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Abstract. Can every n-bit boolean function with deterministic query complexity k ≪ n be restricted
to O(k) variables such that the query complexity remains Ω(k)? That is, can query complexity
be condensed via restriction? We study such hardness condensation questions in both query and
communication complexity, proving two main results.

• Negative: Query complexity cannot be condensed in general: There is a function f with query
complexity k such that any restriction of f to O(k) variables has query complexity Õ(k3/4).

• Positive: Randomised communication complexity can be condensed for the sink-of-xor function.
This yields a quantitatively improved counterexample to the log-approximate-rank conjecture,
achieving parameters conjectured by Chattopadhyay, Garg, and Sherif (2021).

Along the way we show the existence of Shearer extractors—a new type of seeded extractor whose
output bits satisfy prescribed dependencies across distinct seeds.
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1 Introduction

Hardness condensation is a lower-bound technique in boolean function complexity, where one transforms
an n-variate problem f of complexity k ≪ n into a related problem f ′ defined over Θ(k) variables such
that the complexity is preserved at Θ(k). This approach was first introduced by Buresh-Oppenheim and
Santhanam [BS06] in the context of circuit complexity. Later, it was put to concrete use in the context of
proof complexity by Razborov [Raz16] and then further developed in [Raz17b, Raz17a, BN20, FPR22]. In
these works, the function f ′ was obtained from f by expander-based function composition.

In this work, we prove two results on hardness condensation in query and communication complexity.
We investigate whether hardness can be condensed by using the simplest possible operation that reduces the
number of variables: restriction.

1.1 Query complexity: Negative result

We first study the usual deterministic query complexity D(f) of a boolean function f : {0, 1}n → {0, 1}.
Namely, D(f) equals the minimum number of queries an algorithm (decision tree) needs to make, on the
worst-case input x ∈ {0, 1}n, to the variables xi ∈ {0, 1} in order to compute f(x); see the textbook [Juk12,
§14] or the classic survey [BdW02] for background on decision trees. We say that f condenses to k variables
if there is a partial assignment ρ : [n] → {0, 1, ∗} that fixes all but |ρ−1(∗)| = k variables, such that the
resulting k-bit function f ′ := f |ρ has maximum query complexity D(f |ρ) = Θ(k). Moreover, we say that f
condenses losslessly if it condenses to Θ(D(f)) variables. We ask:

Can every f be condensed losslessly?

Example (Sink). To illustrate our question, we consider the sink function [BvEL74] as a recurring example.
The function Sink : {0, 1}m → {0, 1} where m :=

(
n
2

)
is defined as follows. Let G denote the complete graph

on nodes v1, . . . , vn. We interpret an input x ∈ {0, 1}m as an assignment of orientations to the edges of G,
which defines a directed graph Gx. We say a node vi is a sink in Gx iff vi has in-degree n− 1. We define

Sink(x) := 1 ⇐⇒ Gx contains a sink.

It is well known that D(Sink) = Θ(n). For example, we can show a query lower bound using the basic fact
that D(f) ≥ s(f) where s(f) is the sensitivity of f (maximum over all inputs x of the number of sensitive
coordinates i ∈ [n] satisfying f(x) ̸= f(xi) where xi is obtained from x by flipping the i-th bit). A highly
sensitive input x ∈ {0, 1}m is given by any orientation where v1 has in-degree n− 1 and the remaining nodes
lie on a cycle, say, (v2, v3, . . . , vn, v2). Then Sink(x) = 1, but flipping the orientation of any edge incident
to v1 flips the function value to 0. This shows s(Sink) ≥ n− 1.

We claim that Sink condenses losslessly to Θ(n) variables. In fact, any function f condenses to s(f)
variables: Consider a partial assignment ρ that is obtained from a maximally sensitive input by assigning ∗
to all of its sensitive coordinates. We have D(f |ρ) = s(f) as desired.

Our first main result (proved in Section 2) shows that deterministic—and even randomised—query com-
plexity cannot be condensed losslessly in general. (Below, the notation Õ(k) hides poly(log k) factors.)

Theorem 1. There exists an n-bit function f with deterministic (or randomised) query complexity k (in
fact, k ≥ nΩ(1)) such that for every partial assignment ρ with |ρ−1(∗)| ≤ O(k) we have D(f |ρ) ≤ Õ(k3/4).

Our incondensable function f must necessarily exhibit a polynomial gap between D(f) and s(f). This is
because, as discussed above, any function condenses to s(f) variables. Similarly, our f must also exhibit a gap
between D(f) and deg(f), another standard complexity measure (defined as the degree of the unique multi-
linear polynomial p ∈ R[x1, . . . , xn] that agrees with f on boolean inputs), because any function condenses
to deg(f) variables.1 Prior work has constructed several examples that have D(f) simultaneously larger than
both s(f) and deg(f) [GPW18, ABK16, ABB+17, BHT17, BBG+22]. We are able to prove Theorem 1 for
one of these off-the-shelf functions, namely, a function constructed using cheat sheets [ABK16].

1Consider the polynomial p computing f and pick any monomial m in p of maximal degree d := deg(f). Let ρ assign ∗
to variables in m and arbitrary boolean values to variables not in m. Then the restricted polynomial p|ρ still contains the
monomial m (it cannot get cancelled). Hence D(f |ρ) = deg(p|ρ) = d.
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1.2 Deterministic communication: Open problem

Next we study condensation in the standard two-party communication model [KN97, RY20]. Let Dcc(F )
denote the deterministic communication complexity of a two-party function F : [N ] × [N ] → {0, 1}. Here,
Alice receives x ∈ [N ], Bob receives y ∈ [N ], and their goal is to compute F (x, y). We often view F as an N -
by-N boolean matrix. We say that F condenses to k variables if F can be restricted to a submatrix R :=
X×Y ⊆ [N ]× [N ] of size |X| = |Y | = 2k such that the resulting function F |R has maximum communication
complexity Dcc(F |R) = Θ(k). We ask:

Open Problem 2. Does every F condense losslessly to Θ(Dcc(F )) variables?

Open Problem 2 was first posed by Hatami [Hat22]. The question is connected to the log-rank conjec-
ture [LS88, LS23], which posits that for some universal constant c ≥ 1, every F has Dcc(F ) ≤ logc rk(F ),
where rk(F ) is the rank (over reals) of the matrix F . We note that every F condenses to log rk(F ) variables
because of two basic facts: (1) Dcc(F ) ≥ log rk(F ), and (2) any matrix of rank r has an r-by-r submatrix
of rank r. In particular, the log-rank conjecture implies that every F condenses to Dcc(F )1/c variables. In
concurrent work, Hrubes [Hru24] confirmed this implication: Dcc indeed condenses to Ω(Dcc(f)1/2) variables.

We conjecture, in analogy to query complexity, that Dcc cannot be condensed losslessly in general, that
is, that the answer to Open Problem 2 is negative. A popular approach to constructing counterexamples to
questions like this is to start with an analogous counterexample f in query complexity (namely, Theorem 1)
and then applying a lifting theorem [RM99, GPW18, CKLM19] to convert f into a two-party function
F := f ◦ g obtained from f by composing it with a small two-party gadget g. However, by extending
previous expander-based techniques, we show as a bonus result (Section 5) that this approach fails: Under
mild technical assumptions, every function f ◦ g indeed condenses losslessly for Dcc (even if f did not for D).

Theorem 3 (Informal; see Section 5 for details). Let g be the inner-product gadget over b := Θ(log2 n) bits.
For every n-bit boolean function f with D(f) ≥ nΩ(1), the composed function F := f ◦ g condenses losslessly:
there exists an 2k-by-2k submatrix R such that k = Θ(Dcc(F )) = Θ(Dcc(F |R)) = Θ(D(f) · b).

1.3 Randomised communication: Positive result

What about bounded-error randomised (public-coin) communication complexity Rcc(F )? Can every F be
condensed losslessly to a 2k-by-2k submatrix R such that k = Θ(Rcc(F )) = Θ(Rcc(F |R))? It is known that
this is impossible in general.

Example (Equality). The equality function Eqn : [2
n]×[2n]→ {0, 1} is defined by Eqn(x, y) := 1 iff x = y.

In the private-coin model, it is well known that Rcc
priv(Eqn) = Θ(log n). Note that for k = Θ(log n), every

2k-by-2k submatrix R ⊆ [2n]× [2n] of Eqn is itself a submatrix of Eqk (perhaps with all-0 rows/columns).
Thus Rcc

priv(Eqn|R) ≤ Rcc
priv(Eqk) ≤ O(log log n). We conclude that Eqn cannot be condensed losslessly in

the private-coin model. In the public-coin model, a similar counterexample can be obtained by considering
the greater-than function Gtn for which Rcc(Gtn) = Θ(log n) [BW15, Vio15].

Example (Sparse random matrices). A more dramatic counterexample is provided by Hambardzumyan,
Hatami, and Hatami [HHH22]. They show that a sparse random 2n-by-2n matrix F , of an appropriately
chosen density, satisfies Rcc(F ) = Θ(n0.9) yet every 2n/2-by-2n/2 submatrix R has Rcc(F |R) = O(1). This
shows that Rcc cannot be condensed even with a modest (polynomial) loss in parameters.

Given the above counterexamples, can we at least show a lossless condensation result for a particular
function of interest? We do so for the sink-of-xor function, which was recently used by Chattopadhyay,
Mande, and Sherif [CMS20] to disprove the log-approximate-rank conjecture of Lee and Shraibman [LS07,
LS23]. This conjecture stated that, for some universal constant c ≥ 1, every F satisfies Rcc(F ) ≤ logc rk1/3(F )
where rkε(F ) is the ε-approximate rank defined by (here ∥M∥∞ := maxx,y |Mx,y| is the infinity norm)

rkε(F ) := min
{
rk(M) : M ∈ RN×N and ∥F −M∥∞ ≤ ε

}
.
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Example (Sink-of-xor). The function Sink ◦ ⊕ : {0, 1}m × {0, 1}m → {0, 1} maps (x, y) 7→ Sink(x ⊕ y)
where x ⊕ y is the coordinate-wise xor and m :=

(
n
2

)
. Chattopadhyay, Mande, and Sherif [CMS20] proved

that this function exhibits an exponential gap between Rcc and log-approximate-rank:

Rcc(Sink ◦ ⊕) = Θ(n),

rk1/3(Sink ◦ ⊕) ≤ O(n4).

A follow-up work by Chattopadhyay, Garg, and Sherif [CGS21] studied whether the above counterexample
could be improved. They proposed candidates of n-bit functions F with rk1/3(F ) ≤ O(n3) that they
conjectured should have Rcc(F ) = Θ(n), although proving this is still open. This would improve over Sink◦⊕
in two respects: (1) the relative gap between Rcc and rk1/3 would be improved from quartic to cubic, and
(2) the functions have maximum possible randomised complexity in terms of number of variables.

In our second main result (proved in Section 4), we achieve the improved separation sought by [CGS21],
in both respects above, albeit not for their function candidates, but for a lossless condensate of sink-of-xor.

Theorem 4. There exists a 2O(n)-by-2O(n) submatrix R such that F := (Sink ◦ ⊕)|R satisfies

Rcc(F ) = Θ(n),

rk1/3(F ) ≤ O(n3).

1.4 New tool: Shearer extractors

The central ingredient in our randomised lower bound for sink-of-xor (in Theorem 4) is a new type of seeded
extractor whose output bits satisfy prescribed dependencies across distinct seeds. We call these objects
Shearer extractors, named after Shearer’s lemma in information theory. To our knowledge, this is the
first time that seeded extractors are used to prove a communication lower bound. In comparison, two-source
extractors have been closely connected to two-party communication complexity since their conception [CG88].

A Shearer extractor with n output bits will be defined relative to a set family S ⊆
(
[m]
n

)
:= {S ⊆ [m] :

|S| = n}. Its seeds correspond to sets in S and the outputs for a pair of seeds S, S′ ∈ S share |S ∩ S′|
many bits. To define these extractors formally, we recall the following standard notions [Vad12, §6]: The
min-entropy of a random variable X is defined as H∞(X) := minx log(1/Pr[X = x]). We say X is a
k-source if H∞(X) ≥ k. We use ∆ (X,Y ) := maxE

∣∣Pr[X ∈ E] − Pr[Y ∈ E]
∣∣ to denote the statistical

distance between random variables X and Y . In this paper, we define all extractors in the “strong” sense
(output is close to uniform even when conditioned on the seed).

Definition 5 (Seeded extractor [Vad12, §6]). We say that a function Ext: {0, 1}t × [r] → {0, 1}n is an
(ε, k)-extractor if for every k-source X ∈ {0, 1}t and a uniform random Y ∼ [r], U ∼ {0, 1}n,

∆ ((Y ,Ext(X,Y )), (Y ,U)) ≤ ε.

Definition 6 (Shearer extractor). Let Ext: {0, 1}t → {0, 1}m be a function and S = {S1, . . . , Sr} ⊆
(
[m]
n

)
a set family. For i ∈ [r] we write Ext(x, i) := Ext(x)Si

for the projection of the output onto coordinates Si.
We say that Ext is an (ε, k)-Shearer extractor for S if Ext(·, ·) is an (ε, k)-extractor.

Every seeded extractor can be viewed as a Shearer extractor defined relative to a pairwise disjoint set
family. Namely, if Ext : {0, 1}t × [r]→ {0, 1}n is a seeded extractor, then Ext′ : {0, 1}t → {0, 1}r×n, defined
as the concatenation of Ext(x, i) over all i ∈ [r], is a Shearer extractor for the partition of the grid [r]× [n]
into r rows, each of size n.

Example (Limited intersections). Shearer extractors for set families with limited intersections can be
constructed from seeded extractors. For example, consider the set family S := R ∪ C consisting of the
rows R := {{i} × [n] : i ∈ [n]} and columns C := {[n] × {j} : j ∈ [n]} of an n-by-n grid. We claim
that a randomly chosen function Ext: {0, 1}2n → {0, 1}n×n is a (0.1, 1.9n)-Shearer extractor for S. Indeed,
standard probabilistic arguments [Vad12, Thm 6.14] show that a random function is a (0.1, 1.9n)-Shearer
extractor for the pairwise disjoint subfamily R with high probability. Similarly, a random function is a
Shearer extractor for C. By a union bound, we conclude that a random function is simultaneously a Shearer
extractor for both R and C and hence for S. This argument can be used more generally to show the existence
of Shearer extractors for any S that can be partitioned into subfamilies consisting of pairwise disjoint sets.
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Given the above example, the most interesting setting for Shearer extractors is when the sets in S are
pairwise intersecting, as in the following example.

Example (Sink family). Let us define a set family SSink underlying the sink function. Let G = (V,E)
denote the complete graph with |V | = n nodes and |E| =

(
n
2

)
edges. Define SSink := {S1, . . . , Sn} where Si ⊆

E is the set of edges incident to the i-th node. Note that |Si ∩ Sj | = 1 for i ̸= j.

Our main technical result (proved in Section 3) shows the existence of a Shearer extractor for SSink.

Theorem 7. For every ε > 0 and sufficiently large n, there exists an (ε, (2− cε6)n)-Shearer extractor
Ext: {0, 1}2n → {0, 1}E for SSink where c > 0 is an absolute constant. Moreover, a randomly chosen
function satisfies this with high probability.

We use this existence result to prove the lower bound for sink-of-xor (in Theorem 4) in Section 4. In
particular, starting with a Shearer extractor Ext for SSink, we prove Theorem 4 for the submatrix R := X×Y
where X = Y = Ext({0, 1}2n) is the image of the extractor.

The proof of Theorem 7 is a surprisingly delicate probabilistic argument, analysing a martingale process
featuring—unsurprisingly—an application of Shearer’s lemma. While our proof is presented specifically
for SSink, the argument generalises to any set family that is “well-spread” enough in the sense of Shearer’s
lemma (formally stated as Lemma 20 in Section 3).

Example (Poorly spread family). We note that for nontrivial Shearer extractors to exist the family
needs to be somewhat well spread. Consider R′ :=

{
{(1, 1)} ∪ {i} × [n] : i ∈ [n]

}
that is obtained from the

row family R (which was discussed above) by including the point (1, 1) in every set. Then R′ has pairwise
intersections of size 1 but there is no nontrivial Shearer extractor Ext : {0, 1}2n → {0, 1}n×n relative to R′,
as there will always be a (2n − 1)-source X that fixes the (1, 1)-th output bit, and hence every Ext(X)S
for S ∈ R′ is far from uniform.

1.5 Open problems

We leave the following natural questions open for further work.

(1) Is the gap in Theorem 1 optimal for deterministic query complexity? That is, is there a function
for which hardness is even less condensible than that given in Theorem 1? The maximum achievable
bound for any function is O(D(f)1/3), because we always have deg(f) ≥ Ω(D(f)1/3) [Mid04] and every
function condenses to deg(f) variables. (We show in Section 2.3 that O(D(f)3/4) is tight for our
function.)

(2) Can unambiguous certificate complexity be condensed losslessly? (Hrubes [Hru24] proved the commu-
nication analogue: the log of partition number condenses losslessly.) How about block sensitivity?

(3) In the context of Open Problem 2, prove our conjecture that Dcc does not condense losslessly.

(4) Can we prove Theorem 4 for a submatrix R = X × Y where X and Y are subspaces of Zn
2 ? This

would yield an even more structured counterexample to the log-approximate-rank conjecture, which
would be closer to the function candidates proposed in [CGS21]. To achieve this, it would suffice to
prove Theorem 7 for a linear function—however, it is already a long-standing open problem to prove
the existence of linear seeded extractors with close to optimal seed length [CZ18].

(5) The quantum analogue of the log-approximate-rank conjecture was disproved by [ABT19, SdW19],
also using sink-of-xor as a counterexample. Can condensation be used to improve these separations to
get closer to the upper bound of Gál and Syed [GS21]?

(6) Are there explicit constructions of Shearer extractors for interesting pairwise intersecting set families?
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2 Proof of Theorem 1: An incondensable function

In this section, we prove the following theorem.

Theorem 1. There exists an n-bit function f with deterministic (or randomised) query complexity k (in
fact, k ≥ nΩ(1)) such that for every partial assignment ρ with |ρ−1(∗)| ≤ O(k) we have D(f |ρ) ≤ Õ(k3/4).

We prove the theorem for deterministic query complexity (the randomised case is analogous). We start
by describing the construction of our incondensable function f in Section 2.1, and then we prove Theorem 1
in Section 2.2. Finally, we show that the exponent 3/4 is tight for our function in Section 2.3.

2.1 Construction

Our incondensable function is the cheat sheet version of the usual tribes function. To define this precisely,
let us first introduce the cheat sheet framework from [ABK16, AKK16]. The definition below uses the
standard notion of a certificate: for b ∈ {0, 1}, a b-certificate for a function f : {0, 1}n → {0, 1} is a partial
assignment ρ : [n] → {0, 1, ∗} such that f |ρ is a constant function equal to b. A certificate for an input x ∈
{0, 1}n is an f(x)-certificate ρ that is consistent with x, that is, x and ρ agree on the non-∗ coordinates. The
certificate complexity of x is the least size (number of non-∗ coordinates, |ρ−1({0, 1})|) of a certificate for x.
Finally, the certificate complexity of f is the maximum certificate complexity over all inputs x.

Definition 8 (Cheat sheets). Let g : {0, 1}N → {0, 1} be an N -bit function. Suppose its certificate
complexity is k and let c := 10 logN and m := k logN . We define the cheat sheet version of g as a function

gcs : ({0, 1}N )c × ({0, 1}cm)2
c

→ {0, 1}.

The input to gcs is a string (x,C) = (x1, . . . , xc,C1, . . . ,C2c) where xi ∈ {0, 1}N are inputs to g, and Cj ∈
{0, 1}cm are called cells. Let ℓi := g(xi) and ℓ ∈ [2c] be the positive integer corresponding to the binary
string ℓ1, . . . , ℓc. We define gcs(x,C) := 1 iff the cell Cℓ contains, for each i ∈ [c], a binary encoding of a
certificate ρ for xi. Specifically, ρ is encoded as a binary string of length m = k logN that encodes the
set ρ−1({0, 1}) as a list of k numbers, each using logN bits.

Lemma 9 ([ABK16, Lemma 6]). Suppose that g : {0, 1}N → {0, 1} has deterministic (resp. randomised)
query complexity k, then gcs has deterministic (randomised) query complexity Ω(k).

We now instantiate the cheat sheet framework for the function Tribesn : {0, 1}n×n → {0, 1} given by

Tribesn(x) :=

n∧
i=1

n∨
j=1

x[i, j],

where we treat the input x as an n-by-n boolean matrix and write x[i, j] for the j-th bit in the i-th row.
Thus Tribesn(x) = 1 iff every row contains a 1-entry. It is well known and easy to see that this function
has deterministic query complexity D(Tribesn) = n2 and certificate complexity n.

Consider the cheat sheet function f := (Tribesn)cs mapping ({0, 1}n2

)c × ({0, 1}c·m)2
c → {0, 1} where

c := 10 log(n2) and m := n log(n2). We have D(f) = Θ̃(n2) where the lower bound is from Lemma 9 and
the upper bound is straightforward. We adopt the following conventions about how the input (x,C) encodes
certificates (see Figure 1).

• The cn2 bits of x describe c instances x1, . . . , xc of Tribesn, each an n-by-n boolean matrix.

• We have 2c different cells Cℓ. The ℓ-th cell Cℓ contains encodings of c certificates: the j-th of them
claims to be a ℓj-certificate for xj . We interpret each certificate as an element of [n]n, that is, a list
of n pointers. We denote the k-th pointer of the j-th certificate in Cℓ by Cℓ,j,k ∈ [n].

• We have f(x,C) = 1 iff there exists cell ℓ ∈ [2c] such that for each j ∈ [c]:

– If ℓj = 1, then Cℓ contains a 1-certificate for xj , that is, xj [t,Cℓ,j,t] = 1 for all t ∈ [n]. In words,
we require the t-th pointer of the certificate to point to some 1-entry in the t-th row of xj .

– If ℓj = 0, then Cℓ contains a 0-certificate for xj , that is, xj [Cℓ,j,1, t] = 0 for all t ∈ [n]. In words,
the first pointer in the certificate indicates an all-0 row (we ignore the remaining n− 1 pointers).
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Figure 1: Function f := (Tribesn)cs. The 1-entries of the n-by-n matrices xj are drawn as white, and the
0-entries are drawn as black. The arrows illustrate the pointers encoded inside a single cell Cℓ that certifies
Tribesn(x1) = 1, Tribesn(x2) = 0, and Tribesn(x3) = 1.

2.2 Proof of Theorem 1

We now prove Theorem 1 for the function f := (Tribesn)cs that has D(f) = Θ̃(n2). Our goal is to show for
every partial assignment ρ : [n2c+m2c]→ {0, 1, ∗} with |ρ−1(∗)| ≤ Õ(n2) that D(f |ρ) ≤ Õ(n3/2).

First, we make some simplifying assumptions about S := ρ−1(∗). We may assume that S contains all
the n2c = Õ(n2) bits of x; if not, we can modify S to include these bits since this can only increase D(f |ρ).
Similarly, for each pointer Cℓ,j,k ∈ [n] encoded using log n bits, we may assume a dichotomy: either S
contains all the log n bits of that pointer or none at all. To ensure this dichotomy, for every pointer that S
contains some bits, we may include all the log n bits of the pointer in S. This modification increases the size
of S by at most a log n factor, so we still have |S| = Õ(n2).

To show D(f |ρ) ≤ Õ(n3/2), we prove the following key lemma.

Lemma 10. For every j ∈ [c] there is an Õ(n3/2)-query algorithm Aj outputting True/False such that

• If Aj outputs True, then Tribesn(xj) = 1.
• If Aj outputs False, then no cell Cℓ with ℓj = 1 contains a 1-certificate for xj.

It is easy to show D(f |ρ) ≤ Õ(n3/2) using Lemma 10. Indeed, we run Aj for each j ∈ [c] and define ℓj := 1
if Aj outputs True, and otherwise we define ℓj := 0. Then the only cell which might contain certificates
consistent with its index is ℓ := ℓ1, . . . , ℓc. We then check all the certificates in the ℓ-th cell and output 1 iff
they are all correct. We now proceed to prove Lemma 10.

2.2.1 Simple special case

Before we tackle Lemma 10 in full generality, let us focus on a particular simple special case that illustrates
the key ideas in our algorithm. For convenience, let us write Cℓ,j,k ∈ [n] ∪ {∗} for the current state of a
pointer, where Cℓ,j,k = ∗ if the pointer is not fixed by ρ and not yet queried by our algorithm. The following
is our simplifying assumption.

(†) Suppose that, at start, the first n cells contain only free pointers, and the remaining cells contain only
fixed pointers. That is, Cℓ,j,k = ∗ for all ℓ ≤ n, and Cℓ,j,k ̸= ∗ for all ℓ > n.

Our algorithm Aj consists of two sub-procedures that will separately handle free cells and fixed cells.
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Algorithm 1 Useful for cells with many free pointers. In case (†), the algorithm is invoked with C = [n].

Input: A set of cells C ⊆ [2c], index j ∈ [c], and τ ∈ ([n] ∪ {∗})n (initialised to τ = ∗n by default)
Output: Either τ ∈ [n]n, which is a 1-certificate for xj , or ⊥, if no cell in C contains such a certificate.

while there exist a cell ℓ ∈ C and a row k ∈ [n] with τk = ∗ do
Query t← Cℓ,j,k ∈ [n] and xj [k, t] ∈ {0, 1}
if xj [k, t] = 1 then τk ← t ▷ Successful
else C ← C ∖ {ℓ} ▷ Unsuccessful: Eliminate the cell Cℓ

return τ if it has no ∗’s and ⊥ otherwise

Free cells (Algorithm 1). Say j = 1 for simplicity. The goal of Algorithm 1 is to check if one of the
cells C1, . . .Cn—which contain only free pointers under (†)—encodes a 1-certificate for x1. For Lemma 10 it
would be enough to check only the relevant cells Cℓ with ℓ1 = 1, but for simplicity we design the algorithm
to check every cell, even those Cℓ with ℓ1 = 0. Thus, we consider each of the cells C1, . . .Cn in sequence, and
for each Cℓ find either a 1-certificate for x1 or conclude that Cℓ does not contain a 1-certificate for x1. Recall
that each (relevant) cell purports to contain n pointers picking out a 1-entry in each row of x1. Whenever
we query a pointer Cℓ,1,k ∈ [n] (by querying the log n underlying bits), we include a verification step that
queries x1[k,Cℓ,1,k] ∈ {0, 1} to check that the pointer indeed pointed to a 1-entry in the k-th row. We call
such a verification query successful if x1[k,Cℓ,1,k] = 1 and unsuccessful otherwise.

A naive algorithm would query n pointers in each C1, . . . ,Cn making Θ̃(n2) queries in total, but this
is way more than our claimed budget of Õ(n3/2). The idea in Algorithm 1 is that every time we make a
successful query to row k in x1, we do not need to revisit row k in subsequent iterations as we already know
it contains a 1-entry. In each iteration, we thus accumulate information (stored in τ ∈ ([n] ∪ {∗})n) about
rows in x1 that contain a 1-entry, or we possibly encounter a cell Cℓ with an unsuccessful pointer for row k,
in which case we may eliminate the cell Cℓ (it cannot contain a 1-certificate) and move to the next cell Cℓ+1.

In the end, we may eliminate all C1, . . .Cn in which case we can safely output ⊥, or we have identified a
1-entry in each row, in which case we can output the certificate τ ∈ [n]n. (Note that, in the latter case, we
may not have identified a specific cell Cℓ containing τ , but this was not required by Lemma 10.)

Finally, we claim the query cost of Algorithm 1 is Õ(n + |C|), which equals Õ(n) when run on the free
cells C := [n]. This follows because every time we query a pointer, we either decrease the number of ∗’s
in τ (successful case), which can happen n times, or we have eliminated a new cell in C (unsuccessful case),
which can happen |C| times.

Fixed cells (Algorithm 2). The goal of Algorithm 2 is to either find a 1-entry in each row of xj ,
or eliminate as many cells in C as possible. In our special case (†), when we run the algorithm on the

Algorithm 2 Useful for cells with many fixed pointers. In case (†), the algorithm is invoked with C =
[2c]∖ [n]; note that the property (1) is always true: every cell in C contains a fixed pointer into row k.

Input: A set of cells C ⊆ [2c], index j ∈ [c].
Output: Either τ ∈ [n]n, which is a 1-certificate for xj , or ⊥
τ ← ∗n
while C ̸= ∅ and there exists a row k ∈ [n] with τk = ∗ that satisfies the following property:

At least half of the cells in C contain a fixed pointer into the k-th row of xj (1)
do

t← the most popular value among Cℓ,j,k for ℓ ∈ C with Cℓ,j,k ̸= ∗
T ← {ℓ ∈ C | Cℓ,j,k = t}
Query xj [k, t] ∈ {0, 1}
if xj [k, t] = 1 then τk ← t ▷ Successful
else C ← C ∖ T ▷ Unsuccessful: Eliminate all the cells in T

return τ if it has no ∗’s and ⊥ otherwise
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cells C := [2c]∖ [n], we claim that

1. Property (1) of the while-loop is always satisfied.
2. If the algorithm outputs ⊥, then it must have eliminated all cells, that is, no cell in C contains a

1-certificate for xj .

The first claim is true simply because every (relevant) cell in C = [2c]∖ [n] contains only fixed pointers, so
all of them (not just half) will contain a fixed pointer into every row of xj . The second claim is true since
every iteration of the while-loop either decreases the number of ∗’s in τ (successful case) or shrinks the set C
(unsuccessful case). Hence, if the output is ⊥, we must have terminated with C = ∅.

How fast does the set C shrink? Note that for each row k ∈ [n], there are n possible columns v ∈ [n]
for the pointer into row k to point. Hence there exists a popular column v∗ ∈ [n] such that at least 1/n-
fraction of cells in C point to the matrix entry (k, v∗). The algorithm queries such a popular entry. In
case of an unsuccessful query, we may now eliminate 1/n fraction of cells in C. After at most n+ n log |C|
many iterations we must either have found a 1-entry in each row, or we have eliminated all cells in C. We
have n log |C| = Õ(n) which shows that Algorithm 2 terminates in Õ(n) queries.

Algorithm Aj. Our final algorithm for the simplified case (†) is to first run Algorithm 1 on the free
cells C = [n] (and τ = ∗n) and then run Algorithm 2 on the remaining cells C = [2c]∖ [n]. We output 1 iff
one of them outputs a certificate. The query cost of the algorithm is only Õ(n).

2.2.2 General case

We now remove the simplifying assumption (†). In the general case, every cell may have a mixture of free
and fixed pointers. The final algorithm is given as Algorithm 3. It first runs Algorithm 2 on all cells C = [2c].
This run terminates after Õ(n) queries for a similar reason as in the simple case (†): each unsuccessful query
shrinks the set C by a factor of 1/(2n) rather than 1/n as in case (†) (the extra factor 1/2 stems from
property (1)). The following claim captures the key property of Algorithm 2 at termination.

Claim 11. Let C and τ be as on line (§) of Algorithm 3. Denote by L := {k ∈ [n] | τk = ∗} the set of rows
for which we have not yet found 1-entries. Then |C| ≤ Õ(n2/|L|).

Proof. Assume C ̸= ∅ ≠ L as otherwise the claim is vacuously true. Thus the algorithm terminated because
property (1) failed. This means that, for each k ∈ L, at least half of C contain a free pointer to row k.
Hence there are at least |L||C|/2 free pointers remaining. But there can be at most |S| ≤ Õ(n2) free pointers
altogether and thus |L||C|/2 ≤ Õ(n2), as desired.

We finish the analysis depending on the size of L. If |L| ≤
√
n, then Algorithm 3 queries all the remaining

rows L, making n|L| ≤ O(n3/2) queries, to determine Tribesn(xj). Suppose then |L| >
√
n. In this case,

Claim 11 implies that |C| ≤ Õ(n3/2). Hence when we finish by running Algorithm 1, it will terminate after
Õ(n + |C|) = Õ(n3/2) many queries. In all cases, the total query cost is Õ(n3/2). This proves Lemma 10
and hence concludes the proof of Theorem 1.

Algorithm 3 The final algorithm for Lemma 10.

Input: j ∈ [c].
Output: Either τ ∈ [n]n, which is a 1-certificate for xj , or ⊥, if no cell contains such a certificate.

C ← [2c]
τ ← Algorithm 2 on (C, j)
if τ ̸= ⊥ then return τ

Update the values of C and τ with the values at the termination of Algorithm 2 (§)
L← {k ∈ [n] | τk = ∗}
if |L| ≤

√
n then

Query xj [k, t] for all k ∈ L and t ∈ [n], set τ accordingly
return τ if it has no ∗’s and ⊥ otherwise

Run Algorithm 1 on (C, j, τ) and output its result
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Remark 12. We note that the above proof yields a slightly stronger statement, showing that our function is
robust: If we restrict all but n2+2ε variables, then the deterministic query complexity is at most Õ(n3/2+ε).

2.3 Tightness of our analysis

Finally—as a bonus—we show here that Theorem 1 is optimal (up to log factors) for our function f =
(Tribesn)cs. Namely, we show how to restrict f to a set S of Õ(n2) variables and assign values ρ : S̄ → {0, 1}
to all other variables, so that the restricted function f |ρ has query complexity Ω(n3/2).

Theorem 13. There is a set of variables S of f with |S| = Θ̃(n2) and an assignment ρ : S̄ → {0, 1} to all
other variables, and so that the restricted function f |ρ has query complexity Ω(n3/2).

Our proof strategy is to find a ρ such that f |ρ becomes “isomorphic” to a cheat sheet version of a function g
of query complexity D(g) = n3/2. A technical detail is that the standard cheat sheet construction gcs
(Definition 8) of a function of query complexity D(g) = n3/2 can have n10×3/2 variables, while we are only
allowed to have Õ(n2). Our proof starts by optimising this construction.

Proof. Let us define a succinct cheat sheet version of a function g : {0, 1}N → {0, 1} of certificate complex-
ity k. Let c := logN and m := k logN . Then define g∗cs : ({0, 1}N )c × ({0, 1}cm)2

c → {0, 1} according to
the Definition 8—the only change here is that we take c = logN instead of c = 10 logN as in the original
construction. Then we still claim that D(g∗cs) = Ω(D(g)): the original proof [ABK16, Lemma 21] works even
under this optimised choice of c.

Consider a “skewed” tribes g : {0, 1}
√
n×n → {0, 1} given by g(y) :=

∧
i∈[

√
n]

∨
j∈[n]y[i, j]. We have

that D(g) = n3/2 similarly as for the original tribes function. We then use the succinct cheat sheet from
the above paragraph to construct g∗cs. In particular, we encode 1-certificates of g as a list of k :=

√
n

pointers (picking a 1-entry in each row), and 0-certificates of g as a single pointer (picking out an all-0 row).
Thus g∗cs features n

3/2 cells, each encoding Õ(
√
n) pointers. In summary, g∗cs has Õ(n2) variables and query

complexity D(g∗cs) = Ω(n3/2).
Our goal will now be to construct a partial assignment ρ for f such that f |ρ becomes isomorphic to g∗cs,

that is, there is a 1-to-1 correspondence between the variables of f |ρ and g∗cs such that the two functions are
equivalent. This would show D(f |ρ) = D(g∗cs) = Ω(n3/2), as desired.

To define ρ, recall that the input of f consists of c instances x1, . . . , xc of n × n tribes together with
cells C1, . . . ,C2c . The assignment ρ will leave

√
n × n free variables in each of the first c′ = (3/2) log n

instances and fix all variables in the remaining c− c′ instances. We will also include Õ(
√
n) free pointers in

each of the 2c
′
= n3/2 many cells indexed by F := {0, 1}c′ × {1}c−c′ . The remaining cells will be fully fixed.

Specifically, we make ρ fix all bits for instances xj , j ∈ [c]∖ [c′], to 1 so that Tribes(xj) = 1. All bits in
cells not in F we can fix arbitrarily (these cells have become irrelevant). Moreover, in the first c′ instances
xj we fix all entries in the bottom-most rows [n] ∖ [

√
n] to 1. Correspondingly, we arbitrarily fix for every

cell in F the pointers corresponding to the last c− c′ instances and to the bottom-most rows of the first c′

instances (note that all these fixed pointers will automatically point to 1-entries). It is now straightforward
to check that fρ is isomorphic to g∗cs.

Remark 14. We end this with the note that the Theorem 13 is slightly stronger. We could use n3/2+ε free
cells, each with n1/2+ε pointers (hence a total of Õ(n2+2ε) variables), and show by the same argument as
above that the query complexity is Ω(n3/2+ε) making Remark 12 tight.

3 Proof of Theorem 7: Existence of Shearer extractors

In this section, we prove Theorem 7, restated here for convenience.

Theorem 7. For every ε > 0 and sufficiently large n, there exists an (ε, (2− cε6)n)-Shearer extractor
Ext: {0, 1}2n → {0, 1}E for SSink where c > 0 is an absolute constant. Moreover, a randomly chosen
function satisfies this with high probability.
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3.1 Overview of proof: Key concentration lemma

Our proof follows the textbook existence proof for extractors [Vad12, Thm 6.14], but featuring a novel
concentration lemma for the sink family (Lemma 16), which we spend the rest of the section proving.

Let Ext: {0, 1}2n → {0, 1}(
n
2) be chosen uniformly at random. We will show that whp over this choice, for

uniform Y ∼ [n], U ∼ {0, 1}n−1, and every k-source X where k := (2− cε6)n (here c > 0 is fixed later),

∆ ((Y ,Ext(X,Y )), (Y ,U)) ≤ ε.

In proving this, we may assume that X is flat, that is, uniformly distributed over its support (indeed, every
k-source is a mixture of flat k-sources [Vad12, Lemma 6.10], and the statistical distance is maximised at a
flat source). Using the definition ∆ (X,Y ) := maxD

∣∣Pr[X ∈ D]− Pr[Y ∈ D]
∣∣, it is sufficient to show that

for every event D ⊆ [n]× {0, 1}n−1,

|Pr[(Y ,Ext(X,Y )) ∈ D]− Pr[(Y ,U) ∈ D]| ≤ ε.

We call an event D ⊆ [n]×{0, 1}n−1 a balanced distinguisher if PrU∼{0,1}n−1 [(i,U) ∈ D] = 1/2 for all i ∈ [n].
Let Di := {x ∈ {0, 1}n−1 | (i, x) ∈ D} for i ∈ [n]. The following helper lemma (proved in Section 3.3) allows
us to only consider such balanced distinguishers wlog.

Lemma 15. Let Ext: {0, 1}t → {0, 1}(
n
2) be an arbitrary function. Suppose that for a source X ∈ {0, 1}t,

and uniform Y ∼ [n], U ∼ {0, 1}n−1 we have ∆((Y ,Ext(X,Y )), (Y ,U)) ≥ ε. Then there exists a balanced
distinguisher D ⊆ [n]× {0, 1}n−1 such that |Pr[(Y ,Ext(X,Y )) ∈ D]− 1/2| ≥ ε/2.

There are
(
22n

2k

)
flat sources of min-entropy k, and at most 2n·2

n−1

balanced distinguishers. Our proof
proceeds by a union bound over all such source–distinguisher pairs: We only need to show that a random
Ext fools a given pair with sufficiently high probability.

More formally, let X and D be some fixed pair of a source and a balanced distinguisher. Let X be
the support of X. Then by Lemma 15 it suffices to show that for Y ∼ [n] we have |Pr[(Y ,Ext(X,Y )) ∈
D]− 1/2| ≤ ε/2, with high probability over the choice of Ext. That is equivalent to bounding from above

Pr
Ext

[
1

n · |X |
∑
x∈X

∑
i∈[n]

JExt(x, i) ∈ DiK ̸∈ (−ε, ε)

]
.

Here we use JP K ∈ {±1} for a proposition P to denote +1 if P is true and −1 if P is false. In Section 3.2
we prove the following concentration lemma, which is the crux of our proof. This is the only point in the
present proof that relies on the structure of SSink.

Lemma 16. Assume (i)–(ii). Let T 1, . . . ,TN ∼ {0, 1}(
n
2) be uniform and independent. Then for ε > 0,

Pr

[∣∣∣∣ ∑
j∈[N ]

∑
i∈[n]

JT j
Si
∈ DiK

∣∣∣∣ ≥ εNn

]
≤ exp(−Ω(ε6nN)).

Using Lemma 16 we can conclude the proof of Theorem 7. Indeed, applying the above with N := |X | = 2k

and T x := Ext(x), a union bound says that we fail to fool some source–distinguisher pair with probability
at most (

22n

2k

)
2n·2

n−1

· exp(−Ω(ε62kn)) ≤
(
22ne

2k

)2k

2n·2
n−1

exp(−Ω(ε62kn))

≤ exp(O(2k · (2n− k) + n · 2n−1)− Ω(ε62kn)).

Since with ε ≥ 1 the theorem is trivial, we may assume that ε < 1 and c < 1/2. Then k = n(2− cε6) > 1.5n,
so 2k = ω(2n−1 · n). Then letting c1 be the constant in the big-O and c2 be the constant in the big-Ω, the
probability of failure is

exp(2k · (c1(2n− k)− c2(ε
6n))) = exp(2k · nε6(c1 · c− c2)).

By choosing c < c2/c1 we establish that the probability is o(1). This proves Theorem 7.
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3.2 Proof of Lemma 16

We start by informally explaining two reductions that help us identify the technical core of the proof. We
use the following notation throughout.

(i) SSink = {S1, . . . , Sn}.
(ii) D :=

⋃
i∈[n]{i} ×Di where Di ⊆ {0, 1}n−1, |Di| = 2n−1/2, is a balanced distinguisher.

First reduction. Lemma 16 is a concentration inequality for the sum of random variables JT j
Si
∈ DiK.

Notice that the variables with distinct values of j ∈ [N ] are independent, so the main challenge is to show,
for a fixed j, that

∑
i∈[n]JT

j
Si
∈ DiK is concentrated around 0. Lemma 16 then follows via a Chernoff bound.

Hence our first reduction is to the following.

Lemma 17. Assume (i)–(ii). For every δ > 0,

Pr
X∼{0,1}(

n
2)

[∣∣∣∣ ∑
i∈[n]

JXSi
∈ DiK

∣∣∣∣ ≥ δn

]
≤ exp(−Ω(δ5n)).

Second reduction. Establishing the concentration in Lemma 17 is tricky as the sets Si ∈ SSink intersect
one another, and consequently the events XSi

∈ Di are not even pairwise independent. For a concrete
example, suppose S1 ∩ S2 = {a} where a ∈ [

(
n
2

)
], and consider balanced events D1, D2 defined by xS1

∈
D1 ⇔ xS2 ∈ D2 ⇔ xa = 1. Then JXS1 ∈ D1K = JXS2 ∈ D2K with probability 1.

It is intuitively plausible, however, that for a well-spread set family such effects are local. To formalise this
intuition, we pickK ∼

(
[n]
αn

)
for a small constant α and show that

∑
i∈KJXSi

∈ DiK is concentrated around 0.
Considering only a handful of the sets Si helps to treat the associated variables as more independent. Having
shown such concentration for small random sets, it is easy to prove Lemma 17: we pick a uniformly random
partition of [n] into 1/α sets of size αn and apply the concentration to each of them. Thus, the key
concentration result we need here is the following.

Lemma 18. Assume (i)–(ii). For every ε, δ > 0 such that ε < δ3/100, and an integer ℓ ≤ εn,

Pr
K∼([n]

ℓ );X∼{0,1}(
n
2)

[∣∣∣∣∑
i∈K

JXSi ∈ DiK
∣∣∣∣ ≥ δℓ

]
≤ exp(−Ω(δ2ℓ)).

The plan for the rest of the section is as follows. In Section 3.2.1 we introduce the tools we need to prove
Lemma 18, namely Shannon entropy and martingales; in Section 3.2.2 we prove Lemma 18; in Section 3.2.3
we prove the second reduction by deriving Lemma 17 from Lemma 18; finally, in Section 3.2.4 we prove the
first reduction thereby finishing the proof of Lemma 16.

3.2.1 Tools

The usual Shannon entropy of a random variable X with support X is defined by

H(X) :=
∑
x∈X

Pr[X = x] log
1

Pr[X = x]
.

We will use the following result showing that if a random variable has nearly maximum possible entropy, then
it is close to uniform. This result appears in [Gav16] and was used (in a slightly different form) in [CMS20].
We include their proof for completeness.

Lemma 19. Suppose a variable X ∈ X has H(X) ≥ log |X | − ε. Then ∆(X,U) ≤
√
ε where U ∼ X .

Proof. The proof is a simple corollary of Pinsker’s inequality. For two random variables X and Y with the
support X , the Kullback–Leibner divergence is defined as

DKL(X∥Y ) :=
∑
x∈X

Pr[X = x] log
Pr[Y = x]

Pr[X = x]
.
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Pinsker’s inequality (see e.g. [CT05, Lemma 11.6.1]) then states that

DKL(X∥Y ) ≥ 1

2 ln 2
∥X − Y ∥21 ≥ ∆(X,Y )

2
.

Then we have

∆ (X,U)
2 ≤ DKL(X∥U) =

∑
x∈X

Pr[X = x]

(
log Pr[X = x]− log

1

|X |

)
= log |X | −H(X) ≤ ε.

Naturally, we will also employ Shearer’s lemma [CGFS86].

Lemma 20. Let X be a random variable over Σm and let S be a random variable over the subsets of [m]
such that Pr[i ∈ S] ≥ µ for every i ∈ [m]. Then

H(X) ≤ 1

µ
ES [H(XS)] .

Our probabilistic proof is based on the concentration inequality for martingales due to Azuma [Azu67].
We assume here that the reader is familiar with the standard conditional expected value E[X | Y ].

Definition 21. A sequence X1, . . . ,Xn is called a martingale relative to another sequence Y1, . . . ,Yn if,
for every i ∈ [n] we have that Xi is a function of Y≤i := (Y1, . . . ,Yi) and

E[Xi+1 | Y≤i] = Xi.

Moreover, we say that a sequence x1, . . . ,xn is a martingale difference sequence if Xi :=
∑

j∈[i] xj is a
martingale (relative to the same sequence).

Theorem 22 (Azuma’s inequality, [Azu67]). Let x1, . . . ,xn be a martingale difference sequence (relative to
some other sequence) such that |xi| ≤ c. Then for any t > 0

Pr

[∣∣∣∣ ∑
i∈[n]

xi

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−t2

2nc2

)
.

3.2.2 Proof of Lemma 18

Lemma 18. Assume (i)–(ii). For every ε, δ > 0 such that ε < δ3/100, and an integer ℓ ≤ εn,

Pr
K∼([n]

ℓ );X∼{0,1}(
n
2)

[∣∣∣∣∑
i∈K

JXSi
∈ DiK

∣∣∣∣ ≥ δℓ

]
≤ exp(−Ω(δ2ℓ)).

Overview. Let X ∼ {0, 1}(
n
2) and K ∼

(
[n]
ℓ

)
. For convenience, we treat K as an ordered sequence

K = (k1, . . . ,kℓ) ∈ [n]ℓ generated by picking ki+1 uniformly at random from [n]∖ {k1, . . . ,ki}. We define

yi := JXSki
∈ Dki

K.

Let us write y≤i := (y1, . . . ,yi) ∈ {±1}i and k≤i := (k1, . . . ,ki) ∈ [n]i for short. Our goal is to show
that

∑
i∈[ℓ] yi concentrates around 0. In the hopes of applying Azuma’s inequality, our dream would be

that y1, . . . ,yn was a martingale difference sequence relative to (yi,ki), that is,

E[yi+1 | y≤i,k≤i] = 0. (2)

Unfortunately, our dream does not come true, because the events XSki
∈ Dki

are dependent, as discussed
previously. Fortunately, we are able to use Shearer’s inequality to show that the dependencies are limited
enough that we can recover a concentration result.
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Let us discuss this strategy more formally. First, for k ∈ [n]i and y ∈ {±1}i where i ∈ [ℓ], we define

Event Ek
y ⇐⇒ ∀j ∈ [i] : JXSkj

∈ Dkj
K = yj .

Our dream condition (2) now becomes equivalent to requiring that, for every (k, y) ∈ [n]i × {±1}i,

Ej∼[n]∖{k1,...,ki}
[
JXSj

∈ DjK | Ek
y

]
= 0. (3)

We show below in Lemma 23 that (3) is approximately true: for a typical (k, y) the expectation is close to 0.
More formally, for (k, y) ∈ [n]i × {±1}i, we define

(k, y) is typical ⇐⇒ Pr[Ek
y ] ≥ 2−2i.

Let Ti denote the set of typical pairs for length i. Deriving concentration from Lemma 23 is quite straight-
forward, so this lemma is the heart of the proof. To prove it, we show, using Shearer’s lemma, that under
typical Ek

y , the entropy of XSj
is very large for most j ∈ [n]. Then by Lemma 19, we have that (XSj

|Ek
y )

is typically close to uniform, so the probability (XSj
|Ek

y ) ∈ Di is close to U ∈ Di for U ∼ {0, 1}n−1. Since
the latter is 1/2 we recover an approximate version of (3) in the typical case.

Lemma 23. Assume (i)–(ii). Suppose (k, y) ∈ Ti is typical and i ≤ εn. Then with probability at least 1− δ
over the choice of j ∼ [n]∖ {k1, . . . , ki},

|Pr[XSj
∈ Dj | Ek

y ]− 1/2| ≤
√
4ε/δ.

Proof. Let Y := (X | Ek
y ). Note that Y is flat and hence H(Y ) = H∞(Y ) ≥

(
n
2

)
− 2i. Now we use the fact

that the sets in SSink satisfy the preconditions of Shearer’s lemma (Lemma 20) with Prj∼[n][t ∈ Sj ] = 2/n

for every t ∈ [
(
n
2

)
]. We get

(
n
2

)
− 2i ≤ H(Y ) ≤ n/2 · Ej∼[n][H(YSj

)]. Then Ej∼[n][H(YSj
)] ≥ n− 1− 4ε. By

Markov’s inequality applied to the non-negative random variable n− 1−H(YSj
), we get that

Pr
j∼[n]

[
H(YSj

) ≥ (n− 1)− 4ε/δ︸ ︷︷ ︸
=: event L

]
≥ 1− δ.

We may assume 4ε/δ < 1 as otherwise the lemma is trivial. Note that for every outcome j ∈ {k1, . . . , ki},
the variable YSj is supported either on Dj or its complement {0, 1}n−1 ∖ Dj , and hence H(YSj ) ≤ n − 2.
We conclude that no outcome j ∈ {k1, . . . , ki} satisfies L. Therefore

Pr
j∼[n]∖{k1,...,ki}

[L] ≥ Pr
j∼[n]

[L] ≥ 1− δ.

Consider any j that satisfies event L and apply Lemma 19 to the random variable YSj . This results

in ∆
(
YSj

,U
)
≤
√
4ε/δ where U ∼ {0, 1}Si . Hence

Pr[XSj
∈ Dj | Ek

y ] = Pr[YSj
∈ Dj ] ∈ 1/2±

√
4ε/δ.

Corollary 24. |E[yi+1 | (k≤i,y≤i) ∈ Ti]| ≤ 2δ + 4
√

ε/δ for every δ, ε, i.

Proof. We calculate

|E[yi+1 | (k≤i,y≤i) ∈ Ti]| ≤
∑

(k,y)∈Ti

Pr[(k≤i,y≤i) = (k, y)] · |E[yi+1 | (k≤i,y≤i) = (k, y)]|

=
∑

(k,y)∈Ti

Pr[(k≤i,y≤i) = (k, y)] · |E[yi+1 | Ek
y ∧ k≤i = k]|

≤ max
(k,y)∈Ti

|E[yi+1 | Ek
y ∧ k≤i = k]|

= max
(k,y)∈Ti

|Ej∼[n]∖{k1,...,ki}
[
EX [JXSj

∈ DjK | Ek
y ]
]
|

≤ 2 max
(k,y)∈Ti

(
δ + Pr

j∼[n]∖{k1,...,ki}

[
Pr[XSj

∈ Dj | Ek
y ] ̸∈ 1/2± δ

])
(Lemma 23) ≤ 2(δ + 2

√
ε/δ).
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Proof of Lemma 18. Let wi := E[yi | y<i,k<i]. Let us decompose this random variable as

wi = wtyp
i +wrare

i ,

where wtyp
i = wi if (k<i,y<i) is typical and wtyp

i = 0 otherwise. To summarise,

yi = (yi −wi) +wtyp
i +wrare

i .

Let us analyze the sum over i ∈ [ℓ] of each of these summands.

Term yi−wi. The sequence yi−wi is a martingale difference sequence with |yi−wi| ≤ 2, so by Azuma,

Pr

[∣∣∣∣∑
i∈[ℓ]

(yi −wi)

∣∣∣∣ ≥ δℓ

]
≤ 2 exp(−Ω(δ2ℓ)). (4)

Term wrare
i . Observe that Pr[(k≤i,y≤i) ̸∈ Ti] ≤ maxk Pr[(k,y≤i) ̸∈ Ti]. Moreover, for every k,

Pr[(k,y≤i) ̸∈ Ti] ≤
∑

y : (k,y)̸∈Ti

Pr[y≤i = y] ≤ 2i · 2−2i = 2−i.

Using this, we estimate

Pr

[∣∣∣∣ ℓ∑
i=1

wrare
i

∣∣∣∣ ≥ δℓ

]
≤ Pr [∃i ∈ [δℓ, ℓ] : wrare

i ̸= 0]

≤ Pr [∃i ∈ [δℓ, ℓ] : (k≤i,y≤i) /∈ Ti] ≤
∞∑

i=δℓ

2−i = 2−δℓ+1. (5)

Term wtyp
i . One the one hand, wtyp

i = wi whenever (k<i,y<i) ∈ Ti−1. From Corollary 24,

|(wi | (k<i,y<i) ∈ Ti−1)| = |E[yi | (k<i,y<i) ∈ Ti−1]| ≤ 2δ + 4
√
ε/δ ≤ 4δ.

On the other hand, (wtyp
i | (k<i,y<i) ̸∈ Ti−1) = 0. Thus we conclude |wtyp

i | ≤ 4δ. Hence

Pr

[∣∣∣∣∑
i∈[ℓ]

wtyp
i

∣∣∣∣ > 4δℓ

]
= 0. (6)

Putting Equations (4) to (6) together, we get for large enough n (with ε and δ fixed),

Pr

[∣∣∣∣∑
i∈[ℓ]

yi

∣∣∣∣ > 6δℓ

]
≤ 3 exp(−Ω(δ2ℓ)) = exp(−Ω(δ2ℓ)).

Reparameterizing by δ′ := δ/7 we get the desired bound.

3.2.3 Proof of the Second Reduction

Proof of Lemma 17. Let ε := δ3/100 and ℓ := ⌊εn⌋. Consider a random partition K1, . . . ,Kn/ℓ of [n] so

that Kj ∼
(
[n]
ℓ

)
; here we assume for simplicity that ℓ divides n (if not, consider parts of size ℓ± 1). Then

Pr
X

[∣∣∣∣ ∑
i∈[n]

JXSi
∈ DiK

∣∣∣∣ ≥ δn

]
≤ Pr

X;K1,...,Kn/ℓ

[
∃j ∈ [n/ℓ] :

∣∣∣∣ ∑
i∈Kj

JXSi
∈ DiK

∣∣∣∣ ≥ δℓ

]

≤
∑

j∈[n/ℓ]

Pr
X,Kj

[∣∣∣∣ ∑
i∈Kj

JXSi
∈ DiK

∣∣∣∣ ≥ δℓ

]
(Lemma 18) ≤ ⌈1/ε⌉ exp(−Ω(δ2ℓ))
(for large n) ≤ exp(−Ω(δ5n)).
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3.2.4 Proof of the First Reduction

Proof of Lemma 16. Recall the Chernoff bound, Pr[X ≥ a] ≤ e−ta E[etX ] for t > 0. LetRj :=
∑

i∈[n]JT
j
Si
∈ DiK.

By Lemma 17 there exists a constant C > 0 such that Pr[Rj ≥ εn/2] ≤ e−Cε5n. Using this, we get

E
[
et·Rj

]
≤ etn · Pr[Rj ≥ εn/2] + etεn/2 ≤ etn−Cε5n + etεn/2. (7)

Now we can compute our tail bound by

Pr

[ ∑
j∈[N ]

Rj ≥ εNn

]
≤ e−tεNn E

[
et·

∑
j∈[N] Rj

]
(independence of T j) = e−tεNn

∏
j∈[N ]

E
[
et·Rj

]
(using (7)) ≤ e−tεNn

∏
j∈[N ]

(
etn−Cε5n + etεn/2

)
(choosing t := Cε5) ≤ e−Cε6Nn(1 + eCε6n/2)N

≤ e−Cε6Nn · e(1+Cε6n/2)·N = e−Cε6Nn/2+N

(for large n) ≤ exp(−Ω(ε6Nn)).

The inequality bounding the sum from below is handled similarly.

3.3 Proof of Lemma 15

In this section, we prove that it is sufficient to show that the extractor fools balanced distinguishers.

Lemma 15. Let Ext: {0, 1}t → {0, 1}(
n
2) be an arbitrary function. Suppose that for a source X ∈ {0, 1}t,

and uniform Y ∼ [n], U ∼ {0, 1}n−1 we have ∆((Y ,Ext(X,Y )), (Y ,U)) ≥ ε. Then there exists a balanced
distinguisher D ⊆ [n]× {0, 1}n−1 such that |Pr[(Y ,Ext(X,Y )) ∈ D]− 1/2| ≥ ε/2.

Proof. Recall that for two distributions S and T over the same domain X ,

∆ (S, T ) =
1

2

∑
a∈X

∣∣∣ Pr
x∼S

[x = a]− Pr
x∼T

[x = a]
∣∣∣ .

Then let us expand the statistical distance as follows:

ε ≤ ∆((Y ,Ext(X,Y )), (Y ,U)) =
1

2n

∑
i∈[n];α∈{0,1}n−1

∣∣∣Pr[Ext(X, i) = α]− 2−(n−1)
∣∣∣ .

Let R+
i := {α ∈ {0, 1}n−1 | Pr[Ext(X, i) = α] ≥ 2−(n−1)} and R−

i = {0, 1}n−1 ∖R+
i . Then

ε ≤ 1

2n

∑
i∈[n];α∈R+

i

(
Pr[Ext(X, i) = α]− 2−(n−1)

)
+

1

2n

∑
i∈[n];α∈R−

i

(
2−(n−1) − Pr[Ext(X, i) = α]

)
.

Let ε+i :=
∑

α∈R+
i

(
Pr[Ext(X, i) = α]− 2−(n−1)

)
, ε−i := −

∑
α∈R−

i

(
Pr[Ext(X, i) = α]− 2−(n−1)

)
, and εi =

(ε+i + ε−i )/2. It is then sufficient to show that there exist D1, . . . , Dn such that for every i ∈ [n]

|Pr[Ext(X, i) ∈ Di]− |Di|/2n−1| ≥ εi
2
.

Fix i. Let us assume that ε+i ≥ εi (the proof in the case of ε−i ≥ εi is the same). If |R+
i | ≥ 2n−1/2 let Di be

the subset of R+
i of size 2n−1/2 where the largest values of the difference Pr[Ext(X, i) = α] − 2−(n−1) are

achieved. Then Pr[Ext(X, i) ∈ Di] ≥ ε+i /2 ≥ εi/2. If |R+
i | ≤ 2n−2 let Di be the union of R+

i and the subset
of R−

i of size 2n−2 − |R+
i | ≤ |R

−
i |/2 where the smallest values of the difference 2−(n−1) − Pr[Ext(X, i) = α]

are achieved. Then |Di ∖ R+
i |/2n−1 − Pr[Ext(X, i) ∈ (Di ∖ R+

i )] ≤ ε−i /2 ≤ εi/2. Then Pr[Ext(X, i) ∈
Di]− |Di|/2n−1 ≥ ε+i − εi/2 ≥ εi/2.
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4 Proof of Theorem 4: Condensing sink-of-xor

In this section, we prove Theorem 4, restated here for convenience.

Theorem 4. There exists a 2O(n)-by-2O(n) submatrix R such that F := (Sink ◦ ⊕)|R satisfies

Rcc(F ) = Θ(n),

rk1/3(F ) ≤ O(n3).

4.1 Preliminaries

We use the notation 1[P ] to indicate 1 if P is true and 0 if P is false. (Compare this with the ±1-indicator
notation JP K used in the previous section.) We introduce the following additional technical property of
extractors to use them for our communication lower bounds.

Definition 25. We say that a function Ext: {0, 1}t → {0, 1}m is α-smooth wrt {S1, . . . , Sr} ⊆
(
[m]
n

)
if for

every i ∈ [r] and every x ∈ {0, 1}n we have Pry∼{0,1}t [Ext(y, i) = x] ≤ α2−n.

Proposition 26. A random function Ext: {0, 1}2n → {0, 1}m is
√
n+ ln r-smooth wrt any fixed family

{S1, . . . , Sr} ⊆
(
[m]
n

)
with probability 1− o(1).

Proof. Fix an arbitrary i ∈ [r] and x ∈ {0, 1}n. Now for a uniformly random Ext

Pr

[ ∑
α∈{0,1}2n

1[Ext(α, i) = x] ≥
√
n+ ln r · 22n−n

]
≤ exp(−22n2−2n · (n+ ln r)) ≤ e−nr = o(2−nr)

by Hoeffding inequality, since E [
∑

α∈{0,1}t 1[Ext(α, i) = x]] = 22n−n = 2n. Then by the union bound the
total probability is o(1).

We also recall Yao’s corruption bound for proving a randomised communication lower bound.

Lemma 27 ([Yao83]). Let F : X × Y → {0, 1}n be a function and let ν be a distribution over X × Y such
that ν(F−1(0)) = 1/2. Let ε < 1/8. Then whenever Rcc

ε (F ) ≤ c there exists a rectangle R ⊆ X × Y such
that ν(R ∩ F−1(1)) < 4εν(R) and ν(R) ≥ 2−c−3.

4.2 Communication lower bound

We start by proving the communication lower bound in Theorem 4, that is, Rcc((Sink ◦ ⊕)|A×A) ≥ Ω(n)
where A is the image of a Shearer extractor. We show a general statement that applies not only to the
xorification of Sink but to the xorification of any function that is a union of subcubes.

Theorem 28. Let S1, . . . , Sr ⊆ [m], ai ∈ {0, 1}Si for each i ∈ [r]. Suppose that Ext: {0, 1}t → {0, 1}m is
an nr-smooth (γ, k)-Shearer extractor for {S1, . . . , Sr}. Suppose that γ < 0.01 and r < 2n/2−1/n. Then for
F (x, y) :=

∨
i∈[r] 1[Ext(x)Si ⊕ Ext(y)Si = ai] we have Rcc(F ) = Ω(t− k).

Proof. Let Aj := {(x, y) ∈ ({0, 1}t)2 | Ext(x)Sj
⊕ Ext(y)Sj

= aj} for j ∈ [r]. Then F−1(1) =
⋃

j∈[r] Aj . By

nr-smoothness of Ext we have |Aj | ≤ 2t · 2t−n · nr, so |F−1(0)| ≤ r22t−n · nr = 22t−1 · (2nr2/2n) < 22t/2.
We are going to apply the corruption bound for F wrt a measure ν where (x,y) ∼ ν is sampled as follows:

− With probability 1/2, output a uniform (x,y) ∼ F−1(0).
− With probability 1/2, sample a uniform j ∼ [r] and output a uniform (x,y) ∼ Aj .

Let ε = 1/100, let c = Rcc
ε (F ), the ε-error communication complexity of F . It suffices to prove a lower bound

on c, since the error parameter of any constant-error protocol can be reduced to ε by repeating the protocol
constantly many times. Assume for contradiction that c ≤ t − k − 3. Then by Lemma 27 there exists a
rectangle R = X × Y ⊆ ({0, 1}m)2 such that ν(R ∩ F−1(1)) ≤ 4εν(R) and ν(R) ≥ 2−c−3. Let us estimate

|R| ≥ |R ∩ F−1(0)| ≥ 2 · 22t · ν(R ∩ F−1(0)) ≥ 22t+1(1− 4ε)ν(R) ≥ 22t−c−3. (8)
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The second inequality follows from |F−1(0)| ≤ 1/2 ·22t, the fourth requires ε < 1/8. Then H∞(X),H∞(Y ) ≥
t−c−3 ≥ k. The rest of the proof goes as follows: using extractor properties we establish that ν(R∩F−1(1))
is large, which contradicts the fact that it comprises only a small fraction of R as measured by ν.

Claim 29. ν(R ∩ F−1(1)) ≥ |R|(1− 12γ)/(3 · 22t+3).

Proof. Let Aα
j := {x ∈ {0, 1}t | Ext(x, j) = α}. Observe that Aj =

⋃
α∈{0,1}n Aα

j ×A
α⊕aj

j . By the extractor

property we have (2r)−1
∑

j∈[r]

∑
α∈{0,1}n

∣∣|Aα
j ∩X|/|X| − 2−n

∣∣ ≤ γ and the same property for Y . Then by

the Markov’s inequality for the fraction 2/3 of the seeds j we have
∑

α∈{0,1}n

∣∣|Aα
j ∩X|/|X| − 2−n

∣∣ ≤ 6γ.
Applying Markov’s inequality for the same sum for Y we get that for the fraction 1/3 of the seeds j we have∑

α∈{0,1}n

∣∣∣∣ |Aα
j ∩ Y |
|Y |

− 2−n

∣∣∣∣ ≤ 6γ and
∑

α∈{0,1}n

∣∣∣∣ |Aα
j ∩X|
|X|

− 2−n

∣∣∣∣ ≤ 6γ.

Denote the set of such seeds as J . Applying Markov’s inequality again we get that for each j ∈ J for at
least 2n(1 − 12γ) values α we have |Aα

j ∩ X|/|X| ≥ 2−n−1 and for at least 2n(1 − 12γ) values α we have

|Aα⊕aj

j ∩ Y |/|Y | ≥ 2−n−1. So in total for 2n(1 − 24γ) values α both inequalities hold, so multiplying them
together we get

|Aα
j ×A

α⊕aj

j ∩R|
|R|

≥ 2−2n−2.

Summing these up yields |Aj ∩R|/|R| ≥ (1− 24γ)2−n−2 for each j ∈ J . Then

ν(R ∩ F−1(1)) =
1

r

∑
j∈[r]

|Aj ∩R|
|Aj |

≥ 1

r

∑
j∈J

|Aj ∩R|
|Aj |

≥ 1

r

∑
j∈J

|Aj ∩R|
22t−n/2

=
1

r

|R|
22t−n+1

∑
j∈J

|Aj ∩R|
|R|

≥ |R|(1− 24γ)

3 · 22t+3

From (8) we get that ν(R) ≤ |R|2−2t/(2(1− 4ε)), so ν(R ∩ F−1(1)) ≤ ε|R|2−2t/(2(1− 4ε)). Combining
this with Claim 29 we get (1− 24γ)/24 ≤ ε/(2(1− 4ε)), which is a contradiction for ε, γ ≤ 0.01.

Now let us recover the communication lower bound for the submatrix of Sink ◦ ⊕. As it is observed in
[CMS20], Sink−1(1) is a union of disjoint subcubes: let {S1, . . . , Sn} = SSink and let ai ∈ {0, 1}Si be chosen
such that each two cubes in {x | xSi

= ai} conflict. Then

Sinkn(x) =
∨
i∈[n]

1[xSi = ai] =
∑
i∈[n]

1[xSi = ai]. (9)

Corollary 30. Let R be a random subset of {0, 1}(
n
2) of size 22n. Then for the function FR : R×R→ {0, 1}

defined as FR(x, y) := Sinkn(x⊕ y) we have Rcc(FR) = Ω(n) with probability 1− o(1) over R.

Proof. By Theorem 7 and Proposition 26 a uniformly random function Ext: {0, 1}2n → {0, 1}(
n
2) is a√

n− 1 + lnn-smooth (0.01,Ω(n))-Shearer extractor. By Theorem 28 we get that G(x, y) = Sink(Ext(x)⊕
Ext(y)) has Rcc(G) = Ω(n). To finish the proof observe that the communication cost of G coincides with
the communication cost of FExt({0,1}2n).

4.3 Approximate rank upper bound

Finally, to prove the approximate rank upper bound in Theorem 4, we show that, in fact, all small subma-
trices of sink-of-xor have low approximate rank.

Theorem 31. Let R ⊆ {0, 1}(
n
2) have size 2Cn for any constant C. Then the matrix FR : R × R → {0, 1}

defined as FR(x, y) := Sinkn(x⊕ y) has 1/3-approximate rank O(n3).
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We consider the factorization norm γ2 [Tom89, LMSS04] that is often used as a smooth proxy for ap-
proximate rank. To define it, we denote by r(M) the maximum ℓ2-norm of a row of a matrix M . Then

γ2(A) := min{r(B)r(C) : BC⊤ = A}.

This matrix norm is connected to approximate rank through the following lemma. Note below how the
bound depends on the matrix size N ; our improvement over [CKLM19] is due to us focusing on only a small
submatrix of sink-of-xor. (The dependency on N is quite analogous to how Newman’s theorem [New91]
converts public-coin protocols to private-coin ones at a cost depending on N .)

Lemma 32 ([LS09, Thm 10]). For every A ∈ {0, 1}N×N we have rk1/3(A) ≤ O(γ2
2(A) · logN).

Proof of Theorem 31. By Lemma 32 it suffices to show that γ2(FR) = O(n). LetMSink be a 2(
n
2)×2(

n
2) binary

matrix defined as (MSink)x,y := Sinkn(x⊕ y). Then FR is a submatrix of MSink, hence γ2(FR) ≤ γ2(MSink).
We show that γ2(MSink) ≤ n. By (9) we have

(MSink)x,y =
∨
i∈[n]

(xSi ⊕ ySi = ai) =
∑
i∈[n]

1[xSi ⊕ ySi = ai].

The last equality holds since the cubes {xSi = ai} are disjoint. Let Mi be a 2(
n
2) × 2(

n
2) matrix defined by

Mi(x, y) := 1[xSi ⊕ ySi = ai]. Then MSink = M1 + · · ·+Mn, so γ2(MSink) ≤
∑

i∈[n] γ2(Mi) where we used
the sub-additivity of the γ2-norm. It remains to show that γ2(Mi) = 1 for every i. The factorization is as

follows: A,B are 2(
n
2) × 2n−1 boolean matrices defined by Ax,y := 1[xSi

= y] and Bx,y := 1[xSi
= y⊕ ai]. It

is easy to check that AB⊤ = Mi and that every row of A and B contains exactly one 1-entry.

5 Open Problem 2: Case of lifted functions

In this section, we prove Theorem 3, which we state more formally as follows. Given a boolean func-
tion f : {0, 1}n → {0, 1} and a two-party function g : Σ × Σ → {0, 1} (often called a gadget), we define the
composed (or lifted) function F := f ◦ g of type Σn × Σn → {0, 1} that maps (x, y) ∈ Σn × Σn to

F (x, y) = (f ◦ g)(x, y) := f(g(x1, y1), . . . , g(xn, yn)) where xi, yi ∈ Σ.

We consider the usual inner-product gadget IPb : {0, 1}b×{0, 1}b → {0, 1} given by IPb(x, y) := ⟨x, y⟩ mod 2.

Theorem 33 (Formal version of Theorem 3). For every ε > 0 there exists C > 0 such that for every
function f : {0, 1}n → {0, 1} with D(f) ≥ nε the composed function F := f ◦ IPC log2 n condenses losslessly:

there exists an 2k-by-2k submatrix R such that k = Θ(Dcc(F )) = Θ(Dcc(F |R)) = Θ(D(f) · log2 n).

One can consider this theorem as a positive result: functions that are lifted by inner-product can be
losslessly condensed; as well as negative result: lifting with inner-product cannot be used to prove our
conjecture that deterministic communication cannot be condensed for every function.

Proof overview. To prove Theorem 33 we go back to query complexity and show (in Theorem 36) that if
instead of restricting by a partial assignment we allow substitutions of certain linear functions then we can
condense any function losslessly. More formally, let f : {0, 1}n → {0, 1} be a boolean function. For some
m ≤ n and a bipartite graph G := ([n], [m], E) define f ◦ ⊕G : {0, 1}m → {0, 1} by

(f ◦ ⊕G)(x) := f

( ⊕
i∈NG(1)

xi, . . . ,
⊕

i∈NG(n)

xi

)

where NG(i) := {j ∈ [m] | (i, j) ∈ E} is the set of neighbours of i in G. We also think of ⊕G as a function
⊕G : {0, 1}m → {0, 1}n where i-th bit of output is computed as the parity ⊕i∈NG(n)xi. We show that for a
sufficiently well expanding graph G, the query complexity of f ◦⊕G can be losslessly condensed to D(f ◦⊕G)
variables. To conclude the proof, we lift this query result to communication complexity using a lifting
theorem.
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Comparison to prior work. Our condensation result for query complexity (Theorem 36) may be viewed
as a version of Razborov’s hardness condensation theorem [Raz16, FPR22]. However, these results are
incomparable with ours. In both papers [Raz16, FPR22], the authors study the decision model with bounded
memory that corresponds to Resolution proofs with bounded width. To get rid of dependency on memory
our proof uses the “sequential closure” strategy that appears in [Sok20, Section A].

5.1 Condensing query complexity via parities

A bipartite graph G := ([n], [m], E) is an (r,∆, α)-expander if each left node in [n] has degree at most ∆,
and for every I ⊆ [n], |I| ≤ r implies that |NG(I)| ≥ α|I|. Moreover if |∂I| ≥ α|I| then we say that G is an
(r,∆, α)-boundary expander where ∂S ⊆ NG(S) is the set of all nodes connected to S via exactly one edge.

Proposition 34. If G is an (r,∆, (1− ε)∆)-expander then G is an (r,∆, (1− 2ε)∆)-boundary expander.

Proof. There are at least |∂S|+2((1−ε)∆|S|− |∂S|) edges between S and NG(S). On the other hand, there
are at most ∆|S| of these edges. Thus |∂S|+ 2∆|S| − 2ε∆|S| − 2|∂S| ≤ ∆|S|, so |∂S| ≥ (1− 2ε)∆|S|.

Lemma 35 (Folklore). For every constant c ≥ 1 and for large enough m there exists (r,∆, 0.9∆)-expander
G = ([n], [m], E) with r = Θ(m/∆), n = mc, ∆ = Θ(logm).

Proof. This is a variant of the classical proof of expander existence with somewhat unusual parameters. In a
similar setting, it appears for instance in [ABRW00, Raz16, SS22]. The latter paper [SS22, Section C] shows
that there exists a random bipartite graph G over nodes ([n], [m]) and with left degree ∆ such that

p := Pr[G is not a (r,∆, 0.9 ·∆)-expander] ≤
∑
s∈[r]

(
e1+0.9∆n

s
·
(
0.9 ·∆s

m

)0.1∆
)s

.

Let us pick ∆ = 3c logm and r such that 0.9 ·∆ · r/m < e−100. Then each summand is at most e1+2.7c logm ·
nc · e−30c logm < e−20c logm ≪ 1/m < 1/r, so p < 1. Therefore there exists an expander with the required
parameters.

Theorem 36. Suppose f : {0, 1}n → {0, 1} is such that D(f) = k and G := ([n], [m], E) is an (r,∆, 0.9 ·∆)-
expander, where r ≥ k and ∆ ≥ 7. Then D(f ◦ ⊕G) = Θ(k∆).

Remark 37. We note that the condition r ≥ k above is crucial. For example, consider f := Andn as the
outer function, and m := n−1. We may assume wlog, that 1n is not in the image of ⊕G for some reasonable
choice of G. Thus, Andn ◦⊕G is a constant-0 function and D(Andn ◦⊕G) = 0 even though G can be a good
enough expander, but only for r < k.

5.1.1 Proof of Theorem 36

The upper bound D(f ◦ ⊕G) ≤ O(k∆) is straightforward, so we concentrate on proving the corresponding
lower bound. To this end, we are going to convert an adversary strategy for f that survives for k− 1 rounds
of queries (without fixing the value of f) to an adversary strategy for f ◦⊕G that survives for Ω(k∆) rounds.
At the ℓ-th round of the game, we maintain two partial assignments: ρℓ : [m]→ {0, 1, ∗} which corresponds
to the answers our strategy for f ◦ ⊕G has given, and τℓ : [n]→ {0, 1, ∗} corresponding to the answers given
by the adversary strategy for f that we invoke. We will also maintain a partial assignment ρ̂ℓ, an extension
of ρℓ such that the following invariants hold (here we write fix(τ) := τ−1({0, 1}) = {i : τ(i) ̸= ∗}).

(i) For every i ∈ fix(τℓ) we have NG(i) ⊆ fix(ρ̂ℓ) and τℓ(i) =
⊕

j∈N(i) ρ̂ℓ(j).

(ii) The graph Gℓ := G− fix(τℓ)− fix(ρ̂ℓ) is an (r,∆, 0.8 ·∆)-expander.

Our proof is divided into two parts. In the first part, assuming that we can maintain invariants (i)–(ii)
and the property |fix(τℓ)| < k, we show that (f ◦ ⊕G)|ρ̂ℓ

is not constant. Hence our adversary strategy
can survive for more rounds, which shows D(f ◦ ⊕G) > ℓ. In the second part, we show how to maintain
invariants (i)–(ii) as well as analyse how fast |fix(τℓ)| grows as a function of ℓ.

Before we carry out this plan, we first show a useful property of ⊕G when G expands.
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Lemma 38. Let G := (U, V,E) be an (r,∆, ε)-boundary expander for some ε > 0. Then for every set I ⊆ U
of size at most r and any a ∈ {0, 1}I there is an assignment β ∈ {0, 1}V such that ⊕G(β)I = a.

Proof. Since ⊕G is a linear function, the statement of the lemma is violated iff there is a nontrivial set of
outputs I ⊆ U of size at most r such that linear equations that correspond to I are linearly dependent. Pick
the smallest such set I. Since I is the smallest and we are doing our computations over F2, this implies that
for every j ∈ V , its neighborhood size in I is even. However, since |I| ≤ r then there is at least one j ∈ ∂I
whose neighborhood size in I is one, contradicting the above.

First part. Here we prove that (f ◦ ⊕G)|ρ̂ℓ
is not constant. We focus on showing that (f ◦ ⊕G)|ρ̂ℓ

is not
the constant-0 function (showing it is not constant-1 is similar). First note that f |τℓ is not constant since τℓ
comes from the adversary strategy for f after |fix(τℓ)| < k queries. Thus, if we run the optimal k-query
decision tree for f starting from τℓ, we can find an extension τℓ ∪ σ of τℓ, corresponding to a leaf of the
optimal tree that outputs 1, such that

• |fix(σ)| ≤ k
• f |τℓ∪σ is constant 1.

Let ρ̂0ℓ ∈ {0, 1}m be the full assignment obtained from ρ̂ℓ by replacing every ∗ with a 0. Note that the
output y := ⊕G(ρ̂

0
ℓ) is consistent with τℓ. By Proposition 34 and (ii), the graph Gℓ is a (r,∆, ε)-boundary

expander for some ε > 0. Thus Lemma 38 implies that there is some x ∈ {0, 1}[m]∖fix(ρ̂ℓ) such that the
output z := ⊕Gℓ

(x) ∈ {0, 1}[n]∖fix(τℓ) is consistent with σ ⊕ yfix(σ). Let x
0 ∈ {0, 1}m and z0 ∈ {0, 1}n denote

the extensions of x and z by 0s. Note that z0 = ⊕G(x
0). Then x∗ := ρ̂0ℓ + x0 is consistent with ρ̂ℓ and its

output ⊕G(x
∗) = y ⊕ z0 is consistent with τℓ ∪ σ. This implies (f ◦ ⊕G)(x

∗) = 1, which means (f ◦ ⊕G)|ρ̂ℓ

is not constant-0, as desired.

Second part. At the (ℓ+1)-th round we receive a query i ∈ [m]. If i ∈ fix(ρ̂ℓ), then we respond with ρ̂ℓ(i),
set ρℓ+1 := ρℓ ∪ {(i, ρ̂ℓ(i))}, and continue. Neither invariant depends on ρℓ+1, so they continue to hold.

Suppose that we receive a query i ∈ [m] ∖ fix(ρ̂ℓ). We set ρℓ+1 := ρℓ ∪ {(i, b)} and ρ̂ℓ+1 := ρ̂ℓ ∪ {(i, b)}
where b ∈ {0, 1} can be chosen arbitrarily. Let G′

ℓ := Gℓ − i, and let Bℓ+1 ⊆ [n] ∖ fix(τℓ) be the largest
subset such that |Bℓ+1| ≤ r and |NG′

ℓ
(Bℓ+1)| ≤ 0.8 · ∆|Bℓ+1| (Bℓ+1 may be empty). We then query the

adversary for f with all elements of Bℓ+1 extending τℓ+1 from τℓ with the received answers. Now we need to
extend ρ̂ℓ+1 by fixing all elements of NG′

ℓ
(Bℓ+1) such that Item (i) is satisfied. This is possible by Lemma 38,

since by Proposition 34 and Item (ii), we have that G′
ℓ is an (r,∆, 0.8 ·∆− 1)-expander and ∆ ≥ 7 we can

conclude that G′
ℓ is a boundary expander.

We set Gℓ+1 := G′
ℓ −Bℓ+1 −NG′

ℓ
(Bℓ+1), since fix(ρ̂ℓ+1) = fix(ρ̂ℓ) ∪ {i} ∪NG′

ℓ
(Bℓ+1). It remains to show

that |fix(τℓ)| grows slowly as a function of ℓ, and to verify Item (ii).

Claim 39. If ℓ ≤ ∆r/220, then |fix(τℓ)| ≤ 10 · ℓ/∆. Moreover |Bi| ≤ r/2 for each i ≤ ℓ.

Proof. We show that |fix(τt)| ≤ 10 · t/∆ by induction on t where t ∈ [ℓ]. The base case of the induction is
satisfied as τ0 does not assign any variable. Now suppose that |fix(τt)| ≤ 10 · t/∆ for some t < ℓ; we aim
to prove |fix(τt+1)| ≤ 10 · (t + 1)/∆. Observe that NG′

t
(Bt+1) = NG(Bt+1) ∖ (NG(fix(τt)) ∪ fix(ρt+1)). By

the choice of Bt+1 we have |NG′
t
(Bt+1)| ≤ 0.8 ·∆|Bt+1|, and by the expansion of G we have |NG(Bt+1)| ≥

0.9 ·∆|Bt+1|. Hence |NG(fix(τt)) ∪ fix(ρt+1)| ≥ ∆|Bt+1|/10. By the construction |fix(ρt+1)| = t + 1 and by
induction hypothesis |fix(τt)| ≤ 10t/∆ implying |NG(fix(τt))| ≤ 10t. Then we get

|Bt+1| ≤
10

∆
· (10(t+ 1)) ≤ r/2.

Then |fix(τt+1)| ≤ |fix(τt)|+ |Bt+1| ≤ r, so by expansion of G we get |NG(fix(τt+1))| ≥ 0.9 ·∆|fix(τt+1)|. By
the constructions of Gi we have

NG(fix(τt+1)) ⊆
t⋃

i=0

NG′
i
(Bi+1) ∪ fix(ρt+1).

By the choice of Bi it implies |NG(fix(τt+1))| ≤ 0.8 · ∆|fix(τt+1)| + (t + 1). Putting the two bounds on
|NG(fix(τt+1))| together we get |fix(τt+1)| ≤ 10(t+ 1)/∆.
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Claim 40. If ℓ ≤ ∆r/220, then Gℓ is an (r,∆, 0.8 ·∆)-expander.

Proof. Pick the minimal t ∈ {0, 1, . . . , ℓ − 1} such that Gt+1 is not an (r,∆, 0.8 ·∆)-expander. Then there
exists a set S of size at most r such |NGt+1

(S)| < 0.8 ·∆|S|. By expansion of G we have |NG(S)| ≥ 0.9 ·∆|S|,
so since NGt+1

(S) = NG(S)∖ (NG(fix(τt+1)) ∪ fix(ρt+1)) we get

∆r/20 ≥ ∆r/22 + (t+ 1) ≥ |NG(fix(τt+1)) ∪ fix(ρt+1))| ≥ ∆|S|/10,

where the right-hand side follows from the previous bound on NGt+1(S) and the left-hand side from Claim 39
and the fact that at round t + 1 < ℓ at most t + 1 places are fixed. We conclude that |S| ≤ r/2. Since
by the “moreover” part of Claim 39 we have |Bt+1| ≤ r/2, |S ∪ Bt+1| ≤ r. Then NG′

t
(S ∪ Bt+1) =

NG′
t
(Bt+1) ∪ NGt+1

(S), hence |NG′
t
(S ∪ Bt+1)| < 0.8 · ∆|Bt+1| + 0.8 · ∆|S| ≤ 0.8 · ∆|Bt+1 ∪ S|. This

contradicts the choice of Bt+1.

Altogether. After t := ∆r/220 answers we still are able to maintain the invariant. Thus the function
(f ◦ ⊕G)|ρ̂ℓ

is not a constant. Hence D(f ◦ ⊕G) > ∆r/220.

5.2 Proof of Theorem 33

We now prove Theorem 33. Let f be an n-bit function with D(f) := k ≥ nΩ(1). We first transform f into the
function f ◦⊕G and then lift it by inner-product to yield H := (f ◦⊕G) ◦ IPt for an appropriate expander G
and a parameter t. By using the following query-to-communication lifting theorem we get a lower bound on
the communication complexity of H, and finally we complete the proof by showing that H is a submatrix of
our target function F := f ◦ IPΘ(log2 n).

Theorem 41 ([CFK+19]). For every f : {0, 1}n → {0, 1} we have Dcc(f ◦ IPb logn) = Θ(D(f) log n) where
b ≥ 1 is a universal constant.

Let G := ([n], [m], E) be an (k,∆, 0.9 · δ log n)-expander where ∆ := δ log n, m = O(k log n) and δ > 0
is a universal constant, which exists by Lemma 35 and observation that k = nΩ(1). We define an auxiliary
two-party function H := (f ◦ ⊕G) ◦ IPm

b logn where b is an absolute constant from Theorem 41. Note that

D(f ◦ ⊕G) = Θ(D(f) log n) by Theorem 36 and by Theorem 41 we get Dcc(H) = Θ(D(f) log2 n).
Define F := f ◦IP∆t where t := b log n. To complete the proof we show that F contains H as a submatrix.

Consider an input (x, y) = (x1, . . . , xm, y1, . . . , ym) ∈ (({0, 1}t)m)2 to H. Then we can write

H(x, y) = f

 ⊕
j∈NG(1)

IPt(x
j , yj), . . . ,

⊕
j∈NG(n)

IPt(x
j , yj)

 .

Now observe that each argument of f in the expression above is an instance of IP∆t, for example,⊕
j∈NG(1)

IPt(x
j , yj) =

⊕
j∈NG(1)

i∈[t]

xj
iy

j
i = IP∆t((x

j
i )j∈NG(1);i∈[t], (y

j
i )j∈NG(1);i∈[t]).

Hence we can embedH as a submatrix of F via the mapping (x, y) 7→ ((xj
i )j∈NG(k);i∈[t], (y

j
i )j∈NG(k);i∈[t])k∈[n].
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biguous DNFs and Alon–Saks–Seymour. In Proceedings of the 62nd Symposium on Foundations
of Computer Science (FOCS). IEEE, feb 2022. doi:10.1109/focs52979.2021.00020.

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: A
survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)00144-X.

[BHT17] Shalev Ben-David, Pooya Hatami, and Avishay Tal. Low-sensitivity functions from unambiguous
certificates. In Proceedings of the 8th Innovations in Theoretical Computer Science Conference
(ITCS), volume 67, pages 28:1–28:23. Schloss Dagstuhl, 2017. doi:10.4230/LIPICS.ITCS.2017.28.

[BN20] Christoph Berkholz and Jakob Nordström. Supercritical space-width trade-offs for resolution.
SIAM Journal on Computing, 49(1):98–118, jan 2020. doi:10.1137/16m1109072.

[BS06] Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems harder. In Proceedings
of the 21st Conference on Computational Complexity (CCC), pages 73–87. IEEE, 2006. doi:

10.1109/ccc.2006.26.

[BvEL74] Marc Best, Peter van Emde Boas, and Hendrik Lenstra. A sharpened version of the Aanderaa-
Rosenberg conjecture. Technical Report ZW 30/74, Mathematisch Centrum Amsterdam, 1974.
URL: https://hdl.handle.net/1887/3792.

[BW15] Mark Braverman and Omri Weinstein. A discrepancy lower bound for information complexity.
Algorithmica, 76(3):846–864, nov 2015. doi:10.1007/s00453-015-0093-8.

[CFK+19] Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-
to-communication lifting for BPP using inner product. In Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 132, pages 35:1–35:15.
Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.ICALP.2019.35.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.
doi:10.1137/0217015.

22

https://doi.org/10.1145/3106234
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1109/SFCS.2000.892064
https://doi.org/10.1109/focs.2019.00063
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.4230/LIPIcs.CCC.2016.4
https://doi.org/10.2748/tmj/1178243286
https://doi.org/10.1109/focs52979.2021.00020
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.4230/LIPICS.ITCS.2017.28
https://doi.org/10.1137/16m1109072
https://doi.org/10.1109/ccc.2006.26
https://doi.org/10.1109/ccc.2006.26
https://hdl.handle.net/1887/3792
https://doi.org/10.1007/s00453-015-0093-8
https://doi.org/10.4230/LIPIcs.ICALP.2019.35
https://doi.org/10.1137/0217015


[CGFS86] Fan Chung, Ronald Graham, Péter Frankl, and James Shearer. Some intersection theorems
for ordered sets and graphs. Journal of Combinatorial Theory, Series A, 43(1):23–37, 1986.
doi:10.1016/0097-3165(86)90019-1.

[CGS21] Arkadev Chattopadhyay, Ankit Garg, and Suhail Sherif. Towards stronger counterexamples to
the log-approximate-rank conjecture. In Proceedings of the 41st Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), volume 213, pages 13:1–
13:16, Dagstuhl, 2021. Schloss Dagstuhl. doi:10.4230/LIPIcs.FSTTCS.2021.13.
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