
Parameterized Inapproximability Hypothesis under ETH

Venkatesan Guruswami* Bingkai Lin† Xuandi Ren‡ Yican Sun§

Kewen Wu¶

Abstract

The Parameterized Inapproximability Hypothesis (PIH) asserts that no fixed parameter
tractable (FPT) algorithm can distinguish a satisfiable CSP instance, parameterized by the num-
ber of variables, from one where every assignment fails to satisfy an ε fraction of constraints for
some absolute constant ε > 0. PIH plays the role of the PCP theorem in parameterized com-
plexity. However, PIH has only been established under Gap-ETH, a very strong assumption
with an inherent gap.

In this work, we prove PIH under the Exponential Time Hypothesis (ETH). This is the
first proof of PIH from a gap-free assumption. Our proof is self-contained and elementary.
We identify an ETH-hard CSP whose variables take vector values, and constraints are either
linear or of a special parallel structure. Both kinds of constraints can be checked with constant
soundness via a “parallel PCP of proximity” based on the Walsh-Hadamard code.

*Simons Institute for the Theory of Computing, and Departments of EECS and Mathematics, UC Berkeley. Email:
venkatg@berkeley.edu. Research supported in part by NSF grants CCF-2228287 and CCF-2211972 and a Simons In-
vestigator award.

†State Key Laboratory for Novel Software Technology, Nanjing University. Email: lin@nju.edu.cn
‡Department of EECS, UC Berkeley. Email: xuandi_ren@berkeley.edu. Supported in part by NSF grant CCF-

2228287.
§School of Computer Science, Peking University. Email: sycpku@pku.edu.cn
¶Department of EECS, UC Berkeley. Email: shlw_kevin@hotmail.com. Supported by a Sloan Research Fellowship

and NSF CAREER Award CCF-2145474.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 188 (2023)

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Overview of Techniques . 4
1.3 Discussions . 7

2 Preliminaries 8
2.1 (Parameterized) Constraint Satisfaction Problems . 8
2.2 Parallel Walsh-Hadamard Code . 10
2.3 Probabilistic Checkable Proofs with Proximity . 10

3 Proof of The Main Theorem 12
3.1 Reduction I: From 3SAT to Vector-Valued CSPs . 13
3.2 Reduction II: From Vector-Valued CSPs to Gap CSPs 14

3.2.1 Step a: Instance Splitting . 14
3.2.2 Step b: Designing Parallel PCPPs for Sub-Instances 14
3.2.3 Step c: Reducing Parallel PCPPs to Gap CSPs 16

3.3 Putting Everything Together . 16

4 From 3SAT to Vector-Valued CSP 17

5 Parallel PCPPs for Vector-Valued CSPs with Parallel Constraints 20
5.1 An Exposition of the QUADEQ Problem . 21
5.2 From Parallel Constraints to Parallel QUADEQ . 22
5.3 Designing Parallel PCPPs for Parallel QUADEQ . 23
5.4 Analysis of Parallel PCPPs . 26

6 Parallel PCPPs for Vector-Valued CSPs with Linear Constraints 29
6.1 Construction of Parallel PCPPs . 29
6.2 Analysis of Parallel PCPPs . 30

1 Introduction

A comprehensive understanding of NP-hard problems is an everlasting pursuit in the TCS com-
munity. Towards this goal, researchers have proposed many alternative hypotheses as strength-
enings of the classic P ̸= NP assumption to obtain more fine-grained lower bounds for NP-hard
problems, for example, Exponential Time Hypothesis (ETH) [IP01], Strong Exponential Time Hy-
pothesis (SETH) [IP01, CIP09], Gap Exponential Time Hypothesis (Gap-ETH) [Din16].

Besides a richer family of hypotheses, approximation and fixed parameter tractability (FPT) are
also two orthogonal approaches to cope with NP-hardness.

• In the approximation setting, we consider optimization problem, where input instances are
associated with a cost function and the goal is to find a solution with cost function value
close to the optimum.

• In the fixed parameter tractability (FPT) setting, every instance is attached with a parameter k
indicating specific quantities (e.g., the optimum, the treewidth) of the instance. This setting
treats k as a parameter much smaller than the instance size n, i.e., 1 ≤ k ≪ n. Thus, the
required runtime of the algorithm is relaxed from nO(1) to f (k) · nO(1), for any computable
function f . The class FPT is the set of parameterized problems that admit an algorithm
within this running time.

The seminal studies in this setting built up parameterized complexity theory [DF95a, DF95b,
FG06]. In this theory, there are also alternative hypotheses as a strengthening of P ̸= NP. For
example, W[1] ̸= FPT, which is equivalent to the statement that k-CLIQUE has no f (k) ·nO(1)-
time algorithm.

Recently, there has been an extensive study at the intersection of these two settings: the exis-
tence (or absence) of approximation algorithms that solve NP-hard problems in FPT time.

• On the algorithmic side, approximation algorithms with FPT runtime have been designed
for various NP-complete problems. Examples include VERTEX-COLORING [DHK05, Mar08],
MIN-k-CUT [GLL18b, GLL18a, KL20, LSS20], k-PATH-DELETION [Lee19], k-CLUSTERING

[ABB+23], k-MEANS / k-MEDIANS [CGTS02, KMN+04, LS16, BPR+17, CGK+19, ANSW20],
MAX k-HYPERGRAPH VERTEX COVER [SF17, Man19], FLOW TIME SCHEDULING [Wie18].

• In terms of computational hardness, the existence of such algorithms for certain NP-complete
problems has also been ruled out under reasonable assumptions: k-SETCOVER [CCK+17,
CL19, KLM19, Lin19, KN21, LRSW23a], k-SETINTERSECTION [Lin18, BKN21], k-STEINER

ORIENTATION [Wło20], MAX-k-COVERAGE [Man20], k-SVP, k-MINDISTANCEPROBLEM and
related problems [Man20, BBE+21, BCGR23].

An exciting recent line of work [CCK+17, Lin21, LRSW22, KK22, CFLL23, LRSW23b] shows
that approximating k-CLIQUE is not FPT under Gap-ETH, ETH, and W[1] ̸= FPT.

We refer to the survey by Feldmann, Karthik, Lee, and Manurangsi [FKLM20] for a detailed dis-
cussion.

The Quest for Parameterized PCP-Type Theorems. Despite all the recent progress in the study
of parameterized inapproximability, the reductions presented in these papers are often ad-hoc
and tailored to the specific problems in question. Obtaining a unified and powerful machinery for
parameterized inapproximability, therefore, becomes increasingly important.

1

A good candidate is to establish a parameterized PCP-type theorem. The PCP theorem [AS98,
ALM+98, Din07], a cornerstone of modern complexity theory, gives a polynomial time reduction
from an NP-hard problem like 3SAT to a gap version of 3SAT where the goal is to distinguish
satisfiable instances from those for which every assignment fails to satisfy a γ fraction of clauses
for some absolute constant γ > 0. This then serves as the starting point for a large body of inap-
proximability results for fundamental problems, including constraint satisfaction, graph theory,
and optimization.

As discussed in [FKLM20], the current situation in the parameterized world is similar to that
of the landscape of the traditional hardness of approximation before the celebrated PCP theorems
was established. Given the similarity, the following folklore open problem has been recurring in
the field of parameterized inapproximability:

Can we establish a PCP-type theorem in the parameterized complexity theory?

In light of its rising importance, Lokshtanov, Ramanujan, Saurabh, and Zehavi [LRSZ20] for-
malized and entitled the above question as Parameterized Inapproximability Hypothesis (PIH). Here
we present the following reformulation1 of PIH due to [FKLM20]:

Hypothesis 1.1 (Parameterized Inapproximability Hypothesis). There is an absolute constant2 ε > 0,
such that no fixed parameter tractable algorithm which, takes as input a 2CSP G with k variables of size-n
alphabets, can decide whether G is satisfiable or at least ε fraction of constraints must be violated.

Similar to the PCP theorem, PIH, if true, serves as a shared beginning for results in parame-
terized hardness of approximation: k-CLIQUE, k-SETCOVER, k-EXACTCOVER [GRS23], SHORTEST

VECTOR [BBE+21, BCGR23], DIRECT ODD CYCLE TRANSVERSAL [LRSZ20], DETERMINANT MAX-
IMIZATION and GRID TILING [Ohs22], Baby PIH [GRS23], k-MAXCOVER [KLM19], and more.

Prior to our work, PIH was only proved under the Gap-ETH assumption, the gap version
of ETH. Since there is an inherent gap in Gap-ETH, the result can be obtained by a simple gap-
preserving reduction (see, e.g., [FKLM20]). Indeed, it is often recognized that gap-preserving
reductions are much easier than gap-producing reductions [FGL+96]. A more desirable result is,
analogous to the PCP theorem, to create a gap from a gap-free assumption:

Can we prove PIH under an assumption without an inherent gap?

1.1 Our Results

We answer the above question in the affirmative by proving the first result to base PIH on a gap-
free assumption. We consider the famous Exponential Time Hypothesis (ETH) [IP01], a funda-
mental gap-free hypothesis in the modern complexity theory and a weakening of the Gap-ETH
assumption.

Hypothesis (Exponential Time Hypothesis (ETH), Informal). Solving 3SAT needs 2Ω(n) time.

Our main theorem can be stated concisely as:

Theorem 1.2 (Main). ETH implies PIH.

1The original statement of PIH in [LRSZ20] replaces the runtime bound by W[1]-hardness, and the reformulation by
[FKLM20] suffices for applications.

2The exact constant here is not important. Starting from a constant ε > 0, one can boost it to 1 − η for any constant
η > 0 by standard reductions.

2

In Theorem 3.1, we provide a quantitative version of Theorem 1.2 that presents an explicit

runtime lower bound of f (k) · nΩ
(√

log log k
)

for the problem in Hypothesis 1.1 under ETH.
As a byproduct of the above quantitative bound, we have the following probabilistic checkable

proof version of the main theorem (see Theorem 3.2 for the full version). This can be seen as a PCP
theorem in the parameterized world where the proof length depends only on k (which is supposed
to be a small growing parameter), but the alphabet size is the significantly growing parameter. The
runtime of the PCP verifier is in FPT.

Theorem 1.3. For any integer k ≥ 1, 3SAT has a PCP verifier which can be constructed in time f (k) ·
|Σ|O(1) for some computable function f , makes two queries on a proof with length 22O(k2)

and alphabet size
|Σ| = 2O(n/k), and has completeness 1 and soundness 1 − 1

9600 .

As mentioned, PIH serves as a unified starting point for many parameterized inapproxima-
bility results. Below, we highlight some new ETH-hardness of approximation for fundamental
parameterized problems obtained by combining our result and existing reductions from PIH.

Application Highlight: k-ExactCover. k-EXACTCOVER (also known as k-UNIQUE SET COVER)
is a variant of the famous k-SETCOVER problem. In the ρ-approximation version of this problem,
denoted by (k, ρ · k)-EXACTCOVER, we are given a universe U and a collection S of subsets of U.
The goal is to distinguish the following two cases.

• There exists k disjoint subsets that cover the whole universe U, i.e., the union of the k subsets
is exactly the whole universe U.

• Any ρ · k subsets of S cannot cover U.

Here, the parameter is the optimum k. Note that k-EXACTCOVER is an easier problem than k-
SETCOVER due to the additional disjointness property, proving computational hardness even
harder. On the positive side, this additional structure also makes (k, ρ · k)-EXACTCOVER an ex-
cellent proxy for subsequent reductions. We refer interested readers to previous works for de-
tails [ABSS97, Man20].

For constant ρ > 1, the hardness of (k, ρ · k)-EXACTCOVER was only proved under assump-
tions with inherent gaps [Man20, GRS23], imitating the reduction in the non-parameterized world
[Fei98]. It was still a mystery whether we could derive the same result under a weaker and gap-
free assumption. Combining its PIH hardness (see e.g., [GRS23]3) with our main theorem (Theo-
rem 1.2), we prove the first inapproximability for k-EXACTCOVER under a gap-free assumption.

Corollary 1.4. Assuming ETH, for any absolute constant ρ ≥ 1, no FPT algorithm can decide (k, ρ · k)-
EXACTCOVER.

Application Highlight: Directed Odd Cycle Transversal. Given a directed graph D, its directed
odd cycle transversal, denoted by DOCT(D), is the minimum set S of vertices such that deleting S
from D results in a graph with no directed odd cycles. The ρ-approximating version of the directed
odd cycle transversal problem, denoted by (k, ρ · k)-DOCT, is to distinguish directed graphs D
with DOCT(D) ≤ k, from those with DOCT(D) ≥ ρ · k. The parameter of this problem is the
optimum k. This problem is a generalization of several well studied problems including DIRECTED

3[GRS23] proves the hardness of (k, ρ · k)-EXACTCOVER under a weaker version of PIH, namely, Average Baby PIH
with rectangular constraints.

3

FEEDBACK VERTEX SET and ODD CYCLE TRANSVERSAL. For a brief history of this problem, we
refer to the previous work [LRSZ20]. In their work, the authors prove the following hardness of
(k, ρ · k)-DOCT.

Theorem 1.5 ([LRSZ20]). Assuming PIH, for some ρ ∈ (1, 2), no FPT algorithm can decide (k, ρ · k)-
DOCT.

Combining the theorem above with Theorem 1.2, we establish the first hardness of (k, ρ · k)-
DOCT under a gap-free assumption.

Corollary 1.6. Assuming ETH, for some ρ ∈ (1, 2), no FPT algorithm can decide (k, ρ · k)-DOCT.

1.2 Overview of Techniques

To prove our main theorem (Theorem 1.2), we present an efficient reduction from 3SAT formulas
to parameterized CSPs of k variables with a constant gap.

To construct such a reduction, we follow the widely-used paradigm for proving PCP theo-
rems [AS98, ALM+98, GOS20]. Via this approach, we first arithmetize 3SAT into an intermediate
CSP (usually a constant-degree polynomial system in the literature) with k variables and alphabet
Σ1. Then, we decide on a locally testable and correctable code C : Σk

1 → Σk′
2 (e.g., the quadratic

code [ALM+98], the Reed-Muller code [AS98], or the long code [GOS20]), and treat the proof π
as an encoding of some assignment σ : [k] → Σ1 to the intermediate CSP (viewed as a vector in
Σk

1). Leveraging the power of the local testability and correctability of C, we will check whether
the input proof is (close to) the encoding of an assignment that satisfies the intermediate CSP.

Our Plan. To follow the outline above and also factor in the runtime and the parameter blowup,
our plan is as follows:

1. First, we need to design an appropriate intermediate parameterized CSP problem, which
has some runtime lower bound under ETH. In the parameterized setting, the number of
variables is a small parameter k, while the alphabet |Σ1| holds the greatest order of magni-
tude.

2. Second, we need to construct an error correcting code C, which can be used to encode a
solution of the intermediate CSP, and allows us to locally check its satisfiability. Here the
efficiency of the code is also measured in a parameterized sense that the alphabet size is
polynomial in |Σ1|, and codeword length can be arbitrary in k but independent of |Σ1|.

However, the plan above confronts the following basic obstacle. The constructions in proving
the PCP theorems usually require the proof length |π| = |Σ1|Ω(k). On the other hand, as illustrated
in Item 2 above, we must eliminate |Σ1| in the proof length to make sure that the reduction is FPT.

Vectorization. We bypass this obstacle by applying vectorization, an idea also used in [LRSW23b].
In detail, we enforce the alphabet Σ1 to be a vector space Fd, where F is a field of constant size. In
this way, an assignment σ ∈ Σk

1 = (Fd)k can be viewed as d parallel sub-assignment in Fk. Thus, if
we have a good code C : Fk → Fk′ that tests the validity of a sub-assignment, we can encode σ by
separately encoding each sub-assignment and combining them as an element in (Fk′)d = (Fd)k′ .
Since |F| is a constant, this makes k′ dependent only on k but not on the whole alphabet Σ1 = Fd.

4

Guided by the vectorization idea, we aim to design an ETH-hard intermediate CSP problem
where the alphabet is a vector space. Furthermore, to facilitate the construction of the error cor-
recting code C in the second step, we also hope that there are appropriate restrictions on the
constraints of this intermediate CSP problem. The constraints should be neither too restrictive
(which loses the ETH-hardness) nor too complicated (which hinders an efficient testing proce-
dure). Following these intuitions, we define the following Vector-Valued CSPs as our intermediate
problem.

Vector-Valued CSPs. Vector-Valued CSPs (Definition 3.3) are CSPs with the following additional
features:

• The parameter k is the number of variables.

• The alphabet is a vector space Fd, where F is a finite field of characteristic two and constant
size and d holds the greatest order of magnitude.

• Each constraint is either a (coordinate-wise) parallel constraint, or a linear constraint, where:

– A parallel constraint is defined by a sub-constraint Πsub : F×F → {0, 1} and a subset of
coordinates Q ⊆ [d]. It checks Πsub for every coordinate in Q of the vector assignments.

– A linear constraint is defined by a matrix M. It enforces that two vector assignments
satisfy a linear equation specified by M.

• Each variable is related to at most one parallel constraint.

We emphasize that vector-valued CSPs will become fixed parameter tractable if all constraints are
linear (resp., parallel). In detail, one can handle linear constraints by efficiently solving a system
of linear equations, or handle parallel constraints by brute force enumeration individually for
each coordinate. However, due to our reduction, one cannot solve vector-valued CSPs with both
constraint types efficiently under ETH.

3SAT to Vector-Valued CSPs. In Theorem 3.4, we establish the ETH-hardness of vector-valued
CSP instances by a series of standard transformations.

First, we partition the clauses and variables of a 3SAT formula respectively into k parts.
Each of the 2k parts is then built as a CSP variable, which takes assignments of that part of
clauses/variables. The alphabet is therefore a vector space.

Then, we impose constraints between clause parts and variable parts. Each constraint is a
conjunction of clause validity and clause-variable consistency. These constraints ensure that the
2k partial assignments correspond to a global satisfying assignment to the original 3SAT formula.

However, the constraints above are neither parallel nor linear. To make them parallel, we
first appropriately split constraints, then duplicate each variable into several copies and spread
out its constraints. After this procedure, each variable is related to exactly one constraint, and
each constraint is the same sub-constraint applied in a matching way on the d coordinates of the
related vector-variables. We can thus permute the d coordinates of each variable accordingly and
obtain the parallel constraint form we desire. In addition, we also need to check the (permuted)
consistency between different duplicates. These checks can be done using permuted equality
constraints, which are special forms of linear constraints.

5

Vector-Valued CSPs to Constant-Gap CSPs. In Theorem 3.5, we construct another FPT reduc-
tion from a vector-valued CSP to a general constant-gap parameterized CSP in three steps.

• First, we split the vector-valued CSP instance into two by partitioning the constraints into a
linear part and a parallel part.

• Next, for each of the two sub-instances, we construct a randomized verifier to check whether
all constraints in it are satisfied. The verifier takes as input a parallel encoding of a solution.
It then flips random coins, makes a constant number of queries based on the randomness,
and decides whether to accept the input proof or not based on the query result. The verifier
will have a constant soundness and a constant proximity parameter. In the traditional com-
plexity theory, such verifiers are also known as Probabilistic Checkable Proof of Proximity
(PCPP) verifiers.

In our proof, the verifier is designed separately for linear constraints and parallel constraints.
The consistency of the two verifiers is guaranteed via a unified parallel Walsh-Hadamard
encoding of the solution, shared by both verifiers.

• Finally, we obtain a constant-gap CSP instance by a standard reduction from probabilistic
checkable proof verifiers to CSPs.

The proof is then completed by combining the two reductions above. The crux of our proof is
the design of the PCPP verifiers. Below, we present high-level descriptions of this part.

PCPPs for Vector-Valued CSPs with Parallel Constraints. Fix a vector-valued CSP instant G
with parallel constraints only. The key observation in designing PCPPs for G is that, though the
parallel sub-constraints can be arbitrary, different coordinates of the vector-variables are indepen-
dent. Let k be the number of variables in G and let d be the dimension of the vector-variables.

Following the observation above, we can split G into d sub-instances G1, . . . , Gd with respect
to the d coordinates. Each Gi is a CSP instance with k variables and alphabet F. A vector-valued
assignment σ satisfies G iff the sub-assignment of σ on the i-th coordinate satisfies Gi for each
i ∈ [d].

After splitting, the alphabet of each Gi is only F. We can thus follow the classical construc-
tion [ALM+98, AB09] of PCPPs to construct a verifier Ai to efficiently and locally check the satis-
fiability of Gi. In addition, since every vector-variable is related to at most one parallel constraint
in G, the number of distinct sub-instances among G1, . . . , Gd depends only on k, not on d. This
allows us to combine A1, . . . , Ad into a single verifier A that works over the original alphabet Fd

with blowup dependent only on k, not on d. See Section 5 for details.

PCPPs for Vector-Valued CSPs with Linear Constraints. To design a verifier for linear con-
straints, we leverage the power of the Walsh-Hadamard code to decode any linear combinations
of the messages. Fix a vector-valued CSP instance G with linear constraints only. For each linear
constraint e = (ue, ve) ∈ E, we further denote its form by 1ue=Meve .

To test the conjunction of all linear constraints, it is natural to consider the linear combination
of these constraints. In detail, we pick independently random λ1, . . . , λ|E| ∈ F, and test whether:

∑
e∈E

λeue = ∑
e∈E

λe · Meve

By the random subsum principle [AB09], if any one of the linear constraints is violated, the equa-
tion above does not hold with high probability.

6

Following this idea, we introduce auxiliary variables zv,e for each variable v and constraint e,
which is supposed to be Mev. We set up the parallel version of the Walsh-Hadamard code over
the assignments to the variables in G and the auxiliary variables zv,e. In this way, we can decode
both the LHS and RHS of the equation above by two queries on the Walsh-Hadamard code, and
then check whether the equation holds.

We need extra testing procedures to ensure zv,e equals Mev. This is again achieved by the
random subsum principle. See Section 6 for details.

1.3 Discussions

Here we discuss related works and propose future directions.

Related Works. As mentioned above, prior to our work, PIH was only known to hold under
Gap-ETH [CCK+17, DM18]. The techniques there do not apply here since their proofs rely on an
inherent gap from the assumption, which ETH does not have.

Using a different approach, Lin, Ren, Sun, and Wang [LRSW22, LRSW23b] proposed to prove
PIH via a strong lower bound for constant-gap k-CLIQUE. This is reminiscent of [BGS98], where
the NP-hardness of constant-gap CLIQUE leads to a free-bit PCP. However, the construction in
[BGS98] does not apply in the parameterized setting since the proof length will be too long. In
addition, the framework of [LRSW23b] only designs a weaker variant of PCPP, which can only lo-
cally test the validity of a single constraint rather than the conjunction of all constraints. Moreover,
the boosting from weak PCPPs to standard PCPPs seems to meet an information-theoretic barrier
from locally decodable codes. In contrast, we successfully design PCPPs for special CSPs in this
work, which is based on a key observation that CSPs remain ETH-hard even when the variables
are vector-valued and the constraints are either parallel or linear.

Furthermore, a recent work by Guruswami, Ren, and Sandeep [GRS23] established a weaker
version of PIH called Baby PIH, under W[1] ̸= FPT. However, they also gave a counterexample
to show that the basic direct product approach underlying their reduction is not strong enough to
establish PIH.

Future Directions. We highlight some interesting open directions.

• Starting from PIH and by our work, many previous parameterized hardness of approxima-
tion results can now be based on ETH (see Corollary 1.4 and Corollary 1.6 as representatives).
However, there are still many basic problems whose parameterized inapproximability re-
mains unknown, e.g., MAX k-COVERAGE and k-BALANCED BICLIQUE [CCK+17, FKLM20].

Can we discover more ETH-based parameterized inapproximability results? Since there is
already a gap in PIH, we expect that reducing PIH to other parameterized problems would
be easier than reducing directly from gap-free 3SAT.

• We have presented a gap-producing reduction from ETH to PIH. It is natural to ask whether
we can prove PIH under the minimal hypothesis W[1] ̸= FPT. Our paper constructs an FPT
reduction from vector-valued CSPs to gap CSPs.

We remark that our vector-valued CSP instances are closely related to an M[1]-complete
problem MINI-3SAT [Fel03] where M[1] is an intermediate complexity class between FPT
and W[1]. Thus, unless M[1] = W[1], our proof may not be directly generalized to prove PIH
under W[1] ̸= FPT. We refer interested readers to [CG07] for a detailed discussion of these
complexity classes and hierarchies.

7

Paper Organization. In Section 2, we define necessary notation and introduce useful tools from
the literature. Then, the paper is organized in a modular manner. First, in Section 3, we present
the proof of our main result with the proofs of technical lemmas deferred to later sections. Then,
in Section 4, we show how to obtain a vector-valued CSP instance with desired structures from
3SAT as needed in Section 3. Next, in Section 5, we design the probabilistic verifier for parallel
constraints in the CSP instance, another building block needed in Section 3. Finally, in Section 6,
we give the probabilistic verifier for linear constraints in the CSP instance, the last missing piece
of Section 3.

2 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use log to denote the loga-
rithm with base 2. For an event E , we use 1E as the indicator function, which equals 1 if E happens
and equals 0 if otherwise. For disjoint sets S and T, we use S∪̇T to denote their union while em-
phasizing S ∩ T = ∅. For a prime power q = pt where p is a prime and t ≥ 1 is an integer, we use
Fq to denote the finite field of order pt and characteristic p.

We use superscript ⊤ to denote vector / matrix transpose. For two vectors u, v ∈ Fd, we use
⟨u, v⟩ to denote their inner product which equals u⊤v (or v⊤u). For two matrices A, B ∈ Fd×d, we
use ⟨A, B⟩ = ∑i,j∈[d] Ai,jBj,i to denote their inner product.

Throughout the paper, we use O(·), Θ(·), Ω(·) to hide absolute constants that do not depend
on any other parameter.

2.1 (Parameterized) Constraint Satisfaction Problems

CSP. In this paper, we only focus on constraint satisfaction problems (CSPs) of arity two. For-
mally, a CSP instance G is a quadruple (V, E, Σ, {Πe}e∈E), where:

• V is for the set of variables.

• E is for the set of constraints. Each constraint e = {ue, ve} ∈ E has arity 2 and is related to
two distinct variables ue, ve ∈ V.

The constraint graph is the undirected graph on vertices V and edges E. Note that we allow
multiple constraints between a same pair of variables and thus the constraint graph may
have parallel edges.

• Σ is for the alphabet of each variable in V. For convenience, we sometimes have different
alphabets for different variables and we will view them as a subset of a grand alphabet Σ
with some natural embedding.

• {Πe}e∈E is the set of constraint validity functions. Given a constraint e ∈ E, the validity func-
tion Πe(·, ·) : Σ × Σ → {0, 1} checks whether the constraint e between ue and ve is satisfied.

We use |G| = (|V|+ |E|) · |Σ| to denote the size of a CSP instance G.

Assignment and Satisfiability Value. An assignment is a function σ : V → Σ that assigns each
variable a value in the alphabet. The satisfiability value for an assignment σ, denoted by val(G, σ),
is the fraction of constraints satisfied by σ, i.e., val(G, σ) = 1

|E| ∑e∈E Πe(σ(ue), σ(ve)). The satisfia-
bility value for G, denoted by val(G), is the maximum satisfiability value among all assignments,

8

i.e., val(G) = maxσ : V→Σ val(G, σ). We say that an assignment σ is a solution to a CSP instance G if
val(G, σ) = 1, and G is satisfiable iff G has a solution.

When the context is clear, we omt σ in the description of a constraint, i.e., Πe(ue, ve) stands for
Π(σ(ue), σ(ve)).

Parameterization and Fixed Parameter Tractability. For an instance G, the parameterization refers
to attaching the parameter k := |V| (the size of the variable set) to G and treating the input as a
(G, k) pair. We think of k as a growing parameter that is much smaller than the instance size
n := |G|. A promise problem Lyes ∪ Lno is fixed parameter tractable (FPT) if it has an algorithm
which, for every instance G, decides whether G ∈ Lyes or G ∈ Lno in f (k) · nO(1) time for some
computable function f .

FPT Reduction. An FPT reduction from Lyes ∪ Lno to L′
yes ∪ L′

no is an algorithm A which, on every
input G = (V, E, Σ, {Πe}e∈E) outputs another instance G′ = (V ′, E′, Σ′, {Π′

e}e∈E′) such that:

• COMPLETENESS. If G ∈ Lyes, then G′ ∈ L′
yes.

• SOUNDNESS. If G ∈ Lno, then G′ ∈ L′
no.

• FPT. There exist universal computable functions f and g such that |V ′| ≤ g(|V|) and the
runtime of A is bounded by f (|V|) · |G|O(1).

ε-Gap k-CSP. We mainly focus on the gap version of the parameterized CSP problem. Formally,
an ε-GAP k-CSP problem needs to decide whether a given CSP instance (G, |V|) with |V| = k
satisfies val(G) = 1 or val(G) < 1 − ε. The exact version is equivalent to 0-GAP k-CSP.

Parameterized Inapproximability Hypothesis (PIH). Parameterized Inapproximability Hypothesis
(PIH), first4 formulated by Lokshtanov, Ramanujan, Saurabh, and Zehavi [LRSZ20], is a central
conjecture in the parameterized complexity theory, which, if true, serves as a parameterized coun-
terpart of the celebrated PCP theorem. Below, we present a slight reformulation of PIH, asserting
fixed parameter intractability (rather than W[1]-hardness specifically) of gap CSP.

Hypothesis 2.1 (PIH). For an absolute constant 0 < ε < 1, no FPT algorithm can decide ε-GAP k-CSP.

Exponential Time Hypothesis (ETH). Exponential Time Hypothesis (ETH), first proposed by Im-
pagliazzo and Paturi [IP01], is a famous strengthening of the P ̸= NP hypothesis and provides a
foundation for fine-grained understandings in the modern complexity theory.

Definition 2.2 (3SAT). A 3CNF formula φ on n Boolean variables is a conjunction of m clauses,
where each clause is a disjunction of three literals and each literal is a variable or its negation. The
goal of the 3SAT problem is to decide whether φ is satisfiable or not.

The original ETH is stated in the general 3SAT problem. In this paper, for convenience, we
use the following variant due to the sparsification lemma [IPZ01] and Tovy’s reduction [Tov84],
which gives 3SAT additional structure.

Hypothesis 2.3 (ETH). No algorithm can decide 3SAT within runtime 2o(n), where additionally each
variable is contained in at most four clauses and each clause contains exactly three distinct variables.5

4As noted in [LRSZ20], prior to their work, this hypothesis was already informally stated by quite a few researchers
as a natural formulation of the PCP theorem in parameterized complexity.

5We say a variable x is contained in a clause C if the literal x or ¬x appears in C.

9

2.2 Parallel Walsh-Hadamard Code

As mentioned in Subsection 1.2, the key step to bypass the obstacle in previous constructions is
vectorization and parallel encoding of an error correcting code. In this paper, we only consider
the parallelization of the famous Walsh-Hadamard code, a classic error correcting code that is locally
testable and correctable. First, we recall standard notions in coding theory.

Given two words (aka strings) x, y ∈ ΣK and same length K, their relative distance ∆(x, y) is the
fraction of coordinates that they differ, i.e., ∆(x, y) = 1

K |{i ∈ [K] : xi ̸= yi}|. We say x ∈ ΣK is δ-far
(resp., δ-close) from a set of words S ⊆ ΣK if ∆(x, S) := miny∈S ∆(x, y) ≥ δ (resp., ≤ δ).

Definition 2.4 (Error Correcting Codes (ECCs)). An error correcting code is the image of the en-
coding map C : Σk

1 → ΣK
2 with message length k, codeword length K. We say that the ECC has a

relative distance δ if ∆(C(x), C(y)) ≥ δ holds for any distinct x, y ∈ Σk
1. We use Im(C) to denote

the codewords of C.

Definition 2.5 (Parallel Walsh-Hadamard Code). Let F be a finite field and (a1, a2, . . . , ak) ∈ (Fd)k

be a tuple of k vectors in Fd. We view it as a matrix A = (a1, a2, . . . , ak) ∈ Fd×k where the i-th
column is the vector ai.

The parallel Walsh-Hadamard encoding PWH(A) of A is a codeword indexed by Fk where each
entry is a vector in Fd. Alternatively, PWH(A) is a function mapping Fk to Fd that enumerates linear
combinations of the column vectors of A. Formally, for each b ∈ Fk, we have PWH(A)[b] = Ab.

We remark that the parallel Walsh-Hadamard code is also known as interleaved Hadamard
code and linear transformation code [GGR11, DGKS08].

In the notation of Definition 2.4, PWH has Σ1 = Fd, Σ2 = Fd, and K = |F|k. Note that when
d = 1, the parallel Walsh-Hadamard code coincides with the standard Walsh-Hadamard code. It
is clear that PWH has the relative distance δ = 1− 1

|F| , which is at least 1
2 since |F| ≥ 2 holds always.

Local Testability and Correctability. Fix a word w ∈ (Fd)Fk
and treat it as a map from Fk to Fd.

To test whether w is close to a codeword of PWH, we perform the famous BLR test [BLR93], which
samples uniformly random a, b ∈ Fk and accept if w[a] + w[b] = w[a + b] by three queries to w.
The following theorem establishes the soundness of this test.

Theorem 2.6. If Pra,b∈Fk [w[a] + w[b] = w[a + b]] ≥ 1 − ε, then ∆(x, Im(PWH)) ≤ 6ε.

Proof. If ε < 1/6, we apply the bound from [Gol16, Theorem 3] and obtain ∆(x, Im(PWH)) ≤ 2ε ≤
6ε. Otherwise ε ≥ 1/6 and we naturally have ∆(x, Im(PWH)) ≤ 1 ≤ 6ε.

Assume w is η-close to an actual codeword w∗ of PWH. To obtain the value of w∗[x] for some
x ∈ Fk, we can draw a uniform a ∈ Fk and compute w[x + a]−w[a] by two queries. The following
fact concerns the soundness of this procedure.

Fact 2.7. If w is η-close to some w∗ ∈ Im(PWH), then Pra∈Fk [w[x + a]− w[a] = w∗[x]] ≥ 1 − 2η.

2.3 Probabilistic Checkable Proofs with Proximity

Probabilistic Checkable Proofs of Proximity (PCPP, also known as assignment testers) [BGH+06,
DR06] are essential gadgets when proving the PCP theorem [AS98, Din07, AB09]. There, the gad-
get is used to verify whether a set of Boolean variables is close to a solution of a formula given by
a circuit.

10

In this paper, we reformulate PCPP under the parameterized regime. Our reformulation is
compatible with the parallel encoding. To conveniently combine different PCPPs, we specialize
PCPPs into their PWH-based constructions.6 Formally, we define the following parallel probabilistic
checkable proofs with proximity (PPCPP).

Definition 2.8 ((q, δ, ε, f , g)-PPCPPs). Let f and g be two computable functions. Given a finite
field F and a CSP instance G = (V, E, Σ, {Πe}e∈E) where Σ = Fd. Its (q, δ, ε, f , g)-PPCPP is a
randomized verifier A with the following workflow: Recall that k = |V| is the parameter of the
CSP instance G.

• A takes as input two blocks of proofs π1 ◦ π2 with alphabet Fd, where:

– π1 has length |F|k with entries indexed by vectors in Fk, which is supposed to be the
parallel Walsh-Hadamard encoding of some assignment to V.

– π2 has length at most f (k). It is an auxiliary proof enabling an efficient verification
procedure.

• A chooses a uniform r ∈ [RA], where RA is at most g(k), queries at most q positions in π1 ◦π2
based on r, and decides to accept or reject the proof after getting the query result.

• The list of queries made by A can be generated in time at most h(k) · |G|O(1) for some com-
putable function h.

The verifier A has the following properties.

• COMPLETENESS. For every solution σ of G, there exists a π2 such that Pr[A accepts PWH(σ) ◦
π2] = 1, where we treat an assignment σ : V → Fd as a vector in (Fd)|V|.

• SOUNDNESS. If Pr[A accepts π1 ◦ π2] ≥ 1 − ε, there exists some solution σ of G such that
∆(π1, PWH(σ)) ≤ δ.

Intuitively, PPCPPs check whether π1 is close to the Walsh-Hadamard encoding of some so-
lution of G. Like the traditional PCPP, parallel PCPPs are also tightly connected with CSPs. The
following standard reduction establishes the connection.

Definition 2.9 (Reduction from PPCPPs to CSPs). Given a (q, δ, ε, f , g)-PPCPP verifier A for a CSP
G = (V, E, Σ, {Πe}e∈E) with Σ = Fd, we define a CSP instance G′ = (V ′, E′, Σ′, {Π′

e}e∈E′), where
V ′ = V ′

1∪̇V ′
2∪̇V ′

3 and Σ′ = (Fd)q, by the following steps:

• First, for i = 1, 2, we treat each position of πi as a single variable in V ′
i with alphabet Fd.

Note that |V ′
1| = |F|k and |V ′

2| ≤ f (k).

• Then, for each randomness r ∈ [RA], let Sr be the set of query positions over π1 ◦ π2 under
randomness r; and we add a supernode zr to V ′

3 whose alphabet is (Fd)|Sr |, i.e., all possible
configurations of the query result. Note that |V ′

3| ≤ g(k).

• Finally, we add constraints between zr and every query position i ∈ Sr. The constraint checks
whether zr is an accepting configuration, and the assignment of the position i is consistent
with the assignment of zr.

6The choice of encoding is typically abstracted out in standard definitions of PCPPs.

11

By construction, we can see that the completeness and soundness are preserved up to a factor
of q under this reduction, where the loss comes from the construction where we split q queries into
q consistency checks. In addition, since |π1 ◦ π2| ≤ |F|k + f (k), RA ≤ g(k), and the list of queries
made by A can be generated in time h(k) · |G|O(1), the reduction from G to G′ is a FPT reduction.

Fact 2.10. The reduction described in Definition 2.9 is an FPT reduction. Recall that k = |V| is the
parameter of G and Σ = Fd is the alphabet of G. We have the following properties for G′:

• ALPHABET. The alphabet of G′ is Σ′ = Fd·q.

• PARAMETER BLOWUP. The parameter of G′ is |V ′| ≤ |F|k + f (k) + g(k).

• COMPLETENESS. For every solution σ of G, there exists a solution σ′ of G′ assigning PWH(σ) to V ′
1.

• SOUNDNESS. For any assignment σ′ satisfying 1 − ε
q fraction of the constraints in G′, there exists

a solution σ of G such that ∆(σ′(V ′
1), PWH(σ)) ≤ δ.

3 Proof of The Main Theorem

In this section, we prove the following quantitative version of our main theorem (Theorem 1.2).
To depict a clear picture, we will treat some technical constructions as black-boxes and relegate
their proofs in subsequent sections.

Theorem 3.1. Assume ETH is true. No algorithm can decide 1
9600 -GAP k-CSP within runtime f (k) ·

no(
√

log log k) for any computable function f .

As a byproduct of the quantitative analysis, we also have the following PCP-style theorem,
which can be viewed as a parameterized PCP theorem.

Theorem 3.2. For any integer k ≥ 1, 3SAT has a PCP verifier which

• can be constructed in time f (k) · |Σ|O(1) for some computable function f ,

• makes two queries on a proof of length 22O(k2)
and alphabet size |Σ| = 2O(n/k),

• has perfect completeness and soundness 1 − 1
9600 .

Our proof relies on an intermediate structured CSP, termed Vector-Valued CSPs (VecCSP for
short).

Definition 3.3 (Vector-Valued CSP). A CSP instance G = (V, E, Σ, {Πe}e∈E) is a VecCSP if the
following additional properties hold.

• Σ = Fd is a d-dimensional vector space over a finite field F with characteristic 2.

• For each constraint e = {u, v} ∈ E where u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd), the
constraint validity function Πe is classified as one of the following forms in order7:

– LINEAR. There exists a matrix8 Me ∈ Fd×d such that

Πe(u, v) = 1u=Mev.
7A constraint can be both linear and parallel (e.g., equality constraint). In this case, we classify it as linear instead of

parallel, consistent with the order defined here.
8In the instance reduced from 3SAT, Me is always a permutation matrix.

12

Figure 1: An example of a vector-valued CSP.

– PARALLEL. There exists a sub-constraint Πsub
e : F × F → {0, 1} and a subset of coordi-

nates Qe ⊆ [d] such that Πe checks Πsub
e for every coordinate in Qe, i.e.,

Πe(u, v) =
∧

i∈Qe

Πsub
e (ui, vi).

• Each variable is related to at most one parallel constraint.

We refer to Figure 1 as an illustration of VecCSP.
Our reduction is accomplished by combining two separate sub-reductions. First, in Subsec-

tion 3.1, we provide a reduction from 3SAT to VecCSPs. Second, in Subsection 3.2, we provide
another reduction from VecCSPs to parameterized CSPs of constant gap. Finally, in Subsection 3.3,
we show how to combine the two reductions above to prove Theorem 3.1 and Theorem 3.2.

3.1 Reduction I: From 3SAT to Vector-Valued CSPs

In this step, we reduce 3SAT to VecCSPs. By Hypothesis 2.3, we may assume 3SAT has some
additional structure.

Theorem 3.4 (Proved in Section 4). There is a reduction algorithm such that the following holds. For
any positive integer ℓ and given as input a SAT formula φ of n variables and m clauses, where each variable
is contained in at most four clauses and each clause contains exactly three distinct variables, the reduction
algorithm produces a VecCSP instance G = (V, E, Σ, {Πe}e∈E) where:

(S1) VARIABLES AND CONSTRAINTS. |V| = 48ℓ2 and |E| = 72ℓ2.

(S2) RUNTIME. The reduction runs in time ℓO(1) · 2O(n/ℓ).

(S3) ALPHABET. Σ = Fd
8 where d = max {⌈m/ℓ⌉ , ⌈n/ℓ⌉}.

(S4) COMPLETENESS AND SOUNDNESS. G is satisfiable iff φ is satisfiable.

13

3.2 Reduction II: From Vector-Valued CSPs to Gap CSPs

Now we present our gap-producing reduction from VecCSPs to instances of ε-GAP k-CSP.

Theorem 3.5. Fix an absolute constant ε∗ = 1
9600 . There is a reduction algorithm such that the following

holds. Given as input a VecCSP instance G = (V, E, Σ = Fd, {Πe}e∈E) where

• k = |V| is the parameter of G,

• |F| = 2t ≤ h(k) for some computable function h,

• |E| ≤ m(k)9 for some computable function m such that m(k) ≥ 1,

the reduction algorithm produces a CSP instance G∗ = (V∗, E∗, Σ∗ = F4d, {Π∗
e }e∈E∗) where:

• FPT REDUCTION. The reduction from G to G∗ is an FPT reduction.

• PARAMETER BLOWUP. The parameter of G∗ is |V∗| ≤ 22k ·m(k)·|F|O(1)
.

• COMPLETENESS. If G is satisfiable, then G∗ is satisfiable.

• SOUNDNESS. If G is not satisfiable, then val(G∗) < 1 − ε∗.

Below, we present our reduction and proof for Theorem 3.5. Fix a VecCSP instance G =
(V, E, Σ, {Πe}e∈E) satisfying the conditions in Theorem 3.5. Our reduction is achieved in three
steps.

3.2.1 Step a: Instance Splitting

Recall that G has two kinds of constraints: linear and parallel constraints. In this step, we partition
the constraint set E into two parts EL∪̇EP, where EL and EP consist of all linear and parallel con-
straints of E, and define GL = (V, EL, Σ, {Πe}e∈EL) and GP = (V, EP, Σ, {Πe}e∈EP) as the sub-CSP
instance where the constraint set is EL and EP, respectively. Note that GL and GP are still VecCSPs
with the same parameter k = |V|. Furthermore, we have the simple observation as follows.

Fact 3.6. For every assignment σ over V, σ is a solution of G if and only if it is the solution of both GL and
GP.

3.2.2 Step b: Designing Parallel PCPPs for Sub-Instances

In this step, we construct PPCPP verifiers AL and AP in FPT time to test whether all constraints in
GL and GP are satisfied, respectively. We first handle parallel constraints and obtain AP.

Proposition 3.7 (PPCPP for Parallel Constraints. Proved in Section 5). Let h be a computable func-
tion. Let G be a VecCSP instance with k variables where (1) the alphabet is Fd and |F| = 2t ≤ h(k),
and (2) all constraints are parallel constraints. Then for every ε ∈ (0, 1

800), there is a (4, 48ε, ε, f (k) =

22k ·|F|O(1)
, g(k) = 22k ·|F|O(1)

)-PPCPP verifier for G, where f (k) is the length of the auxiliary proof, and g(k)
is the number of random choices.

9Note that we allow multiple constraints between a same pair of variables. Hence in general |E| may not be bounded
by a function of k.

14

Recall that the alphabet of G is Fd where |F| = 2t, and GP consists of parallel constraints of
G only. Thus, by plugging ε = 1

1200 into the proposition above, we can obtain a (qP = 4, δP =
1
25 , εP = 1

1200 , fP(k) = 22k ·|F|O(1)
, gP(k) = 22k ·|F|O(1)

)-PPCPP verifier AP for GP. Now, we turn to
linear constraints and obtain AL.

Proposition 3.8 (PPCPP for Linear Constraints. Proved in Section 6). Let h and m be two computable
functions. Let G be a VecCSP instance with k variables where (1) the alphabet is Fd and |F| ≤ h(k), (2) all
constraints are linear constraints, and (3) there are at most m(k) constraints. Then for every ε ∈

(
0, 1

400

)
,

there is a (4, 24ε, ε, f (k) = |F|k·m(k), g(k) = |F|8k·m(k))-PPCPP verifier for G.

By plugging ε = 1
600 into the proposition above, we can derive a (qL = 4, δL = 1

25 , εL =
1

600 , fL(k) = |F|k·m(k), gL(k) = |F|8k·m(k))-PPCPP verifier AL for GL.
Now, we combine AL and AP into a single PPCPP A for the general VecCSP G from Theo-

rem 3.5. In step c, we will convert A into a CSP instance with an inherent gap, completing the
proof of Theorem 3.5.

Here A executes AL and AP as in a black-box way where A takes π1 ◦ πL ◦ πP as a proof and
with equal probability, A invokes AL with proof π1 ◦ πL or invokes AP with proof π1 ◦ πP.

Intuitively, π1 serves as a unified encoding of a solution of G via the parallel Walsh-Hadamard
code PWH, and πL and πP are auxiliary proofs to convince AL and AP respectively. The following
proposition shows that A is a PPCPP that efficiently checks all the constraints in G.

Proposition 3.9 (Combined PCPP). Given a VecCSP instance G satisfying the preconditions in The-
orem 3.5, the verifier A described above is a (q = 4, δ = 1

25 , ε = 1
2400 , f (k) = 22k ·m(k)·|F|O(1)

, g(k) =

22k ·m(k)·|F|O(1)
)-PPCPP verifier for G.

Proof. Since A invokes either AL or AP, the number of queries is the maximum of qL = 4 and
qP = 4. The length of the auxiliary proof is

|πL ◦ πP| ≤ fL(k) + fP(k) = |F|k·m(k) + 22k ·|F|O(1) ≤ 22k ·m(k)·|F|O(1)
= f (k).

For alignment, we pad the randomness of AP and AL to ensure that they have same amount

R ≤ gP(k)gL(k) = |F|8k·m(k) · 22k ·|F|O(1) ≤ 22k ·m(k)·|F|O(1)

of uniform choices. Thus the total number of uniform choices of A is 2R ≤ g(k). Finally, we
analyze the completeness and soundness.

Completeness. Let σ be a solution of G. We set π1 = PWH(σ). By Fact 3.6, σ is also a solution of
GL and GP. As a result, by the definition of PPCPP (Definition 2.8), there exists πL and πP such that
AL and AP always accept π1 ◦ πL and π1 ◦ πP respectively. Thus, A always accepts π1 ◦ πL ◦ πP.

Soundness. Assume A accepts π1 ◦ πL ◦ πP with probability at least 1 − ε. By construction,
AL accepts π1 ◦ πL with probability at least 1 − 2ε ≥ 1 − εL. Thus by the definition of PPCPP
(Definition 2.8), there exists a solution σL of GL such that ∆(π1, PWH(σL)) ≤ δL ≤ δ. Similarly for
AP, there exists a solution σP of GP such that ∆(π1, PWH(σP)) ≤ δ. Thus

∆(PWH(σP), PWH(σL)) ≤ 2δ <
1
2

.

Recall from Subsection 2.2 that the relative distance of PWH is at least 1
2 . Hence we must have that

σL = σP, which means σL = σP is a solution of G such that ∆(π1, PWH(σL)) ≤ δ.

15

3.2.3 Step c: Reducing Parallel PCPPs to Gap CSPs

Finally, we complete the proof of Theorem 3.5 by converting the verifier A into a constant-gap
parameterized CSP G∗.

Proof of Theorem 3.5. Set G∗ = (V∗, E∗, Σ∗, {Π∗
e }e∈E∗) to be the CSP instance obtained by applying

the reduction in Definition 2.9 on the verifier A. Then the claimed runtime of the reduction, as
well as the alphabet size, completeness and soundness of G∗, follow immediately from combining
Proposition 3.9 and Fact 2.10. Here we simply note the parameter blowup:

|V∗| ≤ |F|k + f (k) + g(k) = 22k ·m(k)·|F|O(1)
.

3.3 Putting Everything Together

In this part, we combine Theorem 3.4 and Theorem 3.5 to prove Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1. Assuming ETH (Hypothesis 2.3), there is no 2o(n) algorithm for deciding
3SAT formula φ where each variable is contained in at most four clauses and each clause con-
tains exactly three distinct variables. For any such a formula φ, we show how to reduce φ to a
parameterized CSP instance G∗ with a constant inherent gap.

Let ℓ be a parameter to be chosen later. We first invoke Theorem 3.4 and obtain a VecCSP
instance G in ℓO(1) · 2O(n/ℓ) time where:

• There are k = 48ℓ2 variables and their alphabet is Fd
8 with d = O(n/ℓ).

• G is satisfiable iff φ is satisfiable.

Note that the size of G is |G| = ℓO(1) · 2O(n/ℓ).
Then we apply Theorem 3.5 on G with parameters h(k) = 8 and m(k) = 2k. After this reduc-

tion, we obtain a CSP instance G∗ = (V∗, E∗, Σ∗, {Π∗
e }e∈E∗) such that:

• The runtime and instance size N := |G∗| of the reduction are bounded by r1(k) · |G|O(1) =
r2(ℓ) · 2O(n/ℓ) for some computable functions r1, r2.

• The parameter of G∗ is K = |V∗| ≤ 22O(k)
= 22O(ℓ2)

.

• If G is satisfiable, then G∗ is satisfiable.

• If G is not satisfiable, then val(G∗) < 1 − 1
9600 .

In the paramterized complexity theory, we treat the parameter K = |G∗| of G∗ as a super-
constant that is much smaller than the size N = |G∗| of G∗. This means that the initial param-
eter ℓ is also a superconstant that is much smaller than n. Therefore the total reduction time
ℓO(1) · 2O(n/ℓ) + r2(ℓ) · 2O(n/ℓ) is still 2o(n).

Since the size of G∗ is N ≤ r2(ℓ) · 2O(n/ℓ), ETH (Hypothesis 2.3) rules out any algorithm

with runtime (N/r2(ℓ))o(ℓ) to decide
(1

9600

)
-GAP K-CSP. Since K ≤ 22O(ℓ2)

and by the same pa-
rameterized complexity theoretic perspective, this encompasses algorithms with runtime f (K) ·
No(

√
log log K) for any computable function f .

The above quantitative analysis readily gives the PCP-style statement (Theorem 3.2).

16

Proof of Theorem 3.2. Given a 3SAT formula of size n, we apply the sparsification lemma [IPZ01]
and Tovy’s reduction [Tov84] to obtain a 3SAT instance φ on n Boolean variables where each vari-
able is contained in at most four clauses and each clauses contains exactly three distinct variables.
In addition, this reduction runs in nO(1) time and preserves the satisfiability of the original 3SAT
formula.

Let ℓ ≥ 1 be a parameter. Then we apply the analysis of Theorem 3.1 on φ to obtain a CSP
instance G∗ = (V∗, E∗, Σ∗, {Π∗

e }e∈E∗) with |V∗| = K variables and alphabet size |Σ∗| ≤ 2O(n/ℓ)

in time r2(ℓ) · 2O(n/ℓ), where K = 22O(ℓ2)
and r2 is some computable function. In addition, if φ is

satisfiable, then val(G∗) = 1; otherwise val(G∗) < 1 − 1
9600 .

Now a PCP verifier takes a proof π : V∗ → Σ∗, viewed as a string of length K and alphabet
Σ∗, and picks a uniform random constraint e ∈ E∗ to check. Note that the runtime of this verifier
is bounded by the size |G∗| ≤ r2(ℓ) · 2O(n/ℓ) of G∗. If the original 3SAT formula is satisfiable,
then φ is satisfiable and thus there exists a proof that always passes the check. Otherwise, by the
soundness guarantee of G∗, any proof will violate at least 1

9600 fraction of the constraints in E∗,
which implies the soundness gap of the PCP verifier. Setting ℓ = k and f (k) = r2(k) completes
the proof of Theorem 3.2.

4 From 3SAT to Vector-Valued CSP

This section is devoted to the proof of Theorem 3.4 which shows how to obtain a VecCSP from a
3SAT instance.

Before going to the details, we mark the high level picture of the reduction as follows:

1. First, we divide the clauses and variables of the 3SAT instance φ into k parts, and build
a vector-valued variable (in the following, we will denote them as “vertices” in order to
distinguish them from the variables in φ) for each part of clauses and each part of variables.
Then we apply tests for checking the consistency between clauses and variables.

2. Next, we appropriately duplicate each vertex into several copies. Then we split the con-
straints and spread them out to different copies of vertices, such that

• each vertex is related to at most one constraint;

• the sub-constraints inside each constraint form a matching on the 2d coordinates of the
two endpoints.

3. Finally, given the properties above, we can rearrange the d coordinates of each vertex ac-
cording to its only constraint, to make the sub-constraints parallel. Furthermore, we add a
cycle of constraints on the copies of each vertex, forcing them to take the same value (before
rearranging the coordinates). Such constraints are then permuted equalities, which are in
turn special linear constraints.

We refer to Figure 2 for an informal illustration of the above process.

Theorem (Theorem 3.4 Restated). There is a reduction algorithm such that the following holds. For any
positive integer ℓ and given as input a SAT formula φ of n variables and m clauses, where each variable
is contained in at most four clauses and each clause contains exactly three distinct variables, the reduction
algorithm produces a VecCSP instance G = (V, E, Σ, {Πe}e∈E) in ℓO(1) · 2O(n/ℓ) time, where:

(S1) VARIABLES AND CONSTRAINTS. |V| = 48ℓ2 and |E| = 72ℓ2.

17

Figure 2: An example showing the vertex duplicating and constraint splitting steps.

(S2) RUNTIME. The reduction runs in time ℓO(1) · 2O(n/ℓ).

(S3) ALPHABET. Σ = Fd
8 where d = max {⌈m/ℓ⌉ , ⌈n/ℓ⌉}.

(S4) COMPLETENESS AND SOUNDNESS. G is satisfiable iff φ is satisfiable.

Fix φ and ℓ from Theorem 3.4. For each variable, we fix an arbitrary order of its (at most four)
appearances in clauses. The order is used to construct parallel constraints.

We partition m clauses of φ into C1, . . . , Cℓ where each Ci contains at most ⌈m/ℓ⌉ clauses. Sim-
ilarly we partition n variables of φ into V1, . . . ,Vℓ where each Vi contains at most ⌈n/ℓ⌉ variables.
For each clause C ∈ C1∪̇ · · · ∪̇Cℓ, we identify F8 = {0, 1}3 as the set of partial assignments to
the clause C, where (0, 0, 0) ∈ F8 is the only unsatisfying assignment of C. For each variable
x ∈ V1∪̇ · · · ∪̇Vℓ, we also treat its assignment ∈ {0, 1} as an element of F8.

Formally, given a clause C = yi1 ∨ yi2 ∨ yi3 , where each literal yij equals variable xij or its
negation ¬xij , every τ ∈ F8, viewed as an element in {0, 1}3, corresponds to a unique assignment
by setting yij = τ(j) for j ∈ [3], which in turn assigns the value of xij .

Now we define six tests as sub-constraints to be used later. For j ∈ [3] and b ∈ {0, 1}, we define
Πj,b : F8 × F8 → {0, 1} by

Πj,b(τ, c) = 1c∈{0,1} · 1τ ̸=(0,0,0) · 1τ(j)=c⊕b,

Intuitively, these constraints checks that: (1) the variable assignment is binary, (2) the clause as-
signment is satisfying, and (3) the clause assignment and variable assignment are consistent.

Vertices and Alphabets. We first define the vertices and the alphabet of G. In detail, for each

p ∈ [ℓ], q ∈ [ℓ], j ∈ [3], s ∈ [4], b ∈ {0, 1}, we put into V a vertex zp,q,j,s,b with alphabet F
|Cp|
8 , and

a vertex wp,q,j,s,b with alphabet F
|Vq|
8 . Intuitively, each vector entry of zp,q,j,s,b corresponds to the

assignment of a clause ∈ Cp, and each vector entry of wp,q,j,s,b corresponds to the assignment of a
variable ∈ Vq. Thus, we index entries of zp,q,j,s,b by clauses in Cp and entries of wp,q,j,s,b by variables
in Vq. Since d = max{⌈m/ℓ⌉, ⌈n/ℓ⌉} = max{|Cp|, |Vq|}, some entries may be left unused.

At a high level, the vertices zp,q,j,s,b and wp,q,j,s,b are duplicates of assignments to Cp and Vq
respectively. They will be used to check the test Πj,b between clauses in Cp and variables in Vq for

18

the s-th appearance. Note that since we assume that every variable in φ is contained in at most
four clauses, we can safely restrict the range of s to be [4].

Now, we can verify that Item (S1) holds since in total we have ℓ · ℓ · 3 · 2 · 4 · 2 = 48ℓ2 vertices
in V and each vertex is related to one parallel constraint and two linear constraints. In addition,
Item (S3) holds since all variables have alphabet Fd

8.

Constraints. Below, we describe the constraints in the VecCSP G. At the beginning, we add
parallel constraint between zp,q,j,s,b and wp,q,j,s,b. For simplicity, in this paragraph, we use ζ to
denote a choice of p ∈ [ℓ], q ∈ [ℓ], j ∈ [3], s ∈ [4]. Below, we enumerate every ζ ∈ [ℓ]× [ℓ]× [3]× [4]
and b ∈ {0, 1}. We first define

Tζ,0 =
{
(C, x) ∈ Cp × Vq : the s-th appearance of variable x is the j-th literal in clause C as x

}
and

Tζ,1 =
{
(C, x) ∈ Cp × Vq : the s-th appearance of variable x is the j-th literal in clause C as ¬x

}
.

Then, for every (C, x) ∈ Tζ,b, we put a sub-constraint Πj,b (j is encapsulated in ζ = (p, q, j, s))
between the C-th entry of zζ,b and the x-th entry of wζ,b, which checks whether the assignment of
literals in C is consistent with the assignment of x. Observe that between entries of zζ,b and wζ,b,
we only put the sub-constraint Πj,b. In addition, Tζ,b forms a (not necessarily perfect) matching
over Cp × Vq ⊆ [d]× [d] as any two distinct (C, x), (C′, x′) ∈ Tζ,b satisfy C ̸= C′ and x ̸= x′. Thus,
we can rearrange entries of wζ,b so that the sub-constraints between zζ,b and wζ,b is parallel. We
use κζ,b : [d] → [d] to denote the permutation applied in the rearrangement, i.e., κζ,b(C) = x for all
(C, x) ∈ Tζ,b. Specifically, wζ,b is rearranged in such a way that its new C-th entry takes the value
of its old κζ,b(C)-th entry.

Finally, we remark that each variable wζ,b only need to be rearranged once according to κζ,b.
Thus, the constraint between zζ,b and wζ,b is well-defined. From the construction above, we ob-
tain a parallel constraint e :=

{
zζ,b, wζ,b

}
∈ E with the sub-constraint Πsub

e = Πj,b and Qe ={
C : (C, x) ∈ Tζ,b

}
.

After adding constraints for “clause-variable” consistency, we need to further establish consis-
tency check to ensure zp,·,·,·,· corresponds to the same assignment over Cp. Similarly, we also need
a consistency check to ensure that w·,q,·,·,· corresponds to the same assignment for Vq. Thus, we
need constraints as follows.

• For each p ∈ [ℓ], we connect {zp,q,j,s,b : q ∈ [ℓ], j ∈ [3], s ∈ [4], b ∈ {0, 1}} in the constraint
graph G by an arbitrary cycle (denoted by the cycle of Cp), where every constraint in this
cycle is a linear constraint. In detail, for every two vertices ẑ = zp,q,j,s,b and z̃ = zp,q′,j′,b′,s′

connected in the cycle of Cp, we impose the linear constraint that 1ẑ=z̃.

• Similarly, for each q ∈ [ℓ], we also connect {wp,q,j,s,b : p ∈ [ℓ], j ∈ [3], s ∈ [4], b ∈ {0, 1}} in the
constraint graph G by an arbitrary cycle (denoted by the cycle of Vq). Also, every constraint
in this cycle is a linear constraint. Note that we have rearragned wp,q,j,s,b by the permutation
κp,q,j,s,b to ensure the constraint between z and w is parallel. Thus, we add the permutated
equality between two connected vertices ŵ and w̃ in the cycle. In detail, we impose the
linear constraint that 1ŵ=Mŵ,w̃w̃ where Mŵ,w̃ ∈ {0, 1}d×d is the permutation matrix of the
permutation κŵ ◦ κ−1

w̃ .

To see that the instance is indeed a VecCSP, we observe that every zp,q,j,s,b and wp,q,j,s,b is related
to at most one parallel constraint.

19

Since every variable of ϕ is contained in at most four clauses and every clause contains three
distinct variables, we have m ≤ 4n/3. Hence |Σ| = 8d = 2O(n/ℓ) and the construction of G above
can be done in time ℓO(1) · 2O(n/ℓ), showing Item (S2).

Finally, we establish the completeness and soundness to verify Item (S4), which almost writes
itself given the construction above.

Completeness. Assume φ is satisfiable by an assignment σ to the variables. This implies an
assignment τ to the literals in clauses. Then for each entry C of zp,q,j,s,b, we assign it as τ(C), which
is among {0, 1}3 \ {(0, 0, 0)} as σ is a satisfying assignment. For each entry x of wp,q,j,s,b, we assign
it as σ(x).

It is easy to see that the linear constraints in G are all satisfied, since those are simply checking
equality of the assignments. For parallel constraints, we observe that each sub-constraint Πj,b
between entry C of zp,q,j,s,b and entry x of wp,q,j,s,b checks whether x is assigned to be consistent
with its appearance in C, where b indicates if x appears as literal x or ¬x, and j represents the
location of this literal in C. Since our assignments of these vertices are based on the assignment σ,
it naturally passes all the tests, which finishes the proof of completeness.

Soundness. Assume G is satisfiable. By the linear constraints among z’s in G, we obtain an
assignment τ to the clauses of φ that satisfies each clause, and by the linear constraints among w’s
in G, we obtain an assignment σ to each variable. Now it remains to show that τ is consistent with
σ, implying that σ really corresponds to a solution of φ.

Assume towards contradiction that the value τ assigns variable x ∈ Vq in clause C ∈ Cp is
different from σ(x). Assume C is the s-th appearance of variable x and x is at its location j ∈ [3].
In addition, let b ∈ {0, 1} indicate whether x appears as literal ¬x in C. Then we have a sub-
constraint Πj,b between the entry C of zp,q,j,b,s and the entry x (before rearrangement) of wp,q,j,b,s.
This is a contradiction since the test Πj,b will force τ(C) to assign variable x the same value as
σ(x), which completes the proof of soundness.

5 Parallel PCPPs for Vector-Valued CSPs with Parallel Constraints

This section is devoted to proving Proposition 3.7, which is restated as follows.

Proposition (Proposition 3.7 Restated). Let h be a computable function. Let G be a VecCSP instance
with k variables where (1) the alphabet is Fd and |F| = 2t ≤ h(k), and (2) all constraints are parallel
constraints. Then for every ε ∈ (0, 1

800), there is a (4, 48ε, ε, f (k) = 22k ·|F|O(1)
, g(k) = 22k ·|F|O(1)

)-PPCPP
verifier for G.

The construction of PPCPP in this section is a generalization of an assignment tester used in the
proof of the classic exponential length PCP showing result NP ⊆ PCP[poly(n), O(1)] [ALM+98].
There, we first convert a Boolean circuit to a quadratic equation system (known as the QUADEQ

problem) such that they share the same satisfiability, then we use the Walsh-Hadamard code to
encode an assignment to the quadratic equation system and certify its satisfiability.

Our analysis relies on the famous random subsum principle (see e.g., [AB09]), demonstrated
as follows.

Lemma 5.1 (Random Subsum Principle). Given a finite field F and distinct M1, M2 ∈ Fℓ×ℓ′ with
ℓ, ℓ′ ≥ 1, then Prx∈Fℓ

[
x⊤M1 ̸= x⊤M2

]
≥ 1 − 1

|F| .

20

5.1 An Exposition of the QUADEQ Problem

In the following, we first define the QUADEQ problem, and then introduce a PCP verifier for it.
While this problem and the construction are standard in the literature (see, e.g., [AB09]), we choose
to give a brief exposition here for referencing purpose in our actual construction.

Definition 5.2 (QUADEQ). An instance Γ of the QUADEQ problem consists of q quadratic equations
on c binary variables, written concisely as D1, . . . , Dq ∈ Fc×c

2 and b1, . . . , bq ∈ F2. The goal of the
QUADEQ problem is to decide whether there exists a solution u ∈ Fc

2 such that u⊤Diu = bi holds
for all i ∈ [q].

The benefit of using the QUADEQ problem is that any Boolean circuit satisfiability problem can
be efficiently reduced to QUADEQ by introducing dummy variables.

Fact 5.3 (Folklore, see e.g., [AB09]). Any Boolean circuit10 C with c gates (including input gates) can be
converted into a QUADEQ instance Γ of c variables and q = O(c) equations in cO(1) time such that C is
satisfiable iff Γ is satisfiable.

Moreover, there is a one-to-one correspondence between entries of the assignment of Γ and gates of C such
that the following holds. Let u ∈ Fc

2 be an assignment of Γ. Then u is a solution of Γ iff C represents a valid
computation and outputs 1 after assigning values of entries of u to gates of C by the above correspondence.

The QUADEQ problem also admits an efficient randomized verifier. Given instance Γ, the
verifier will make at most four queries on a proof π and decide whether to accept or reject. If Γ
is satisfiable, then there is a proof that it always accepts; otherwise, it rejects every proof with a
constant probability.

For completeness and simplicity, we recall the standard (non-parallel) Walsh-Hadamard code
over F2, which enjoys the same local testability (Theorem 2.6) and correctability (Fact 2.7) as PWH.

Definition 5.4 (Walsh-Hadamard Code over F2). The Walsh-Hadamard encoding WH2(a) of a ∈ Fn
2

enumerates linear combinations of entries of a. Formally, WH2(a)[b] = a⊤b for each b ∈ Fn
2 .

The proof π for Γ consists of a length-2c binary string π1 and a length-2c2
binary string π2.

Here, π1 is supposed to be the Walsh-Hadamard encoding WH2(u) of a solution u ∈ Fc
2, and π2 is

supposed to be the Walsh-Hadamard encoding WH2(w) of w = uu⊤ ∈ Fc×c
2 where we view matrix

w as a length-c2 vector. Then, the verifier checks one of the following tests with equal probability.

1. LINEARITY TEST. Perform BLR test (recall from Subsection 2.2) on π1 or π2 with equal prob-
ability and three queries.

By Theorem 2.6, if the test passes with high probability, then π1 and π2 are close to WH2(u)
and WH2(w) of some u ∈ Fc

2 and w ∈ Fc×c
2 respectively. By the local correctability (Fact 2.7),

we can assume that we have access to WH2(u), WH2(w) via π1, π2.

2. TENSOR TEST. Test whether the w equals to uu⊤. This is achieved by generating uniformly
random vectors r, r′ ∈ Fc

2 and making four queries, where two queries are used to obtain
WH2(u)[r] and WH2(u)[r′], and the other two queries are used to locally correct WH2(w)[r′r⊤] via
Fact 2.7. The test accepts if WH2(w)[r′r⊤] = r⊤wr′ equals WH2(u)[r] · WH2(u)[r′] = r⊤(uu⊤)r′.

By applying the random subsum principle (Lemma 5.1) twice, we know that if the test passes
with high probability, then w = uu⊤. Now, we can assume that w = uu⊤.

10A Boolean circuit consists of input gates, as well as AND, OR, NOT gates with fan-in (at most) two and fan-out
unbounded. Here, we focus on Boolean circuits with a single output gate.

21

3. CONSTRAINT TEST. Check whether u is a solution of Γ, i.e., whether u⊤Diu = bi holds for
every i ∈ [q]. This is achieved by generating a uniform H ⊆ [q] and making two queries to lo-
cally correct WH2(w) [∑i∈H Di] via Fact 2.7. The test accepts if WH2(w) [∑i∈H Di] = ∑i∈H u⊤Diu
equals ∑i∈H bi.

By Lemma 5.1, if the test passes with high probability, then u is indeed a solution.

5.2 From Parallel Constraints to Parallel QUADEQ

We will generalize the above verifier to the parallel setting to prove Proposition 3.7. To this end,
we first need to convert the parallel constraints into the QUADEQ form. Here, we will have parallel
QUADEQ since the alphabet of VecCSP is a vector space of d coordinates.

Recall that we are given a VecCSP instance G from Proposition 3.7 with k variables and alpha-
bet Fd, where |F| = 2t and all constraints are parallel constraints. We use V = {x1, . . . , xk} to
denote the variables in G, and use E = {e1, . . . , em} to denote the constraints in G. Recall the defi-
nition of VecCSP (Definition 3.3). We know that each variable is related with at most one parallel
constraint, which implies m ≤ k/2. By rearranging, we assume without loss of generality that eℓ
connects x2ℓ−1 and x2ℓ for each ℓ ∈ [m]. We also recall that a parallel constraint eℓ checks a specific
sub-constraint Πℓ : F × F → {0, 1} on all coordinates in Qℓ ⊆ [d] simultaneously between x2ℓ−1
and x2ℓ.

We will need the following additional notations:

• Let χ : F → Ft
2 be a one-to-one map that flattens elements in F into t bits. The map χ

preserves the addition operator, i.e., i.e, χ(a) + χ(b) = χ(a + b).

• For each sub-constraint Πℓ : F × F → {0, 1}, we define Πℓ : Ft
2 × Ft

2 → {0, 1} by setting
Πℓ(a, b) = Πe(χ−1(a), χ−1(b)) for all a, b ∈ Ft

2. In other words, we map sub-constraints with
field inputs to sub-constraints with binary bits as input.

Note that we can represent each Πℓ as a Boolean circuit of size 2O(t) in time 2O(t).

• For each coordinate j ∈ [d], we define κ(j) = {ℓ ∈ [m] : j ∈ Qℓ} as the set of sub-constraints
applied on the j-th coordinate.

• For each S ⊆ [m], we build a Boolean circuit CS to compute the conjunction of the sub-
constraints Πℓ for ℓ ∈ S.

Formally, CS is the Boolean function mapping Fk·t
2 to {0, 1} such that

CS(y1, . . . , yk) =
∧
ℓ∈S

Πℓ(y2ℓ−1, y2ℓ) =
∧
ℓ∈S

Πℓ

(
χ−1(y2ℓ−1), χ−1(y2ℓ)

)
,

where each yi ∈ Ft
2 is the binary representation of a coordinate of the original xi via additive

isomorphism χ.

By adding dummy gates, we assume each CS has exactly c = k · 2O(t) = k · |F|O(1) gates, since
the circuit representation of each Πℓ has size 2O(t). In addition, by rearranging indices, we
assume the first k · t gates are input gates corresponding to (y1, . . . , yk). The construction of
each CS can also be done in time k · |F|O(1).

We remark that the reason why we convert F into binary bits is that QUADEQ can only handle
binary circuits and sticking with F will require equation systems of higher degree to preserve the
satisfiability, which complicates the analysis.

22

Now the satisfiability of the VecCSP instance G is equivalent to the satisfiability of the Boolean
circuits CS’s. This is formalized in Claim 5.5. For convenience, for each assignment σ : V → Fd

of G and each coordinate j ∈ [d], we define σj : V → F as the sub-assignment of σ on the j-th
coordinate of all variables in V. Note that σ and σj can be equivalently viewed as vectors in (Fd)k

and Fk respectively.

Claim 5.5. Let σ : V → Fd be an assignment of V. Then σ is a solution of G iff Cκ(j)(y
j
1, . . . , yj

k) = 1

holds for every j ∈ [d], where each yj
i = χ(σj(xi)) is the binary representation of σj(xi).

At this point, we appeal to the QUADEQ problem to further encode the satisfiability of each
CS as the satisfiability of a quadratic equation system. For each S ⊆ [m], we construct a QUADEQ

instance ΓS by Fact 5.3, which consists of matrices DS,1, . . . , DS,q ∈ Fc×c
2 and bits bS,1, . . . , bS,q ∈ F2

with q = O(c). Note that we assume each ΓS shares the same quantity q by padding dummy
quadratic equations like D ≡ 0c×c, b ≡ 0. In addition, by the “moreover” part of Fact 5.3, we
assume the first k · t bits in an assignment u ∈ Fc

2 correspond to the input gates of the circuit CS;
and the rest corresponds to values of other gates in CS.

Then Claim 5.6 establishes the conversion from G to a parallel QUADEQ instance.

Claim 5.6. Let σ be an assignment of V. Recall that σj is the sub-assignment of σ on the j-th
coordinate. Let (DS,1, . . . , DS,q, bS,1, . . . , bS,q) be the QUADEQ instance ΓS for CS.

Then σ is a solution of G iff (uj)⊤Dκ(j),iuj = bκ(j),i holds for all j ∈ [d] and i ∈ [q], where each
uj ∈ Fc

2 is some vector with the first k · t bits equal to σj. In addition, we have c = k · |F|O(1) and
q = k · |F|O(1) here.

Moreover, uj represents the values of gates in Cκ(j) given as input the first k · t bits of uj.

We remark that the computation so far is very efficient and runs in FPT time since |F| ≤ h(k).

5.3 Designing Parallel PCPPs for Parallel QUADEQ

In light of Claim 5.6, we now aim to generalize the PCP verifier of QUADEQ to the parallel setting
to verify the computation on d coordinates simultaneously. The key observation is that, there are
only 2m = 2O(k) many different QUADEQ instances in Claim 5.6 since m ≤ k/2. Thus, by tensoring
up the proofs for different instances, we can access different positions in different proofs at the
same time while still in FPT time.

Recall that for every j ∈ [d], the set κ(j) ⊆ [m] is the set of sub-constraints applied on the j-th
coordinate. We abuse the notation to view each S ⊆ [m] as an integer in [2m] by some natural
bijection. For each S ∈ [2m], we recall that (DS,1, . . . , DS,q, bS,1, . . . , bS,q) is the QUADEQ instance ΓS

(see Claim 5.6) reduced from circuit CS (see Claim 5.5). We also recall that σj(xi) ∈ F is the j-th
entry of σ(xi) ∈ Fd. For clarity, we use PWH2 to denote the parallel Walsh-Hadamard encoding
with field F2 and reserve PWH for the parallel Walsh-Hadamard encoding with field F.

The verifier A is defined as follows.

Input of A. The verifier A takes as input π1 ◦ π2, where:

• π1 has length |F|k and alphabet Fd.

It is supposed to be PWH(σ) for an assignment σ to the variables of G.

• π2 consists of two parts: a 22m·c-length string τ1 with alphabet Fd
2 and a 22m·c2

-length string
τ2 with alphabet Fd

2.

23

Figure 3: The construction of u and its encoding τ1. Here d = 5 and m = 2.

τ1 and τ2 are supposed to be PWH2(u) and PWH2(w) for some u ∈ (Fd
2)

2m·c and w ∈ (Fd
2)

2m·c2

constructed as follows: for each j ∈ [d], we use uj ∈ Fc
2, wj ∈ Fc×c

2 to denote the proof11

that the binary representations of σj satisfy the circuit Cκ(j). For u (resp., w), we place uj

(resp., wj) on the j-th coordinate and at the κ(j)-th length-c (resp., length-c2) part, and leave
all remaining parts zero. See Figure 3 for an illustration.

We remark that the alphabet of the verifier A here has different alphabets (Fd and Fd
2) for π1

and π2. This is convenient for stating the tests and the analysis. To make it consistent with the
definition of PPCPP (Definition 2.8), we can simply perform a black-box reduction that equips π2
with alphabet Fd as well but rejects if any query result during the test is not from {0, 1}d ∼= Fd

2.
To get a sense of the detail inside τ1 (or τ2), we refer to Figure 4 where τ1 supposedly faithfully

stores PWH2(u). This will be helpful in understanding the tests of A below.

Figure 4: An illustration of τ1[α1, . . . , α2m].

11Technically this proof is for QUADEQ instance Γκ(j). But due to the correspondence in Fact 5.3 (or Claim 5.6), we
view it as a proof for the satisfiability of Cκ(j). In fact, uj is the values of gates in Cκ(j) and wj = uj(uj)⊤.

24

Verification Procedure of A. The verifier A selects one of the following eight tests with equal
probability. For ease of understanding, we group the tests according to their functions.

• LINEARITY TEST.

(P1) Pick uniformly random α, β ∈ Fk and check if π1[α] + π1[β] = π1[α + β] with three
queries.

(P2) Pick uniformly random α, β ∈ F2m·c
2 and check if τ1[α] + τ1[β] = τ1[α + β] with three

queries.

(P3) Pick uniformly random α, β ∈ F2m·c2

2 and check if τ2[α] + τ2[β] = τ2[α + β] with three
queries.

These three tests ensure that π1, τ1, τ2 are close to PWH(σ), PWH2(u), PWH2(w) for some σ ∈
(Fd)k, u ∈ (Fd

2)
2m·c and w ∈ (Fd

2)
2m·c2

, respectively.

• ZERO TEST.

(P4) Take a random subset T of [2m], generate a random αi ∈ Fc
2 for each i ∈ T and set

αi = 0 for each i /∈ T. Then pick uniformly random β1, . . . , β2m ∈ Fc
2 and obtain

v := τ1[β1, . . . , β2m] + τ1[α1 + β1, . . . , α2m + β2m] by two queries. Reject if for some j ∈ [d],
we have κ(j) /∈ T but the j-th coordinate of v is non-zero.

(P5) Take a random subset T of [2m], generate a random αi ∈ Fc×c
2 for each i ∈ T and

set αi = 0 for each i /∈ T. Then pick uniformly random β1, . . . , β2m ∈ Fc×c
2 and obtain

v := τ2[β1, . . . , β2m] + τ2[α1 + β1, . . . , α2m + β2m] by two queries. Reject if for some j ∈ [d],
we have κ(j) /∈ T but the j-th coordinate of v is non-zero.

These two tests ensure that u and w are of the forms we want, i.e., for every S ∈ [2m], the S-th
length-c part (respectively, length-c2 part) has non-zero values on the j-th coordinate only if
κ(j) = S.

• TENSOR TEST.

(P6) Pick uniformly random r1, . . . , r2m , r′1, . . . , r′2m ∈ Fc
2 and y1, . . . , y2m ∈ Fc×c

2 , and check
whether

τ1[r1, . . . , r2m]⊙ τ1[r′1, . . . , r′2m] = τ2[y1, . . . , y2m] + τ2[y1 + r1r′⊤1 , . . . , y2m + r2m r′⊤2m] (1)

with four queries, where ⊙ is the coordinate-wise multiplication.

This performs the TENSOR TEST (Item 2) of QUADEQ on all d coordinates simultaneously.

• CONSTRAINT TEST.

(P7) Pick a random subset H of [q] and uniformly random β1, . . . , β2m ∈ Fc×c
2 . For each S ∈

[2m], define αS = ∑z∈H DS,z ∈ Fc×c
2 . Obtain y := τ2[β1, . . . , β2m] + τ2[α1 + β1, . . . , α2m +

β2m] by two queries and reject if for some j ∈ [d], the j-th coordinate does not equal to
∑z∈H bκ(j),z.

This performs the CONSTRAINT TEST (Item 3) of QUADEQ on all d coordinates simultane-
ously, where on the j-th coordinate we check the constraints with respect to Cκ(j).

• CONSISTENCY TEST.

25

(P8) Pick a random subset D of [k] and a uniformly random β ∈ Fk. Pick a random linear
function ψ : Ft

2 → F2 and uniformly random ξ1, . . . , ξ2m ∈ Fc
2. Define α ∈ Fk to be the

indicator vector of D, i.e., αi = 1 for i ∈ D and αi = 0 for i /∈ D. Let

γ = (ψ(1, 0, . . . , 0), ψ(0, 1, . . . , 0), . . . , ψ(0, 0, . . . , 1)) ∈ Ft
2

and

η = (γ1, . . . , γk︸ ︷︷ ︸
k of t bits

, 0, . . . , 0︸ ︷︷ ︸
remaining c−kt bits

) ∈ Fc
2 where γi =

{
γ if i ∈ D,
0t otherwise.

Then check if

ψ ◦ χ(π1[β] + π1[α + β]) = τ1[ξ1, . . . , ξ2m] + τ1[η + ξ1, . . . , η + ξ2m], (2)

where ψ ◦ χ : F → F2 is applied coordinate-wise.

This test checks if for every j ∈ [d], the first k · t bits in uj equal to the binary representations
of σj specified by the isomorphism χ.

5.4 Analysis of Parallel PCPPs

In this subsection, we prove Proposition 3.7 with the following three lemmas (Lemma 5.7, Lemma 5.8,
and Lemma 5.9), which are devoted to bound the parameters, and show completeness and sound-
ness, respectively.

Lemma 5.7 (Parameters). The verifier A takes as input two proofs π1 and π2, where π1 has length |F|k

and π2 has length at most f (k) = 22k ·|F|O(1)
. A then uses at most g(k) = 22k ·|F|O(1)

randomness, and
queries at most four positions of the proofs. Furthermore, the list of queries made by A can be generated in
FPT time.

Proof. The length of π1 is |F|k by definition, and the length of π2 is 22m·c + 22m·c2 ≤ 22k ·|F|O(1)
, where

we recall that m ≤ k/2 and c = k · |F|O(1).
The amount of randomness is calculated as follows. Item (P1) has |F|2k uniform possibilities,

Item (P2) has 22c·2m
, Item (P3) has 22c2·2m

, Item (P4) has12 22m · 2c·2m · 2c·2m
, Item (P5) has 22m · 2c2·2m ·

2c2·2m
, Item (P6) has 22c·2m · 2c2·2m

, Item (P7) has 2q · 2c2·2m
, and Item (P8) has13 2k · |F|k · 2t · 2c·2m

.
Recall that 2t = |F|, m ≤ k/2, c = k · |F|O(1), and q = k · |F|O(1). Hence we may duplicate integer
multiples for each of them and assume that they all have 22k ·|F|O(1)

uniform possibilities. Then the
total randomness sums up to 8 · 22k ·|F|O(1) ≤ g(k) as desired.

It’s easy to see that A makes at most four queries in any case, and the list of queries under all
randomness can be generated in FPT time.

Lemma 5.8 (Completeness). Suppose there is a solution σ : V → Fd of G, then there is a proof π1 ◦ τ1 ◦ τ2
which A accepts with probability 1.

Proof. By Claim 5.5, for each j ∈ [d], Cκ(j) outputs 1 when taking the binary representation of σj,
i.e., (χ(σj(x1)), . . . , χ(σj(xk))), as input. Thus by Claim 5.6, for each j ∈ [d], we have a solution uj

to the QUADEQ instance Γκ(j), where the first k · t bits of uj equal to χ(σj(x1)), . . . , χ(σj(xk)).

12The second 2c·2m
comes from additionally sampling random elements for i /∈ T for padding to make sure they are

uniform possibilities. Similar for Item (P5).
13The second 2t comes from the randomness in ψ, which is a random linear function from Ft

2 to F2.

26

We set π1 = PWH(σ(x1), . . . , σ(xk)), τ1 = PWH2(u), and τ2 = PWH2(w) where u ∈
(
Fd

2
)2m·c and

w ∈
(
Fd

2
)2m·c2

defined to be consistent with Figure 3:

• For every j ∈ [d], the j-th coordinate of u, viewed as a length-(2m · c) binary string, has uj on
the κ(j)-th length-c part, and zero everywhere else.

• For every j ∈ [d], the j-th coordinate of w, viewed as a length-(2m · c2) binary string, has
uj(uj)⊤ on the κ(j)-th length-c2 part, and zero everywhere else.

Since π1, τ1 and τ2 are all parallel Walsh-Hadamard codewords, they pass the linearity tests in
Item (P1), Item (P2), Item (P3) naturally.

Given u defined as above, any query to τ1[α1, . . . , α2m], where each αi ∈ Fc
2, gives us a vector

v ∈ Fd
2, whose j-th coordinate stores ⟨ακ(j), uj⟩. See Figure 4 for an illustration. Thus for any subset

T of [2m], if we set αi = 0 for all i /∈ T as in Item (P4) and Item (P5), the resulting v equals zero on
all coordinates j ∈ [d] with κ(j) /∈ T, which passes the tests.

To verify Item (P6) and Item (P7), we simply observe that

• For every j ∈ [d] and r, r′ ∈ Fc
2, we have ⟨wj, rr′⊤⟩ = ⟨uj(uj)⊤, rr′⊤⟩ = (r⊤uj)(r′⊤uj).

• For every j ∈ [d] and H ⊆ [q], we have〈
wj, ∑

z∈H
Dκ(j),z

〉
= (uj)⊤

(
∑

z∈H
Dκ(j),z

)
uj = ∑

z∈H
(uj)⊤Dκ(j),zuj = ∑

z∈H
bκ(j),z,

since uj is a solution to the QUADEQ instance Γκ(j).

For Item (P8), on the left hand side of (2), we have

ψ ◦ χ(π1[β] + π1[α + β]) = ψ ◦ χ(π1[α]) = ψ ◦ χ

(
∑
i∈S

σ(xi)

)
= ∑

i∈S
ψ(χ(σ(xi))),

where ψ ◦ χ is applied coordinate-wise and the second equality is due to the linearity of ψ and the
fact that χ is a additive isomorphism. On the right hand side of (2), by our choice of η and the fact
that the first k · t bits of each uj are just (χ(σj(x1)), . . . , χ(σj(xk))), we also get ∑i∈S ψ(χ(σ(xi))).

Lemma 5.9 (Soundness). Suppose there is a proof π1 ◦ τ1 ◦ τ2 which A accepts with probability at least
1 − ε, then there is a solution σ to G such that ∆(π1, PWH(σ)) ≤ 48ε.

Proof. Given such a proof, each individual test passes with probability at least 1 − 8ε. By the
soundness of BLR testing (Theorem 2.6), passing the linearity test in Item (P1) with probability at
least 1 − 8ε implies there exists σ ∈ (Fd)k such that ∆(π1, PWH(σ)) ≤ 48ε.

Similarly for Item (P2) and Item (P3), τ1, τ2 are (48ε)-close to PWH2(u) and PWH2(w) for some
u ∈ (Fd

2)
2m·c and w ∈ (Fd

2)
2m·c2

respectively.
Next we prove that, for every j ∈ [d], the j-th coordinate of u, viewed as a length-(2m · c)

binary string, has non-zero values only in the κ(j)-th length-c part. Suppose it is not, and it is
non-zero on the ℓ-th length-c part for some ℓ ̸= κ(j). Then in Item (P4), with probability 1

4 , we
have ℓ ∈ T but κ(j) /∈ T. Now for any {αi}i ̸=ℓ, by the random subsum principle (Lemma 5.1), for
at least 1

2 of the choices of αℓ, the j-th coordinate of PWH2(u)[α1, . . . , α2m] is non-zero. Furthermore,
since κ(j) /∈ T, our test will reject whenever the j-th entry is non-zero. Thus, as long as the local
correction procedure correctly decodes PWH2(u)[α1, . . . , α2m], which happens with probability at

27

least 1 − 96ε, the test fails. The overall rejection probability in this test is then at least 1
8 − 96ε,

which is greater than the 8ε as ε < 1
832 . Thus a contradiction. Similar analysis also works for

Item (P5).
At this point, for each j ∈ [d], define uj ∈ Fc

2 (resp., wj ∈ Fc×c
2) to be the j-th coordinate

of the κ(j)-th length-c (resp., length-c2) part of u (resp., w). By the analysis above, any query
τ1[α1, . . . , α2m] gives us a vector v ∈ Fd

2, whose j-th coordinate stores ⟨uj, ακ(j)⟩; and the same holds
for τ2. See Figure 4 for an illustration. We then prove that wj = uj(uj)⊤ holds for every j ∈ [d],
and uj⊤Dκ(j),zuj = bκ(j),z holds for every j ∈ [d], z ∈ [q]. This shows that they form a solution of
the quadratic equation system in Claim 5.6.

• If for some j ∈ [d], we have wj ̸= uj ⊗ uj. Then by Lemma 5.1 twice, for at least 1
4 fraction

of choices of (r, r′), we have r⊤wjr′ ̸= (r⊤uj)(r′⊤uj). Suppose the four queried points in
Item (P6) are indeed as if on PWH2(u), PWH2(w), which happens with probability at least 1 −
192ε. Then the left hand side of (1) is a vector v whose j-th coordinate is (r⊤uj)(r′⊤uj), while
the right hand side of (1) is a vector v′ whose j-th coordinate is r⊤wjr′. Thus v ̸= v′ and
Item (P6) rejects. Now that the rejection probability is at least 1

4 − 192ε, it is greater than 8ε

when ε < 1
800 , which provides a contradiction.

• If for some j ∈ [d], z ∈ [q], we have uj⊤Dκ(j),zuj ̸= bκ(j),z. By Lemma 5.1, for 1
2 fraction

of choices of H ⊆ [q], we have ∑z∈H uj⊤Dκ(j),zuj ̸= ∑z∈H bκ(j),z. Suppose the two queried
points in Item (P7) are indeed as if on PWH2(w), which happens with probability at least
1 − 96ε. Then Item (P7) rejects. Now that the rejection probability is at least 1

2 − 96ε, it is
greater than 8ε as ε < 1

208 , which provides a contradiction.

Finally, we prove that for every j ∈ [d], the first k · t bits in uj, which we denote as (uj
1, . . . , uj

k) ∈
Fk·t

2 , equal to (χ(σj(x1)), . . . , χ(σj(xk))). This shows that the binary representation of σ certifies the
satisfiability of the circuits CS’s as well as the QUADEQ instances ΓS’s by Claim 5.5 and Claim 5.6,
which means σ is a solution of G.

Suppose for some i ∈ [k], j ∈ [d], we have χ(σj(xi)) ̸= uj
i . Since ψ is a random linear function

mapping to F2, with probability 1
2 , they still differ after ψ applied on. Then by Lemma 5.1, for 1

2
of the choices of S ⊆ [k], we have

∑
i∈S

ψ(χ(σj(xi))) ̸= ∑
i∈S

ψ(uj
i).

Suppose the four queried points in Item (P8) are indeed as if on PWH(σ), PWH2(u), which happens
with probability at least 1 − 192ε. Then the left hand side of (2) is

ψ ◦ χ

(
∑
i∈S

σ(xi)

)
= ∑

i∈S
ψ(χ(σ(xi))),

where ψ ◦ χ is applied coordinate-wise and the equality holds due to the linearity of ψ and the
fact that χ is a additive isomorphism. The right hand side of (2) is ∑i∈S ψ(uj

i) by our construction
of η. Therefore, Item (P8) rejects with probability at least 1

4 − 192ε, which is greater than 8ε when
ε < 1

800 , leading to a contradiction again.
In conclusion, we have shown that if A accepts with probability at least 1 − ε, then π1 must be

(48ε)-close to PWH(σ), where σ is a solution of G.

Proposition 3.7 follows from a combination of Lemma 5.7, Lemma 5.8 and Lemma 5.9.

28

6 Parallel PCPPs for Vector-Valued CSPs with Linear Constraints

This section is devoted to proving Proposition 3.8, which we recall below.

Proposition (Proposition 3.8 Restated). Let h and m be two computable functions. Let G be a VecCSP
instance with k variables where (1) the alphabet is Fd and |F| ≤ h(k), (2) all constraints are linear con-
straints, and (3) there are at most m(k) constraints. Then for every ε ∈

(
0, 1

400

)
, there is a (4, 24ε, ε, f (k) =

|F|k·m(k), g(k) = |F|8k·m(k))-PPCPP verifier for G.

6.1 Construction of Parallel PCPPs

Fix a VecCSP instance G = (V, E, Σ, {Πe}e∈E) from Proposition 3.8. Recall that k = |V| and we set
m = |E| ≤ m(k). By Definition 3.3, since all constraints are linear, for each constraint e ∈ E we
denote

• its two endpoints by ue and ve,

• the matrix for this linear constraint by Me ∈ Fd×d,

• the semantics of this constraint by Πe(ue, ve) = 1ue=Meve .

For ease of presentation, we call ue the head of the constraint e, and ve the tail of e, respectively.
Our construction of the PPCPP verifier A is similar to the Walsh-Hadamard-based one in

[BGH+06], with an additional introduction of some subtle auxilary variables.

Auxilary Variables. Label variables V by {1, 2, . . . , k} and constraints by {1, 2, . . . , m}. For every
p ∈ V and e ∈ E, we define an auxiliary variable zp,e with alphabet Fd. Given an assignment σ(p)
to the variable p, the assignment to zp,e should equal zp,e = Meσ(p) 14.

Note that we introduce an auxilary variable for every pair (p, e) ∈ V × E, even if e is not adjacent
to p. This way, we can check both the inner constraints zp,e = Meσ(p) and the conjunction of all
linear constraints σ(ue) = zve,e with constant queries, soundness, and proximity.

Below, we describe the details of the PPCPP verifier A for G.

Input of A. The verifier A takes as input π1 ◦ π2, where:

• π1 is indexed by vectors in Fk and has alphabet Fd. It is supposed to be PWH(σ), the parallel
Walsh-Hadamard encoding of an assignment σ to V.

• π2 is indexed by vectors in Fkm and has alphabet Fd. It is supposed to be the parallel Walsh-
Hadamard encoding of the collection {zp,e}p∈V,e∈E, treated as a vector of (Fd)km.

Verification Procedure of A. Here is how A verifies whether π1 is close to PWH(σ) for some
solution σ of G. With equal probability, A selects one of the following four tests:

• LINEARITY TEST.

(L1) Pick uniformly random a1, a2 ∈ Fk and check π1[a1] + π1[a2] = π1[a1 + a2] by three
queries.

14Here we abuse the notation and use zp,e also to denote the value assigned to it.

29

(L2) Pick uniformly random b1, b2 ∈ Fkm and check π2[b1] + π2[b2] = π2[b1 + b2] by three
queries.

Intuitively, Item (L1) and Item (L2) ensure that both π1 and π2 are close to a codeword of
PWH.

• MATRIX TEST.

(L3) Pick uniformly random λ ∈ Fk and µ ∈ Fm and set γ = (λ1µ1, λ1µ2, . . . , λkµm) ∈ Fkm.
Assume µ is indexed by constraints e ∈ E and define matrix M0 = ∑e∈E µe Me. Note
that we can compute M0 efficiently without any query.
Then pick uniformly random a ∈ Fk, b ∈ Fkm, query π1[a], π1[a + λ], π2[b], π2[b + γ],
and check if

π2[b + γ]− π2[b] = M0(π1[a + λ]− π1[a]). (3)

Intuitively, Item (L3) ensures that π2 encodes the collection {zp,e}p∈V,e∈E where all inner
constraints zp,e = Meσ(p) are satisfied.

• CONSTRAINT TEST.

(L4) Pick uniformly random µ ∈ Fm and assume µ is indexed by constraints e ∈ E. Define
a vector λ ∈ Fk by setting λp = ∑e∈E : ue=p µe for p ∈ V, where we assume that λ is
indexed by vertices p ∈ V. In other words, λp is the sum of µe’s for constraint e ∈ E
whose head is p.
In addition, define a vector γ ∈ Fkm, indexed by a vertex-constraint pair (p, e) ∈ V × E,
by

γp,e =

{
µe ve = p,
0 otherwise.

In other words, γp,e stores µe if the tail of the constraint e is vertex p.
Note that the two vectors µ and γ can be computed efficiently without any query.
Then pick uniformly random a ∈ Fk, b ∈ Fkm, query π1[a], π1[a + λ], π2[b], π2[b + γ],
and check if

π2[b + γ]− π2[b] = π1[a + λ]− π1[a].

Intuitively, Item (L4) ensures σ(ue) = zve,e for every constraint e ∈ E.

6.2 Analysis of Parallel PCPPs

In this subsection, we prove Proposition 3.8 with the following three lemmas (Lemma 6.1, Lemma 6.2
and Lemma 6.3), which are devoted to bounding the parameters, and establishing the complete-
ness and soundness of the verifier, respectively.

Lemma 6.1 (Parameters). The verifier A takes as input two proofs π1 and π2, where π1 has length |F|k
and π2 has length f (k) = |F|km. A then uses at most g(k) = |F|8km randomness, and queries at most four
positions of the proofs. Furthermore, the list of queries made by A can be generated in FPT time.

Proof. The length of π1 and π2 are |F|k and |F|km respectively by definition.
In terms of randomness, Item (L1) has |F|2k uniform possibilities, Item (L2) has |F|2km, Item (L3)

has |F|2k+m+km, and Item (L4) has |F|k+m+km. Note that we may duplicate integer multiples for

30

each of them and assume that they all have |F|4km uniform possibilities. Then the total random-
ness sums up to 4 · |F|4km ≤ g(k) as desired.

It’s easy to see that A makes at most four queries in any case, and the list of queries under all
randomness can be generated in FPT time.

Lemma 6.2 (Completeness). Suppose there is a solution σ : V → Fd of G, then there is a proof π1 ◦ π2
which A accepts with probability 1.

Proof. Fix such a solution σ. We assign the value Meσ(p) to the auxiliary variable zp,e and treat
{zp,e}p∈V,e∈E as a km-dimensional vector. We set π1 as PWH(σ) and π2 as PWH({zp,e}p∈V,e∈E). Since
both π1 and π2 are codewords of PWH, they naturally pass the tests in Item (L1) and Item (L2).

For Item (L3), note that for every λ ∈ Fk, µ ∈ Fm, a ∈ Fk, b ∈ Fkm, we have

π2[b + γ]− π2[b] = π2[γ] = ∑
p∈V,e∈E

λpµezp,e (by the definition of π2 and γ)

= ∑
p,e

λpµe · Meσ(p) =

(
∑
e∈E

µe Me

)(
∑
p∈V

λpσ(p)

)
(by the definition of zp,e)

= M0π1[λ] = M0(π1[a + λ]− π1[a]), (by the definition of M0 and π1)

which means that the test in Item (L3) passes.
Finally, we turn to Item (L4). For every µ ∈ Fm, a ∈ Fk, b ∈ Fkm, we have

π2[b + γ]− π2[b] = π2[γ] = ∑
e∈E

µezve,e = ∑
e∈E

µe · Meσ(ve) (by the definition of π2, γ, zve,e)

= ∑
e∈E

µeσ(ue) (by Meσ(ve) = σ(ue) as σ is a solution)

= ∑
p∈V

σ(p) ·
(

∑
e∈E : ue=p

µe

)
(by rearranging the summation)

= ∑
p∈V

λpσ(p) (by the definition of λ)

= π1[λ] = π1[a + λ]− π1[a], (by the definition of π1)

which passes the test in Item (L4). In all, A accepts π1 ◦ π2 = PWH(σ) ◦ π2 with probability 1.

Lemma 6.3 (Soundness). Suppose there is a proof π1 ◦ π2 which A accepts with probability at least 1− ε,
then there is a solution σ to G such that ∆(π1, PWH(σ)) ≤ 24ε.

Proof. First, note that π1 fails at most 4ε fraction of tests in Item (L1). By the soundness of BLR
testing (Theorem 2.6), there exists some σ ∈ (Fd)k such that ∆(π1, PWH(σ)) ≤ 24ε. Similarly by
Item (L2), we can find some σ2 ∈ (Fd)km such that ∆(π2, PWH(σ2)) ≤ 24ε. Below, we treat σ as a
mapping from V to Fd, and σ2 as a mapping from V × E → Fd.

Now we prove that for every p ∈ V, e ∈ E, we have σ2(p, e) = Meσ(p). Recall the notation
from Item (L3). For any fixed λ, µ (and thus γ, M0 are also fixed), by Fact 2.7 and a union bound,
with probability at least 1 − 96ε over random a, b, both of the following two equations hold

π2[b + γ]− π2[b] = ∑
p∈V,e∈E

λpµeσ2(p, e), (4)

π1[a + λ]− π1[a] = ∑
p∈V

λpσ(p). (5)

31

Recall the definition of M0. By taking a difference between the LHS and RHS of (3) and plugging
in (4) and (5), we can deduce that, with probability at least 1 − 96ε,

(π2[b+ γ]−π2[b])− M0(π1[a+ λ]−π1[a]) = ∑
p∈V,e∈E

λpµe (σ2(p, e)− Meσ(p)) = λ⊤(M1 − M2)µ,

where we define matrix M1 by setting the (p, e)-th entry as σ2(p, e) and matrix M2 by setting the
(p, e)-th entry as Meσ(p).

If σ2(p, e) ̸= Meσ(p) for some p ∈ V, e ∈ E, then M1 ̸= M2. By Lemma 5.1 with ℓ = |V| and
ℓ′ = |E|, we have Prλ

[
λ⊤M1 ̸= λ⊤M2

]
≥ 1 − 1

|F| . Then by another round of Lemma 5.1 with

ℓ = |E| and ℓ′ = 1, we have Prλ,µ
[
λ⊤M1µ ̸= λ⊤M2µ

]
≥
(

1 − 1
|F|

)2
≥ 1

4 as |F| ≥ 2. By a union

bound, for at least 1
4 − 96ε fraction of the tests in Item (L3), both (4) and(5) hold, yet the difference

above is non-zero. This means at least 1
4 − 96ε fraction of tests in Item (L3) are violated. On the

other hand, since A accepts π1 ◦ π2 with probability at least 1 − ε, at most 4ε fraction of the tests
in Item (L3) can be violated. This gives a contradiction as ε < 1

400 .
Finally, we prove that σ is a solution of G. We focus on tests in Item (L4) and recall the notation

there. By a union bound, with probability at least 1 − 96ε over random a, b for any fixed µ (and
thus λ, γ are also fixed), both equations below hold:

π2[b + γ]− π2[b] = ∑
e∈E

µeσ2(ve, e) = ∑
e∈E

µe Meσ(ve), (6)

π1[a + λ]− π1[a] = ∑
e∈E

µeσ(ue), (7)

where the second equality in (6) follows from our analysis for Item (L3) above. If σ(ue) ̸= Meσ(ve)
for some e ∈ E, then by Lemma 5.1, we have

Pr
µ
[π2[b + γ]− π2[b] ̸= π1[a + λ]− π1[a]] ≥ 1 − 1

|F| ≥
1
2

.

By a union bound, for at least 1
2 − 96ε fraction of tests in Item (L4), both (6) and (7) hold, yet their

difference is non-zero. This means π1 ◦ π2 violates at least 1
2 − 96ε fraction of tests in Item (L4),

contradicting the fact that π1 ◦ π2 can only violate at most 4ε fraction of tests, recalling again our
assumption that ε < 1

400 . Thus σ is indeed a solution of G, completing the proof.

Proposition 3.8 immediately follows from the combination of Lemma 6.1, Lemma 6.2 and
Lemma 6.3.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[ABB+23] Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet
Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spo-
erhase. Parameterized approximation schemes for clustering with general norm ob-
jectives. FOCS, 2023.

[ABSS97] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approx-
imate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci.,
54(2):317–331, 1997.

32

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–
555, 1998.

[ANSW20] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guar-
antees for k-means and Euclidean k-median by primal-dual algorithms. SIAM J. Com-
put., 49(4), 2020.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. J. ACM, 45(1):70–122, 1998.

[BBE+21] Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C.
S., Bingkai Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of
even set and shortest vector problem. J. ACM, 68(3):16:1–16:40, 2021.

[BCGR23] Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami, and João Ribeiro. Param-
eterized inapproximability of the minimum distance problem over all fields and the
shortest vector problem in all ℓp norms. In Barna Saha and Rocco A. Servedio, ed-
itors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC
2023, Orlando, FL, USA, June 20-23, 2023, pages 553–566. ACM, 2023.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J.
Comput., 36(4):889–974, 2006.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and
nonapproximability-towards tight results. SIAM J. Comput., 27(3):804–915, 1998.

[BKN21] Boris Bukh, Karthik C. S., and Bhargav Narayanan. Applications of random algebraic
constructions to hardness of approximation. In 62nd IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
237–244. IEEE, 2021.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with ap-
plications to numerical problems. Journal of Computer and System Sciences, 47(3):549–
595, 1993.

[BPR+17] Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k-median and positive correlation in budgeted
optimization. ACM Trans. Algorithms, 13(2):23:1–23:31, 2017.

[CCK+17] Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin
Manurangsi, Danupon Nanongkai, and Luca Trevisan. From gap-ETH to FPT-
inapproximability: Clique, dominating set, and more. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 743–754. IEEE Computer Society, 2017.

[CFLL23] Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. Simple combinatorial
construction of the ko(1)-lower bound for approximating the parameterized k-clique.
CoRR, abs/2304.07516, 2023.

[CG07] Yijia Chen and Martin Grohe. An isomorphism between subexponential and param-
eterized complexity theory. SIAM Journal on Computing, 37(4):1228–1258, 2007.

33

[CGK+19] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li.
Tight FPT approximations for k-median and k-means. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Col-
loquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras,
Greece, volume 132 of LIPIcs, pages 42:1–42:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[CGTS02] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–
149, 2002.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of sat-
isfiability of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Param-
eterized and Exact Computation, pages 75–85, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[CL19] Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized
dominating set problem. SIAM J. Comput., 48(2):513–533, 2019.

[DF95a] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and com-
pleteness I: Basic results. SIAM J. Comput., 24(4):873–921, 1995.

[DF95b] Rodney G Downey and Michael R Fellows. Fixed-parameter tractability and com-
pleteness II: On completeness for W[1]. Theoretical Computer Science, 141(1-2):109–131,
1995.

[DGKS08] Irit Dinur, Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. Decodability of
group homomorphisms beyond the Johnson bound. In Proceedings of the fortieth annual
ACM symposium on Theory of computing, pages 275–284, 2008.

[DHK05] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Al-
gorithmic graph minor theory: Decomposition, approximation, and coloring. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings, pages 637–646. IEEE Computer Society, 2005.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[Din16] Irit Dinur. Mildly exponential reduction from gap 3sat to polynomial-gap label-cover.
Electron. Colloquium Comput. Complex., 23:128, 2016.

[DM18] Irit Dinur and Pasin Manurangsi. Eth-hardness of approximating 2-csps and directed
steiner network. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of
LIPIcs, pages 36:1–36:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

34

[Fel03] Michael R Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in
fpt. In Graph-Theoretic Concepts in Computer Science: 29th International Workshop, WG
2003. Elspeet, The Netherlands, June 19-21, 2003. Revised Papers 29, pages 1–12. Springer,
2003.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

[FGL+96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy.
Interactive proofs and the hardness of approximating cliques. Journal of the ACM
(JACM), 43(2):268–292, 1996.

[FKLM20] Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A
survey on approximation in parameterized complexity: Hardness and algorithms.
Algorithms, 13(6):146, 2020.

[GGR11] Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. List decoding
tensor products and interleaved codes. SIAM J. Comput., 40(5):1432–1462, 2011.

[GLL18a] Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algo-
rithms for k-cut. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 113–123. IEEE, 2018.

[GLL18b] Anupam Gupta, Euiwoong Lee, and Jason Li. An fpt algorithm beating 2-
approximation for k-cut. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 2821–2837. SIAM, 2018.

[Gol16] Oded Goldreich. Lecture notes on linearity (group homomorphism) testing, 2016.

[GOS20] Venkatesan Guruswami, Jakub Opršal, and Sai Sandeep. Revisiting alphabet re-
duction in Dinur’s PCP. In Jarosław Byrka and Raghu Meka, editors, Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2020), volume 176 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 34:1–34:14, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[GRS23] Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized
inapproximability of Min CSP. arXiv preprint arXiv:2310.16344, 2023.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62:367–375, 2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512–
530, 2001.

[KK22] CS Karthik and Subhash Khot. Almost polynomial factor inapproximability for pa-
rameterized k-clique. In 37th Computational Complexity Conference (CCC 2022), volume
234, 2022.

[KL20] Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation FPT algo-
rithm for min-k-cut. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 990–999. SIAM, 2020.

35

[KLM19] Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized
complexity of approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019.

[KMN+04] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. Comput. Geom., 28(2-3):89–112, 2004.

[KN21] Karthik C. S. and Inbal Livni Navon. On hardness of approximation of parameterized
set cover and label cover: Threshold graphs from error correcting codes. In Hung Viet
Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021,
Virtual Conference, January 11-12, 2021, pages 210–223. SIAM, 2021.

[Lee19] Euiwoong Lee. Partitioning a graph into small pieces with applications to path
transversal. Math. Program., 177(1-2):1–19, 2019.

[Lin18] Bingkai Lin. The parameterized complexity of the k-biclique problem. Journal of the
ACM (JACM), 65(5):1–23, 2018.

[Lin19] Bingkai Lin. A simple gap-producing reduction for the parameterized set cover
problem. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 81:1–
81:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[Lin21] Bingkai Lin. Constant approximating k-clique is w[1]-hard. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749–1756. ACM,
2021.

[LRSW22] Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. On lower bounds of ap-
proximating parameterized k-clique. In Mikolaj Bojanczyk, Emanuela Merelli, and
David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
90:1–90:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[LRSW23a] Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating pa-
rameterized k-SETCOVER is W[2]-hard. In Nikhil Bansal and Viswanath Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, pages 3305–3316. SIAM, 2023.

[LRSW23b] Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Improved hardness of ap-
proximating k-clique under ETH. FOCS, 2023.

[LRSZ20] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parame-
terized complexity and approximability of directed odd cycle transversal. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020.

[LS16] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM
J. Comput., 45(2):530–547, 2016.

36

[LSS20] Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized
approximation scheme for min k-cut. In Sandy Irani, editor, 61st IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November
16-19, 2020, pages 798–809. IEEE, 2020.

[Man19] Pasin Manurangsi. A note on max k-vertex cover: Faster FPT-AS, smaller approxi-
mate kernel and improved approximation. In Jeremy T. Fineman and Michael Mitzen-
macher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9,
2019, San Diego, CA, USA, volume 69 of OASIcs, pages 15:1–15:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[Man20] Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of
maximum k-coverage, unique set cover and related problems (via t-wise agreement
testing theorem). In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 62–81. SIAM, 2020.

[Mar08] Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J.,
51(1):60–78, 2008.

[Ohs22] Naoto Ohsaka. On the parameterized intractability of determinant maximization.
In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[SF17] Piotr Skowron and Piotr Faliszewski. Chamberlin-courant rule with approval ballots:
Approximating the maxcover problem with bounded frequencies in FPT time. J. Artif.
Intell. Res., 60:687–716, 2017.

[Tov84] C. Tovey. A simplified NP-complete satisfiability problem. Discret. Appl. Math., 8:85–
89, 1984.

[Wie18] Andreas Wiese. Fixed-parameter approximation schemes for weighted flowtime.
In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs,
pages 28:1–28:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Wło20] Michał Włodarczyk. Parameterized inapproximability for steiner orientation by gap
amplification. In 47th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

37
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

