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Abstract

We define the marginal information of a communication protocol, and use it to prove XOR
lemmas for communication complexity. We show that if every C-bit protocol has bounded
advantage for computing a Boolean function f , then every Ω̃(C

√
n)-bit protocol has advantage

exp(−Ω(n)) for computing the n-fold xor f⊕n. We prove exponentially small bounds in the
average case setting, and near optimal bounds for product distributions and for bounded-round
protocols.
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1. Introduction

If a function is hard to compute, is it even harder to compute it many times? This old
question is often challenging, and new answers are usually accompanied by foundational ideas.
We give new answers in the framework of communication complexity, accompanied by a new
measure of complexity called marginal information. This definition provides a new tool for
proving lower bounds in theoretical computer science.

A wide variety of important lower bounds in computer science ultimately rely on information
theoretic lower bounds in communication complexity, including lower bounds on the depth of
monotone circuits [KRW95], lower bounds on data structures [Pǎt11] and lower bounds on the
extension complexity of polytopes [BP16, Rot17, Sin18, JSY23], to name a few nice examples.
We refer the reader to the textbook [RY20] for an introduction to the basic definitions and
concepts in communication complexity, the role played by the questions we address here, and
the connections to other areas.

Given a Boolean function f : X ×Y → {0, 1}, define the functions fn : Xn ×Yn → {0, 1}n
and f⊕n : Xn × Yn → {0, 1} as follows1:

fn(xy) = (f(x1y1), f(x2y2), . . . , f(xnyn)),

f⊕n(xy) = f(x1y1)⊕ f(x2y2)⊕ · · · ⊕ f(xnyn).

So, fn computes f on n different pairs of inputs, and f⊕n computes the parity of the outputs of
fn. If f is hard to compute, are fn and f⊕n even harder to compute? For deterministic commu-
nication complexity, Feder, Kushilevitz, Naor and Nisan [FKNN95] proved that if |X |, |Y| ≤ 2ℓ

and f requires C bits of communication, then fn requires at least n(
√
C − log2 ℓ − 1) bits

of communication. In this work, we study randomized communication complexity. Let ∥π∥
denote the communication complexity of a randomized communication protocol π and define
the advantage:

adv(C, f) = sup
∥π∥≤C

inf
xy

E[(−1)π(xy)+f(xy)].

This quantity measures the best worst-case advantage achievable by a C-bit protocol over
random guessing. We can now state our main result:

Theorem 1. There is a universal constant κ > 0 such that if C > 1/κ and adv(C, f) < 1/2,
then

adv
( κC

√
n

log(Cn)
, f⊕n

)
< exp(−κn).

The constant 1/2 is not important, it can be replaced by any constant less than 1. Some
assumption of the type C > 1/κ is necessary, because if x, y ∈ {0, 1} and f(xy) = x ⊕ y,
then adv(1, f) = 0, yet adv(2, f⊕n) = 1. Prior to our work, the best known upper bound was
proved by the second author with Barak, Braverman and Chen [BBCR10], who showed that
the advantage is bounded by 1/2 for a similar choice of the other parameters. Our work builds
on the work of Yu [Yu22], who proved exponentially small bounds on the advantage in the
setting of bounded-round communication protocols.

Our ideas lead to many results similar to Theorem 1. Next, we review the history that led
us to the notion of marginal information, explain the intuitions behind the choices made in the
definition, and then describe all of our results in Section 1.2.

1Throughout, we drop the delimiters between variables. f(xy) is to be read as f(x, y).
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1.1. The evolution of information complexity

Marginal information is the most recent advance in an evolution of definitions about in-
formation. We relate bounds on the communication and advantage for computing f to the
corresponding parameters for f⊕n via a scheme that has been applied many times before. We
prove:

Step 1 Every protocol computing f⊕n with significant advantage and small communication
has small marginal information; see Theorem 5.

Step 2 Marginal information is subadditive, so the marginal information for computing f is
smaller by a factor of n; see Theorem 6.

Step 3 Small marginal information can be compressed to give protocols with small communi-
cation; see Theorems 7 to 10.

Definitions of information are famously subtle. In order to make this strategy work, the
marginal information needs to permit all 3 steps, and even minor changes to the definition
can make one of the steps infeasible.

Our current definition builds on important insights and intuitions developed in theoretical
computer science over a period of decades. An early precursor to the use of information theory
in computer science is the work of Kalyanasundaram and Schnitger, who used Kolmogorov
complexity to prove lower bounds on the randomized communication complexity of the dis-
jointness function [SK87]. The proof was subsequently simplified by Razborov [Raz92], who
gave a beautiful short argument that used Shannon’s notion of entropy [Sha48] and implicitly
followed the outline of the steps 1,2,3 described above. This is related to the questions we
study here because the disjointness function can be thought of as a way to compute the AND
of 2 bits n times. Step 1 is relatively easy for this problem. Step 2 involved a clever way to
split the dependence between random variables, and was accomplished using the subadditivity
of entropy. Step 3 is also not too difficult.

The next chapter of the story was written during the study of parallel repetition, a vital
tool in the development of probabilistically checkable proofs. Raz [Raz95] proved the first
exponentially small bounds in this context using the Kullback-Liebler divergence as a measure
of information. Given a distribution p(xy), and a carefully chosen event W , Raz measured the
divergence

E
p(xy|W )

[
D(p(x|yW )||p(x|y)) + D(p(y|xW )||p(y|x))

]
= E

p(xy|W )

[
log
(p(x|yW )

p(x|y) ·
p(y|xW )

p(y|x)

)]
. (1)

In the proof, it is crucial that the event W is rectangular, meaning that if x, y are independent,
then they remain independent even after conditioning on W . Once again, Step 1 is not too
difficult. Raz used the subadditivity of divergence and a similar set of clever random variables as
in [Raz92] to split the dependence and accomplish Step 2. Later, Holenstein [Hol07] introduced
a method called correlated sampling to simplify the analogue of Step 3 in Raz’s proof, and
obtained better bounds. The second author used these tools to prove optimal bounds for
parallel repetition in the setting relevant to probabilistically checkable proofs [Rao11].

Chakrabarti, Shi, Wirth and Yao [CSWY01] were the first to propose using general measures
of information complexity to address the questions we consider in this paper. Let xy denote
the inputs, m denote the public randomness and transcript of a communication protocol and
p(xym) denote the joint distribution induced by the protocol2. [CSWY01] proposed to measure

2We often say p(xym) is a protocol when we mean that it is a distribution induced by a protocol.
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the mutual information

I(M : XY ) = E
p(xym)

[
log

p(xy|m)

p(xy)

]
.

Years later, this measure was renamed external information by [BBCR10]. The external in-
formation measures the information learned by an external observer about the parties’ inputs.
Step 1 is easy for this measure of information. However, the subadditivity of Step 2 does
not hold in general; the proof only goes through when the input distribution p(xy) is a prod-
uct distribution. Jain, Radhakrishnan and Sen [JRS03], and Harsha, Jain, McAllester and
Radhakrishnan [HJMR10] gave ways to implement Step 3 that led to bounds on the success
probability for computing fn in the setting where the inputs are assumed to come from a prod-
uct distribution and the communication protocols are restricted to having a bounded number
of rounds. Meanwhile, Bar-yossef, Jayram, Kumar and Sivakumar [BJKS02] showed how to
reframe Razborov’s proof using mutual information instead of entropy, and proved other results
using this formulation which contained hints of the definition of information that came next.

The first upper bounds on the success probability in the general setting came when the
second author together with Barak, Braverman and Chen [BBCR10] adapted the methods
developed in the study of parallel repetition to these problems. In contrast with the external
information, they defined the internal information, which is the sum of two mutual information
terms

I(M : X|Y ) + I(M : Y |X) = E
p(xym)

[
log
(p(x|ym)

p(x|y) ·
p(y|xm)

p(y|x)

)]
. (2)

The internal information measures what is learned by each party about the other’s input.
Equation (1) was the inspiration for Equation (2); indeed, each setting of m corresponds to a
rectangular event. When the inputs come from a product distribution, the internal and external
information are the same, and [BBCR10] proved that subadditivity holds for internal informa-
tion using an argument similar to the one used in the context of parallel repetition. Moreover,
they showed how to leverage the technique of correlated sampling developed by Holenstein to
simulate protocols with information I and communication C using ≈

√
IC/ logC communi-

cation. They gave near optimal simulations of ≈ I log2 C for protocols with small external
information using rejection sampling and a variant of Azuma’s concentration inequality. These
results proved that there is a constant κ such that if adv(C, f) < 1/2, then

adv
( κC

√
n

log(Cn)
, f⊕n

)
< 1/2,

which was the first result along the lines of Theorem 1. Later, the second author and Braverman
[BR11] argued that this is the right definition of information, because the internal information
cost of a function is equal to the amortized communication complexity of that function. This
suggested that the internal information might well be the last word in this evolution of defini-
tions, because it could be defined purely using the concept of communication complexity. It
seemed like the only path to better results was through better methods to compress internal
information. This is a belief we no longer hold.

Nevertheless, a flurry of ideas about compressing protocols with internal information I
and communication C followed. Braverman [Bra15] showed how to obtain protocols with
communication ≈ 2O(I). The second author and Ramamoorthy [RR15] showed that if IA, IB
denote the internal information learned by each party, then you can achieve communication
≈ IA · 2O(IB) and can also achieve communication ≈ IA + 4

√
IB · C3. Two excellent papers, the

first by Kol [Kol16] and the second by Sherstov [She18], showed that ≈ I log2 I communication
can be achieved when the inputs come from a product distribution. Ganor, Kol and Raz
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[GKR16] (see also [RS18]) gave a nice counterexample: a function that can be computed

with communication ≈ 22
O(I)

, and internal information ≈ I, but cannot be computed with
communication ≈ 2I .

The next definition to evolve was proposed by the second author together with Braverman,
Weinstein and Yehudayoff [BRWY13b, BRWY13a], inspired by the work of Jain, Pereszlényi
and Yao [JPY12]. Rather than bounding the information under the distribution p(xym) in-
duced by the protocol, they bounded the infimum of information achieved in the ball of distri-
butions that are close to the protocol. They defined the information to be the infimum

inf
q
Iq(M : X|Y ) + Iq(M : Y |X) = inf

q
E

q(xym)

[
log
(q(x|ym)

q(x|y) ·
q(y|xm)

q(y|x)

)]
, (3)

where here the infimum is taken over all distributions q(xym) that are close to p(xym) in
statistical distance. This quantity was ultimately bounded by setting q(xym) = p(xym|W ),
where here W is a reasonably large event (not necessarily rectangular) that implies that the
protocol correctly computes the function. The bound on Equation (3) does not lead to a
bound on the information according to p(xym), because it is quite possible that the points
outside W reveal a huge amount of information. Still, [BRWY13b] were able to follow all 3
steps of the high-level approach to prove their results. Step 1 remained easy, but Steps 2 and
3 became more difficult using Equation (3). [BRWY13b] obtained exponentially small upper
bounds for the success probability of computing fn, but did not manage to prove new bounds
on the advantage for f⊕n using this approach. Equation (3) may not seem very different from
Equation (2), but it does involve a proxy q, and we pursue the use of such proxies further in
the definition of marginal information that we discuss next.

In a paper full of new ideas, Yu [Yu22] recently proved exponentially small bounds on
the advantage of bounded-round protocols computing f⊕n. Although Yu’s paper involves a
potential function that superficially looks like a definition of information, his proof does not
involve a method to compress protocols whose potential is small, and we are unable to extract
a definition of information from his work. Still, his ideas inspired many of the choices made
in our definition. To define the marginal information, we need the concept of a rectangular
distribution, which was defined in [Yu22]:

Definition 2. Given a set Q consisting of triples (xym), we say that Q is rectangular if its
indicator function can be expressed as

1Q(xym) = 1A(xm) · 1B(ym),

for some Boolean functions 1A,1B. Given a distribution q(xym) and a distribution µ(xy), we
say that q is rectangular with respect to µ if it can be expressed as

q(xym) = µ(xy) ·A(xm) ·B(ym),

for some functions A,B.

For intuition, it is helpful to think of a rectangular distribution as the result of conditioning
a protocol distribution p(xym) on a rectangular event. That would produce a rectangular
distribution, but the space of rectangular distributions actually contains other distributions
that cannot be obtained in this way.

From our perspective, the most useful insight of Yu’s work is that if q is restricted to being
rectangular, then one can allow q to be quite far from p in Equation (3) and still carry out a
meaningful compression of a protocol p to implement Step 3. That is because the rectangular
nature of q allows the parties to use hashing and rejection sampling to convert a protocol that
samples from p into a protocol that samples from q. If q(xym) = p(xym|R) for a rectangular
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event R, this is easy to understand: the parties can communicate 2 bits to compute if xym ∈ R
and output the most likely value of f under q with xym ∈ R. If xym /∈ R they can output a
random guess for the value of f . So, it is enough to bound the information terms for xym ∈ R,
and enough to guarantee that the compression is efficient for such points. This observation
is very powerful, because it allows us to throw away problematic points in the support of
the distributions we are working with and pass to appropriate sub-rectangles throughout our
proofs.

For all of this to work, it is crucial that the protocol retains some advantage within the
support of q. For this reason, we need to keep track of the information in the support of q
as well as the advantage within the support of q, and so, for the first time, the measure of
information is going to depend on the function f that the protocol computes. We are ready to
state the definition:

Definition 3. For I ≥ 1 and3 δ = 1/15, the marginal information of a protocol p for computing
f is defined as

MI(p, f) = inf
q

sup
xym

log
(q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) ·
( q(xym)

p(xym)

)I
·
∣∣∣ E
q(xy|m)

[(−1)f(xy)]
∣∣∣−12I/δ)

,

where the infimum is taken over all distributions q that are rectangular with respect to the input
distribution p(xy), and the supremum is taken over all xym in the support of q.

We use the letter I above because it turns out that protocols computing f can be efficiently
compressed when MI = O(I), and any compression must have communication Ω(I). Compare
Theorem 3 with Equations (2) and (3). The fact that q must be tethered to p is ensured
by including the term q(xym)/p(xym). If q(xym) = p(xym|R) for a rectangular event R,
q(xym)/p(xym) will be equal to 1/p(R). The last term in the product computes the advantage
of q for computing f , because under q and given m, the best guess for the value of f is
determined by the sign of Eq(xy|m)[(−1)f(xy)], and its advantage is the absolute value of this
quantity. In words, the marginal information measures the supremum over all xym of the
information per unit of advantage, of the best rectangular approximation q.

In analogy with the external information, we define the external marginal information:

Definition 4. For I ≥ 1 and δ = 1/15, the external marginal information of a protocol p for
computing f is defined as:

Mext
I (p, f) = inf

q
sup
xym

log
(q(xy|m)

p(xy)
·
( q(xym)

p(xym)

)I
·
∣∣∣ E
q(xy|m)

[(−1)f(xy)]
∣∣∣−12I/δ)

,

where the infimum is taken over all distributions q that are rectangular with respect to the input
distribution p(xy), and the supremum is taken over all xym in the support of q.

We prove that the external marginal information is equal to the marginal information when
the distribution on inputs is a product distribution in Theorem 21.

To state our results about marginal information, we first define the average-case measure
of advantage. Given a distribution µ(xy) on inputs, define

advµ(C, f) = sup
∥π∥≤C

E[(−1)π(xy)+f(xy)],

where here the expectation is over the choice of inputs xy as well as the random coins of
the communication protocol. To study the more restricted setting where the protocols we

3Even though δ is a fixed constant, we choose to write it in the definition because it eases the notation throughout
the paper.
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are working with have a bounded number of rounds, define the worst-case and average case
quantities:

advr(C, f) = sup
∥π∥≤C

inf
xy

E[(−1)π(xy)+f(xy)],

advrµ(C, f) = sup
∥π∥≤C

E[(−1)π(xy)+f(xy)],

where throughout, the supremums are taken over r-round protocols.
Returning to our high-level approach, we prove the following results about marginal infor-

mation, which allow us to carry out Steps 1,2,3:

1. In Section 3, we show that a protocol with small communication and large advantage has
small marginal information, to handle Step 1:

Theorem 5. For every Boolean function f(xy) and every protocol p of communication
complexity C,

MI(p, f) ≤ 2C − (1 + 12/δ) · I · log
(

E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣)+O(I).

For any fixed m, the quantity |Ep(xy|m)[(−1)f ]| measures the advantage of the proto-
col for computing f conditioned on that value of m. So, if advµ(C, f

⊕n) ≥ exp(−m)
via a protocol corresponding to the distribution p, then the above theorem implies that
MI(p, f

⊕n) ≤ O(C+Im). Unlike all previous definitions, for marginal information Step 1
involves significant work. Our proof crucially uses the fact that the protocol has bounded
communication complexity: for example it would not be enough to start with a bound
on the internal information.

2. In Section 4, we prove that marginal information is sub-additive with respect to the n-fold
xor of f . If the transcript m = (m0,m1, . . . ,mC), where mj denotes the j’th message of
the protocol, we show

Theorem 6. There is a universal constant ∆ such that if I ≥ 1 and p is a protocol
distribution for computing f⊕n with p(xy) =

∏n
i=1 p(xiyi), then there is a protocol pi for

computing f such that pi(xiyi) = p(xiyi), pi has the same number of messages as p, for
j > 1 the support of mj is identical in pi and p, and moreover

MI(pi, f) ≤
MI(p, f

⊕n)

n
+∆I ·

(
1 + log

MI(p, f
⊕n)

n · I

)
.

If MI(p, f
⊕n) ≤ O(In), this theorem proves that MI(pi, f) ≤ O(I). This might well be

the most technically novel part of our proof; it is certainly where we spent the most time.
The main challenge is proving the result for n = 2, which is very delicate. This case is
captured by Theorem 27, and Theorem 6 is a straightforward consequence. If n = 2 and
MI(p, f

⊕2) is small, then there is a rectangular distribution q such that the pair

q(x1x2y1y2m), p(x1x2y1y2m)

leads to a small value of MI(p, f
⊕2). We show how to use q, p to generate a new pair

q1(x1y1m
(1)), p1(x1y1m

(1))

or a new pair
q2(x2y2m

(2)), p2(x2y2m
(2))
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proving that either MI(p1, f) or MI(p2, f) is more or less bounded by MI(p, f
⊕2)/2. A

significant first step is the construction of two pairs of rectangular/protocol distributions
with the properties described in Equations (13) to (16). Given this step, we need to
eliminate various problematic points from the support of the distributions while preserving
the rectangular nature of the distribution to ultimately construct the promised pair of
distributions.

We are unable to bound the length of the first message of pi in terms of the length of
the corresponding message of p in Theorem 6, because in our proof of Theorem 27 the
first message m

(1)
1 or m

(2)
1 needs to encode one of the inputs of the original protocol.

Fortunately, this is not a significant obstacle for the high-level strategy.

3. In Sections 7 and 9 to 11, we show how to compress marginal information to handle
Step 3. We have been able to match many of the prior results [BBCR10, BR11, Bra15]
about compressing information and external information with corresponding results about
compressing marginal information and external marginal information, though our proofs
are much more technical. Our most general simulation is captured by the following
theorem:

Theorem 7. For every α > 0 there is a ∆ > 0 such that if MI(p, f) ≤ αI, µ(xy) = p(xy)
and moreover the messages m = (m0, . . . ,mC) are such that m2, . . . ,mC ∈ {0, 1}, then
advµ(∆(I +

√
CI log(CI)), f) ≥ 1/∆.

Theorem 7 shows that if the marginal information is O(I), then one can obtain a protocol

with communication Õ(
√
CI) that has Ω(1) advantage for computing f . For the external

marginal information, we prove:

Theorem 8. For every α > 0 there is a ∆ > 0 such that if Mext
I (p, f) ≤ αI, µ(xy) =

p(xy), and moreover the messages m = (m0, . . . ,mC) are such that m2, . . . ,mC ∈ {0, 1},
then advµ(∆I log

2 C, f) ≥ 1/∆.

This theorem gives improved results when the inputs come from a product distribution.
It is quite possible that even better simulations can be obtained using the ideas of [Kol16,
She18, BK18], but we have not managed to obtain such results. We also obtain results
that are independent of the communication complexity:

Theorem 9. For every α > 0 there is a ∆ > 0 such that if MI(p, f) ≤ αI and µ(xy) =
p(xy), then advµ(∆I, f) ≥ exp(−∆I).

When the number of rounds of the protocol is bounded, we prove:

Theorem 10. For every α > 0 there is a ∆ > 0 such that if MI(p, f) ≤ αI, µ(xy) =
p(xy), p has r-rounds and mr ∈ {0, 1}, then advrµ(∆r(I + log r), f) ≥ 1/∆.

These results about the marginal information cost allow us to prove Theorem 1, as well as
several other results of that flavor.
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1.2. Using marginal information to prove XOR lemmas

To state all of our results, let us define the average-case and worst-case measures of success:

suc(C, f) = sup
∥π∥≤C

inf
xy

Pr[π(xy) = f(xy)]

sucr(C, f) = sup
∥π∥≤C

inf
xy

Pr[π(xy) = f(xy)]

sucµ(C, f) = sup
∥π∥≤C

Pr[π(xy) = f(xy)]

sucrµ(C, f) = sup
∥π∥≤C

Pr[π(xy) = f(xy)],

where in sucr, sucrµ the supremum is taken over r-round protocols, and in sucµ, suc
r
µ the prob-

ability is over inputs sampled from µ(xy). Yao’s min-max theorem yields

adv(C, f) = inf
µ

advµ(C, f),

suc(C, f) = inf
µ

sucµ(C, f),

advr(C, f) = inf
µ

advrµ(C, f),

sucr(C, f) = inf
µ

sucrµ(C, f). (4)

Given any distribution µ on X × Y, define the n-fold product distribution µn on Xn × Yn

by µn(xy) =
∏n

j=1 µ(xjyj). Theorem 1 is proved by proving this stronger bound:

Theorem 11. There is a universal constant κ > 0 such that if C > 1/κ and advµ(C, f) ≤ κ,
then advµn(κC

√
n/ log(Cn), f⊕n) ≤ exp(−κn).

To prove Theorem 11, suppose that there is a protocol p computing f⊕n with advantage
exp(−κn) and communication T = κC ·

√
n/ log(Cn). If T/n ≥ 1, we set I = T/n and apply

Theorem 5 to show that MI(p, f
⊕n) ≤ O(T + κIn) ≤ O(In). Next, apply Theorem 6 to find a

protocol p′ with MI(p
′, f) ≤ O(I). Finally, apply Theorem 7 to obtain a protocol computing

f with advantage Ω(1) and communication proportional to

T

n
+ 2
√
IT log(T ) ≤ T

n
+ 2

T log T√
n

≲
κC

lognC
· log T ≲ κC.

If T/n < 1, set I = 1 and apply Theorem 5 to show that MI(p, f
⊕n) ≤ O(In). Next, apply

Theorem 6 to find a protocol p′ with MI(p
′, f) ≤ O(I) = O(1). Finally, we apply Theorem 9

to obtain a protocol computing f with advantage Ω(1) and communication O(1). Setting κ
sufficiently small, we obtain a contradiction in either case, which proves that there is no protocol
p as above. Theorem 1 can be obtained from Theorem 11 using Equation (4) and the fact that
the worst-case success probability of a communication protocol can be increased by taking the
majority outcome of several runs of the protocol. We leave these details to the reader.

Theorems 1 and 11 yield bounds on the success probability for computing fn as well:

Corollary 12. There is a universal constant κ > 0 such that if C > 1/κ and adv(C, f) < κ,
then suc(κC

√
n/ log(Cn)), fn) < exp(−κn).

Corollary 13. There is a universal constant κ > 0 such that if C > 1/κ and advµ(C, f) < κ,
then sucµn(κC

√
n/ log(Cn)), fn) < exp(−κn).
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This matches the result proved by [BRWY13b] mentioned earlier. These corollaries are
obtained by observing that if S ⊆ {1, 2, . . . , n} is chosen uniformly at random, and xy are
sampled according to µn, then

E
[
(−1)

∑
j∈S π(xy)j+f(xjyj)

]
= Pr[π(xy) = fn(xy)],

so a protocol computing fn with success probability exp(−n/2) yields a set of n′ = Ω(n)

coordinates where the protocol computes f⊕n′
with advantage exp(−Ω(n)). Again, we leave

the details to the reader. When the distribution µ(xy) = µ(x) · µ(y) is a product distribution,
we obtain stronger bounds:

Theorem 14. There is a universal constant κ > 0 such that for every product distribution µ,
if C > 1/κ and advµ(C, f) < κ, then advµn(κCn/ log2(Cn), f⊕n) < exp(−κn).

To prove Theorem 14, suppose we are given a protocol p computing f⊕n with advantage
exp(−κn) and communication T = κCn/ log2(Cn). If T/n ≥ 1, we set I = T/n and apply
Theorem 5 to show that MI(p, f

⊕n) ≤ O(nI). Next, apply Theorem 6 to find a protocol p′

with MI(p
′, f) ≤ O(I). Finally, using the fact that for product distributions, Mext

I (p, f) =
MI(p, f), we can apply Theorem 8 to obtain a protocol computing f with advantage Ω(1)
and communication O(I log2(Cn)) ≤ O(κC). Otherwise, if T/n < 1, set I = 1 and apply
Theorem 5 to show that MI(p, f

⊕n) ≤ O(n). Then, apply Theorem 6 to find a protocol p′ with
MI(p

′, f) ≤ O(I) = O(1). Lastly, we apply Theorem 9 to obtain a protocol computing f with
advantage Ω(1) and communication O(1). Setting κ to be small enough gives a contradiction
in either case.

As before, this yields a corollary for computing fn:

Corollary 15. There is a universal constant κ > 0 such that for every product distribution µ,
if C > 1/κ and advµ(C, f) < κ, then sucµn(κCn/ log2(Cn), fn) < exp(−κn).

Again, this is identical to a bound proved by [BRWY13b] using a different approach. For
the bounded-round setting, we prove:

Theorem 16. There is a universal constant κ > 0 such that if C > (r(log r) + 1)/κ, and
advrµ(C, f) < κ, then advrµn((κC/r − log r)n, f⊕n) < exp(−κn).

Yu [Yu22] proves the same bound on the advantage with a communication budget that
grows like Ω((C/rr − O(1))n). Our bound eliminates the exponential dependence on r. To
prove Theorem 14, set T = (κC/r− log r)n, and suppose there is a protocol computing f with
r rounds, communication T and advantage exp(−κn). Set I = T/n ≥ 1. Then, MI can be
bounded by O(T + κIn) by Theorem 5. Applying Theorem 6 gives an r-round protocol with
MI bounded by O(I), and applying Theorem 10 gives an r-round protocol with communication
complexity O(r(I + log r)) = O(κC) computing f with advantage Ω(1). Setting κ to be small
enough proves the result. As usual, we obtain the following corollaries:

Corollary 17. There is a universal constant κ > 0 such that if C > 7(r log r)/κ and advrµ(C, f) <
κ, then sucrµn((κC/r − log r)n, fn) < exp(−κn).
Corollary 18. There is a universal constant κ > 0 such that if C > 7(r log r)/κ, and
advr(C, f) < κ, then sucr((κC/r − log r)n, fn) < exp(−κn).

In the rest of the paper, we prove Theorems 5 to 10. We prove Theorem 5 in Section 3,
and Theorem 6 in Section 4. In Section 5 we gather several results related to the trimming
technique borrowed from [Yu22] that are used in these first two steps. In Section 6 we gather
several consequences of small marginal information that are used to analyze our compression
schemes. We prove the general simulation for marginal information, Theorem 7, in Section 7.
In Section 8 we prove that if the external marginal information is small, then there is a smooth
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protocol with small external marginal information, mirroring a similar result in [BBCR10]. We
then show how to compress smooth protocols to prove Theorem 8 in Section 9. We prove
Theorem 10 in Section 10 and finally, in Section 11 we prove Theorem 9.
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2. Preliminaries

Throughout, we assume that x ∈ X , y ∈ Y and m ∈ M for some finite sets X ,Y,M. Let
µ(xy) be a distribution on pairs of inputs. To ease the notation, we often write ab instead of
the tuple (a, b). Everywhere in the paper, we assume that δ > 0 is a sufficiently small constant;
δ = 1/15 will suffice.

Definition 19. We say that p(xym) is a protocol distribution if it can be expressed as

p(xym) = p(xy) · p(m0) ·
∏

i=1,3,5,...

p(mi|xm<i) · p(mi+1|ym≤i).

Every randomized worst-case protocol corresponds to some protocol distribution p(xym),
where p(xy) can be taken to be the uniform distribution on all possible inputs. Given a
distribution µ(xy) on inputs, and any protocol generating the messagesm, the joint distribution
of xym corresponds again to a protocol distribution p(xym), with p(xy) = µ(xy).

Recall Theorem 2. Note that if q is rectangular with respect to µ(xy) and p is a protocol
with p(xy) = µ(xy), it is not necessary that q(xy) = µ(xy). For the purpose of intuition, it
may be helpful to think of a rectangular distribution as the result of conditioning µ(xy) on the
event that it lies in a disjoint union of rectangles indexed by m, though this statement is not
without loss of generality, and we do use the full generality of Theorem 2.

Let x = x1x2 and y = y1y2. Let µ(xy) = µ(x1y1) · µ(x2y2) be a product distribution. It
will be helpful to define w = (x1y2m). Given m = (m0, . . . ,mr) and y2, we denote

m(1) = (m0, y2m1,m2, . . . ,mr),

m(2) = (m0x1,m1,m2, . . . ,mr). (5)

Let us gather some basic facts about rectangular distributions in this setting:

Proposition 20. If v is rectangular, then

1. v(xy|w) = v(y1|w) · v(x2|w),
2. v(xw) · v(yw) = v(xym) · v(w),
3. v(x1|y1m(1)) · v(x2|y2m(2)) = v(x|ym), and

4. v(y1|x1m(1)) · v(y2|x2m(2)) = v(y|xm).

Proof. For the first identity, let A,B be such that v(xym) = µ(xy) ·A(xm) ·B(ym). Then

v(xy|w) = v(xyw)

v(w)
=

µ(x1y1) · µ(x2y2) ·A(xm) ·B(ym)∑
x′
2y

′
1
µ(x1y′1) · µ(x′2y2) ·A(x1x′2m) ·B(y′1y2m)

=
µ(x1y1) ·B(y1y2m)∑
y′
1
µ(x1y′1) ·B(y′1y2m)

· µ(x2y2) ·A(x1x2m)∑
x′
2
µ(x′2y2) ·A(x1x′2m)

= v(y1|w) · v(x2|w).

11



For the second identity,

v(xw) · v(yw) = v(w) · v(yw) · v(x|w)
= v(w) · v(yw) · v(x2|x1ym) (by the first identity)

= v(w) · v(xym).

For the third identity,

v(x1|y1m(1)) · v(x2|y2m(2)) = v(x1|ym) · v(x2|x1y2m)

= v(x1|ym) · v(x2|x1ym) (by the first identity)

= v(x|ym).

A similar calculation yields the fourth identity.

It is easy to check that the external marginal inforamtion and marginal information are the
same when the distribution on inputs is product:

Lemma 21. If p(xy) = µ(xy) is a product distribution then we have Mext
I (p, f) = MI(p, f).

Proof. For all rectangular q, we have

q(xy|m) =
q(xym)

q(m)

=
µ(xy) ·A(xm) ·B(ym)∑

x′y′ µ(x′y′) ·A(x′m) ·B(y′m)

=
µ(x)µ(y) ·A(xm) ·B(ym)∑

x′y′ µ(x′)µ(y′) ·A(x′m) ·B(y′m)

=
µ(x) ·A(xm)∑
x′ µ(x′) ·A(x′m)

· µ(y) ·B(ym)∑
y′ µ(y′) ·B(y′m)

,

proving that q(xy|m) is a product distribution.
Thus:

q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) =
q(xy|m)

p(xy)
,

and so Mext(p, f) = MI(p, f).

We recall the definition of divergence and some relevant facts from information theory.

Definition 22. Given two distributions a(u) and b(u), the divergence of a from b is defined as

E
a(u)

[
log

a(u)

b(u)

]
.

Proposition 23. For two distributions a(u) and b(u), we have that

E
a(u)

[
log

a(u)

b(u)

]
≥ 0, (6)√

E
a(u)

[
log

a(u)

b(u)

]
≥ ∥a(u)− b(u)∥1

2
. (7)

The proof of this proposition can be found in [CT91].
The following version of a protocol due to [BR11] appears as Lemma 43 in [Yu22], the

parameters we cite here are clear from the proof.
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Lemma 24. Let u, v denote two distributions on some finite set M. For every ε > 0, there
is a 1-round protocol distribution ψ(uvs) (here uv correspond to the inputs of the protocol, and
s corresponds to the transcript), and functions a(us) ∈ M, b(vs) ∈ M ∪ {⊥} (here ⊥ /∈ M),
such that ψ(uv) is supported on all pairs uv and for every uv and z ∈M,

1. ψ(a(us) = z|uv) = u(z),

2. ψ(a(us) ̸= b(vs)|uv, a(us)) ≤ ε+max{0, 1− 2L · v(a(us))
u(a(us))

}.

3. ψ (b(vs) /∈ {a(us),⊥}|uv) ≤ ε.
Moreover, the communication complexity of ψ is L+ log log 1/ε+ log 1/ε+O(1).

Additionally, we need the following Lemma, which appears as Lemma 4.14 in [BBCR10].

Lemma 25. There is a randomized protocol τ with communication complexity at most O(log(C/ε))
such that on input two C-bit strings mA,mB, it outputs the first index i ∈ [C] such that
mA

i ̸= mB
i with probability at least 1− ε, if such an i exists.

3. Marginal information of efficient protocols

In this section, we prove Theorem 5. Let R be a rectangular set that maximizes the quantity

p(R)δ · E
p(m|R)

∣∣∣ E
p(xy|mR)

[
(−1)f

]∣∣∣.
We shall use trimming to prove the following claim:

Claim 26. There exists a rectangular set T ⊆ R with p(T |R) ≥ 1/4 such that for any xym in
the support of T , we have

p(xym|T )
p(xym)

≤ 4

p(R)
,

log
p(x|ymT )
p(x|y) , log

p(y|xmT )
p(y|x) ≤ 96 · 2C

p(R)2
,

E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣ ≥ Ω(1)

p(R)δ
· E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣.
We defer the proof of the above claim to the end of this section. Let Q ⊆ T be the sub-

rectangle obtained by keeping only the messages m′ for which the advantage is at least half of
the average advantage:

Q =
{
x′y′m′ ∈ T :

∣∣∣ E
p(xy|m′T )

[
(−1)f

]∣∣∣ ≥ 1

2
· E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣}.
Observe that

E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣ < p(Q|T ) +
∑

m′:p(m′|Q)=0

p(m′|T ) · 1
2
· E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣
≤ p(Q|T ) + 1

2
· E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣,
and so by the choice of R,

p(Q|T ) ≥ 1

2
· E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣ ≥ Ω(1)

p(R)δ
· E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣. (8)
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Define the rectangular distribution q(xym) = p(xym|Q). By the definition of Q and Theo-
rem 26, we have that for all m in the support of q:∣∣∣ E

p(xy|mQ)

[
(−1)f

]∣∣∣ ≥ 1

2
· E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣ ≥ Ω(1)

p(R)δ
· E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣. (9)

Using Theorem 26 and Eqs. (8) and (9) and the definition of Q, we can bound the marginal
information cost by

2M(p,f) ≤ sup
xym

(
p(x|ymQ)

p(x|y) · p(y|xmQ)

p(y|x)

)
·
(
p(xym|Q)

p(xym)

)I

·
(∣∣∣ E

p(xy|mQ)

[
(−1)f

]∣∣∣)−12I/δ

≤ sup
xym

(
p(x|ymT )
p(x|y) · p(y|xmT )

p(y|x)

)
·
(

p(xym|T )
p(xym) · p(Q|T )

)I

·
(∣∣∣ E

p(xy|mQ)

[
(−1)f

]∣∣∣)−12I/δ

≤ O(1) · 22C · p(R)−4 · 2O(I) · p(R)−I(1−δ)+12I ·
(

E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣)−I(1+12/δ)

≤ O(1) · 22C · 2O(I) ·
(

E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣)−I(1+12/δ)

,

where in the last inequality we used the fact that I(12 + δ − 1) − 4 > 0 since I ≥ 1. This
completes the proof of the theorem.

It only remains to prove Theorem 26. We have

E
p(ym|R)

[
1

p(m|y)

]
=
∑
ym

p(ym|R)
p(m|y) ≤

1

p(R)

∑
ym

p(ym)

p(m|y) =

∑
ym p(y)

p(R)
≤ 2C

p(R)
,

since the communication complexity of p is bounded by C. A similar argument proves

E
p(xm|R)

[
1

p(m|x)

]
≤ 2C

p(R)
.

Define the rectangular set

G =

{
xym ∈ R :

1

p(m|y) ,
1

p(m|x) ≤ 4 · 2C

p(R)

}
.

Markov’s inequality implies that p(G|R) ≥ 1/2. We apply Theorem 29 with a(xym) =
p(xym|G), b(xym) = p(xym), and κ = 1/6 to obtain a rectangular set T ⊆ G with p(T |G) ≥
1/2 and

p(xm|T )
p(xm)

,
p(ym|T )
p(ym)

≥ 1

6
, (10)

for all points in the support of T . We compute

p(T |R) = p(G|R) · p(T |G) ≥ 1

4
.

Let us verify that T satisfies the remaining conditions promised by Theorem 26. We have

p(xym|T )
p(xym)

=
1

p(T )
=

1

p(T |R) · p(R) ≤
4

p(R)
.
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To prove the second identity, use the first identity, the definition of G and Equation (10):

p(x|ymT )
p(x|y) =

1

p(ym|T ) ·
p(xym|T )
p(x|y)

≤ 6

p(ym)
· 4 · p(xym)

p(x|y) · p(R)

=
24 · p(m|xy)
p(m|y) · p(R)

≤ 96 · 2C

p(R)2
.

A similar calculation yields

p(y|xmT )
p(y|x) ≤ 96 · 2C

p(R)2
.

Finally, applying Theorem 30 with v(xym) = p(xym), Z = T , and noting that p(Z|R) ≥ 1/4,
we get

E
p(m|T )

∣∣∣ E
p(xy|mT )

[
(−1)f

]∣∣∣ ≥ 1− δ2 − 4δ

p(R)δ
· E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣
≥ Ω(1)

p(R)δ
· E
p(m)

∣∣∣ E
p(xy|m)

[
(−1)f

]∣∣∣.
This completes the proof of Theorem 26.

4. Marginal information is subadditive

In this section we prove Theorem 6. Recall the definitions of m(1),m(2), which are given in
Equation (5). The core of the proof is the following statement.

Theorem 27. Let f(x1y1) and g(x2y2) be two Boolean functions and let p(xym) be a protocol
distribution such that p(x1y1x2y2) = p(x1y1) · p(x2y2). Then, for every 1/3 ≤ γ ≤ 2/3, there
are protocol distributions p1(x1y1m

(1)), p2(x2y2m
(2)) such that p1(x1y1) = p(x1y1), p2(x2y2) =

p(x2y2), and

min
{
MI(p1, f)− γ ·MI(p, f ⊕ g),MI(p2, g)− (1− γ) ·MI(p, f ⊕ g)

}
≤ 3I · log MI(p, f ⊕ g)

I
+O(I).

We shall prove Theorem 6 assuming Theorem 27, whose proof we supply right after.

Proof of Theorem 6

Let k0 > 1 be a large constant, to be determined. Define fi(xiyi) = f(xiyi). For ℓ =
1, 2, . . . , n, define

k(ℓ) = max
{

inf
S⊂[n],|S|=ℓ

p′

M(p′,⊕i∈Sfi), k0I
}
,

where the infimum is taken over all protocols p′ with C messages such that the support of
m2, . . . ,mC is the same as in p. Define

T = max{k(n), k0nI}.
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Note that

k(n) ≤ T ≤ nT

n
+ 12I · log nT

I · n.

For any ℓ > 1, suppose we have

k(ℓ) ≤ ℓT

n
+ 12I · log ℓT

In
, (11)

then set γ = ⌈ℓ/2⌉/ℓ. Since 1/3 ≤ γ ≤ 2/3, for k0 chosen large enough, Theorem 27 shows that
for some ℓ′ ∈ {⌈ℓ/2⌉, ⌊ℓ/2⌋}, we have

k(ℓ′) ≤ max{ ℓ
′

ℓ
· k(ℓ) + 3I log

k(ℓ)

I
, k0I}

≤ ℓ′

ℓ
· ℓT
n

+
ℓ′

ℓ
· 12I · log ℓT

In
+ 3I log

( ℓT
In

+ 12 log
ℓT

In

)
(by the choice of T and Equation (11))

≤ ℓ′T

n
+ 8I · log ℓT

In
+ 3I log

(
13 · ℓT

In

)
=
ℓ′T

n
+ 11I · log ℓ

′T

In
+ 11I · log ℓ

ℓ′
+ 3I log 13

≤ ℓ′T

n
+ 11I · log ℓ

′T

In
+ 11I · log 3

2
+ 3I log 13

≤ ℓ′T

n
+ 12I · log ℓ

′T

In
,

for k0 chosen large enough.
So, starting with ℓ = n, we obtain a smaller and smaller ℓ satisfying Equation (11), until

ℓ = 1, which completes the proof.

Proof of Theorem 27

Given a Boolean function h(xy), a protocol distribution p(xym) and q(xym) that is rect-
angular with respect to p(xy), it will be convenient to define

MI(q, p, h) = sup
xym∈supp(q)

log

(
q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)h

] ∣∣∣∣−12I/δ
)
,

soMI(p, h) = infq MI(q, p, h). We shall prove that there are protocol distributions p1(x1y1m
(1)),

p2(x2y2m
(2)) with p1(x1y1) = p(x1y1) and p2(x2y2) = p(x2y2) and rectangular distributions

r1, r2 such that

min
{
MI(r1, p1, f)− γ ·MI(q, p, f ⊕ g),MI(r2, p2, g)− (1− γ) ·MI(q, p, f ⊕ g)

}
≤ 3I · log MI(q, p, f ⊕ g)

I
+O(I),

from which the theorem follows.
Before we give the actual proof, let us give a high level overview of all the steps. Recall the

definitions of m(1),m(2) and w, given in the preliminaries. We start by defining rectangular
distributions q1(x1y1m

(1)), q2(x2y2m
(2)) and protocol distributions p1(x1y1m

(1)), p2(x2y2m
(2))

that satisfy the identities described in Equations (13) to (16). The distributions q1, q2 are not
be the same as our final rectangular distributions r1, r2, but they are closely related. We would
like to prove that

M(q1, p1, f) +M(q2, p2, g) ≤ M(q, p, f ⊕ g),
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but the advantage terms do not add nicely in the marginal information cost: in Equation (16),
the advantage is computed with respect to w, and not m(1),m(2) or m. For example, there
may be some mw in the support for which∣∣∣∣ E

q(xy|w)

[
(−1)f⊕g

]∣∣∣∣≪ ∣∣∣∣ E
q(xy|m)

[
(−1)f⊕g

]∣∣∣∣ .
To resolve this issue, we define a subset G whose indicator function 1G(xym) depends only
on w, and yet for all mw in the support of G, the advantage is preserved in the sense of
Equation (18). This allows us to convert the advantage term in M(q, p, f ⊕ g) into the kind of
term where Equation (16) can be applied, and we use it to get subadditivity as described in
Equation (19). This equation shows that the costs add up pointwise, and so we can pass to
a large subset U ∩ L where the costs in, say, the first coordinate are a γ-fraction of the total,
see Equation (20). We are left with our final obstacle: once again the advantage term that we
have control over is not exactly the one we want, it may well be that∣∣∣ E

q1(x1y1|m(1))

[
(−1)f

]∣∣∣≪ ∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣.
To address this, we show that after passing to a suitable set U ′ ∩ L′ (whose indicator function
depends only on w), the advantage for each fixed w is at least 2−Ω(M(q,p,f⊕g)) (Theorem 28). We
then cluster the w and pass to a subset B of density Ω(M(q, p, f ⊕ g)−1) where the advantage
terms for each w are within a factor of 2 of each other. The low density of this set is what leads
to the logM factor in the statement of the theorem. This allows us to show that the advantage
with respect to m(1) is comparable to the advantage with respect to w (Equation (23)). All of
these steps leave us with a subset of the inputs xym where the proof gives good control on the
quantity M(q1, p1, f), but we now need to define a distribution r1 supported on these points
where M(r1, p1, f) can be bounded. To do this we need to carefully control the sizes of all the
sets we encounter during the proof, and define the distribution of r1 carefully.

Now we begin the actual proof. Define

q1(x1y1m
(1)) = q(x1y1m

(1)) = q(yw)

q2(x2y2m
(2)) = q(x2y2m

(2)) = q(xw)

p1(x1y1m
(1)) = p(x1y1) · p(m0) · q(y2|x1m0) ·

∏
i=1,3,5,...

q(mi|x1y2m<i) · p(mi+1|ym≤i)

p2(x2y2m
(2)) = p(x2y2) · q(m0x1) ·

∏
i=1,3,5,...

p(mi|xm<i) · q(mi+1|x1y2m≤i)

These distributions have been carefully chosen to have many nice properties. First, observe
that p1(x1y1m

(1)), p2(x2y2m
(2)) are protocol distributions, with the same number of rounds

of communication as p, though the length of the m
(1)
1 is longer than m1, and the length of

m
(2)
0 is longer than m0. Since q is rectangular with respect to p(xy), we have q(xym) =

p(xy) ·A(xm) ·B(ym) for some functions A,B. So, we get

q1(x1y1m
(1))

=
∑
x2

q(xym)

=
∑
x2

p(x1y1) · p(x2y2) ·A(xm) ·B(ym)

= p(x1y1) ·
(∑

x2

p(x2y2) ·A(xm)

)
·B(ym) = p(x1y1) ·A′(x1m

(1)) ·B′(y1m
(1)),
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proving that q1 is rectangular with respect to p(x1y1). A similar calculation calculation shows
that q2(x2y2m

(2)) is rectangular with respect to p(x2y2). Using the fact that p is a protocol
and x1y1 and x2y2 are independent under p, we can compute:

p1(x1y1m
(1)) · p2(x2y2m(2)) = p(xy) · p(m0) · q(x1y2m0) ·

∏
i>0

p(mi|xym<i) · q(mi|x1y2m<i)

= p(xym) · q(x1y2m)

= p(xym) · q(w). (12)

The pairs p1, p2, q1, q2 have been engineered so that the various terms in the marginal cost
add up nicely across the pairs. We have:

q1(x1y1m
(1))

p1(x1y1m(1))
· q2(x2y2m

(2))

p2(x2y2m(2))
=
q(xym)

p(xym)
, (13)

q1(x1|y1m(1))

p1(x1|y1)
· q2(x2|y2m

(2))

p2(x2|y2)
=
q(x|ym)

p(x|y) , (14)

q1(y1|x1m(1))

p1(y1|x1)
· q2(y2|x2m

(2))

p2(y2|x2)
=
q(y|xm)

p(y|x) , (15)∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣ · ∣∣∣∣ E
q2(x2y2|w)

[(−1)g]
∣∣∣∣ = ∣∣∣∣ E

q(xy|w)

[
(−1)f⊕g

]∣∣∣∣ . (16)

To prove Equation (13), use Equation (12) and Theorem 20 to obtain

q1(x1y1m
(1))

p1(x1y1m(1))
· q2(x2y2m

(2))

p2(x2y2m(2))
=
q(xym)

p(xym)
· q(w)
q(w)

=
q(xym)

p(xym)
.

Equations (14) and (15) follow directly from Theorem 20. We use the fact that q(xy|w) =
q(x2|w) · q(y1|w) from Theorem 20 to prove Equation (16):∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣ · ∣∣∣∣ E
q2(x2y2|w)

[(−1)g]
∣∣∣∣ = ∣∣∣∣ E

q(y1|w)

[
(−1)f

]
· E
q(x2|w)

[(−1)g]
∣∣∣∣ = ∣∣∣∣ E

q(xy|w)

[
(−1)f⊕g

]∣∣∣∣ .
These identities suggest that the costs in the first and second coordinates should sum to

M(q, p, f ⊕ g). The main challenge in applying this intuition is that the advantage terms in
Equation (16) are not the ones needed for M(q1, p1, f) and M(q2, p2, g). To resolve this, we need
to remove some problematic points in the support of q. We need to do this while retaining
the rectangular structure of q1, q2 and preserving the sub-additivity of the other terms in the
marginal cost.

Let G be a subset of triples xym such that the indicator function 1G(xyw) depends only
on w, and for each fixed m, the set G maximizes

q(G|m)δ ·
∣∣∣ E
q(xy|mG)

[
(−1)f⊕g

]∣∣∣, (17)

among all such sets. In Theorem 31, we prove that for all w in the support of G:∣∣∣∣ E
q(xy|w)

[
(−1)f⊕g

]∣∣∣∣ ≥ (1− δ) · q(G|m)−δ ·
∣∣∣∣ E
q(xy|m)

[
(−1)f⊕g

]∣∣∣∣ . (18)

This gives us an effective way to split the costs for q, p. Using Equations (13) to (16), we
obtain that for all xym in the support of G,
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q1(x1|y1m(1))

p1(x1|y1)
q1(y1|x1m(1))

p1(y1|x1)
·
(
q1(x1y1m

(1))

p1(x1y1m(1))

)I

·
∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣−12I/δ

×q2(x2|y2m
(2))

p2(x2|y2)
q2(y2|x2m(2))

p2(y2|x2)
·
(
q2(x2y2m

(2))

p2(x2y2m(2))

)I

·
∣∣∣∣ E
q2(x2y2|w)

[(−1)g]
∣∣∣∣−12I/δ

=
q(x|ym)

p(x|y)
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|w)

[
(−1)f⊕g

]∣∣∣∣−12I/δ

≤q(x|ym)

p(x|y)
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f⊕g

]∣∣∣∣−12I/δ

·O(q(G|m))12I

≤2M(q,p,f⊕g) ·O(q(G|m))12I

In this product, the quantity in the first line does not depend on the choice of x2, and the
quantity in the second line does not depend on y1. Thus, for every fixed value of w, we obtain:

∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣−12I/δ

· sup
y1

(
q1(x1y1m

(1))

p1(x1y1m(1))

)I

· q1(x1|y1m
(1))

p1(x1|y1)
q1(y1|x1m(1))

p1(y1|x1)

×
∣∣∣∣ E
q2(x2y2|w)

[(−1)g]
∣∣∣∣−12I/δ

· sup
x2

(
q2(x2y2m

(2))

p2(x2y2m(2))

)I

· q2(x2|y2m
(2))

p2(x2|y2)
q2(y2|x2m(2))

p2(y2|x2)

≤2M(q,p,f⊕g) ·O(q(G|m))12I . (19)

Let L ⊆ G be a subset whose indicator function 1L(xym) depends only on w, such that
1L(w) = 1 if and only if

(∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣−12I/δ

· sup
y1

(
q1(x1y1m

(1))

p1(x1y1m(1))

)I

· q1(x1|y1m
(1))

p1(x1|y1)
q1(y1|x1m(1))

p1(y1|x1)

)1/γ

≤

(∣∣∣∣ E
q2(x2y2|w)

[(−1)g]
∣∣∣∣−12I/δ

· sup
x2

(
q2(x2y2m

(2))

p2(x2y2m(2))

)I

· q2(x2|y2m
(2))

p2(x2|y2)
q2(y2|x2m(2))

p2(y2|x2)

)1/(1−γ)

.

Let U denote the set whose indicator function depends only on m, such that 1U (m) = 1 if
and only if q(L|mG) ≥ 1/2. If q(U) ≥ 1/2, we carry out the reduction in the first coordinate.
Otherwise, we carry out the reduction in the second coordinate, using the complements of U,L
instead. Without loss of generality, we assume that q(U) ≥ 1/2. By the definition of U,L, and
by Equation (19), for all w in the support of U ∩ L we have∣∣∣∣ E

q1(x1y1|w)

[
(−1)f

]∣∣∣∣−12I/δ

·
(
sup
y1

q1(x1y1m
(1))

p1(x1y1m(1))

)I

· q1(x1|y1m
(1))

p1(x1|y1)
q1(y1|x1m(1))

p1(y1|x1)

≤ 2γ·M(q,p,f⊕g) ·O(q(G|m))12γ·I . (20)

Our next barrier is that in M(q1, p1, f) the advantage term is not exactly the same as what
we have bounded in the above expressions; it might well be that for most w consistent with
m(1) ∣∣∣ E

q1(x1y1|m(1))

[
(−1)f

]∣∣∣≪ ∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣. (21)
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To resolve this issue, we condition on a dense subset B of the w’s such that given any two
w,w′ ∈ B that are consistent with the same m,∣∣∣ E

q1(x1y1|w)

[
(−1)f

]∣∣∣ ≥ 1

2
·
∣∣∣ E
q1(x1y1|w′)

[
(−1)f

]∣∣∣.
This will ensure that Equation (21) does not happen. To find this subset B, we first prune
away some problematic points to ensure all advantage terms in Equation (20) are reasonably
large. This is accomplished by Theorem 28 below.

Claim 28. There are subsets U ′ ⊆ U,L′ ⊆ L such that 1U′(xym) only depends on m, 1L′(xym)
only depends on w, q(U ′) ≥ 1/4, and for all mw in the support of U ′∩L′, we have q(L′|mG) ≥
1/4 and ∣∣∣∣ E

q1(x1y1|w)

[
(−1)f

]∣∣∣∣−1

≤ α,

for some α ≤ 2O(M(q,p,f⊕g)/I) ·O(1).

We defer the proof of Theorem 28 to the end of this section. Assuming the claim, we can
now bucket the w according to their advantage. For each fixing of m(1), partition the space of
w consistent with m(1) into disjoint buckets according to the sign of Eq1(x1y1|w)

[
(−1)f

]
, and

the value of ⌈
log

∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣⌉ .
There can be at most O(logα) such buckets, and so by picking the heaviest bucket for each
m(1), we obtain a set B ⊆ L′ whose indicator function 1B(x1y1m

(1)) is determined by w, such
that for every m(1),

q1(B|m(1)L′) ≥ 1

O(logα)
, (22)

and moreover, for every wm(1) in the support of B,

∣∣∣∣∣ E
q1(x1y1|m(1)B)

[
(−1)f

]∣∣∣∣∣ ≥ 1

2
·
∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣ . (23)

Let R ⊆ B ⊆ L′ be the rectangular set in x1y1m
(1) such that for every m(1), R maximizes

q1(R|m(1)B)δ ·
∣∣∣ E
q1(x1y1|m(1)R)

[
(−1)f

]∣∣∣. (24)

Define the rectangular distribution

r(x1y1m
(1)) = q1(x1y1m

(1)) · 1U′(m) · 1R(x1y1m(1))

q1(U ′) · q1(L′|m) · q1(R|m(1)L′)

=
q1(m)1U′(m)

q1(U ′)
· q1(y2|m)q1(L

′|m(1))

q1(L′|m)
· q1(x1y1|m

(1)) · 1R(x1y1m(1))

q1(L′|m(1)) · q1(R|m(1)L′)

= q1(m|U ′) · q1(y2|mL′) · q1(x1y1|m
(1)) · 1R(x1y1m(1))

q1(R|m(1))

= q1(m|U ′) · q1(y2|mL′) · q1(x1y1|m(1)R). (25)
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Because r is defined as the product of a rectangular distribution with a function that is
also rectangular, r is rectangular. From the last line in Equation (25), it is clear that r is a
distribution. We have the following bound:

r(x1y1m
(1))

q1(x1y1m(1))
=

1U′(m) · 1R(x1y1m(1))

q1(U ′) · q1(L′|m) · q1(R|m(1)L′)

≤ O(1)

q1(L′|mG) · q1(G|m) · q1(R|m(1)B) · q1(B|m(1)L′)

≤ O(logα)

q1(G|m) · q1(R|m(1)B)
, (26)

where here we used Theorem 28 and Equation (22). Apply Theorem 29 with a = r, b = q1 and
κ = 1/6 to obtain a rectangular set T with r(T ) ≥ 1/2 such that

r(x1m
(1)|T )

q1(x1m(1))
,
r(y1m

(1)|T )
q1(y1m(1))

,
r(m(1)|T )
r(m(1))

≥ 1

6
. (27)

Finally, we define r1(x1y1m
(1)) = r(x1y1m

(1)|T ). Because r is a rectangular distribution
and T is a rectangular set, r1 is a rectangular distribution. It only remains to boundM(r1, p1, f).
For all x1y1m

(1) in the support of r1, we have

r1(x1y1m
(1))

p1(x1y1m(1))
=
q1(x1y1m

(1))

p1(x1y1m(1))
· r(x1y1m

(1))

q1(x1y1m(1))
· 1

r(T )

≤ q1(x1y1m
(1))

p(x1y1m(1))
· O(logα)

q1(G|m) · q1(R|m(1)B)
, (28)

using Equation (26) and the fact that r(T ) ≥ 1/2. For the next term,

r1(x1|y1m(1))

p1(x1|y1m(1))
=
q1(x1|y1m(1))

p1(x1|y1m(1))
· r1(x1|y1m

(1))

q1(x1|y1m(1))

=
q1(x1|y1m(1))

p1(x1|y1m(1))
· r(x1y1m

(1))

q1(x1y1m(1))
· 1

r(T )
· q1(y1m

(1))

r(y1m(1)|T )

≤ q1(x1|y1m(1))

p1(x1|y1m(1))
· O(logα)

q1(G|m) · q1(R|m(1)B)
, (29)

using Equations (26) and (27), and the fact that r(T ) ≥ 1/2. The symmetric argument gives:

r1(y1|x1m(1))

p1(y1|x1m(1))
≤ q1(y1|x1m(1))

p1(y1|x1m(1))
· O(logα)

q1(G|m) · q1(R|m(1)B)
. (30)

To bound the advantage, first note that

q1(T |m(1)R) =
q1(T |R) · q1(m(1)|T )

q1(m(1)|R)
=
r(T ) · r(m(1)|T )

r(m(1))
≥ 1

12
, (31)

by Equation (27). For eachm(1), we apply Theorem 30 with v(x1y1m
(1)) = q1(x1y1m

(1)|m(1)B),
R and Z = T . Note here that v(m(1)) = 1. We obtain the bound:∣∣∣ E

r1(x1y1|m(1))

[
(−1)f

]∣∣∣ = ∣∣∣ E
q1(x1y1|m(1)T )

[
(−1)f

]∣∣∣
≥ 1− δ2 − δ/q1(T |m(1)R)

q1(R|m(1)B)δ
·
∣∣∣ E
q1(x1y1|m(1)B)

[
(−1)f

]∣∣∣
≥ Ω(1)

q1(R|m(1)B)δ
·
∣∣∣ E
q1(x1y1|m(1)B)

[
(−1)f

]∣∣∣, (32)
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by the choice of δ and Equation (31).
Now, we are ready to put all these bounds together to complete the proof of the theorem.

By Equations (23), (28) to (30) and (32), we get that for every x1y1m
(1) in the support of r1,

r1(x1|y1m(1))

p1(x1|y1)
· r1(y1|x1m

(1))

p(y1|x1)
·
(
r1(x1y1m

(1))

p1(x1y1m(1))

)I

·
∣∣∣ E
r1(x1y1|m(1))

[
(−1)f

]∣∣∣−12I/δ

≤ q1(x1|y1m(1))

p1(x1|y1)
· q1(y1|x1m

(1))

p(y1|x1)
·
(
q1(x1y1m

(1))

p1(x1y1m(1))

)I

·
∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣−12I/δ

× O(log(α))I+2

q1(G|m)I+2 · q1(R|m(1)B)I+2−12I

≤ 2γ·M(q,p,f⊕g) ·O(log(α))3I · q1(G|m)12γ·I−I−2 · 2O(I) · q1(R|m(1)B)11I−2

≤ 2γ·M(q,p,f⊕g) ·O(log(α))3I · q1(G|m)3I−2 · 2O(I)

≤ 2γ·M(q,p,f⊕g) ·O
(
M(q, p, f ⊕ g)

I

)3I

,

where in the last three inequalities we used Equation (20), the fact that I ≥ 1 and Theorem 28.
This implies that

M(r1, p1, f) ≤ γ ·M(q, p, f ⊕ g) + 3I log
M(q, p, f ⊕ g)

I
+O(I),

completing the proof of the theorem.
Proof of Theorem 28: We have

E
q1(m)

[
p1(m)

q1(m)

]
≤ 1,

and so by Markov’s inequality, the total mass of m ∈ supp(q) for which

q1(m)

p1(m)
≤ 1/4 (33)

is at most 1/4. We delete all such m from the support of U . We are left with a set U ′ with

q(U ′) ≥ 1/2− 1/4 = 1/4. (34)

Next, we delete w from L if either

q1(w|m)

p1(w|m)
<
q1(G|m)

8
, (35)

or

E
q1(y1|w)

[
log

q1(x1|y1m(1))

p1(x1|y1)

]
< log

q1(G|m)

8
. (36)

We claim that for all m in the support of U ′, q(L′|mG) ≥ 1/4. To see this, observe that

q1(G|m) · E
q1(w|mG)

[
p1(w|m)

q1(w|m)

]
≤ E

q1(w|m)

[
p1(w|m)

q1(w|m)

]
≤ 1,
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so Markov’s inequality implies that for each m the total mass of w for which Equation (35)
is violated is at most 1/8. By the concavity of the log function, the w deleted because of
Equation (36) satisfy

log E
q1(y1|w)

[
p1(x1|y1m(1))

q1(x1|y1)

]
≥ E

q1(y1|w)

[
log

p1(x1|y1m(1))

q1(x1|y1)

]
> log

8

q1(G|m)
.

On the other hand, because w determines 1G,

q1(G|m) · E
q1(w|mG)

[
E

q1(y1|w)

[
p1(x1|y1)

q1(x1|y1m(1))

]]
≤ E

q1(y1w|m)

[
p1(x1|y1)

q1(x1|y1m(1))

]
= E

q1(y|m)

[
E

q1(x1|ym)

[
p1(x1|y1)

q1(x1|y1m(1))

]]
≤ 1,

so once again, Markov’s inequality implies that the total mass of w deleted using this rule is
at most 1/8. This gives

q(L′|mG) ≥ 1/2− 1/8− 1/8 = 1/4. (37)

The result of these pruning steps is that we are left with large sets U ′, L′ ⊆ G such that for
all m,w that are consistent with U ′, L′, we have

sup
y1

(
q1(x1y1m

(1))

p1(x1y1m(1))

)I

· q1(x1|y1m
(1))

p1(x1|y1)
· q1(y1|x1m

(1))

p1(y1|x1)

=

(
q1(m) · q1(w|m)

p1(m) · p1(w|m)

)I

· sup
y1

(
q1(y1|w)
p1(y1|w)

)I

· q1(x1|y1m
(1))

p1(x1|y1)
· q1(y1|x1m

(1))

p1(y1|x1)

=

(
q1(m) · q1(w|m)

p1(m) · p1(w|m)

)I

· exp

(
sup
y1

log

((
q1(y1|w)
p1(y1|w)

)I

· q1(x1|y1m
(1))

p1(x1|y1)
· q1(y1|x1m

(1))

p1(y1|x1)

))

≥
(
q1(m) · q1(w|m)

p1(m) · p1(w|m)

)I

· exp

(
E

q(y1|w)
log

((
q1(y1|w)
p1(y1|w)

)I

· q1(x1|y1m
(1))

p1(x1|y1)
· q1(y1|x1m

(1))

p1(y1|x1)

))
,

where here exp(z) denotes 2z. Now we use the fact that all the m,w violating Equations (33),
(35) and (36) have been deleted and use Equation (6) to bound

≥
(
1

4
· q1(G|m)

8

)I

· exp

(
E

q1(y1|w)

[
I log

q1(y1|w)
p1(y1|w)

+ log

(
q1(x1|y1m(1))

p1(x1|y1)

)
+ log

(
q1(y1|x1m(1))

p1(y1|x1)

)])

≥
(
1

4
· q1(G|m)

8

)I

· exp

(
E

q1(y1|w)

[
log

(
q1(x1|y1m(1))

p1(x1|y1)

)])
≥ Ω(q1(G|m))1+I .

Combining this bound with Equation (20), we get that for all w consistent with U ′, L′,∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣−12I/δ

≤ 2γ·M(q,p,f⊕g) ·O(q(G|m))12·γI−I−1,

so since I ≥ 1 and γ ≥ 1/3, this implies∣∣∣∣ E
q1(x1y1|w)

[
(−1)f

]∣∣∣∣−1

≤ O(2M(q,p,f⊕g)·(δγ/12I)) = α, (38)

as required.
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5. Trimming and advantage preserving sets

In this section, we gather a few lemmas about trimming rectangular sets to pass to sub-
rectangles with nice features. The idea of trimming comes from the work of Yu [Yu22].

Lemma 29. For every 1 > κ > 0, if a(xym), b(xym) are two distributions, there exists a
rectangular set T such that a(T ) ≥ 1− 3κ and for all xym ∈ T , we have

a(xm|T )
b(xm)

,
a(ym|T )
b(ym)

,
a(m|T )
a(m)

≥ κ.

Proof. The set T is constructed by an iterative process. Initially, T is the set of all triples xym.
In each iteration, if there is xm such that

a(xm|T )
b(xm)

< κ, (39)

then delete xm from the support of T , if there is ym such that

a(ym|T )
b(ym)

< κ,

then delete ym from the support of T , and if there is m such that

a(m|T )
a(m)

< κ,

then delete m from the support of T . The process halts when there are no more elements to
delete. Because the distributions we are working with have finite support, this process must
eventually terminate. Initially, T is rectangular, and each deletion step leaves us with another
rectangular set T , so the final T is also rectangular.

Let us bound a(T ). For each pair xm that was deleted from the support of T because of
Equation (39), let Txm denote the set T right before xm was deleted. If xm was not deleted,
let Txm denote the empty set.

The total mass deleted using Equation (39) is exactly∑
xm

a(xmTxm) =
∑
xm

a(Txm) · a(xm|Txm) <
∑
xm

κ · b(xm) = κ.

Similarly, the total mass deleted using each of the other rules is also at most κ. By the
union bound, this proves that a(T ) ≥ 1− 3κ when the process terminates.

Next, we gather a couple of nice lemmas about finding subrectangles with nice properties.

Lemma 30. For any distribution v(xym) and a Boolean function h(xy), suppose R is a rect-
angular set maximizing

v(R)δ · E
v(m|R)

∣∣∣ E
v(xy|mR)

[
(−1)h

]∣∣∣. (40)

Then, for any rectangular Z ⊆ R, we have

E
v(m|Z)

∣∣∣ E
v(xy|mZ)

[
(−1)h

]∣∣∣ ≥ 1− δ2 − δ/v(Z|R)
v(R)δ

· E
v(m)

∣∣∣ E
v(xy|m)

[
(−1)h

]∣∣∣.
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Proof. Since R and Z are rectangular, we have

1R(xym) = 1A(xm) · 1B(ym),

and
1Z(xym) = 1A′(xm) · 1B′(ym),

for appropriate sets A,A′ and B,B′. R can be partitioned into three rectangular sets, Z0 =
Z,Z1 and Z2, where

1Z1(xym) = 1A\A′(xm) · 1B(ym)

and

1Z2(xym) = 1A′(xm) · 1B\B′(ym).

By the triangle inequality, we get

E
v(m|R)

∣∣∣ E
v(xy|Rm)

[
(−1)h

]∣∣∣ ≤ 2∑
i=0

v(Zi|R) · E
v(m|Zi)

∣∣∣ E
v(xy|mZi)

[
(−1)h

]∣∣∣ (41)

Let us bound the contribution of Z1, Z2:

2∑
i=1

v(Zi|R) · E
v(m|Zi)

∣∣∣ E
v(xy|mZi)

[
(−1)h

]∣∣∣
=

2∑
i=1

v(Zi|R)1−δ ·
(v(Zi)

v(R)

)δ
· E
v(m|Zi)

∣∣∣ E
v(xy|mZi)

[
(−1)h

]∣∣∣
≤

2∑
i=1

v(Zi|R)1−δ · E
v(m|R)

∣∣∣ E
v(xy|mR)

[
(−1)h

]∣∣∣ (because R is the maximizer of Equation (40))

≤ 2δ ·
( 2∑

i=1

v(Zi|R)
)1−δ

· E
v(m|R)

∣∣∣ E
v(xy|mR)

[
(−1)h

]∣∣∣ (by Hölder’s inequality)

= 2δ ·
(
1− v(Z|R)

)1−δ

· E
v(m|R)

∣∣∣ E
v(xy|mR)

[
(−1)h

]∣∣∣.
Using the inequalities (1− t)1−δ ≤ 1− t(1− δ)) and 2δ ≤ 1 + δ which hold for t, δ ∈ [0, 1]:

≤ (1 + δ) · (1− (1− δ)v(Z|R)) · E
v(m|R)

∣∣∣ E
v(xy|mR)

[
(−1)h

]∣∣∣.
Putting this back into Equation (41) and reaarranging, we get:

E
v(m|Z)

∣∣∣ E
v(xy|mZ)

[
(−1)h

]∣∣∣ ≥ −δ + (1− δ2)v(Z|R)
v(Z|R) E

v(m|R)

∣∣∣ E
v(xy|mR)

[
(−1)h

]∣∣∣
≥ (1− δ2 − δ/v(Z|R)) · v(R)−δ · E

v(m)

∣∣∣ E
v(xy|m)

[
(−1)h

]∣∣∣,
where we again used the fact that R maximizes Equation (40).
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Lemma 31. Let q(xym) be a rectangular distribution, with x = x1x2 and y = y1y2. Let
f(x1y1), g(x2y2) be Boolean functions. Let G be a subset of triples xym such that the indicator
function 1G(xym) depends only on w = x1y2m, and for each m, G maximizes

q(G|m)δ ·
∣∣∣ E
q(xy|mG)

[
(−1)f⊕g

]∣∣∣, (42)

among all such sets. Then for any w in the support of G, we have∣∣∣∣ E
q(xy|w)

[
(−1)f⊕g

]∣∣∣∣ ≥ (1− δ) · q(G|m)−δ ·
∣∣∣∣ E
q(xy|m)

[
(−1)f⊕g

]∣∣∣∣ .
Proof. Fix w = x1y2m and define G′ ⊆ G to be the subset of G obtained by deleting all triples
xym consistent with w. Using the triangle inequality, we can write∣∣∣ E
q(xy|mG)

[
(−1)f⊕g

]∣∣∣ ≤ q(w|mG) ·
∣∣∣ E
q(xy|w)

[
(−1)f⊕g

]∣∣∣+ q(G′|mG) ·
∣∣∣ E
q(xy|mG′)

[
(−1)f⊕g

]∣∣∣
= q(w|mG) ·

∣∣∣ E
q(xy|w)

[
(−1)f⊕g

]∣∣∣+ q(G′|mG)1−δ · q(G
′|m)δ

q(G|m)δ
·
∣∣∣ E
q(xy|mG′)

[
(−1)f⊕g

]∣∣∣
≤ q(w|mG) ·

∣∣∣ E
q(xy|w)

[
(−1)f⊕g

]∣∣∣+ q(G′|mG)1−δ ·
∣∣∣ E
q(xy|mG)

[
(−1)f⊕g

]∣∣∣,
where in the last line we used the fact that G is the maximizer of Equation (42).

Because q(G′|mG) = 1− q(w|mG), and using the inequality (1− t)γ ≤ 1− tγ, which holds
for t, γ ∈ [0, 1], we obtain

∣∣∣ E
q(xy|mG)

[
(−1)f⊕g

]∣∣∣ ≤ q(w|mG) ·
∣∣∣ E
q(xy|w)

[
(−1)f⊕g

]∣∣∣+ (1− (1− δ)q(w|mG)) ·
∣∣∣ E
q(xy|mG)

[
(−1)f⊕g

]∣∣∣.
Rearranging gives:∣∣∣ E

q(xy|w)

[
(−1)f⊕g

]∣∣∣ ≥ (1− δ) ·
∣∣∣ E
q(xy|mG)

[
(−1)f⊕g

]∣∣∣
≥ (1− δ) · q(G|m)−δ ·

∣∣∣ E
q(xy|m)

[
(−1)f⊕g

]∣∣∣,
where in the second inequality we once again used the fact that G is the maximizer of

Equation (42).

6. Consequences of small marginal information

Let q be a rectangular distribution achieving MI(p, f). Since q is rectangular, we can write

q(xym)

p(xym)
=

µ(xy) ·A(xm) ·B(ym)

µ(xy) · p(m0) ·
∏

i=1,3,5,... p(mi|xm<i) · p(mi+1|ym≤i)
= g1(xm) · g2(ym), (43)

for appropriate functions g1 and g2.
For every K ≥ 1, define the sets

SK = {xym : |⌈log g1(xm)⌉+ log g2(ym)| ≤ 3(MI(p, f) +KI)/I}, (44)

RK = {xym : p(m1|xm0) ≤ 26(MI (p,f)+KI) · p(m1|ym0)}.. (45)
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Proposition 32. For xym ∈ SK ,

−3(MI(p, f) +KI)

I
− 1 ≤ log

q(xym)

p(xym)
≤ 3(MI(p, f) +KI)

I
. (46)

Proof. Because log(q(xym)/p(xym)) = log g1(xm) + log g2(ym),

log
q(xym)

p(xym)
≥ ⌈log g1(xm)⌉+ log g2(ym)− 1 ≥ −3(MI(p, f) +KI)

I
− 1,

and

log
q(xym)

p(xym)
≤ ⌈log g1(xm)⌉+ log g2(ym) ≤ 3(MI(p, f) +KI)

I
.

Claim 33. If K ≥ 3, q(Sc
K), q(Rc

K |SK) ≤ 5 · 2−(MI (p,f)+KI)/I .

Proof. Define

G1 = {xym : q(x|ym) ≥ 2−(MI (p,f)+KI)/I · p(x|y)},

G2 = {xym : q(y|xm) ≥ 2−(MI (p,f)+KI)/I · p(y|x)},

G3 = {xym : q(xym) ≥ 2−3(MI (p,f)+KI)/I · p(xym)}, and

G4 = {xym : q(x|ym) ≥ 2−(MI (p,f)+KI)/I · p(x|m0m1y)}.

If xym ∈ G1 ∩G2, then

MI(p, f) ≥ log

(
q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ −2(MI(p, f) +KI)

I
+ I · log q(xym)

p(xym)
(because xym ∈ G1 ∩G2)

≥ −2MI(p, f)− 2KI + I · (⌈log g1(xm)⌉+ log g2(ym)− 1) (using I ≥ 1)

and rearranging this and using the fact that KI ≥ 1 gives

⌈log g1(xm)⌉+ log g2(ym) ≤ 3(MI(p, f) +KI)/I.

Moreover, for xym ∈ G3,

⌈log g1(xm)⌉+ log g2(ym) ≥ log
q(xym)

p(xym)
≥ −3(MI(p, f) +KI)/I,

so we have G1 ∩ G2 ∩ G3 ⊆ SK . We shall prove that q(Sc
K) ≤ 3 · 2−(MI (p,f)+KI)/I by proving

that q(Gc
1), q(G

c
2), q(G

c
3) and q(G

c
4) are all less than 2−(MI (p,f)+KI)/I . We have

q(Gc
1) =

∑
xym/∈G1

q(xym) <
∑

xym/∈G1

q(ym) · p(x|y) · 2−(MI (p,f)+KI)/I

≤ 2−(MI (p,f)+KI)/I ·
∑
xym

q(ym) · p(x|y)

≤ 2−(MI (p,f)+KI)/I ,

and similar calculations show that q(Gc
2), q(G

c
3), q(G

c
4) < 2−(MI (p,f)+KI)/I .
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It only remains to bound q(Rc
K |SK). We have

p(m1|xm0)

p(m1|ym0)
=
p(m1|xym0)

p(m1|ym0)
=
p(x|ym0m1)

p(x|ym0)
=
p(x|ym0m1)

q(x|ym)
· q(x|ym)

p(x|y) ,

so, for every xym ∈ G2 ∩G3 ∩G4,

MI(p, f) ≥ log

(
q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ log

(
p(m1|xm0)

p(m1|ym0)
· q(x|ym)

p(x|ym0m1)
· q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I
)

≥ log
p(m1|xm0)

p(m1|ym0)
− 2(MI(p, f) +KI)

I
− 3(MI(p, f) +KI)

≥ log
p(m1|xm0)

p(m1|ym0)
− 5(MI(p, f) +KI),

since I ≥ 1. Rearranging, we get p(m1|xm0) ≤ 26(MI (p,f)+KI) · p(m1|ym0), so G2 ∩G3 ∩G4 ⊆
RK . The union bound then gives:

q(Rc
K |SK) ≤ q(Gc

2) + q(Gc
3) + q(Gc

4)

q(SK)
<

3 · 2−(MI (p,f)+KI)/I

1− 3 · 2−(MI (p,f)+KI)/I
≤ 5 · 2−3(MI (p,f)+KI)/I ,

since K ≥ 3.

An argument analogous to the one in the previous claim allows us to obtain similar bounds
if marginal information cost is replaced by external marginal information cost:

Claim 34. Let q be a rectangular distribution achieving Mext
I (p, f) and let g1, g2 be as defined

in Equation (43). For every K, define

SK = {xym : |⌈log g1(xm)⌉+ log g2(ym)| ≤ 3(Mext
I (p, f) +KI)/I} and (47)

RK = {xym : p(m1|xm0) ≤ 25(M
ext
I (p,f)+KI) · p(m1|m0)}. (48)

Then, for all K ≥ 2, it holds that q(Sc
K), q(Rc

K |SK) ≤ 4 · 2−(Mext
I (p,f)+KI)/I .

Proof. Define

G1 = {xym : q(xy|m) ≥ 2−(Mext
I (p,f)+KI)/I · p(xy)},

G2 = {xym : q(xym) ≥ 2−3(Mext
I (p,f)+KI)/I · p(xym)},

G3 = {xym : q(xy|m) ≥ 2−(Mext
I (p,f)+KI)/I · p(xy|m0m1)}.

For xym ∈ G1 ∩G2, we have

Mext
I (p, f) ≥ log

(
q(xy|m)

p(xy)
·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ − (Mext
I (p, f) +KI)

I
+ I · log q(xym)

p(xym)

≥ −(Mext
I (p, f) +KI) + I · (⌈log g1(xm)⌉+ log g2(ym)− 1),
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since K, I ≥ 1. Rearranging gives

⌈log g1(xm)⌉+ log g2(ym) ≤ 3(Mext
I (p, f) +KI)

I
.

Moreover, for xym ∈ G2

⌈log g1(xm)⌉+ log g2(ym) ≥ log
q(xym)

p(xym)
≥ −3(Mext

I (p, f) +KI)

I
,

proving that G1 ∩G2 ⊆ SK .
We show that q(Gc

1), q(G
c
2) and q(G

c
3) are all less than 2−(Mext

I (p,f)+KI)/I , which implies that

q(Sc
K) ≤ 2 · 2−(Mext

I (p,f)+KI)/I as desired. To see the upper bound on q(Gc
1), we may write

q(Gc
1) =

∑
xym/∈G1

q(xym) <
∑

xym/∈G1

q(m) · p(xy) · 2−3(Mext
I (p,f)+KI)/I ≤ 2−(Mext

I (p,f)+KI)/I .

A similar calculation shows that q(Gc
2) and q(G

c
3) < 2−(Mext

I (p,f)+KI)/I .

Now, we prove that q(Rc
K |SK) ≤ 5 · 2−(Mext

I (p,f)+KI)/I . We have

p(m1|xm0)

p(m1|m0)
=
p(m1|xym0)

p(m1|m0)
=
p(xy|m0m1)

p(xy)
=
p(xy|m0m1)

q(xy|m)
· q(xy|m)

p(xy)
,

so for every xym ∈ G2 ∩G3,

Mext
I (p, f) ≥ log

(
q(xy|y)
p(xy)

·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ log

(
p(m1|xm0)

p(m1|m0)
· q(xy|m)

p(xy|m0m1)
·
(
q(xym)

p(xym)

)I
)

≥ log
p(m1|xym0)

p(m1|m0)
− (Mext

I (p, f) +KI)

I
− (Mext

I (p, f) +KI)

≥ log
p(m1|xym0)

p(m1|m0)
− 4(Mext

I (p, f) +KI),

since I ≥ 1. Rearranging, we get p(m1|xym0) ≤ 25(M
ext
I (p,f)+KI) · p(m1|m0) for all xym ∈

G2 ∩G3, and so G2 ∩G3 ⊆ RK . The union bound then gives:

q(Rc
K |SK) ≤ q(Gc

2) + q(Gc
3)

q(SK)
<

2 · 2−(Mext
I (p,f)+KI)/I

1− 2 · 2−(Mext
I

(p,f)+KI)/I
≤ 4 · 2−(Mext

I (p,f)+KI)/I ,

since K ≥ 2.

For the bounded-round simulation protocol, we need the following claim.

Claim 35. Let K ≥ 3, and SK be the set defined in Equation (44). Let p(xym) be an r-round
protocol and define

TK =
{
xym : ∀i, p(mi|xym<i)

p(mi|ym<i)
,
p(mi|xym<i)

p(mi|xm<i)
≤ 214(MI (p,f)+KI) · (r + 1)5

}
.

Then q(T c
K |SK) ≤ 22 · 2−(MI (p,f)+KI)/I .
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Proof. Define the sets

G1 = {xm : ∀i, q(xm≤i) ≥ 2−(MI (p,f)+KI)/I · (r + 1)−1 · p(xm≤i)},

G′
1 = {ym : ∀i : q(ym≤i) ≥ 2−(MI (p,f)+KI)/I · (r + 1)−1 · p(ym<i)},

G2 = {xym : ∀i, q(x|ym≤i) ≥ 2−(MI (p,f)+KI)/I · (r + 1)−1 · p(x|y)},

G′
2 = {xym : ∀i, q(y|xm≤i) ≥ 2−(MI (p,f)+KI)/I · (r + 1)−1 · p(y|x)},

G3 = {xym : ∀i, q(x|ym) ≥ 2−(MI (p,f)+KI)/I · (r + 1)−1 · p(x|ym≤i)},

G′
3 = {xym : ∀i, q(y|xm) ≥ 2−(MI (p,f)+KI)/I · (r + 1)−1 · p(y|xm≤i)},

G4 = {xym : ∀i, q(m≥i|xym<i) ≥ 2−(MI (p,f)+KI)/I · (r + 1)−1 · p(m≥i|xym<i)}.

We claim that

3⋂
j=1

(Gj ∩G′
j) ∩G4 ∩ SK ⊆ TK . (49)

For xym ∈ G′
2 ∩G2 ∩ SK ,

MI(p, f) ≥ log

(
q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ log
q(x|ym)

p(x|y) −
(MI(p, f) +KI)

I
− log(r + 1)− 3(MI(p, f) +KI)− I

≥ log
q(x|ym)

p(x|y) − 4MI(p, f)− 5KI − log(r + 1),

becase I ≥ 1, and by the definition of G′
2 and Equation (46). Rearranging implies the first

inequality below, and the second has a similar proof:

q(x|ym)

p(x|y) ,
q(y|xm)

p(y|x) ≤ 25(MI (p,f)+KI)/I · (r + 1). (50)

By Equation (50), for xym ∈
⋂3

j=1(Gj ∩G′
j) ∩G4 ∩ SK and all i,

p(m≤i|xy)
p(m≤i|y)

=
p(x|ym≤i)

p(x|y) =
p(x|ym≤i)

q(x|ym)
· q(x|ym)

p(x|y) ≤ 2(MI (p,f)+KI)/I · 25(MI (p,f)+KI) · (r + 1)2.

Moreover,

p(m≤i|xy)
p(m≤i|y)

=
p(x|ym≤i)

p(x|y)

=
p(x|ym≤i)

q(x|ym≤i)
· q(x|ym≤i)

p(x|y)

=
p(xym≤i)

q(xym≤i)
· q(ym≤i)

p(ym≤i)
· q(x|ym≤i)

p(x|y)

=
p(xym)

q(xym)
· q(m>i|xym≤i)

p(m>i|xym≤i)
· q(ym≤i)

p(ym≤i)
· q(x|ym≤i)

p(x|y) ≥ 2−6(MI (p,f)+KI)/I

(r + 1)3
,

where we used Equation (46) as well as the definitions of G4, G
′
1 and G2 in the last step. Thus,

p(mi|xym<i)

p(mi|ym<i)
=
p(m≤i|xy)
p(m≤i|y)

· p(m<i|y)
p(m<i|xy)

≤ 29(MI (p,f)+KI)/I · 25(MI (p,f)+KI) · (r + 1)5

≤ 214(MI (p,f)+KI) · (r + 1)5,
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since I ≥ 1. A similar calculation shows that
p(mi|xym<i)

p(mi|xm<i)
< 214(MI (p,f)+KI) · (r + 1)5. We

conclude that Equation (49) holds.
Next, we show that q(Gc

4) < 2−(MI (p,f)+KI)/I . Define

t(xym) =

{
min{i : q(m≥i|xym<i) <

2−(MI (p,f)+KI)/I ·p(m≥i|xym<i)

r+1
} if such i exists,

⊥ otherwise.

We have,

q(Gc
4) = q(t ̸= ⊥) =

r∑
i=0

∑
xym,

t(xym)=i

q(xym)

<
2−(MI (p,f)+KI)/I

r + 1
·

r∑
i=0

∑
xym

t(xym)=i

q(xym<i) · p(m≥i|xym<i)

≤ 2−(MI (p,f)+KI)/I .

A similar argument shows that q(Gc
j), q(G

′c
j ) < 2−(MI (p,f)+KI)/I , for all j ∈ {1, 2, 3}. Thus, we

can bound

q(T c
K |SK) ≤

3∑
j=1

q(Gc
j) + q(G′c

j )

q(SK)
+
q(Gc

4) + q(Sc
K)

q(SK)

≤ 11 · 2−(MI (p,f)+KI)/I

1− 2−(MI (p,f)+KI)/I+2
≤ 22 · 2−(MI (p,f)+KI)/I ,

where we used Theorem 33 and the fact that K ≥ 3.

Claim 36. For any K ≥ 1, let SK be the set defined in Equation (44) and define

TK = {xym : p(m|xy) ≤ 26(MI (p,f)+KI) ·min{p(m|x), p(m|y)}}. (51)

Then, for all K ≥ 3, q(T c
K |SK) ≤ 6 · 2−(MI (p,f)+KI)/I .

Proof. Define the sets

G1 = {xym : q(m|xy) < 2−(MI (p,f)+KI)/Ip(m|xy)}

G2 = {xym : q(x|ym) < 2−(MI (p,f)+KI)/Ip(x|y)}

G3 = {xym : q(y|xm) < 2−(MI (p,f)+KI)/Ip(y|x)}.

We claim that q(Gc
1), q(G

c
2) and q(G

c
3) are all smaller than 2−(MI (p,f)+KI)/I . Indeed, to bound

q(Gc
1), we see that

q(Gc
1) =

∑
xym∈G1

q(xym) < 2−(MI (p,f)+KI)/I ·
∑

xym∈G1

q(xy) · p(m|xy) ≤ 2−(MI (p,f)+KI)/I .
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The proof for the bounds on q(Gc
2) and q(Gc

3) are similar. For any xym ∈ G1 ∩ G2 ∩ SK , we
have

MI(p, f) ≥ log

(
q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ log
q(x|ym)

p(x|y) −
(MI(p, f) +KI)

I
− 3(MI(p, f) +KI)− I

(by Equation (46) and definition of G2)

≥ log
q(x|ym)

p(x|ym)
+ log

p(x|ym)

p(x|y) − 4(MI(p, f) +KI)− I (since I ≥ 1)

≥ − (MI(p, f) +KI)

I
+ log

p(m|xy)
p(m|y) − 4(MI(p, f) +KI)− I,

where in the last step we used the fact p(m|xy)/p(m|y) = p(x|ym)/p(x|y). Rearranging, we
get that for every xym ∈ G1 ∩G2 ∩ SK

log
p(m|xy)
p(m|y) ≤ 6(MI(p, f) +KI).

A similar calculation shows that for every xym ∈ G1 ∩G3 ∩ SK it holds that

log
p(m|xy)
p(m|x) ≤ 6(MI(p, f) +KI).

Therefore,

q(T c
K |SK) ≤ q(Gc

1) + q(Gc
2) + q(Gc

3)

q(SK)
≤ 6 · 2−(MI (p,f)+KI)/I .

Additionally, the bound on the marginal information cost implies the following lemma which
will be useful in our simulation.

Lemma 37.

E
q(xym)

[ C∑
i≥2

∥p(mi|xm<i)− p(mi|ym<i)∥1
]
≤ 8
√
C ·MI(p, f) (52)

E
q(xym)

[∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣] ≥ 2−δMI (p,f)/12I . (53)

Proof. By our bound on the marginal information cost, we get

MI(p, f) = max
xym∈supp(q)

log

(
q(x|ym)

p(x|y) ·
q(y|xm)

p(y|x) ·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ E
q(xym)

[
log

q(x|ym)

p(x|y)

]
+ E

q(xym)

[
log

q(y|xm)

p(y|x)

]
+ I · E

q(xym)

[
log

q(xym)

p(xym)

]
+ E

q(xym)

[
log

∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ]
(54)
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By Equation (6) and the fact that the advantage is always at most 1, each of the expectations
appearing above is non-negative, and so each term is bounded by MI(p, f). This implies

log E
q(xym)

[∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣] ≥ E
q(xym)

[
log

∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣] ≥ −δMI(p, f)

12I
,

thus giving Equation (53). For Equation (52), we have

E
q(xym)

[ C∑
i≥2

∥p(mi|xm<i)− p(mi|ym<i)∥1
]

≤ E
q(xym)

[∑
i

∥p(mi|xm<i)− q(mi|xym<i)∥1 + ∥q(mi|xym<i)− p(mi|ym<i)∥1
]

≤ 2 E
q(xym)

[∑
i

√
E

q(mi|xym<i)

[
log

q(mi|xym<i)

p(mi|xm<i)

]
+

√
E

q(mi|xym<i)

[
log

q(mi|xym<i)

p(mi|ym<i)

]]
(by Equation (7))

≤ 2

√
C · E

q(xym)

[∑
i

log
q(mi|xym<i)

p(mi|xm<i)

]
+ 2

√
C · E

q(xym)

[∑
i

log
q(mi|xym<i)

p(mi|ym<i)

]
(by concavity of

√
·)

= 2

√
C · E

q(xym)

[
log

q(m|xy)
p(m|x)

]
+ 2

√
C · E

q(xym)

[
log

q(m|xy)
p(m|y)

]
.

To complete the proof, we claim that

E
q(xym)

[
log

q(m|xy)
p(m|x)

]
, E
q(xym)

[
log

q(m|xy)
p(m|y)

]
≤ MI(p, f) · (1 + 1/I).

We show this for the first term; the proof for the second term is identical. First, we have

q(m|xy)
p(m|x) =

q(m|xy)
p(m|xy) ·

p(m|xy)
p(m|x)

=
q(m|xy)
p(m|xy) ·

p(x|ym)

p(x|y)

=
q(m|xy)
p(m|xy) ·

p(x|ym)

q(x|ym)
· q(x|ym)

p(x|y)

=
q(xym)

p(xym)
· p(xy)
q(xy)

· p(x|ym)

q(x|ym)
· q(x|ym)

p(x|y) .

Therefore,

E
q(xym)

[
log

q(m|xy)
p(m|x)

]
= E

q(xym)

[
log

q(xym)

p(xym)

]
+ E

q(xym)

[
log

p(xy)

q(xy)

]
+ E

q(xym)

[
log

p(x|ym)

q(x|ym)

]
+ E

q(xym)

[
log

q(x|ym)

p(x|y)

]
≤ E

q(xym)

[
log

q(xym)

p(xym)

]
+ log E

q(xym)

[
p(xy)

q(xy)

]
+ log E

q(xym)

[
p(x|ym)

q(x|ym)

]
+ E

q(xym)

[
log

q(x|ym)

p(x|y)

]
≤ E

q(xym)

[
log

q(xym)

p(xym)

]
+ E

q(xym)

[
log

q(x|ym)

p(x|y)

]
≤ MI(p, f)

I
+MI(p, f),

where in the first inequality, we used the concavity of log(·) and in the last one, we used
Equation (54).
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For the simulation of external marginal information, we need a claim analogous to the
previous one.

Lemma 38. Let q be a distribution achieving Mext
I (p, f). Then,

E
q(xym)

[
log

p(m|xy)
p(m)

]
≤ Mext

I (p, f), (55)

E
q(xym)

[∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣] ≥ 2−δMext
I (p,f)/(12I). (56)

Proof. By our bound on the marginal information cost, we get

Mext
I (p, f) = max

xym∈supp(q)
log

(
q(xy|m)

p(xy)
·
(
q(xym)

p(xym)

)I

·
∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣−12I/δ
)

≥ E
q(xym)

[
log

q(xy|m)

p(xy)

]
+ I · E

q(xym)

[
log

q(xym)

p(xym)

]
− 12I

δ
· E
q(xym)

[
log

∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣].
By Equation (6) and the fact that the advantage is always at most 1, each of the expectations
appearing above is non-negative, and so each term is bounded by MI(p, f). This implies

log E
q(xym)

[∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣] ≥ E
q(xym)

[
log

∣∣∣∣ E
q(xy|m)

[
(−1)f

] ∣∣∣∣] ≥ −δMI(p, f)

12I
,

thus giving Equation (56). Moreover,

Mext
I (p, f) ≥ E

q(xym)

[
log

q(xy|m)

p(xy)

]
= E

q(xym)

[
log

q(xy|m)

p(xy|m)

]
+ E

q(xym)

[
log

p(xy|m)

p(xy|m)

]
,

and this implies Equation (55) since the first term in the sum is non-negative.

7. Compressing marginal information

Here we prove Theorem 7. Let p(xym) be a protocol distribution such that p(xy) = µ(xy),
and MI(p, f) = α · I. Let q(xym) be a rectangular distribution that realizes MI(p, f). For a
large constant K, let M = MI(p, f) +KI. Since M(p, f) ≥ 0, we have M ≥ KI. Let g1, g2 be
as in Equation (43).

Let ε be a parameter such that ε ≫ (211M/I
√
C ·M)−1. We define a protocol Γ whose

communication complexity is bounded by

O(M+ log 1/ε+ 27M/I ·
√
CM · log(C/ε)).

Using the assumption that MI(p, f) ≤ αI we see that M ≤ ∆1 · I and log 1/ε ≤ ∆2 · log(CI),
where ∆1,∆2 only depend on α. This implies the bound on the communication in the theorem.

Here is a description of Γ:

1. Jointly sample p(m0). Alice sets mA
0 = m0 and Bob sets mB

0 = m0. Jointly sample
ηA, ηB ∈ [0, 1] uniformly. Jointly sample uniformly random ρ ∈ [0, 1]C . Jointly sample a
uniformly random function h : Z→ {1, . . . , ⌈1/ε⌉}.

2. Run the protocol ψ from Theorem 24 with u = p(m1|mA
0 x), v = p(m1|mB

0 y), L = 6M,
error parameter ε, to obtain functions a, b and transcript s. Alice sets mA

1 = a(ψ(us)),
Bob sets mB

1 = b(ψ(vs)). If mB
1 = ⊥, the protocol terminates. Bob sends a bit to Alice

to indicate whether or not this occurs. The communication complexity of this step is
L+O(log(1/ε)).
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3. Alice and Bob compute mB , mA by setting

mA
i =

{
1 if ρi ≤ p(mi = 1|xmA

<i),

0 otherwise.
(57)

mB
i =

{
1 if ρi ≤ p(mi = 1|ymB

<i),

0 otherwise.
, (58)

for i = 2, . . . , C.

4. Run τ from Theorem 25 to find the smallest j with mA
j ̸= mB

j . If j is even, Alice flips
the value of mA

j to 1−mA
j and recomputes mA

i for i = j + 1, . . . , C using Equation (57).
If j is odd, Bob flips the value of mB

j to 1−mB
j and recomputes mB

i for i = j + 1, . . . , C

using Equation (58). The players repeat this process at most 27M/I
√
CM times. If by this

point τ reports that mA ̸= mB , the players abort. Otherwise, they continue. Let ⟨mA⟩,
⟨mB⟩ denote the final values of mA,mB after this step. The communication complexity
of this step is at most O(27M/I ·

√
CM · log(C/ε)).

5. If ηA ≤ g1(x⟨mA⟩)·2−⌈log g1(x⟨mA⟩)⌉, Alice sends h(⌈log g1(x⟨mA⟩)⌉) to Bob, and otherwise
she sends ⊥ to indicate that the protocol should be aborted.

6. If there is a unique integer z such that

|z + log g2(y⟨mB⟩)| ≤ 3M/I,

h(z) = h(⌈log g1(x⟨mA⟩)⌉),

ηB ≤ g2(y⟨mB⟩) · 2z−3M/I ,

Bob sends sign
(
Eq(xy|⟨mB⟩)[(−1)f ]

)
∈ {±1} to Alice. Otherwise, he sends ⊥ to abort the

protocol.

Let Γ denote the joint distribution of the inputs and transcript of the above protocol. In
order to analyze the protocol, define m by setting m0 = mA

0 = mB
0 , m1 = mA

1 , and setting

mi =

{
1 if ρi ≤ p(mi = 1|xm<i),

0 otherwise
,

when i > 1 is even, and setting

mi =

{
1 if ρi ≤ p(mi = 1|ym<i),

0 otherwise
,

when i > 1 is odd. This definition ensures that

Γ(xym) = p(xym).

For i = 2, 3, . . . , C define

Ei =

{
1 if ρi is in between the numbers p(mi = 1|xm<i) and p(mi = 1|ym<i),

0 otherwise.

Let S and R be the sets defined in Equations (44) and (45) for our choice of K. In addition
to S and R, we need the following sets to analyze the simulating protocol:

Q =
{
xymηAηB : ηA ≤ g1(xm) · 2−⌈log g1(xm)⌉, ηB ≤ g2(ym) · 2⌈log g1(xm)⌉−3M/I

}
,

E = {⟨mA⟩⟨mB⟩m : ⟨mA⟩ = ⟨mB⟩ = m},
Z = {xymh : ∃ a unique integer z with |z + log g2(ym)| ≤ 3M/I and h(z) = h(⌈log g1(xm)⌉)}.
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Let G denote the event that the protocol reaches the final step without aborting, and define
A(xym) ∈ {±1} by

A(xym) = sign
(

E
q(xy|m)

[(−1)f(xy)]
)
· (−1)f(xy).

Our protocol computes f(xy) correctly when: G happens, A(xym) = 1 and m = mB . Since
EZSQ ⊆ G, and E implies m = mB , the advantage of our protocol is at least:

Γ(EZSQ) · E
Γ(xym|EZSQ)

[A(xym)]− Γ(G(EZSQ)c). (59)

We shall prove:

E
Γ(xym|EZQS)

[A(xym)] ≥ Ω(2−δM/(12I)), (60)

Γ(EZSQ) ≥ Ω(2−3M/I), (61)

Γ(G(EZSQ)c) ≤ O(2−4M/I). (62)

By Equation (59), since δ ≤ 1, we can choose K to be large enough to prove the theorem, since
(α+K) ≥ M/I ≥ K.

We first upper bound Γ(G(EZSQ)c). By the union bound, we have:

Γ(G(EZSQ)c) ≤ Γ(GEc) + Γ(Zc|GE) + Γ(ScGEZ) + Γ(Qc|GEZS).

The definition of the protocol ensures that Γ(Zc|GE) = 0. Moreover, we claim that
Γ(Qc|GEZS) = 0, because if the event EZS happens and the parties do not abort, then:

ηA ≤ g1(x⟨mA⟩) · 2⌈log g1(x⟨mA⟩)⌉ = g1(xm) · 2⌈log g1(xm)⌉,

ηB ≤ g2(y⟨mB⟩) · 2z−3M/I = g2(ym) · 2⌈log g1(xm)⌉−3M/I .

The event GEc implies that ψ or τ made an error, leaving Alice and Bob with strings that were
not equal in some step. The probability that this happens is at most

O(ε · (1 + 27M/I
√
C ·M)) ≤ 2−4M/I ,

by our choice of ε. Finally, Γ(ScGEZ) ≤ Γ(ScEZ) ≤ O(εM/I), since if ScGEZ happens then
there must have been a hash collision, which happens with probability at most O(εM/I). This
implies Equation (62).

Now, we turn to proving Equation (61). Let us first estimate Γ(QS). We have,

Γ(QS) =
∑

xym∈S

Γ(xym) · Γ(Q|xym) =
∑

xym∈S

p(xym) · Γ(Q|xym).

For xym ∈ S,

Γ(Q|xym) =
g1(xm) · 2−⌈log g1(xm)⌉ · g2(ym) · 2⌈log g1(xm)⌉

23M/I
=
q(xym)

p(xym)
· 1

23M/I
, (63)

where the first equality follows from the fact that

g2(ym) · 2⌈log g1(xm)⌉ = 2⌈log g1(xm)⌉+log g2(ym) ≤ 23M/I ,

36



by the definition of S. Therefore,

Γ(QS) =
∑

xym∈S

p(xym) · q(xym)

p(xym)
· 1

23M/I
=

q(S)

23M/I

≥ (1− 5 · 2−M/I)

23M/I
= Ω(2−3M/I), (64)

where in the last line, we used Theorem 33.
We claim that for all xym ∈ S,

Γ(Z|xymQS) = Γ(Z|xym) ≥ 1−O(εM/I). (65)

The equality follows by observing that xym determine S and given xym, Z just depends on the
choice of h, which is independent of Q. The event Zc can happen only if there exists an integer
z distinct from ⌈log g1(xm)⌉ such that h(⌈g1(xm)⌉) = h(z) and |z + log g2(ym)| ≤ 3M/I. The
probability that this happens is at most O(ε·M/I). Therefore, Γ(Z|xym) ≥ 1−O(εM/I) ≥ 1/2,
by our choice of ε. We conclude that

Γ(QSZ) = Γ(QS) · Γ(Z|QS) ≥ Ω(2−3M/I), (66)

For all xym ∈ S,

Γ(xym|QSZ) = Γ(xym) · Γ(QSZ|xym)

Γ(QSZ)

=
p(xym)

Γ(QS)
· Γ(Q|xym) · Γ(Z|xymQS)

Γ(Z|QS)

=
p(xym)

Γ(QS)
· q(xym)

p(xym) · 23M/I
· Γ(Z|xymQS)

Γ(Z|QS) (By Equation (63))

=
q(xym)

q(S)
· Γ(Z|xymQS)

Γ(Z|QS) (By Equation (64))

= q(xym|S) · (1±O(εM/I)), (67)

where the last line follows by Equation (65).
Given Equation (66), to complete the proof of Equation (61), it will be enough to prove

that Γ(E|QSZ) ≥ 1/2. We shall prove that

Γ(Ec|QSZ)

≤ Γ(Rc|QSZ) + Γ

(
Ec
∣∣∣∣QSZR, C∑

i=2

Ei ≤ 27M/I ·
√
CM

)
+ Γ

( C∑
i=2

Ei > 27M/I ·
√
CM

∣∣∣QSZ)
≤ O(2−M/I). (68)

By Equation (67) and Theorem 33,

Γ(Rc|QSZ) ≤ q(Rc|S)(1 +O(εM/I)) ≤ 2−M/I+3. (69)

Given QSZR and the event
∑C

i=2Ei ≤ 27M/I ·
√
CM, the event Ec can happen only if τ

or ψ make an error that leaves Alice and Bob with inconsistent messages, or if ψ aborts. We
claim that the probability that ψ makes an error or aborts is at most 2ε. This is because every
xym ∈ R satisfies p(m1|xm0) ≤ 26M · p(m1|m0y), so we can apply Theorem 24. Moreover, the
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probability that τ ever makes an error is at most O(ε27M/I
√
CM) by a union bound. So, we

conclude that

Γ

(
Ec
∣∣∣∣QSZR, C∑

i=2

Ei ≤ 27M/I ·
√
CM

)
≤ O(ε27M/I

√
CM). (70)

We shall prove at the end of this section that

Γ

( C∑
i=2

Ei > 27M/I ·
√
CM

∣∣∣QSZ) < O(2−M/I). (71)

Equations (69) to (71) together prove Equation (68), and so conclude the proof of Equa-
tion (61). Next, we prove Equation (60). Since |A(xym)| ≤ 1, we have

E
Γ(xym|QSZ)

[A(xym)] ≤ Γ(E|QSZ) · E
Γ(xym|QSZE)

[A(xym)] + Γ(Ec|QSZ),

and since Γ(E|QSZ) ≤ 1, this gives

E
Γ(xym|QSZE)

[A(xym)] ≥ E
Γ(xym|QSZ)

[A(xym)]− Γ(Ec|QSZ)

≥ E
q(xym|S)

[A(xym)]−O(εM/I)−O(2−M/I)

(using Equations (67) and (68))

≥ E
q(xym)

[A(xym)]−O(2−M/I) (by Theorem 33)

= E
q(xym)

[
sign

(
E

q(x′y′|m)

[
(−1)f

])
· (−1)f(xy)

]
−O(2−M/I)

= E
q(m)

[∣∣∣∣ E
q(xy|m)

[
(−1)f(xy)

]∣∣∣∣]−O(2−M/I) ≥ Ω(2−δM/(12I)),

by Equation (53). This completes the proof of Equation (60).
It only remains to prove Equation (71). Define the function

t(xym) =

{
min{j : q(xym≤j) < 2−3M/I · p(xym≤j)} if such j exists,

⊥ otherwise.

Note that the function t(xym) is determined by xym≤t(xym).
We have

Γ

( C∑
i=2

Ei > 27M/I ·
√
CM

∣∣∣QSZ) ≤ Γ(t ̸= ⊥|QSZ) + Γ

( C∑
i=2

Ei > 27M/I ·
√
CM

∣∣∣QSZ, t = ⊥),
so let us bound each of these terms.

Γ(t ̸= ⊥|QSZ) ≤ q(t ̸= ⊥|S) · (1 +O(εM/I)) (by Equation (67))

≤ q(t ̸= ⊥) · (1 +O(2−3M/I)) · (1 +O(εM/I)), (by Theorem 33)
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and

q(t ̸= ⊥) =
C∑

j=0

q(t = j) =

C∑
j=0

∑
xym≤j

t(xym)=j

q(xym≤j)

< 2−3M/I ·
C∑

j=0

∑
xym≤j

t(xym)=j

p(xym≤j) = 2−3M/I · p(t ̸= ⊥) ≤ 2−3M/I ,

so we conclude that

Γ(t ̸= ⊥|QSZ) ≤ O(2−3M/I). (72)

Next, we show that

Γ

( C∑
i=2

Ei > 27M/I ·
√
CM

∣∣∣QSZ, t = ⊥) < O(2−M/I),

which would complete the proof of Equation (71). This follows from Markov’s inequality and
the bound

E
Γ

[ C∑
i=2

Ei

∣∣∣QSZ, t = ⊥] ≤ O(26M/I
√
CM), (73)

which we prove next. We have:

E
Γ

[ C∑
i=2

Ei

∣∣∣QSZ, t = ⊥] = C∑
i=2

Γ(Ei = 1, QSZ, t = ⊥)
Γ(QSZ, t = ⊥) (74)

≤ O(23M/I) ·
C∑

i=2

Γ(Ei = 1, t = ⊥). (by Equations (66) and (72))

Moreover,

Γ(Ei = 1, t = ⊥) =
∑

xym<i

Γ(xym<i) · Γ(Ei = 1|xym<i) · Γ(t = ⊥|Ei = 1, xym<i)

=
∑

xym<i

p(xym<i) · ∥p(mi|xm<i)− p(mi|ym<i)∥1 · Γ(t = ⊥|Ei = 1, xym<i)

≤ O(23M/I) ·
∑

xym<i

q(xym<i) · ∥p(mi|xm<i)− p(mi|ym<i)∥1 (75)

Therefore,

E
Γ

[ C∑
i=2

Ei

∣∣∣QSZ, t = ⊥] ≤ O(23M/I) · E
q(xym)

[ C∑
i=2

∥p(mi|xm<i)− p(mi|ym<i)∥1
]

≤ O(23M/I ·
√
CM),

by Equation (52), which completes the proof of Equation (73).
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8. Smoothing protocols

A smooth protocol is a protocol where each message bit is close to being uniformly dis-
tributed:

Definition 39. Given a protocol distribution p(xym) with C messages satisfying m2, . . . ,mC ∈
{0, 1}, we say that the distribution is β-smooth if for all i > 1, |p(mi|xym<i)− 1/2| ≤ β.

Here we prove the following theorem:

Theorem 40. For every Boolean function f , every protocol distribution p(xym) with C mes-
sages satisfying m2, . . . ,mC ∈ {0, 1}, and every β > 0, assuming that Mext

I (p, f) is finite, there
is a β-smooth protocol p′(xym′) with C′ ≤ O(C · log(IC)/β2) messages such that Mext

I (p′, f) ≤
Mext

I (p, f) + 1, and m′
2, . . . ,m

′
C′ ∈ {0, 1}.

Proof. Let q(xym) be a rectangular distribution realizing Mext
I (p, f). Let L > 1 be a large odd

number to be determined. Define the pair of distributions q′(xym′), p′(xym′) as follows. Let
m′

0,m
′
1 have the same support as m0,m1, and let m′

2, . . . ,m
′
C ∈ {0, 1}L. In p′, q′, the i’th

message will correspond to m′
i.

For a ∈ {0, 1}, define the following distributions supported on {0, 1}L:

sa(r) =

L∏
j=1

1

2
+ (−1)a+rj · β

ta(r) = sa
(
r
∣∣(−1)a · L∑

j=1

(−1)rj ≥ 0
)

t′a(r) = sa
(
r
∣∣(−1)a · L∑

j=1

(−1)rj < 0
)
.

In words, sa(r) is the distribution of L independent bits that are biased towards being equal
to a, ta(r) is this distribution conditioned on the event that the majority of the bits is equal
to a and t′a(r) is the distribution conditioned on the event that the majority is not a.

Now we define a protocol distribution p′(xym′) and a rectangular distribution q′(xym′).
Given m′, let D(m′

i) denote the unique string satisfying D(m′
0,m

′
1) = (m′

0,m
′
1), and

(−1)D(m′
i) ·

L∑
j=1

(−1)m
′
i,j ≥ 0.

In other words, D decodes each block of L bits by taking the majority. Below we abuse notation
and write D(m) = D(m0), D(m1), . . . , D(mC).

Define

q′(xym′) = q(xyD(m′)) ·
C∏

i=2

tD(m′)i(m
′
i).

The definition ensures that q′(xym′) is rectangular, and that conditioned on D(m′), xy is
independent of m′. Define the distribution p′(xymm′) as follows:

p′(xym′
0m

′
1) = p(xym′

0m
′
1),

and for i > 1,

p′(mim
′
i|xym<im

′
<i) = p(mi|xy,m<i = D(m′)<i) · smi(m

′
i)
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In words, in the protocol p′(xym′), the parties privately sample each message bit mi accord-
ing to the protocol distribution p. However, instead of sending this sampled bit, they send
m′

i sampled according to smi(m
′
i). After this transmission, they continue the protocol using

D(m′)<i. Strictly speaking, in order to ensure that the new protocol is a protocol distribution,
we require that all the odd bits are transmitted by Alice and all even bits are sent by Bob.
This can be easily achieved by inserting random bits into the transcript, but we leave out the
details here.

There is some small chance that for i > 1, D(m′)i ̸= mi, but by the Chernoff bound,

p′(D(m′)i ̸= mi) ≤ exp(−Ω(β2L)).

We have that for all xym′ in the support of q′,

q′(xym′)

p′(xym′)
=

q(xyD(m′))

p′(xyD(m′))
·

C∏
i=2

tD(m′)i(m
′
i)

p′(m′
i|xyD(m′)≤i)

.

For any xyD(m′) such that q(xyD(m′)) > 0, we can bound

q(xyD(m′))

p′(xyD(m′))
=
q(xyD(m′))

p(xyD(m′))
·

C∏
i=2

p(D(m′)i|xyD(m′)<i)

p′(D(m′)i|xyD(m′)<i)

≤ q(xyD(m′))

p(xyD(m′))
·

C∏
i=2

1

1− exp(−Ω(β2L))
,

where we assumed that p(xyD(m′)) > 0; if p(xyD(m′)) = 0 then q(xyD(m′)) = 0 for otherwise
the marginal information cost would be unbounded. Next,

C∏
i=2

tD(m′)i(m
′
i)

p′(m′
i|xyD(m′)≤i)

=

C∏
i=2

tD(m′)i(m
′
i)

Ep′(mi|xyD(m′)≤i)[p
′(m′

i|xyD(m′)≤i,mi)]

=

C∏
i=2

tD(m′)i(m
′
i)

Ep′(mi|xyD(m′)≤i)[smi(m
′
i|D(m′

i))]

=

C∏
i=2

tD(m′)i(m
′
i)

p′(mi = D(m′)i) · tD(m′)i(m
′
i) + p′(mi ̸= D(m′)i) · t′D(m′)i

(m′
i)

=

C∏
i=2

1

p′(mi = D(m′)i) + p′(mi ̸= D(m′)i) ·
t′
D(m′)i

(m′
i)

tD(m′)i
(m′

i)

≤
C∏

i=2

1

p′(mi = D(m′)i)

≤
C∏

i=2

1

1− exp(−Ω(β2L))
.

So, we obtain the bound:

q′(xym′)

p′(xym′)
=
q(xyD(m′))

p(xyD(m′))
· (1 + 2C exp(−Ω(β2L))).
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Moreover, for all xym′ in the support of q′, we have

q′(xy|m′) =
q′(xym′)

q′(m′)

=
q(xyD(m′)) ·

∏C
i=1 tD(m′)i(m

′
i)

q(D(m′)) ·
∏C

i=1 tD(m′)i(m
′
i)

= q(xy|D(m′)).

Finally, since q′(xy|m′) = q(xy|D(m′)), we have∣∣∣ E
q′(xy|m′)

[(−1)f ]
∣∣∣ = | E

q′(xy|D(m′))
[(−1)f ]

∣∣∣.
Thus, we get that

Mext
I (p′, f) ≤ Mext

I (p, f) + IC · exp(−Ω(β2L)).

Setting L = O(log(IC)/β2) proves the theorem.

Smooth protocols have the feature that the log-ratios of the information terms are tightly
concentrated. To explain this phenomenon, we need to introduce a few definitions. For every
xym in the support of p, and j ≥ 2, define the j-th divergence costs:

dAj (xm) =
∑

2≤i≤j
i odd

E
p(mi|xm<i)

[
log

p(mi|xm<i)

p(mi|m<i)

]
,

dBj (ym) =
∑

2≤i≤j
i even

E
p(mi|ym<i)

[
log

p(mi|ym<i)

p(mi|m<i)

]
,

dj(xym) = dAj (xm) + dBj (ym).

By the non-negativity of divergence, the divergence costs are monotone i.e. dj(xym) ≤
dj+1(xym). Since the protocol is β-smooth, we have

dAj+1(xm)− dAj (xm) ≤ log
1/2 + β

1/2− β ≤ 5β,

dBj+1(ym)− dBj (ym) ≤ log
1/2 + β

1/2− β ≤ 5β. (76)

We say a function r(xym) taking values in {1, . . . , C} is a frontier if every m contains
exactly one prefix of the type m′

≤r(xym′), and that is the prefix m≤r(xym). Alternatively, for
every m,m′ such that r(xym) ̸= r(xym′), it holds that both r(xym) and r(xym′) are larger
than the length of the longest common prefix of m and m′. Given a frontier r(xym), define

Fr,α =
{
xym :

∣∣∣ r(xym)∑
i≥2

log
p(mi|xym<i)

p(mi|m<i)
− dr(xym)(xym)

∣∣∣ ≥ α},
FA
r,α =

{
xym :

∣∣∣ r(xym)∑
i≥2 odd

log
p(mi|xym<i)

p(mi|m≤i)
− dAr(xym)(xm)

∣∣∣ ≥ α},
FB
r,α =

{
xym :

∣∣∣ r(xym)∑
i≥2 even

log
p(mi|xym<i)

p(mi|m≤i)
− dBr(xym)(ym)

∣∣∣ ≥ α}. (77)

42



Lemma 41. Let r(xym) be a frontier such that for every xym, it holds that dr(xym)(xym) ≤ τ .
Then p(Fr,α), p(F

A
r,α) and p(FB

r,α) are all at most 2 exp(−Ω(α2/τ)).

Proof. We prove the inequality for p(Fr,α); the proofs for the other two terms are similar.
Define the random variable z0, z1 . . . where z0 = z1 = 0 and for every i ≥ 2,

zi =

{
log

p(mi|xym<i)

p(mi|m<i)
if i ≤ r(xym)

0 otherwise.

and let ti = zi − Ep(mi|xym<i)[zi]. Then by definition E[ti|t<i] = 0. Moreover, we have

sup(zi|xym<i) ≤ max
mi

{
log

p(mi|xym<i)

p(mi|m<i)

}
≤ log

1/2− β +
√
di(xym)− di−1(xym)

1/2− β
≤ O(

√
di(xym)− di−1(xym)).

Similarly,

inf(zi|xym<i) ≥ log
1/2− β

1/2− β −
√
di(xym)− di−1(xym)

≥ −O(
√
di(xym)− di−1(xym)).

So, if we define L as below, we have

L = sup
xym

C∑
i=2

(sup(ti|xym<i)− inf(ti|xym<i))
2

= sup
xym

C∑
i=2

(sup(zi|xym<i)− inf(zi|xym<i))
2

≤ O(τ).

It is well known that if E[ti] = 0, then E[exp(ti)] ≤ exp((sup(ti)− inf(ti))
2/8) (see Lemma

2.6 in [JHM+98]). We can use this inequality to bound:

E
p(m|xy)

[
exp(

4α

L
·

C∑
i=2

ti)
]
≤ E

p(m≤2|xy)

[
exp(

4α

L
t2) · E

p(m|xym<3)

[
exp(

4α

L
·

C∑
i=3

ti)
]]

≤ . . .

≤ exp
( (4α/L)2 supxym

∑C
i=2(sup(ti|xym<i)− inf(ti|xym<i))

2

8

)
≤ exp

(
2α2/L

)
.

So by Markov’s inequality, we get:

p(

C∑
i=2

ti > α) ≤ E
[
exp(

4α

L
·

C∑
i=2

ti)
]
· exp(−4α2/L) ≤ exp(−Ω(α2/τ)).

Applying the same argument with ti = −ti proves the other inequality. Defining zi, ti appro-
priately proves the other inequalities using the same proof.
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9. Compressing external marginal information

Here we prove Theorem 8. Set Mext = Mext
I (p, f) + KI, for a large constant K to be

chosen later. By Theorem 40, it is no loss of generality to assume that p is β-smooth, with
β = 1/(K log(C25M

ext/I)). Let g1, g2 be as in Equation (43).
Define:

rAi (xm) =

{
min{j : dAj (xm) > 20β + dAi−1(xm)} if such j exists,

C otherwise.

rBi (ym) =

{
min{j : dBj (ym) > 20β + dBi−1(ym)} if such j exists,

C otherwise.

Note that rAi (xm) is always odd, and rBi (ym) is always even.
Because p is a protocol, we have

E
p(xy|m)

[dAj (xm) + dBj (ym)] = dj(m).

Let ε be a parameter such that ε≪ 2−5Mext/I . Now, we describe a protocol Γ for computing
f(xy). Throughout this protocol, the parties will maintain a partial transcript m<i. These
partial transcripts may be inconsistent with each other, but we describe the protocol assuming
that they are consistent with each other. In the analysis we shall show that the probability
that the parties end up with inconsistent transcripts is negligible.

1. The parties sample m0 using the distribution p(m0). The parties also sample a uniformly
random function h : Z→ {1, 2, . . . , ⌈1/ε⌉}.

2. Run the protocol ψ from Theorem 24 with u = p(m1|m0x), v = p(m1|m0), L = 5Mext,
error parameter ε, to obtain functions a, b and transcript s. Alice sets mA

1 = a(ψ(us)),
Bob sets mB

1 = b(ψ(vs)). If mB
1 = ⊥, the protocol terminates. Bob sends a bit to Alice

to indicate whether or not this occurs. The communication complexity of this step is
L+O(log(1/ε)).

3. Let m≤ℓ denote the part of the transcript sampled so far. Alice and Bob repeat the
following steps until m corresponds to an entire transcript.

(a) Both parties use shared randomness to sample a full transcript m̃ according to
p(m|m≤ℓ). They exchange the values of rAℓ+1(xm̃) and rBℓ+1(ym̃) to determine

k = min{rAℓ+1(xm̃), rBℓ+1(ym̃)}.

(b) Alice privately samples a number ζA ∈ [0, 1] and sends 1 to Bob if

ζA ≤ 1

2
·

k∏
i=ℓ+2
i odd

p(m̃i|xm̃<i)

p(m̃i|m̃<i)
,

and otherwise sends 0.

(c) Bob privately samples a number ζB ∈ [0, 1] and sends 1 to Alice if

ζB ≤ 1

2
·

k∏
i=ℓ+2
i even

p(m̃i|ym̃<i)

p(m̃i|m̃<i)
,

and otherwise sends 0.
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(d) If both players receive 1 then, set m≤k ← m̃≤k.

4. If ηA ≤ g1(xm) · 2−⌈log g1(xm)⌉, Alice sends h(⌈log g1(xm)⌉) to Bob, and otherwise she
sends ⊥ to indicate that the protocol should be aborted.

5. If there is a unique integer z such that

|z + log g2(ym)| ≤ 3Mext/I,

h(z) = h(⌈log g1(xm)⌉),

ηB ≤ g2(ym) · 2z−3Mext/I ,

Bob sends sign
(
Eq(xy|m)[(−1)f ]

)
∈ {±1} to Alice. Otherwise, he sends ⊥ to abort the

protocol.

To ensure the communication of the protocol is small, in our final protocol the parties abort
and output a random bit if the communication in step 3 exceeds (Mext ·215M

ext/I ·logC)/β. Then,
the total communication is at most

5Mext +
Mext · 215M

ext/I · logC
β

+O(log 1/ε) = O(Mext · 215M
ext/I · log2(C · 25M

ext/I)) ≤ ∆ · I log2 C,

for some ∆ that depends only on α since Mext ≤ (α+K)I.
Throughout the analysis below, we assume that in step 2, Alice always samples a message

according to u, and Bob either accepts this sample or aborts, but never samples an inconsistent
message. We can afford to make this assumption, because the probability of Bob sampling an
inconsistent message without aborting is bounded by ε, which will be much smaller than our
final advantage. Moreover, if Alice and Bob sample consistently in step 2 then the transcript
they end up with after step 3 must be the same.

Let S and R be the sets defined in Equations (47) and (48) for our choice of K. In addition
to S and R, we need the following sets to analyze the simulating protocol:

Q =
{
xymηAηB : ηA ≤ g1(xm) · 2−⌈log g1(xm)⌉, ηB ≤ g2(ym) · 2⌈log g1(xm)⌉−3Mext/I

}
,

Z =
{
xymh : ∃ unique integer z with |z + log g2(ym)| ≤ 3Mext

I
and h(z) = h(⌈log g1(xm)⌉)

}
.

Let G denote the event that the protocol reaches the final step without aborting and having
communicated at most (Mext · 215M

ext/I · logC)/β bits in step 3. Define A(xym) ∈ {±1} by

A(xym) = sign
(

E
q(xy|m)

[(−1)f(xy)]
)
· (−1)f(xy).

Our protocol computes f(xy) correctly when G happens and A(xym) = 1. The advantage of
the protocol is at least

Γ(ZQSG) · E
Γ
[A(xym)|ZQSG]− Γ(G(ZQS)c) (78)

We shall prove:

E
Γ
[A(xym)|ZQSG] ≥ Ω(2−δMext/(12I)), (79)

Γ(ZQSG) ≥ Ω(2−3Mext/I), (80)

Γ(G(ZQS)c) ≤ O(2−4Mext/I). (81)
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By Equation (78), since δ ≤ 1, we can choose K to be large enough to prove the theorem, since
α+K ≥ Mext/I ≥ K.

We first prove Equation (81). By the union bound, we have:

Γ(G(ZQS)c) ≤ Γ(ZcG) + Γ(ScGZ) + Γ(QcGZS).

The definition of the protocol ensures that Γ(ZcG) = 0. Moreover, Γ(QcGZS) = 0, because
if the event ZS happens and the parties do not abort, then:

ηA ≤ g1(xm) · 2⌈log g1(xm)⌉ and

ηB ≤ g2(ym) · 2z−3Mext/I = g2(ym) · 2⌈log g1(xm)⌉−3Mext/I .

Additionally, Γ(ScGZ) ≤ Γ(ScZ) ≤ O(εM/I), since if ScZ happens then there must have been
a hash collision, which happens with probability at most O(εM/I).

In order to prove Equations (79) and (80), we need to first establish that Γ(xym) is typically
quite close to p(xym). Indeed, consider a particular execution of step 3 in the protocol. At
this point, some prefix m≤ℓ has been fixed. For m consistent with this prefix m≤ℓ, define the
frontier

r(xym) = min{rAℓ+1(xm), rBℓ+1(ym)}.

When the parties finally accept a sample, it will be a string m≤r(xym) on the frontier. By the
definition of rAℓ+1, r

B
ℓ+1, and by Equation (76), we have that for allm, dr(xym)(m)−dℓ(m) ≤ 45β.

Setting τ = 45β and α = 1/4, we apply Theorem 41 to conclude that if

FA =
{
xym :

r(xym)∏
j=ℓ+1 odd

p(mj |xym≤ℓ) ≥ 2 ·
r(xym)∏

j=ℓ+1 odd

p(m≤r(xym)|m≤ℓ)
}
,

FB =
{
xym :

r(xym)∏
j=ℓ+1 even

p(mj |xym≤ℓ) ≥ 2 ·
r(xym)∏

j=ℓ+1 even

p(m≤r(xym)|m≤ℓ)
}
.

then

p(FA ∪ FB |xym≤ℓ) ≤ 4 exp(−Ω(1/β)) ≤ C−1 · 2−5Mext/I . (82)

Now, we perform a standard analysis of rejection sampling. Let W denote the event that the
first sample of mr(xym) is accepted in the protocol. Given xym≤ℓ, the probability that W
occurs is

Γ(W |xym≤ℓ) ≥
∑

m′
r(xym′):xym

′
r(xym)

/∈FA∪FB

p(m′
≤r(xym′)|xym≤ℓ)/4

≥ 1/4− p(FA ∪ FB |xym≤ℓ)/4 ≥ 1/4− C−1 · 2−5Mext/I ≥ 1/8, (83)

where here we abused notation to write xym′
r(xym) /∈ FA ∪ FB to mean that the prefix is not

consistent with any m in FA ∪ FB .
It is clear that the sampled point is independent of the event ¬W , so it is also independent

of W . So, the probability that a particular prefix mr(xym) is sampled is the same as the
probability that it is sampled conditioned onW . Whenmr(xym) is not consistent with F

A∪FB ,
the probability of such a point is

p(m≤r(xym)|xym≤ℓ)/4

1/4− p(FA ∪ FB |xym≤ℓ)/4
= p(m≤r(xym)|xym≤ℓ) · (1±O(C−1 · 2−5Mext/I)). (84)
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Let B denote the event that the final sample xym is such that at some point a prefix was
sampled in FA ∪ FB during step 3. Whenever step 3 accepts a sample, the length of the
transcript increases by at least 1, so the number of times step 3 accepts a sample is at most C.
Thus, by the union bound and Equation (82),

p(B) ≤ O(2−5Mext/I). (85)

Moreover, by Equation (84), for xym /∈ B,

Γ(xym) = p(xym) · (1±O(2−5Mext/I)). (86)

Equations (85) and (86) imply

Γ(B) = 1− Γ(Bc) ≤ 1− p(Bc) · (1−O(2−5Mext/I)) ≤ O(2−5Mext/I). (87)

Additionally, we have

q(SBc) = q(S)− q(BS) ≥ q(S)− 23M
ext/I · p(B) ≥ 1− Ω(2−M/I), (88)

by the definition of S, Theorem 33 and Eq. (85).
Now we can begin to understand Γ(ZQSG). For xym ∈ S,

Γ(Q|xym) =
g1(xm) · 2−⌈log g1(xm)⌉ · g2(ym) · 2⌈log g1(xm)⌉

23Mext/I
=
q(xym)

p(xym)
· 1

23Mext/I
, (89)

where the first equality follows from the fact that

g2(ym) · 2⌈log g1(xm)⌉ = 2⌈log g1(xm)⌉+log g2(ym) ≤ 23M/I ,

by the definition of S.
We can bound

Γ(QSBc) =
∑

xym∈S∩Bc

Γ(xym) · Γ(Q|xym)

=
∑

xym∈S∩Bc

p(xym) · Γ(Q|xym) · (1±O(2−5Mext/I)). (by Equation (86))

= 2−3Mext/I · q(SBc) · (1±O(2−5Mext/I)) (90)

= Ω(2−3Mext/I), (91)

by Equations (85) and (88). We claim that for all xym ∈ SBc,

Γ(Z|xymQSBc) = Γ(Z|xym) ≥ 1−O(εMext/I). (92)

The equality follows by observing that xym determine SBc, and given xym, Z just depends on
the choice of h, which is independent of Q. The inequality follows from the fact that for each
xym in S, the event Zc can happen only if there exists an integer z distinct from ⌈log g1(xm)⌉
such that h(⌈log g1(xm)⌉) = h(z) and |z + log g2(ym)| ≤ 3Mext/I. The probability that this
happens is at most O(ε ·Mext/I). In particular, this implies

Γ(Z|QS) ≥ 1−O(εMext/I). (93)
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For xym ∈ S ∩Bc, we have

Γ(xym|ZQSBc) =
Γ(xym) · Γ(ZQSBc|xym)

Γ(ZQSBc)

=
p(xym) · Γ(Q|xym) · Γ(Z|xym)

Γ(ZQSBc)
· (1±O(2−5Mext/I))

(by Equation (86), and since xym determine S,Bc)

=
p(xym)

Γ(QSBc)
· q(xym)

p(xym) · 23Mext/I
· Γ(Z|xym)

Γ(Z|QSBc)
· (1±O(2−5Mext/I))

(By Equation (89))

=
q(xym)

q(SBc)
· (1±O(εMext/I + 2−5Mext/I)). (By Equations (90) and (92))

= q(xym|SBc) · (1±O(εMext/I + 2−5Mext/I)). (94)

To argue that the protocol does not have too much communication, we show that typically
the divergence costs of the accepted transcripts are small. Define the sets

H = {xym : log
p(m|xy)
p(m)

≤ Mext · 210M
ext/I},

F = {xym : dC(xym) > 2Mext · 210M
ext/I}

and the frontier

r(xym) =

{
min{i : di(xym) > 2Mext · 210M

ext/I} if such i exists,

C otherwise.

We have F ∩H ⊆ F
r,Mext·210Mext/I , where Fr,Mext·210Mext/I is the set from Equation (77). By

Equation (76), and the the choice of r, dr(xym)(xym) ≤ 2Mext · 210M
ext/I + 5β, so we can apply

Theorem 41 to conclude that

p(FH) ≤ p(F
r,Mext·210Mext/I ) ≤ 2 exp(−Ω(Mext · 210M

ext/I)). (95)

We have

q(F |SBc) ≤ q(FS)

q(SBc)

≤ q(FHS) + q(Hc)

q(SBc)

≤ O(q(FHS) + q(Hc)) (by Equation (88))

≤ O(q(FHS) + 2−10Mext/I) (by Markov’s inequality and Equation (55))

≤ O(p(FHS) · 23M
ext/I + 2−10Mext/I) (using the definition of S)

≤ O(exp(−Ω(Mext · 210M
ext/I)) · 23M

ext/I + 2−10Mext/I),

by Equation (95). Putting this bound back into Equation (94), we get

Γ(F |ZQSBc) ≤ O(2−10Mext/I) (96)

We note that every time step 3 accepts a sample, the divergence cost of the transcript
increases by 20β, and in expectation, the number of rounds of rejection sampling involved to
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accept a sample is at most 8 by Equation (83) and a standard calculation. Moreover, in each
round, the players communicate at most 2+2 logC bits to exchange two indices in {1, . . . , C}.
Hence, given xy and a transcript m the expected communication to sample m is at most
16 · (1 + logC) · dC(xym)/(20β). Recall that G occurs when the protocol reaches the final step

having communicated at most (Mext · 215M
ext/I · logC)/β. Thus, Markov’s inequality implies

that

Γ(G|ZQSBcF c) = 1−O(2−5Mext/I). (97)

So, we can conclude that

Γ(ZQSG) ≥ Γ(ZQSBcF cG)
≥ Γ(QSBc) · Γ(Z|QSBc) · Γ(F c|ZQSBc) · Γ(G|ZQSBcF c)

≥ Ω(2−3Mext/I), (by Equations (91), (92), (96) and (97))

proving Equation (80). Observe that by Equations (80), (87) and (96),

Γ(B|ZQSG) ≤ Γ(B)

Γ(ZQSG) ≤ O(2−2Mext/I), (98)

Γ(F |ZQSG) ≤ Γ(FZQSBc) + Γ(B)

Γ(ZQSG) ≤ O(2−2Mext/I). (99)

Moreover, we have

E
Γ
[A(xym)|ZQSBcF c] ≤ Γ(G|ZQSBcF c) · E

Γ
[A(xym)|ZQSGBcF c] + Γ(Gc|ZQSBcF c)

≤ E
Γ
[A(xym)|ZQSGBcF c] +O(2−5Mext/I), (100)

E
Γ
[A(xym)|ZQSBc] ≤ Γ(F c|ZQSBc) · E

Γ
[A(xym)|ZQSBcF c] + Γ(F |ZQSBc)

≤ E
Γ
[A(xym)|ZQSBcF c] +O(2−10Mext/I), (101)

by Equation (96).
We are now ready to prove Equation (79). We have

E
Γ
[A(xym)|ZQSG]

≥ Γ(BcF c|ZQSG) · E
Γ
[A(xym)|ZQSGBcF c]− Γ(B|ZQSG)− Γ(F |ZQSG)

≥ (1−O(2−2Mext/I)) · E
Γ
[A(xym)|ZQSGBcF c]− Ω(2−2Mext/I) (by Equations (98) and (99))

≥ (1/2) · E
Γ
[A(xym)|ZQSBcF c]− Ω(2−5Mext/I)− Ω(2−2Mext/I) (by Equation (100))

≥ (1/2) · E
Γ
[A(xym)|ZQSBc]− Ω(2−10Mext/I)− Ω(2−2Mext/I) (by Equation (101))

≥ (1/4) · E
q
[A(xym)|SBc]− Ω(2−2Mext/I) (by Equation (94))

≥ (1/4) · E
q(xym)

[A(xym)]− Ω(2−Mext/I) (by Equation (88))

= (1/4) · E
q(xym)

[
sign

(
E

q(x′y′|m)

[
(−1)f

])
· (−1)f(xy)

]
− Ω(2−Mext/I)

= (1/4) · E
q(m)

[∣∣∣∣ E
q(xy|m)

[
(−1)f(xy)

]∣∣∣∣]− Ω(2−Mext/I)

≥ Ω(2−δMext/(12I)). (by Equation (56))
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This concludes the proof of the theorem.

10. Compressing bounded-round protocols

We prove the Theorem 10 in this section. Let p(xym) be a protocol distribution such that
p(xy) = µ(xy). We have m = (m0, . . . ,mr), which is the transcript consisting of r messages
along with the shared randomness. By assumption, MI(p, f) = αI, andmr ∈ {0, 1}. We assume
without loss of generality that r is even. Let q(xym) be a rectangular distribution that realizes
MI(p, f). For a large constant K, let M = MI(p, f)+KI. Since M(p, f) ≥ 0, we have M ≥ KI.
Let g1, g2 be as in Equation (43). Let ε be a parameter such that ε = (24M/I · (r + 1))−1.

We define a protocol Γ whose communication complexity is bounded by

O(r · (M+ log(r/ε))).

Since MI(p, f) = αI we get that M ≤ (α + K) · I, and it follows that the communication is
bounded by ∆r(I + log r) for some ∆ that only depends on α. Now, we describe Γ.

1. Jointly sample p(m0). Alice sets mA
0 = m0 and Bob sets mB

0 = m0. Jointly sample
ηA0 , η

A
1 , η

B ∈ [0, 1] uniformly and independently. Jointly sample a uniformly random
function h : Z→ {1, . . . , ⌈1/ε⌉}.

2. For each i ∈ {1, . . . , r − 1} :
(a) If i is odd, run the protocol ψ from Theorem 24 with u = p(mi|mA

<ix), v =
p(mi|mB

<iy), L = 14M + 5 log(r + 1) and error parameter ε, to obtain functions
ai, bi and transcript s. Alice sets mA

i = ai(us), Bob sets mB
i = bi(vs). If mB

i = ⊥,
Bob signals to abort in the next round and sends a random bit to Alice, which they
both output.

(b) If i is even, run the protocol ψ from Theorem 24 with u = p(mi|mB
<iy), v =

p(mi|mA
<ix), L = 14M + 5 log(r + 1) and error parameter ε, to obtain functions

ai, bi and transcript s. Bob sets mB
i = ai(us), Alice sets mA

i = bi(vs). If mA
i = ⊥,

Alice signals to abort in the next round and sends a random bit to Bob, which they
both output.

Let ⟨mA⟩, ⟨mB⟩ denote the values of mA and mB after the first r − 1 rounds.

3. For each b ∈ {0, 1}, Alice sends a message to Bob. If ηAb ≤ log g1(x⟨mA⟩b)·2−⌈log g1(x⟨mA⟩b)⌉,
Alice sends h(⌈log g1(x⟨mA⟩b)⌉) to Bob, otherwise she sends 0.

4. Bob samples a bit b according to p(mr|⟨mB⟩y). If there is a unique integer z such that

|z + log g2(y⟨mB⟩b)| ≤ 3M/I,

h(z) = h(⌈log g1(x⟨mA⟩b)⌉),

ηB ≤ g2(y⟨mB⟩b) · 2z−3M/I ,

Bob sends sign
(
Eq(xy|⟨mB⟩b)[(−1)f ]

)
∈ {±1} to Alice. Otherwise, he sends ⊥ to abort

the protocol.

We note that the above protocol involves at most r rounds of communication, and in each
of the first r − 1 rounds, the communication from step 2 is at most

14M+ 5 log(r + 1) +O(log 1/ε) ≤ O(M+ log(r/ε)).

In step 3, Alice additionally sends O(log 1/ε) bits for the hashes. Hence, the total communica-
tion is at most O(r · (M+ log(r/ε))).
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We may assume that at the beginning of Γ, the players sample r independent random tapes,
where the i-th random tape is used for the i-th execution of the protocol ψ from Theorem 24
in step 2 of Γ. Given this assumption, define m as follows: m0 = mA

0 = mB
0 , and for all i ≥ 1,

mi = ai(p(mi|m<ixy)s), where s is a transcript of the protocol ψ from Theorem 24 that is
determined given x, y,m<i and the i-th random tape, and ai is the function promised by the
lemma. From item 1 of Theorem 24, it is clear that Γ(xym) = p(xym).

Let S be the set defined in Equation (44) for our choice of K. In addition to S, we need
the following sets to analyze the simulating protocol.

Q =
{
xymηAmr

ηB : ηAmr
≤ g1(xm) · 2−⌈log g1(xm)⌉, ηB ≤ g2(ym) · 2⌈log g1(xm)⌉−3M/I

}
,

E = {⟨mA⟩⟨mB⟩m<r : ⟨mA⟩ = ⟨mB⟩ = m<r},
Z = {xymh : ∃ a unique integer z with |z + log g2(ym)| ≤ 3M/I and h(z) = h(⌈log g1(xm)⌉)}.

Let G denote the event that the protocol reaches the final step without aborting, and define
A(xym) ∈ {±1} by

A(xym) = sign
(

E
q(xy|m)

[(−1)f(xy)]
)
· (−1)f(xy).

Our protocol computes f(xy) correctly when: G happens, A(xym) = 1 and m<r = ⟨mB⟩.
Since EZSQ ⊆ G, and E implies m<r = ⟨mB⟩, the advantage of our protocol is at least:

Γ(EZSQ) · E
Γ(xym|EZSQ)

[A(xym)]− Γ(G(EZSQ)c). (102)

We shall prove each of the following bounds:

E
Γ(xym|EZQS)

[A(xym)] ≥ Ω(2−δM/(12I)), (103)

Γ(EZQS) ≥ Ω(2−3M/I), (104)

Γ(G(EZSQ)c) ≤ O(2−4M/I). (105)

Because δ ≤ 1 and (α + K) ≥ M/I ≥ K, we can choose K to be large enough to prove the
theorem.

We first upper bound Γ(G(EZSQ)c). By the union bound, we have:

Γ(G(EZSQ)c) ≤ Γ(GEc) + Γ(Zc|GE) + Γ(ScGEZ) + Γ(Qc|GEZS).

The definition of the protocol ensures that Γ(Zc|GE) = 0. Moreover, we claim that
Γ(Qc|GEZS) = 0, because if the event EZS happens and the parties do not abort, then

ηAmr
≤ g1(x⟨mA⟩mr) · 2⌈log g1(x⟨mA⟩mr)⌉ = g1(xm) · 2⌈log g1(xm)⌉,

ηB ≤ g2(y⟨mB⟩mr) · 2z−3M/I = g2(ym) · 2⌈log g1(xm)⌉−3M/I .

The event GEc implies that ψ made an error in one of the r rounds, leaving Alice and Bob
with strings that were not equal. The probability that this happens is at most ε · r ≤ 2−4M/I ,
by our choice of ε. Finally, Γ(ScGEZ) ≤ Γ(ScEZ) ≤ O(εM/I), since if ScEZ happens then
there must have been a hash collision, which happens with probability at most O(εM/I). This
implies Equation (105).

Now, we turn to proving Equation (104). Let us first estimate Γ(QS). We have,

Γ(QS) =
∑

xym∈S

Γ(xym) · Γ(Q|xym) =
∑

xym∈S

p(xym) · Γ(Q|xym).
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For xym ∈ S,

Γ(Q|xym) =
g1(xm) · 2−⌈log g1(xm)⌉ · g2(ym) · 2⌈log g1(xm)⌉

23M/I
=
q(xym)

p(xym)
· 1

23M/I
, (106)

where the first equality follows from the fact that

g2(ym) · 2⌈log g1(xm)⌉ = 2⌈log g1(xm)⌉+log g2(ym) ≤ 23M/I ,

by the definition of S. Therefore,

Γ(QS) =
∑

xym∈S

p(xym) · q(xym)

p(xym)
· 1

23M/I
=

q(S)

23M/I

≥ (1− 5 · 2−M/I)

23M/I
= Ω(2−3M/I), (107)

where in the last line, we used Theorem 33.
We claim that for all xym ∈ S,

Γ(Z|xymQS) = Γ(Z|xym) ≥ 1−O(εM/I). (108)

The equality follows by noting that xym determine S and given xym, Z just depends on the
choice of h, which is independent of Q. The event Zc can happen only if there exists an integer
z distinct from ⌈log g1(xm)⌉ such that h(⌈g1(xm)⌉) = h(z) and |z + log g2(ym)| ≤ 3M/I. The
probability that this happens is at most O(ε·M/I). Therefore, Γ(Z|xym) ≥ 1−O(εM/I) ≥ 1/2,
by our choice of ε. We conclude that

Γ(QSZ) = Γ(QS) · Γ(Z|QS) ≥ Ω(2−3M/I), (109)

For all xym ∈ S,

Γ(xym|QSZ) = Γ(xym) · Γ(QSZ|xym)

Γ(QSZ)

=
p(xym)

Γ(QS)
· Γ(Q|xym) · Γ(Z|xymQS)

Γ(Z|QS)

=
p(xym)

Γ(QS)
· q(xym)

p(xym) · 23M/I
· Γ(Z|xymQS)

Γ(Z|QS) (By Equation (106))

=
q(xym)

q(S)
· Γ(Z|xymQS)

Γ(Z|QS) (By Equation (107))

= q(xym|S) · (1±O(εM/I)), (110)

where the last line follows from Equation (108).
Given Equation (109), to complete the proof of Equation (104), it will be enough to prove

that Γ(E|QSZ) ≥ 1/2. Let T be the set TK defined in Theorem 35 for our choice of K. We
have

Γ(Ec|QSZ) ≤ Γ(T c|QSZ) + Γ(Ec|QSZT )
≤ q(T c|S) · (1 +O(εM/I)) + Γ(Ec|QSZT ) (By Equation (110))

≤ O(2−M/I) + Γ(Ec|QSZT ) (By Theorem 35)

≤ O(2−M/I) + 2ε · r ≤ O(2−M/I) ≤ 1/2 (111)
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where in the last line, we used the fact that given QSZT , item 2 and 3 of Theorem 24 guarantee
that Ec can only happen with probability at most 2ε in each of the r rounds. Equations (109)
and (111) together prove Equation (104).

Next, we prove Equation (103). Since |A(xym)| ≤ 1, we have

E
Γ(xym|QSZ)

[A(xym)] ≤ Γ(E|QSZ) · E
Γ(xym|QSZE)

[A(xym)] + Γ(Ec|QSZ),

and since Γ(E|QSZ) ≤ 1, this gives

E
Γ(xym|QSZE)

[A(xym)] ≥ E
Γ(xym|QSZ)

[A(xym)]− Γ(Ec|QSZ)

≥ E
q(xym|S)

[A(xym)]− Ω(εM/I + 2−M/I)

(using Equations (110) and (111))

≥ E
q(xym)

[A(xym)]− Ω(2−M/I) (by Theorem 33)

= E
q(xym)

[
sign

(
E

q(x′y′|m)

[
(−1)f

])
· (−1)f(xy)

]
− Ω(2−M/I)

= E
q(m)

[∣∣∣∣ E
q(xy|m)

[
(−1)f(xy)

]∣∣∣∣]− Ω(2−M/I) ≥ Ω(2−δM/(12I)),

by Equation (53). This completes the proof of Equation (103).

11. Compression independent of communication

In this section, we prove Theorem 9. Let K be a sufficiently large constant to be determined
later. Let p(xym) be a protocol distribution such that p(xy) = µ(xy) and MI(p, f) ≤ αI. Let
q(xym) be a rectangular distribution that realizes MI(p, f).

Define M = MI(p, f) + KI. Since M(p, f) ≥ 0, we have M ≥ KI. Let g1, g2 be as in
Equation (43). Let ε be a parameter such that ε = 2−6M/I−8M. We define a protocol Γ whose
communication complexity is bounded by

2 log 1/ε ≤ O(6M/I + 8M) = ∆I,

for some ∆ that depends only on α.
We describe the protocol Γ.

1. Jointly sample ηA, ηB ∈ [0, 1] uniformly. Jointly sample two uniformly random functions
h, t : Z→ {1, . . . , ⌈1/ε⌉}.

2. Jointly sample an infinite sequence of triples (m1, ρ1A, ρ
1
B), (m

2, ρ2A, ρ
2
B), . . . , where m

i

is sampled uniformly at random from the set of all transcripts and ρiA, ρ
i
B are sampled

uniformly at random in [0, 1].

3. Alice finds the first index iA such that

ρiAA ≤
∏

j odd

p(miA
j |xm

iA
<j),

ρiAB ≤ 26M ·
∏

j even

p(miA
j |xm

iA
<j).

Alice checks if ηA ≤ g1(xmiA)·2⌈log g1(xm
iA )⌉, in which case she sends t(iA) and h(⌈log g1(xmiA)⌉)

to Bob. Otherwise, she sends ⊥ signaling to abort.
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4. Bob finds the first index iB such that

ρiBA ≤ 26M ·
∏

j odd

p(miB
j |ym

iB
<j),

ρiBB ≤
∏

j even

p(miB
j |ym

iB
<j).

If t(iB) = t(iA), he checks if there is a unique integer z such that

|z + log g2(ym
iB )| ≤ 3M/I,

h(z) = h(⌈log g1(xmiA)⌉),

ηB ≤ g2(ymiB ) · 2z−3M/I ,

If all these conditions are satisfied, he sends sign
(
Eq(xy|miB )[(−1)

f ]
)
∈ {±1} to Alice.

Otherwise, he sends ⊥ to abort the protocol.

The protocol has the feature that Alice sends at most 2 log 1/ε bits to Bob. Let i∗ be the
smallest index such that∏

j odd

p(mi∗
j |xm

i∗
<j) ≥ ρ

i∗
A and

∏
j even

p(mi∗
j |xm

i∗
<j) ≥ ρ

i∗
B .

Let m = mi∗ . We note that Γ(xym) = p(xym).
Let S and T be the sets defined in Equation (44) and Equation (51) respectively for our

choice of K. In addition to S, we need the following sets to analyze the simulating protocol:

Q =
{
xymηAηB : ηA ≤ g1(xm) · 2−⌈log g1(xm)⌉, ηB ≤ g2(ym) · 2⌈log g1(xm)⌉−3M/I

}
,

E =
{
iAiBi∗ : iA = iB = i∗

}
,

Z =
{
xymh : ∃ a unique integer z with |z + log g2(ym)| ≤ 3M

I
and h(z) = h(⌈log g1(xm)⌉)

}
.

Let G denote the event that the protocol reaches the final step without aborting, and define
A(xym) ∈ {±1} by

A(xym) = sign
(

E
q(xy|m)

[(−1)f(xy)]
)
· (−1)f(xy).

Our protocol computes f(xy) correctly when: G happens, A(xym) = 1 and m = miB . Since
EZSQ ⊆ G, and E implies m = miB , the advantage of our protocol is at least:

Γ(EZSQ) · E
Γ(xym|EZSQ)

[A(xym)]− Γ(G(EZSQ)c). (112)

We shall prove:

E
Γ(xym|EZSQ)

[A(xym)] ≥ Ω(2−δM/(12I)), (113)

Γ(EZSQ) ≥ Ω(2−6M/I−6M), (114)

Γ(G(EZSQ)c) ≤ O(2−6M/I−7M). (115)

By Equation (112), since δ ≤ 1, we can choose K to be large enough to prove the theorem,
since α+K ≥ M/I ≥ K.
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We first upper bound Γ(G(EZSQ)c). By the union bound, we have:

Γ(G(EZSQ)c) ≤ Γ(GEc) + Γ(Zc|GE) + Γ(ScGEZ) + Γ(Qc|GEZS).

The definition of the protocol ensures that Γ(Zc|GE) = 0. Moreover, we claim that
Γ(Qc|GEZS) = 0, because if the event EZS happens and the parties do not abort, then:

ηA ≤ g1(xmiA) · 2⌈log g1(xm
iA )⌉ = g1(xm) · 2⌈log g1(xm)⌉,

ηB ≤ g2(ymiB ) · 2z−3M/I = g2(ym) · 2⌈log g1(xm)⌉−3M/I .

The event GEc implies that there was a hash error for the triples accepted by Alice and Bob. The
probability of this happening is at most ε. Finally, Γ(ScGEZ) ≤ Γ(ScEZ) ≤ O(εM/I), since if
ScEZ happens then there must have been a hash collision, which happens with also occurs with
probability at most 2ε. By our choice of ε, the total error is bounded by 2−6M/I−8M(2+M/I) ≤
2−6M/I−7M, for K sufficiently large. This implies Equation (115).

Let us estimate Γ(QS). We have,

Γ(QS) =
∑

xym∈S

Γ(xym) · Γ(Q|xym) =
∑

xym∈S

p(xym) · Γ(Q|xym).

For xym ∈ S,

Γ(Q|xym) =
g1(xm) · 2−⌈log g1(xm)⌉ · g2(ym) · 2⌈log g1(xm)⌉

23M/I
=
q(xym)

p(xym)
· 1

23M/I
, (116)

where the first equality follows from the fact that

g2(ym) · 2⌈log g1(xm)⌉ = 2⌈log g1(xm)⌉+log g2(ym) ≤ 23M/I ,

by the definition of S. Therefore,

Γ(QS) =
∑

xym∈S

p(xym) · q(xym)

p(xym)
· 1

23M/I
=

q(S)

23M/I

≥ (1− 5 · 2−M/I)

23M/I
= Ω(2−3M/I), (117)

where in the last line, we used Theorem 33.
We claim that for all xym ∈ S,

Γ(Z|xymQS) = Γ(Z|xym) ≥ 1−O(εM/I). (118)

The equality follows by observing that xym determine S and given xym, Z just depends on the
choice of h, which is independent of Q. The event Zc can happen only if there exists an integer
z distinct from ⌈log g1(xm)⌉ such that h(⌈g1(xm)⌉) = h(z) and |z + log g2(ym)| ≤ 3M/I. The
probability that this happens is at most O(ε·M/I). Therefore, Γ(Z|xym) ≥ 1−O(εM/I) ≥ 1/2,
by our choice of ε. We conclude that

Γ(QSZ) = Γ(QS) · Γ(Z|QS) ≥ Ω(2−3M/I), (119)

Let W be the event that min{iA, iB , i∗} = 1 and let T be the set defined in Equation (51)
for our choice of K. We claim that TW c implies i∗ > 1, since if xym ∈ T then p(m|xy) ≤
26M ·min{p(m|x), p(m|y)}, which implies∏

j even

p(mj |ym<j) ≤ 26M ·
∏

j even

p(mj |xm<j),∏
j odd

p(mj |xm<j) ≤ 26M ·
∏

j even

p(mj |ym<j),
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and hence if i∗ = 1 then in fact iA = iB = 1.
Now, we compute Γ(E|QSZ).

Γ(E|QSZ) = Γ(E|QSZW )

≥ Γ(iA = iB = i∗ = 1|QSZ)
Γ(iA = 1|QSZ) + Γ(iB = 1|QSZ) + Γ(i∗ = 1|QSZ)

≥ Γ(iA = iB = i∗ = 1, QSZ)
Γ(iA = 1) + Γ(iB = 1) + Γ(i∗ = 1)

. (120)

Now, we estimate the numerator and denominator in the last expression. LetM be the set
of all transcripts in the support of p. We have,

Γ(iA = iB = i∗ = 1, QSZ)

≥
∑

xym∈S∩T

Γ(iA = iB = i∗ = 1, xym,QZ)

=
∑

xym∈S∩T

Γ(iA = iB = i∗ = 1, xym) · Γ(QZ|xym)

(given xym, QZ is independent of iA, iB , i∗)

=
∑

xym∈S∩T

p(xym) · 1

|M| · Γ(QZ|xym) (by the definition Γ and T )

=
∑

xym∈S∩T

p(xym) · 1

|M| ·
q(xym)

p(xym)23M/I
· Γ(Z|xym) (by Equation (116))

≥ q(ST ) · 1

|M| · 23M/I
· (1− Ω(εM/I)). (by Equation (118))

Next,

Γ(iA = 1) =
∑
xm′

Γ(iA = 1, xm′) ≤
∑
xm′

p(x) · 1

|M| ·
∏

j odd

p(m′
j |xm′

<j) · 26M ·
∏

j even

p(m′
j |xm′

<j)

≤
∑
xm′

p(xm′) · 2
6M

|M| ≤
26M

|M| .

An identical calculation shows that Γ(iB = 1) ≤ 26M/|M|. Furthermore,

Γ(i∗ = 1) =
∑
xym

Γ(i∗ = 1, xym) =
∑
xym

p(x) · 1

|M| ·
∏

j odd

p(mj |xm<j) ·
∏

j even

p(mj |ym<j)

≤
∑
xym

p(xym) · 1

|M| ≤
1

|M| .

Plugging this into Equation (120) we get

Γ(E|QSZ) ≥ q(ST ) · (1− Ω(εM/I))

26M+(3M/I)+2
= Ω(2−6M−(3M/I)),

by Theorem 33 and Theorem 36. Using Equation (119) we get that Γ(QSZE) = Ω(2−6M−(6M/I))
as claimed in Equation (114).
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For all xym ∈ S,

Γ(xym|QSZ) = Γ(xym) · Γ(QSZ|xym)

Γ(QSZ)

=
p(xym)

Γ(QS)
· Γ(Q|xym) · Γ(Z|xymQS)

Γ(Z|QS)

=
p(xym)

Γ(QS)
· q(xym)

p(xym) · 23M/I
· Γ(Z|xymQS)

Γ(Z|QS) (By Equation (116))

=
q(xym)

q(S)
· Γ(Z|xymQS)

Γ(Z|QS) (By Equation (117))

= q(xym|S) · (1±O(εM/I)), (121)

where the last line follows by Equation (118).
Next, we note that

Γ(E|QSZ, i∗ = 1) ≥ Γ(E , T |QSZ, i∗ = 1) = Γ(T |QSZ), (122)

where we used the fact that the event T, i∗ = 1 implies E and that xym is distributed indepen-
dently of i∗. For any xym ∈ S ∩ T

Γ(xym|QSZE) = Γ(xym|QSZEW ) (xym is independent of W even conditioned on QSZE)
= Γ(xym|QSZE , i∗ = 1) (the event EW is the same as the event E , i∗ = 1)

=
Γ(xymE|QSZ, i∗ = 1)

Γ(E|QSZi∗ = 1)

= Γ(xym|QSZ) · Γ(E|xym, i∗ = 1)

Γ(E|QSZi∗ = 1)

=
Γ(xym|QSZ)

Γ(E|QSZi∗ = 1)
(because xym ∈ S ∩ T )

= Γ(xym|QSZ) · (1±O(Γ(T c|QSZ)))

where the last inequality used the fact that 1 ≥ Γ(E|QSZi∗ = 1) ≥ 1 − Γ(T c|QSZ) by
Equation (122). Together with Equation (121) we get that for any xym ∈ S ∩ T

Γ(xym|QSZE) = q(xym|S) · (1±O(Γ(T c|QSZ) + εM/I))

= q(xym|S) · (1±O(q(T c|S) + εM/I))

= q(xym|S) · (1±O(2−M/I + εM/I)), (123)

where the last line follows by Theorem 36.
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Now, we complete the proof of Equation (113). We have

E
Γ(xym|QSZE)

[A(xym)]

≥
∑

xym∈S∩T

Γ(xym|QSZE) · A(xym)− Γ(T c|QSZE)

≥
∑

xym∈S∩T

q(xym|S) · A(xym)− Ω(2−M/I + εM/I)− 1 + Γ(T |QSZE) (by Equation (123))

≥ E
q(xym|S)

[A(xym)]− q(T c|S)− Ω(2−M/I + εM/I)− 1 + q(T |S) · (1−O(2−M/I + εM/I))

(by Equation (123))

≥ E
q(xym)

[A(xym)]− q(Sc)− 2q(T c|S)− Ω(2−M/I + εM/I)

= E
q(xym)

[A(xym)]− Ω(2−M/I + εM/I) (by Theorem 33 and Theorem 36)

= E
q(xym)

[
sign

(
E

q(x′y′|m)

[
(−1)f

])
· (−1)f(xy)

]
− Ω(2−M/I)

= E
q(m)

[∣∣∣∣ E
q(xy|m)

[
(−1)f(xy)

]∣∣∣∣]− Ω(2−M/I) ≥ Ω(2−δM/(12I)),

by Equation (53).
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