
A Note On the Universality of Black-box MKtP Solvers

Noam Mazor ∗ Rafael Pass †

December 3, 2023

Abstract

The relationships between various meta-complexity problems are not well understood in the
worst-case regime, including whether the search version is harder than the decision version,
whether the hardness scales with the “threshold”, and how the hardness of different meta-
complexity problems relate to one another, and to the task of function inversion.

In this note, we present resolutions to some of these questions with respect to the black-box
analog of these problems. In more detail, let MKt

MP[s] denote the language consisting of strings
x with Kt

M (x) < s(|x|), where Kt
M (x) denotes the t-bounded Kolmogorov complexity of x with

M as the underlying (Universal) Turing machine, and let search-MKt
MP[s] denote the search

version of the same problem.
We show that if there for every Universal Turing machine U there exists a 2αnpoly(n)-

size U-oracle aided circuit deciding MKt
UP[n − O(1)], then for every function s, and every not

necessarily universal Turing machine M, there exists a 2αs(n)poly(n)-size M -oracle aided circuit
solving search-MKt

MP[s(n)]; this in turn yields circuits of roughly the same size for both the
Minimum Circuit Size Problem (MCSP), and the function inversion problem, as they can be
thought of as instantiating MKt

MP with particular choices of (a non-universal) TMs M (the
circuit emulator for the case of MCSP, and the function evaluation in the case of function
inversion).

As a corollary of independent interest, we get that the complexity of black-box function
inversion is (roughly) the same as the complexity of black-box deciding MKt

UP[n − O(1)] for
any universal TM U; that is, also in the worst-case regime, black-box function inversion is
“equivalent” to black-box deciding MKt

UP.

∗Cornell Tech. E-mail: noammaz@gmail.com. Research supported by NSF CNS-2149305.
†Tel-Aviv University and Cornell Tech. E-mail: rafaelp@tau.ac.il. Supported in part by NSF Award CNS

2149305, AFOSR Award FA9550-18-1-0267, AFOSR Award FA9550-23-1-0387, and an Algorand Foundation grant,
and DARPA under Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States
Government, DARPA, AFOSR, or the Algorand Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 192 (2023)

1 Introduction

We consider the worst-case complexity of solving standard Meta-complexity Programs, notably the
the Time-Bounded Kolmogorov Complexity Problem [Kol68; Sol64; Cha69; Ko86; Har83; Sip83]—
computing the length, denoted Kt

U(x) of shortest program (evaluated on some particular Universal
Turing machine (TM) U) that generates a given string x, within time t(|x|), where t is a polynomial,
and the (b) the Minimimum Circuit Size problem (MCSP) [KC00; Tra84]—finding the smallest
Boolean circuit that computes a given function x. For both of these problem one may also consider
thresholds versions, MKt

UP[s] and MCSP[s], where MKt
UP[s] (resp. MCSP[s]) is the languages of

strings x s.t. Kt
U(x) (resp. the circuit size of x) is less than s(|x|), as well as search versions

search-MKt
UP[s], where the goal is not compute/decide the complexity of a string x but also to

find a short description that witnesses this complexity.
The relationship between these various meta-complexity problems are not well understood. In

particular:

1. Decision-to-Search: Solving the search version trivially yields a solver for the decisional (or
computational) version with roughly the same complexity. Does the converse hold: Does a
T (n)-size circuit for solving the decision version imply a, roughly, T (n)-size circuit solving the
search version?

2. Hardness Scaling to the Threshold: Intuitively, the threshold version of the problem, for
small thresholds s(n) ≪ n ought to be easier than the threshold n version (or computational)
version since there exist trivial 2s(n)poly(n) time algorithms for the threshold version (simply
doing brute force search). Does this hold more generally: Does a T (n)-size circuit solving
MKt

UP[n−O(1)] imply a roughly T (s(n))-size circuit for solving MKt
UP[s(n)]?

3. The “Model of Computation” and the Relationship to Function Inversion: Other
meta-complexity problems, such as the MCSP problem, can be stated as an MKt

MP problem
with respect to a particular non-universal underlying TM M (performing circuit emulation).
Additionally, a solver for the search-MKt

MP problem with respect to any (non-universal) TM
M is also equivalent to a solver for the function inversion problem (i.e., the problem of inverting
any function on every input). Does a T (n)-size solver for MKt

UP[s(n)] with respect to any
underlying Universal TM U, imply one (of size roughly T (n)) that also works with respect
non-universal TMs (and thus also for MCSP and function inversion)?

In the average-case regime, positive answers to these questions—when restricting to efficient under-
lying (Universal) TMs—were provided in respectively [LP20] (for question 1), [LP21] (for question
2) and [LP20; RS21] (for question 3), but they remain wide open in the worst-case regime. This
is the focus of the current paper, but rather than restricting to efficient underlying TMs, we will
consider arbitrary TMs (with potentially a large description or running time).

In particular, very recently non-trivial circuits for the various different meta-complexity prob-
lems were given. In [MP24], the current authors show that for any efficient Universal TM U, there
exists a circuit of size 24n/5poly(n, t(n)) that solves the search version of the Kt

U (and thus also
search-MKt

UP). A different, independent, paper by Hirahara, Ilango and Williams [HIW23] focuses
on the threshold version of the above meta-complexity problems and presents circuits of size re-
spectively 24/5s(n) · poly(n, t(n)) and 2(4/5+o(1))·s(n) log s(n) for them. In both cases, the core of the
technical work consist of providing a circuit implementation of the function inversion algorithm

2

from Fiat and Naor [FN00], and next applying this function inversion algorithm to the one-way
function construction of [LP20] (or variants thereof, notably the variant of [RS21] to deal with the
MCSP problem) based on the hardness of meta-complexity problems—an approach first envisioned
by Ren and Santhanam [RS21].1 As such, the worst-case complexity bounds obtained are roughly
the same for (a) the search and the decisional version (as the function inverter also directly solves
the search problem in [LP20]), (b) they naturally scale with the threshold s of MKtP[s] (based
on an extension of the function inversion attack of Fiat-Naor done in [HIW23]), and (c) are the
roughly same for MKtP, MCSP and function inversion (since the one-way function constructions in
[LP20; RS21] are length preserving). These works thus indicate that perhaps the same phenomena
that are known in the average-case setting may also hold in the worst-case setting.

In this paper, we demonstrate that this is not a coincidence. Indeed, we provide a positive
answer to all the above questions also in the worst-case regiment, when restricting attention to
black-box solvers and thus all the above result follow from simply obtaining circuit for black-box
solving the decisional MKtP problem.

Black-box Solvers As noted in [MP24], their algorithm for Kt
U works for any Universal TM

U (as long as the algorithm gets oracle access to U): for any (not necessarily efficient) Universal
TM U, there exists a U-oracle aided circuit of size 24n/5poly(n, t(n)) that solves the search version
of the Kt

U. Following [MP24], we say that MKtP[s] (resp search-MKtP[s]) admits a T (n)-size
black-box solver if for every universal TM U, there exists a T (n) size U-oracle aided circuit for
solving MKt

UP[s] (resp search-MKt
UP[s]). We additionally say that these problems admit a T (n)-

size generalized black-box solver if the same holds not only with respect to any universal TM U
but also for non-universal TM M (satisfying the minimal condition that the emulation by M has
a unique output: M(Π, 1t1) = M(Π, 1t2) if either of those provide some output). (Considering
generalized black-box solvers is what will allow us to answer question 3 above, but actually, also
from a technical point of view, will also be instrumental also to deal with question 1).

1.1 Our Results

Our main result shows that the existence of a 2αn+o(n)-size black-box solver for MKtP[n − O(1)]
implies the existence of a 2αs(n)+o(n)-size generalized black-box solver for search-MKtP[s], thus
providing a positive answer to all the above questions with respect to black-box solvers.

Theorem 1.1. Assume the existence of a 2αn · poly(n)-size black-box solver for MKtP[n − 4] for
t(n) = n. Then there exists a 2αs(n) · poly(n)-size generalized black-box solver for search-MKt’P[s]
for every function t′(·) and every function s(n) ≤ 2n− ⌈log n⌉.

We highlight that generalized black-box solvers can solve MCSP (since, as implicitly observed
in [HIW23] following [RS21; FM05]), the MCSP problem can be stated as an MKt

MP problem
with respect to a particular non-universal underlying TM M (performing circuit emulation)—see
Lemma B.2 in the Appendix). As a direct corollary of Theorem 1.1 and Lemma B.2 we thus get:2

1[RS21] noted that the function inversion algorithm of [FN00] could be applied to the one-way function construction
of [LP20] to get a non-trivial non-uniform RAM program that solves the MKtP problem, but left open whether a
circuit implementation can be given.

2When s(n) ≥ 1.1·n/logn then MCSP[s] is the trivial language consisting of all strings due to the result of [Lup58],
so the corollary below actually works for all s.

3

Corollary 1.2. Let p ∈ poly and α > 0, and assume that for t(n) = n there exists a black-box
MKtP[n − 4] solver of size 2αn · p(n). Then for every s(n) ≤ 1.9n/ log n, search-MCSP[s] can be
solved with a circuit family of size 2(α+o(1))·s(n)·log(s(n)+logn) · poly(n).

Additionally, we observe that generalized black-box solvers for search-MKtP[n] can easily be
seen to be equivalent to function inversion circuits (for all functions f) of roughly the same size—see
Lemmas A.1 and A.2 in the Appendix. As a corollary of Theorem 1.1, we thus get that—in the
black-box regime—solving the function inversion problem is not only sufficent (as shown in [MP24;
HIW23] for solving MKtP[n − O(1)] but also necessary. This matches the converse direction of
the average-case characterization of one-way functions through the hardness of MKtP from [LP20],
and yields a characterization of the black-box worst-case hardness of MKtP through the black-box
worst-case hardness of one-way functions. In particular, black-box solving just [n − O(1)] is no
easier than (black-box) function inversion.

Theorem 1.3. There exists a black-box MKtP[n − O(1)] solver of size 2αn · poly(n) for every
polynomial t if and only if every function f can be inverted by an f -oracle aided circuit of size
2αn · poly(n).

As a consequence of Theorem 1.3, and Impagliazzo’s lower bound on the circuit size of black-box
one-way function inversion3, we directly get a lower bound on the complexity of black-box MKtP
solvers; such a lower bound was previously proved directly for the MKtP problem in [MP24] but it
required a significantly more complicated proof and employing heavier machinery.

Corollary 1.4. There is no black-box MKtP[n− 4] solver of size 2n/2−o(n).

1.2 Proof Outline

Theorem 1.1 is proved in two step. The first step is formally stated in Corollary 3.2 and the second
in Corollary 4.2.

Step 1: From Black-box to Generalized Black-Box for Small Thresholds . We first that
any black-box solver for MKtP[n−4] of size T (n) implies a generalized black box MKtP[s(n)] solver
of size T (s(n) +O(1))poly(n, t(n)).4 The proof follows standard techniques from the literature on
hardness magnification (i.e., hashing down the statement x using a pairwise independent hash
function h to roughly the threshold size, and then applying the solver of a related language on
the smaller instance h(x) and thereby improving the running time) [OS18; CJW19; OPS21]. The
key difference with our approach is that by leveraging the black-box property of the algorithm,
we can use an algorithm for the same problem, but parameterized by a different universal TM
Mh, as opposed to a general NP problem as in those earlier works—that is, we get “self hardness
magnification” [LP21]). (We highlight that [HIW23] also rely on a similar hashing technique to
directly present an attack on the threshold version of MKtP but do so in a slightly different context:
in particular, they use hashing to develop a function inversion algorithm whose circuit complexity
only depends on the input size of the function and not the output size, and next function inversion
with an input size that depends on the threshold to solve MKtP[s]. Nevertheless, our usage of this

3Impagliazzo shows that for every large enough n ∈ N, there exists a permutation σ : {0, 1}n → {0, 1}n such that

every σ-oracle aided circuit C of size at most 2n/2−2 log2 n fails to invert f
4This reduction also works for the search version of these problems.

4

approach is inspired by theirs.) Additionally, and perhaps more surprisingly, we show that this
technique allows us to solve the orthogonal problem of dealing with non-universal Turing machines
(so that we can get a generalized black-box solver): in essence, the idea is to define a universal TM
Mh that has two tracks: if the first bit of the input “program” Π is 0, it simply runs some Universal
TM U(Π>1) on the rest of the input Π>1, and if it is 1, then it outputs h(M(Π>1)) where M is
the non-universal TM that we want a MKt

MP[s] solver for. The key point is that due to pairwise
independence property of the hash function, h(x) is uniform (for a random choice of h) and thus
with high probability h(x) has essentially maximal Kt

U complexity, and thus the existence of the
first “track” does not disrupt the hardness magnification reduction.

Step 2: From Decision to Search Our next result shows how any generalized MKtP[s] solver of
size 2αs(n) can be used to solve also the search version of the problem with roughly the same running
time. In particular, to solve search-MKt

MP[s], we will rely on a circuit deciding MKt
Mn

P[s+⌈log n⌉]
where Mn is defined as a TM that given a program Π = (i,Π′) where i is defined as the first ⌈log n⌉
bits of Π, checks if Π′ generates an output x of exactly n bits, and if so outputs x concatenated with
the first i bits of Π′. The key point is that for every n-bit length string x, Kt

Mn
(x) = Kt

M (x)+⌈log n⌉
(obtained by letting i = 0). Furthermore, this Kolmogorov complexity can be maintained if we
concatenate the prefix of any minimum length program Π′ that generates x, so the bits of any such
minimum length program can be iteratively recovered given an oracle computing Kt

Mn
. The same

argument also works if we only have access to a decision oracle for the threshold s + ⌈log n⌉, but
then we only recover a program of length at most s.

2 Definitions

Given some efficient threshold function s, let MKt
MP[s] denote the set of strings x s.t. Kt

M (x) ≤
s(|x|) (where we let Kt

M (x) = ∞ if there is no Π such that M(Π, 1t) = x). Let search-MKt
MP[s]

denote the search problem in which given a string x with Kt
M (x) ≤ s(|x|), the output is a program

Π of length at most s(|x|) with M(Π, 1t(n)) = x.
We start with the definition of a black-box emulator and a black-box universal TM.

Definition 2.1 (Black-box emulator). A function M : {0, 1}∗×1∗ → {0, 1}∗∪{⊥}, is a black-box
TM emulator if M has “unique outputs”: For any Π ∈ {0, 1}∗, t1, t2 ∈ N, t1 ≤ t2, if M(Π, 1t1) ̸= ⊥,
M(Π, 1t2) = M(Π, 1t1). A black-box TM emulator U is a black-box universal Turing machine
(black-box UTM) if there exists a universal Turing machine U0 such that for any (Π, 1t), if Π is a
valid description of a Turing machine (w.r.t U0), then U(Π, 1t) = U0(Π, 1

t).

We start with the definition of black-box solvers for MKt
MP[s]. For a TM M , a function

t : N → N, and a number n ∈ N, we let fM,t
n : {0, 1}≤2n → {0, 1}∗ be the function defined by

fM,t
n (Π) = M(Π, 1t(n)) for any Π ∈ {0, 1}≤2n.

Definition 2.2 (Black-box MKtP-solver). For functions t, s, T : N → N, we say that MKtP[s]
admits a black-box MKtP[s]-solver of size T (n) if the following holds for every black-box universal
TM U. There exists a circuit family C = {Cn}n∈N of size at most T (n), such that for every n ∈ N,
Cn is a fU,t

n -oracle aided circuit with MKt
UP[s] on inputs of length n.

We define generalized black-box solver in exactly the same way except that we quantify over all
black-box TM emulator (as opposed to just universal ones).

5

Definition 2.3 (Generalized black-box MKtP-solver). For functions t, s, T : N → N, we say that
MKtP[s] admits a generalized black-box MKtP[s]-solver of size T (n) if the following holds for every
black-box TM M . There exists a circuit family C = {Cn}n∈N of size at most T (n), such that for

every n ∈ N, Cn is a fM,t
n -oracle aided circuit that decides MKt

MP[s] on inputs of length n.

We similarly define black-box solvers and generalized black box solvers for search-MKtP.

3 Generalized Solvers Scaling with the Threshold

We show how to turn a black-box solver into a generalized black-box solver where the circuit
size scales with the threshold. As mentioned before, proof follows standard techniques from the
literature on hardness magnification (i.e., hashing down the statement to roughly the threshold
size, and then applying the solver on the smaller instance and thereby improving the running time)
[OS18; CJW19; OPS21].

Theorem 3.1. There exists q ∈ poly such that the following holds. Let T : N → N be a function,
and assume that for t(n) = n there exists a black-box MKtP[n− 4] solver of size T (n). Then, there
exists a generalized black-box MKt’P[s] solver of size T (s(n) + 5) · q(n) for every function s(·) with
s(n) ≤ 2n and for every function t′(·).5

Proof of Theorem 3.1. Fix an efficient universal TM U, and let p ∈ poly be such that p(n, t) bounds
the size of a circuit implementing U(Π, 1t) for inputs (Π, 1t) with |Π| = n. Let M , s(n), and t′(n)
be the TM, time function and threshold for which we want to solve MKt’

MP[s]. Let t(n) = n. For

every n ∈ N, let Hn =
{
h : {0, 1}n → {0, 1}s(n)+5

}
be a pairwise independent hash family, such

that there exists m ∈ poly for which m(n + s(n)) bounds the circuit size evaluating h for every
h ∈ Hn. Fix n ∈ N. We start by showing a distribution over circuits that solves MKt’

MP[s] with
good probability.

For every h ∈ Hn, we define Uh to be the following black-box universal TM:

Uh(Π, 1
t) =


U(Π>1, 1

t) if Π1 = 0

h(M(Π>1, 1
t′(n))) if |Π| ≤ 2n+ 1, Π1 = 1 and

∣∣∣M(Π>1, 1
t′(n))

∣∣∣ = n

⊥ Otherwise

By the assumption that there exists a black-box solver of size T (n) for every black-box universal
TM, there exists a circuit of size Cs

h of size T (s(n)+5) that solves MKt
Uh
P[n−4] on input of length

n′ = s(n) + 5, and using oracle to the function fh
n : {0, 1}

≤2n′
→ {0, 1}∗ defined by fh

n (Π) =
Uh(Π, 1

t(n′)).
Let Ch be the circuit that given input x ∈ {0, 1}n, computes h(x) and outputs Cs

h(h(x)). We
claim that for every x ∈ {0, 1}n,

1. if Kt′
M (x) ≤ s(n), Ch(x) outputs Yes for every h, and,

2. if Kt′
M (x) > s(n), it holds that for h← Hn, Ch(x) outputs No with probability at least 3/4.

5We remark that the theorem extends also to the search versions of the same problems with essentially identically
the same proof. Since we later will show a generic decision-to-search reduction, we omit the details.

6

To see (1), consider any x ∈ {0, 1}n s.t. Kt′
M (x) ≤ s(n). Then there exists a program Π of

length at most s(n) such that M(Π, 1t
′(n)) = x. Therefore Uh(1||Π, 1t(n)) = h(M(Π, 1t

′(n))) = h(x)
and thus Kt

Uh
(h(x)) ≤ s(n) + 1 ≤ n′ − 4, so Ch(x) will always answer Yes.

For (2), consider any x ∈ {0, 1}n s.t. Kt′
M (x) > s(n). We claim that with probability at least

3/4 over the choice of a random h ← Hn, it holds that Kt
Uh

(h(x)) > n′ − 4, which implies that

Ch(x) outputs No. To see the above, assume that for some h, Kt
Uh

(h(x)) ≤ n′ − 4. Then there

exists Π such that |Π| ≤ n′ − 4, and Uh(Π, 1t(n)) = h(x). By the definition of Uh, it either holds
that Π1 = 0, and then Kt

U(h(x)) ≤ n′ − 5, or Π1 = 1, which means that h(x) = h(x′) for some
x′ with Kt′

M (x′) ≤ n′ − 5 = s(n). In the following we show that the probability that one of the
above happens is at most 1/4 (over a random choice of h ← Hn). Indeed, since Hn is a pairwise
independent family, h(x) uniformly distributed when h← Hn. Therefore,

Prh←Hn

[
Kt

U(h(x)) ≤ n′ − 4
]
= Pr

y←{0,1}n′
[
Kt

U(y) ≤ n′ − 4
]
≤ 2−3.

Moreover, for every x′ ̸= x, it holds that Prh←Hn [h(x) = h(x′)] ≤ 2−s(n)−5. By a union bound over
all x′ with Kt′

M (x′) ≤ s(n), we get that the probability of collision h(x) = h(x′) with such x′ is at
most 2−4. Using the union bound again, it holds that with probability at least 1−2−3−2−4 > 3/4,
both Kt

U(h(x)) > n′− 4 and there is no x′ ̸= x with Kt′
M (x′) ≤ s(n) such that h(x) = h(x′) . In this

case, Kt
Uh

(h(x)) > n′ − 4, and Ch(h(x)) answers No.
The proof now follows by simple amplification: for h1, . . . , hn ∈ Hn, let Ch1,...,hn be the circuit

that computes Ch1(x), . . . , Chn(x) and outputs No if one of the execution output No. It follows using
a standard Union bound, that with positive probability over the random choice of h1, . . . , hn ← Hn,
Ch1,...,hn outputs the right answer for all x ∈ {0, 1}n; thus, there exists a fixed choice of h1, . . . , hn
that works for every input.

We finally bound the size of Ch1,...,hn . We start with bounding the size of a circuit with fh
n

oracle, for every h ∈ {h1, . . . , hn}. In this case,∣∣Ch1,...,hn+1

∣∣ ≤ n ·m(n+ s(n)) + n · |Cs
h|+O(n) ≤ n ·m(n+ s(n)) + n · T (s(n) + 5) +O(n).

Next, observe that each fh
n oracle can be implemented using a circuit of size m(n+s(n))+p(2n′, 2n′)

using oracle to the function fM,t
n : {0, 1}≤2n → {0, 1}∗ defined by fM,t′

n (Π) = M(Π, 1t
′(n)). Thus,

the size of a fM,t′
n -oracle aided circuit computing Ch1,...,hn+1 is at most T (s(n) + 5) · q(n) for

q(n) = (m(n+ s(n)))2 + p(2(s(n) + 5), 2(s(n) + 5)). □

By taking T (n) = 2α·n·poly(n), we get the following corollary.

Corollary 3.2. Assume the existence of a 2αn · poly(n)-size black-box solver for MKtP[n− 4] for
t(n) = n. Then there exists a generalized black box MKt’P[s] solver of size 2α·s(n) · poly(n) for all
functions t′(·) and s = s(n) with s(n) ≤ 2n.

4 From Decision to Search

In this section we show that if there exists a non-trivial black box solver to MKtP, then such a
solver (with roughly the same efficiency) exists also for search-MKtP.

7

Theorem 4.1. There exists q ∈ poly such that the following holds. Let p : N → N be a monotone
function, and let T : N → N and t : N → N be functions. Assume that for every s : N → N with
s(n) ≤ 2n there exists a generalized black-box MKtP[s] solver of size T (s(n)) · p(n). Then, there
exists a generalized black-box search-MKtP[s] solver of size T (s(n)+ ⌈log n⌉) · p(n+ s(n)) · q(n) for
every s : N→ N such that s(n) ≤ 2n− ⌈log n⌉.

Proof. Let M be a black-box TM emulator, and for every n ∈ N, let Mn be the following black-box
TM emulator. Given Π and 1t

′
, Mn interprets Π = i||Π′, where the first ⌈log n⌉ bits of Π interpreted

as an index i ∈ [n], and the rest of the bits interpreted as a program Π′. Then, Mn acts as follows:

Mn(i,Π
′, 1t

′
) =

{
M(Π′, 1t(n))||Π′≤i if i ≤ n, |Π′| ≤ 2n and

∣∣M(Π′, 1t(n))
∣∣ = n

⊥ Otherwise

We observe that for every x, for every i ∈ [n], and for every program Π′ of length ℓ ≤ 2n such
that M(Π′, 1t) = x, it holds that Kt

M (x) + ⌈log n⌉ ≤ Kt
Mn

(x||Π′≤i) ≤ ℓ + ⌈log n⌉. In particular,
assuming that Kt

M (x) ≤ 2n, for the minimal-length program Π′ such that M(Π′, 1t) = x it holds
that Kt

Mn
(x||Π′≤i) = Kt

M (x) + ⌈log n⌉. Moreover, for every z ∈ {0, 1}∗ such that z is not a prefix
of a program of length at most ℓ that outputs x, it holds that Kt

Mn
(x||z) > ℓ. We can thus use an

algorithm that decides MKt
Mn

P to find a program Π of length at most s such that M(Π, 1t) = x.
This can be done by the following process:

1. Check if Kt
Mn

(x) ≤ s(n) + ⌈log n⌉. If not output ⊥.

2. Let z = ⊥.

3. For every i ∈ [s(n)]:

(a) Check if M(z, 1t) = x. If it does, output z.

(b) Check if Kt
Mn

(x||z||0) ≤ s(n) + ⌈log n⌉, let z = z||0. Otherwise let z = z||1.

4. Output z.

Since Kt
Mn

(x||z||0) ≤ s(n) + ⌈log n⌉ if and only if z is a prefix of a program Π of length at most s
such that M(Π, 1t) = x, the above process always finds such a program. We left to show that the
above process can be implemented using a circuit of size T (s(n) + ⌈log n⌉) · p(n+ s(n)) · poly(n).

Let s′ be the function defined by s′(k) = 1 for every k < n, and s′(k) = s(n)+⌈log n⌉ otherwise.
Then if s(n) ≤ 2n − ⌈log n⌉, it holds that s′(k) ≤ 2k. By our assumption, for every n′ there
exists a fMn,t

n′ -oracle aided circuit Cn′ of size T (s′(n)) · p(n′) that decides MKt
Mn

P[s′] on inputs of
lenght n′. We observe that the above process can be implemented with one call to each of Cn′ ,
for n′ ∈ {n, . . . , n+ s(n)}. Moreover, the fMn,t

n′ -oracle can be implemented by a poly-size circuit

using an fM,t
n -oracle. Thus, the above process can be implemented using a circuit of size at most

s(n) · T (s(n) + ⌈log n⌉) · p(n+ s(n)) · poly(n), as required. □

By taking T (s(n)) = 2α·s(n), we get the following corollary.

Corollary 4.2. Assume there exists a generalized black box MKtP[s] solver of size 2α·s(n) · poly(n)
for all functions t(·) and s = s(n) with s(n) ≤ 2n. Then there exists a 2αs(n)·poly(n)-size generalized
black-box solver for search-MKt’P[s] for every function t′(·) and every function s(n) ≤ 2n−⌈log n⌉.

8

References

[Cha69] Gregory J. Chaitin. “On the Simplicity and Speed of Programs for Computing Infinite
Sets of Natural Numbers”. In: J. ACM 16.3 (1969), pp. 407–422 (cit. on p. 2).

[CJW19] Lijie Chen, Ce Jin, and R Ryan Williams. “Hardness magnification for all sparse NP
languages”. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2019, pp. 1240–1255 (cit. on pp. 4, 6).

[FM05] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. “Reviewing bounds on the
circuit size of the hardest functions”. In: Information processing letters 95.2 (2005),
pp. 354–357 (cit. on pp. 3, 11).

[FN00] Amos Fiat and Moni Naor. “Rigorous time/space trade-offs for inverting functions”. In:
SIAM Journal on Computing 29.3 (2000), pp. 790–803 (cit. on p. 3).

[Har83] J. Hartmanis. “Generalized Kolmogorov complexity and the structure of feasible compu-
tations”. In: 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
1983, pp. 439–445. doi: 10.1109/SFCS.1983.21 (cit. on p. 2).

[HIW23] Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating Brute Force for Compres-
sion Problems. Tech. rep. TR23-171. Electronic Colloquium on Computational Com-
plexity, 2023 (cit. on pp. 2–4, 11).

[KC00] Valentine Kabanets and Jin-yi Cai. “Circuit minimization problem”. In: Proceedings of
the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA. 2000, pp. 73–79 (cit. on p. 2).

[Ko86] Ker-I Ko. “On the Notion of Infinite Pseudorandom Sequences”. In: Theor. Comput.
Sci. 48.3 (1986), pp. 9–33. doi: 10.1016/0304-3975(86)90081-2. url: https://doi.
org/10.1016/0304-3975(86)90081-2 (cit. on p. 2).

[Kol68] A. N. Kolmogorov. “Three approaches to the quantitative definition of information”.
In: International Journal of Computer Mathematics 2.1-4 (1968), pp. 157–168 (cit. on
p. 2).

[LP20] Yanyi Liu and Rafael Pass. “On one-way functions and Kolmogorov complexity”. In:
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 1243–1254 (cit. on pp. 2–4).

[LP21] Yanyi Liu and Rafael Pass. “Cryptography from sublinear-time average-case hardness
of time-bounded Kolmogorov complexity”. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing. 2021, pp. 722–735 (cit. on pp. 2, 4).

[Lup58] Oleg B Lupanov. “On a method of circuit synthesis”. In: Izvestia VUZ 1 (1958), pp. 120–
140 (cit. on p. 3).

[MP24] NoamMazor and Rafael Pass. “The Non-Uniform Perebor Conjecture for Time-Bounded
Kolmogorov Complexity is False”. In: 15th Innovations in Theoretical Computer Science
(2024) (cit. on pp. 2–4, 10).

[OPS21] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. “Hardness magnification near
state-of-the-art lower bounds”. In: Theory OF Computing 17.CCC 2019 Special Issue
(2021) (cit. on pp. 4, 6).

9

[OS18] Igor Carboni Oliveira and Rahul Santhanam. “Hardness magnification for natural prob-
lems”. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS). IEEE. 2018, pp. 65–76 (cit. on pp. 4, 6).

[RS21] Hanlin Ren and Rahul Santhanam. “Hardness of KT Characterizes Parallel Cryptog-
raphy”. In: 36th Computational Complexity Conference (CCC 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik. 2021 (cit. on pp. 2, 3, 11).

[Sip83] Michael Sipser. “A Complexity Theoretic Approach to Randomness”. In: Proceedings of
the 15th Annual ACM Symposium on Theory of Computing (STOC). 1983, pp. 330–335
(cit. on p. 2).

[Sol64] R.J. Solomonoff. “A formal theory of inductive inference. Part I”. In: Information and
Control 7.1 (1964), pp. 1 –22. issn: 0019-9958. doi: https://doi.org/10.1016/S0019-
9958(64)90223-2 (cit. on p. 2).

[Tra84] Boris A Trakhtenbrot. “A survey of Russian approaches to perebor (brute-force searches)
algorithms”. In: Annals of the History of Computing 6.4 (1984), pp. 384–400 (cit. on
p. 2).

A search-MKtP and Function Inversion

We observe that generalized black-box solvers for search-MKtP directly yield function inverters
with roughly the same complexity, and vice versa.

Lemma A.1. There exists p ∈ poly such that the following holds. Assume that for some t = t(n)
there exists a generalized black-box search-MKtP[n] solver of size T = T (n). Then for every
function π : {0, 1}n → {0, 1}n there exists a π-oracle aided circuit of size T (n) · p(n) that inverts π.

Proof. Let M be the black box TM that on input x ∈ {0, 1}n, 1t outputs y = π(x). By assumption,
there exists a fM,t

n -oracle aided circuit of size at most T (n), that given an input y ∈ {0, 1}n finds
an input x of length at most n, such that M(x, 1t(n)) = y, if such exists. Since M(x, 1t(n)) = π(x),
such an x is a pre-image of y. Moreover, by the definition of M , the fM,t

n -oracle can be implemented
efficiently using a π-oracle. □

The converse of Lemma A.1 was implicitly proven in [MP24]; we repeat the proof for the
convenience of the reader.

Lemma A.2. There exists p ∈ poly such that the following holds. Assume that for every function
π : {0, 1}n → {0, 1}n there exists a π-oracle aided circuit with of size T (n) that inverts π with
probability 1 (for every y = π(x), f(C(y)) = y). Then there exists a black-box MKtP[s] solver of
size T (n+ ⌈log n⌉) · p(n) for every t : N→ N and every s : N→ N with s(n) ≤ n.

Proof. Let U be a black-box universal TM. Let f ′n : {0, 1}
n × [n]→ {0, 1}n × [n] be defined as

f ′n(Π, i) =

{
(U(Π≤i, 1

t(n)), i)
∣∣U(Π≤i, 1t(n))∣∣ = n

0n Otherwise

Let n′ = n+ ⌈log n⌉. In the following, we assume that both the domain and the range of f ′n is

{0, 1}n
′
, by the use of appropriate encoding and padding. By assumption, there is a circuit family

Ĉ =
{
Ĉn

}
n∈N

with f ′n oracle, of size T (n′) that inverts f ′n with probability 1.

10

Given a circuit Ĉn that inverts f ′n, we can construct a (f ′n-oracle aided) circuit Cn that com-
putes the Kt

U complexity of any string x of length n with Kt
U(x) ≤ n. This can be done by computing

f ′−1n (x, 1), . . . , f ′−1n (x, n) and outputing Yes if there exists (Π, i) such that U(Π<i, 1
t(n)) = x and

i ≤ s(n) (the t-bounded Kolmogorov complexity of the string 0n can be hardcoded in the circuit).

Observe that the size of Cn is n′ ·
∣∣∣Ĉn

∣∣∣ + poly(n). Thus, there exists a circuit family of size

n′ ·T (n′)+poly(n) = T (n′) ·poly(n), with f ′n oracle, that solves MKt
UP[s]. Lastly, observe that f

′
n

can be efficiently computed from fU,t
n , thus we can replace the f ′n oracle with a small circuit using

an fU,t
n -oracle, to get a circuit of size T (n+ ⌈log n⌉)poly(n). □

B MCSP[s] as a special case of MKt
MP

We note that any generalized black-box MKtP[s] solver can be used to solve MCSP[s]. In fact,
we observe that the MCSP[s] problem can be formulated as a MKt

MP[s′] instance for a particular
choice of an (efficient but non-universal) TM M , and for a function s′(n) ≈ s(n).

Towards this, we will rely on the fact that circuits can be succinctly encoded as bit strings
from which the circuit can be efficiently decoded. In particular, as observed in [RS21; HIW23], the
encoding from [FM05] satisfies this requirement.

Lemma B.1 (Implicit in [FM05], see also [RS21; HIW23]). There exists an efficiently computable
function ℓ(s, k) ∈ (1 + o(1))(s · log(s + k)) such that ℓ is monotone in s and the following holds.
There exists an efficient algorithm Dec, such that for every circuit C : {0, 1}k → {0, 1} of size s,

there exists x ∈ {0, 1}ℓ(s,k) such that Dec(x) is a circuit of size s that computes the same function
as C. Moreover, for every x such that Dec(x) outputs a circuit C : {0, 1}k → {0, 1} of size s, it
holds that |x| = ℓ(s, k).6

We now observe that the MCSP is a special-case of the MKt
MP problem for a specific choice of

the TM M .

Lemma B.2. There exists an efficient TM M such that the following holds for every s : N → N
and every t : N → N with t(n) ≥ n. Deciding MCSP[s] is equivalent to deciding MKt

MP[s′], for
s′(n) = ℓ(s(n), ⌊log n⌋).

Proof. Let Dec be the function from Lemma B.1, and let M be the TM that given an input x, 1t,
computes Dec(x) to get a circuit C : {0, 1}k → {0, 1}. If x is not valid encoding of a circuit, or
2k ̸= |x|, M outputs ⊥. If t ≤ 2k, M also outputs ⊥. Otherwise, M outputs the truth table of C.
Since ℓ is monotone in s, there exists a program of length less then s′(n) if and only if there exists
a circuit of size less than s(n) for x. □

6Note that we here requires the length of an encoding of a circuit of size s to be exactly ℓ(s, k) (in contrast to
bounded by ℓ(s, k)). As far as we can tell, this property has not been previously stated but it can be assumed without
loss of generality using padding, and by assuming that given an input x, Dec only outputs a circuit C of size s if it
holds that |x| = ℓ(s, k), or outputs ⊥ otherwise.

11

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

