
From Trees to Polynomials and Back Again:

New Capacity Bounds with Applications to TSP

Leonid Gurvits, Nathan Klein, and Jonathan Leake

November 15, 2023

Abstract

We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution,
depending only on its expectation. This resolves a weak version of a problem left open by Karlin-Klein-
Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a minor
improvement of their approximation factor for metric TSP. Our results also allow for a more streamlined
analysis of the algorithm.

To achieve these new bounds, we build upon the work of Gurvits-Leake on the use of the produc-
tization technique for bounding the capacity of a real stable polynomial. This technique allows one to
reduce certain inequalities for real stable polynomials to products of affine linear forms, which have an
underlying matrix structure. In this paper, we push this technique further by characterizing the worst-
case polynomials via bipartitioned forests. This rigid combinatorial structure yields a clean induction
argument, which implies our stronger bounds.

In general, we believe the results of this paper will lead to further improvement and simplification of
the analysis of various combinatorial and probabilistic bounds and algorithms.
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1 Introduction

The theory of real stable and log-concave polynomials has seen numerous applications in combinatorics
and theoretical computer science (TCS). This includes bounds and approximation algorithms for various
combinatorial quantities [Gur06a; Bar16; AO17; SV17; Ana+18b; AOV18; Ali+21; BLP23], proofs of long-
standing log-concavity and sampling conjectures related to matroids [AHK18; Ana+18a; Ana+19; BH20],
proofs of the Kadison-Singer conjecture and generalizations [MSS15; AO14; Brä18], an improved approxi-
mation factor for the traveling salesperson problem (TSP) [OSS11; KKO21; KKO23], and many more. The
power of these polynomial classes comes from two features: (1) their robustness, shown in the fact that many
natural operations preserve these log-concavity properties, and (2) their convex analytic properties, which
can be used to prove bounds and other analytic statements. The typical way these polynomials are utilized
is by encoding combinatorial objects as real stable and log-concave polynomials, which essentially allows
these operations and convexity properties to automatically transfer to the combinatorial objects. This idea,
while simple, has led to important breakthroughs in combinatorics, TCS, and beyond.

For example, [Gur06a] utilized real stable polynomials to give a new proof of the Van der Waerden
conjecture on the permanent of a doubly stochastic matrix (originally due to [Ego81; Fal81]). This proof
led to a vast generalization of Van der Waerden bound, including an improved Schrijver’s bound for regular
bipartite graphs [Gur06a], an analogous bound for mixed discriminants [Gur06b], and an analogous bound
for mixed volumes that led to the development of strongly log-concave polynomials [Gur09a; Gur09b]. One
reason the original bound was historically so difficult to prove is a lack of a usable inductive structure
coming from the matrices themselves. One of the key insights of the new proof was to use the simple
inductive structure of real stable polynomials given by partial derivatives. By encoding the matrices as
polynomials, the correct induction becomes straightforward, and the bound follows from a simple calculus
argument.

More recently, the approximation factor improvement for the metric traveling salesperson problem (TSP)
crucially utilized real stable polynomials [KKO21; KKO23]. The idea is to encode certain discrete probability
distributions related to spanning trees as real stable polynomials. The coefficients of these polynomials give
probabilities of certain graph-theoretic events (e.g., the number of edges in a given spanning tree incident
on a particular vertex), and analytic properties of real stable polynomials allow one to lower bound these
probabilities. This in turn implies bounds on the expected cost of the output of a randomized algorithm for
metric TSP.

In this paper, we improve upon the polynomial capacity bounds of [GL21], and our applications touch
on the two problems discussed above. Specifically, we give:

1. robust coefficient lower bounds for all (not necessarily homogeneous) real stable polynomials,

2. simply exponential lower bounds on probabilities of strongly Rayleigh distributions (solving a weak
version of an open problem of [KKO21]), and

3. a further improvement to the approximation factor for metric TSP (predicted by [GL21]).

Interestingly, our approach goes in the opposite direction to that discussed above. Our technical results
answer questions regarding real stable polynomials, but to prove these results we use various graph and matrix
structures inherent to the polynomials. In [GL21], this was seen in the “productization” technique: bounds
on real stable polynomials were achieved by showing that the worst-case bounds come from polynomials
associated to certain matrices. In this paper, we push this idea further by showing that these worst-case
matrices are bipartite adjacency matrices of forests. This very rigid structure enables a clean induction
argument, which implies stronger polynomial capacity bounds. These new bounds lead to the applications
discussed above, with the strongest bounds implying the metric TSP improvement.

2 Main Results

We first state here our main technical results; see Section 3 for any undefined notation.
Our first main result is a non-homogeneous version of Theorem 2.1 of [GL21] which implies robust

coefficient lower bounds for all real stable polynomials as a direct corollary. Crucially, these bounds do not
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depend on the total degree of the polynomial. This was one of the main barriers to applying the results of
[GL21] to metric TSP.

Theorem 2.1 (Main non-homogeneous capacity bound). Let p ∈ R≥0[x1, . . . , xn] be a real stable polynomial
in n variables, and fix any κ ∈ Zn with non-negative entries. If p(1) = 1 and ∥κ−∇p(1)∥1 < 1, then

inf
x1,...,xn>0

p(x)

xκ1
1 · · ·xκn

n
≥ (1− ∥κ−∇p(1)∥1)n .

This bound is tight for any fixed κ with strictly positive entries.

Corollary 2.2 (Main non-homogeneous coefficient bound). Let p ∈ R≥0[x1, . . . , xn] be a real stable poly-
nomial in n variables, and fix any κ ∈ Zn with non-negative entries. If p(1) = 1 and ∥κ − ∇p(1)∥1 < 1,
then

pκ ≥

(
n∏

i=1

κκi
i e−κi

κi!

)
(1− ∥κ−∇p(1)∥1)n,

where pκ is the coefficient of xκ in p. The dependence on (1 − ∥κ −∇p(1)∥1) is tight for any fixed κ with
strictly positive entries.

The above results1 are robust (i.e., resilient to ℓ1 perturbations) versions of the results utilized to bound
various combinatorial and probabilistic quantities, as discussed above. That said, they are still not quite
strong enough to imply an improvement to the metric TSP approximation factor. To obtain this improve-
ment, we resolve a weak version of an open problem from [KKO21], which we discuss below. Stronger
versions of Theorem 2.1 and Corollary 2.2 which imply this result can be found in Section 5.

2.1 Application: Metric TSP

We first recall an important probabilistic bound from [KKO21] used in the analysis of their metric TSP
approximation algorithm (which is a slight modification of the max entropy algorithm from [OSS11] first
studied by [Asa+10]). In what follows, we let AS :=

∑
i∈S Ai and κS :=

∑
i∈S κi. See Section 3 for any

undefined notation.

Theorem 2.3 (Prop. 5.1 of [KKO21]). Let µ be a strongly Rayleigh distribution on [m], let A1, . . . , An be
random variables counting the number of elements contained in disjoint subsets of [m], and fix κ ∈ Zn with
non-negative entries. Suppose for all S ⊆ [n] we have

Pµ [AS ≥ κS ] ≥ ϵ and Pµ [AS ≤ κS ] ≥ ϵ.

Then we have
Pµ [A1 = κ1, . . . , An = κn] ≥ f(ϵ) · Pµ

[
A[n] = κ[n]

]
,

where f(ϵ) ≥ ϵ2
n ∏n

i=2
1

max{κi,κ[i−1]}+1 .

In [KKO21], the authors note two things about this bound. First, they note that to apply the bound it
is sufficient to have ∣∣Eµ [AS ]− κS

∣∣ < 1 ∀S ⊆ [n], (1)

since this implies a lower bound on Pµ [AS = κS ] for all S ⊆ [n] for strongly Rayleigh distributions. Second,
they note that the bound on f(ϵ) is doubly exponential in n, but they expect the true dependency to only
be simply exponential. They leave it as an open problem to determine a tight lower bound on f(ϵ).

In this paper, we further improve the metric TSP approximation factor by resolving a weak version of
this open problem: we give a simply exponential lower bound which depends tightly on ϵ, under the stronger
condition of (1). Concretely, we prove the following.

1Note that these bounds already appear in the arXiv version of [GL21], but not in the STOC version.
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Theorem 2.4 (Improved probability lower bound). Let µ be a strongly Rayleigh distribution on [m], let
A1, . . . , An be random variables counting the number of elements contained in disjoint subsets of [m], and
fix κ ∈ Zn with non-negative entries. Suppose for all S ⊆ [n] we have∣∣Eµ [AS ]− κS

∣∣ ≤ 1− ϵ.

Then we have

Pµ [A1 = κ1, . . . , An = κn] ≥ ϵn
∏
κi>0

1

e
√
κi

.

The dependence on ϵ is tight for any fixed κ with strictly positive entries.

In fact, we prove stronger versions of this result which more directly depend on the specific values of
(Eµ [AS ]− κS) for all S ⊆ [n]; see Theorem 4.1 and Corollary 4.2. These results are analogous to our main
coefficient bound Corollary 2.2 because the coefficients and the gradient of probability generating polynomials
can be interpreted as the probabilities and the expectation of the associated distribution. That said, our
stronger probabilistic results require a more delicate analysis of the expectations (gradient) beyond what is
required for Corollary 2.2. In particular, note that the conditions on the expectations in Theorem 2.4 are
more general than a bound on the ℓ1 norm of (Eµ [Ai]− κi)

n
i=1. See Section 4 for further details.

Using Theorem 2.4, we improve the metric TSP approximation factor for the algorithm given in [KKO21].

Theorem 2.5. There exists a randomized algorithm for metric TSP with approximation factor 3
2 − ϵ for

some ϵ > 10−34.

The guarantee in [KKO22] was not much smaller: there they showed ϵ > 10−36. Thus our improvement
in terms of the approximation factor itself is perhaps weaker than what would be expected, given that we
were able to improve the probability bound in Theorem 2.4 to a simply exponential factor. The reason
for this is that while Theorem 2.3 was useful in [KKO21] to quickly determine which events occurred with
constant probability (and indeed provided a single unifying explanation for why one should expect many of
their probabilistic bounds to hold), it gave such small guarantees that [KKO21] resorted to ad hoc arguments
instead to give their final probabilistic bounds.

We show that Theorem 2.4 alone can be used to give bounds that are comparable to the ad hod methods of
[KKO21] (and, in several important cases, much better) whenever the bounds came purely from information
on the expectations as in (1). Thus, we believe our main contribution to work on metric TSP is a version
of Theorem 2.3 that is “reasonable” to use, allowing one to show a similar approximation factor but with a
more streamlined proof.

Unfortunately, not all of the bounds in [KKO21] follow from expectation information, and two of them
become bottlenecks for improving the approximation factor after applying Theorem 2.4 to the other state-
ments. Thus, to demonstrate Theorem 2.5 we need to sharpen these bounds using other techniques. For one
of these lemmas we show that the existing proof in [KKO21] was far from tight, and in the other we refine
their proof. In particular, using Theorem 2.4, we show we can reduce this second lemma to a special case
that is possible to analyze more carefully. See Section 4 for further details.

3 Technical Overview

In this section we discuss the proof strategy of our main capacity and coefficient bounds, Theorem 2.1 and
Corollary 2.2, and their stronger forms.

Notation. Given a vector z ∈ RE and a subset S of E, let zS :=
∏

e∈S ze. Let µ : {0, 1}E → R be a
probability distribution over subsets of E. The generating polynomial gµ ∈ R≥0[{ze}e∈E ] of µ is defined as

gµ(z) :=
∑
S⊆E

µ(S) · zS .

The distribution µ is strongly Rayleigh if gµ is real stable, where a polynomial p ∈ R[z1, . . . , zn] is real
stable if p(z) ̸= 0 whenever ℑ(zi) > 0 for all i ∈ [n] (i.e., when all inputs are in the complex upper half-plane).
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See [BBL09] for much more on strongly Rayleigh measures. Further, given a polynomial p ∈ R≥0[x1, . . . , xn]
and κ ∈ Zn

≥0, the capacity of p is defined as

Capκ(p) := inf
x>0

p(x)

xκ
.

Finally, we let pκ denote the coefficient of xκ in p.

Conceptual strategy. We first give an overarching view of the strategy used to prove our main results,
as well as the key similarities and differences compared to that of [GL21]. The general idea for proving our
bounds is to find a simple and sparse underlying structure for the worst-case inputs. The space of all real
stable polynomials can be complicated, but we show that the worst-case polynomials for our bounds are far
simpler: they are “sparse” products of affine linear forms. More concretely, we reduce the space of input
polynomials (and the corresponding combinatorial structures) as follows:

real stable polynomials =⇒ products of affine linears =⇒ sparse products of affine linears
matroids =⇒ matrices =⇒ forests

The first reduction step uses the idea of productization which was the key idea from [GL21]. This allows for
one to utilize the matrix structure inherent to products of affine linear forms.

The second reduction step is then new to this paper. We first show that we may restrict to the extreme
points of the set of matrices corresponding to products of affine linear forms, and then we show that these
extreme matrices are supported on the edges of forests. This implies a significant decrease in density of the
matrices: general graphs can have quadratically many edges, whereas forests can only have linearly many.
This allows for an intricate but clean induction on the leaf vertices of these forests, which yields the strongest
bounds of this paper. Additionally, it is this step that allows for bounds which do not depend on the total
degree of the polynomial, and this was a crucial barrier to applying the bounds of [GL21] to metric TSP.

3.1 Conceptual Strategy, in More Detail

We now go through the steps of the conceptual strategy described above in more detail. Let us first restate
our main capacity and coefficient bounds.

Theorem 3.1 (= Theorem 2.1 and Corollary 2.2). Let p ∈ R≥0[x1, . . . , xn] be a real stable polynomial in n
variables, and fix any κ ∈ Zn with non-negative entries. If p(1) = 1 and ∥κ−∇p(1)∥1 < 1, then

Capκ(p) ≥ (1− ∥κ−∇p(1)∥1)n

and

pκ ≥

(
n∏

i=1

κκi
i e−κi

κi!

)
(1− ∥κ−∇p(1)∥1)n ,

where Capκ(p) := infx>0
p(x)
xκ is the capacity of p and pκ is the coefficient of xκ in p. The dependence on

(1− ∥κ−∇p(1)∥1) in these bounds is tight for any fixed κ with strictly positive entries.

Analogous bounds required for the metric TSP application then follow from interpreting desired quan-
tities as the coefficients and gradient of certain real stable polynomials. Specifically, the strongly Rayleigh
probabilities we wish to lower bound are the coefficients of the corresponding real stable generating polyno-
mial, and the expectations of the associated random variables are given by the gradient of that polynomial.
We leave further details to Section 4.

We now discuss the proof of Theorem 3.1. First note that the coefficient bound follows from the capacity
bound. This immediately follows from Corollary 3.6 of [Gur09b], which implies

pκ ≥

(
n∏

i=1

κκi
i e−κi

κi!

)
Capκ(p). (2)
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Thus what remains to be proven is the capacity bound

Capκ(p) ≥ (1− ∥κ−∇p(1)∥1)n ,

which is precisely the bound of Theorem 2.1, as well as its tightness, which follows from considering a
particular example of p (see Lemma 5.14).

The remainder of the proof then has four main steps. We also note here that these proof steps actually
imply stronger bounds than Theorem 2.1, see Corollary 5.13 for the formal statement. These stronger bounds
are required for the metric TSP application.

Step 1: Reduce to products of affine linear forms via productization. We first generalize the
productization technique of [GL21] to non-homogeneous real stable polynomials. The upshot of this technique
is that it implies it is sufficient to prove Theorem 2.1 for products of affine linear forms with non-negative
coefficients (see Corollary 5.4). Such polynomials correspond to d × (n + 1) R≥0-valued matrices with row
sums 1 and column sums α equal the entries of the gradient of the polynomial, via

ϕ : A 7→
d∏

i=1

ai,n+1 +
n∑

j=1

ai,jxj

 .

This gives far more structure to work with, beyond that of real stable polynomials in general. This part is
a straightforward generalization of the analogous result of [GL21].

Step 2: Reduce to extreme points. The set of R≥0-valued matrices with row sums 1 and column sums
α forms a convex polytope P d

α, and thus the polynomials we now must consider correspond to the points of
this polytope via the map ϕ defined above. Inspired by a result of Barvinok (see Lemma 5.5), we next show
that the function

A 7→ Capκ(ϕ(A))

is log-concave on the above described polytope. Since we want to minimize the capacity, this implies we may
further restrict to the polynomials associated to the extreme points of the polytope.

Step 3: Extreme points correspond to bipartitioned forests. Any R≥0-valued matrix A can be
interpreted as the weighted bipartite adjacency matrix of a bipartite graph, where the left vertices correspond
to the rows of A and the right vertices correspond to the columns of A. A matrix A ∈ P d

α being extreme
implies the associated bipartite graph has no cycles. This implies the associated bipartite graph is a forest
(see Lemma 5.6). The sparsity properties of such matrices implies a simple structure for the associated
polynomials, which is particularly amenable to an intricate but clean induction.

Step 4: Induction on leaf vertices of the bipartitioned forests. Leaf vertices in the forest corre-
sponding to a given matrix A ∈ P d

α indicate rows or columns of the matrix A which have exactly one non-zero
entry. If a row of A has exactly one non-zero entry, the induction proceeds in a straightforward fashion, by
simply removing the corresponding row of A and recalculating the column sums (see the d ≥ n + 1 case of
the proof of Theorem 5.11).

If a column of A (say column i) has exactly one non-zero entry, then the induction is more complicated.
We prove lemmas showing how much the capacity can change after applying the partial derivative ∂xi

(when
κi ≥ αi, see Lemma 5.10) or setting xi to 0 (when κi < αi, see Lemma 5.9). Since column i has only one
entry, applying ∂xi corresponds to removing column i and the row of A which contains the non-zero entry,
and setting xi to 0 corresponds to removing column i. After renormalizing the row sums and recalculating
the column sums, the proof again proceeds by induction. (See the proof of Theorem 5.11 to see the above
arguments presented formally.) Example 5.15 and Example 5.16 show that the distinction between the
κi ≥ αi and κi < αi cases is not an artifact of the proof.
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Some comments on tightness of the bounds. The main coefficient bound of Corollary 2.2 is proven via
two different bounds, as discussed at the beginning of this section. That is, one first bounds the coefficient
in terms of the capacity (2) via Corollary 3.6 of [Gur09b], and then one bounds the capacity via the steps
outlined above. Thus while the capacity bound (Theorem 2.1) is tight for κ > 0, the coefficient bound
(Corollary 2.2) may not be. We note that the coefficient bound is likely close to tight in the case that
(1− ∥κ−∇p(1)∥1) is close to 1, but it seems this tightness deteriorates as (1− ∥κ−∇p(1)∥1) gets close to
0. That said, the dependence on (1 − ∥κ − ∇p(1)∥1) in Theorem 2.1 and Corollary 2.2 is tight for κ > 0
by Lemma 5.14, though there is still potential for improvement in the more refined capacity bounds; see
Section 5.5.

That said, tight coefficient lower bounds in the univariate case can be achieved by directly applying
Hoeffding’s theorem (Theorem A.9), and these lower bounds resemble the coefficient lower bound of Corol-
lary 2.2. Thus one can view Corollary 2.2 as a step towards a multivariate generalization of Hoeffding’s
theorem. It is an interesting question whether or not the techniques used here can be extended to a full
multivariate generalization of Hoeffding’s theorem.

3.2 Example: The Univariate Case

In this section, we demonstrate the proof of Theorem 2.1 in the univariate case. This will serve as a sort of
proof of concept for the more general proof.

Here we consider real stable non-homogeneous polynomials p ∈ R≥0[x1] such that p(1) = 1 and ∇p(1) =
α1, and we define ϵ := 1− |α1 − κ1| > 0. By Step 1 above, we may assume that p is of the form

p(x1) =

d∏
i=1

(ai,1x1 + a1,2),

where A is an R≥0-valued d×2 matrix with row sums 1 and column sums (α1, d−α1). By Steps 2-3, we may
further assume A is the weighted bipartite adjacency matrix of a forest. If every row of A contains exactly
one non-zero entry then p(x1) = xk1

1 , and the result is trivial in this case. Otherwise, d− 1 rows of M have
exactly one non-zero entry (see Lemma 5.7). Thus for some k ≤ d− 1 we have

p(x1) = xk
1(ax1 + b),

where a+ b = 1 and a+ k = α1. Since κ1 ∈ Z≥0 and

ϵ = 1− |α1 − κ1| = 1− |a+ k − κ1|,

we have that k is equal to either κ1 or κ1 − 1. If k = κ1, then

Capκ1
(p) = inf

x1>0

xk
1(ax1 + b)

xk
1

= b and ϵ = 1− |a+ k − κ1| = 1− a = b.

If k = κ1 − 1, then

Capκ1
(p) = inf

x1>0

xk
1(ax1 + b)

xk+1
1

= a and ϵ = 1− |a+ k − κ1| = 1− (1− a) = a.

Therefore in both cases we have
Capκ1

(p) = ϵ = (1− |α1 − κ1|),
which proves Theorem 2.1 in the univariate case and demonstrates the tight dependence on (1−∥κ−∇p(1)∥1)
in this case.

4 Proof of Application: Metric TSP

The following is the strongest probability lower bound, which we will use for the metric TSP application. In
what follows, we let AS :=

∑
i∈S Ai and κS :=

∑
i∈S κi. Note that if∣∣Eµ [AS ]− κS

∣∣ ≤ 1− ϵ,

then Theorem 2.4 immediately follows from Theorem 4.1, Lemma 5.14, and a standard computation.
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Theorem 4.1 (Strongest form of the probability bound). Let µ be a strongly Rayleigh distribution on [m],
let A1, . . . , An be random variables counting the number of elements contained in some associated disjoint
subsets of [m], and fix κ ∈ Zn

≥0. Suppose for all S ⊆ [n] we have |Eµ [AS ]− κS | < 1. Define ϵ, δ ∈ Rn
>0 via

δk := 1 + min
S∈([n]

k )
(Eµ [AS ]− κS) and ϵk := 1− max

S∈([n]
k )

(Eµ [AS ]− κS) .

Then we have

Pµ [A1 = κ1, . . . , An = κn] ≥
n∏

i=1

κκi
i e−κi

κi!
· min
0≤ℓ≤n

ℓ∏
k=1

ϵk

n−ℓ∏
k=1

δk.

Proof. Let q be the probability generating polynomial of µ, and let p be the polynomial obtained by setting
the variables of q associated to Ai to xi for all i ∈ [n], and setting all other variables to equal 1. Since µ is
strongly Rayleigh, p is real stable. Further, p(1) = 1, ∇p(1) = (Eµ [Ai])

n
i=1, and Pµ [A1 = κ1, . . . , An = κn] is

the xκ coefficient of p. Thus Gurvits’ capacity inequality (2) and Corollary 5.13 imply the desired result.

We also give a slightly weaker bound which is a bit easier to use in practice. Note that Theorem 2.4 also
follows from Corollary 4.2.

Corollary 4.2. Let µ be a strongly Rayleigh distribution on [m], let A1, . . . , An be random variables counting
the number of elements contained in some associated disjoint subsets of [m], and fix κ ∈ Zn

≥0. Suppose for
all S ⊆ [n] we have |Eµ [AS ]− κS | < 1. Define ϵ ∈ Rn

>0 via

ϵk := 1− max
S⊆[n]
|S|≤k

∣∣Eµ [AS ]− κS

∣∣
Then we have

Pµ [A1 = κ1, . . . , An = κn] ≥
n∏

i=1

κκi
i e−κi

κi!
·

n∏
k=1

ϵk.

Proof. Follows from Theorem 4.1; see the proof of Corollary 5.12 for more details.

The remainder of this section is devoted to demonstrating how one can use the above results to improve
the approximation factor for metric TSP.

4.1 A Simple Application

We recall some definitions from [KKO21]. There, we have a graph G = (V,E) and a strongly Rayleigh (SR)
distribution µ : 2E → R≥0 supported on spanning trees of G. We let xe = PT∼µ [e ∈ T ] and for a set of
edges F let x(F ) =

∑
e∈F xe. Furthermore we let δ(S) = {e = {u, v} | |e ∩ S| = 1}. The guarantee on x is

that x ∈ PSub,
2 where

PSub :=


x(δ(S)) ≥ 2 ∀S ⊊ V

x(δ(v)) = 2 ∀v ∈ V

x{u,v} ≥ 0 ∀u, v ∈ V

(3)

In the algorithm they analyze, one first samples a spanning tree T from µ and then add the minimum
cost matching on the odd vertices of T . Their work involves analyzing the expected cost of this matching
over the randomness of the sampled tree T . Unsurprisingly, the parity of vertices is therefore very important,
as it determines which vertices are involved in the matching.

In this section, to give some sense of the utility of Theorem 4.1, we show an application in a simplified
setting. Namely, we show that for any two vertices u, v, except in the special case that x{u,v} ≈ 1

2 , we have

PT∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ Ω(1), i.e. for any two vertices that do not share an edge of value 1
2

there is a constant probability that they have even parity simultaneously. This is helpful because (under

2Technically, a spanning tree plus an edge is sampled, as otherwise one cannot exactly have x ∈ PSub, but we ignore that
here.
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some conditions on the point x ∈ PSub) the event that u, v are even simultaneously indicates one can strictly
decrease the cost of the matching proportional to the cost of the edge e.

We now prove PT∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ Ω(1) whenever x{u,v} ̸≈ 1
2 . To do this, we split into

two cases: when x{u,v} ≥ 1
2 + ϵ and when x{u,v} ≤ 1

2 − ϵ.

Lemma 4.3. Let u, v be two vertices such that x{u,v} ≥ 1
2 + ϵ for some ϵ > 0. Then,

PT∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ ϵ

2e3
.

Proof. Let e = (u, v). For T ∼ µ, let A1 = I[e ∈ T ], A2 = |(δ(u)∖ {e})∩T |, A3 = |(δ(v)∖ {e})∩T |. We are
now interested in the event Ai = κi,∀i for the vector κ = (1, 1, 1) as this implies |δ(u)∩ T | = |δ(v)∩ T | = 2.
We have E[A1] = xe, E[A2] = E[A3] = 2− xe. Therefore, to apply Theorem 4.1 we can set:

δ1 = xe, δ2 = 1, δ3 = 2− xe, ϵ1 = xe, ϵ2 = 2xe − 1, ϵ3 = xe

In this case the worst case is using all of the ϵ terms in the bound, giving e−3x2
e(2xe−1) ≥ ϵ

2e3 as desired.

Lemma 4.4. Let u, v be two vertices such that x{u,v} ≤ 1
2 − ϵ for some ϵ > 0. Then,

PT∼µ [|δ(u) ∩ T | = |δ(v) ∩ T | = 2] ≥ 2ϵ

e4
.

Proof. As above, e = (u, v), and for T ∼ µ, let A1 = I[e ∈ T ], A2 = |(δ(u)∖{e})∩T |, A3 = |(δ(v)∖{e})∩T |.
We are now interested in the event Ai = κi,∀i for the vector κ = (0, 2, 2) as this implies |δ(u) ∩ T | =
|δ(v) ∩ T | = 2. We have E[A1] = xe, E[A2] = E[A3] = 2− xe. Therefore, to apply Theorem 4.1 we can set:

δ1 = 1− xe, δ2 = 1− 2xe, δ3 = 1− xe, ϵ1 = 1− xe, ϵ2 = 1, ϵ3 = 1 + xe

In this case the worst case is using all of the δ terms in the bound, giving 4e−4(1− xe)
2(1− 2xe) ≥ 2ϵ

e4 .

We leave further background about TSP and the proofs of our improved probabilistic statements to
Appendix A, as understanding their importance requires some knowledge of the (highly technical) proof
in [KKO21]. However, in the next section we summarize the new probabilistic bounds we get and their
consequences.

4.2 Summary of Probabilistic Bounds and New Approximation Factor

The current bound on the performance of the max entropy algorithm is 3
2 − 4.11 · 10−36. This is primarily

governed by a constant p that is determined by the minimum probability over a number of events. In
[KKO21], p was equal to 2 · 10−10, and these events are described by the following statements in [KKO21]:

1. Corollary 5.9, which gives a bound of 1.5 · 10−9. We do not modify this bound, although we note that
Lemma 5.7 can be slightly improved which would lead to a small improvement here.

2. Lemma 5.21, which gives a bound of 0.005ϵ21/2 = 2 · 10−10. We improve this to 0.039ϵ21/2 = 1.56 · 10−9.

3. Lemma 5.22, which gives a bound of 0.006ϵ21/2 = 2.4 ·10−10. We improve this to 0.038ϵ21/2 = 1.52 ·10−9.

4. Lemma 5.23, which gives a bound of 0.005 · ϵ1/2 = 2 · 10−10. We observe here that arguments already
in [KKO21] can be used to give 0.0498ϵ21/2 ≥ 1.9 · 10−9.

5. Lemma 5.24, which gives a bound of 0.02ϵ21/2 = 8 · 10−10. We improve this to 0.0498ϵ21/2 ≥ 1.99 · 10−9.

6. Lemma 5.27, which gives a bound of 0.01. This lemma actually uses that the threshold p is small,
and therefore this bound decreases slightly upon raising p. However, as it is quite far from being the
bottleneck in these bounds, we omit the proof that the probability remains above 1.5 · 10−9.
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We prove these bounds formally using our new strongly Rayleigh probability bounds in Appendix A.2 (which
directly uses our new results) and Appendix A.3 (which mixes in more ad-hoc methods).

Therefore, we may increase p to the minimum of all these probabilities, 1.5 · 10−9. In Appendix A, we
observe that using statements from [KKO21; KKO22], the following holds:

Lemma 4.5. Let p be a lower bound on the probabilities guaranteed by (1) - (6) for ϵ1/2 ≤ 0.0002, and
suppose p ≤ 10−4. Then given x ∈ PSub, the max entropy algorithm returns a solution of expected cost at
most ( 32 − 9.7p2 · 10−17) · c(x).

As we improve the bounds on p to 1.5 · 10−9, an immediate corollary is the following:

Corollary 4.6. The max entropy algorithm is a 3
2 − 2.18 · 10−34 approximation algorithm for metric TSP.

Using [KKO23] this guarantee can be made deterministic, as we do not require any modifications to the
algorithm.

In Appendix A, we also observe a lower bound on Lemma 5.21 for strongly Rayleigh distributions of
Ω(ϵ21/2). The fact that ϵ1/2 ≤ 0.0002 is used in many places in [KKO21] and thus decreasing it may require
more effort. Thus without modifying other parts of the argument, it may not be possible to improve the
bound below 1.5 · 10−31.

In the rest of the body of the paper we prove our main capacity bound.

5 Proofs of the Main Capacity Bounds

In this section we prove the strongest forms of the main capacity bounds, which give Theorem 2.1 and
Corollary 2.2 as corollaries. For this section, we utilize the following notation.

Definition 5.1. For n, d ∈ N and α ∈ Rn
≥0, we define the following:

1. NHMatdn(α) is the set of all R≥0-valued d× (n+1) matrices with row sums all equal to 1 and column
sums equal to α1, . . . , αn, d− ∥α∥1.

2. NHProddn(α) is the set of all polynomials of the form

p(x) =

d∏
i=1

ai,n+1 +

n∑
j=1

ai,jxj

 ,

where A ∈ NHMatdn(α). In this case, we call p the polynomial associated to A. Note that p(1) = 1
and ∇p(1) = α for all such polynomials.

3. NHStabdn(α) is the set of all real stable polynomials in R≥0[x1, . . . , xn] of degree at most d for which
p(1) = 1 and ∇p(1) = α. (Recall that a polynomial is stable if it is never zero when all inputs are in
the open complex upper half-plane.)

We also define the following for n ∈ N, α ∈ Rn
≥0, and κ ∈ Zn

≥0:

LNHProd
n (α;κ) := min

d∈N
min

p∈NHProdd
n(α)

Capκ(p).

We now follow the steps of the proof given in Section 3.

5.1 Productization for Non-homogeneous Stable Polynomials

We first show how we can reduce the problem of bounding the capacity to products of affine linear forms. We
recall the main productization result from [GL21], which gives the non-homogeneous productization result
as an immediate corollary.
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Theorem 5.2 (Thm. 6.2, [GL21]). Fix n, d ∈ N, u,α ∈ Rn
≥0, and p ∈ R≥0[x1, . . . , xn] of homogeneous

degree d, such that p(1) = 1 and ∇p(1) = α. There exists an R≥0-valued d× n matrix A such that the rows

sums of A are all equal to 1, the column sums of A are given by α, and p(u) =
∏d

i=1(Au)i.

Corollary 5.3. Fix n, d ∈ N, u,α ∈ Rn
≥0, and p ∈ NHStabdn(α). There exists f ∈ NHProddn(α) such that

p(u) = f(u).

Proof. Let q(x) = xd
n+1 · p

(
x1

xn+1
, . . . , xn

xn+1

)
be the homogenization of p, and define β := ∇q(1). So

q ∈ R≥0[x1, . . . , xn+1] of homogeneous degree d such that q(1) = 1 and ∇q(1) = β = (α1, . . . , αn, d−∥α∥1).
Define un+1 := 1, apply Theorem 5.2 to q and u, and dehomogenize to obtain the desired result.

We now use this result to reduce the problem of bounding the capacity to products of affine linear forms.

Corollary 5.4. For p ∈ NHStabdn(α), we have

Capκ(p) ≥ LNHProd
n (α;κ).

Proof. For any x ∈ Rn
≥0, let f ∈ NHProddn(α) be such that p(x) = f(x) according to Corollary 5.3. With

this, we have

Capκ(p) = inf
x>0

p(x)

xκ
≥ inf

x>0
min
d∈N

min
f∈NHProdd

n(α)

f(x)

xκ
= LNHProd

n (α;κ).

5.2 The Extreme Points of NHMatdn(α)

The next result implies we can reduce to the extreme points of NHMatdn(α) to lower bound LNHProd
n (α;κ).

Lemma 5.5 (See Thm. 3.1 of [Bar08]). Given κ ∈ Zn
≥0 and α ∈ Rn

≥0, let ϕ : NHMatdn(α) → R≥0 be the
function which maps M to Capκ(p) where p is the polynomial associated to M . Then ϕ is log-concave on
NHMatdn(α).

Proof. Fix any A,B ∈ NHMatdn(α), and let p, q, f be the polynomials associated to A,B, A+B
2 respectively.

By the AM-GM inequality, we compute

Capκ(f) = inf
x>0

∏d
i=1

(
ai,n+1+bi,n+1

2 +
∑n

j=1
ai,j+bi,j

2 · xj

)
xκ

= inf
x>0

∏d
i=1

[
(ai,n+1+

∑n
j=1 ai,jxj)+(bi,n+1+

∑n
j=1 bi,jxj)

2

]
xκ

≥ inf
x>0

∏d
i=1

(
ai,n+1 +

∑n
j=1 ai,jxj

)
xκ

·

∏d
i=1

(
bi,n+1 +

∑n
j=1 bi,jxj

)
xκ


1
2

≥ [Capκ(p) · Capκ(q)]
1
2

We next describe the extreme points of NHMatdn(α) via bipartitioned forests.

Lemma 5.6. Any extreme point of NHMatdn(α) has support given by a bipartite forest on d left vertices and
n+ 1 right vertices.

Proof. Let M be an extreme point of NHMatdn(α), and suppose its bipartite support graph G does not give
a forest. Then G must contain an even simple cycle. Group the edges of this cycle into two groups such that
the odd edges make up one group, and the even edges make up the other (with any starting point). Add
ϵ > 0 to all matrix entries corresponding to even edges and subtract ϵ to all matrix entries corresponding
to odd edges, to construct M+ ∈ NHMatdn(α). Do the same thing, but reverse the signs, to construct

M− ∈ NHMatdn(α). Thus M = M++M−
2 , contradicting the fact that M is an extreme point.
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In what follows, we will also need the following basic graph theoretic result.

Lemma 5.7. Let G be a bipartite forest on m left vertices and n right vertices such that G has no vertices
of degree 0. Then G has at least m− n+ 1 left leaves.

Proof. We prove this by induction, where the base case is any path graph. For this case, we have m ∈
{n − 1, n, n + 1}. If m = n − 1 then G has 0 left leaves, if m = n then G has 1 left leaf, and if m = n + 1
then G has two left leaves. Thus the desired result holds in this case.

For the inductive step, G is not a path graph. Let v be any leaf of G, and construct a new graph G′ as
follows. Let v0 := v and remove v0 from G0 := G0 to create the graph G1. Let v1 be the one neighbor of v0
in G. If v1 is a leaf or vertex of degree 0 in G1, then remove v1 from G1 to create the graph G2. If v1 was a
vertex of degree 0, then stop and define G′ := G1. Otherwise let v2 be the one neighbor of v1, and continue
this process inductively until vk is not a leaf or a vertex of degree 0 in Gk. Once the process stops, define
G′ := Gk. Note that G′ is a bipartite forest which has no vertices of degree 0, and G′ is non-empty since G
is not a path graph. We now have two cases: v is a left leaf of G, or v is a right leaf of G.

First suppose v is a left leaf of G. Then for some i, G′ has m− i left vertices and at most n− i+1 right
vertices. Thus by induction, the number of left leaves of G is at least

1 + (m− i)− (n− i+ 1) + 1 = m− n+ 1

since v is a left leaf. Thus the result holds in this case.
Next suppose v is a right leaf of G. Then for some i, G′ has m − i left vertices and at most n − i right

vertices. Thus by induction, the number of left leaves of G is at least

(m− i)− (n− i) + 1 = m− n+ 1.

Thus the result holds in this case as well.

5.3 Capacity Bounds via Induction

Here we complete the proof of Theorem 2.1. We first prove a simple lemma, which bears some resemblance
to the probabilistic union bound.

Lemma 5.8. Given c ∈ Rd
≥0 such that ci < 1 for all i ∈ [d], we have 1−

∑d
i=1 ci ≤

∏d
i=1(1− ci).

Proof. We prove the desired result by induction, where the case of d = 1 is trivial. Now note that

1−
∑d

i=1 ci
1− cd

=
(1− cd)

(
1−

∑d−1
i=1 ci

)
+ cd

(
1−

∑d−1
i=1 ci

)
− cd

1− cd
= 1−

d−1∑
i=1

ci −
cd

1− cd

d−1∑
i=1

ci ≤ 1−
d−1∑
i=1

ci.

Thus by induction we have

1−
d∑

i=1

ci ≤ (1− cd)

(
1−

d−1∑
i=1

ci

)
≤ (1− cd)

d−1∏
i=1

(1− ci),

and this completes the proof.

The next lemma handles the case from Step 4 in Section 3 of setting some variable equal to 0. To see
how these next two lemmas actually are actually used, see Theorem 5.11 below.

Lemma 5.9. For n ≥ 1, let p ∈ NHProddn(α) be the polynomial associated to a d× (n+ 1) matrix M , and
suppose κ ∈ Zn

≥0 such that κn = 0 and αn−κn ≤ 1−ϵ for some ϵ > 0. Then there exists q ∈ NHProddn−1(β)
such that

Capκ(p) ≥ ϵ · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1
≥0 and β ∈ Rn−1

≥0 is such that for all S ⊆ [n− 1] we have∑
j∈S

(αj − κj) ≤
∑
j∈S

(βj − γj) ≤ (αn − κn) +
∑
j∈S

(αj − κj).
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Proof. Define q0(x) = q0(x1, . . . , xn−1) via

q0(x) = p(x1, . . . , xn−1, 0),

so that
Capκ(p) = Capγ(q0).

Note that q0 is the polynomial associated to a d×n matrix A, where the row sums of A are given by 1−min

for all i. Note that min ≤ αn ≤ 1 − ϵ < 1 implies 1 − min > 0 for all i. We now construct a new matrix
B ∈ NHMatdn−1(β) by dividing row i of A by 1−min for all i. Defining q(x) to be the polynomial associated
to the matrix B, we have

Capκ(p) = Capγ(q0) =

d∏
i=1

(1−min) · Capγ(q) ≥ ϵ · Capγ(q)

by Lemma 5.8. Finally, for all S ⊆ [n− 1] we compute

∑
j∈S

(βj − γj) =
∑
j∈S

(
αj − κj +

d∑
i=1

(
mij

1−min
−mij

))

=

d∑
i=1

min

1−min

∑
j∈S

mij +
∑
j∈S

(αj − κj)

≤
d∑

i=1

min

1−min
(1−min) +

∑
j∈S

(αj − κj)

= (αn − κn) +
∑
j∈S

(αj − κj).

The other inequality then follows from the fact that
∑d

i=1
min

1−min

∑
j∈S mij ≥ 0.

The next lemma handles the case from Step 4 in Section 3 of taking the partial derivative with respect
to some variable.

Lemma 5.10. For n ≥ 1, let p ∈ NHProddn(α) be the polynomial associated to a d× (n+1) matrix M such
that column n has exactly one non-zero entry, and suppose κ ∈ Zn

≥0 is such that κn = 1 and κn−αn ≤ 1− ϵ

for some ϵ > 0. Then there exists q ∈ NHProdd−1
n−1(β) such that

Capκ(p) ≥ ϵ · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1
≥0 and β ∈ Rn−1

≥0 is such that for all S ⊆ [n− 1] we have∑
j∈S

(κj − αj) ≤
∑
j∈S

(γj − βj) ≤ (κn − αn) +
∑
j∈S

(κj − αj).

Proof. Let i0 be the row index of the one non-zero entry in column n. Note that ϵ ≤ αn = mi0,n ≤ 1. Define
q(x) = q(x1, . . . , xn−1) via

p(x) =

mi0,n+1 +

n∑
j=1

mi0,jxj

 · q(x).

That is, q(x) is the polynomial associated to the matrix obtained by removing row i0 of M . We then have

Capκ(p) ≥ Capen

mi0,n+1 +

n∑
j=1

mi0,jxj

 · Capγ(q) = mi0,n · Capγ(q) ≥ ϵ · Capγ(q).
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Note that q is the polynomial associated to a (d− 1)× n matrix A with row sums all equal to 1. Let β be
the vector of the first n− 1 column sums of this matrix, so that q ∈ NHProdd−1

n−1(β). For all S ⊆ [n− 1] we
have ∑

j∈S

(γj − βj) =
∑
j∈S

(κj − αj +mi0,j)

=
∑
j∈S

mi0,j +
∑
j∈S

(κj − αj)

≤ (1−mi0,n) +
∑
j∈S

(κj − αj)

= (κn − αn) +
∑
j∈S

(κj − αj).

The other inequality then follows from the fact that
∑

j∈S mi0,j ≥ 0.

We now combine the lemmas above to prove our strongest capacity lower bound for polynomials in
NHProddn(α).

Theorem 5.11. Fix any κ ∈ Zn
≥0, α ∈ Rn

≥0, and ϵ, δ ∈ Rn
>0 such that

max
S∈([n]

k )

∑
j∈S

(αj − κj) ≤ 1− ϵk and max
S∈([n]

k )

∑
j∈S

(κj − αj) ≤ 1− δk

for all k ∈ [n]. Then

Capκ(p) ≥ min
0≤ℓ≤n

ℓ∏
k=1

ϵk

n−ℓ∏
k=1

δk

for every p ∈ NHProddn(α).

Proof. We prove the desired result by induction on (n, d) with lexicographical order. The base case is the
case where n = 0, which corresponds to p ≡ 1 for any d. In this case, κ is the empty vector and Capκ(p) = 1,
which implies the desired result. (See Section 3.2 for the n = 1 case written out in detail.)

For n ≥ 1, we first handle the case that κj = 0 for some j ∈ [n], and by permuting the variables we may

assume that κn = 0. By Lemma 5.9, there exists q ∈ NHProddn−1(β) such that

Capκ(p) ≥ ϵ1 · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1
≥0 and β ∈ Rn−1

≥0 is such that for all S ⊆ [n− 1] we have∑
j∈S

(αj − κj) ≤
∑
j∈S

(βj − γj) ≤ (αn − κn) +
∑
j∈S

(αj − κj).

Thus for all k ∈ [n− 1], we have

max
S∈([n−1]

k )

∑
j∈S

(βj − γj) ≤ (αn − κn) + max
S∈([n−1]

k )

∑
j∈S

(αj − κj) ≤ 1− ϵk+1

and
max

S∈([n−1]
k )

∑
j∈S

(γj − βj) ≤ max
S∈([n−1]

k )

∑
j∈S

(κj − αj) ≤ 1− δk.

Thus by induction we have that

Capκ(p) ≥ ϵ1 · Capγ(q) ≥ min
0≤ℓ≤n−1

ϵ1

ℓ∏
k=1

ϵk+1

n−1−ℓ∏
k=1

δk = min
1≤ℓ≤n

ℓ∏
k=1

ϵk

n−ℓ∏
k=1

δk,
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and this implies the desired result.
Otherwise, κj ≥ 1 for all j ∈ [n]. Now fix any extreme point M ∈ NHMatdn(α), and let p be the

polynomial associated to M . By Lemma 5.6, M is the (weighted) bipartite adjacency matrix of a forest G.
We call the vertices of G corresponding to the rows of M the left vertices of G, and we call the vertices of
G corresponding to the columns of M the right vertices of G. Since |αj − κj | < 1 for all j ∈ [n], we further
have that none of the first n columns of M are equal to the zero vector, and thus G has at most one (right)
vertex of degree 0 (possibly the vertex corresponding to column n+ 1 of M).

We first consider the case where d ≥ n + 1. Then G has at least as many left vertices as right vertices.
After possibly removing the right vertex in G of degree 0, Lemma 5.7 implies M has at least d−n rows with
exactly one non-zero entry. Letting xv be the polynomial associated to these rows of M , we have

Capκ(p) = inf
x>0

xvf(x)

xκ
= Capκ−v(f).

With this, we now redefine κ to be κ − v, α to be α − v, p to be f , and M to be the matrix with the (at
least) d− n rows removed. Since (αj − vj)− (κj − vj) = αj − κj for all j ∈ [n], the result in this case then
follows by induction.

We now consider the case where d ≤ n. Then G has at least one more right vertex than left vertices. After
possibly removing the right vertex in G of degree 0 (corresponding to column n+1 of M), Lemma 5.7 implies
at least one of the first n columns of M has exactly one non-zero entry, and by permuting the variables we
may assume that it is column n. Thus αn ≤ 1, and |αn − κn| < 1 then implies κn = 1. By Lemma 5.10,
there exists q ∈ NHProdd−1

n−1(β) such that

Capκ(p) ≥ δ1 · Capγ(q),

where γ = (κ1, . . . , κn−1) ∈ Zn−1
≥0 and β ∈ Rn−1

≥0 is such that for all S ⊆ [n− 1] we have∑
j∈S

(κj − αj) ≤
∑
j∈S

(γj − βj) ≤ (κn − αn) +
∑
j∈S

(κj − αj).

Thus for all k ∈ [n− 1], we have

max
S∈([n−1]

k )

∑
j∈S

(βj − γj) ≤ max
S∈([n−1]

k )

∑
j∈S

(αj − κj) ≤ 1− ϵk

and
max

S∈([n−1]
k )

∑
j∈S

(γj − βj) ≤ (κn − αn) + max
S∈([n−1]

k )

∑
j∈S

(κj − αj) ≤ 1− δk+1.

Thus by induction we have that

Capκ(p) ≥ δ1 · Capγ(q) ≥ min
0≤ℓ≤n−1

δ1

ℓ∏
k=1

ϵk

n−1−ℓ∏
k=1

δk+1 = min
0≤ℓ≤n−1

ℓ∏
k=1

ϵk

n−ℓ∏
k=1

δk,

and this implies the desired result.
We have proven the result for polynomials associated to the extreme points of NHMatnn(α). Applying

Lemma 5.5 then completes the proof.

The next result gives the bound which we will use in Section 4 to prove Theorem 2.4, the simply expo-
nential improvement to the probability bound used for the metric TSP application.

Corollary 5.12. Fix any κ ∈ Zn
≥0 and α ∈ Rn

≥0 such that ϵ ∈ Rn
>0 can be defined via

ϵk := 1− max
S⊆[n]
|S|≤k

∣∣∣∣∣∣
∑
j∈S

(κj − αj)

∣∣∣∣∣∣
14



for all k ∈ [n]. Then

Capκ(p) ≥
n∏

k=1

ϵk

for every p ∈ NHProddn(α).

Proof. Note that

max
S⊆[n]
|S|≤k

∑
j∈S

(αj − κj) ≤ 1− ϵk and max
S⊆[n]
|S|≤k

∑
j∈S

(κj − αj) ≤ 1− ϵk

for all k ∈ [n], and thus

Capκ(p) ≥ min
0≤ℓ≤n

ℓ∏
k=1

ϵk

n−ℓ∏
k=1

ϵk

by Theorem 5.11. Since ϵ1 ≥ ϵ2 ≥ · · · ≥ ϵn, this implies the result.

By Corollary 5.4, the above results hold for all p ∈ NHStabdn(α), and we state this formally now.

Corollary 5.13. Theorem 5.11 and Corollary 5.12 hold for all p ∈ NHStabdn(α).

5.4 Proving Theorem 2.1 and Corollary 2.2

We now complete the proof of Theorem 2.1, and thus also of Corollary 2.2. Fix p ∈ NHStabdn(α). Thus

1− max
S⊆[n]
|S|≤k

∣∣∣∣∣∣
∑
j∈S

(κj − αj)

∣∣∣∣∣∣ ≥ 1− ∥κ−α∥1

and Corollary 5.13 (via Corollary 5.12) imply

Capκ(p) ≥ (1− ∥κ−α∥1)n,

which completes the proof. The tightness claim follows from Lemma 5.14.

5.5 Examples and Tightness

The δ parameters in Theorem 5.11 are tight, and this is shown in Example 5.15. However, the ϵ parameters
are not, as shown in Example 5.16. Example 5.15 also demonstrates tightness of the dependence on the error
parameter for some of our results, and we state this formally now.

Lemma 5.14. The dependence on (1−∥κ−∇p(1)∥1) in Theorem 2.1 and Corollary 2.2 and the dependence
on ϵ in Theorem 2.4 are all tight for any fixed κ > 0.

Proof. Define α1 := κ1 − (1 − ϵ) > 0 and αi := κi ≥ 1 for all i ≥ 2. Let p be the polynomial described by
Example 5.15, given explicitly by

p(x) =

(
n∏

i=1

xκi−1
i

)
·

(
n−1∏
i=1

(ϵxi + (1− ϵ)xi+1)

)
· (ϵxn + (1− ϵ)).

Then κ is a vertex of of the Newton polytope of p. Thus

pκ = Capκ(p) =

n∏
k=1

1−
k∑

j=1

(κj − αj)

 = ϵn = (1− ∥κ−∇p(1)∥1)n.

To see that p can be the probability generating polynomial for some random variables associated to a
strongly Rayleigh distribution (as in Theorem 2.4), note that the polarization of p is real stable and gives
the probability generating polynomial for such a strongly Rayleigh distribution.
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Example 5.15. Fix any κ ∈ Zn
≥0 and α ∈ Rn

≥0 such that κj − αj ≥ 0 for all j ∈ [n] and ∥κ − α∥1 < 1.

Thus κj ≥ 1 for all j ∈ [n]. For d = ∥κ∥1, consider the matrix M = [ AB ], where A is the (∥κ∥ − n)× (n+ 1)
matrix given by

A =


1κ1−1e

⊤
1

1κ2−1e
⊤
2

...
1κn−1e

⊤
n

 ,

and B is the n× (n+ 1) matrix for which

bkk = 1−
k∑

j=1

(κj − αj), bk,k+1 =

k∑
j=1

(κj − αj),

for all k ∈ [n] and bij = 0 otherwise. Note that every row sum of A is equal to 1, and the row sums of B are
given by

n∑
j=1

bkj = 1−
k∑

j=1

(κj − αj) +

k∑
j=1

(κj − αj) = 1

for all k ∈ [n]. The column sums of M are then given by

d∑
i=1

mik = (κk − 1) + 1−
k∑

j=1

(κj − αj) +

k−1∑
j=1

(κj − αj) = κk − (κk − αk) = αk

for all k ∈ [n]. Thus M ∈ NHMatdn(α). Let p be the polynomial associated to M , and let q be the polynomial
associated to B. We then have Capκ(p) = Cap1(q). Note that 1 is a vertex of the Newton polytope of q,
and thus

Capκ(p) = Cap1(q) =

n∏
k=1

bkk =

n∏
k=1

1−
k∑

j=1

(κj − αj)

 .

By possibly permuting the variables to put κj −αj in non-increasing order, this is precisely the lower bound
guaranteed by Theorem 5.11.

Example 5.16. Consider the case that κ = 0 and ∥α∥1 < 1. Given any d, let M be any extreme point of
NHMatdn(α). Then the column sum of column n + 1 of M is equal to d −

∑n
j=1 αj > d − 1. Since every

row sum equals 1, all entries of column n + 1 of M are strictly positive. Since M is an extreme point, this
further implies that each column of M has at most 1 positive entry except column n+ 1. Letting p be the
polynomial associated to M , there exists a partition S1 ⊔ · · · ⊔ Sk = [n] such that

p(x) =

k∏
i=1

∑
j∈Si

αjxj

+

1−
∑
j∈Si

αj

 .

Thus by Lemma 5.8,

Cap0(p) = p0 =

k∏
i=1

1−
∑
j∈Si

αj

 ≥ 1−
n∑

j=1

αj .

By Lemma 5.5, this gives a lower bound on the capacity of every p ∈ NHProddn(α). However, this lower
bound is strictly better than the one guaranteed by Theorem 5.11.

As a note, this can be partially remedied by removing all κj = 0 columns at the same time (i.e., adjusting
Lemma 5.9 to remove many columns at once). However, it is currently unclear how to inductively do this
correctly.
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A Improving the TSP Bound

A.1 Further Background on TSP

In [KKO21], instead of only looking at vertices as we did in Section 4, they consider sets of edges going
between two sets of vertices. The notation e = (u,v) is used, for e ⊆ E, u,v ⊆ V . Formally, if e = (u,v)
then e = {e = {u, v} ∈ E : |e ∩ u| = |e ∩ v| = 1}. They call e a “top edge bundle.”3 e = (u,v) is only
defined for sets u,v for which 2 ≤ x(δ(u)) ≤ 2 + ϵη and 2 ≤ x(δ(v)) ≤ 2 + ϵη, where ϵη ≤ 10−10 is a very
small constant.

In [KKO21], the event that the sets u and v are subtrees of T is ubiquitous and therefore we always work
in the conditional measure µ′ = µ|u,v trees. By Lemma 2.23 in [KKO21], u,v are subtrees with probability at
least 1−2ϵη, µ

′ is a strongly Rayleigh distribution, and if x′
e = PT∼µ′ [e ∈ T ] then x(F ) ≤ x′(F ) ≤ x(F )+2ϵη

for any F ⊆ δ(u)∪ δ(v). Thus, since ϵη is such a small constant, there is very little difference between µ and
µ′.

For a top edge bundle e = (u,v), they partition the edges of u into sets A,B,C. This is called the
“(A,B,C) degree partition” of u (this is analogously done for v). The details of this operation are not
relevant in this work. What is relevant is that in the measure µ′ we have the bounds

x′(A), x′(B) ∈ [1− ϵ1,1, 1 + 3ϵη],

x′(C) ≤ 2ϵ1/1 + 3ϵη.
(4)

where ϵ1/1 = ϵ1/2/12 and ϵ1/2 = 0.0002 are small constants that will be relevant in this section.4 e is called

a half edge bundle if 1
2 − ϵ1/2 ≤ x(e) ≤ 1

2 + ϵ1/2. As already observed in Section 4, these edge bundles are
particularly difficult to deal with. Thus they are the subject of many probabilistic statements in [KKO21].

The final relevant definition is the event that a top edge bundle e = (u,v) is “2-1-1 happy with respect
to u.” Where for sets of edges F, T ⊆ E we let FT = |F ∩ T |, this indicates that

AT = 1, BT = 1, CT = 0, δ(v)T = 2,u,v trees

where A,B and C are the (A,B,C) degree partition of u. The event “2-1-1 happy with respect to v” is
analogous, and also relevant, however since the assumptions on the partitions of u and v are the same we
do not distinguish between them in this work.

The lemmas we improve all involve showing that the event that an edge is 2-1-1 happy (with respect to
u or v) has a non-negligible probability.

We will require one additional fact about our spanning tree distribution, which is a simple consequence
of negative association and homogeneity:

Lemma A.1 (Explained in e.g. Section 2 of [KKO21]). Let µ : 2E → R≥0 be a strongly Rayleigh distribution
over spanning trees with xe = PT∼µ [e ∈ T ] as above. Let A,B ⊆ E be disjoint sets. Then, ET∼µ[AT | BT =
0] ≤ x(A) + x(B). Furthermore, the conditional measure µ|BT=0 is strongly Rayleigh. Similarly, for an
edge e, we can condition e ∈ T and the measure µ|e∈T is SR, and for any set A ⊆ E with e ̸∈ A we have
x(A)− xe ≤ ET∼µ [AT | e ∈ T ] ≤ x(A).

A.2 Using Capacity to Improve Probabilistic Bounds

Theorem 4.1 and Corollary 4.2 can be applied straightforwardly to strengthen and simplify the proof of a
number of lemmas in [KKO21]. In this section we demonstrate this for Lemmas 5.21 and 5.22, as they are
bottlenecks for the approximation factor. However, they can also be applied to simplify and improve the
factor for Lemma 5.7 and achieve simpler proofs for Lemmas 5.16 and 5.17 at the price of a slightly worse
constant. (Of course, with more effort, one can likely use these statements to strengthen the bounds for
these as well similar to what is done for Lemma 5.24.)

3They also consider “bottom edge bundles,” which have a slightly different definition, however they do not arise in the
lemmas we consider.

4Note in [KKO21], these bounds are given with respect to x, not x′. We use x′ for convenience since as noted everything is
done in the conditional measure µ′.
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We then show that Lemma 5.23 can be easily strengthened using existing arguments. Finally, we use
Corollary 4.2 to reduce Lemma 5.24 to a special case in which ad hoc methods can further improve the
bound.

A.2.1 Improving Lemma 5.21

Here we improve upon the bound of 0.005ϵ21/2 via a straightforward application of our new capacity bound,
Corollary 4.2.

Lemma A.2. Let e = (u,v) be a top edge bundle such that x(e) ≤ 1/2−ϵ1/2. If ϵ1/2 ≤ 0.001, ϵ1/1 ≤ ϵ1/2/12,
and ϵη ≤ ϵ21/2 then e is 2-1-1 happy with probability at least 0.039ϵ21/2.

Proof. Consider the (A,B,C) degree partitioning of u (the case for v is exactly the same). We first condition
on µ′, CT = 0 and ((A ∩ C) ∪ (B ∩ C))T = 0. Let V = δ(u). We now want to bound the probability that
AT = BT = 1 and VT = 2 in the resulting measure ν. As we are working in the same setting as the proof of
5.21 in [KKO21], we re-use their bounds on the expectations:

−0.5 ≤ Eν [AT ]− 1 ≤ 0.5
−0.5 ≤ Eν [BT ]− 1 ≤ 0.5
−0.5 ≤ Eν [VT ]− 2 ≤ 0.01
−0.5 ≤ Eν [AT +BT ]− 2 ≤ 0.01

−1 + 1.8ϵ1/2 ≤ Eν [AT + VT ]− 3 ≤ 0.01
−1 + 1.8ϵ1/2 ≤ Eν [BT + VT ]− 3 ≤ 0.01
−1 + 1.75ϵ1/2 ≤ Eν [AT +BT + VT ]− 4 ≤ −0.49

Now, note that since V defines a cut in the graph and we have a distribution over spanning trees, VT ≥ 1
with probability 1. Therefore we can consider the random variable VT − 1 instead (this corresponds to
dividing the generating polynomial by the variable representing VT ). Thus in Corollary 4.2 we may choose
(considering κ = (1, 1, 1) on the variables AT , BT , VT − 1):

ϵ1 = 0.5, ϵ2 = 1.8ϵ1/2, ϵ3 = 1.75ϵ1/2

which implies (using that ν occurs with probability at least 1/2):

0.5 · Pν [AT = 1, BT = 1, VT = 2] ≥ 0.5 · e−3 · 0.5 · 1.8ϵ1/2 · 1.75ϵ1/2 ≥ 0.0392 · ϵ21/2.

as desired.

We also note that this bound is tight up to the constant factor for strongly Rayleigh distributions (where
one can set γ ≈ ϵ1/2):

Lemma A.3. There is a strongly Rayleigh distribution µ for which x(A) = x(B) = 1, x(V ) = 2 and
x((A ∩ V ) ∪ (B ∩ V )) = 1

2 − γ such that

PT∼µ [AT = 1, BT = 1, VT = 2] = (1 + 2γ)γ2

Proof. We will let A be represented by w and x, B by y, and V by w and z. Consider the real stable
generating polynomial

pµ(x, y, z, w) = z

((
1

2
+ γ

)
+

(
1

2
− γ

)
w

)(
1

2
x+

1

2
z

)
(γx+ γz + (1− 2γ)y) ((1− 2γ) + 2γy)

One can check that the expectations are correct. Now we calculate the coefficient of wyz and xyz2, corre-
sponding to the desired event. The distribution µ consists of 5 independent choices corresponding to each
of the 5 terms. The first is of course trivial, we always take z. In the second, suppose we take w, so we have
collected terms wz. Then, note we must take some variable from the third and fourth terms. So, wyz has a
coefficient of 0.

Therefore we must take ( 12 + γ) in the second term, and we must now collect xyz from the remainder. It
follows that we must collect y in the last term, as there are three terms and three variables, so we now have
( 12 + γ)2γyz and must collect xz. There are two ways to do this, each with a coefficient of γ

2 . Therefore the
coefficient of xyz2 is (1 + γ)γ2.
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A.2.2 Improving Lemma 5.22

We now improve upon Lemma 5.22 from [KKO21], which had a bound of 0.006ϵ21/2. This is again a straight-
forward application of Corollary 4.2.

Lemma A.4. Let e = (u,v) be a top edge bundle such that xe ≥ 1/2 + ϵ1/2. If ϵ1/2 ≤ 0.001, then, e is
2-1-1 happy with respect to u with probability at least 0.038 · ϵ21/2.

Proof. The setup of this proof is similar to Lemma A.2. We again look at the (A,B,C) degree partition of
u. First, we condition on µ′ and CT = 0. Then, we condition on u ∪ v to be a tree. All these events occur
with probability at least 1/2. Let ν be the resulting measure. Under ν, notice that there is exactly one edge
between u and v, or in other words that (A ∩ δ(v)) ∪ (B ∩ δ(v)) is 1.

Therefore, to obtain AT = BT = 1 and δ(v)T = 2, where V = δ(v) ∖ δ(u) it suffices to prove that
AT = BT = 1 and VT = 1 (where note that A,B, V are now disjoint).

As this is the same setup as Lemma 5.22 in [KKO21], we simply re-use their bounds on the expectations:

−0.5 ≤ Eν [AT ]− 1 ≤ 0.5
−0.5 ≤ Eν [BT ]− 1 ≤ 0.5

−0.005 ≤ Eν [VT ]− 1 ≤ 0.5
−0.005 ≤ Eν [AT +BT ]− 2 ≤ 0.5
−0.01 ≤ Eν [AT + VT ]− 2 ≤ 1− 1.75ε1/2
−0.01 ≤ Eν [BT + VT ]− 2 ≤ 1− 1.75ε1/2
−0.01 ≤ Eν [AT +BT + VT ]− 3 ≤ 1− 1.75ε1/2

Therefore in Corollary 4.2 we can set

ϵ1 = 0.5, ϵ2 = 1.75ε1/2, ϵ3 = 1.75ε1/2

which implies

0.5 · Pν [AT = 1, BT = 1, VT = 1] ≥ 0.5 · e−3 · 0.5 · 1.75ε1/2 · 1.75ε1/2 ≥ 0.038 · ε21/2

as desired.

A.2.3 Improving Lemma 5.23

First we recall some notation from [KKO21]. For e = (u,v) and a set A ⊆ E, (where recall e ⊆ E) we let
A−e = A∖ e and xe(A) = x(A ∩ e).

Unfortunately, this lemma does not easily fit into the framework from this paper, as it does not follow
from expectation information. Instead, to improve Lemma 5.23, we first note that Lemma A.1 in [KKO21]
can be parameterized in the following way. We simply replace the constant 5 by k in the statement and
exactly follow the previous proof.

Lemma A.5. For a good half top edge bundle e = (u,v), let A,B,C be the degree partitioning of δ(u), and
let V = δ(v)−e. If ϵ1/2 ≤ 0.001, xe(B) ≤ ϵ1/2, and P [(A−e)T + VT ≤ 1] ≥ kϵ1/2 then e is 2-1-1 good,

P [e 2-1-1 happy w.r.t. u] ≥ 0.001(min{100, k} − 0.2)ϵ21/2

Since we do not modify the proof in any meaningful way, we defer it to Appendix A. Now we can show
that in fact without any modifications, Lemma 5.23 is true with a much larger constant as long as one sets
ϵ1/2 = 0.0002. In particular:

Lemma A.6. Let e = (v,u) and f = (v,w) be good half top edge bundles and let A,B,C be the degree
partitioning of δ(v) such that xe(B), xf(B) ≤ ϵ1/2. Then, if ϵ1/2 ≤ 0.0002, one of e, f is 2-1-1 happy with
probability at least 0.0498ϵ21/2.

Proof. Let U = δ(u)∖e and A−e = A∖e. Then, Lemma 5.23 in [KKO21] shows that P [UT + (A−e)T ≤ 1] ≥
0.01. Using that ϵ1/2 ≤ 0.0002, this is at least 50ϵ1/2. Now by Lemma A.6 we obtain a bound of 0.001(50−
0.2)ϵ21/2 as desired.
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A.2.4 Improving Lemma 5.24

This lemma also does not follow directly from expectation information. However, we show that our new
capacity bound is still helpful in improving the bound. We include the new part of the lemma here and defer
the rest of the proof to the appendix as it is similar to [KKO21].

Lemma A.7. Let e = (u,v) be a good half edge bundle and let A,B,C be the degree partitioning of δ(u).
If ϵ1/2 ≤ 0.001 and xe(A), xe(B) ≥ ϵ1/2, then

P [e 2-1-1 happy w.r.t u] ≥ 0.0498ϵ21/2.

Proof. Condition CT to be zero, u, v and u ∪ v be trees. Let ν be the resulting measure. Let X = A−e ∪
B−e, Y = δ(v)−e. Then

Eν [XT ] ,Eν [YT ] ∈ [1− 3ϵ1/1, 1.5 + ϵ1/2 + 2ϵ1/1 + 3ϵη] ⊂ [0.995, 1.51]

Eν [XT + YT ] ∈ [2.5− 3ϵ1/1 − 3ϵ1/2, 3 + 2ϵ1/2 + 2ϵ1/1 + 4ϵη] ∈ [2.495, 3.01]

Therefore using Corollary 4.2, if Eν [XT + YT ] ≤ 2.999, we could set ϵ1 = 0.49, ϵ2 = 0.001 and obtain a bound
of Pν [XT = YT = 1] ≥ e−2(0.49)(0.001) ≥ 0.06ϵ1/2. Therefore, we either have Pν [XT = YT = 1] ≥ 0.06ϵ1/2,
or it is the case that:

Eν [XT ] ,Eν [YT ] ∈ [1.489, 1.51], Eν [XT + YT ] ∈ [2.999, 3.01]

Given this, we obtain the lemma using Lemma A.12.

A.3 Further Probabilistic Statements

While in the previous section, we focused on the usage of Corollary 4.2, here we require some of the ad hoc
methods of [KKO21] to make progress.

A key fact about real stable polynomials we will use in the remaining statements is that their univariate
restrictions are real rooted. As a consequence, the following standard fact can be shown:

Lemma A.8. Let µ : 2E → R≥0 be a strongly Rayleigh distribution and let F ⊆ E. Then there exists
independent Bernoulli random variables B1, . . . , Bm such that PT∼µ [|F ∩ T | = k] = P [

∑m
i=1 Bi = k] for all

k ∈ Z≥0.

Bernoulli random variables are quite easy to work with due to the following theorem of Hoeffding.

Theorem A.9 (Corollary 2.1 from [Hoe56]). Let g : {0, 1, . . . , n} → R and 0 ≤ q ≤ n for some integer
n ≥ 0. Let B1, . . . , Bn be n independent Bernoulli random variables with success probabilities p1, . . . , pn,
where

∑n
i=1 pn = q that minimizes (or maximizes)

E[g(B1 + · · ·+Bn)]

over all such distributions. Then, p1, . . . , pn ∈ {0, x, 1} for some 0 < x < 1. In particular, if only m of pi’s
are nonzero and ℓ of pi’s are 1, then the remaining m− ℓ are q−ℓ

m−ℓ .

Finally, we will need the following two statements from [KKO21].

Lemma A.10 (Lemma 5.4 from [KKO21]). Given a strongly Rayleigh distribution µ : 2[n] → R≥0, let A,B
be two (nonnegative) random variables corresponding to the number of elements sampled from two disjoint
sets such that P [A+B = n] > 0 where n = nA + nB. Then,

P [A ≥ nA|A+B = n] = P [B ≤ nB |A+B = n] ≥ P [A ≥ nA]P [B ≤ nB ] , (5)

P [A ≤ nA|A+B = n] = P [B ≥ nB |A+B = n] ≥ P [A ≤ nA]P [B ≥ nB ] . (6)
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Corollary A.11 (Corollary 5.5 from [KKO21]). Let µ : 2[n] → R≥0 be a SR distribution. Let A,B be
two random variables corresponding to the number of elements sampled from two disjoint sets of elements
such that A ≥ kA with probability 1 and B ≥ kB with probability 1. If P [A ≥ nA] ,P [B ≥ nB ] ≥ ϵ1 and
P [A ≤ nA] ,P [B ≤ nB ] ≥ ϵ2, then, letting n′

A = nA − kA, n
′
B = nB − kB,

P [A = nA|A+B = nA + nB ] ≥ ϵmin{ 1

n′
A + 1

,
1

n′
B + 1

},

P [A = nA|A+B = nA + nB ] ≥ min
{
pm, ϵ(1− (ϵ/pm)1/max{n′

A,n′
B})
}

where ϵ = ϵ1ϵ2 and pm ≤ maxkA≤k≤nA+nB−kB
P [A = k|A+B = nA + nB ] is a lower bound on the mode of

A.

The following proof is essentially identical to the the proof of Lemma A.1 in [KKO21], we simply param-
eterize the statement by k.

Lemma A.5. For a good half top edge bundle e = (u,v), let A,B,C be the degree partitioning of δ(u), and
let V = δ(v)−e. If ϵ1/2 ≤ 0.001, xe(B) ≤ ϵ1/2, and P [(A−e)T + VT ≤ 1] ≥ kϵ1/2 then e is 2-1-1 good,

P [e 2-1-1 happy w.r.t. u] ≥ 0.001(min{100, k} − 0.2)ϵ21/2

Proof. We first condition on µ′, CT = 0, u ∪ v to be a tree and let ν be the resulting SR measure on edges
in A,B, V . Since e is 2-2 good, by Lemma 5.15 in [KKO21] and negative association,

Pν [(δ(u)−e)T + VT ≤ 2] ≥ P [(δ(u)−e)T + VT ≤ 2]− P [CT = 0] ≥ 0.4ϵ1/2 − 2ϵ1/1 − ϵη ≥ 0.22ϵ1/2,

where we used ϵ1/1 ≤ ϵ1/2/12. Letting pi = P [(δ(u)−e)T + VT = i], we therefore have p≤2 ≥ 0.22ϵ1/2. In
addition, by Theorem A.9, p3 ≥ 1/4. If p2 < 0.2ϵ1/2, then from p2/p3 ≤ 0.8ϵ1/2, we could use log-concavity
to derive a contradiction to p≤2 ≥ 0.22ϵ1/2. Therefore, we must have

Pν [AT +BT + VT = 3] = Pν [(δ(u)−e)T + VT = 2] ≥ 0.2ϵ1/2.

Next, notice since P [u, v, u ∪ v trees, CT = 0] ≥ 0.49, by the lemma’s assumption, Pν [e(B)] ≤ 2.01ϵ1/2.
Therefore,

Eν [BT + VT ] ≤ x(V ) + x(B) + 1.01ϵ1/2 + 2ϵ1/1 + ϵη ≤ 2.51.

So, by Markov, Pν [BT + VT ≤ 2] ≥ 0.15. Finally, by negative association,

Pν [AT + VT ≤ 2] ≥ Pν [(A−e)T + VT ≤ 1] ≥ P [(A−e)T + VT ≤ 1]− P [CT = 0] ≥ (k − 0.2)ϵ1/2

where we used the lemma’s assumption.
Using arguments from the proof of Lemma 5.21 in [KKO21], we have

Pν [AT +BT = 2 | AT +BT + VT = 3] ≥ 0.12

Now by Lemma A.10,

Pν [BT ≥ 1 | AT +BT + VT = 3] = Pν [AT +BT ≤ 2 | AT +BT + VT = 3]

≥ Pν [AT +BT ≤ 2]Pν [VT ≥ 1] ≥ 0.63(k − 0.2)ϵ1/2

using that similar to Lemma 5.21 in [KKO21] we can show Pν [VT ≥ 1] ≥ 0.63. We also use similar arguments
to show Pν [BT ≤ 1 | AT +BT + VT = 3] ≥ 0.147.

Therefore, by Corollary A.11, Pν [BT = 1 | AT +BT = 2, VT = 1] ≥ 0.147 · 0.63(k − 0.2)ϵ1/2 · pm where
pm ≤ maxk∈{0,1,2} P [B = k | AT +BT = 2, VT = 1]. For k ≤ 100 and ϵ1/2 ≤ 0.0002, our bound for
Pν [BT = 1 | AT +BT = 2, VT = 1] is at most 0.001 for pm = 1. Therefore, we may assume it is at most
0.001. By log concavity we can set pm = 0.998. So,

P [e 2-1-1 happy] ≥ (0.092(max{k, 100} − 0.2)ϵ1/2)0.12(0.2ϵ1/2)0.498 ≥ 0.001(max{k, 100} − 0.2)ϵ21/2

as desired.
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Here we use the additional assumptions provided by Lemma A.7 to improve upon the original bound.

Lemma A.12. Let e = (u,v) be a good half edge bundle and let A,B,C be the degree partitioning of δ(u).
Suppose ϵ1/2 ≤ 0.001 and xe(A), xe(B) ≥ ϵ1/2. Let ν be the measure conditioned on CT = 0, u, v and u∪ v be
trees. Suppose that either Pν [XT = YT = 1] ≥ 0.06ϵ1/2, or

Eν [XT ] ,Eν [YT ] ∈ [1.489, 1.51], Eν [XT + YT ] ∈ [2.999, 3.01]

Then,
P [e 2-1-1 happy w.r.t u] ≥ 0.0485ϵ21/2.

Proof. We break the proof into two stages.

First we show the bound given Pν [XT = YT = 1] ≥ 0.0498ϵ1/2. Let E be the event {XT = YT = 1} in
the conditional measure ν. Note that in ν we always choose exactly 1 edge from the e bundle and that is
independent of edges in X,Y , in particular the above event. Therefore, we can correct the parity of A,B by
choosing from eA or eB . It follows that

P [e 2-1-1 happy w.r.t u] ≥ Pν [E ] (1.99ϵ1/2)0.49 ≥ 0.0485ϵ21/2,

where we used that the probability CT = 0 and u, v, u ∪ v are subtrees with probability at least 0.49,
Eν [e(A)T ] ≥ 1.99ϵ1/2, and Eν [e(B)T ] ≥ 1.99ϵ1/2. To see why these latter inequalities hold, observe that
conditioned on u, v trees, we always sample at most one edge between u, v. Therefore, since under ν we
choose exactly one edge between u, v, the probability of choosing from e(A) (and similarly choosing from
e(B)) is at least

Ee(A)T |u, v trees, CT = 0

P [e|u, v trees, CT = 0]
≥

xe(A) − 2ϵη

xe + 3ϵ1/1
≥

ϵ1/2 − 2ϵη

1/2 + 1.3ϵ1/2
≥ 1.99ϵ1/2

as desired.

Second we show Pν [XT = YT = 1] ≥ 0.0498ϵ1/2. If this is true by the lemma’s assumption, we are done,
otherwise we have the bounds on the expectations:

Eν [XT ] ,Eν [YT ] ∈ [1.489, 1.51], Eν [XT + YT ] ∈ [2.999, 3.01]

First suppose that Pν [XT + YT = 2] ≥ 0.001 ≥ ϵ1/2. Applying Corollary A.11 (and using Theorem A.9
to bound the probability XT , YT are at least 1 and at most 1), we obtain Pν [XT = 1|XT + YT = 2] ≥
1
2 (0.245)(0.77) ≥ 0.094 and therefore again our desired bound Pν [XT = YT = 1] ≥ 0.06ϵ1/2 would hold.
Therefore we may assume that Pν [XT + YT = 2] ≤ 0.001. By log concavity and the fact that Eν [XT + YT = 3],
it must be that Pν [XT + YT = 3] ≥ 0.995.

We use this information to improve the bounds on Pν [XT ≥ 1] ,Pν [YT ≥ 1] and Pν [XT ≤ 1] ,Pν [YT ≤ 1].
First, condition on XT + YT = 3, this occurs with probability at least 0.995. Call the resulting measure ν′.
By log concavity,

1.48 ≤ Eν′ [XT ] ,Eν′ [YT ] ≤ 1.52

Finally we apply Theorem A.9 and use the fact that there are at most 3 Bernoullis. This demonstrates that

Pν [XT ≥ 1] ,Pν [YT ≥ 1] ≥ 0.864

Pν [XT ≤ 1] ,Pν [YT ≤ 1] ≥ 0.419

Where we use that in ν′ the quantities are bounded by 0.869 and 0.422 respectively. We now turn to the
fact that e is 2-2 good to bound the probability the sum is 2. By Lemma 5.15 from [KKO21] and stochastic
dominance,

Pν [XT + YT ≤ 2] ≥ P [(δ(u)−e)T + YT ≤ 2]− P [CT = 0] ≥ 0.4ϵ1/2 − 2ϵ1/1 − ϵη ≥ 0.22ϵ1/2,
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where we used ϵ1/1 < 12ϵ1/2. It follows by log-concavity of XT + YT that Pν [XT + YT = 2] ≥ 0.2ϵ1/2.
Finally, we obtain Pν [XT = 1 | XT + YT = 2] ≥ 0.249. This is because of the following. WLOG, suppose
Eν [XT | XT + YT = 2] ≤ 1 (otherwise we bound Pν [YT = 1 | XT + YT = 2]). Now by Lemma A.10, we
have that Pν [XT ≥ 1 | XT + YT = 2] ≥ 0.362. If Pν [XT = 1 | XT + YT = 2] ≥ 0.25 we are done already,
therefore Pν [XT = 2 | XT + YT = 2] ≥ 0.112. This implies that Eν [XT | XT + YT = 1] ≥ 0.474. Now
applying Theorem A.9 with at most two Bernoullis, we obtain the bound.

Therefore, Pν [XT = YT = 1] ≥ (0.2ϵ1/2)(0.249) = 0.0498ϵ1/2 as desired.

A.4 A Parameterized TSP Bound

The following statement is an immediate consequence of [KKO21; KKO22]:

Lemma 4.5. Let p be a lower bound on the probabilities guaranteed by (1) - (6) for ϵ1/2 ≤ 0.0002, and
suppose p ≤ 10−4. Then given x ∈ PSub, the max entropy algorithm returns a solution of expected cost at
most ( 32 − 9.7p2 · 10−17) · c(x).

To see this, one can examine the proof of the “main payment theorem,” Theorem 4.33, of [KKO21].
As it is a lengthy statement with many definitions not given here, we refer the reader to [KKO21]. In the
proof of this theorem, there is a constant ϵP is set to be 1.56 · 10−6p, where p is the minimum probability
guaranteed by Corollary 5.9, Lemma 5.25, and Lemma 5.28. Then, Lemma 5.25 and Lemma 5.28 are simply
aggregations of the bounds in Lemmas 5.21, 5.22, 5.23, 5.24, and 5.27, which are the lemmas we improve in
this paper. It is also required that p ≤ 3ϵ1/2 and ϵ1/2 ≤ 0.0002, as this the threshold for the definition of a
good edge from Definition 5.13, which is related to Lemma 5.16 and Lemma 5.17. Thus it is sufficient that
p ≤ 10−4 if one does not modify these lemmas.

Therefore, given the assumptions of the lemma, Theorem 4.33 holds without any modification of the
proof for ϵP = 1.56 · 10−6p. We can then plug the improved version of the payment theorem into Theorem
6.1 from [KKO22], where one sets η = min{10−12, ϵP

750}, β = η
4+2η and achieves an approximation ratio (and

integrality gap) of
3

2
− ϵP

6
β +

ϵP η

100
≥ 3

2
− ϵ2P

25000
≥ 3

2
− 9.7p2 · 10−17

As long as ϵP /750 < 10−12 which it is for p ≤ 10−4.
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