least ϵ

2 · E[A]kℓ.
Finally, consider an element x satisfying (i) and (ii); we show that x also satisfies the two con-

ditions from the lemma statement. Since δ · ∥Ax∥k−1
U(k−1,ℓ) ≥ degA(x) · ∥Ax∥k−1

U(k−1,ℓ) ≥ (1 + ϵ)k−1δk,
it follows that indeed ∥Ax∥U(k−1,ℓ) ≥ (1 + ϵ)δ. Moreover, using the trivial bound ∥Ax∥U(k−1,ℓ) ≤ 1,
we conclude that degA(x) ≥ δk.

For the sifting algorithm we also need the following lemma about approximating ∥ · ∥U(k,ℓ). We
postpone the deterministic proof of Lemma 4.3 to Section 4.1, and encourage the reader to instead
think of Lemma 4.3 as the straightforward randomized algorithm (that subsamples Xk × Y ℓ to
approximately count the number of (k, ℓ)-bicliques).

Lemma 4.3 (Deterministic Regularity Approximation). Let A ∈ {0, 1}X×Y , let α > 0 and k, ℓ ≥ 1.
There is a deterministic algorithm that computes, for all x ∈ X, an approximation vx satisfying
that vx = ∥Ax∥U(k,ℓ) ± (α/degA(x)

1
k), and runs in time n2 · α−O(kℓ(k+ℓ)) (where n = |X|+ |Y |).

We are ready to prove Theorem 3.2. For convenience, we restate the statement here.

Theorem 3.2 (Sifting). Let A ∈ {0, 1}X×Y , let ϵ > 0 and k, ℓ ≥ 1. There is an algorithm
Sift(X,Y,A, ϵ, k, ℓ) that returns either

1. “regular”, in which case A is (ϵ, k, ℓ)-regular, or

2. sets X ′ ⊆ X,Y ′ ⊆ Y with |X ′| |Y ′| ≥ ϵ
16 · E[A]kℓ · |X| |Y | and E[A[X ′, Y ′]] ≥ (1 + ϵ

2)E[A].

The algorithm is deterministic and runs in time n2 · (ϵE[A]/k)−O(kℓ(k+ℓ)) (where n = |X|+ |Y |).

Proof. Throughout we assume that k ≤ ℓ, as otherwise we can simply exchange k and ℓ and
work on the transposed graph AT . Moreover, for the sake of a cleaner presentation we design
an algorithm Sift’(X,Y,A, δ, ϵ, k, ℓ) that receives an additional input parameter δ > 0 with the
modified task to return either

1. sets X ′ ⊆ X,Y ′ ⊆ Y with |X ′| |Y ′| ≥ ϵ
4 · δ

kℓ · |X| |Y | and E[A[X ′, Y ′]] ≥ δ, or

2. “regular”, in which case ∥A∥U(k,ℓ) ≤ (1 + ϵ)δ.

14

Algorithm 4.1 Implements the algorithm from Theorem 3.2.

1: procedure Sift’(X,Y,A, δ, ϵ, k, ℓ)
2: Let X ′ ← {x ∈ X : degA(x) ≥ δ}
3: if |X ′| ≥ ϵ

2 · δ
kℓ · |X| then

4: return X ′, Y
5: if k = 1 then
6: return “regular”
7: else
8: Compute approximations vx of ∥Ax∥U(k−1,ℓ) by Lemma 4.3 with parameter α = ϵδ2

2k2

9: Select x ∈ X with degA(x) ≥ δk maximizing vx
10: return Sift’(X,Yx, Ax, δ, ϵ · (1− 1

k2
), k − 1, ℓ)

11: procedure Sift(X,Y,A, ϵ, k, ℓ)
12: return Sift’(X,Y,A, (1 + ϵ

2)E[A], ϵ
4 , k, ℓ)

From this alternative algorithm we can easily obtain the desired algorithm Sift(X,Y,A, ϵ, k, ℓ):
Simply call and return Sift’(X,Y,A, (1 + ϵ

2)E[A], ϵ
4 , k, ℓ).

We design Sift’(X,Y,A, δ, ϵ, k, ℓ) as a simple recursive algorithm; see Algorithm 4.1 for the
pseudocode. In a first step (Lines 2 to 4) we construct the set X ′ ← {x ∈ X : degA(x) ≥ δ} of high-
degree nodes. If this set turns out to be sufficiently large, |X ′| ≥ ϵ

2 · δ
kℓ · |X|, we can successfully

return X ′ and Y ′ ← Y . Otherwise, we distinguish two cases: If k = 1, then we simply report
“regular” (Lines 5 to 6). If instead k > 1, then our principle strategy is to identify a node x ∈ X
such that subgraph Ax is as irregular as possible, and to recurse on that subgraph (Lines 8 to 10).
Specifically, using Lemma 4.3 we compute approximations vx of ∥Ax∥U(k−1,ℓ), for all x ∈ X, with
parameter α = ϵδ2

2k2
. We then select the element x ∈ X with degA(x) ≥ δk that maximizes vx.

Finally, we recurse on Sift’(X,Yx, Ax, δ, ϵ · (1− 1
k2
), k − 1, ℓ). (Here we tweak the parameter ϵ to

account for the loss in the approximation.)

Correctness. First observe that if the algorithm returns setsX ′, Y ′, then indeed E[A[X ′, Y ′]] ≥ δ.
Next we verify by induction that |X ′| |Y ′| ≥ ϵ

2 · (
∏k

i=2(1−
1
i2
)) · δkℓ · |X| |Y | (which yields the de-

sired bound using that
∏k

i=2(1−
1
i2
) = k+1

2k ≥
1
2). Indeed, in the base case we return the sets X ′

and Y ′ = Y with size at least |X ′| |Y ′| ≥ 1
2 · δ

kℓ · |X| |Y |. Otherwise, we recursively obtain sets
of size |X ′| |Y ′| ≥ ϵ

2 · (1−
1
k2
) · (
∏k−1

i=2 (1−
1
i2
)) · δ(k−1)ℓ · |X| |Yx|. Recall that |Yx| ≥ δk · |Y |, which

completes the claim.
It remains to prove that whenever the given graph is irregular, i.e. ∥A∥U(k,ℓ) ≥ (1 + ϵ)δ, then

our algorithm does not return “regular”. On the one hand, if k = 1 then Lemma 4.2 implies
that the set of high-degree nodes X ′ = {x ∈ X : degA(x) ≥ δ} has size at least ϵ

2 · δ
ℓ · |X|, and

therefore the algorithm terminates in Line 4 by returning X ′, Y . On the other hand, consider the
case k > 1. Then either the algorithm terminates in Line 4, or Lemma 4.2 implies that there is
some node x∗ such that degA(x

∗) ≥ δk and ∥Ax∗∥U(k−1,ℓ) ≥ (1 + ϵ)δ. Since we select x to be
the element satisfying degA(x) ≥ δk maximizing the approximation of ∥Ax∥U(k−1,ℓ) with additive
error α/degA(x)

1
k ≤ ϵδ

2k2
, we select an element with ∥Ax∥U(k−1,ℓ) ≥ (1+ϵ)δ− ϵδ

k2
= (1+ϵ ·(1− 1

k2
))δ.

By induction the recursive call does not return “regular”.

15

Running Time. The recursion depth of the algorithm is at most k, hence it suffices to bound the
running time of a single execution. The only costly step is the computation of the approximations
of ∥Ax∥U(k−1,ℓ) which takes time n2 · α−O(kℓ(k+ℓ)) = n2 · (ϵδ/k)−O(kℓ(k+ℓ)) by Lemma 4.3; all other
steps can be implemented in time O(n2).

4.1 Deterministic Regularity Approximation

To obtain a deterministic algorithm, it remains to prove Lemma 4.3. As the key tool in our
derandomization we rely on oblivious samplers as developed in an extensive line of research [26, 41,
77, 39, 63, 46] (see also the survey [40]). For our application the exact dependence on the accuracy
parameters ϵ, δ does not matter much, and we thus rely on one of the early constructions:11

Lemma 4.4 (Oblivious Sampling [41]). Let X be a set and let δ, ϵ > 0. There is a deterministic
algorithm computing, in time |X| · poly(ϵ−1, δ−1, log |X|), a family S of subsets S ⊆ X such that

1. |S| ≤ |X| · poly(ϵ−1, δ−1),

2. |S| ≤ poly(ϵ−1, δ−1) for all S ∈ S,

3. For every function f : X → [0, 1],

P
S∈S

[
E

x∈X
f(x) = E

x∈S
f(x)± ϵ

]
≥ 1− δ.

We call S an (ϵ, δ)-oblivious sampler of X.

Lemma 4.5 (Simple Bounds for Additive Approximations). Let a, b ∈ [0, 1] and ϵ > 0, k ≥ 1.
Then:

• If a = b± ϵ, then ak = bk ± 2ϵk.

• If ak = bk ± ϵk, then a = b± ϵ.

Proof. The first claim is trivial if ϵ ≥ 1
2k , so suppose otherwise. Assuming that a ≤ b+ ϵ, it follows

that ak − bk ≤ (b+ ϵ)k − bk =
∑k

i=1

(
k
i

)
· ϵi · bk−i ≤

∑k
i=1 k

i · ϵi ≤ ϵk ·
∑∞

i=0 k
i · ϵi ≤ 2ϵk. The second

claim is immediate: If a > b+ ϵ, then ak > (b+ ϵ)k > bk + ϵk (and similarly if b > a+ ϵ).

Lemma 4.6 (Regularity Approximation via Oblivious Sampling). Let A ∈ {0, 1}X×Y , let δ, ϵ > 0
and k, ℓ ≥ 1, and let S, T be (ϵ, δ)-oblivious samplers of X and Y , respectively. Then:

∥A∥kℓU(k,ℓ) = E
S∈S
T∈T

∥A[S, T]∥kℓU(k,ℓ) ± (2ϵk + 2ϵℓ+ 2δ).

11Let us restate Lemma 4.4 in the language of samplers. We arbitrarily identify X with {0, 1}n where n = ⌈log |X|⌉.
Lemma 4.4 states that there is a randomized algorithm (an oblivious sampler) returning a sample set S ⊆ {0, 1}n
of size |S| ≤ poly(ϵ−1, δ−1) such that, for any function f : {0, 1}n → [0, 1], with probability at least 1 − δ it
holds that Ex∈X f(x) = Ex∈S f(x)± ϵ. Moreover, the algorithm runs in polynomial time poly(n, ϵ−1, δ−1) and has
randomness complexity n + O(log ϵ−1) + O(log δ−1) (i.e., it tosses at most that many unbiased coins). In our
formulation, S denotes the set of all sample sets S obtainable from the algorithm for some sequence of coin tosses.

16

Proof. Fix y1, . . . , yℓ ∈ Y and consider the function f(x) =
∏

j∈[ℓ]A(x, yj). We sample a uniformly
random set S ∈ S. Since S is an (ϵ, δ)-oblivious sampler of X, with probability at least 1 − δ we
have that Ex∈X f(x) = Ex∈S f(x)± ϵ and thus (Ex∈X f(x))k = (Ex∈S f(x))k±2ϵk (by Lemma 4.5).
Since moreover both expectations are [0, 1]-bounded, we conclude that(

E
x∈X

f(x)

)k

= E
S∈S

(
E

x∈S
f(x)

)k

± (2ϵk + δ).

Now unfix y1, . . . , yℓ ∈ Y . From the previous consideration it follows that

∥A∥kℓU(k,ℓ) = E
y1,...,yℓ∈Y

 E
x∈X

∏
j∈[ℓ]

A(x, yj)

k

± (2ϵk + δ)

= E
S∈S

E
y1,...,yℓ∈Y

 E
x∈S

∏
j∈[ℓ]

A(x, yj)

k

± (2ϵk + δ)

= E
S∈S
∥A[S, Y]∥kℓU(k,ℓ) ± (2ϵk + δ).

We can now apply the same argument again to A[S, Y], with the roles of X and Y interchanged,
to obtain that

∥A[S, Y]∥kℓU(k,ℓ) = E
T∈T
∥A[S, T]∥kℓU(k,ℓ) ± (2ϵℓ+ δ),

and therefore

∥A∥kℓU(k,ℓ) = E
S∈S
T∈T

∥A[S, T]∥kℓU(k,ℓ) ± (2ϵk + 2ϵℓ+ 2δ)

The claim follows.

Proof of Lemma 4.3. We precompute (ϵ, δ)-oblivious samplers S and T ofX and Y , respectively,
for parameters ϵ, δ > 0 to be determined later. Then we enumerate each pair S ∈ S, T ∈ T and
each tuple (x1, . . . , xk) ∈ Sk, (y1, . . . , yℓ) ∈ T ℓ to compute the values

uT,y1,...,yℓ ← E
S∈S

E
x1,...,xk∈S

∏
i∈[k]
j∈[ℓ]

A(xi, yj).

Next, we enumerate each x ∈ X and compute

ux ←

 E
T∈T

E
y1,...,yℓ∈T

uT,y1,...,yℓ ·
∏
j∈[ℓ]

A(x, yj)

 1
kℓ

,

by enumerating each T ∈ T and each tuple (y1, . . . , yℓ) ∈ T ℓ. Finally, we return vx ← ux/ degA(x)
1
k

as the desired approximations.

17

For the correctness, let A′
x ∈ {0, 1}X×Y be the matrix obtained from A where all columns y ̸∈ Yx

are zeroed out (in contrast to Ax where we have deleted these columns). Then:

ux =

 E
S∈S
T∈T

E
x1,...,xk∈S
y1,...,yℓ∈T

∏
i∈[k]
j∈[ℓ]

A(xi, yj) ·
∏
j∈[ℓ]

A(x, yj)

1
kℓ

=

 E
S∈S
T∈T

E
x1,...,xk∈S
y1,...,yℓ∈T

∏
i∈[k]
j∈[ℓ]

A′
x(xi, yj)

1
kℓ

=

 E
S∈S
T∈T

∥A′
x[S, T]∥kℓU(k,ℓ)

 1
kℓ

,

and thus, by the previous Lemmas 4.5 and 4.6,

=
(
∥A′

x∥kℓU(k,ℓ) ± (2ϵk + 2ϵℓ+ 2δ)
) 1

kℓ

= ∥A′
x∥U(k,ℓ) ± (2ϵk + 2ϵℓ+ 2δ)

1
kℓ .

By the definitions of Ax and A′
x, we have that ∥A′

x∥kℓU(k,ℓ) = degA(x)
ℓ · ∥Ax∥kℓU(k,ℓ) which implies

that ∥A′
x∥U(k,ℓ) = degA(x)

1
k · ∥Ax∥U(k,ℓ) and thus

vx = ∥Ax∥U(k,ℓ) ±
(2ϵk + 2ϵℓ+ 2δ)

1
kℓ

degA(x)
1
k

.

To achieve the claimed bound α on the additive error, we choose ϵ = δ = αkℓ/(2k + 2ℓ+ 2) = αO(kℓ).
We finally consider the running time. The precomputation takes time n poly(ϵ−1, δ−1, log n) by

Lemma 4.4. Computing the intermediate values uT,y1,...,yℓ takes time

O

∑
S∈S
T∈T

|S|k · |T |ℓ · kℓ

 = O

∑
S∈S
T∈T

poly(ϵ−1, δ−1)k+ℓ

 = n2 · poly(ϵ−1, δ−1)k+ℓ.

Similarly, computing the values ux then takes time O(|X| ·
∑

T∈T |T |ℓ · kℓ) = n2 poly(ϵ−1, δ−1)ℓ.
All contributions are bounded by n2 · α−O(kℓ(k+ℓ)).

5 Regularity Decompositions

In this section we establish the regularity decompositions (Theorems 3.1 and 3.3). The structure
of this section closely follows the outline from Section 3.

We start with the following lemma stating that any graph can either be made ϵ-min-degree
without loosing many nodes, or we can find a denser subgraph.

18

Algorithm 5.1 Implements the algorithm from Lemma 5.1.

1: procedure MinDegree(X,Y,A, ϵ, γ)
2: Initialize X ′ ← X and A′ ← A
3: while ∃x ∈ X ′ with degA′(x) < (1− ϵ)E[A′] do
4: Update X ′ ← X ′ \ {x} and A′ ← A[X ′, Y]
5: if |X ′| ≤ (1− γ) · |X| then
6: return X ′ (Case 2)
7: return X ′ (Case 1)

Lemma 5.1 (Minimum Degree). Let A ∈ {0, 1}X×Y , and let ϵ, γ > 0. There is an algorithm
MinDegree(X,Y,A, ϵ, γ) computing a set X ′ ⊆ X of size |X ′| ≥ ⌊(1− γ) · |X|⌋ such that, writing
A′ = A[X ′, Y], one of the following cases holds:

1. A′ is ϵ-min-degree and E[A′] ≥ E[A], or

2. E[A′] ≥ (1 + γϵ)E[A].

The algorithm is deterministic and runs in time O(|X| |Y |).

Proof. Consider the following algorithm; for the pseudocode see Algorithm 5.1. Initially, we
assign X ′ ← X and A′ ← A. As long as there exists some x ∈ X ′ with degA′(x) < (1− ϵ)E[A′], we
remove x by updating X ′ ← X ′ \{x} and A′ ← A[X ′, Y]. When this rule terminates we output the
resulting set X ′ (Case 1). If, however, we reach size |X ′| ≤ (1−γ) · |X|, then we stop the algorithm
prematurely and return the set X ′ from that stage of the algorithm (Case 2).

Correctness of Case 1. Suppose that the algorithm terminates in Case 1. It is clear that A′ is
ϵ-min-degree. Moreover, one can easily verify that E[A′] ≥ E[A] since we have only removed nodes
with degree smaller than average. Finally, since the algorithm has not stopped in Case 2 before,
we indeed have |X ′| ≥ (1− γ) · |X|.

Correctness of Case 2. Suppose now that the algorithm terminates in Case 2. We first argue
that E[A′] ≥ (1 + γϵ)E[A]. To this end, we let X ′ and A′ be as when the algorithm terminates.
As this happens in the first iteration when |X ′| ≤ (1− γ) · |X| we have that |X ′| = ⌊(1− γ) · |X|⌋,
and thus also |X \X ′| ≥ γ · |X|. Now let A′′ = A[X \X ′, Y]. Since the density of A′ only increases
over the course of the algorithm, and since we only remove nodes with degA′(x) < (1− ϵ)E[A′], we
have that E[A′′] < (1− ϵ)E[A′]. Therefore:

E[A] =
|X ′|
|X|
· E[A′] +

|X \X ′|
|X|

· E[A′′]

≤ |X
′|

|X|
· E[A′] +

|X \X ′|
|X|

· (1− ϵ)E[A′]

=

(
1− ϵ · |X \X

′|
|X|

)
· E[A′]

≤ (1− γϵ) · E[A′].

Rearranging yields that E[A′] ≥ (1 + γϵ)E[A] as claimed.

19

Algorithm 5.2 Implements the algorithm from Lemma 5.2.

1: procedure GoodRect(X,Y,A, ϵ, d)
2: Compute X ′ ←MinDegree(X,Y,A, ϵ, 12) and A′ ← A[X ′, Y]
3: if E[A′] ≥ (1 + ϵ

2)E[A] then
4: return GoodRect(X ′, Y, A′, ϵ, d)
5: if Sift(X ′, Y, A′, ϵ, d) returns a denser rectangle X ′′ × Y ′′ ⊆ X ′ × Y then
6: return GoodRect(X ′′, Y ′′, A[X ′′, Y ′′], ϵ, d)
7: return X ′, Y

Running Time. It is easy to check that this algorithm can be implemented in time O(|X| |Y |):
We precompute the degrees of all nodes in X, and sort X according to these degrees. Throughout
we maintain the set X and the size |A′|. In each step we can find in constant time a node x ∈ X ′

with degA′(x) < (1− ϵ)E[A′] if it exists (namely the node in X ′ with smallest degree).

We remark that, while the previous lemma only guarantees the left-sided min-degree condition,
it is equally possible to guarantee the condition on both sides. However, we never need this stronger
statement in our upcoming proofs and therefore stick to this simpler version.

5.1 A-Decomposition

In this subsection we prove Theorem 3.3 (i.e., the decomposition of a single bipartite graph into
regular subgraphs). As outlined in Section 3, the proof consists of two steps: A method to find good
rectangles via density increments (see Lemma 5.2), and a decomposition via density decrements
that repeatedly remove good rectangles (see Theorem 3.3).

Lemma 5.2 (Finding a Good Rectangle). Let A ∈ {0, 1}X×Y , let ϵ ∈ (0, 1) and d ≥ 1, and assume
that E[A] ≥ 2−d. There is an algorithm GoodRect(X,Y,A, ϵ, d) computing X∗ ⊆ X,Y ∗ ⊆ Y such
that:

1. Let A∗ = A[X∗, Y ∗]. Then A∗ is (ϵ, 2, d)-regular and ϵ-min-degree.

2. E[A∗] ≥ E[A].

3. |X∗| |Y ∗| ≥ exp(−d3 poly(ϵ−1)) · |X| |Y |.

The algorithm is deterministic and runs in time n2 · exp(d3 poly(ϵ−1)) (where n = |X|+ |Y |).

Proof. We start with the description of the algorithm; see Algorithm 5.2 for the pseudocode. We
first apply Lemma 5.1 to compute X ′ ⊆ X and A′ ← A[X ′, Y] (with parameters ϵ and γ ← 1

2 ,
Line 2). The lemma guarantees one of two cases: Either A′ is ϵ-min-degree, or E[A′] ≥ (1+ ϵ

2)E[A].
In the latter case we recurse on the subinstance (X ′, Y, A′) to find a good rectangle (Lines 3 and 4).
In the former case we continue and apply Theorem 3.2 to (X ′, Y, A′) (with parameters ϵ and d).
If the theorem returns a rectangle X ′′ × Y ′′ ⊆ X ′ × Y with E[A[X ′′, Y ′′]] ≥ (1 + ϵ

2)E[A], then we
recurse on the subinstance (X ′′, Y ′′, A[X ′′, Y ′′]) (Lines 5 and 6). Otherwise, Theorem 3.2 guarantees
that A′ is (ϵ, 2, d)-regular. In this case we finally return X∗ ← X ′, Y ∗ ← Y (Line 7).

The correctness of Property 1 is clear: We either recurse, or return the submatrix A′ that is
ϵ-min-degree and (ϵ, 2, d)-regular. Moreover, it is easy to prove that Property 2 holds: Lemma 5.1
states that E[A′] ≥ E[A] in either case; and if the algorithm recurses, then the density even strictly
increases. It remains to prove Property 3 and to analyze the running time of this algorithm.

20

Algorithm 5.3 Implements the algorithm from Theorem 3.3.

1: procedure ADecomposition(X,Y,A, ϵ, d)
2: if E[A] ≤ 2−d then
3: return {(X,Y,A)}
4: Compute X∗, Y ∗ ← GoodRect(X,Y,A, ϵ, d)
5: return {(X∗, Y ∗, A[X∗, Y ∗])} ∪ADecomposition(X,Y,A−A[X∗, Y ∗], ϵ, d)

Correctness of Property 3. First assume that the algorithm does not recurse and returnsX ′, Y .
In this case, Lemma 5.1 guarantees that |X ′| ≥ 1

2 · |X|, and thus |X∗| |Y ∗| ≥ 1
2 · |X| |Y |. Next,

consider the recursive cases. By Lemma 5.1 and Theorem 3.2, in both cases we recurse on a
rectangle of size at least min{12 ,

ϵ
16 · E[A]2d} · |X| |Y | = ϵ

16 · E[A]
2d · |X| |Y | and with density at

least (1 + ϵ
2)E[A]. It follows by induction that the algorithm returns a rectangle of size

|X∗| |Y ∗| ≥ 1
2 ·
(

ϵ
16 · E[A]2d

)log1+ ϵ
2
(E[A]−1)

· |X| |Y | ≥ exp(−d3 poly(ϵ−1)) · |X| |Y |,

where in the latter bound we used that log(1+ϵ) ≥ ϵ for all ϵ ∈ (0, 1), and that initially E[A] ≥ 2−d.

Running Time. The algorithm reaches recursion depth at most log1+ ϵ
2
(E[A]−1) = O(d/ϵ), which

causes a negligible overhead in the running time. The call to MinDegree (Lemma 5.1) takes
time O(n2), and the call to Sift (Theorem 3.2) takes time n2·(ϵE[A])−O(d2) = n2·exp(d3 poly(ϵ−1)).
All in all, the running time is n2 · exp(d3 poly(ϵ−1)) as claimed.

Theorem 3.3 (A-Decomposition). Let A ∈ {0, 1}X×Y , let ϵ ∈ (0, 1) and d ≥ 1. There is an al-
gorithm ADecomposition(X,Y,A, ϵ, d) computing tuples {(Xℓ, Yℓ, Aℓ)}Lℓ=1 with Xℓ ⊆ X, Yℓ ⊆ Y ,
and Aℓ ∈ {0, 1}Xℓ×Yℓ such that:

1. A =
∑L

ℓ=1Aℓ.

2. For all ℓ ∈ [L]:

(i) E[Aℓ] ≤ 2−d, or

(ii) Aℓ is (ϵ, 2, d)-regular and ϵ-min-degree.

3.
∑L

ℓ=1 |Xℓ| |Yℓ| ≤ (d+ 2) · |X| |Y |.

4. L ≤ exp(d3 poly(ϵ−1)) and minLℓ=1 |Xℓ| |Yℓ| ≥ exp(−d3 poly(ϵ−1)) · |X| |Y |.

The algorithm is deterministic and runs in time n2 · exp(d3 poly(ϵ−1)) (where n = |X|+ |Y |).

Proof. We start with the description of the algorithm; see Algorithm 5.3 for the pseudocode. As a
first step, we compute the density E[A] and test whether E[A] ≤ 2−d. In this case we can immedi-
ately stop and return the trivial decomposition {(X,Y,A)} (Lines 2 and 3). Otherwise, we can apply
Lemma 5.2 to compute a good rectangle X∗ × Y ∗ ⊆ X × Y . We then take (X∗, Y ∗, A[X∗, Y ∗]) as
one piece of the decomposition, and recurse on the remaining graph where we remove all edges
in X∗ × Y ∗ (Lines 4 and 5; in the pseudocode by slight abuse of notation we denote the remaining
graph by A−A[X∗, Y ∗]).

21

It is easy to see that Property 1 holds: We either cover A entirely in the base case, or we cover
some part X∗× Y ∗ and remove that part in the recursive call. Moreover, Property 2 easily follows
from the guarantee of Lemma 5.2. It remains to prove Properties 3 and 4, and to analyze the
running time.

Correctness of Property 3. For a collection of tuples S as returned by the algorithm, let us
define

C(S) =
∑

(X′,Y ′,A′)∈S

|X ′| |Y ′|.

Our goal is to prove that C(S) ≤ (d + 2) · |X| |Y |, for any input (X,Y,A), where S is the set
returned by the algorithm. This is clear whenever E[A] ≤ 2−d (as then the algorithm returns the
trivial partition {(X,Y,A)}). By induction we prove that whenever E[A] ≥ 2−d then

C(S) ≤ (d+ 2− log(E[A]−1)) · |X| |Y |.

Let S∗ denote the output of the recursive call ADecomposition(X,Y,A − A[X∗, Y ∗], ϵ, d), and
let δ∗ denote the density of A − A[X∗, Y ∗]. Clearly, C(S) = |X∗| |Y ∗| + C(S∗). If δ∗ ≤ 2−d,
then C(S∗) ≤ |X| |Y | and thus C(S) ≤ 2|X| |Y | as claimed. Otherwise, recall that Lemma 5.2
guarantees that the density of the rectangle X∗ × Y ∗ does not decrease, E[A[X∗, Y ∗]] ≥ E[A]. It
follows that δ∗ ≥ E[A]− E[A] · |X

∗| |Y ∗|
|X| |Y | , and thus by induction:

C(S) = |X∗| |Y ∗|+ C(S∗)
≤ |X∗| |Y ∗|+ (d+ 2− log((δ∗)−1) · |X| |Y |

≤ |X∗| |Y ∗|+ (d+ 2− log(E[A]−1)− log((1− |X∗| |Y ∗|
|X| |Y |)−1)) · |X| |Y |

≤ |X∗| |Y ∗|+ (d+ 2− log(E[A]−1)− |X∗| |Y ∗|
|X| |Y |) · |X| |Y |

= (d+ 2− log(E[A]−1)) · |X| |Y |.

Correctness of Property 4. Note that L is the recursion depth of the algorithm. To prove
that L is bounded as claimed, we argue that with every recursive call the density of the matrix
decreases. Specifically, each output X∗, Y ∗ has size at least |X∗| |Y ∗| ≥ exp(−d3 poly(ϵ−1))·|X|·|Y |
by Lemma 5.2, and the density of the submatrix A∗ = A[X∗, Y ∗] satisfies E[A∗] ≥ E[A] ≥ 2−d (as
otherwise, if E[A] ≤ 2−d, the algorithm had terminated already). Thus, each recursive call reduces
the density of the graph by E[A∗] · |X

∗| |Y ∗|
|X| |Y | ≥ 2−d · exp(−d3 poly(ϵ−1)) = exp(−d3 poly(ϵ−1)), and

the algorithm necessarily terminates after L ≤ exp(d3 poly(ϵ−1)) recursive calls.

Running Time. We have already bounded the recursion depth in the previous paragraph, so
focus on a single execution. The dominant cost is the call to GoodRect (Lemma 5.2) which takes
time n2 · exp(d3 poly(ϵ−1)). The total time is L ·n2 · exp(d3 poly(ϵ−1)) = n2 · exp(d3 poly(ϵ−1)).

5.2 AB-Decomposition

We finally turn to the proof of Theorem 3.1. The outline, as discussed in Section 3, follows the
previous subsection on a high-level (but differs in many more difficult technical aspects). We first
devise a method to find good cube via density increments (see Lemma 5.3), and then derive the
decomposition via density decrements that repeatedly remove good cubes (see Theorem 3.1).

22

Lemma 5.3 (Finding a Good Cube). Let A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , let ϵ ∈ (0, 1), γ ∈ (0, 12)
and d ≥ 1 and assume that E[B] ≥ 2−d. There is an algorithm GoodCube(X,Y, Z,A,B, ϵ, γ, d)
computing sets Y ∗ ⊆ Y , Z∗ ⊆ Z and {(Xℓ, Yℓ, Zℓ, Aℓ)}Lℓ=1 with Xℓ ⊆ X, Yℓ ⊆ Y ∗, Zℓ ⊆ Z∗

and Aℓ ∈ {0, 1}Xℓ×Yℓ such that

1. A[X,Y ∗] =
∑L

ℓ=1Aℓ.

2. For all ℓ ∈ [L], writing Bℓ = B[Yℓ, Zℓ]:

• E[Aℓ] ≤ 2−d, or

• Aℓ and BT
ℓ are both (ϵ, 2, d)-regular and ϵ-min-degree.

3. E[B[Y ∗, Z∗]] ≥ E[B].

4.
∑L

ℓ=1 |Xℓ| |Yℓ| |Zℓ| ≤ (d+ 2) · |X| |Y ∗| |Z∗|

5.
∑L

ℓ=1 |Xℓ| |Yℓ| |Z∗ \ Zℓ| ≤ γ(d+ 2) · |X| |Y ∗| |Z∗|.

6. |Y ∗| |Z∗| ≥ exp(−d4γ−1 poly(ϵ−1)) · |Y | |Z|.

7. L ≤ exp(d3 poly(ϵ−1)).

The algorithm is deterministic and runs in time n2 ·γ−1 exp(d3 poly(ϵ−1)) (for n = |X|+ |Y |+ |Z|).

Proof. Let us start with a description of the algorithm; for the pseudocode see Algorithm 5.4. We
first call MinDegree(Y, Z,B, ϵγ2 ,

1
2) (Lemma 5.1) to compute some Y ′ ⊆ Y . Write A′ ← A[X,Y ′]

and B′ ← B[Y ′, Z]. Lemma 5.1 states that either B′ is ϵγ
2 -min-degree, or E[B′] ≥ (1 + ϵγ

4)E[B]. In
the latter case we simply recurse on the subinstance induced by X,Y ′, Z (Lines 2 to 4).

Next, we run Theorem 3.3 to compute an edge decomposition {(Xℓ, Yℓ, Aℓ)}Lℓ=1 of (X,Y ′, A′)
(Line 5). The hope is that, for all pieces ℓ ∈ [L], the induced graphs B[Yℓ, Z] also satisfy the min-
degree and regularity conditions, in which case we could return the decomposition without changes.
To ensure both, we enumerate each ℓ ∈ [L] (Line 6). By calling MinDegree(Z, Yℓ, B

T [Z, Yℓ], ϵ, γ)
(Lemma 5.1) we compute a set Zℓ ⊆ Z such that, writing Bℓ ← B[Yℓ, Zℓ], either B

T
ℓ is ϵ-min-degree

or Bℓ has increased density. The former case is exactly the desired min-degree condition, and in the
latter case we again recurse on the subinstance induced by X,Yℓ, Zℓ (Lines 7 to 9). It remains to
ensure regularity. To this end we call Sift(Zℓ, Yℓ, B

T
ℓ , ϵ, 2, d) (Theorem 3.2), which either certifies

that BT
ℓ is (ϵ, 2, d)-regular, or finds Z ′′ ⊆ Zℓ and Y ′′ ⊆ Yℓ such that the density of the induced

subgraph Bℓ[Y
′′, Z ′′] increases. In the latter case, again, we recurse (Lines 10 and 11).

If after all these tests the algorithm has not recursed, we finally return Y ∗ ← Y ′, Z∗ ← Z and
the collection {(Xℓ, Yℓ, Zℓ, Aℓ)}Lℓ=1 (Line 12).

Some properties of the algorithm are easy to prove. For instance, Properties 1 and 7 follow
immediately from Theorem 3.3. Property 2 is easy to prove as well: Theorem 3.3 implies that
for each ℓ ∈ [L], we have that E[Aℓ] ≤ 2−d or that Aℓ is ϵ-min-degree and (ϵ, 2, d)-regular. In
addition, the algorithm only terminates and returns an output after certifying that, for all ℓ ∈ [L],
BT

ℓ is ϵ-min-degree and (ϵ, 2, d)-regular. The other properties require more work. We start with
the following claim:

Claim. The algorithm only recurses on subgraphs of B with density at least (1 + ϵγ
4)E[B].

23

Algorithm 5.4 Implements the algorithm from Lemma 5.3.

1: procedure GoodCube(X,Y, Z,A,B, ϵ, γ, d)
2: Compute Y ′ ←MinDegree(Y, Z,B, ϵγ2 ,

1
2) and let A′ ← A[X,Y ′] and B′ ← B[Y ′, Z]

3: if E[B′] ≥ (1 + ϵγ
4)E[B] then

4: return GoodCube(X,Y ′, Z,A′, B′, ϵ, γ, d)
5: Compute {(Xℓ, Yℓ, Aℓ)}Lℓ=1 ← ADecomposition(X,Y ′, A′, ϵ, d)
6: for each ℓ ∈ [L] do
7: Compute Zℓ ←MinDegree(Z, Yℓ, B

T [Z, Yℓ], ϵ, γ) and let Bℓ ← B[Yℓ, Zℓ]
8: if E[Bℓ] ≥ (1 + ϵγ)E[B[Yℓ, Z]] then
9: return GoodCube(X,Yℓ, Zℓ, A[X,Yℓ], Bℓ, ϵ, γ, d)

10: if Sift(Zℓ, Yℓ, B
T
ℓ , ϵ, 2, d) returns a denser rectangle Z ′′ × Y ′′ ⊆ Zℓ × Yℓ then

11: return GoodCube(X,Y ′′, Z ′′, A[X,Y ′′], B[Y ′′, Z ′′], ϵ, γ, d)
12: return Y ′, Z, {(Xℓ, Yℓ, Zℓ, Aℓ)}Lℓ=1

Proof. If the algorithm recurses in Lines 3 and 4, then the claim is immediate. After passing
Line 4, Lemma 5.1 guarantees that the graph B′ is ϵγ

2 -min-degree. From this min-degree condition
we know that, for any set Y ′′ ⊆ Y ′, the subgraph B[Y ′′, Z] has density at least (1 − ϵγ

2)E[B]. In
particular, if the algorithm recurses in Line 4 then we recurse on a subgraph of density

E[Bℓ] ≥ (1 + ϵγ)E[B[Yℓ, Z]] ≥ (1 + ϵγ)(1− ϵγ
2)E[B] ≥ (1 + ϵγ

4)E[B];

here in the last step we used that γ ∈ (0, 12) and ϵ ∈ (0, 1). Similarly, if the algorithm recurses in
Line 11 then the density is at least (1 + ϵ

2)E[Bℓ] ≥ (1 + ϵ
2)E[B[Yℓ, Z]] ≥ (1 + ϵγ

4)E[B].

Correctness of Property 3. With the previous claim in mind we can easily conclude that
Property 3 holds. If the algorithm terminates without recurring, then E[B[Y ∗, Z∗]] ≥ E[B] follows
directly from Lemma 5.1. If the algorithm recurses, then the statement follows by induction using
that the density never decreases.

Correctness of Properties 4 and 5. Observe that Property 4 is immediate by Theorem 3.3.
Furthermore, to prove Property 5 it suffices to check that |Z∗ \ Zℓ| ≤ γ|Z∗| for all ℓ ∈ [L]. This
indeed holds by Lemma 5.1.

Correctness of Property 6. First note that in the base case, if the algorithm terminates without
recurring, then Y ∗ = Y ′, Z∗ = Z and thus |Y ∗| |Z∗| ≥ 1

2 · |Y | |Z|. Next consider the recursive
cases. In Line 4 we possibly recurse on the subgraph B[Y ′, Z], where |Y ′| ≥ 1

2 · |Y |. In Line 9 we
possibly recurse on the subgraph B[Yℓ, Zℓ], where |Yℓ| ≥ exp(−d3 poly(ϵ−1)) · |Y ′| (by Theorem 3.3)
and |Zℓ| ≥ (1− γ) · |Z| ≥ 1

2 · |Z| (by Lemma 5.1). Finally, in Line 11 we possibly recurse on a
subgraph B[Y ′′, Z ′′] of size at least |Y ′′| |Z ′′| ≥ ϵ

16 · 2
−2d2 · |Yℓ| |Zℓ| (by Theorem 3.2). In either case,

the size of the subgraph is at least exp(−d3 poly(ϵ−1)) · |X| |Y |. Recall further that by the claim,
the density increases multiplicatively by 1 + ϵγ

4 with every recursive call. Therefore, and since the
initial density is E[B] ≥ 2−d, the algorithm returns sets Y ∗, Z∗ with size

exp(−d3 poly(ϵ−1))
log1+ ϵγ

4
(E[B]−1) · |Y | |Z| ≥ exp(−d4γ−1 poly(ϵ−1)) · |Y | |Z|.

Here we used that log(1 + ϵ) ≥ ϵ for all ϵ ∈ (0, 1).

24

Running Time. We finally analyze the running time of the algorithm. As argued before,
the recursion depth is bounded by O(dϵ−1γ−1). In each execution of Algorithm 5.4 we call
ADecomposition once which takes time n2 · exp(d3 poly(ϵ−1)). In addition we call Sift L times
taking time L·n2 ·exp(d2 poly(ϵ−1)). The total running time becomes n2 ·γ−1 exp(d3 poly(ϵ−1)).

Theorem 3.1 (AB-Decomposition). Let A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , let ϵ ∈ (0, 1) and d ≥ 1.
There is an algorithm ABDecomposition(X,Y, Z,A,B, ϵ, d) that computes a collection of tuples
{(Xk, Yk, Zk, Ak, Bk)}Kk=1, where Xk ⊆ X, Yk ⊆ Y , Zk ⊆ Z, Ak ∈ {0, 1}Xk×Yk , Bk ∈ {0, 1}Yk×Zk

such that

1. AB =
∑K

k=1AkBk.

2. For all k ∈ [K]:

(i) E[Ak] ≤ 2−d or E[Bk] ≤ 2−d, or

(ii) Ak and BT
k are both (ϵ, 2, d)-regular and ϵ-min-degree.

3.
∑K

k=1 |Xk| |Yk| |Zk| ≤ 2(d+ 2)2 · |X| |Y | |Z|.

4. K ≤ exp(d7 poly(ϵ−1)).

The algorithm is deterministic and runs in time n2 · exp(d7 poly(ϵ−1)) (where n = |X|+ |Y |+ |Z|).

Proof. We start with the description of the algorithm; see Algorithm 5.5 for the pseudocode.
Throughout we assume an additional input parameter 0 ≤ h ≤ d which acts somewhat as the
recursion depth of the algorithm. For the initial call, we set h = 0.

The algorithm has two bases cases. If B is sufficiently sparse, E[B] ≤ 2−d, then we return the
trivial decomposition {(X,Y, Z,A,B)} (Lines 2 and 3). Moreover, if the algorithm has reached
recursion depth h = d, then we return a trivial decomposition of size at most 2d. Specifically,
we split B into submatrices B1, . . . , B2d ∈ {0, 1}Y×Z each of density at most 2−d and return the

decomposition {(X,Y, Z,A,Bi)}2
d

i=1 (Lines 4 to 6).
Otherwise, run GoodCube(X,Y, Z,A,B, ϵ, γ, d) (Lemma 5.3) with the parameter γ = 1

2(d+2)2
.

This output consists of sets Y ∗ ⊆ Y , Z∗ ⊆ Z and a set {(Xℓ, Yℓ, Zℓ, Aℓ)}Lℓ=1 (Line 7). For
each ℓ ∈ [L] we write Bℓ ← B[Yℓ, Zℓ] and B′

ℓ ← B[Yℓ, Z
∗ \ Zℓ]. We then recursively compute,

for each ℓ ∈ [L], the decomposition Sℓ of (Xℓ, Yℓ, Z
∗ \ Zℓ, Aℓ, B

′
ℓ) (Lines 8 to 10). Moreover, we

recursively compute the decomposition S∗ of (X,Y, Z,A,B −B[Y ∗, Z∗]) (Line 11; here, we denote
by B −B[Y ∗, Z∗] the matrix obtained from B after zeroing out the entries in B[Y ∗, Z∗]). Finally,
we return

⋃L
ℓ=1{(Xℓ, Yℓ, Zℓ, Aℓ, Bℓ)} ∪

⋃L
ℓ=1 Sℓ ∪ S∗ (Line 12).

Correctness of Property 1. For a set S as returned by the algorithm, we write

Σ(S) =
∑

(X′,Y ′,Z′,A′,B′)∈S

A′B′,

where, as in the theorem statement, we interpret each term A′B′ in the sum as an X × Z-matrix
by extending with zeros. The goal is to prove that Σ(S) = AB, where S is the set returned by the

25

Algorithm 5.5 Implements the algorithm from Theorem 3.1.

1: procedure ABDecomposition’(X,Y, Z,A,B, ϵ, d, h)
2: if E[B] ≤ 2−d then
3: return {(X,Y, Z,A,B)}
4: if h = d then
5: Arbitrarily partition B into submatrices B1, . . . , B2d ∈ {0, 1}Y×Z of density at most 2−d

6: return {(X,Y, Z,A,Bi)}2
d

i=1

7: Compute Y ∗, Z∗, {(Xℓ, Yℓ, Zℓ, Aℓ)}Lℓ=1 ← GoodCube(X,Y, Z,A,B, ϵ, 1
2(d+2)2

, d)
8: for each ℓ ∈ [L] do
9: Let Bℓ ← B[Yℓ, Zℓ] and B′

ℓ ← B[Yℓ, Z
∗ \ Zℓ]

10: Compute Sℓ ← ABDecomposition’(Xℓ, Yℓ, Z
∗ \ Zℓ, Aℓ, B

′
ℓ, ϵ, d, h+ 1)

11: Compute S∗ ← ABDecomposition’(X,Y, Z,A,B −B[Y ∗, Z∗], ϵ, d, h)
12: return

⋃L
ℓ=1{(Xℓ, Yℓ, Zℓ, Aℓ, Bℓ)} ∪

⋃L
ℓ=1 Sℓ ∪ S∗

13: procedure ABDecomposition(X,Y, Z,A,B, ϵ, d)
14: return ABDecomposition’(X,Y, Z,A,B, ϵ, d, 0)

algorithm on input (X,Y, Z,A,B). This is clear in both base cases. So assume that the algorithm
recurses. Then by induction:

Σ(S) =
L∑

ℓ=1

AℓBℓ +

L∑
ℓ=1

Σ(Sℓ) + Σ(S∗)

=
L∑

ℓ=1

AℓBℓ +
L∑

ℓ=1

AℓB
′
ℓ +AB −A[X,Y ∗]B[Y ∗, Z∗]

=

L∑
ℓ=1

AℓB[Yℓ, Z
∗] +AB −A[X,Y ∗]B[Y ∗, Z∗]

= A[X,Y ∗]B[Y ∗, Z∗] +AB −A[X,Y ∗]B[Y ∗, Z∗]

= AB;

here, in the second-to-last step we have applied Property 1 of Lemma 5.3.

Correctness of Property 2. In both base cases we return partitions in which all parts Bk are
sparse, E[Bk] ≤ 2−d. In the recursive case the output consists of the union of three different sets:
For each (Xℓ, Yℓ, Zℓ, Aℓ, Bℓ) the claim follows from Property 2 of Lemma 5.3, and for each element
in Sℓ or S∗ the claim holds by induction.

Correctness of Property 3. For a collection S of tuples as returned by the algorithm, let us
write

C(S) =
∑

(X′,Y ′,Z′,A′,B′)∈S

|X ′| |Y ′| |Z ′|.

26

Our goal is to prove that C(S) ≤ 2h+1 · (d+2)2 · |X| |Y | |Z|, where S is the output of our algorithm
with inputs (X,Y, Z,A,B, ϵ, d, h). In the sparse case, if E[B] ≤ 2−d, then we return the trivial
decomposition with C(S) = |X| |Y | |Z|. We prove by induction that otherwise the following bound
applies:

C(S) ≤ 2h+1 · (d+ 2)(d+ 1− log(E[B]−1)) · |X| |Y | |Z|

Clearly, this upper bound is true if h = d, so suppose that h < d. Then the algorithm recurses
and we report S with C(S) =

∑L
ℓ=1 |Xℓ| |Yℓ| |Zℓ|+

∑L
ℓ=1C(Sℓ)+C(S∗). In the following we bound

these three contributions individually.
For the first contribution we readily exploit Property 4 of Lemma 5.3:

L∑
ℓ=1

|Xℓ| |Yℓ| |Zℓ| ≤ (d+ 2) · |X| |Y ∗| |Z∗| ≤ 2h · (d+ 2) · |X| |Y ∗| |Z∗|. (1)

For the second contribution we exploit Property 5 of Lemma 5.3:

L∑
ℓ=1

C(Sℓ) ≤
L∑

ℓ=1

2h+1 · (d+ 2)2 · |Xℓ| |Yℓ| |Z∗ \ Zℓ|

≤ 2h+1 · γ · (d+ 2)3 · |X| |Y ∗| |Z∗|

≤ 2h · (d+ 2) · |X| |Y ∗| |Z∗|. (2)

Here, in the last step, we have used our choice of γ = 1
2(d+2)2

. For the third contribution, we
distinguish two cases. If the density δ∗ of the subgraph B − B[Y ∗, Z∗] is smaller than 2−d, then
C(S∗) ≤ |X| |Y | |Z|. Otherwise, we have δ∗ ≤ E[B] · (1− |Y ∗| |Z∗|

|Y | |Z|) (since E[B[Y ∗, Z∗]] ≥ E[B] by
Property 3 of Lemma 5.3) and therefore:

C(S∗) ≤ 2h+1 · (d+ 2)(d+ 1− log(E[B]−1 · (1− |Y ∗| |Z∗|
|Y | |Z|)−1)) · |X| |Y | |Z|

≤ 2h+1 · (d+ 2)(d+ 1− log(E[B]−1) + log(1− |Y ∗| |Z∗|
|Y | |Z|)) · |X| |Y | |Z|

≤ 2h+1 · (d+ 2)(d+ 1− log(E[B]−1)− |Y ∗| |Z∗|
|Y | |Z|) · |X| |Y | |Z|

≤ 2h+1 · (d+ 2)(d+ 1− log(E[B]−1)) · |X| |Y | |Z| − 2h+1 · (d+ 2) · |X| |Y ∗| |Z∗|. (3)

Summing over all three contributions (1), (2) and (3) yields the claimed bound on C(S).

Correctness of Property 4. LetM = exp(d4γ−1 poly(ϵ−1)) be such that |Y ∗| |Z∗| ≥ |Y | |Z| /M
for the sets Y ∗, Z∗ returned by Lemma 5.3. Moreover, let L = exp(d3 poly(ϵ−1)) be as in Lemma 5.3.
We prove by induction that

K = |S| ≤ 2dM · (2dML+ L)d+1−h · E[B],

where S is the set returned by the algorithm. This bound is easily verified in the two base cases.
If the algorithm recurses instead then |S| ≤ L+

∑L
ℓ=1 |Sℓ|+ |S∗|. By induction we can bound

|Sℓ| ≤ 2dM · (2dML+ L)d−h,

27

and

|S∗| ≤ 2dM · (2dML+ L)d+1−h · (E[B]− E[B[Y ∗, Z∗]] · |Y
∗| |Z∗|

|Y | |Z|)

≤ 2dM · (2dML+ L)d+1−h ·
(
E[B]− E[B[Y ∗, Z∗]] · 1

M

)
≤ 2dM · (2dML+ L)d+1−h ·

(
E[B]− 1

2dM

)
,

using in the last step that E[B[Y ∗, Z∗]] ≥ E[B] by Property 3 of Lemma 5.3. Combining these
bounds, it follows that

|S| ≤ L+ L · 2dM · (2dML+ L)d−h + 2dM · (2dML+ L)d+1−h · (E[B]− 1
2dM

)

≤ (2dML+ L)d+1−h − (2dML+ L)d+1−h + 2dM · (2dML+ L)d+1−h · E[B]

= 2dM · (2dML+ L)d+1−h · E[B].

In the end we plug in values for L and M to obtain |S| ≤ exp(d5γ−1 poly(ϵ−1)) = exp(d7 poly(ϵ−1)),
as stated.

Running Time. From the previous consideration we also learn that the number of recursive calls
is bounded by exp(d7 poly(ϵ−1)). In each recursive call, the dominant step is to call GoodCube
in time n2 · exp(d3 poly(ϵ−1)). Hence, the total time is n2 · exp(d7 poly(ϵ−1)).

6 Boolean Matrix Multiplication and Triangle Detection

In this section we formally derive our efficient algorithm for Boolean Matrix Multiplication from
the regularity decompositions developed in the previous sections. Our algorithm relies on the
following fine-grained reduction from BMM to Triangle Detection due to Vassilevska Williams and
Williams [72]:

Lemma 6.1 (Boolean Matrix Multiplication to Triangle Detection, [72]). If Triangle Detection is
in time O(n3/f(n)) (for some nondecreasing function f(n)), then Boolean Matrix Multiplication is
in time O(n3/f(n1/3)).

Theorem 6.2 (Triangle Detection). There is a deterministic combinatorial detecting whether a
graph contains a triangle in time n3/2Ω(7√logn).

Proof. We assume without loss of generality that the input graph is tripartite, (X,Y, Z,A,B,C).
Let ϵ = 1

160 and let d ≥ 1 be a parameter to be determined later. Using Theorem 3.1 we decompose
(X,Y, Z,A,B) into pieces {(Xk, Yk, Zk, Ak, Bk)}Kk=1. Further, write Ck = C[Xk, Zk]. For each piece
we distinguish two cases:

• If E[Ak] ≤ 2−d or E[Bk] ≤ 2−d or E[Ck] ≤ 2−ϵd/2, then search in (Xk, Yk, Zk, Ak, Bk, Ck) for a
triangle. This step takes time O(|Xk| |Yk| |Zk| / 2ϵd/2) by exploiting the respective sparseness.

• Otherwise, simply return “yes”.

For the correctness first observe that there is a triangle in the given graph if and only if there
exists (x, z) ∈ X × Z with (AB)(x, z) ≥ 1 and C(x, z) = 1. Since Property 1 of Theorem 3.1
guarantees that AB =

∑
k AkBk, there is a triangle in the original graph if and only if there is

28

some k ∈ [K] and (x, z) ∈ Xk × Zk with (AkBk)(x, z) ≥ 1 and Ck(x, z) = 1. The correctness
of the first case is thus clear. But it remains to argue that if E[Ak] > 2−d and E[Bk] > 2−d

and E[Ck] > 2−ϵd/2, then there exists a triangle in (Xk, Yk, Zk, Ak, Bk, Ck). Indeed, by Property 2
of Theorem 3.1 and the first two assumptions, we have that Ak and BT

k are (ϵ, 2, d)-regular and
ϵ-min-degree. In this case, Theorem 2.1 implies that A ◦ B is (E[A]E[B], 80ϵ, 2−ϵd/2)-uniform.
By definition, this means that not more than a 2−ϵd/2-fraction of the entries in A ◦ B do not lie
in the range [(1 − 80ϵ)E[A]E[B], (1 + 80ϵ)E[A]E[B]] = [12 E[A]E[B], 32 E[A]E[B]]. In particular,

(since we have E[A],E[B] > 0) it follows that at most a 2−ϵd/2-fraction of the entries in A ◦ B
are nonzero. Using finally that E[Ck] > 2−ϵd/2, we conclude that there exists some common
entry (x, z) ∈ Xk × Zk where both (AB)(x, z) ≥ 1 and C(x, z) = 1.

Let us finally analyze the running time. Detecting a triangle in each sparse sub-instance takes
time

K∑
k=1

|Xk| |Yk| |Zk|
2Ω(d)

≤ |X| |Y | |Z| · 2(d+ 2)2

2Ω(d)
=
|X| |Y | |Z|

2Ω(d)
,

using Property 3 of Theorem 3.1. Furthermore, precomputating the regularity decomposition takes
time n2 ·exp(d7 poly(ϵ−1)) = n2 ·2O(d7). This running is optimized by picking d = Θ(7

√
log n), where

the constant is sufficiently small such that the preprocessing time becomes O(n2.1), say. For this
choice, the total running time is indeed n3/2Ω(d) = n3/2Ω(7√logn).

Our main Theorem 1.2 is immediate by combining Lemma 6.1 and Theorem 6.2.

7 Triangle Enumeration

In this section we give an improved algorithm for enumerating triangles in graphs, based on our
previous decomposition theorems:

Theorem 1.3 (Triangle Enumeration Algorithm). There is a deterministic algorithm that pre-
processes a given graph in time n3/(log n)6 · (log log n)O(1) and then enumerates all triangles with
constant delay.

We make an important distinction: A triangle listing algorithm receives as input a graph and
returns as output a list of its t triangles—here, we care about triangle listing algorithms with
running times of the form O(n3/f(n) + t). A triangle enumeration algorithm first preprocesses a
graph in time O(n3/f(n)). Afterwards, it can enumerate all triangles in the graph with constant
delay (i.e., upon query, the algorithm spends time O(1) to report the next triangle). For the
majority of this section we work with triangle listing algorithms, but in Section 7.3 we show that
both types are equivalent in our context.12

We structure the remainder of this section as follows: We quickly give the main idea of our
algorithm in Section 7.1, with details following in Section 7.2. Finally, in Section 7.4 we include
a proof that further improvements to our enumeration algorithm would entail a 3-SUM-algorithm
that is faster than what is currently known.

12We note that there has been work on developing triangle listing algorithms in time O(n3/f(n) + t · g(n)), i.e.,
with a super-constant “per-triangle” cost g(n). For this setting, algebraic fast matrix multiplication turns out to be
useful and yields an algorithm in time O(n2.3716 + t0.4782 · n1.5655) [17]. Due to the super-constant per-triangle cost,
however, this algorithm does not lead to nontrivial constant-delay enumeration algorithms.

29

7.1 Triangle Listing—The Idea

In this short overview we give the main intuition behind our algorithm. We remark that all non-
trivial algorithms for triangle enumeration are based on the Four-Russians technique [12]. The
following lemma states a stronger version for sparse graphs that has implicitly appeared in [13, 23]:

Lemma 7.1 (Four-Russians). Let G = (X,Y, Z,A,B,C) be a tripartite graph. There is a deter-
ministic algorithm that lists all t triangles in G in time

O

(
n2.3 +

|X| |Y | |Z|
(log n)100

+
|X| |Y | |Z| · E[A ◦B] · (log log n)2

(log n)2
+ t

)
(where n ≥ |X|+ |Y |+ |Z|).

Without further assumptions on the graph we can only use the trivial bound E[A ◦ B] ≤ 1,
which recovers the original improvement of shaving two log-factors. Note that all subsequent works
that score more log-shaves nevertheless still rely on this lemma.

To understand how we arrive at our improvement of nearly six log-shaves, and why six log-
shaves appears to be a right answer, suppose that the input graph is random (in the sense that
it includes each edge independently with some probability δ). We claim that by trivial means,
Lemma 7.1 now yields an improvement by nearly six log-factors. There are two cases: If the graph
is sparse, δ ≤ (log logn)2

(logn)2
, then

E[A ◦B] ≈ E[A]E[B] ≈ δ2 ≤ (log log n)4

(log n)4
,

and the improvement is immediate. On the other hand, consider the dense case, δ ≥ (log logn)2

(logn)2
.

Intuitively, we exploit that whenever the graph is sufficiently dense, then the number of triangles
dominates the running time in Lemma 7.1. Specifically, the number of triangles in the graph
is t ≈ δ3 · n3 (assuming that the graph is random), and therefore the running time of Lemma 7.1
is bounded by

O

(
n3 · δ2 · (log log n)2

(log n)2
+ t

)
= O

(
t · (log log n)2

δ · (log n)2
+ t

)
= O(t).

Of course, we cannot assume that the graph is perfectly random. Our natural approach is to
apply our regularity decomposition to decompose the given graph into regular pieces that behave
randomly (with respect to the quantity E[A ◦ B] and the number of triangles t). The details are
significantly more complicated though, as we cannot assume that the edges C behave regularly.

7.2 Triangle Listing—The Details

We now give the details of our algorithm, starting with a proof of the Four-Russians lemma. Recall
that we work over a Word RAM model with word size Θ(log n). In the proof of Lemma 7.1 we
specifically use that this model allows to construct a length-n0.1 array that can be accessed in
constant time via keys of length 0.1 log n.

Proof of Lemma 7.1. The goal is to give an algorithm that lists all triangles in a given tripartite
graph G = (X,Y, Z,A,B,C). We use the following notation: For a node y ∈ Y , let NA(y) ⊆ X and
NB(y) ⊆ Z denote the sets of neighbors of y, respectively. Let s = ⌊log n⌋100, r = ⌊ logn

1000 log logn⌋,
and consider the following steps:

30

1. We arbitrarily partition X into I = ⌈|X|/s⌉ groups X1, . . . , XI of size at most s; similarly
partition Z into J = ⌈|Z|/s⌉ groups Z1, . . . , ZJ of size at most s.

2. We enumerate each tuple (i, j, S, T) where i ∈ [I], j ∈ [J] and where S ⊆ Xi, T ⊆ Zj have
size |S|, |T | ≤ r. Note that

log

(
s

r

)
≤ r log s ≤ log n

1000 log log n
· 100 log log n =

log n

10
;

therefore, there are at most n · n · n0.1 · n0.1 = n2.2 such tuples (i, j, S, T). Moreover, we
can encode each such tuple in O(log n) bits which takes O(1) machine words.13 For each
tuple (i, j, S, T) we prepare a list of all edges in C[S, T] and store a pointer (of constant word
size) to this list.

3. Next, we enumerate each tuple (y, i, j) where y ∈ Y , i ∈ [I] and j ∈ [J]. We partition the
set NA(y) ∩Xi (i.e., the set of neighbors of y in Xi) arbitrarily into subsets S of size r (plus
possibly one subset of size less than r); let S(y, i) denote the resulting partition. Similarly,
we partition NB(y) ∩ Zj into subsets of size at most r (plus possibly one subset of size less
than r); let T (y, j) denote the resulting partition. Now, for each pair S ∈ S(y, i), T ∈ T (y, j)
we query list of edges associated to the tuple (i, j, S, T). We enumerate each edge (x, z) in
this list associated to (i, j, S, T) and store the triangle (x, y, z).

It is easy to verify that this algorithm lists all triangles in G. Let us focus on the running time.
Step 1 runs in negligible time O(n). In Step 2 we enumerate at most n2.2 tuples (i, j, S, T), and for
each such tuple we spend time at most O(s2) to prepare the list of edges in C[S, T]. The total time
of this step is O(n2.2 · s2) which we loosely bound by O(n2.3). In Step 3 we enumerate all |Y | · I · J
tuples (y, i, j). For each such tuple, we spend time O(s) to prepare the sets S(y, i) and T (y, j).
Afterwards, we spend time O(|S(y, i)| · |T (y, j)|) plus the time to list all triangles. This listing cost
is linear in t, so the running time of Step 3 is thus bounded by

O

∑
y∈Y

∑
i∈[I]
j∈[J]

(s+ |S(y, i)| · |T (y, j)|) + t

= O

∑
y∈Y

∑
i∈[I]
j∈[J]

(
s+
|NA(y) ∩Xi|

r
· |NB(y) ∩ Zj |

r

)
+ t

= O

∑
y∈Y

(
IJs+

|NA(y)| · |NB(y)|
r2

)
+ t

= O

(
|X| |Y | |Z|

s
+
|X| |Y | |Z| · E[A ◦B]

r2
+ t

)
.

The time bound from the lemma statement follows by plugging in the chosen parameters s and r.
13Of course, the exact bit representation matters. The easiest option here is to represent each set S as a (sorted)

list of its at most r elements. As each element can be represented using log s bits, this representation indeed
takes r log s ≤ 1

10
logn bits in total.

31

Theorem 7.2 (Triangle Listing). There is a deterministic algorithm that lists all t triangles in a
given graph in time O(n3 / (log n)6 · (log log n)O(1) + t).

Proof. Let G = (X,Y, Z,A,B,C) be a given tripartite graph. We design a recursive algorithm
that lists all triangles in G. To this end, we maintain one (global) list of triangles and each recursive
call of the algorithm appends triangles to this list. Let n denote the total number of nodes in the
original graph G (at the top level of the recursion), and let γ, δ, ϵ ∈ (0, 1) and d ≥ 4/ϵ be parameters
to be determined later.

The first step is to call Theorem 3.1 on input (X,Y, Z,A,B, ϵ, d) to compute a decompo-
sition {(Xk, Yk, Zk, Ak, Bk)}Kk=1. For each k ∈ [K], we write for convenience Ck = C[Xk, Zk]
and Gk = (Xk, Yk, Zk, Ak, Bk, Ck). By the guarantee of Theorem 3.1 this decomposition parti-
tions the set of triangles in G, and thus the remaining goal is to separately list all triangles in the
graphs Gk. To this end, for each k ∈ [K], we distinguish the following cases:

1. If E[Ak] ≤ 2−ϵd/4 or E[Bk] ≤ 2−ϵd/4: List all triangles in Gk in time O(|Xk| |Yk| |Zk| / 2ϵd/4).

2. If E[Ak] ≤ δ and E[Bk] ≤ δ: List all triangles in Gk by Lemma 7.1.

3. If E[Bk] ≥ δ: We further subdivide the graph Gk based on the approximate degrees in Xk

with respect to Zk. Specifically, let L = ⌈ϵd/2⌉ and split Xk into buckets Xk,1, . . . , Xk,L

defined by

Xk,ℓ = {x ∈ Xk : 2−ℓ < degCk
(x) ≤ 2−ℓ+1} (for 1 ≤ ℓ < L),

Xk,L = {x ∈ Xk : degCk
(x) ≤ 2−L+1}.

For each ℓ ∈ [L], we define the matrix Ck,i ∈ {0, 1}Xk×Zk as the submatrix of Ck obtained
by zeroing out all rows not in Xi. (That is, Ck,i[x, z] = Ck[x, z] if x ∈ Xi and Ck[x, z] = 0
otherwise.) Writing Gk,ℓ = (Xk, Yk, Zk, Ak, Bk, Ck,ℓ), our remaining goal is to list the disjoint
union of triangles in the graphs Gk,ℓ. For each ℓ ∈ [L], we instead distinguish the following
three subcases:

3.1 If E[Ck,ℓ] ≤ 2−L+1: List all triangles in Gk,ℓ in time O(|Xk| |Yk| |Zk| / 2L).
3.2 If |Xk,ℓ| < γ|Xk|: Recurse on (Xk,ℓ, Yk, Zk, Ak[Xk,ℓ, Yk], Bk, Ck[Xk,ℓ, Zk]). (It is easy to

check that the triangles in this graph are exactly the triangles in Gk,ℓ.)

3.3 If E[Ck,ℓ] > 2−L+1 and |Xk,ℓ| ≥ γ|Xk|: List all triangles in (Yk, Xk, Zk, A
T
k , Ck,ℓ, Bk)

by Lemma 7.1. (It is easy to check that the triangles in this graph are in one-to-one
correspondence to the triangles in Gk,ℓ.) Note that we have exchanged the node and
edge sets such that Lemma 7.1 benefits from minimizing E[AT

k ◦ Ck,ℓ].

4. If E[Ak] ≥ δ: This case is symmetric to the previous case. More precisely, we can reduce to
the previous case by considering instead the graph (Zk, Yk, Xk, B

T
k , A

T
k , C

T
k) whose triangles

are clearly in one-to-one correspondence with those in Gk.

Finally, we add one more rule to the algorithm: As soon as we reach recursion depth H (for some
parameter H to be determined), we simply solve the instance by brute-force in time O(|X| |Y | |Z|).
This completes the description of the algorithm. The correctness should be clear from the in-text
explanations.

32

Running Time. It remains to bound the running time. For simplicity, we already fix all the
parameters here, and then analyze the cases individually:

ϵ =
1

160
,

d = ⌈64000 log log n⌉,

γ =
1

8L(d+ 2)2
= Θ

(
1

(log log n)3

)
,

δ =
(log log n)2

γ(log n)2
= Θ

(
(log log n)5

(log n)2

)
,

H =

⌈
log

(log n)6

(log log n)14

⌉
= Θ(log log n).

Claim 7.3 (Cases 1 and 3.1). The total running time of Cases 1 and 3.1 is O(|X| |Y | |Z|/(log n)99).

Proof. The algorithm deals with Cases 1 and 3.1 in time O(|Xk| |Yk| |Zk|/2ϵd/4), which, by our
choice of the parameters ϵ, d, is O(|Xk| |Yk| |Zk|/(log n)100). In total, taking into account all k ∈ [K],
and possibly the at most L repetitions of Case 3.1, by Theorem 3.1 this becomes

K∑
k=1

O

(
L · |Xk| |Yk| |Zk|

(log n)100

)
= O

(
d2L · |X| |Y | |Z|

(log n)100

)
= O

(
|X| |Y | |Z|
(log n)99

)
.

Claim 7.4 (Case 2). The total running time of Case 2 is

O

(
Kn2.3 + |X| |Y | |Z| · (log log n)

14

(log n)6
+ t2

)
,

where t2 is the number of triangles listed in Case 2.

Proof. We can assume that E[Ak],E[Bk] > 2−d whenever we enter Case 2 (since Case 1 did not
apply). Thus, the regularity decomposition (Theorem 3.1) guarantees that Ak and BT

k are both
(ϵ, 2, d)-regular and ϵ-min-degree. As a corollary of Theorem 2.1 we obtain that

E[Ak ◦Bk] ≤ (1 + 80ϵ)E[A]E[B] + 2−ϵd/2 ≤ 3
2 E[A]E[B] + E[A]E[B] ≤ 5

2δ
2.

Write tGk
to denote the number of triangles in Gk. By Lemma 7.1 and Theorem 3.1, it follows that

Case 2 indeed takes total time∑
k∈[K]
case 2

O

(
n2.3 + |Xk| |Yk| |Zk| ·

(
1

(log n)100
+

δ2(log log n)2

(log n)2

)
+ tGk

)

=
∑
k∈[K]
case 2

O

(
n2.3 + |Xk| |Yk| |Zk| ·

(log log n)12

(log n)6
+ tGk

)

= O

(
Kn2.3 + |X| |Y | |Z| · d

2(log log n)12

(log n)6
+ t2

)
= O

(
Kn2.3 + |X| |Y | |Z| · (log log n)

14

(log n)6
+ t2

)
.

33

Claim 7.5 (Case 3.3). The total running time of Case 3.3 is

O

(
KLn2.3 +

|X| |Y | |Z|
(log n)99

+ t3.3

)
,

where t3.3 is the number of triangles listed in Case 3.3.

Proof. Focus on some pair (k, ℓ) that falls into Case 3.3, i.e., where E[Bk] ≥ δ, E[Ck,ℓ] > 2−L+1

and |Xk,ℓ| ≥ γ|Xk|. We must have ℓ < L (as otherwise E[Ck,ℓ] ≤ 2−L+1). The analysis of this case
is inspired by the previous algorithm for purely random graphs. Our goal is to prove that both (i)
the number of 2-paths in Gk,ℓ (via the edge parts Ak and Ck,ℓ) and (ii) the number of triangles
in Gk,ℓ behave as if Gk,ℓ was purely random.

We start with (i). By the construction of Ck,ℓ, it is immediate that the density of Ck,ℓ is at
least

E[Ck,ℓ] ≥
|Xk,ℓ|
|Xk|

· 2−ℓ ≥ γ · 2−ℓ.

Therefore, we can bound

E[AT
k ◦ Ck,ℓ] = E

x∈Xk

degAk
(x) · degCk,ℓ

(x)

≤ E
x∈Xk

degAk
(x) · 2−ℓ+1

≤ 2γ−1 · E[Ak] · E[Ck,ℓ].

Next, we turn to (ii) and bound the number of triangles in Gk,ℓ from below. Using Theorem 2.1
we infer that at most a 2−ϵd/2 ≤ 2−L-fraction of the entries in E[Ak ◦ Bk] does not fall into the
range [(1− 80ϵ)E[Ak]E[Bk], (1 + 80ϵ)E[Ak]E[Bk]] = [12 E[Ak]E[Bk],

3
2 E[Ak]E[Bk]]. Therefore, the

number of triangles in Gk,ℓ is at least

tGk,ℓ
≥ |Xk| |Yk| |Zk| · 12 E[Ak] · E[Bk] · (E[Ck,ℓ]− 2−L)

≥ |Xk| |Yk| |Zk| · 14 · E[Ak] · E[Bk] · E[Ck,ℓ]

≥ |Xk| |Yk| |Zk| · γ8 · E[Bk] · E[AT
k ◦ Ck,ℓ]

≥ |Xk| |Yk| |Zk| · γδ8 · E[A
T
k ◦ Ck,ℓ].

34

By combining both statements, we can bound the running time of Lemma 7.1 as follows:∑
k∈[K],ℓ∈[L]
case 3.3

O

(
n2.3 + |Xk| |Yk| |Zk| ·

(
1

(log n)100
+

E[AT
k ◦ Ck,ℓ] · (log log n)2

(log n)2

)
+ tGk,ℓ

)

≤
∑

k∈[K],ℓ∈[L]
case 3.3

O

(
n2.3 +

|Xk| |Yk| |Zk|
(log n)100

+ tGk,ℓ
·
(

(log log n)2

(γδ/8)(log n)2
+ 1

))

≤
∑

k∈[K],ℓ∈[L]
case 3.3

O

(
n2.3 +

|Xk| |Yk| |Zk|
(log n)100

+ tGk,ℓ

)

= O

(
KLn2.3 +

d2L · |X| |Y | |Z|
(log n)100

+ t3.3

)
= O

(
KLn2.3 +

|X| |Y | |Z|
(log n)99

+ t3.3

)
.

It only remains to analyze Case 3.2, which involves recursive calls to our algorithm. Let us
write T (|X|, |Y |, |Z|, t, h) to express the total running time of our algorithm, given an input graph
with vertex parts X,Y, Z and with at most t triangles, at recursion depth 0 ≤ h ≤ H. Then finally:

Claim 7.6 (Total Running Time). The total running time is bounded by

T (|X|, |Y |, |Z|, t, h) ≤ c ·
(
(2KL)H−h · n2.3 + |X| |Y | |Z| · (log log n)

14 · 2h+1

(log n)6
+ t

)
,

for some sufficiently large constant c.

Proof. In the base case we have T (|X|, |Y |, |Z|, t,H) = O(|X| |Y | |Z|) which indeed satisfied the
claim (as 2H ≥ (log n)6/(log log n)14). So focus on the case that h < H. Then, given the previous
Claims 7.3 to 7.5, the running time of the Cases 1, 2, 3.1 and 3.3 is bounded by

c ·
(
KLn2.3 + |X| |Y | |Z| · (log log n)

14

(log n)6
+ (t− t3.2)

)
, (4)

where c is some sufficiently large constant, and where t3.2 is the number of triangles listed in Case 3.2
(such that t− t3.2 is the number of triangles listed in all other cases). By induction we can bound
the contribution of Case 3.2 as follows; recall that |Xk,ℓ| < γ|Xk| for any pair (k, ℓ) falling into
Case 3.2:∑

k∈[K],ℓ∈[L]
case 3.2

T (|Xk,ℓ|, |Yk|, |Zk|, tGk,ℓ
, h+ 1)

≤
∑

k∈[K],ℓ∈[L]
case 3.2

c ·
(
(2KL)H−h−1 · n2.3 + |Xk,ℓ| |Yk| |Zk| ·

(log log n)14 · 2h+2

(log n)6
+ tGk,ℓ

)

≤
∑

k∈[K],ℓ∈[L]
case 3.2

c ·
(
(2KL)H−h−1 · n2.3 + γ · |Xk| |Yk| |Zk| ·

(log log n)14 · 2h+2

(log n)6
+ tGk,ℓ

)

c ·
(
KL(2KL)H−h−1 · n2.3 + 2γL(d+ 2)2 · |X| |Y | |Z| · (log log n)

14 · 2h+2

(log n)6
+ t3.2

)
. (5)

35

By our choice of parameters, 2γL(d+2)2 = 1
4 . Therefore, the total running time (which is obtained

as the sum of Equations (4) and (5)) is at most

T (|X|, |Y |, |Z|, t, h)

≤ c ·
(
2KL(2KL)H−h−1 · n2.3 + |X| |Y | |Z| · (log log n)

14 · 2h+1

(log n)6
+ (t− t3.2 + t3.2)

)
= c ·

(
(2KL)H−h · n2.3 + |X| |Y | |Z| · (log log n)

14 · 2h+1

(log n)6
+ t

)
,

as stated.

To obtain the time bound claimed in the theorem statement, recall that we initially call the
algorithm at recursion depth h = 0, that K ≤ exp(poly(d, ϵ−1)) = exp(poly(log log n)), and
that H = O(log log n). Hence, the term (2KL)H · n2.3 ≤ n2.3+o(1) is negligible in the total run-
ning time.

7.3 Triangle Enumeration versus Triangle Listing

We finally turn our triangle listing algorithm into an enumeration algorithm. In fact, we prove the
following equivalence:14

Lemma 7.7 (Equivalence of Triangle Enumeration and Listing). The following equivalences hold
(in terms of deterministic algorithms):

1. If constant-delay triangle enumeration is possible with preprocessing time O(n3/f(n)) (for
some function f(n)), then triangle listing is in time O(n3/f(n) + t).

2. If triangle listing is in time O(n3/f(n)+ t) (for some computable function f(n) = no(1)), then
constant-delay triangle enumeration is possible with preprocessing time O(n3/f(n1/2)).

To obtain the equivalence in terms of deterministic algorithms we rely on the following combi-
natorial algorithm by Fox, Lovász and Zhao to approximately count triangles (or in fact, arbitrary
subgraphs):

Lemma 7.8 (Approximate Triangle Counting [37]). Let ϵ > 0. There is a deterministic algorithm
approximating the number of triangles in a graph up to an additive error of ϵn3 in time n2·poly(ϵ−1).

Proof of Lemma 7.7. The first item is trivial: Simply preprocess the graph in time O(n3/f(n))
and then enumerate all triangles in time O(t). We thus focus on the second item, and design a
triangle enumeration algorithm with constant delay.

14This equivalence can easily be extended to an equivalence for arbitrary subgraphs H. Specifically, if H has k
vertices, then listing H-subgraphs in time O(nk/f(n) + t) is equivalent to enumerating H-subgraphs with constant
delay in preprocessing time O(nk/f(n)). However, this equivalence has only limited use, as for many graphs H much
faster listing and enumeration algorithms are known. For instance, 4-cycles can be listed in time O(n2 + t) by a
simple folklore algorithm.

36

Preprocessing. Assume without loss of generality that G is tripartite with vertex sets X,Y, Z of
size n each. We partition each vertex part into g = ⌈n1/2⌉ groupsX = X1⊎· · ·⊎Xg, Y = Y1⊎· · ·⊎Yg
and Z = Z1 ⊎ · · · ⊎ Zg of size at most ⌈n1/2⌉. For each triple i, j, k ∈ [g], let Gi,j,k denote the
subgraph induced by Xi ∪ Yj ∪ Zk. Clearly the triangles in G are perfectly partitioned into the
triangles in (Gi,j,k)i,j,k. Let ti,j,k denote the number of triangles in Gi,j,k.

Let ϵ = 1
4/f(n

1/2). For each triple i, j, k ∈ [g], we compute an approximation t̃i,j,k of the

number of triangles in Gi,j,k with absolute error ϵn3/2 = 1
4n

3/2/f(n1/2). We call a triple i, j, k

with t̃i,j,k ≤ n3/2/f(n1/2) light and heavy otherwise. For each light triple i, j, k we list all triangles
in Gi,j,k using the efficient listing algorithm and discard Gi,j,k afterwards. We store all triangles
discovered in this step in one global list to be enumerated later. We sort the remaining heavy triples
in descending order according to their approximate triangle counts t̃i,j,k; let G1, . . . , Gr denote the
heavy graphs in the resulting order. As the final step of the preprocessing phase, we list all triangles
in G1 in brute-force time O(n3/2).

Preprocessing Time. Before proceeding to the description of the enumeration phase, we quickly
analyze the running time of the preprocessing phase. Computing the approximate triangle counts
for all subgraphs takes time O(n3/2 ·n·poly(f(n1/2))) = n5/2+o(1). Observe that the number of trian-
gles in each light subgraph is at most n3/2/f(n1/2)+ ϵn3/2 = O(n3/2/f(n1/2)). Therefore, applying
the listing algorithm to all light subgraphs takes time O(n3/2 · n3/2/f(n1/2)) = O(n3/f(n1/2)).
Finally, listing all triangles in G1 takes negligible time.

Enumeration. In the enumeration phase we first enumerate all triangles from the light sub-
graphs. The more interesting part is to enumerate the triangles involving the heavy subgraphs.
Here we proceed as follows: We maintain an active heavy subgraph i ∈ [r] for which we have
prepared a list of all of its triangles. Initially we set i = 1—and indeed, we have prepared a list
of all triangles in G1. The idea is that while we enumerate triangles from the active graph Gi,
we simultaneously prepare a list of all triangle in the next graph Gi+1. To this end, we run the
efficient listing algorithm on Gi+1, and with each triangle from Gi that we list we advance the
algorithm by O(1) computation steps. To prove that this approach succeeds (i.e., that we have
completed the execution of the listing algorithm on Gi+1 when all triangles from Gi have been
listed), we show that ti ≥ Ω(n3/2/f(n1/2) + ti+1), where we write ti to denote the number of
triangles in Gi. Indeed, we have that ti ≥ ti+1 − 2ϵn3/2 and ti ≥ n3/2/f(n1/2) − ϵn3/2 (as Gi is
heavy), and thus ti ≥ Ω(n3/2/f(n1/2) + ti+1). After we have enumerated all triangles from Gi, we
discard Gi and consider Gi+1 the next active subgraph. Note that this algorithm indeed lists all
triangles with constant delay.

The proof of Theorem 1.3 is complete by combining Theorem 7.2 and Lemma 7.7.

7.4 Conditional Optimality

The famous 3-SUM problem is to test whether in a given set S of n integers there is a solution to
the equation a+b+c = 0. This problem can be solved naively in time O(n2) and the fastest known
algorithm, due to Baran, Demaine and Pătraşcu, runs in expected time O(n2/(log n)2 ·(log log n)2).

From previous work on the 3-SUM-hardness of triangle listing/enumeration by Pătraşcu [62] and
by Kopelowitz, Pettie and Porat [54], it follows that our algorithm is conditionally optimal in the
following (weak) sense: An algorithm that enumerates all triangles in a graph with preprocessing

37

time O(n3/(log n)6+ϵ) and constant delay entails an algorithm for the 3-SUM problem in expected
time O(n2/(log n)2+ϵ′) (i.e., a (log n)ϵ

′
improvement over the Baran-Demaine-Pătraşcu algorithm).

Since this statement is not explicit in [54], we devote this section to an almost-self-contained proof.
Specifically, we prove the following statement:

Lemma 7.9 (Reducing 3-SUM to Triangle Listing). Let α ≥ 0. If there is a randomized algorithm
listing all t triangles in a graph in expected time O(n3/f(n)+t) (for some computable nondecreasing
function f(n)), then there is a randomized 3-SUM algorithm in expected time O(n2/f(n2/3)1/3).15

The proof relies on the following standard lemma on linear hashing:

Lemma 7.10 (Linear Hashing [28]). Let n ≥ m ≥ 1. There is a family H = {h : [−n . . n]→ [m]}
of hash functions that can be sampled in expected time poly(log n) and evaluated in constant time,
and that satisfies the following properties:

• (Almost-Linearity) There exists some constant-size set Φ such that for all h ∈ H and all
keys a, b ∈ [−n . . n], we have h(a+ b)− h(a)− h(b) + h(0) ∈ Φ.

• (Pairwise Independence) For all distinct keys a, b ∈ [−n . . n] and buckets x, y ∈ [m]:
Ph∈H[h(a) = x and h(b) = y] ≤ O(1

m2).

Proof of Lemma 7.9. Let S denote the given 3-SUM-instance, and assume that S ⊆ [−nc . . nc]
for some constant c. As a first step, we randomly sample O(n log n) pairs a, b ∈ S and test
whether −a− b ∈ S. If we find a solution in this step, we stop and return “yes”.

Otherwise, sample three linear hash functions h1, h2, h3 : [−nc . . nc] → [m] as in the previous
lemma, and construct the following tripartite graph G = (X,Y, Z,A,B,C). As vertex parts, we
take

X = [m]× [m]× {h3(0)},
Y = [m]× {h2(0)} × [m],

Z = {h1(0)} × [m]× [m].

We add an edge (x, y) ∈ X × Y to A if and only if there is some a ∈ S such that

y1 − x1 − h1(a) + h1(0) ∈ Φ,

y2 − x2 − h2(a) + h2(0) ∈ Φ,

y3 − x3 − h3(a) + h3(0) ∈ Φ.

In this case, we say that the edge (x, y) is labeled with a. We add edges to B and C in the analogous
way. We then use the efficient triangle listing algorithm to list all triangles in G (viewing G as
an unlabeled graph). For each triangle (x, y, z) that is returned, test whether it has three edge
labels (a, b, c) that satisfy a + b + c = 0. In this case we report “yes”, and if no such triangle is
found, return “no”.

15We remark that while this reduction is in terms of expected running times, the statement can easily be strengthened
such that the running time of the constructed 3-SUM algorithm holds with high probability (e.g., by first applying
the known self-reduction for 3-SUM [45, 57] and splitting into polynomially many subinstances).

38

Correctness. For the correctness it suffices to show that, if there exist a, b, c ∈ S with a+b+c = 0,
then there is a triangle in G with edge labels (a, b, c). To see this, consider the triple (x, y, z) where

x = (h1(c), h2(−a), h3(0)),
y = (h1(−b), h2(0), h3(a)),
z = (h1(0), h2(b), h3(−c)).

We claim that (x, y, z) forms a triangle. This involves testing nine constraints. For the sake of
brevity, we only prove the first such constraint, namely that y1 − x1 − h1(a) + h1(0) ∈ Φ. And
indeed, given that y1−x1−h1(a) = h1(−b)−h1(c)−h1(a) = h1(c+a)−h1(c)−h1(a), the constraint
follows by the almost-linearity property of Lemma 7.10.

Running Time. Sampling solutions and constructing the graph G takes negligible time, so the
critical contribution is the running time of the listing algorithm. To this end, we first bound the
expected number of triangles in the graph.

Claim. The expected number of triangles in G is O(n+ n3

m3).

Proof. Fix a triple a, b, c ∈ S. We analyze how many triangles (x, y, z) are labeled with (a, b, c).
Recall that for (x, y, z) to be a triangle, it satisfies nine constraints—three for each edge. Focus on
the constraints involving h1:

y1 − x1 − h1(a) + h1(0) ∈ Φ,

z1 − y1 − h1(b) + h1(0) ∈ Φ,

x1 − z1 − h1(c) + h1(0) ∈ Φ.

Recall that necessarily z1 = h1(0). Thus, the second and third constraints imply that there are
only |Φ| = O(1) feasible choices for x1 and y1. In particular, it follows that there are at most O(1)
triangles labeled with (a, b, c). Next, let us write kΦ = {ϕ1 + · · ·+ ϕk : ϕ1, . . . , ϕk ∈ Φ}. Summing
all three constraints, we obtain that 3h1(0) − h1(a) − h1(b) − h3(c) ∈ 3Φ, and by applying the
almost-linearity twice, it follows that h1(0)−h1(a+ b+ c) ∈ 5Φ. By the analogous argument for h2
and h3, we conclude that there is a triangle labeled with (a, b, c) only if

h1(0)− h1(a+ b+ c) ∈ 5Φ,

h2(0)− h2(a+ b+ c) ∈ 5Φ,

h3(0)− h3(a+ b+ c) ∈ 5Φ.

Finally, to bound the expected number of triangles, we distinguish two cases. On the one hand,
the number of triples with a+b+c = 0 is at most O(n) as otherwise, with high probability, we would
have detected a 3-SUM solution in the first step of the algorithm. Each such triple contributes at
most O(1) triangles. On the other hand, there are up to n3 triples with a + b + c ̸= 0. Each
such triple contributes at most O(1) triangles, and only if the final three constraints are satisfied.
By pairwise independence, each constraint holds with probability at most O(|Φ|

m) = O(1
m), and

the three constraints are independent. It follows that these triples contribute O(n3

m3) triangles in
expectation.

Observe that the graph G has O(m2) vertices. Therefore, given the previous claim, the total
expected running time is bounded by O(m6/f(m2)+n3/m3). By choosing m = ⌈n1/3 · f(n2/3)1/9⌉,
this becomes O(n2/f(n2/3)1/3) (using that f is nondecreasing).

39

References

[1] Amir Abboud, Arturs Backurs, Karl Bringmann, and Marvin Künnemann. Fine-grained com-
plexity of analyzing compressed data: Quantifying improvements over decompress-and-solve.
In Chris Umans, editor, 58th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2017), pages 192–203. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.26.

[2] Amir Abboud, Karl Bringmann, and Nick Fischer. Stronger 3-sum lower bounds for ap-
proximate distance oracles via additive combinatorics. In Barna Saha and Rocco A. Servedio,
editors, 55th Annual ACM Symposium on Theory of Computing (STOC 2023), pages 391–404.
ACM, 2023. doi:10.1145/3564246.3585240.

[3] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation in P
via short cycle removal: Cycle detection, distance oracles, and beyond. In Stefano Leonardi
and Anupam Gupta, editors, 54th Annual ACM Symposium on Theory of Computing (STOC
2022), pages 1487–1500. ACM, 2022. doi:10.1145/3519935.3520066.

[4] Amir Abboud, Nick Fischer, and Yarin Shechter. Faster combinatorial k-clique algorithms.
Personal Communication, 2023.

[5] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parot-
sidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf. Faster algorithms for
all-pairs bounded min-cuts. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2019), volume 132 of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.7.

[6] Amir Abboud and Nathan Wallheimer. Worst-case to expander-case reductions. In Yael Tau-
man Kalai, editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023),
volume 251 of LIPIcs, pages 1:1–1:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. URL: https://doi.org/10.4230/LIPIcs.ITCS.2023.1, doi:10.4230/LIPICS.ITCS.
2023.1.

[7] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2014), pages 434–443. IEEE Computer Society, 2014. doi:10.1109/FOCS.

2014.53.

[8] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. SIAM J. Comput., 47(3):1098–1122,
2018. doi:10.1137/15M1050987.

[9] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–
1181, 1999. doi:10.1137/S0097539796303421.

[10] Rasmus Resen Amossen and Rasmus Pagh. Faster join-projects and sparse matrix multipli-
cations. In Ronald Fagin, editor, 12th International Conference on Database Theory (ICDT
2009), volume 361 of ACM International Conference Proceeding Series, pages 121–126. ACM,
2009. doi:10.1145/1514894.1514909.

40

https://doi.org/10.1109/FOCS.2017.26
https://doi.org/10.1145/3564246.3585240
https://doi.org/10.1145/3519935.3520066
https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.4230/LIPIcs.ITCS.2023.1
https://doi.org/10.4230/LIPICS.ITCS.2023.1
https://doi.org/10.4230/LIPICS.ITCS.2023.1
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/15M1050987
https://doi.org/10.1137/S0097539796303421
https://doi.org/10.1145/1514894.1514909

[11] Dana Angluin. The four Russians’ algorithm for Boolean matrix multiplication is optimal in
its class. SIGACT News, 8(1):29–33, 1976. doi:10.1145/1008591.1008593.

[12] Vladimir L. Arlazarov, Yefim A. Dinic, Aleksandr Kronrod, and IgorAleksandrovich Faradžev.
On economical construction of the transitive closure of an oriented graph. In Doklady Akademii
Nauk, volume 194, pages 487–488. Russian Academy of Sciences, 1970.

[13] Nikhil Bansal and Ryan Williams. Regularity lemmas and combinatorial algorithms. Theory
Comput., 8(1):69–94, 2012. URL: https://doi.org/10.4086/toc.2012.v008a004, doi:10.
4086/TOC.2012.V008A004.

[14] Ilya Baran, Erik D. Demaine, and Mihai Pătraşcu. Subquadratic algorithms for 3SUM. Algo-
rithmica, 50(4):584–596, 2008. doi:10.1007/s00453-007-9036-3.

[15] Felix A. Behrend. On sets of integers which contain no three terms in arithmetical progression.
Proc. Natl. Acad. Sci., 32(12):331–332, 1946.

[16] Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska
Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-
additive spanners. In Dániel Marx, editor, 32nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2021), pages 1836–1855. SIAM, 2021. doi:10.1137/1.9781611976465.

110.

[17] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing
triangles. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors,
41st International Colloquium on Automata, Languages, and Programming (ICALP 2014),
volume 8572 of Lecture Notes in Computer Science, pages 223–234. Springer, 2014. doi:

10.1007/978-3-662-43948-7_19.

[18] Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of schaefer’s
theorem in P: Dichotomy of ∃k∀-quantified first-order graph properties. In Amir Shpilka,
editor, 34th Computational Complexity Conference (CCC 2019), volume 137 of LIPIcs, pages
31:1–31:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
CCC.2019.31.

[19] Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). ACM Trans. Algorithms,
16(4):48:1–48:22, 2020. doi:10.1145/3381878.

[20] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular expres-
sion membership testing. In Chris Umans, editor, 58th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2017), pages 307–318. IEEE Computer Society, 2017.
doi:10.1109/FOCS.2017.36.

[21] Karl Bringmann and Philip Wellnitz. Clique-based lower bounds for parsing tree-adjoining
grammars. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, 28th
Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78 of LIPIcs,
pages 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https:
//doi.org/10.4230/LIPIcs.CPM.2017.12, doi:10.4230/LIPICS.CPM.2017.12.

41

https://doi.org/10.1145/1008591.1008593
https://doi.org/10.4086/toc.2012.v008a004
https://doi.org/10.4086/TOC.2012.V008A004
https://doi.org/10.4086/TOC.2012.V008A004
https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1137/1.9781611976465.110
https://doi.org/10.1137/1.9781611976465.110
https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.1007/978-3-662-43948-7_19
https://doi.org/10.4230/LIPIcs.CCC.2019.31
https://doi.org/10.4230/LIPIcs.CCC.2019.31
https://doi.org/10.1145/3381878
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.4230/LIPIcs.CPM.2017.12
https://doi.org/10.4230/LIPIcs.CPM.2017.12
https://doi.org/10.4230/LIPICS.CPM.2017.12

[22] Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path queries. In
Ke Yi and Zhewei Wei, editors, 24th International Conference on Database Theory (ICDT
2021), volume 186 of LIPIcs, pages 19:1–19:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ICDT.2021.19, doi:10.4230/
LIPICS.ICDT.2021.19.

[23] Timothy M. Chan. Speeding up the four russians algorithm by about one more logarithmic
factor. In Piotr Indyk, editor, 26th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pages 212–217. SIAM, 2015. doi:10.1137/1.9781611973730.16.

[24] Timothy M. Chan, Saladi Rahul, and Jie Xue. Range closest-pair search in higher dimensions.
Comput. Geom., 91:101669, 2020. URL: https://doi.org/10.1016/j.comgeo.2020.101669,
doi:10.1016/J.COMGEO.2020.101669.

[25] Yi-Jun Chang. Hardness of RNA folding problem with four symbols. Theor. Comput. Sci.,
757:11–26, 2019. URL: https://doi.org/10.1016/j.tcs.2018.07.010, doi:10.1016/J.

TCS.2018.07.010.

[26] Benny Chor and Oded Goldreich. On the power of two-point based sampling. J. Complex.,
5(1):96–106, 1989. doi:10.1016/0885-064X(89)90015-0.

[27] Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Up-
per and lower bounds for dynamic data structures on strings. In Rolf Niedermeier and
Brigitte Vallée, editors, 35th Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2018), volume 96 of LIPIcs, pages 22:1–22:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.STACS.2018.22,
doi:10.4230/LIPICS.STACS.2018.22.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

[29] Artur Czumaj, Miroslaw Kowaluk, and Andrzej Lingas. Faster algorithms for finding lowest
common ancestors in directed acyclic graphs. Theor. Comput. Sci., 380(1-2):37–46, 2007. URL:
https://doi.org/10.1016/j.tcs.2007.02.053, doi:10.1016/J.TCS.2007.02.053.

[30] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Finding even cycles faster
via capped k-walks. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th
Annual ACM Symposium on Theory of Computing (STOC 2017), pages 112–120. ACM, 2017.
doi:10.1145/3055399.3055459.

[31] Mina Dalirrooyfard, Thuy-Duong Vuong, and Virginia Vassilevska Williams. Graph pattern
detection: Hardness for all induced patterns and faster noninduced cycles. SIAM J. Comput.,
50(5):1627–1662, 2021. doi:10.1137/20M1335054.

[32] Debarati Das, Michal Koucký, and Michael E. Saks. Lower bounds for combinatorial algorithms
for boolean matrix multiplication. In Rolf Niedermeier and Brigitte Vallée, editors, 35th
Annual Symposium on Theoretical Aspects of Computer Science (STACS 2018), volume 96
of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL:
https://doi.org/10.4230/LIPIcs.STACS.2018.23, doi:10.4230/LIPICS.STACS.2018.23.

42

https://doi.org/10.4230/LIPIcs.ICDT.2021.19
https://doi.org/10.4230/LIPICS.ICDT.2021.19
https://doi.org/10.4230/LIPICS.ICDT.2021.19
https://doi.org/10.1137/1.9781611973730.16
https://doi.org/10.1016/j.comgeo.2020.101669
https://doi.org/10.1016/J.COMGEO.2020.101669
https://doi.org/10.1016/j.tcs.2018.07.010
https://doi.org/10.1016/J.TCS.2018.07.010
https://doi.org/10.1016/J.TCS.2018.07.010
https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/10.4230/LIPIcs.STACS.2018.22
https://doi.org/10.4230/LIPICS.STACS.2018.22
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1016/j.tcs.2007.02.053
https://doi.org/10.1016/J.TCS.2007.02.053
https://doi.org/10.1145/3055399.3055459
https://doi.org/10.1137/20M1335054
https://doi.org/10.4230/LIPIcs.STACS.2018.23
https://doi.org/10.4230/LIPICS.STACS.2018.23

[33] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing. In 64th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2023).
IEEE Computer Society, 2023. To appear. URL: https://doi.org/10.48550/arXiv.2210.
10173.

[34] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique
and dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004. URL: https://doi.org/10.
1016/j.tcs.2004.05.009, doi:10.1016/J.TCS.2004.05.009.

[35] Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive closure.
In 12th Annual Symposium on Switching and Automata Theory (SWAT 1971), pages 129–131.
IEEE Computer Society, 1971. doi:10.1109/SWAT.1971.4.

[36] Jacob Fox. A new proof of the graph removal lemma. Annals of Mathematics, 174(1):561–579,
2011. URL: http://www.jstor.org/stable/23030574.

[37] Jacob Fox, László Miklós Lovász, and Yufei Zhao. A fast new algorithm for weak graph
regularity. Comb. Probab. Comput., 28(5):777–790, 2019. doi:10.1017/S0963548319000075.

[38] Alan M. Frieze and Ravi Kannan. Quick approximation to matrices and applications. Comb.,
19(2):175–220, 1999. doi:10.1007/s004930050052.

[39] David Gillman. A Chernoff bound for random walks on expander graphs. SIAM J. Comput.,
27(4):1203–1220, 1998. doi:10.1137/S0097539794268765.

[40] Oded Goldreich. A sample of samplers: A computational perspective on sampling. In Studies
in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Com-
putation - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi Gold-
wasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan,
Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman, volume 6650 of Lecture Notes
in Computer Science, pages 302–332. Springer, 2011. doi:10.1007/978-3-642-22670-0_24.

[41] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–343, 1997. doi:

10.1002/(SICI)1098-2418(199712)11:4\\<315::AID-RSA3\\>3.0.CO;2-1.

[42] Timothy W. Gowers. Lower bounds of tower type for Szemerédi’s uniformity lemma. Geometric
& Functional Analysis (GAFA), 7(2):322–337, 1997. doi:10.1007/PL00001621.

[43] Timothy W. Gowers. A new proof of Szemerédi’s theorem. Geometric & Functional Analysis
(GAFA), 11:465–588, 08 2001. doi:10.1007/s00039-001-0332-9.

[44] Timothy W. Gowers. Quasirandomness, counting and regularity for 3-uniform hypergraphs.
Comb. Probab. Comput., 15(1-2):143–184, 2006. doi:10.1017/S0963548305007236.

[45] Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,
65(4):22:1–22:25, 2018. doi:10.1145/3185378.

[46] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from parvaresh-vardy codes. J. ACM, 56(4):20:1–20:34, 2009.
doi:10.1145/1538902.1538904.

43

https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.48550/arXiv.2210.10173
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/J.TCS.2004.05.009
https://doi.org/10.1109/SWAT.1971.4
http://www.jstor.org/stable/23030574
https://doi.org/10.1017/S0963548319000075
https://doi.org/10.1007/s004930050052
https://doi.org/10.1137/S0097539794268765
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4\<315::AID-RSA3\>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4\<315::AID-RSA3\>3.0.CO;2-1
https://doi.org/10.1007/PL00001621
https://doi.org/10.1007/s00039-001-0332-9
https://doi.org/10.1017/S0963548305007236
https://doi.org/10.1145/3185378
https://doi.org/10.1145/1538902.1538904

[47] Hamed Hatami. Graph norms and Sidorenko’s conjecture. Israel Journal of Mathematics,
175(1):125–150, 2010. doi:10.1007/s11856-010-0005-1.

[48] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th An-
nual ACM Symposium on Theory of Computing (STOC 2015), pages 21–30. ACM, 2015.
doi:10.1145/2746539.2746609.

[49] Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, and Benyu Wang. Tight conditional lower
bounds for vertex connectivity problems. In Barna Saha and Rocco A. Servedio, editors, Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando,
FL, USA, June 20-23, 2023, pages 1384–1395. ACM, 2023. doi:10.1145/3564246.3585223.

[50] Ce Jin and Yinzhan Xu. Tight dynamic problem lower bounds from generalized BMM and
omv. In Stefano Leonardi and Anupam Gupta, editors, 63rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2022), pages 1515–1528. ACM, 2022. doi:10.1145/
3519935.3520036.

[51] Ce Jin and Yinzhan Xu. Removing additive structure in 3sum-based reductions. In Barna
Saha and Rocco A. Servedio, editors, 55th Annual ACM Symposium on Theory of Computing
(STOC 2023), pages 405–418. ACM, 2023. doi:10.1145/3564246.3585157.

[52] Zander Kelley, Shachar Lovett, and Raghu Meka. Explicit separations between randomized
and deterministic number-on-forehead communication. arXiv, 2023. doi:10.48550/arXiv.

2308.12451.

[53] Zander Kelley and Raghu Meka. Strong bounds for 3-progressions. In 64th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2022). IEEE, 2023. To appear.

[54] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture.
In Robert Krauthgamer, editor, 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2016), pages 1272–1287. SIAM, 2016. doi:10.1137/1.9781611974331.ch89.

[55] Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector multiplication. In
Philip N. Klein, editor, 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2017), pages 2182–2189. SIAM, 2017. doi:10.1137/1.9781611974782.142.

[56] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication. J.
ACM, 49(1):1–15, 2002. doi:10.1145/505241.505242.

[57] Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. Deter-
ministic time-space trade-offs for k-sum. In Ioannis Chatzigiannakis, Michael Mitzenmacher,
Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), volume 55 of LIPIcs, pages 58:1–58:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.58.

[58] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Artur Czumaj, editor, 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2018), pages 1236–1252. SIAM, 2018. doi:
10.1137/1.9781611975031.80.

44

https://doi.org/10.1007/s11856-010-0005-1
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/3564246.3585223
https://doi.org/10.1145/3519935.3520036
https://doi.org/10.1145/3519935.3520036
https://doi.org/10.1145/3564246.3585157
https://doi.org/10.48550/arXiv.2308.12451
https://doi.org/10.48550/arXiv.2308.12451
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974782.142
https://doi.org/10.1145/505241.505242
https://doi.org/10.4230/LIPIcs.ICALP.2016.58
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1137/1.9781611975031.80

[59] Jiŕı Matousek. Computing dominances in eˆn. Inf. Process. Lett., 38(5):277–278, 1991. doi:
10.1016/0020-0190(91)90071-O.

[60] J. Ian Munro. Efficient determination of the transitive closure of a directed graph. Inf. Process.
Lett., 1(2):56–58, 1971. doi:10.1016/0020-0190(71)90006-8.

[61] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

[62] Mihai Pătraşcu. Towards polynomial lower bounds for dynamic problems. In Leonard J.
Schulman, editor, 42nd Annual ACM Symposium on Theory of Computing (STOC 2010),
pages 603–610. ACM, 2010. doi:10.1145/1806689.1806772.

[63] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph prod-
uct, and new constant-degree expanders and extractors. In 41st Annual Symposium on Foun-
dations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California,
USA, pages 3–13. IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892006.

[64] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica,
61(2):389–401, 2011. URL: https://doi.org/10.1007/s00453-010-9401-5, doi:10.1007/
S00453-010-9401-5.

[65] Giorgio Satta. Tree-adjoining grammar parsing and boolean matrix multiplication. Comput.
Linguistics, 20(2):173–191, 1994.

[66] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356,
1969. doi:10.1007/BF02165411.

[67] Endre Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta
Arith, 27(199–245), 1975.

[68] Leslie G. Valiant. General context-free recognition in less than cubic time. J. Comput. Syst.
Sci., 10(2):308–315, 1975. doi:10.1016/S0022-0000(75)80046-8.

[69] Dirk Van Gucht, Ryan Williams, David P. Woodruff, and Qin Zhang. The communication
complexity of distributed set-joins with applications to matrix multiplication. In Tova Milo
and Diego Calvanese, editors, 34th ACM Symposium on Principles of Database Systems (PODS
2015), pages 199–212. ACM, 2015. doi:10.1145/2745754.2745779.

[70] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All-pairs bottleneck paths for gen-
eral graphs in truly sub-cubic time. In David S. Johnson and Uriel Feige, editors, 39th An-
nual ACM Symposium on Theory of Computing (STOC 2007), pages 585–589. ACM, 2007.
doi:10.1145/1250790.1250876.

[71] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524.

[72] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. doi:10.1145/3186893.

45

https://doi.org/10.1016/0020-0190(91)90071-O
https://doi.org/10.1016/0020-0190(91)90071-O
https://doi.org/10.1016/0020-0190(71)90006-8
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1109/SFCS.2000.892006
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1007/S00453-010-9401-5
https://doi.org/10.1007/S00453-010-9401-5
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/S0022-0000(75)80046-8
https://doi.org/10.1145/2745754.2745779
https://doi.org/10.1145/1250790.1250876
https://doi.org/10.1137/15M1024524
https://doi.org/10.1145/3186893

[73] Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle listing and
APSP. In Sandy Irani, editor, 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2020), pages 786–797. IEEE, 2020. doi:10.1109/FOCS46700.2020.00078.

[74] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In 35th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2024). SIAM, 2024. To appear. doi:10.48550/ARXIV.2307.

07970.

[75] Huacheng Yu. An improved combinatorial algorithm for boolean matrix multiplication. Inf.
Comput., 261:240–247, 2018. doi:10.1016/j.ic.2018.02.006.

[76] Yufei Zhao. Graph Theory and Additive Combinatorics: Exploring Structure and Randomness.
Cambridge University Press, 2023.

[77] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algorithms,
11(4):345–367, 1997. doi:10.1002/(SICI)1098-2418(199712)11:4\%3C345::AID-RSA4\

%3E3.0.CO;2-Z.

46

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1109/FOCS46700.2020.00078
https://doi.org/10.48550/ARXIV.2307.07970
https://doi.org/10.48550/ARXIV.2307.07970
https://doi.org/10.1016/j.ic.2018.02.006
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4%3C345::AID-RSA4%3E3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4%3C345::AID-RSA4%3E3.0.CO;2-Z

