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Abstract

Proving explicit lower bounds on the size of algebraic formulas is a long-standing open problem
in the area of algebraic complexity theory. Recent results in the area (e.g. a lower bound against
constant-depth algebraic formulas due to Limaye, Srinivasan, and Tavenas (FOCS 2021)) have in-
dicated a way forward for attacking this question: show that we can convert a general algebraic
formula to a homogeneous algebraic formula with moderate blow-up in size, and prove strong lower
bounds against the latter model.

Here, a homogeneous algebraic formula F for a polynomial P is a formula in which all subformulas
compute homogeneous polynomials. In particular, if P is homogeneous of degree d, F does not
contain subformulas that compute polynomials of degree greater than d.

We investigate the feasibility of the above strategy and prove a number of positive and negative
results in this direction.

1. Lower bounds against weighted homogeneous formulas: We show the first lower bounds
against homogeneous formulas of any depth in the weighted setting. Here, each variable has a
given weight and the weight of a monomial is the sum of weights of the variables in it. This
result builds on a lower bound of Hrubeš and Yehudayoff (Computational Complexity (2011))
against homogeneous multilinear formulas. This result is strong indication that lower bounds
against homogeneous formulas is within reach.

2. Improved (quasi-)homogenization for formulas: A simple folklore argument shows that
any formula F for a homogeneous polynomial of degree d can be homogenized with a size blow-
up of dO(log s). We show that this can be improved superpolynomially over fields of characteristic
0 as long as d = so(1). Such a result was previously only known when d = (log s)1+o(1) (Raz
(J. ACM (2013))). Further, we show how to get rid of the condition on d at the expense of
getting a quasi-homogenization result: this means that subformulas can compute polynomials
of degree up to poly(d).

3. Lower bounds for non-commutative homogenization: A recent result of Dutta, Ges-
mundo, Ikenmeyer, Jindal and Lysikov (2022) implies that to homogenize algebraic formulas of
any depth, it suffices to homogenize non-commutative algebraic formulas of depth just 3. We
are able to show strong lower bounds against such homogenization, suggesting barriers for this
approach.

4. No Girard-Newton identities for positive characteristic: In characteristic 0, it is known
how to homogenize constant-depth algebraic formulas with a size blow-up of exp(O(

√
d)) using
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the Girard-Newton identities. Finding analogues of these identities in positive characteristic
would allow us, paradoxically, to show lower bounds for constant-depth formulas over such
fields. We rule out a strong generalization of Girard-Newton identities in the setting of positive
characteristic, suggesting that a different approach is required.

1 Introduction

Given a multivariate polynomial P (x1, . . . , xn) over some field F, an Algebraic formula for P is just an
algebraic expression for P involving the variables x1, . . . , xn and field constants, which are combined
using nested additions and multiplications. The size of the formula is the number of variables and field
constants in the expression. The depth of the formula is the number of times additions and multiplications
are nested within each other. (See Section 2 for a formal definition of the model.)

This paper is motivated by the problem of proving size lower bounds against algebraic formulas.
More formally, we would like to find explicit sequences of polynomials P (x1, . . . , xn) of degree d =
d(n) ≤ poly(n) such that any algebraic formula for P has size nω(1). Proving such a result would
imply a lower bound for the algebraic complexity class VF. It is worth noting that this is the algebraic
analogue of the Boolean complexity class NC1 and proving lower bounds against either of these classes
is a long-standing open problem in complexity theory.

Several previous results in the area address these problems, especially the setting of Mutlilinear
formulas [NW97, Raz09, Raz06, RY08, Raz13, DMPY12, KS17a], which are formulas in which every
subformula computes a multilinear polynomial.1 While we have superpolynomial lower bounds against
such formulas [Raz09], it remains an open question [SY10, Open question 14] as to whether these results
can be used to obtain lower bounds against general formulas.

Another class of restricted formulas that has received quite some attention is the class of Homogeneous
formulas, which is the main focus of this work. Here, we consider polynomials P (x1, . . . , xn) that are
homogeneous of some degree d = d(n). A formula is homogeneous if each of its subformulas computes
a homogeneous polynomial. In particular, each subformula computes a polynomial of degree at most
d. Relaxing this definition, we say that a formula is quasi-homogeneous if subformulas can compute
polynomials of degree up to poly(d). (Formal definition in Section 2 below.)

Lower bounds for homogeneous formulas of bounded depth have been the focus of many previous
results, especially in the last decade [NW97, GKKS14, KS15, FLMS13, KLSS17, KS17c, KST16, KS17b,
LST21a, LST22, AGK+23]. Moreover, in recent work, it has been shown [LST21a, AGK+23], in the
setting of constant depth and fields of characteristic 0, that it is possible to prove lower bounds against
unrestricted formulas using lower bounds against homogeneous formulas.

This suggests the following high-level approach to proving lower bounds against algebraic formulas.

1. Homogenization: Show that a general algebraic formula can be converted to a homogeneous
algebraic formula with a small size blow-up.

2. Homogeneous lower bounds: Show lower bounds against homogeneous algebraic formulas.
Ideally, these would be strong enough to imply lower bounds against general algebraic formulas.
However, superpolynomial lower bounds against homogeneous algebraic formulas (without depth
restrictions) would already be very interesting and are as yet not known.

Results of both kinds are known in various interesting special cases.

• A result of Hyafil [Hya79] implies as a special case that any algebraic formula of size s can be
homogenized with a size blow-up of dO(log s). Unfortunately, this technique does not distinguish
between formulas and more general computational models such as algebraic circuits. As known
techniques do not seem capable of proving lower bounds against these stronger models, we do not
believe that this result will be useful for the above approach.

• Raz [Raz13] showed how to homogenize algebraic formulas computing polynomials of small degree.
More precisely, the size blowup in this result is poly(s) ·

(
d+log s

d

)
. In particular, if d = O(log s), this

is only a polynomial blow-up. This implies that proving superpolynomial homogeneous formula

1In particular, a multilinear formula can only compute a multilinear polynomial.
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lower bounds in this ‘low-degree’ setting implies superpolynomial lower bounds against general
formulas.

For d ≥ (log s)Ω(1), however, this is essentially the same as the previous result.

• Hrubeš and Yehudayoff [HY11] showed lower bounds against algebraic formulas that are homo-
geneous and also multilinear. A notable feature of this result is that it holds for the Elementary
Symmetric polynomials, which are intimately connected to homogenization. The result only holds
for relatively high-degree polynomials (and in particular does not hold in the low-degree setting of
Raz’s result above). Further, the multilinearity condition means that it is unclear how to exploit
this for general formula lower bounds, as mentioned above.

This same paper also shows that depth-3 formulas computing polynomials of degree d can be
homogenized with a size blow-up of dO(log d). In particular, when d = so(1), this is superpolynomially
better than the consequence of Hyafil’s result mentioned above. An earlier result of Shpilka and
Wigderson [SW01] shows how to quasi -homogenize depth-3 formulas with only polynomial blowup.2

Both these results are over fields of characteristic 0.

• The aforementioned result of [LST21a] showed how to homogenize constant-depth formulas over
fields of characteristic 0 with a size blow-up of exp(O(

√
d)), which is small in the low-degree setting.

It was also shown how to prove superpolynomial lower bounds against constant-depth homogeneous
algebraic formulas over any characteristic, when the degree is low. This implies a lower bound for
constant-depth (and otherwise unrestricted) algebraic formulas in characteristic 0, but falls short
of proving this result in positive characteristic.

It should be noted that these results of [LST21a] would work just as well if the first step was instead
a quasi -homogenization.

• Finally, results of Kayal, Saha and Saptharishi [KSS14] and Amireddy, Garg, Kayal, Saha and
Thankey [AGK+23] show how to prove lower bounds against homogeneous formulas of any depth,
but with strong syntactic restrictions on the fan-ins of the gates [KSS14] or the multiplicative
structure of the formula [AGK+23]. Like in the multilinear case, it seems unclear whether this will
lead to lower bounds against general formulas.

Depth-reduction. (Quasi-)Homogeneous algebraic formulas are also easier to analyze for other rea-
sons. For instance, it was shown recently [FLM+23] that quasi-homogeneous formulas computing poly-
nomials of degree d could be converted to formulas of depth O(log d) with only a polynomial blow-up.
This result implies that quasi-homogenization results for general formulas also imply that we can convert
them to small-depth formulas. Given that it seems easier to prove lower bounds against formulas of small
depths [LST21a], this is an important step towards proving lower bounds.

The questions we address. In this paper, we investigate the feasibility of the above high-level
approach towards formula lower bounds and prove many positive and negative results regarding homo-
geneous algebraic formulas and the process of homogenizing general algebraic formulas. In particular,
we address the following questions:

1. Are there techniques for proving lower bounds against homogeneous algebraic formulas of any
depth? Note that this is not known, even over fields of characteristic 0. In our opinion, this is the
natural next question for algebraic complexity lower bounds.

2. Can we convert general formulas to (quasi-)homogeneous formulas efficiently even in the high-
degree setting (say d = sΩ(1))? While this is true in the low-degree setting [Raz09], it seems hard
to extend recent lower bounds [LST21a, AGK+23] in the low-degree setting to unbounded-depth
formulas [LST22]. Having such a result in the high-degree setting would allow us to consider high-
degree polynomials, which could be an advantage in proving lower bounds. This is indeed the case
in various situations [Raz09, DMPY12, LST22, KS23].

2Both the results of [HY11, SW01] only state their results in terms of (quasi-)homogeneous upper bounds for the
Elementary symmetric polynomials. However, this has the more general consequence noted here.
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3. Can we convert constant-depth formulas efficiently to constant-depth homogeneous formulas in the
low-degree setting over fields of positive characteristic? Note that this would immediately imply
a lower bound for constant-depth formulas over positive characteristic by the result of [LST21a],
which would solve an important open problem.

2 Preliminaries

Basic notation. Throughout, F will denote a field. In some of our results, we will have to assume that
F has characteristic 0. We will mostly work over multivariate polynomial rings such as F[x1, . . . , xn], but
some of our results are related to the non-commutative polynomial ring F〈x1, . . . , xn〉.

Given a polynomial P (x1, . . . , xn), we use [P ]d to denote the homogeneous component of P of degree
d. Further, we extend this to a weighted setting, where each variable xi is associated to some positive
integer weight wi. The weighted degree of a monomial is then the sum of the weights of the variables in the
monomial (with appropriate multiplicities) and the weighted degree of a polynomial P is the maximum
degree of a monomial with non-zero coefficient in P. Again, we use [P ]d to denote the homogeneous
component of weighted-degree d (it will be clear from context what the weights are).

2.1 Algebraic Models of Computation

Algebraic formulas. We recall the basic model of Algebraic formulas.
An algebraic formula over the multivariate polynomial ring F[x1, . . . , xn] is a rooted, directed tree

with edges directed towards the root. Leaves are labelled by variables x1, . . . , xn or by the constant
1 and edges by non-zero field constants. Internal nodes (i.e., gates) by + and × and compute linear
combinations (based on the edge weights) or products of their children. We will assume, with loss of
generality, that if a node α has for child a leaf labelled by 1, then α is a +-gate and that if a +-gate α has
only children labelled by 1, then α is the output of the formula.3 A non-commutative algebraic formula
over the multivariate polynomial ring F〈x1, . . . , xn〉 is defined similarly, with the additional assumption
that the children of any ×-gate are linearly ordered, and the corresponding product is computed in this
order.

Unless explicitly stated, the algebraic formulas we consider have unbounded fan-in (i.e., a gate can
have any number of inputs). The size of F will denote the number of leaves,4 the depth of F the longest
leaf-to-root path. The product-depth and the sum-depth of F are defined to be the maximum number of
product gates and sum gates encountered on a leaf-to-root path, respectively. If the product-depth of a
formula is ∆, then its depth is betwen ∆ and 2∆ + 1.

Algebraic Branching Programs and Circuits. An algebraic circuit is a generalization of an al-
gebraic formula where the underlying graph is allowed to be a directed acyclic graph. An algebraic
branching program (ABP) is a special case of an algebraic circuit where each multiplication gate has at
most one input of syntactic degree greater than 1.5

Comparison between the models. Standard results in the literature show that formulas can be
converted to equivalent ABPs with polynomial blow-up in size and a similar result for ABPs holds vis-
a-vis algebraic circuits. Finally, it was shown by Hyafil [Hya79] that a circuit can be converted to a
formula via a quasipolynomial blow-up. More formally,

Theorem 1 (Hyafil [Hya79]). Let P be a polynomial of degree d computed by a circuit of size s. Then,
P is also computed by a formula of size sO(log d). In particular, this also holds for polynomials P that
have an ABP of size s.

3This ensures that a formula can compute polynomials with a constant term but forbids using many arithmetic operations
just to compute constants.

4This is within a constant factor of the number of gates, as long as each gate has fan-in at least 2 each (which is without
loss of generality).

5ABPs are typically defined using graphs in a slightly different way (see, e.g. Definition 3.1 in [SY10]). However, this
definition via “skew” circuits is equivalent up to polynomial blowups [MP08].
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Homogeneity. Each gate in an algebraic formula/circuit/ABP has a syntactic degree defined in a
natural way. Leaves labelled by the constant 1 have syntactic degree 0, leaves labelled with a variable
have syntactic degree 1 (or the weight of the variable if we are in the weighted setting), ×-gates have a
syntactic degree that is the sum of the syntactic degrees of their children, and +-gates have a syntactic
degree that is equal to the largest of the syntactic degrees of their children. The syntactic degree of a
formula is defined as the syntactic degree of its output. Notice that in a formula the syntactic degree of
any gate is bounded by the syntactic degree of the formula.

A formula/circuit/ABP is homogeneous if each gate in the formula computes a homogeneous poly-
nomial. Equivalently, in terms of syntactic degrees, this means that all the children of a sum gate have
the same syntactic degree. In particular, this implies that the output gate computes a polynomial whose
degree equals its syntactic degree. Weakening this criterion, we say that a formula/circuit/ABP is quasi-
homogeneous if the syntactic degree of the output gate is at most a polynomial function of the degree of
the output polynomial.

These definitions extend naturally to the weighted setting. However, to emphasize the difference, we
will call such formulas/circuits/ABPs weighted homogeneous or weighted quasi-homogeneous.

It is well-known that circuits and ABPs can be homogenized with a small blow-up in the following
sense.

Lemma 2 (Folklore). If a (weighted or unweighted) homogeneous polynomial P of degree d is computed
by an algebraic circuit (resp. ABP) of size s, then it is also computed by a (weighted or unweighted)
homogeneous algebraic circuit (resp. ABP) of size s · poly(d).

Using the above lemma and Theorem 1 above, we have the following folklore corollary in the un-
weighted setting.

Corollary 3 (Folklore). Any formula F of size s computing a (unweighted) homogeneous polynomial P
of degree d can be homogenized in size dO(log s).

3 Summary of our results

Our results can be divided into two kinds. The first kind of results are positive results for the high-level
proof approach towards lower bounds against algebraic formulas that was mentioned in the introduction.
Here, we show non-trivial simulations of general algebraic formulas by homogeneous algebraic formulas,
implying that a strong enough lower bound against the latter, more specialized, model implies a lower
bound against the former model. We also show new lower bounds against variants of homogeneous
algebraic formulas, indicating that lower bounds against the homogeneous model are within reach.

The second kind of results show negative results from the point of view of homogenization. Here,
we obtain new lower bounds on the power of homogeneous algebraic formulas in simulating simple
polynomials that have small inhomogeneous formulas of depth 3. In other settings, we show that new
ideas are required to prove the kinds of homogenization results we would like.

3.1 Lower bounds for weighted homogeneous formulas

We show superpolynomial lower bounds against weighted homogeneous formulas of any depth.
The polynomial for which we prove the lower bound is quite simple to define, and understanding its

complexity plays an important role in other results in the paper. It is the polynomial Hk,`,d(z1, . . . , zk)
defined as follows. Let z1, . . . , zk be a weighted collection of variables, where zi has weight i. For k, ` ≤ d,
define

Hk,`,d(z1, . . . , zk) =

( k∑
i=1

zi

)`
d

.

Theorem 4 (Lower bounds against weighted homogeneous formulas). The following holds over any
field. Let d be a growing parameter. There exist k = Θ(d/ log d) and ` = Θ(log d) such that any weighted
homogeneous formula F computing Hk,`,d has size dΩ(log log d).
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This gives the first explicit lower bound result in this variant of the model of homogeneous formulas
and gives indication that lower bounds against homogeneous formulas are within reach. On the other
hand, we notice that Hk,`,d can be computed by interpolation by an inhomogeneous depth-3 formula of
size O(k2`2). This indicates that the suggested approach to prove lower bounds for generic models via
homogenization is not sufficient for weighted formulas and that something more is required.

3.2 Improved bounds for (quasi-)homogenization in characteristic 0

The next question we consider is to understand the blow-up required for homogenization and quasi-
homogenization of formulas. Let F be a formula computing a homogeneous polynomial P of degree d.
The folklore result Corollary 3 above shows that F can be computed by a homogeneous formula of size
dO(log s). Unfortunately, as noted in the introduction, this does not distinguish between the case that
F is a formula and the case that F is an algebraic circuit (for which lower bounds are probably much
harder). Improvements over this are known in the setting where the degree is logarithmic [Raz13] and
depth-3 formulas [SW01, HY11] in characteristic 0, as described in the introduction.

We show that the folklore homogenization result can be superpolynomially improved for all d = so(1)

in characteristic 0. Furthermore, we can remove any condition on d at the expense of turning the
homogenization result to a quasi-homogenization. The main technical theorem is as follows, and the
following corollary gives the improved homogenization result.

Theorem 5 ((Quasi-)Homogenization of algebraic formulas). The following holds over fields of char-
acteristic 0. Let s, d,∆ be parameters. Assume that F is an algebraic formula of size s and depth ∆
computing a homogeneous polynomial P of degree d. Then P is also computed by a homogeneous formula
F ′ of size s·dO(∆+log d). Further, for any fixed ε > 0, P is also computed by a quasi-homogeneous formula
F ′′ of syntactic degree at most d1+ε and size s · dO(∆).

The above result considerably generalizes and strengthens results of Shpilka and Wigderson [SW01]
and Hrubeš and Yehudayoff [HY11] whose results yield similar quasi-homogenization (with syntactic
degree O(d2)) and homogenization results for depth-3 formulas.

Corollary 6 (Superpolynomially better homogenization and quasi-homogenization). The following holds
over fields of characteristic 0. Let s, d be parameters. Assume that F is an (arbitrary, possibly inhomo-
geneous) algebraic formula of size s computing a homogeneous polynomial P of degree d. If d = so(1),
P is also computed by a homogeneous formula F ′ of size do(log s). Further, irrespective of d and for any
fixed ε > 0, P is also computed by a quasi-homogeneous formula F ′′ of syntactic degree at most d1+ε and
size do(log s).

We note that the above results are exponentially better in terms of the allowable degree parameter
than Raz’s result [Raz13] though they incur a superpolynomial blow-up in the size.

A consequence of this result is the following interesting implication: if a polynomial P of degree
d = poly(n) in n variables has no quasi-homogeneous formula of size no(logn), then P also does not
have any formula of size poly(n). Lower bounds of this quantitative form are known in the multilinear
setting [Raz09, Raz06, DMPY12]. We now know that obtaining such bounds in the quasi-homogeneous
setting would result in general formula lower bounds.

As noted in the introduction, quasi-homogenization also has consequences for depth-reduction. Indeed
putting the above corollary together with the depth-reduction of [FLM+23] we get the following result.
This improves the size bound of dO(log s) which follows from Hyafil’s theorem above.

Corollary 7 (Superpolynomially better depth-reduction). The following holds over fields of character-
istic 0. Let s, d be parameters. If a homogeneous polynomial P of degree d is computed by an (arbitrary,
possibly inhomogeneous) algebraic formula F of size s, then it is also computed by a homogeneous alge-
braic formula F of size do(log s) and depth O(log d).

3.3 Homogenization in the non-commutative setting

We also consider the power of formula homogenization in the non-commutative setting where variables
are not allowed to commute with each other. Non-commutative polynomials can be thought of as

6



polynomials where the underlying variables take values in a non-commutative algebra (such as square
matrices of some dimension over the field F). There are two motivations for considering this question.

The principal motivation goes back to homogenizing commutative formulas. A recent result of Dutta,
Gesmundo, Ikenmeyer, Jindal and Lysikov [DGI+23] shows the existence of a ‘complete’ polynomial
Pn,d(x1, . . . , xn) for homogeneous algebraic formula computation in the following sense: if Pn,d (which
is a homogeneous polynomial of degree d ≤ n) has a homogeneous formula of size poly(n), then any
formula can be homogenized with polynomial blow-up. While we do not want to recall the definition of
Pn,d here, it is worth noting that this polynomial is closely related to computing a simple polynomial in
matrix variables. In particular, consider the Elementary symmetric polynomial Edn in non-commuting
variables x1, . . . , xn defined by

Edn(x1, . . . , xn) =
∑

1≤i1<i2<···<id≤n

xi1xi2 · · ·xid . (1)

It is simple to show that if Edn has a non-commutative homogeneous formula of size poly(n), then so
does Pn,d. Further, it is a standard fact that Edn has a depth-3 non-commutative inhomogeneous formula
of polynomial size. So, the question of homogenizing general algebraic formulas reduces to this clean
question of homogenizing depth-3 non-commutative formulas.

The second motivation comes from two results of Limaye, Srinivasan and Tavenas [LST21a, TLS22].
The latter result shows a strong separation between Algebraic Branching Programs (ABPs) and homo-
geneous algebraic formulas of small-depths in the non-commutative setting, making progress towards an
old question of Nisan [Nis91]. On the other hand, we also have separations between ABPs and inhomo-
geneous constant-depth formulas, but we then have to go through the commutative setting of [LST21a],
resulting in weaker bounds. If we could homogenize non-commutative formulas efficiently, then we could
avoid this argument and lift the stronger results of [TLS22] to the inhomogeneous case.

We show the following strong no-go results for non-commutative homogenization.

Theorem 8 (Lower bounds for non-commutative homogenization). The following holds over any field.
Let n, d,∆ be parameters.

If d ≤ n0.99, the above polynomial Edn, which has an inhomogeneous non-commutative algebraic
formula of product-depth 1 (and depth 3), is such that any homogeneous non-commutative algebraic

formula of product-depth ∆ computing Edn must have size nΩ(d1/∆/2∆).
Further, if d ≤ n1−2/ log logn, any homogeneous non-commutative algebraic formula (irrespective of

depth) for Edn has size (log n)Ω(log d). It gives the lower bound nΩ(log logn) as soon as d = nΩ(1).

3.4 Girard-Newton identities in positive characteristic

Finally, we investigate possible analogues of Theorem 5 in the commutative setting over fields of positive
characteristic.

One of the main ingredients of Theorem 5 (and its precedents in the works of Shpilka and Wigder-
son [SW01] and Hrubeš and Yehudayoff [HY11]) is the family of Girard-Newton Identities that allow us
to express the Elementary symmetric polynomials of degree at most d in terms of Power Sum symmetric
polynomials of degree at most d in fields of characteristic 0. Here, the Elementary symmetric polynomial
is the polynomial Edn as defined in (1) (except that the variables now commute), and the Power sum
symmetric polynomial Pdn is the sum of the dth powers of all the variables x1, . . . , xn. Note that the
Power sum symmetric polynomials Pdn have support 1, in the sense that each monomial depends on at
most 1 variable. To be more formal, we introduce some notation.

Definition 9 (Support of a polynomial). The support-size of a polynomial Q ∈ F[w1, . . . , wm] is the
maximum number of distinct variables in a single monomial.

Observe that if the support-size of Q(w1, . . . , wm) is at most r then Q has a depth-2 formula of size at
most (md)r, where d denotes the degree of Q. This implies, in particular, that the Power sum symmetric
polynomials trivially have small formulas of depth 2. This last fact is what makes the Girard-Newton
identities useful. For example, since

Edn = Qd(P
1
n, . . . ,P

d
n) (2)
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for some polynomial Qd, this immediately implies that Edn has a depth-4 homogeneous formula of size
exponential in d but polynomial in n. In particular, for slowly growing d, this allows us to homogenize
depth-3 formulas without blowing up size or depth significantly.

In positive characteristic, it is easy to see that there is no identity as in (2).6 However, we could
hope for weaker analogues, expressing the Elementary symmetric polynomials in terms of symmetric
polynomials of ‘small’ support, i.e. polynomials where each monomial involves at most r = O(1) variables,
implying that the polynomial has a depth-2 formula of size O((nd)r) = poly(n).

We rule out even such weak analogues of Girard-Newton identities in small positive characteristic.

Theorem 10 (No Girard-Newton Identities in positive characteristic). Fix a constant prime p > 0. For
any d that is a power of p and n ≥ d, there is no polynomial Qd(w1, . . . , wm) such that the Elementary
symmetric polynomial Edn can be expressed as

Edn = Qd(P1, . . . , Pm)

where P1, . . . , Pm are symmetric polynomials of support-size < d.

4 Proof Overview

4.1 Lower bound against weighted homogeneous formulas

Here we describe the proof ideas behind Theorem 4, which shows a superpolynomial lower bound against
weighted homogeneous formulas computing the weighted homogeneous polynomial Hk,`,d.

Most lower bounds for strong models of algebraic computation use linear algebraic methods based on
rank techniques going back to the work of Nisan [Nis91] and Nisan and Wigderson [NW97]. In contrast,
our proof is surprisingly simple. We use a covering argument, which shows a lower bound for computing
any polynomial containing all monomials of weighted degree d, which in particular implies a lower bound
for computing Hk,`,d.

More precisely, we show that any weighted homogeneous formula of small size can be written as a
sum of a few terms, each of which is a product of many polynomials. Such ‘product lemmas’ offer a
standard route to proving lower bounds in many different settings [NW97, Raz09, SY10, HY11]. In our
setting, we show that each product term can only compute a small fraction of all monomials of weighted
degree d. This implies the lower bound.

Such arguments are usually only useful in the monotone setting.7 Note that our lower bounds do
not assume monotonicity of any form, but we are nonetheless able to use this argument here, which
we think is strong indication that homogeneous formula lower bounds are within reach. Our proof is
inspired by a result of Hrubeš and Yehudayoff [HY11] who also use a covering argument to prove a lower
bound against homogeneous multilinear formulas. Multilinearity is a strong condition and we know how
to prove lower bounds even against inhomogeneous multilinear formulas [Raz09]. Here, we remove the
multilinearity condition at the expense of considering the weighted setting.

4.2 (Quasi-)Homogenization in characteristic 0

We now turn to the proof of Theorem 5 which holds over fields F of characteristic 0. As mentioned
above, this result strengthens and generalizes the results of [SW01, HY11] who prove similar results for
depth-3 formulas.

Quick sketch of the depth-3 case. As they are stated, these results yield quasi-homogeneous and
homogeneous formulas of size poly(n, d) and poly(n) · dO(log d) respectively for a very concrete family of
polynomials: the Elementary symmetric polynomial Edn defined above. From this very concrete result, we
get a similar result for general depth-3 formulas via the following standard argument (see, e.g. [LST21a])
which we sketch here. Consider a depth-3 ΣΠΣ formula F . The formula F is a sum of terms, each of

6This follows, for example, from the fact that the Power sum symmetric polynomials are algebraically dependent in
positive characteristic, while the Elementary symmetric polynomials remain algebraically independent.

7In the setting of monotone algebraic computation, the underlying field is R and all the coefficients of the polynomials
that are computed by the gates of the formula/ABP/circuit are non-negative. This implies that there can be no cancellations
in the underlying computation, making the models quite weak [Val79, JS82].
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which is a product of linear polynomials. After some manipulation, one can show that without loss of
generality, each such term T has the form

T = α ·
n∏
i=1

(1 + `i)

where α ∈ F and each `i is a homogeneous linear polynomial. Note that the homogeneous degree-d
component of T is given by Edn(`1, . . . , `n). Thus, if we have efficient (as obtained in [SW01, HY11])
(quasi-)homogeneous formulas for Edn, we can use these to get similarly efficient (quasi-)homogeneous
formulas for the degree-d component of T and by extension for the polynomial computed by F (assuming
that it is homogeneous of degree d).

To prove the above results for Edn, the two works [SW01, HY11] use a common idea: the Girard-
Newton identities that allow us to write the Elementary symmetric polynomials in terms of the Power
sum symmetric polynomials Pdn defined above. The latter family of polynomials is homogeneous and
sparse. Hence, they trivially have depth-2 homogeneous formulas of small size. So, it suffices to analyze
the complexity of the ‘composing’ weighted homogeneous polynomial GN such that

Edn = GNd(Pd1, . . . ,P
d
n).

By designing small weighted (quasi-)homogeneous formulas for GNd, we get (quasi-)homogeneous for-
mulas for Edn.

Extending to higher depths. We extend these results to higher depths and using this, we are able to
get a superpolynomial improvement over previously known (quasi-)homogenization results. This result
builds on a series of elementary but non-trivial steps, resulting in a somewhat intricate argument. We
sketch the high-level ideas here.

The depth-3 strategy is tied to the fact that computing the family of Elementary symmetric polyno-
mials (quasi-)homogeneously captures the complexity of (quasi-)homogenizing depth-3 formulas. Unfor-
tunately, this is not true for higher depths. However, it was observed in [LST21a] that an analogous role
at higher depths is played by a weighted generalization of these polynomials that we denote by WEdn.
We define these polynomials formally in Section 6.1 below, but informally the underlying variable set is
divided into n buckets, each containing one variable each of weights 1, . . . , d. The polynomial WEdn is
the sum of all monomials of weighted degree d that contain at most one variable per bucket. Setting
variables of weight greater than 1 to zero in WEdn returns Edn.

Previous results [Sam42, MV99, MB19] have shown how to generalize the Girard-Newton identities to
express WEdn in terms of an analogous weighted generalization of the Power sum symmetric polynomials
that we denote WPdn (these are harder to define and we postpone the definition to Section 6.1 below).
In fact, the composing polynomial here again is the same polynomial GNd from the Girard-Newton
identities.8 Having these identities is the first crucial step in our proof.

The next step is to understand the complexity of computing the weighted homogeneous polynomials
GNd and WPdn. We have some understanding of the former from the works [SW01, HY11]. However,
the power sums turn out to be quite a bit more complicated in the weighted setting. Nevertheless, we
are able to show that the complexity of both polynomials are closely related to the complexity of the
polynomial Hk,`,d defined above (and a more general variant). This is not obvious as the two families of
polynomials are not similar at all at first sight.

The final step is to construct weighted (quasi-)homogeneous formulas for the polynomial Hk,`,d and
compose these formulas together to (quasi-)homogenize a depth-∆ formula F . It is not straightforward
to do this. First, we show how to construct formulas for Hk,`,d(z1, . . . , zk) where the number of copies
of zi is inversely related to its weight i. At a high-level, this is useful for the following reason. Let us
imagine that we have a formula using gates that compute the polynomial Hk,`,d(z1, . . . , zk). Replacing
this gate by the formulas constructed above results in a large blow-up for inputs of small weighted degree
(which intuitively have small formulas since they have small weighted degree) but only a small blow-up
for inputs of large weighted degree. We use this high-level idea to show how to compose these formulas
together to (quasi-)homogenize a depth-∆ formula F efficiently.

8It is not hard to see that this must be the case as the power-sum polynomials Pd
1, . . . ,P

d
n are algebraically independent.
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4.3 Lower bounds for non-commutative homogenization

The proof of Theorem 8 uses a lower bound technique introduced in [TLS22] (building on [NW97,
LST21a]) where it was used to prove lower bounds for non-commutative homogeneous formulas com-
puting a different polynomial.9 This technique is suited to proving lower bounds for set-multilinear
polynomials which are special kinds of homogeneous polynomials. More precisely, the variables in a
set-multilinear polynomial of degree d are partitioned into d sets X1, . . . ,Xd, each monomial contains
exactly one variable per set.

While the polynomial Edn is not set-multilinear, in the non-commutative setting, the complexity of this
polynomial is equivalent to the set-multilinear polynomial essentially obtained by ‘set-mutilinearizing’
each monomial of Edn. We call this polynomial BEdn(Y1, . . . ,Yd) and it is defined formally in Section 7
below. It is easy to show that if Edn has a small homogeneous non-commutative formula, then so does
BEdn. Since the latter polynomial is set-multilinear, it is amenable to techniques introduced in [TLS22].

This technique is the partial derivative method of [NW97] combined with a restriction argument. Fix
a set-multilinear polynomial H(X1, . . . ,Xd). We divide the underlying variable sets into two families,
say {Xi1 , . . . ,Xir} and {Xj1 , . . . ,Xjd−r

}, and analyze the rank of the ‘partial derivative’ matrix M with
rows and columns labelled by set-multilinear monomials in the two sets of variables. The coefficient of
the (m1,m2)-th entry of M is the coefficient in H of the monomial m that has exactly the variables of
m1 and m2 (in the right order).

It was shown in [TLS22] that for any polynomial with a small non-commutative homogeneous formula,
the matrix M has small rank, as long as the sizes of the variable sets |X1|, . . . , |Xd| are sufficiently
‘different’. In the setting of the hard polynomial P (Y1, . . . ,Yd) from [TLS22], it is possible to find a
‘projection’ from P to a set-multilinear polynomial H(X1, . . . ,Xd) where |X1|, . . . , |Xd| are different (in
the sense required) while maintaining the property that the partial derivative matrix M is the identity
matrix, and hence full rank. We thus get a lower bound from H, which implies a lower bound for P.

Here, we instead have to work with the polynomial BEdn(Y1, . . . ,Yd), which does not have the rich
combinatorial structure of the polynomial P from [TLS22], making the argument for that polynomial
inapplicable.10 Nevertheless, we show that for essentially any choice of |X1|, . . . , |Xd|,11 there is a projec-
tion from BEdn(Y1, . . . ,Yd) to a set-multilinear H(X1, . . . ,Xd) whose partial derivative matrix is upper-
triangular with non-zero entries along the diagonal. This is an involved combinatorial argument that we
postpone to the proof in Section 7 below. The end result is that the polynomial H has a full-rank partial
derivative matrix, implying a lower bound for computing H. Since H is a projection of BEdn, we obtain
the same lower bound for BEdn as well.

4.4 No Girard-Newton identities in positive characteristic

The proof of this theorem is based on a more general functional lower bound. We show in fact that there
is no function f : Fm → F such that

Edn = f(P1, . . . , Pm) (3)

where the above equality is an equality of functions mapping Boolean inputs (i.e. inputs in {0, 1}n) to
F.

The proof uses a theorem of Lucas (see Theorem 32 below), which has also found many applications in
Boolean complexity. Lucas’ theorem gives a nice functional interpretation to the Elementary symmetric
polynomials on Boolean inputs. More precisely, if d = pk, then the evaluation of the polynomial Edn on
input a ∈ {0, 1}n is the (k+1)th least significant digit of the Hamming weight w of a. More generally, for
a degree parameter D that is not a power of p, EDn (a) is a function of the dlogp(D+ 1)e least significant
digits of w.

Looking at (3), since d = pk, we thus see that the left hand side is functionally the (k + 1)th least
significant digit of the Hamming weight w of the input a.

On the right hand side, each of the polynomials P1, . . . , Pm are symmetric polynomials of support-
size less than d. However, as functions on Boolean inputs, they are functional equivalent to multilinear

9The ‘Iterated Matrix Multiplication’ polynomial IMMn,d which is the top left entry of a product of d n × n generic
matrices.

10The crucial fact about P used in [TLS22] is that it is complete for the class of polynomials computed by small Algebraic
Branching Programs. It is unclear if this is true for the polynomial BEd

n we consider here.
11Slightly more precisely, we only consider |X1|, . . . , |Xd| where each |Xi| is a power of 2 and the underlying partial

derivative matrix is square.
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symmetric polynomials of support-size less than d, which are simply linear combinations of Elementary
symmetric polynomials of degree less than d. Again, by Lucas’ theorem, we see that the right hand side
depends functionally only on the k least significant digits of w.

Thus, we cannot have a functional equivalence between the two sides.

5 Lower bound against weighted homogeneous formulas

In this section, we prove the lower bound against weighted homogeneous formulas (Theorem 4). Through-
out this section, the set Z = {z1, . . . , zk} will denote a weighted set of variables where zi has weight i.
As defined also above, we define the weighted homogeneous polynomial Hk,`,d as follows.

Hk,`,d =

( k∑
i=1

zi

)`
d

.

We will first prove a product lemma for weighted homogeneous formulas. The product lemma is very
similar to one for homogeneous formulas [HY11].

Lemma 11 (Product Lemma for Weighted Homogeneous Formulas). Let P (Z) be a weighted homo-
geneous polynomial of weighted degree d ≥ 1 such that P (Z) is computed by a weighted homogeneous
formula of size s. Then we can write

P (Z) =

s∑
i=1

t∏
j=1

gi,j(Z),

where t = dlog3(d/k)e and gi,js are weighted homogeneous polynomials of weighted degree at least one.

Proof. (Proof of Lemma 11)
The proof is similar to the proof of Hrubeš and Yehudayoff of a similar lemma for homogeneous

formulas [HY11]. The proof proceeds by induction on s and d.
The base cases: If d ≤ 3k, then the product lemma is trivially true, as we can get t = 1 by simply

defining g1,1 = P (Z). Suppose s = 1, then it means that d ≤ k and the statement holds again by the
previous argument.

Now, let us assume that s > 1 and d > 3k. Let F be the formula computing P (Z). Without blowing
up the size of the formula, we may assume that each gate of F has fan-in at most 2.

For any node u in the formula F , let Fu be the formula rooted at u. Let fu(Z) be the polynomial
computed by Fu. Let su denote the size of Fu. Let Fu=0 be the formula obtained by substituting u = 0
in F and let s′u be the size of Fu=0. Let hu(Z) be the polynomial computed by Fu=0. Notice that
s ≥ su + s′u and that su, s

′
u < s.

Given a formula F for P (Z), there exists a node u in the formula such that the weighted degree of
the polynomial fu is at least d/3 and at most 2d/3. It is easy to see that we can express P (Z) in terms
of fu(Z) and hu(Z). Specifically, P (Z) = g0(Z) · fu(Z) + hu(Z), for some non-constant homogeneous
polynomial g0(Z).

We apply the induction hypothesis to hu(Z) and fu(Z) to obtain the following expressions.

hu(Z) =

s′u∑
i=1

t∏
j=1

hi,j(Z),

where t = dlog3(d/k)e and the hi,js are weighted homogeneous polynomials. Similarly, using the fact
that deg(fu) ≥ d/3, we see that

fu(Z) =

su∑
i=1

t′∏
j=1

fi,j(Z),

where t′ ≥ dlog3(d/3k)e = t− 1 and the fi,js are weighted homogeneous polynomials.
Therefore, overall we get

11



P (Z) = g0(Z) ·
su∑
i=1

t−1∏
j=1

fi,j(Z) +

s′u∑
i=1

t∏
j=1

hi,j(Z)

By distributivity of multiplication and using the fact that s ≥ su + s′u, we get the claimed expression
for P (Z).

From now, let ` = 2blog(d)c and k = 2bd/`c + 1 (with d large enough). Our aim is to show that
any weighted homogeneous formula F computing Hk,`,d has size dΩ(log log d) (this bound is tight for this
choice of ` by Lemma 18).

We will prove Theorem 4 using Lemma 11.

Proof. (Proof of Theorem 4) Let Hk,`,d(Z) be computed by a weighted homogeneous formula of size s.
Then by Lemma 11 we can write

H(Z) =

s∑
i=1

t∏
j=1

gi,j(Z)

with t = dlog3(d/k)e.
Fix a specific product term T = g1 · g2 . . . · gt. We say that a monomial is covered by such a product

term if the monomial appears in T after T is simplified as a sum of monomials. To prove the lower
bound, we will show that any such product term can only cover a few monomials of Hk,`,d(Z). This will
show that we need s to be large to cover all the monomials of the polynomial. We will do this by using
a probabilistic argument.

Let i1, i2, . . . , i` be chosen randomly from [k]. The distribution is given by the following random
experiment.

Random experiment to generate i1, i2, . . . , i`. For every j ∈ [`], let Yj,1, Yj,2, . . . , Yj,k−1 be inde-

pendent Bernoulli random variables that take values 0, 1 with probability 1/2 each. Let Yj =
∑k−1
p=1 Yj,p

and let ij = Yj + 1. Note that, ij ∈ [k] and E[Yj ] = (k − 1)/2.
Here is a simple property about the random variable Yj , which will be useful later.

Observation 12. Let Yj,1, . . . , Yj,k−1 and Yj be as defined above and let r ∈ [k − 1]. Then,

Pr
Yj,1,...,Yj,k−1

[Yj = r] ≤ 1/
√
k − 1.

Proof. As Yj is distributed as per the binomial distribution, it is easy to see that

Pr
Yj,1,...,Yj,k−1

[Yj = r] =

(
k−1
r

)
2k−1

.

Here, the numerator is maximised when r = (k− 1)/2 and for this value of r, the ratio is upper bounded
by 1/

√
k − 1.

Let I denote the set of these indices {i1, . . . , i`} and let MI denote the monomial zi1zi2 · · · zi` .
Conditioned on the event that the weighted degree of MI is exactly d, the monomial appears in the
polynomial Hk,`,d. On the other hand, conditioned on this event, we will show that the probability that
the product term T covers MI is upper bounded by 1/dΩ(log log d). This will imply the lower bound.

Let g1, g2, . . . , gt be polynomials of positive weighted degrees d1, d2, . . . , dt, respectively. If T covers
MI then there exists a partition of I into t parts, say π = (I1, I2, . . . , It), such that wt(Ij) = dj for
j ∈ [t], where wt(S) for a set S is the sum of the elements of that set.

We will now bound the probability of T covering MI for a randomly chosen I. Let EI be the event
that there exists a partition πI = (I1, I2, . . . , It) of I such that wt(Ii) = di. In order to bound the
probability that T covers MI , it suffices to bound the following probability.

Pr
I

[EI |wt(I) = d]
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We will do that as follows.

Pr
I

[EI |wt(I) = d] = Pr
I

[∃πI = (I1, I2, . . . , It) : ∀j ∈ [t],wt(Ij) = dj |wt(I) = d]

≤ t` · Pr
I

[∀j ∈ [t],wt(Ij) = dj |wt(I) = d]

= t` · PrI [∀j ∈ [t],wt(Ij) = dj AND wt(I) = d]

PrI [wt(I) = d]

≤ t` ·O(
√
d) · Pr

I
[∀j ∈ [t],wt(Ij) = dj AND wt(I) = d] (4)

= t` ·O(
√
d) · Pr

I
[∀j ∈ [t],wt(Ij) = dj ]

= t` ·O(
√
d) ·

∏
j∈[t]

Pr
I

[wt(Ij) = dj ]

≤ t` ·O(
√
d) ·

(
1√
k − 1

)t
.

The first inequality is by applying the union bound. Here, t` is an upper bound on the total number
of partitions. The inequality (4) above uses Lemma 13 below. The final inequality follows by observing
that for any j ∈ [t], PrI [wt(Ij) = dj ] ≤ 1/

√
k − 1 and that the events are independent for different j.

To see that PrI [wt(Ij) = dj ] ≤ 1/
√
k − 1 for every j, observe that if all the elements of the partition are

fixed, but the last one, and the sum is say di − r for some r, then the probability that the final element
equals r is upper bounded by 1/

√
k − 1 by Observation 12. Therefore, the overall probability is upper

bounded by this quantity as well.

Lemma 13. For the choice of parameter ` and for the random experiment defined above

Pr[wt(I) = d] = Ω

(
1√
d

)
.

Proof. Note that wt(I) =
∑`
j=1 ij =

∑`
j=1(Yj+1) =

(∑`
j=1 Yj

)
+`. We have `(k−1) random variables.

Note that from our choice of parameters, `(k − 3)/2 ≤ d− ` < `(k − 1)/2 ≤ d. So we want to estimate
what is the probability that d− ` of these random variables are set to 1 (getting k and ` as integers as
we did, implies d − ` is not exactly half of the random variables and we need to be precise enough so
that the approximation does not become too large).

Using estimate of Lemma 7, Chapter 10 in [MS77], we know that(
`(k − 1)

d− `

)
≥
(
`(k − 1)

`(k − 3)/2

)
>

√
`(k − 1)

2`2(k − 3)(k + 1)
2`(k−1)H((k−3)/(2k−2))

where H is the binary entropy function:

H

(
k − 3

2k − 2

)
= − k − 3

2(k − 1)
log2

(
k − 3

2(k − 1)

)
− k + 1

2(k − 1)
log2

(
k + 1

2(k − 1)

)
≥ 1− k − 3

2(k − 1)
log2

(
1− 2

k − 1

)
− k + 1

2(k − 1)
log2

(
1 +

2

k − 1

)
≥ 1−O(1/k2).

Consequently, the probability that wt(I) equals d is bounded by below by(
`(k − 1)

d− `

)
/2`(k−1) >

√
1

2`(k − 1)
2`(k−1)(H( k−3

2k−2 )−1) ≥ 1√
4d

2−O(`/k) ≥ Ω

(
1√
d

)
.

Now, by using the values of k, `, t the probability that the term T covers MI is upper bounded by

t` ·O(
√
d) · 1√

(k − 1)t
= exp

(
` log t+

1

2
log d− 1

2
t log(k − 1) +O(1)

)
≤ exp

(
−1

2
log d log log d+O(log d log log log d)

)
= d−Ω(log log d).
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6 (Quasi-)Homogenization in characteristic 0

Our main result in this section is Theorem 5.
Throughout this section, the field F will be assumed to be of characteristic 0. We will start with

some preparatory notation and lemmas, and then prove Theorem 5 and its consequences in Section 6.2.

6.1 Preparatory work

We start with a straightforward structural lemma about formulas (proof omitted).

Lemma 14 (Syntactic degree under composition). Let P (x1, . . . , xr) be a weighted homogeneous poly-
nomial of weighted degree d where xi has weight ji. Further, for each i ∈ [r], let Qi(y1, . . . , yt) be a
set of weighted homogeneous polynomial of weighted degree ji. Let R(y1, . . . , yt) = P (Q1, . . . , Qr) be the
composed weighted homogeneous polynomial of weighted degree d. Then we have the following:

1. If F is a weighted homogeneous formula for P and for each i ∈ [r], Gi is a weighted homogeneous
formula for Qi, then the composed formula F (G1, . . . , Gr) is a weighted homogeneous formula for
R.

2. If F is a formula for P where the output gate has syntactic degree at most d · A and for each
i ∈ [r], Gi is a formula for Qi of syntactic degree at most ji · B, then the the composed formula
F (G1, . . . , Gr) computes R and has syntactic degree at most d · (AB).

Important families of Weighted Homogeneous polynomials. We now introduce some important
families of weighted homogeneous polynomials.

• Let U = {ui,j | i ∈ [m], j ∈ [r]} be a set of weighted variables where ui,j has weight j for each
i ∈ [m] and j ∈ [r].

– The Weighted Elementary symmetric polynomial WEdm,r(ui,j : i ∈ [m], j ∈ [r]) is the sum of
all monomials of weight exactly d containing at most one variable ui,j for each i ∈ [m]. The
polynomial WE0

m,r is the constant polynomial equal to one.

If we set ui,j = 0 for each j > 1, the polynomial WEdm,r restricts to the standard Elementary

symmetric polynomial Edm in the remaining variables ui,1 for i ∈ [m].

– The Weighted Power sum symmetric polynomial WPdm,r(ui,j : i ∈ [m], j ∈ [r]) is defined to

be the sum, over i ∈ [m], of WPd1,r(ui,j : j ∈ [r]).

Defining the latter polynomial requires a little bit of work. Fix i = 1 without loss of generality.
We define a graph G which is made up of r distinct edge-disjoint cycles C1, . . . , Cr of lengths
1, 2, . . . , r respectively (note that a cycle of length 1 is just a self-loop on a single vertex). The
cycles are also vertex disjoint except for a single vertex x0 that lies on all of them. We label
the edges of the graph as follows: the first edge of each Cj after x0 has label −u1,j and all the
other edges of Cj have label 1. The graph G is illustrated in Figure 1.

Figure 1: Graph G

x0
−u1,1

−u1,2

−u1,3

−u1,r

r − 1
vertices

A walk of G is a sequence of vertices W = (w0, . . . , wl) such that for any 0 ≤ i ≤ l − 1, there
is an edge in G from wi to wi+1. The walk is said closed if w0 = wl. Notice that by definition
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a closed walk is rooted (in w0). Given a walk W in G, we define the label of W — denoted
lab(W ) — to be the product of the labels of the edges that occur in W . Note that this label
is a monomial.

Finally, WPd1,r(u1,j : j ∈ [r]) is defined to be the sum of the labels of all the (rooted) closed
walks W of length exactly d in G.

It can be verified that WPdm,r is a weighted homogeneous polynomial of weighted degree
d. As above, it can also be verified that setting all u1,j to 0 for j > 1 in the polynomial

WPdm,r(ui,j : i ∈ [m], j ∈ [r]) restricts it (up to the sign (−1)d) to the standard Power sum

symmetric polynomial Pdm(ui,1 : i ∈ [m]).

• Let Z = {z1, . . . , zk} be a set of weighted variables with zi having weight i. For parameters k, `, d
with k, ` ≤ d, define

Hk,`,d =

( k∑
i=1

zi

)`
d

.

More generally, for parameters p, q, ` ≤ d, define

Hp,q,`,d =


 q∑
i=p

zi

`

d

.

We now state some results about the above families of polynomials.

Reducing WEd to WPd via Girard-Newton Identities. The first is a weighted analogue of
the Girard-Newton Identities linking the WEdm,r and WPdm,r polynomials. The following was shown
in [LST21b] (ECCC version) using a result of Bera and Mukherjee [MB19].

Theorem 15 (Weighted Girard-Newton Identities). For any d,m, r with d ≤ mr, we have the following
identity linking the Weighted Elementary and Power sum symmetric polynomials.

WEdm,r =
1

d

d∑
k=1

(−1)k−1WEd−km,r ·WPkm,r,

where all the polynomials are defined over the weighted variable set U defined above. Applying this
identity recursively, we see that for any d there is a polynomial GNd(y1, . . . , yd) such that

WEdm,r = GNd(WP1
m,r, . . . ,WPdm,r). (5)

Moreover, it is verified that if yi is assigned weight i, then GNd is weighted homogeneous of weighted
degree d.

Reducing GNd to Hk,`,d. We now connect the Girard-Newton polynomials GNd and the Weighted
Power sum symmetric polynomials to the polynomial Hk,`,d defined above. Along with Lemma 17, this
will allow us to construct formulas for the Weighted Elementary symmetric polynomial by constructing
formulas for Hk,`,d.

Lemma 16. For any d, there exist constants α1, . . . , αd, β1, . . . , βd ∈ Q ⊆ F such that

GNd(y1, . . . , yd) =

d∑
`=1

β` ·Hd,`,d(α1y1, . . . , αdyd).

Proof. Note that the polynomial GNd above is independent of the parameter r and hence to recover
GNd, we can consider (5) for any r we want. We will take r = 1 (i.e. the case of the standard Girard-
Newton identities). In this case, the polynomial WEdm,r is just the Elementary symmetric polynomial
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Edm(u1, . . . , um) (we use ui to denote the variable ui,1 for notational simplicity) and similarly WPdm,r =

(−1)dPdm(u1, . . . , um).
Using the standard Girard-Newton identities, it follows that (see, e.g. [Mac15, Chapter 2] and also

Shpilka and Wigderson [SW01, Proof of Theorem 5.3])

Edm(u1, . . . , um) =

[
exp

(
d∑
i=1

αiP
i
m(u1, . . . , um)

)]
d

where exp(v) denotes the standard exponential power series
∑∞
`=0 v

`/`! and α1, . . . , αm are suitable
constants from F. Expanding out the definition of the power series, we get the identity

Edm(u1, . . . , um) =

d∑
`=1

β`

( d∑
i=1

αiP
i
m(u1, . . . , um)

)`
d

=

d∑
`=1

β`Hd,`,d(α1P1
m(u1, . . . , um), . . . , αdP

d
m(u1, . . . , um))

where β` denotes 1/`! and the second equality follows from the definition of the polynomials Hk,`,d above.
We have thus shown that

Edm(u1, . . . , um) = G(P1
m(u1, . . . , um), . . . ,Pdm(u1, . . . , um))

where G(y1, . . . , yd) =
∑d
`=1 β` · Hd,`,d(α1y1, . . . , αdyd). Since the Power sum symmetric polynomials

are algebraically independent in any field of characteristic 0 (see, e.g. (2.12) in [Mac98]), it follows that
G(y1, . . . , yd) = GNd(−y1, y2,−y3, . . . , (−1)dyd), proving the lemma.

Reducing WP to Hk,`,d. In the unweighted case, the Power sum symmetric polynomials have efficient
representations as sums of monomials and hence trivially have small depth-2 homogeneous formulas.
However, the weighted case is quite different. As in the case of the Girard-Newton polynomials, we
construct weighted (quasi-)homogeneous formulas for these polynomials by reducing to computing Hk,`,d.

Lemma 17. For any d,m, r ≥ 1, we have the following identity.

WPdm,r(ui,j : i ∈ [m], j ∈ [r]) =

m∑
i=1

min{r,d}∑
j=1

vi,j ·
d−1∑
`=0

Hr,`,d−j(ui,1, . . . , ui,r)

where vi,j := −jui,j.

Proof. Since WPdm,r(ui,j : i ∈ [m], j ∈ [r]) =
∑m
i=1 WPd1,r(ui,j : j ∈ [r]), it suffices to prove the lemma in

the case that m = 1.
Let G be the graph used in the definition of WPd1,r. Note that any closed walk W of G traverses the

edges of the cycles C1, . . . , Cp with p ≤ min(r, d) in some order (and possibly with repetition). More
precisely, if the root of the cycle is different from x0 (which is the unique vertex of G that lies on all the
cycles), the cycle which is started at the end of the walk and finished at the beginning of the walk is
considered as the last cycle. Hence, given W , there exists x, `, (j1, . . . , j`) such that the walk W begins
in x and traverses the ` cycles Cj1 , . . . , Cj` in this order. Notice that the vertex x belongs to the last
cycle C`.

In fact the data of `, Cj1 , . . . , Cj` and of the root x ∈ Cj` is sufficient to retrieve the walk W .
Then, by summing over the number of cycles and over the length j` of the last cycle Cj` we get

WPd1,r(u1,j : j ∈ [r]) =
∑

W closed walk

lab(W ) =
∑

`,(C1,...,Cj`
),x

with x∈Cj`

lab(W`,(Cj1
,...,Cj`

),x)

=

d∑
`=1

min(r,d)∑
j`=1

∑
x∈Cj`

(−u1,j`)Hr,`−1,d−j`

=

d−1∑
`=0

min(r,d)∑
j=1

(−u1,j)j ·Hr,`,d−j .
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Formulas for Hk,`,d. To wrap up this subsection, we provide various formula constructions for Hk,`,d.
This outlines how we will construct formulas for the Weighted Elementary symmetric polynomials, which
will allow us to prove Theorem 5.

In the first two lemmas below, we will construct formulas for the more general family of polynomials
Hp,q,`,d defined above. We then show how to construct formulas for Hk,`,d where we carefully control
the number of occurrences of zi as a function of i.

The first such construction is homogeneous, and follows the standard template for converting Alge-
braic Branching Programs to formulas.

Lemma 18 (Weighted homogeneous formulas for Hp,q,`,d). For any parameters p, q, `, d, the polynomial
Hp,q,`,d has a weighted homogeneous formula of size dO(log `).

Proof. We employ the following recursion for Hp,q,`,d that is easily verified

Hp,q,`,d =

d−1∑
j=1

Hp,q,b`/2c,j ·Hp,q,d`/2e,d−j .

Repeatedly applying this recursion yields a weighted homogeneous formula for Hp,q,`,d of size dO(log `).

The second formula construction is inhomogeneous and follows the interpolation idea of Ben-Or (see,
e.g. [SW01]). If p, q are not too far from each other, then this construction is only mildly inhomogeneous.

Lemma 19 (Inhomogeneous formulas forHp,q,`,d). For any parameters p, q, ` ≤ d, the polynomial Hp,q,`,d

has a formula of size poly(d) and syntactic degree at most d · (q/p).

Proof. We assume that ` ≤ d/p, since otherwise the polynomial Hp,q,`,d is identically zero and hence the
lemma holds trivially.

We introduce a new variable v and note that Hp,q,`,d is precisely the coefficient of vd in the following
expression  q∑

i=p

vizi

`

. (6)

Treating the above expression as a univariate polynomial in v of degree s = ` · q, we note that Hp,q,`,d

can be interpolated by evaluating this polynomial at s + 1 distinct values of v, say γ0, . . . , γs and then
taking a suitable linear combination. This gives us an expression for Hp,q,`,d as follows.

Hp,q,`,d =

s∑
j=0

ξj ·

 q∑
i=p

(γj)
izi

`

for suitable field constants ξ0, . . . , ξs. This yields a formula of size poly(d) where each summand has
syntactic degree q · ` ≤ d · (q/p) since we know that ` ≤ d/p.

The final claim provides a pair of formula constructions for Hk,`,d(z1, . . . , zd), where we do not bound
the size of the formula directly but rather the number of occurrences of each variable zi in terms of i.
As in the rest of the article, when the base of the logarithm is not specified, it is the base-2 logarithm.

Proposition 20. For any d ≥ 1 and any k, ` we have the following.

1. The polynomial Hk,`,d(z1, . . . , zk) has a weighted homogeneous formula such that the number of
occurrences of each variable zi is at most dO(log(d/i)) (where the O(·) hides absolute constants).

2. For any integer t ≥ 2, Hk,`,d(z1, . . . , zk) has a formula of syntactic degree at most d · t such that
the number of occurrences of each variable zi is at most dO(logt(d/i))+O(1) (where the O(·) hides
absolute constants).

17



Proof. Both formula constructions exploit the recursive structure of the polynomial Hk,`,d in a similar
way. So we prove them together. We assume that k, ` ≤ d since otherwise the polynomial Hk,`,d is
identically zero.

For any t ≥ 2, we partition the positive integers into intervals Ij = [tj−1, tj) ∩ Z. Define j(k) =
blogt(k)c+ 1 to be the unique j such that k ∈ Ij . For item 1 of the proposition, we will take t = 2 but
we need to consider the case of any integer t ≥ 2 in item 2.

We prove the following statements by induction on j(k). Here C denotes an absolute constant12.

• When t = 2, the polynomial Hk,`,d(z1, . . . , zk) has a weighted homogeneous formula such that the
number of occurrences of each variable zi is at most dC log(d/i)+C(j(k)−j(i)).

• For any integer t ≥ 2, Hk,`,d(z1, . . . , zk) has a formula of syntactic degree at most d · t such that
the number of occurrences of each variable zi is at most dC(j(k)−j(i))+C .

Note that the above statements imply the proposition, since j(k) − j(i) = O(logt(k/i)) = O(logt(d/i))
for any 1 ≤ i ≤ k ≤ d.

The base case of the induction is when j(k) = 1, meaning that k < t. In this case, the two items follow
directly from setting p = 1 and q = k in Lemmas 18 and 19 respectively, since the formula construction
in this case have the required homogeneity properties. Moreover, the number of occurrences of each zi
is bounded by the formula size, which is dO(log d) for the first item (recall that t = 2 in this case) and
dO(1) for the second item (for general t ≥ 2).

Now assume that j(k) > 1. We use j to denote j(k) for notational simplicity. Define the polynomials
A and B by

A =

tj−1−1∑
i=1

zi , B =

k∑
i=tj−1

zi.

Note that we have

Hk,`,d =
[
(A+B)`

]
d

=

d/tj−1∑
`′=0

(
`

`′

)[
A`−`

′
B`
′
]
d

=

d/tj−1∑
`′=0

(
`

`′

)
·

(
d∑

d′=0

[
A`−`

′
]
d−d′

[
B`
′
]
d′

)

=

d/tj−1∑
`′=0

d∑
d′=0

(
`

`′

)
Htj−1−1,`−`′,d−d′(z1, . . . , ztj−1−1) ·Htj−1,k,`′,d′(ztj−1 , . . . , zk). (7)

We use the binomial theorem for the first identity, but restrict the maximum value of `′ to d/tj−1, since
B`
′

contains no monomials of degree at most d for larger `′. Finally, in the expression from (7), we use
the induction hypothesis to construct formulas for Htj−1−1,`−`′,d−d′ and either Lemma 18 or Lemma 19
to construct formulas for Htj−1,k,`′,d′ to prove Item 1 or Item 2 respectively.

To analyze the above construction, consider any i ≤ k. If j(i) = j(k), then the variable zi only occurs
in the subformulas for Htj−1,k,`′,d′ . Since i < tj it gives the bound `′ ≤ d/tj−1 < td/i. The number of
occurrences of zi in Hk,`,d is at most O(d2) times the size of the formula for Htj−1,k,`′,d′ . This size can

be bounded by either dO(log(`′)) = dO(log(d/i)) since for the first item t = 2 (if we use Lemma 18) or dO(1)

(if we use Lemma 19).
Now, consider any i such that j(i) < j(k). We note that the number of occurrences of zi in the

inductively constructed subformulas is{
dC log(d/i))+C(j(tj−1−1)−j(i)) = dC log(d/i))+C(j(k)−j(i))−C in the item 1

dC(j(tj−1−1)−j(i))+C = dC(j(k)−j(i)) in the item 2.

There are at most O(d2) summands in the expression in (7), hence the total number of occurrences of
zi can be bounded as in the inductive statement (as long as C ≥ 2).

12In fact C can be chosen as 2 plus the maximum of the constants hidden in the O(·) of Lemmas 18 and 19.
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Finally, while proving Item 1, we note that each of the individual subformulas substituted in (7) is
a weighted homogeneous formula, meaning that the overall construction is also weighted homogeneous.
For Item 2, we see that each subformula computing a weighted homogeneous polynomial of degree D has
syntactic degree at most D · t, implying that the overall formula has syntactic degree at most d · t.

Putting the above proposition together with Theorem 15 and Lemmas 16 and 17, we get the following
corollary, which will be used directly in the proof of Theorem 5.

Corollary 21. For any d,m, r, we have the following.

1. The polynomial WEdm,r(ui,j : i ∈ [m], j ∈ [r]) has a weighted homogeneous formula such that

the number of occurrences of each variable ui,j is at most dO(log(d/j))+O(1) (where the O(·) hides
absolute constants).

2. For any t ≥ 2, WEdm,r(ui,j : i ∈ [m], j ∈ [r]) has a formula of syntactic degree at most t · d such

that the number of occurrences of each variable ui,j is at most dO(logt(d/j))+O(1) (where the O(·)
hides absolute constants).

6.2 Proof of Theorem 5

We are now ready to prove Theorem 5. Let F be a formula of size s and depth ∆ computing a homo-
geneous polynomial P of degree d. We will show how to construct a homogeneous formula F ′ of size
s · dO(∆+log d) for P , using Item 1 of Corollary 21. The construction of the quasi-homogeneous formula
F ′′ is similar using Item 2 of the same corollary, and we will only sketch the differences.

Proof of Item 1. Let us start with the construction of F ′. We show the following more general
statement by induction on a parameter h ≤ ∆. We show that for any gate g at height h in F and any
degree j ≤ d, the degree-j component of the polynomial computed by g, denoted [g]j has a homogeneous
formula of size at most sg · dC·(h+log j) where sg denotes the size of the subformula rooted at g and C
is an absolute constant that we will choose in the proof below. Applying this to the case when g is the
output gate of F and j = d yields the formula F ′.

We now prove the inductive claim. The base case (h = 0) is immediate. We now assume that h ≥ 1
and g is a gate of F at height h. The claim naturally breaks into two cases depending on whether g is a
sum or a product gate. The case of the sum gate immediately follows by induction and we omit it.

We now consider the case when g is a product gate with children g1, . . . , gm. Fix a j ≤ d. By
induction, for each i ≤ j and each k ≤ m, the polynomial [gk]i has a homogeneous formula Fi,k of size
sgk · dC·(h−1+log i).

To get a formula for [g]j , we note that

[g]j =

[
m∏
k=1

(
γk +

j∑
i=1

[gk]i

)]
j

.

The reader will note that if γk = 1 for all k, then the above immediately implies that [g]j is the Weighted
Elementary symmetric polynomial in the polynomials ([gk]i : k ∈ [m], i ∈ [j]). A similar fact also holds
if γk 6= 0 for all k (after scaling by suitable constants, we can assume γk = 1 for all k). To handle the
case when some γk are 0, we use a simple interpolation idea (see also [LST21b, Proof of Lemma 20]).

Without loss of generality, we assume that γk = 0 for k ≤ ` and γk 6= 0 otherwise. We introduce a
new variable u and consider the polynomial

R =

[∏̀
k=1

(
u+

j∑
i=1

[gk]i

)
·
∏
k>`

(
γk +

j∑
i=1

[gk]i

)]
j

.

It is easily verified that the degree of u in R is ` ≤ j. If we consider R to be a univariate polynomial in
u, the coefficient of u(0) is exactly the polynomial [g]j . We can obtain this coefficient by interpolating R
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at `+ 1 non-zero points υ1, . . . , υ`+1 ∈ F. We thus get constants θ1, . . . , θ`+1 ∈ F such that

[g]j =

`+1∑
q=1

θq ·

[∏̀
k=1

(
υq +

j∑
i=1

[gk]i

)
·
∏
k>`

(
γk +

j∑
i=1

[gk]i

)]
j

=

`+1∑
q=1

θ′q ·

[
m∏
k=1

(
1 +

j∑
i=1

γ′q,k,i · [gk]i

)]
j

=

`+1∑
q=1

θ′q ·WEjm,j(γ
′
q,k,i[gk]i : k ∈ [m], i ∈ [j]) (8)

where the second equality is obtained by re-scaling each non-zero constant term in the products to 1,
resulting in some new coefficients γ′q,k,i.

We use (8) to get a homogeneous formula for [g]j . By Item 1 of Corollary 21, WEjm,j(uk,i : k ∈ [m], i ∈
[j]) has a weighted homogeneous formula where each uk,i appears dO(log(j/i))+O(1) times. Using this
formula in (8) and composing it with the inductively obtained homogeneous formulas for the polynomials
[gk]i, we get a formula for [g]j of size at most

(`+ 1) ·
m∑
k=1

j∑
i=1

dO(log(j/i)+O(1))︸ ︷︷ ︸
Number of occurrences of [gk]i

· sgk · dC(h−1+log i)︸ ︷︷ ︸
Size of [gk]i

≤
m∑
k=1

j∑
i=1

dO(log(j/i)+O(1)) · sgk · dC(h−1+log i) (as ` ≤ d)

≤
m∑
k=1

j∑
i=1

dC(h+log j)−1 · sgk (for large enough C)

≤
m∑
k=1

dC(h+log j) · sgk (j ≤ d)

= dC(h+log j) ·
m∑
k=1

sgk = dC(h+log j) · sg,

proving the inductive claim. Note that, as we are composing homogeneous formulas, the formula for [g]j
thus obtained is homogeneous (Lemma 14 Item 1).

Proof Sketch of Item 2. The construction of the formula F ′′ proceeds in a similar way.
Fix the parameter t = bdε/∆c where ε > 0 is the absolute constant from the statement of the theorem.

Note that we can assume that t is at least some large constant, since otherwise ∆ = Ω(log d) and the
statement immediately follows from Item 1 of the theorem. We prove the following inductive claim: for
any gate g at height h in F and any degree j ≤ d, the degree-j component of the polynomial computed
by g, denoted [g]j has a quasi-homogeneous formula of size at most sg · dC·(h+logt j) and syntactic degree
at most th ·j. In the special case that g is the output gate of the formula and j = d, we get the statement
of the theorem.

The base case of the induction (h = 0) is immediate. For the induction, we start with (8) and use Item
2 of Corollary 21 along with the inductively obtained quasi-homogeneous formulas for the polynomials
[gk]i to get a formula for [g]j . This yields, as above, a formula for [g]j of the claimed size.

Furthermore, by induction, the syntactic degree of the formula computing [gk]i is at most th−1 · i.
Moreover, the quasi-homogeneous formulas for WEjm,j from Corollary 21 have syntactic degree at most
t · j. Hence, by Lemma 14 Item 2, the formula we have constructed for [g]j has syntactic degree at most
th · j, as desired.

6.3 Proofs of Corollaries

Proof of Corollary 6. By a standard result of Brent, Kuck, and Maruyama [BKM73], we can assume
that F has fan-in bounded by 2 and depth ∆ = O(log s).
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We cannot directly apply Theorem 5 to F as the depth of this formula is too large. Instead, we
choose an integer parameter ` and define Gi (0 ≤ i ≤ ∆/`) to be the set of gates at depth exactly i · ` in
the formula. Given any gate g ∈ Gi, we define the formula Fg to be the subformula of depth ` rooted at

g with leaves in Gi+1. Let F̂g be the formula obtained by expressing the polynomial computed by Fg as

a brute-force sum of monomials. Note that F̂g computes a polynomial in at most 2` variables of degree
at most 2` and hence has size at most exp(O(2`)).

Let F̂ be the formula obtained by replacing each Fg by F̂g as computed above. The size of F̂ can be
bounded by

s′ =

∆/`∏
i=0

max
g∈Gi

size(F̂g) ≤ exp(O(∆2`/`)).

The depth of F̂ is at most ∆/`.
We now apply Theorem 5 to F̂ . We see that the polynomial P computed by F̂ also has a weighted

homogeneous formula F ′ of size

exp(O(∆2`/`)) · dO(log d+∆/`) = exp(O(∆ log d/ log log d)) · dO(log d)

for ` = log log d. For d = so(1), we see that this is bounded by do(log s).
Similarly, we also see that the polynomial P has a quasi-homogeneous formula F ′′ of syntactic degree

at most d1+ε and size

exp(O(∆2`/`)) · dO(∆/`) = exp(O(∆ log d/ log log d)).

Corollary 7 follows directly by using Corollary 6 and [FLM+23, Theorem 7].

7 Lower bound for non-commutative homogenization

In the following A is an integral domain. We will denote by latin letters constants and fixed parameters
and we will keep greek letters for the maps.

7.1 Definitions

7.1.1 BE polynomial

Let us consider the polynomial

BEdn(Y) =
∑

1≤j1≤···≤jd≤n

d∏
i=1

yi,ji .

BEdn is a polynomial of degree d with nd variables. Moreover, BEdn is set-multilinear with respect to
the partition Yi = {yi,j | j ∈ [1, n]}.

The point is that if the ordered elementary symmetric polynomials have a small homogeneous non-
commutative formula, then BE has a small set-multilinear formula.

Proposition 22. If the non-commutative polynomial Edn is computed by a homogeneous non-commutative
formula of size s and product-depth ∆, then BEdn−d+1 is also computed by a (non-commutative) set-
multilinear formula of size s and product-depth ∆.

Proof. If F is a homogeneous non-commutative formula, we can associate to each node n a sub-interval
of [1, d], I(n) such that |I(n)| = deg(n) as follows:

• If n is the output gate of the formula of degree d then I(n) = [1, d].

• If n is a sum-gate of degree δ of children n1, . . . , np , then for all 1 ≤ i ≤ p, we set I(ni) = I(n).
This is accurate since by homogeneity, each node ni has degree δ.

• If n is a product-gate of degree δ of interval [a, a + δ − 1] which have p children n1, . . . , np of
respective degrees δ1, . . . , δp, then we know by homogeneity that δ = δ1 + · · ·+ δp. We associate to
ni the interval [a+ δ1 + · · ·+ δi−1, a+ δ1 + · · ·+ δi − 1].
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(0, 0) (7, 0)

Figure 2: Path of Example 23

It is easily seen by induction that renaming all variables of the leaves of a homogeneous non-commutative
formula computing Edn as follows: if the variable Xi is on a leaf associated to the interval [a, a], it is

replaced by the variable za,i, then the new formula computes the polynomial
∑

1≤i1<···<id≤n
∏d
j=1 zj,ij .

The computation is set-multilinear. We finally obtain the polynomial BEdn−d+1(Y) by replacing the
variables zj,i by the variables {

yj,i−j+1 if j ≤ i and i ≤ n+ j − d
0 otherwise.

Consequently, to show lower bounds on the size of homogeneous non-commutative formulas which
compute Edn, it is enough to show lower bounds on the size of set-multilinear formulas which compute
BEdn−d+1. To do this, we will follow the proofs of Theorems 1 and 4 of [TLS22].

7.1.2 Paths and p-multilinearity

We will consider paths in the grid [0, d]× [0, k]. The paths we consider start at (0, 0), end at (d, 0) and
at each step, increases its abscissa by 1 and modifies its ordinate. More formally, we will describe these
paths by elements of the set

Pk,d =

{
p ∈ ([−k, k] \ {0})d

∣∣∣∣ d∑
i=1

pi = 0 and ∀j < d, 0 ≤
j∑
i=1

pi ≤ k

}
.

When k and d are implicit, we will only write P. Given p ∈ P, we will denote by p≤t the partial

sum
∑t
i=1 pi (we will also naturally identify p≤0 to 0). A vector p ∈ P corresponds to the path

(0, 0), (1, p1), . . . , (i, p≤i), . . . , (d, 0).
For a path p ∈ P, we say that a polynomial (with coefficients in A) is p-multilinear if it is set-

multilinear with respect to a partition X =
⊎d
i=1 Xi which satisfies |Xi| = 2|pi|. We will denote by Ap[X ]

the set of these polynomials.
Moreover, a variable x ∈ Xi is called positive (resp. negative) if pi > 0 (resp. pi < 0). A monomial

is called positive (resp. negative) if it only contains positive variables (resp. negative variables). Notice
that any set-multilinear monomial m of X can be decomposed into its positive part m+ and its negative
part m−, and then, we have m = m+ ·m−. The set of such positive monomials m+ is denoted byM>0.
Similarly, M<0 is the set of the negative parts. Notice that both sets have same cardinality since

|M>0| =
∏
i,pi>0

2pi =
∏
i,pi<0

2−pi = |M<0|.

The second equality holds since p≤d = 0.

Example 23. Let k = 3 and d = 7. Let choose for instance the path p = (2, 1,−3, 3,−2, 1,−2) ∈ Pk,d
represented in Figure 2.

The monomial x1,4x2,2x3,8x4,8x5,4x6,2x7,4 is in Ap[X ]. Its positive part is x1,4x2,2x4,8x6,2 and its
negative part is x3,8x5,4x7,4.

22



Let f ∈ Ap[X ]. We associate to f its ‘partial derivatives matrix’ PDM(f). PDM(f) is the square
matrix with coefficients in A where rows are indexed by elements ofM>0, columns by elements ofM<0

and defined by
PDM(f)m+,m− = (coefficient of m+ ·m− in f).

A polynomial f ∈ Ap[X ] is said to be full-rank if PDM(f) is full-rank. We will also use the useful

notation: relrk(f) = rk(PDM(f))√
|M>0||M<0|

.

The main proposition which will be proved in this section is

Proposition 24. Let n = 2k and A of cardinal at least d22k(d+1). For all p ∈ Pk,d, there exists a

polynomial Hp in Ap[X ] which is a set-multilinear projection of BEdnd such that Hp is full-rank.

7.1.3 Proof of Theorem 8

We start by showing how Proposition 24 can be used for proving Theorem 8. As we said earlier, the
approach will follow the proofs of Theorems 4 and 1 in [TLS22]. So we will directly use Lemma 10, 13
and 14 and Proposition 15 of [TLS22].

Let us start by proving that if d ≤ n0.99, then any homogeneous non-commutative formula of product-

depth ∆ computing Edn has size nΩ(d1/∆/2∆) (the proof mimics the one of Corollary 16 in [TLS22]). We

assume that d ≥ 2∆2

80∆ since otherwise the result is trivial. We now split the analysis into two cases.
If 2∆ ≥ 0.001 log n, then we need to argue a lower bound of exp(Ω(d1/∆)). For this, we appeal to a

result of Hrubeš and Yehudayoff [HY11] which yields such a lower bound for commutative homogeneous
multilinear formulas of product-depth ∆. This also implies a lower bound for the non-commutative case,
as we can just treat any non-commutative set-multilinear formula for Edn as a commutative formula for
the same polynomial. Hence, we are done.

Now assume that 2∆ < 0.001 log n. Let us fix integers k = 2b0.001 log nc and k′ = blog(n0.001/2∆

)c ≥
1. Since, k′2∆ ≤ k/2, there is a balanced word w ∈ Zd−2 as guaranteed by Proposition 15 of [TLS22]
that is k/2-unbiased. Let p be the path (k/2, w1, . . . , wd−2,−k/2) in Pk,d.

Since 2kd ≤ n− d+ 1, by Propositions 22 and 24, if Edn has a set-multilinear formula F of size s and
product-depth ∆, then so do the polynomials BEdn−d+1 and Hp. Hp is set-multilinear along the ordered

partition X =
⊎d
i=1 Xi. Let x1,a and xd,b be one variable from X1 and one from Xd. Let Hp,a,b be

the polynomial we obtain by substituting in Hp the variables x1,a and xd,b by 1 and all other variables
from X1 ∪ Xd by 0. The polynomial Hp,a,b is a set-multilinear in Aw[]2≤i≤d−1Xi]. By Proposition 15

of [TLS22], relrk(Hp,a,b) ≤ s2−k
′(d−2)1/∆/10. However, since the matrix PDM(Hp) can be seen as a

2k/2×2k/2 blocks-matrix where each block is some PDM(Hp,a,b) (for some choice of variables (x1,a, xd,b)),
we also get

1 = relrk(Hp) ≤ 2k/2 max
a,b

(relrk(Hp,a,b)).

It implies that s ≥ 2(d1/∆ logn)/(40000·2∆). This finishes the proof of the first part of the theorem.
Let us prove now the second part of Theorem 8. Let us recall the definition of a bias with respect to

a partition [TLS22]:

Definition 25 (Bias of a word w.r.t. a partition). Let S = (S1, . . . , S`) be an ordered partition of [d]
(each Si ⊆ [d] is non-empty). We assume that the Sis are ordered with respect to their maximal elements
(i.e., i < j =⇒ max(Si) < max(Sj)).

Let w ∈ Zd be arbitrary. Given a partition S = (S1, S2, . . . , S`) of [d], we define the S-bias of w —
bias(S, w) — to be the quantity

∑
j∈[`] |wSj | where wSj =

∑
i∈Sj

wi.

Assume Edn has a homogeneous non-commutative formula of size s and product-depth ∆. Then, by
Proposition 22, BEdn−d+1 has a set-multilinear formula of size s and product-depth ∆.

Using the Product Lemma (Lemma 10 in [TLS22]), we have

BEdn−d+1 =

s∑
i=1

∏̀
j=1

Fi,j (9)

where ` ≥ log d and for each i ∈ [s], there is a partition Si = (Si,1, . . . , Si,`) of [1, d] such that Fi,j is a
set-multilinear polynomial in the variables (Yp : p ∈ Si,j).
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As we aim for a lower bound of the form (log n)Ω(`), if ` ≤ 10 logn
log logn then the result is trivial, so we

assume this is not the case.
For each partition Si of [1, d], we introduce the partition Ti of [2, d− 1] which is the restriction of Si

to the set [2, d− 1].
Let us take ε = (log log n)2/ log n. We have ε` ≥ 10. Let us fix 2k be the largest power of two which

is at most (n− d+ 1)/d. In particular, (n− d+ 1)/2d < 2k ≤ (n− d+ 1)/d. We will consider paths of
Pk,d. Since d ≤ n1−2/ log logn ≤ n/2 for n sufficiently large, we have that εk ≥ log log n.

By Lemma 14 in [TLS22], there is a probability distribution D over k/2-unbiased words w =
(w2, . . . , wd−1) ∈ Zd−2 such that we have

Pr
w

[∃i ∈ [s] : bias(Ti, w) ≤ εk`

2
] ≤ (10ε)`/2 · s

where the inequality uses a union bound and each Ti is the partition of [2, d− 1] defined above.
If s ≥ (1/10ε)`/2, then the lower bound of the theorem holds trivially and we are done. So we assume

s < (1/10ε)`/2. In particular, we see that there is a w such that bias(Ti, w) > εk`/2 for each i ∈ [s] and
fix such a w. We will consider the path p = (k/2, w2, . . . , wd−1,−k/2 −

∑
i wi). Notice that since w is

k/2-unbiased, it implies that p is in Pk,d. Moreover, we get bias(Si, p) > k(ε` − 3)/2 ≥ kε`/4 for each
i ∈ [s].

We know by Proposition 24 that there is a polynomial Hp which is a set-multilinear restriction of

BEdn−d+1 (since 2kd ≤ n − d + 1) and which is full-rank. Thus, by applying this linear substitution to
both sides of (9) we get

Hp =

s∑
i=1

∏̀
j=1

Hi,j

where Hi,j is the result of applying the linear substitutions to all the variables of Fi,j . Note in partic-
ular that Hi,j is a set-multilinear polynomial in just the variables of

⊎
t∈Si,j Yt. Hence, by Lemma 13

in [TLS22], we have for each i ∈ [s],

relrkp

∏̀
j=1

Hi,j

 ≤ 2−εk`/8.

On the other hand, by the sub-additivity of relrk we have

1 ≤ relrkp(Hp) ≤
s∑
i=1

relrkp

∏̀
j=1

Hi,j

 ≤ s · 2−εk`/8.
This implies that s ≥ (log n)Ω(`) finishing the proof.

7.1.4 Tree associated to a path

Let p be a path in P, we associate a tree Tp. Intuitively, Tp is the tree we obtain from the path p
(seen inside the grid) by ‘pushing’ the decreasing edges on the left to make them coincide with the last
increasing edge of the same level. The tree Tp is more formally defined by:

• the nodes of the tree are the elements of

{(0, 0)} ∪ {(i, j) ∈ [1, d]× [1, k] | p≤i−1 < j ≤ p≤i},

• (0, 0) is the root of the tree,

• there is an edge from (i1, j1) to (i2, j2) (two nodes of the tree) if and only if j2 = j1 + 1, i2 ≥ i1,
and for all i1 < i < i2, p≤i ≥ j1.

Given p ∈ P, we define Lp as the set of the leaves of Tp. Notice that Lp corresponds exactly to the
set of the couples (i, p≤i) which verify pi > 0 and pi+1 < 0. Consequently, we order the elements of
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(0, 0) (7, 0)

`1 `2

`3

Figure 3: Tree Tp associated to the path p from Example 23 of leaves {`1, `2, `3}

Lp according to their projection on the first coordinate. Moreover, we also notice that Lp induces the
following intervals partition on [1, d] =

⊎
`∈Lp

I` where

I(i,j) = {t ∈ [1, i] | ∀t ≤ u ≤ i, pu > 0} ∪ {t ∈ [i+ 1, d] | ∀i+ 1 ≤ u ≤ t, pu < 0}.

We define the function λ : [1, d]→ Lp which associates to each i ∈ [1, d] the corresponding leaf ` verifying
i ∈ I`.

Example (Continued from Example 23). The tree Tp associated with the path p of Example 23 is given
in Figure 3. This tree has three leaves `1 < `2 < `3 and [1, d] is partitioned by I`1 = [1, 3], I`2 = [4, 5],
and I`3 = [6, 7].

7.1.5 Hard polynomial

The hard polynomial will be defined as the evaluation of BE on a particular matrix H. We need to start
to introduce the ordered set Cp of the columns of H.

Given a word w ∈ {0, 1}k, we will denote its subwords by w[a:b]
def
= (wa, . . . , wb) (where a ≤ b).

Let Cp = Lp × {0, 1}k. We define the following total order on Cp:

(`, w) ≺ (`′, w′)⇔


w[1:j] <lex w

′
[1:j]

or (w[1:j] = w′[1:j] and ` < `′)

or (w[1:j] = w′[1:j] and ` = `′ and w <lex w
′).

where j is the second coordinate of the first commun ancestor of ` and `′.
We will also use the notation (`, w) 4 (`′, w′) when (`, w) ≺ (`′, w′) or (`, w) = (`′, w′). Let us call

by ψ be the unique isomorphism of ordered sets from Cp to [1, 2k|Lp|].
For any path p ∈ P, we consider the matrix Hp with d rows and |Cp| columns defined by

Hi,(`,w) =


tψ(`,w)xi,w[p≤i−1+1:p≤i]

if ` = λ(i) and pi > 0,

tψ(`,w)xi,w[p≤i+1:p≤i−1]
if ` = λ(i) and pi < 0,

0 otherwise.

We define Hp(t,X )
def
= BEd2k|Lp|(H). Notice that for any a ∈ A, Hp(a,X ) ∈ Ap[X ] is a set-multilinear

projection of BEdnd.

Example (Continued from Example 23). Continuing the example when p = (2, 1,−3, 3,−2, 1,−2), we
obtain the ordered set Cp:

(`1, 000) ≺ · · · ≺ (`1, 111) ≺ (`2, 000) ≺ · · · ≺ (`2, 011) ≺ (`3, 000) ≺ · · · ≺ (`3, 011)

≺ (`2, 100) ≺ · · · ≺ (`2, 111) ≺ (`3, 100) ≺ · · · ≺ (`3, 111).

Notice that (4, 1) is the first commun ancestor of `2 and `3, so (`3, 011) ≺ (`2, 100) by the first rule of
the ordering and (`2, 111) ≺ (`3, 100) by the second one.
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The transpose of the matrix H(2,1,−3,3,−2,1,−2) is given by

t1x1,000 t1x2,000 t1x3,000

t2x1,001 t2x2,001 t2x3,001

t3x1,010 t3x2,010 t3x3,010

t4x1,011 t4x2,011 t4x3,011

t5x1,100 t5x2,100 t5x3,100

t6x1,101 t6x2,101 t6x3,101

t7x1,110 t7x2,110 t7x3,110

t8x1,111 t8x2,111 t8x3,111

t9x4,000 t9x5,000

t10x4,001 t10x5,001

t11x4,010 t11x5,010

t12x4,011 t12x5,011

t13x6,000 t13x7,000

t14x6,001 t14x7,001

t15x6,010 t15x7,010

t16x6,011 t16x7,011

t17x4,100 t17x5,100

t18x4,101 t18x5,101

t19x4,110 t19x5,110

t20x4,111 t20x5,111

t21x6,100 t21x7,100

t22x6,101 t22x7,101

t23x6,110 t23x7,110

t24x6,111 t24x7,111



.

Proposition 24 is a direct consequence of the next proposition.

Proposition 26. Let p ∈ P. There exists a ∈ A such that Hp(a,X ) is full-rank.

7.2 Proof of Proposition 26

7.2.1 Existence of a

Let f ∈ A[t] be a nonzero polynomial, we denote by val(f) (valuation of f) the minimal integer v
such that the coefficient of tv in f is non-zero. We extend the definition for the zero polynomial by
val(0) = +∞.

For proving Proposition 26, we will need the two following lemmas that we will prove in the next
sections.

Lemma 27. Let p ∈ P. Let PDM be the matrix PDM(Hp(t, .)) when Hp(t,X ) is seen as a polynomial
in (A[t])p[X ].

For any m+ ∈M>0, there exists a unique m− inM<0 such that for all m′− inM<0, if val(PDMm+,m′−
) ≤

val(PDMm+,m−) then m′− = m−.

Let us denote by θ the application which sends m+ to m−.

Lemma 28. The application θ is a bijection of M>0 to M<0.

Proof of Proposition 26 from Lemmas 27 and 28. Let

∆(t) = det(PDM(Hp(t, .))) ∈ A[t].

By definition of θ, for any map σ from M>0 to M<0,

val

 ∏
m+∈M>0

PDMm+,σ(m+)

 ≥ val

 ∏
m+∈M>0

PDMm+,θ(m+)

 def
= τ
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and the equality holds only if σ = θ. Consequently, the coefficient of the monomial tτ in ∆ is just
the product

∏
m+∈M>0

PDMm+,σ(m+) evaluated at t = 1. As A is an integral domain, this product is
nonzero. Consequently ∆ is not identically zero.

Then, we can notice that the degree of ∆ is bounded by |M>0|d2k|Lp| ≤ d22k(d+1). As A is an
integral domain of cardinality larger than d22k(d+1), there exists a ∈ A such that ∆(a) 6= 0. Since
det(PDM(Hp(a, .))) = ∆(a), it proves the proposition.

7.2.2 Proof of Lemma 27

Let us recall that λ is a function from [1, d] to Lp which was defined at the end of Subsection 7.1.4.
Let us recall that

Hp =
∑

σ:[1,d]→Cp
σ is non-decreasing

d∏
i=1

Hi,σ(i) =
∑

ω:[1,d]→{0,1}k
(λ,ω) non-decreasing

d∏
i=1

Hi,(λ,ω)(i) (10)

The second equality stands since a summand is nonzero if and only if for all i ∈ [1, d], σ(i) is of the form
(λ(i), w). Let us fix a map ω such that σ = (λ, ω) is non-decreasing, the corresponding summand of Hp

is the monomial
t
∑

i ψ(σ(i))
∏
i|pi>0

xi,ω(i)[p≤i−1+1:p≤i]

∏
i|pi<0

xi,ω(i)[p≤i+1:p≤i−1]
.

The positive part of this monomial is m+ =
∏
i|pi>0 xi,ω(i)[p≤i−1+1:p≤i]

. Hence, it is fixed by the data of

ω(i)[p≤i−1+1:p≤i] for all i such that pi > 0.
We can also notice that if two such maps σ, σ′ are associated to two nonzero summands and verify

σ 4 σ′ (in the sense that for all i, σ(i) 4 σ′(i)), then we have (since ψ is an isomorphism of ordered sets)∑
i

ψ(σ(i)) ≤
∑
i

ψ(σ′(i)).

It means that the t-valuation of
∏
iHi,σ(i) is at most the t-valuation of

∏
iHi,σ′(i). Furthermore the

equality holds only if σ = σ′.
Let m+ be a monomial in M>0, let us denote by Sm+

the set of non-decreasing maps σ = (λ, ω)
from [1, d] to Cp such that the positive part of the associated summand is exactly m+.

First, we note that for any m+ in M>0, the set Sm+ is non empty. Indeed, let us construct ω by
induction on i with the property that for each i with pi > 0, we have that the suffix ω(i)[p≤i+1:k] is the
zeros-word. When i = 1, we know that p1 = p≤1 > 0. Let x1,w be the variable in m+∩X1. We set ω(1) ∈
{0, 1}k to be the concatenation of the word w ∈ {0, 1}p1 and of the zeros-word (0, . . . , 0) ∈ {0, 1}k−p1 .
We get that H1,(λ,ω)(1) = tψ((λ,ω)(1))x1,w as required. Assume now that for some i < d we have defined
ω(i) and let us define ω(i + 1). In the first case, pi+1 < 0. In this case, we have λ(i + 1) = λ(i) so we
can set ω(i + 1) = ω(i). We clearly have (λ, ω)(i) 4 (λ, ω)(i + 1). In the second case, pi+1 > 0. Let
xi+1,w be the variable in m+ ∩ Xi+1. We set ω(i + 1) be the concatenation of ω(i)[1:p≤i] ∈ {0, 1}p≤i , of

w ∈ {0, 1}pi+1 , and of the zeros-word (0, . . . , 0) ∈ {0, 1}k−p≤i+1 . By construction Hi+1,(λ,ω)(i+1) is of the

form tψ((λ,ω)(i+1))xi+1,w as required. So we just need to show that the order (λ, ω)(i) 4 (λ, ω)(i + 1)
holds. If λ(i + 1) = λ(i), then pi > 0 and by hypothesis ω(i)[p≤i+1:k] is the zeros-word, which implies
that ω(i) ≤lex ω(i + 1) and the order is verified. Otherwise λ(i + 1) > λ(i). It means that pi < 0 and
that p≤i is the second coordinate of the first commun ancestor of λ(i) and λ(i+ 1). Hence the order is
again verified

Finally, we can notice that if σ, σ′ are two maps from Sm+
, then the map min(σ, σ′) also belongs

to Sm+
. Consequently, Sm+

has a minimal element σm+
associated to a unique minimal t-valuation.

Choosing m− as the negative part of
∏
Hi,σm+

(i) proves Lemma 27.

7.2.3 Proof of Lemma 28

We want to show here that θ is a bijection. The lemma will easily follow from some lemmas on the
structure of min(Sm+

). Let us start by identifying σm+
(i) when i verifies pi < 0. To get the minimal

t-valuation, it is enough to select the smallest possible output (the only limitation comes from the fact
that σm+

is non-decreasing)
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Lemma 29. Let m+ ∈M>0 and σm+
= min

(
Sm+

)
. For all i we have σm+

(i) = σm+
(i− 1) as soon as

pi < 0.

Proof. Assume this is not the case. Let i be an index where σm+
(i) � σm+

(i − 1) and pi < 0. Let us
consider the map

σ : j 7→

{
σm+

(j) if j 6= i

σm+
(j − 1) if j = i.

Clearly σ is still non-decreasing and its associated positive part is m+. Moreover for j 6= i, the first
projection of σ(j) is λ(j). So, the only thing to show to get that σ is in Sm+ , is to notice that
λ(i− 1) = λ(i). But, since pi < 0, it directly follows from the definition of λ. Consequently σ is also in
Sm+

, which contradicts the minimality of σm+
.

Let us focus now on the behavior when i verifies pi > 0.

Lemma 30. Let m+ ∈M>0 and σm+ = (λ, ω) = min
(
Sm+

)
. For all i such that pi > 0, we have

i) ω(i)[1:p≤i−1] = ω(i− 1)[1:p≤i−1],

ii) ω(i)[p≤i−1+1:p≤i] is such that xi,ω(i)[p≤i−1+1:p≤i]
is the Xi variable of m+,

iii) ω(i)[p≤i+1:k] = {0}k−p≤i .

.

Notice that in the case i = 1, ω(0) is not formally well defined, but since p≤0 = 0, i) is just the
equality of two empty strings.

Proof. The point ii) is directly implied from the fact that the positive part of a monomial associated
with a map σ ∈ Sm+ has to be m+.

Assume that there exists i such that i) or iii) is not satisfied and then let us choose such an i minimal.
Assume first that only iii) is not satisfied for i. We consider

σ : j 7→

{
σm+(j) if j 6= i(
λ(j), ω(i)[1:p≤i] ‖ {1}k−p≤i

)
if j = i

where w1 ‖ w2 is the concatenation of w1 with w2. Obviously, σ ≺ σm+ and the positive part of the
monomial associated to σ is again m+. Let us show that σ is non-decreasing. As σ(i) ≺ σm+

(i), the
only thing to check is that σ(i − 1) 4 σ(i) when i > 1. We already know (since i) is satisfied) that
ω(i)[1:p≤i−1] = ω(i− 1)[1:p≤i−1]. If pi−1 > 0, then by minimality of i, we know that ω(i− 1)[p≤i−1+1:k] =

{1}k−p≤i−1 , and so, ω(i− 1) 4 ω(i). If pi−1 < 0, then λ(i− 1) < λ(i) and their first common ancestor is
(i− 1, p≤i−1). It directly implies that σ(i− 1) 4 σ(i). Consequently, σ is also in Sm+

which contradicts
the minimality of σm+

.
Then, assume that i) is not satisfied for i. Clearly, we have i > 1. We consider

σ : j 7→

{
σm+

(j) if j 6= i(
λ(j), ω(i− 1)[1:p≤i−1] ‖ ω(i)[p≤i−1+1:k]

)
if j = i

where again w1 ‖ w2 is the concatenation of w1 with w2.
Since furthermore σm+

is non-decreasing, we know that ω(i−1)[1:p≤i−1] < ω(i)[1:p≤i−1] (indeed, either
pi−1 < 0 and λ(i) = λ(i − 1), or pi−1 < 0 and the first common ancestor in Tp of λ(i) and λ(i − 1) is
(i− 1, p≤i−1)). Consequently, σ ≺ σm+ .

Similarly, σ is also non-decreasing. Indeed, if pi−1 > 0, then by minimality of i, we know that
ω(i−1) = ω(i−1)[1:p≤i−1] ‖{1}k−p≤i−1 4 ω(i−1)[1:p≤i−1] ‖ω(i)[p≤i−1+1:k]. Otherwise pi−1 < 0, λ(i−1) ≺
λ(i) and these two leaves have (i− 1, p≤i−1) for first common ancestor. In this case σ(i− 1) ≺ σ(i) since
their length-p≤i−1 prefixes of their second projection are identical. We again conclude that σ ∈ Sm+

which is a contradiction.
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Finally this last lemma combines previous results to show that the data of the negative part is exactly
determined by the positive part and the path p.

Lemma 31. Let m+ ∈ M>0 and σm+
= (λ, ω) = min

(
Sm+

)
. For all i such that pi < 0 and for all

1 ≤ j ≤ p≤i−1, we have ω(i)j = ω(i1)j where i1 is the maximal i′ ≤ i such that p≤i′−1 < j. In particular
pi1 > 0.

Proof. It immediately follows the fact (implied by Lemmas 30 and 29) that if min(p≤i−1, p≤i) ≥ j, then
ω(i− 1)j = ω(i)j . The last step ω(i)j = ω(i− 1)j is ensured since pi < 0.

Proof of Lemma 28. As |M>0| = |M<0|, it is enough to prove that θ is an injection. As the path p
is fixed, the injectivity should follows from Lemma 31. Indeed, assume that m+1 and m+2 are two
distinct monomials. Let i such that the Xi-variables xi,w1 of m+1 and xi,w2 of m+2 differ. Let j be an
index such that (w1)j−p≤i−1

6= (w2)j−p≤i−1
. In particular 1 ≤ j ≤ p≤i. Let i2 > i minimal such that

p≤i2 < j. So, if xi2,w3
(resp. xi2,w4

) is the Xi2-variable of θ(m+1) (resp. θ(m+2)), then by Lemma 31,
(w3)j−p≤i2

= (w1)j−p≤i−1
6= (w2)j−p≤i−1

= (w4)j−p≤i2
, and so θ(m+1) 6= θ(m+2).

8 No Girard-Newton identities in positive characteristic

The proof is a consequence of Lucas’ theorem (see, e.g. [Mes14]), which is a standard result in combina-
torial number theory. We recall this result below. Throughout this section, fix a constant prime p and
let F be any field of characteristic p.

Theorem 32 (Lucas’ theorem). Let p be any prime and a, b ∈ N. Let a1, . . . , a` ∈ {0, . . . , p − 1} and
b1, . . . , b` ∈ {0, . . . , p − 1} be the digits in the p-ary expansion of a and b, i.e., a =

∑
j∈[`] ajp

j−1 and

b =
∑
j∈[`] bjp

j−1. Then, we have (
a

b

)
≡
∏
i≤`

(
ai
bi

)
(mod p)

where
(
ai
bi

)
is defined to be 0 if ai < bi.

This has the following well-known corollary (see, e.g. [Lu01, Proposition 1] for a similar statement
when p = 2).

Corollary 33. Let d = pk and n ≥ d. Then, for any function f : Fd−1 → F, there is an a ∈ {0, 1}n
such that

Edn(a) 6= f(E1
n(a), . . . ,Ed−1

n (a)).

Proof. On any input a ∈ {0, 1}n of Hamming weight w, we note that Edn(a) is in the base field Fp and
takes the value

(
w
d

)
(mod p). Since d = pk, by Lucas’ theorem (Theorem 32), this is the (k + 1)th least

significant digit of w written in base p.
On the other hand, again by Theorem 32, each of E1

n(a), . . . ,Ed−1
n (a) depend on the k least significant

digits of w.
Consider inputs a(0) and a(1) of weights w0 = 0 and w1 = pk respectively (such an a(1) exists as

n ≥ pk). The two Hamming weights have the same k least significant digits but the kth digit is different.
Thus, for a = a(0) or a = a(1) we have the statement of the corollary.

We now prove the main result of this section.

Proof of Theorem 10. Assume that d = pk and n ≥ d. For the sake of contradiction, assume that

Edn = Qd(P1, . . . , Pm) (11)

where P1, . . . , Pm are symmetric polynomials of support-size at most d − 1. We consider the above as
an equality of functions on Boolean inputs a ∈ {0, 1}n. On Boolean inputs, we also have the simple
functional equality x2

i = xi. This implies that the function computed by any symmetric polynomial Pi
of support-size at most d − 1 is also computed by a symmetric multilinear polynomial P̃i of degree at
most d− 1.
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Note that any multilinear symmetric polynomial of degree at most d − 1 is a linear combination
of elementary symmetric polynomials of degree at most d − 1. This shows that from (11) we get the
functional equality

Edn = f(Ed1, . . . ,E
d−1
n ).

However, Corollary 33 implies that such a functional inequality cannot hold. This proves the theorem.
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A The connection between non-commutative and commutative
homogenization

In this section, we make precise a connection between homogenizing formulas in the non-commutative
and commutative settings, hinted at in Section 4.3. This follows easily from a recent result of [DGI+23]
along with other standard machinery, so we only sketch the details here.

The following is an immediate consequence of [DGI+23, Proposition 6.4].

Lemma 34. Let n, d be growing parameters with d = d(n) ≤ n. Let A1, . . . , An be 3 × 3 matrices with
distinct variable entries, and define the 3× 3 matrix A by

A = Edn(A1, A2, . . . , An).

where Edn is as defined in (1). Let Pn,d denote the (1, 2)th entry of A. Then, Pn,d has a homogeneous
algebraic formula of size poly(n) if and only if any degree-d polynomial computed by an algebraic formula
of size poly(n) has a homogeneous algebraic formula of size poly(n).

The following lemma now makes precise the connection between the complexity of Edn in the non-
commutative setting and homogenization.

Lemma 35. Let n, d be growing parameters with d = d(n) ≤ n. The polynomial Edn has a depth-3
non-commutative formula of size poly(n). Moreover, if Edn has a non-commutative homogeneous formula
of size poly(n), then so does Pn,d as defined above.

Proof. The upper bound for Edn follows directly from Ben-Or’s interpolation argument (see, e.g. [SW01,
Theorem 5.1]) which also works in the non-commutative setting.

Now, assume that Edn has a non-commutative homogeneous formula F of size poly(n). By standard
depth-reduction results [BKM73] for formulas which also hold in the non-commutative setting, we can
assume without loss of generality that F has depth O(log n) and fan-in at most 2. If we replace each
input xi by the matrix Ai from Lemma 34 above and treat the sum and product gates of F as matrix
sums and products respectively, we see that the output of F is the matrix A from Lemma 34.

To get a commutative formula for Pn,d, we operate directly on the entries of the underlying matrices.
In particular, we start with the 9 variable entries of each matrix and compute the matrix sum and
product at each sum and product gate of F respectively. This requires replacing each gate of F by a
constant-sized circuit (note that each gate of F has fan-in at most 2), resulting in a circuit of depth
O(log n) with gates of fan-in 2 computing each of the entries of the output matrix A. The (1, 2)th entry
of A then gives the polynomial Pn,d.

As Pn,d is computed by a circuit C of depth O(log n) with gates of fan-in 2, it also has formulas of
size poly(n) (obtained by converting C to a formula via the standard approach of replicating gates).
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