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Abstract

We consider the following problem: Given an n × n multiplication table, de-
cide whether it is a Cayley multiplication table of a group. Among deterministic
algorithms for this problem, the best known algorithm is implied by F. W. Light’s
associativity test (1949) and has running time of O(n2 log n). Allowing random-
ization, the best known algorithm has running time of O(n2 log(1/δ)), where δ > 0
is the error probability of the algorithm (Rajagopalan and Schulman, FOCS 1996,
SICOMP 2000).

In this work, we improve upon both of the above known algorithms. Specifically,
we present a deterministic algorithm for the above problem whose running time is
O(n2). This performance is optimal up to constants. A central tool we develop is
an efficient algorithm for finding a subset A of a group G satisfying A2 = G while
|A| = O(

√
|G|).
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1 Introduction

A Cayley table describes the structure of a finite group by arranging the products of all
pairs of group elements in a square table reminiscent of a multiplication table. In this
paper we are interested in the problem of testing whether a given n×n table describes a
Cayley table of a group. That is, we are given a non-empty set S and a binary operation
· : S×S → S. The goal is to decide whether · corresponds to a group, i.e., it is associative,
an identity element exists, and every element in S has an inverse. Throughout the paper,
we let |S| = n.

Since the input to the problem consists of an n × n multiplication table of group
elements, it is obvious that every algorithm for the above problem must run in time
Ω(n2). What about upper bounds?

Testing for the existence of an identity element and verifying that each element has
an inverse can both be trivially done in time O(n2) by brute force. The non-trivial task
is testing associativity, i.e., that for every a, b, c ∈ S it holds that (a · b) · c = a · (b · c).
A brute-force algorithm would require Θ(n3) time1. An observation attributed to F. W.
Light in 1949 (see [1]) is that it suffices to test associativity only for all triples a, b, c such
that a, c ∈ S but b ∈ R, where R is a set of generators of S. Furthermore, it is possible
to deterministically compute a set of generators of size ⌊log n⌋ in O(n2) time [2]. Thus,
we can already improve upon the brute force approach and get a deterministic algorithm
running in time O(n2 log n).

A classical work of Rajagopalan and Schulman [2] studied the general problem of
testing associativity of a given relation. They showed that an arbitrary relation · as
above can be tested for associativity using a randomized algorithm that has complexity
O(n2 log(1/δ)), where δ > 0 is the error probability of the algorithm. This implies a
randomized algorithm for group testing with complexity O(n2 log(1/δ)) and δ probability
of error. This complexity is better than the one implied by Light’s observation for rather
large values of δ; for instance, if we settle for small constant non-zero probability of error,
the complexity of the algorithm is optimal up to constants. However, as mentioned, this
algorithm uses randomness and introduces some probability of error.

The above state of affairs leaves the following fundamental problem open:

What is the asymptotic complexity of group testing? In particular, is there a
deterministic algorithm running in time O(n2)?

We fully resolve the above question by presenting a deterministicO(n2) time algorithm
for group testing. This complexity is optimal up to constants.

Theorem 1.1. There exists a deterministic algorithm that receives an n × n table of
elements from {1, . . . , n} as input, and decides whether it is the Cayley table of a group
in time O(n2).

1We assume multiplication in the group can be computed in O(1), and we work in the word-RAM
model, where each group elements fits a memory word.
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Paper organization. An overview of our algorithmic ideas is given in Section 2. In
Section 3 we give necessary terminology. In Section 4 we describe the main framework of
our algorithm, and reduce associativity testing to finding a basis of a group. In Section 5
we reduce this task to finding large subgroups for an input group. In Section 6 we reduce
this problem to the case of simple groups. Finally, in Section 7 we solve the problem for
simple groups, along with relevant introduction to simple groups of Lie type.

2 Technical overview

Our algorithm is derived through a series of reductions, beginning with the original goal
of determining whether a given n × n Cayley table represents a group. Our reduction
comprises three primary steps, which are detailed subsequently. Following these reduc-
tions, we arrive at the task of identifying sufficiently large subgroups within a given
simple group. The procedure for achieving this is elaborated upon later. The primary
reduction steps are illustrated in Figure 1.

Testing for identity and inverses. Given an n × n Cayley table, we test by brute
force whether there is an identity element and if every element has an inverse. These
tasks take O(n2) time (or O(n log(n), See the proof of Theorem 4.3). The main challenge
is testing for associativity.

Associativity testing by 4-associativity over a basis (Section 4). We simplify
the problem of verifying associativity in (G, ·) by reducing it to testing of a property
we term 4-associativity over a basis of G. A basis for (G, ·) is a set S ⊆ G such that
|S| = O(

√
n) and S · S = G (i.e., every element of G can be written as a product of two

elements from S). We define 4-associativity of S by requiring that every a, b, c, d ∈ S
satisfy

((ab)c)d = (ab)(cd) = (a(bc))d = a((bc)d) = a(b(cd)).

Our main observation is summarized as follows:

If 4-associativity holds for some basis S for G, then G is associative.

The proof of this observation follows by directly expanding the associativity relation of
G, replacing every variable with its representation in S · S, and then performing a series
of manipulations to establish equality. Despite its simplicity, we believe that this step
is interesting on its own, and could be useful elsewhere. In terms of running time, note
that testing 4-associativity takes O(|S|4) = O(n2) time, since S is a basis of size O(

√
n).

Thus, our next task is to find a basis for G, which we solve in o(n2) time.

Finding a basis by finding a large subgroup (Section 5). A natural question is
whether a basis is always guaranteed to exist. Kozma and Lev [3], as well as Finkelstein,
Kleitman, and Leighton [4], demonstrated that this is indeed the case. Both proofs rely
on the existence of a large subgroup for any group of non-prime order. A proper subgroup
H ⩽ G is said to be large if |H| ≥

√
|G|. The existence of a large subgroup was proved

by Lev [5] as well as in [4].
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Our reduction between the problems follows an approach similar to [3] and [4], with
the exception that our result is algorithmic. We establish that if a large subgroup can
be identified in time T , then a basis can be computed in asymptotically the same time
complexity.

For this, we decompose G as G = A · B with A,B ⊆ G satisfying |A| · |B| ≤ 2|G|,
where A can be of virtually any required size.

To find such a decomposition, we compute a large subgroup H ⊆ G. If H has roughly
the same size as that of the required B, then we are done by setting B = H and choosing
A which contains exactly one element from each left coset of H (this set is called a left
transversal). If this is not the case, then since H is large, it must be larger than either
the required size of A or that of B. Suppose the latter case. Then, we recursively write
H = A′ · B′ with B′ having roughly the required size of B. Then, we set B = B′ and
A = L · A′ where L is a left transversal of H in G. This reduction takes Õ(n) time.

Reduction to finding a large subgroup only at simple groups (Section 6).
The existence of normal subgroups can significantly simplify the computation of large
subgroups. If H is a normal subgroup of G, then any large subgroup of G/H can be
lifted to a large subgroup of G. Therefore, if a proper normal subgroup can be efficiently
identified, the computation of large subgroups is only required if the group is simple, i.e.,
if no proper normal subgroup exists.

In order to find a normal subgroup, we note that it must be a union of conjugacy
classes of G that remains closed under multiplication. To determine such a set of con-
jugacy classes, we construct a graph whose vertices represent conjugacy classes in G,
and a directed edge C → C ′ indicates that the minimal normal subgroup containing C
must also contain C ′. We dynamically add an edge C → C ′ if elements a and b found in
vertices reachable from C (including C) have a product a · b belonging to C ′. Once we
exhaust adding edges, the existence of a proper normal subgroup is equivalent to that
the graph is not strongly connected.

Naively, it is not clear how to implement this algorithm efficiently. To achieve Õ(n)
running time for this reduction we use two optimizations:

• For an edge C → C ′ not closing a cycle, we focus solely on normal subgroups
containing C ′ instead of considering any normal subgroup containing C, thereby
eliminating redundant computations.

• Rather than performing a direct O(|A|2) check to determine whether a set A ⊆ G
is closed to multiplication, we first identify a compact set of generators S for A and
then verify A · S ⊆ A in Õ(|A|) time.

Finding large subgroups of simple groups (Section 7). At this point, all that
is left to complete the group testing algorithm is to provide an o(n2) algorithm that
finds a large subgroup of any simple group. The fact that such a subgroup exists is well
known [4, 5], but is rather existential and not algorithmic. Specifically, these proofs em-
ploy a case-by-case analysis based on the classification theorem for finite simple groups,
demonstrating the existence of a large subgroup for each such a group. Since the con-
structions are not sufficiently explicit, we make two steps toward an algorithmic result.
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• Give a shortlist of names of finite simple groups, at least one of which is isomorphic
to the input group.

• Enumerate over these names, and based on each case, find a large subgroup.

For the first task, we find all finite simple groups of the same order as that of the input
group. We use the fact that the classification of finite simple groups partitions these
groups into a finite number of families, where for each family, there is a simple formula
for the size the groups it contains. Basically, we solve the relevant equations that arise.

For the second step, we split into cases. If the group is sporadic, we find a large
subgroup by a sheer brute-force (enumerating all subsets, searching for a large subgroup).
If the group is an alternating group Am, we present a method to find the large subgroup
Am−1 using non-explicit oracle queries to group multiplication. Finally, if the input group
is a simple group of Lie type, we use the constructions of [4, 5], together with algorithmic
optimizations to fit in the required o(n2) time complexity.

Remark 2.1 (Model of computation). All algorithms in this paper are assumed to run
in the standard RAM model of computation. What happens when we consider a weaker
model of computation? In fact, except for the 4-associativity test, our algorithm runs
in O(n3/2+ϵ) time. Hence, the running time of our algorithm will be determined by the
running time of the 4-associativity test, as long as the simulation of RAM is possible
with a reasonable overhead (so that the emulation of a O(n3/2+ϵ) RAM algorithm does
not exceed O(n2)).

Due to this O(n1/2−ϵ) slack, all algorithms that we present assume that a black-box
group is given as input, where group operations can be performed in O(1) time.

3 Preliminaries

For an integer n > 0, [n] stands for the set {1, 2, . . . , n}. When an algorithm is said to run
in O(nα+ϵ) time, without specifying ϵ, it means that for all ϵ′ > 0 there exists a constant
c(ϵ′) < ∞, so that the running time of the algorithm is ≤ c(ϵ′)nα+ϵ′ . Time complexity

of Õ(f(n)) incdicates a running time of O(f(n) log(f(n))C) for some universal constant
C <∞. In this paper, n is typically the size of the group under consideration.

Setting (groups). We regard groups via their Cayley tables, which comprises an n×n
matrix of group elements. We assume for simplicity that the elements of the group are
indexed by 1 . . . n, and the table contains only elements from [n] (if the matrix contains
other elements, then it does not correspond to a group). The size of the group n is also
called the order of the group. We denote the identity element of a group G by eG. When
there is only one group in the context, we may abbreviate this notation to e.

Definition 3.1 (Multiplication Table). Given a set G of size n along with a binary
operation · : G×G → G, and an arbitrary permutation σ : G → [n], a multiplication
table of G is defined as the function T : [n]× [n]→ [n] satisfying

T (i, j) = σ(σ−1(i) · σ−1(j)).
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Test Group

Test Associativity

Find Basis Test 4-Associativity

Find Large Subgroup

Find Large Subgroup in Simple Group

Figure 1: Main steps in our reduction from testing whether a given Cayley table corre-
sponds to a group to finding a large subgroup in a given simple group.

Input format. Most of the algorithms described in the paper receive a set of group
elements along with oracle access that enables the multiplication of two group elements
in O(1) time.

4 Associativity testing via 4-associativity

In this section we present the main framework of our algorithm. Essentially, given a set G
pretending to be a group, we find a basis S ⊆ G such that S ·S = G and |S| = O(

√
|G|).

We then verify that G is indeed associative by merely checking that S is 4-associative,
in O(|S|4) = O(|G|2) time. The following definitions are due.

Definition 4.1 (Basis). Let G be a set with a binary operation · : G×G→ G. A subset
S of G is said to be a basis of G if S · S := {s1 · s2 | s1, s2 ∈ S} = G while |S| ≤ 3

√
|G|.

Definition 4.2 (4-associativity). An operation · : G×G→ G is said to be 4-associative
over a set S with S ⊆ G, if for all a, b, c, d ∈ S we have

((ab)c)d = (ab)(cd) = (a(bc))d = a((bc)d) = a(b(cd)).

The main theorem of this section is stated next. It is a reduction from verifying that
G is a group to finding a basis of the (proposed) group.

Theorem 4.3. Let A be an algorithm that receives a group G of size n as input, and
returns a basis S ⊆ G such that S ·S = G and |S| = O(

√
n) in time complexity of O(n2).

Then, there exists an algorithm B that receives a set G along with a binary operation
· : G×G→ G, and returns whether G is isomorphic to a group in O(n2) time.
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While verifying the existence of an identity element and inverses for all elements is
straightforward in time linear in the input size, the main challenge is checking associa-
tivity. The following lemma formalizes the correctness of the above-mentioned reduction
from testing associativity in G to testing the 4-associativity of a basis S.

Lemma 4.4. Let · : G×G→ G be a binary operation on a set G. Further suppose that
S ⊆ G satisfies S · S = G. If · is 4-associative over S, then · is associative over G.

Proof. We verify the associativity of · over G. Let α, β, γ ∈ G. By assumption, there
exist elements a, b, c, d, e, f ∈ S such that

α = ab,

β = cd,

γ = ef.

In order to show G is associative, we must prove

((ab)(cd))(ef) = (α · β) · γ = α · (β · γ) = (ab)((cd)(ef)). (1)

Since G = S · S, we can write

b(cd) = uv, a(uv) = wx, (cd)e = st, (st)f = pq, (b(cd))e = yz,

with p, q, s, t, u, v, w, x, y, z ∈ S. Using this, and 4-associativity of · on S we get that

((ab)(cd))(ef) = (a(b(cd)))(ef) = (wx)(ef) = ((wx)e)f

= ((a(uv))e)f = (a((uv)e))f = (a((b(cd))e))f.
(2)

Completely symmetrically, if we reflect all parentheses, we get

(ab)((cd)(ef)) = (ab)(((cd)e)f) = (ab)(pq) = a(b(pq))

= a(b((st)f)) = a((b(st))f) = a((b((cd)e))f).
(3)

Finally, we show that the right hand sides of (2) and (3) are equal, to deduce (1):

(a((b(cd))e))f = (a(yz))f = a((yz)f) = a(((b(cd))e)f) = a((b((cd)e))f).

This completes the proof.

Proof of Theorem 4.3. The algorithm. CheckGroup proceeds by computing a basis S
for G using A. Since A is designed for groups, and G might not be a group, applying A
to G might run for too long, in which case we determine that G is not a group. We set
a time limit so that if G is a group then the execution of A will terminate successfully.
Then, we test that S is indeed a basis for the set G by definition. Once again, if G is a
group then it will pass this test.

Subsequently, we check that the multiplication is 4-associative over S. By Lemma 4.4,
G passes this test for the verified basis S if and only if G is associative.
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Algorithm 1: CheckGroup

Input: A multiplication table T : [n]× [n]→ [n], an algorithm A.
Output: A Boolean indicating whether G is a group or not.

1 Emulate the run of S ← A(G), where G := [n] is regarded as a group, with
multiplications defined using the multiplication table.

2 if running time of A(G) exceeds the expected T (A(G)) time then
3 return false ▷ The execution of A failed
4 end

5 if |S| > 3
√
|G| or S2 ̸= G then

6 return false ▷ The execution of A failed
7 end
8 for (a, b, c, d) ∈ S4 do
9 if not (((ab)c)d = (ab)(cd) = (a(bc))d = a((bc)d) = a(b(cd))) then

10 return false ▷ Not associative
11 end

12 end
13 if ∀e ∈ G : ∃g ∈ G : {e · g, g · e} ≠ {g} then
14 return false ▷ No identity element
15 end
16 if ∃a ∈ G : ∀b ∈ G : (a · b) · a ̸= a then
17 return false ▷ No inverse
18 end
19 return true

7



Once we confirm G is associative, we perform brute-force tests for having an identity
element and inverses for all elements. This determines whether G is a group.

Time complexity. In lines 1-4, we let the emulation of A to run for O(n2) time. We
reach line 5 only if A succeeded, meaning |S| = O(

√
n), and hence the time of computing

S2 is O(n). In lines 8-12, we enumerate all sets of four elements of S in O((n1/2)4) = O(n2)
time. In lines 13-18, as mentioned before, we test for the existence of an identity and
inverse elements, both of which are done by brute-force in O(n2) time. Overall, the time
complexity is O(n2), as desired.

We note that identity, if exists, can be found (and then tested) in O(n) time by
searching for any element e ∈ G satifying e · e = e. Furthermore, the inverse of g, if
exists, can be found (and tested) in O(log(n)) by computing gn−1 using exponentiation
by squaring (relying on associativity).

5 Reduction to finding large subgroups

We show that the problem of finding a basis for a group G can be efficiently reduced to
the problem of finding a large subgroup of G. In other words, we give an algorithm that
uses an efficient oracle for finding large subgroups to find a basis for any group G. The
notion of large subgroups is defined as follows.

Definition 5.1 (Large subgroup). A subgroup H of G is said to be large if
√
|G| ≤

|H| < |G|.
The existence of a basis has been proved in [3] by Kozma and Lev, using the existence

of a large subgroup, which was proved in [4] and [5] for groups of non-prime size. We
present an algorithmic version of [3] to find a basis for a group. The algorithm uses the
following notion of decomposition of a group.

Definition 5.2 (Group Decomposition). Let G be a group of size n and let ℓ be a real
number. An ℓ-decomposition of G is a pair of subsets A,B ⊆ G with A · B = G and
|A| ≤ 2ℓ and |B| ≤ n/ℓ.

The main result of this section is stated next.

Lemma 5.3. If there exists an algorithm LargeSubgroup that finds a large subgroup
of any group of non-prime order n in O(n3/2+ϵ) time, then there exists an algorithm
GroupDecomposition that finds an ℓ-decomposition (1 ≤ ℓ ≤ n) of any group G of size n,
and whose running time is O(n3/2+ϵ).

An immediate corollary of Lemma 5.3 is an efficient algorithm for computing a basis
for a group. Given a group G of size n, applying algorithm GroupDecomposition of
Lemma 5.3 toG, with ℓ =

√
n/2 we obtain A,B ⊆ G with A·B = G while |A| ≤

√
2n and

|B| ≤
√
2n. Then, S = A∪B is a basis for G because S ·S = G and |S| ≤ 2

√
2n < 3

√
n.

Corollary 5.4. If there exists an algorithm LargeSubgroup that finds a large subgroup of
any group of non-prime order n in O(n3/2+ϵ) time, then there exists an algorithm C that
finds a basis for an input group, whose running time is O(n3/2+ϵ).

The rest of this section is devoted to the proof of Lemma 5.3.
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5.1 Computing transversals

The algorithm we present for Lemma 5.3 requires computing the cosets of G with respect
to a subgroup H ⩽ G. Recall that the left cosets of a group are the sets of the form gH,
where g is any element of the group. The number of left cosets is called the index of H
in G, and is denoted [G : H] = |G|/|H|. A set containing exactly one element from each
left coset is called a left transversal.

Definition 5.5 (Left Transversal). Let H be a subgroup of a group G. A left transversal
of H in G is a subset T ⊆ G such that G = T ·H :=

⋃
t∈T tH and |T | = [G : H].

We note that the analogous definition of a right transversal T ′ means that G = H ·T ′

while |T ′| = [G : H]. Next, we present an algorithm for finding left transversals. An
analogous algorithm can be used to find right transversals.

Lemma 5.6. There exists an algorithm LeftTransversal which receives a group G of size
n, along with a subgroup H ⩽ G, and returns a left transversal of H in G in O(n) time.

Proof. The algorithm. The LeftTransversal algorithm operates in a greedy manner.
Initially, it assigns the entire set of group elements to a set A. Subsequently, it selects an
arbitrary element g ∈ A and removes all elements belonging to the left coset of g from
A. This process is iteratively applied, as long as A is nonempty.

Algorithm 2: LeftTransversal

Input: A group G of size n and a subgroup H ⩽ G
Output: A left transversal of H in G

1 R← ∅
2 A← G
3 while A ̸= ∅ do
4 Pick g ∈ A arbitrarily
5 R← R ∪ {g}
6 A← A \ gH
7 end
8 return R

Time complexity. We implement A as an array of bits indicating the membership of any
g ∈ G to A as in Algorithm 2. This renders each loop iteration of LeftTransversal to run in
O(|H|) time. Since the number of iterations is the number of cosets [G : H] = |G|/|H|, the
total running time is O(n). This is in addition to the selection of elements g ∈ A, which
is done in linear time by scanning the array once and is shared across all iterations.

5.2 Computing group decompositions

In this section we prove Lemma 5.3. Recall that here we assume the existence of an
algorithm A that finds a large subgroup of any group (of non-prime order) in O(n3/2+ϵ)
time. We derive an algorithm for finding an ℓ-decomposition A,B of any group G in the
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same asymptotic time. The construction of A,B depends on ℓ, n = |G| and the size of
the subgroup H found by running A(G).

Proof of Lemma 5.3. The algorithm. GroupDecomposition operates recursively. There
are two base cases:

• If G has prime order n, then G is effectively the cyclic group Zn. In this case
we denote q = ⌊n/ℓ⌋, and use that any number 0, . . . , (n − 1) may be written as
a · q + b for b ∈ {0 . . . (q − 1)} and a ∈ {0 . . . ⌊n/q⌋}. Correspondingly, we use the
decomposition A = {q · a | a ≤ ⌊n/q⌋} and B = {b | b < q}. We check that A,B is
an ℓ-decomposition. First, |B| = q ≤ n/ℓ. Moreover, if q = 1 then |A| = n, and
by definition of q = ⌊n/ℓ⌋ this means |A| < 2ℓ. If q > 1 then |A| = ⌊n/q⌋ + 1.
Since n− qℓ < ℓ then n/q < ℓ+ ℓ/q and |A| ≤ ⌊ℓ+ ℓ/q⌋+ 1. If ℓ ≥ 2 then we get
|A| ≤ ℓ+ ℓ/q + 1 ≤ ℓ+ ℓ/2 + 1 ≤ 2ℓ. If ℓ < 2 then q ≥ n/2. Since n is prime then
in fact q > n/2 (if n = 2, recall q > 1) and |A| = ⌊n/q⌋+ 1 = 2 ≤ 2ℓ.

• If G has a large subgroup H with n/(2ℓ) ≤ |H| ≤ n/ℓ. In this case, we output
A = LeftTransversal(G,H) and B = H, which is valid since |A| ≤ 2ℓ.

If these conditions are not met, we find a large subgroup H ⩽ G, and split into two cases:

• If |H| > n/ℓ, then we look for a decomposition A′, B′ of H with |B′| ≤ n/ℓ and
correspondingly |A′| ≤ 2|H|/(n/ℓ) = 2ℓ′ with ℓ′ = ℓ|H|/n. Note 1 ≤ ℓ′ ≤ |H| which
is required in order to guarantee an ℓ′-decomposition of H, as stated in Lemma 5.3.
We compute T = LeftTransversal(G,H) and output the decomposition A = T · A′

and B = B′. This is a decomposition since

G = T ·H = T · (A′ ·B′) = (T · A′) ·B′.

We check (A,B) is an ℓ-decomposition: |B| = |B′| ≤ |H|/ℓ′ = n/ℓ and |A| =
|T | · |A′| ≤ [G : H] · 2ℓ′ = 2ℓ.

• If |H| < n/(2ℓ), we then we look for an ℓ-decomposition A′, B′ of H with |A′| ≤ 2ℓ
and |B′| ≤ |H|/ℓ. We claim ℓ ≤ |H| in order to justify the existence of an ℓ-
decomposition of H. To see this, recall H is a large subgroup and hence

√
n ≤

|H| < n/(2ℓ), that is 2ℓ ≤
√
n.

Finally, A = A′ and B = B′ · RightTransversal(G,H) is an ℓ-decomposition of G
similarly to the previous case.

Time complexity. The GroupDecomposition algorithm exhibits a recursive structure.
However, a recursive call is employed only once, and applied to a subgroup H of size
≤ n/2, ensuring that the recursive calls do not significantly impact the overall running
time. All operations within the algorithm exhibit a linear time complexity, except for
the call to the LargeSubgroup(G) subroutine, which dominates the time complexity and
and dictates the time complexity of O(n3/2+ϵ).
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Algorithm 3: GroupDecomposition

Input: A group G of size n, and a real number ℓ satisfying 1 ≤ ℓ ≤ n.
Output: Subsets A,B ⊆ G satisfying G = A ·B and |A| ≤ 2ℓ, |B| ≤ 2n/ℓ.
Setting: A is an algorithm that finds a large subgroup in any group.

1 if n is prime then
2 g ← Any non-identity element of G
3 q ← ⌊n/ℓ⌋
4 A← {0, 1, 2, . . . , ⌊n/q⌋} · (q · g)
5 B ← {0, 1, 2, . . . , q − 1} · g
6 return A,B

7 end
8 H ← LargeSubgroup(G)
9 if |H| > n/ℓ then

10 A′, B′ ←GroupDecomposition(H, ℓ|H|
n
)

11 A← LeftTransversal(G,H) · A′

12 B ← B′

13 else if |H| ≥ n/(2ℓ) then
14 A← LeftTransversal(G,H)
15 B ← H

16 else
17 A′, B′ ←GroupDecomposition(H, ℓ)
18 A← A′

19 B ← B′ · RightTransversal(G,H)

20 end
21 return A,B

11



6 Reduction to simple groups

In the following, we efficiently reduce the problem of finding a large subgroup for an
arbitrary finite group to the problem of finding such a subgroup for a finite simple
group. We recall the definitions of a simple group and a normal subgroup first, and then
state our theorem.

Definition 6.1 (Simple group and normal subgroups). A (nontrivial) group is said to be
simple if its only normal subgroups are the trivial group and the group itself. A subgroup
N of the group G is said to be normal iff gng−1 ∈ N for any g ∈ G and n ∈ N .

Lemma 6.2. Let LargeSubgroupOfSimpleGroup be an algorithm that finds a large sub-
group for any simple group of non-prime size n in time O(n3/2+ϵ). Then there exists
an algorithm LargeSubgroup that finds a large subgroup for an arbitrary group G of
non-prime order n > 1 in time O(n3/2+ϵ).

The algorithm in Lemma 6.2 requires a method to efficiently test whether an input
group is simple or not, and to find a nontrivial normal subgroup if the group is non-simple.
Next, we devise such a procedure, and give the proof of Lemma 6.2 in Section 6.2.

6.1 Finding normal subgroups of non-simple groups

The algorithm that we present finds a minimal nontrivial normal subgroup of G. It is
composed of three steps:

• Find a small set of generators of G. This is important in order to reduce the running
time of the following steps from O(n2) to Õ(n).

• Find all conjugacy classes of G.

• Find a normal subgroup as a collection of classes whose union is closed under
multiplication.

6.1.1 Step 1: Find a small set of generators

We use the standard notion of generators and Cayley graph.

Definition 6.3 (Generators). Let G be a group and let S ⊆ G. The group generated by
S is the smallest subgroup of G that contains S. It is denoted ⟨S⟩. If G = ⟨S⟩ we say
that S is a set of generators for G.

Definition 6.4 (Cayley graph). The Cayley graph of a group G with respect to a set
S ⊆ G has vertices which are all the elements of G, and the edges are comprised of
g ↔ gs for every g ∈ G and s ∈ S.

The following lemma is standard, and asserts that we can efficiently find a small set
of generators for a group.

12



Lemma 6.5. There exists an algorithm Generators that receives a set A of a group G,
and outputs a subset S ⊆ A that satisfies ⟨S⟩ = X and |S| ≤ log2 |X|, where X := ⟨A⟩.
Generators runs in Õ(|X|) time.

Proof. The algorithm. In Generators we iterate over elements a ∈ A. At any point, we
maintain a set S that generates all elements of A that we have seen so far, and the group
H = ⟨S⟩. If a ∈ H, then we do not need to update S and H. If, however, a /∈ H, then
we add a to S, and compute H = ⟨S⟩ all over again. When we finish to enumerate A,
S generates X = ⟨A⟩. Note that the size of H at least doubles every time it is updated,
as the old H is a proper subgroup of the new H. Hence 2|S| ≤ |H|, and in particular
|S| ≤ log2 |X|

Algorithm 4: Generators

Input: A subset A of a group G
Output: A set S satisfying ⟨S⟩ = ⟨A⟩ and |S| ≤ log2 |⟨A⟩|.

1 H ← {eS}
2 S ← ∅
3 for a ∈ A do
4 if a /∈ H then
5 S ← S ∪ {a}
6 H ← ⟨S⟩
7 end

8 end
9 return S

Time complexity. Enumerating A takes at most O(|X|) time. The dominant cost of
the algorithm is computing the set H. Computing H at line 6 takes time O(|S||H|) using
any exploration algorithm (BFS or DFS) on the Cayley graph of G with respect to the
generators S. Since the size of H at least doubles at every update of S, the total running
time is dominated by the last update, which runs in O(|S||X|) time. Since |S| ≤ log2 |X|
we have O(|S||X|) = Õ(|X|)

6.1.2 Step 2: Find conjugacy classes

Definition 6.6. The conjugacy class of an element g ∈ G is denoted

Cl(g) :=
{
h · g · h−1

∣∣h ∈ G
}
.

Lemma 6.7. There exists an algorithm ConjugacyClasses that receives a group G of size
n as input and returns the set of all conjugacy classes of G in Õ(n) time.

Proof. The algorithm. In ConjugacyClasses we define a conjugacy graph, where each
group element g ∈ G is connected to all elements of the form sgs−1. However, we only
consider s ∈ S where S is a set that generates G. Since each element h ∈ G can be
written as a product of elements of S, we deduce that there exists a path in the graph

13



Algorithm 5: ConjugacyClasses

Input: A group G of size n
Output: Set R of all conjugacy classes of G.

1 S ← Generators(G)
2 E ← {g ↔ sgs−1 : s ∈ S, g ∈ G}
3 return ConnectedComponents(E)

between g and hgh−1. Hence, we compute the set of connected components of this graph,
which coincides with the set of conjugacy classes of G.

Time complexity. By Lemma 6.5, we can find the set S of generators in Õ(n) time.
Furthermore, we compute the connected components in the conjugacy graph that we
define in linear time in the number of edges, which isO(n log2(n)) since |S| ≤ log2(n),.

6.1.3 Step 3: Find a union of conjugacy classes, closed under multiplication

We now present the algorithm for computing a minimal nontrivial normal subgroup.

Lemma 6.8. There exists an algorithm NormalSubgroup that receives a group G of size n
as input, and returns a normal subgroup of G which is minimal with respect to inclusion
(excluding {eG}). NormalSubgroup runs in Õ(n) and can be used to test whether G is
simple or not.

We introduce a concept that we use in the description of the algorithm of Lemma 6.8.

Definition 6.9. Given a subset C of a group G, we denote by MN(C) the Minimal
Normal subgroup of G that contains C, where ‘minimal’ is with respect to inclusion.

In order to prove Lemma 6.8, we observe that every normal subgroup is a union of
conjugacy classes that is closed under multiplication, and vice versa. Therefore, we search
for a minimal closed union of conjugacy classes. To do this, we maintain a dynamic
directed graph whose vertices are conjugacy classes of G, and whose edges C → C ′

indicate that C ′ ⊆ MN(C).
We add an edge from C to C ′ if we find elements a, b ∈ C with a · b ∈ C ′. More

generally, if a, b lie in conjugacy classes that are reachable from C, and a · b ∈ C ′, then
we add an edge C → C ′.

Naively, we can entirely expand this graph until no more edges can be added, and for
every conjugacy class C, determine MN(C) to be the union of classes reachable from C.

However, since we are only interested in one minimal normal subgroup, we can use
the following important optimization. Once there exists an edge from C to C ′ ̸= {e},
we can disregard MN(C), and only consider MN(C ′), since MN(C ′) ⊆ MN(C). This
optimization is eligible as long as there are no cycles in the graph. We generalize this
optimization in the presence of cycles by defining for every conjugacy class C a set SC ,
which is the union of classes which can reach C in the graph. If there is an edge C → C ′

with C ′ ⊆ SC , then we do not disregard C, since C ′ was already disregarded, and in fact
MN(C) = MN(C ′).

An algorithmic building block we use in NormalSubgroup is the following.

14



Claim 6.10. There exists an algorithm that receives two subsets A,B of a group G, along
with a set S of generators for G, that runs in Õ(|B||S|) time, which either

• Determines that MN(A) ⊆ B and returns MN(A).

• Finds an element h ∈ MN(A) \B.

We are now ready to present the NormalSubgroup algorithm.

Proof of Lemma 6.8. The algorithm. NormalSubgroup virtually maintains the graph
mentioned above, where the vertices are conjugacy classes of G, and where edges C → C ′

indicate that MN(C ′) ⊆ MN(C). At any point of time, a few properties are met:

• The graph is a forest.

• Each connected component has a sink vertex T , reachable from any other vertex
in the component.

• A set V holds the set of sinks.

• For any sink T , ST is the union of conjugacy classes in the connected component
of T (plus {e}).

At each iteration of the algorithm, a sink C with minimal size of SC is chosen. If
MN(C) ⊆ SC , then MN(C) is a minimal normal subgroup (with respect to inclusion)
and we output MN(C). Otherwise, the algorithm from Claim 6.10 finds an element c in
MN(C) which is not in SC . This element c belongs to a conjugacy class at a different
connected component (recall SC holds all elements in the component of C). We find C ′,
the sink of this connected component containing c and add an edge C → C ′. We remove
C from V , and add the elements of SC to SC′ . The above properties continue to hold.

Time complexity. Using Claim 6.10, the computation of either MN(Ci) or the element

c of Algorithm 6 is done in Õ(|SCi
| log(n)) time. It is possible by using a precomputed

set of generators for G of size ≤ log2(n), using Lemma 6.5. C ′ may be found in O(1) by
keeping an additional table which maps any element of ST to (a pointer to) T . The sets
{ST} for all T ∈ V can be stored as balanced search trees. Each iteration of the loop

in lines 7-13 can hence be implemented in Õ(|SCi
|) time. The total time required for all

iterations is hence of the order of
∑

i |SCi
|, up to poly logarithmic factors. We use double

counting: ∑
i

|SCi
| =

∑
g∈G

#{i : g ∈ SCi
}. (4)

To estimate the quantity on the right hand side, we note that for any element g ∈ G, if
we consider the sets SCi

containing g in order, then the ratio between sizes of conscutive
such sets is at least 2. This is because of our choice of Ci to be the class having smallest
SCi

. Indeed, when the elements of SCi
are added to SC′ , the size of SC′ is at least double

the size of SCi
. Therefore, if g ∈ Ci, then the next time g may appear as an element of

SCj
(with j minimal such with j > i), is when Cj = C ′, at which point SCj

has at least
double the size of SCi

.
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Algorithm 6: NormalSubgroup

Input: A group G of size n
Output: A normal subgroup H ⊴ G which is minimal with respect to inclusion

1 V ← ConjugacyClasses(G) \ {{e}}
2 for N ∈ V do
3 SN ← N ∪ {e}
4 end
5 i← 0
6 go to line 13
7 while MN(Ci) ̸⊆ SCi

do
8 V ← V \ {Ci}
9 c← Any element of MN(Ci) \ SCi

10 C ′ ← A class N ∈ V satisfying c ∈ SN

11 SC′ ← SC′ ∪ SCi

12 i← i+ 1
13 Ci ← argmin

N∈V
(|SN |)

14 end
15 return MN(Ci)

In particular, each g ∈ G belongs to SCi
for at most log2(n) values of i. By (4) the

total running time is at most

Õ(|G| log2(n)) = Õ(n).

Proof of Claim 6.10. The algorithm we use is a mix of both Generators and Conjugacy-
Classes algorithms. We repeatedly expand A in two ways:

• A←
⋃

g∈G gAg−1.

• A← ⟨A⟩.

These steps are repeated until either A has converged or we encounter an element outside
of B (and we stop computation as early as we see such an element). Since the size of
A at least doubles after applying these two steps, the runtime is dominated by the last
expansion step. We show that these steps can be performed in Õ(k|S|) time, where k
the size of the new A we compute. However, since all elements we generate are confined
to B, except for at most one element, then the running time is Õ(|B||S|).

To perform the first expansions step in near-linear time, we explore the conjugacy
graph used in ConjugacyClasses Algorithm 5, exploiting a precomputed set of generators
S of G. We implement the second step as first computing S ′ = Generators(A), and then
exploring the Cayley graph of G with respect to generators S ′ (starting at eG), similarly
to line 6 of Algorithm 4.
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6.2 Constructing large subgroups for non-simple groups

We now proceed with the proof of Lemma 6.2.

Proof of Lemma 6.2. The algorithm. LargeSubgroup starts by computing a minimal
nontrivial normal subgroup N of G using NormalSubgroup. If no such subgroup ex-
ists (i.e. N = G), then G is simple, and we determine a large subgroup of G us-
ing LargeSubgroupOfSimpleGroup. Otherwise, if |N | ≥

√
n, then N is a large sub-

group and we are done. Otherwise, if G/N is a group of prime order p, then we have
p = |G|/|N | > n/

√
n =
√
n. In this case we output a subgroup generated by an element

of order p. This is a valid large subgroup since
√
n < p = |G|/|N | < n. We find such

an element by using that any element g of G \N has order which is divisible by p, and
hence gorder(g)/p has order exactly p.

Otherwise, G/N is a group of non-prime order > 1, and we can apply LargeSubgroup
recursively to G/N . Let M = LargeSubgroup(G/N), then we output H = M ·N which is
a proper subgroup of G using the correspondence theorem for groups. H is indeed large,
because

|H| = |M | · |N | ≥
√
|G|/|N | · |N | =

√
|G||N | ≥

√
n.

Algorithm 7: LargeSubgroup

Input: A group G of non-prime order n
Output: H ⩽ G with

√
n ≤ |H| < n

1 N ← NormalSubgroup(G)
2 if |N | = n then
3 return LargeSubgroupOfSimpleGroup(G) ▷ G is simple
4 else if |N | ≥

√
n then

5 return N ▷ N is a large subgroup
6 else if |G|/|N | is prime then
7 p← G/|N |
8 g ← Any element of G \N
9 h← gorder(g)/p

10 return {e, h, h2, . . . , hp−1} ▷ A p-subgroup is large

11 else
12 M ← LargeSubgroup(G/N) ▷ The quotient group has a large subgroup
13 return M ·N ▷ Lift the subgroup to G

14 end

Time complexity. The algorithm may call itself recursively with G replaced by G/N .
The format in which G/N is given is by a left transversal of N in G. Moreover, we pass
an array which maps each g ∈ G to its candidate in gN that appears in the transversal.
This way, multiplication of two elements in the transversal is done in O(1) using usual
multiplication, and then a single access to the table that takes us back to the transversal.
Since the recursion has depth of at most log2(n), using these tables incurs an additive
O(n log(n)) time overhead, and a constant factor slowdown. All other computations in
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LargeSubgroup are Õ(n), except for a single call to LargeSubgroupOfSimpleGroup(G) at
some point of the recursion, which may take up to O(n3/2+ϵ) time, by assumption.

7 Finding large subgroups of simple groups

In this section, we prove the following lemma, which completes the proof of Theorem 1.1.

Lemma 7.1. There exists an algorithm LargeSubgroupOfSimpleGroup that receives a fi-
nite simple group G of non-prime order n, and returns a large subgroup of G in O(n3/2+ϵ)
time.

Both proofs in the literature of the fact that there always exists a large subgroup [4, 5]
to any finite simple group of non-prime size go by case analysis. This case analysis
relies on the classification theorem of finite simple groups, which is also essential to
our algorithmic result. The classification theorem states that every finite simple group
belongs to one of a finite number of explicit families of groups, which are summarized in
Table 2. For each family of groups, a relatively explicit construction of a large subgroup
has been found.

Next, we outline our approach to the proof of Lemma 7.1.
In order to find a large subgroup for the simple group G, we enumerate names of

finite simple groups of the same order as G. The number of such candidate groups from
Table 2 is O(log |G|). For each such group, we search for a large subgroup, assuming
that G is isomorphic to that group. Since one of these assumptions is correct (in case
the input is valid), one of these efforts will produce a large subgroup for G.

The following definition is due.

Notation. The name of a finite simple group is a tuple (f,m, q) where f is a family
(index to a row in Table 2) andm, q are the (possibly redundant) parameters that indicate
the specific group within the family. The group with this name is denoted f(m, q). When
either m or q are not parameters to f as listed in Table 2, we keep the convention of
setting these to null.

7.1 Enumerating simple groups

Our first step toward finding large subgroups, is to give a short list of named groups, so
that one of them is isomorphic to our input group. We generate the groups of size |G|.

For example, when presented with the Cayley table of the group A6(8), we aim to
give a few names of simple groups, that includes the tuple (f,m, q) for f = Am(q) and
m = 6, q = 8.

Claim 7.2. The procedure EnumerateGroups applied with the input argument n outputs
the names of all finite simple groups of size n in time O(log4(n)). The number of groups
it outputs is at most O(log(n)).

We remark that there has been extensive research on the problem of recognizing a
group using a few queries to its multiplication table. Although some of these results or
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Family Name Notation Parameters Size |W |

Cyclic groups Zq q prime q

Alternating groups Am m > 4 m!/2

Chevalley
Linear groups

Am(q) m > 1 ∨ q ≥ 5 qm(m+1)/2

gcd(m+1,q−1)

∏m
i=1(q

i+1 − 1) (m+ 1)!

Chevalley
Orthogonal groups

Bm(q)
m > 1

(m, q) ̸= (2, 2)
qm

2

gcd(2,q−1)

∏m
i=1(q

2i − 1) 2mm!

Chevalley
Symplectic groups

Cm(q) m > 2, q qm
2

gcd(2,q−1)

∏m
i=1(q

2i − 1) 2mm!

Chevalley
Orthogonal groups

Dm(q) m > 3, q qm(m−1)(qm−1)
gcd(4,qm−1)

∏m−1
i=1 (q2i − 1) 2m−1m!

Exceptional
Chevalley group

E6(q) q q36

gcd(3,q−1)

∏
i∈{2,5,6,8,9,12}

(qi − 1) 27 · 34 · 5

Exceptional
Chevalley group

E7(q) q q63

gcd(2,q−1)

∏
i∈{2,6,8,10,12,14,18}

(qi − 1) 210 · 34 · 35

Exceptional
Chevalley group

E8(q) q q120
∏

i∈{2,8,12,14,18,20,24,30}
(qi − 1) 214 · 35 · 175

Exceptional
Chevalley group

F4(q) q q24
∏

i∈{2,6,8,12}
(qi − 1) 27 · 32

Exceptional
Chevalley group

G2(q) q ̸= 2 q6(q2 − 1)(q6 − 1) 12

Steinberg
Unitary groups

2Am(q
2)

m > 1
(m, q) ̸= (2, 2)

qm(m+1)/2

gcd(m+1,q+1)

∏m
i=1(q

i+1 + (−1)i) 2⌈m/2⌉⌈m/2⌉!

Steinberg
Orthogonal groups

2Dm(q
2) m > 3, q qm(m−1)

gcd(4,qm+1)
(qm + 1)

∏m−1
i=1 (q2i − 1) 2m−1(m− 1)!

Exceptional
Steinberg group

2E6(q
2) q q36

gcd(3,q+1)

∏
i∈{2,5,6,8,9,12}

(qi − (−1)i) 27 · 32

Exceptional
Steinberg group

3D4(q
3) q q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) 12

Suzuki groups 2B2(q) q = 22k+1, k ≥ 1 q2(q2 + 1)(q − 1) 2

Ree groups 2F4(q) q = 22k+1, k ≥ 1 q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) 16

Ree groups 2G2(q) q = 32k+1, k ≥ 1 q3(q3 + 1)(q − 1) 2

Sporadic groups
+ Tits group

27 groups m ∈ {1 . . . 27} 27 different sizes

Figure 2: An exhaustive list of all simple finite groups [6].
The parameter m ranges over all positive integers and q ranges over all prime powers.

Families marked in blue are the twisted Chevalley groups.
Families marked in red are the exceptional (untwisted) Chevalley groups.

All groups with a nonempty |W | column are of Lie type.
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methods could be used to produce a list of size 1 in Claim 7.2 (perhaps with a worse run
time), we leave it out of scope of this paper.

Proof. The Algorithm. EnumerateGroups works by checking first if n is a size of a
sporadic group, and accordingly reports this as an option. For any other family f of
groups, we note that if m is a parameter of f then |f(m, q)| > 2m for all eligible m, q.
For this reason we limit m ≤ log2(n). Moreover, fixing m, there is always a small number
of gcd values g that might appear in the size column in Table 2 at the row corresponding
to f . For example, if f is the family of Chevalley Linear groups Am(q), then g is a divisor
of m+ 1. Likewise, if f if the family of Chevalley Orthogonal groups Dm(q), then g is a
divisor of 4. In any case, g is always a divisor of 12(m+1). Syntactically fixing the value
of this gcd (if existent) to g, we note that the size of f(m, q), which we denote by size(q)
is a function strictly increasing in q. Hence, it is possible to perform a binary search
to find the maximal q ∈ N for which size(q) ≤ n (note the requested q always satisfies
q ≤ n). Finally, we check whether this maximal value q0 satisfies |f(m, q0)| = n (this
time, the size is computed with the correct value of the gcd). If it does, we output the
tuple (f,m, q0) accordingly. Note the computation of size can be done in O(m) time, and
it can be tweaked to work with nO(1) numbers, because at the moment some intermediate
computation inside size yields a value greater than n2, we know size(q) is larger than n,
and we should (binary) search for a smaller q.

Time complexity. The most time-consuming part is the computation of size inside the
binary search. This computation (which takes at most O(m) ≤ O(log(n)) time) is done
for each m ∈ M (at most log2(n) options), for any g (at most 12 log2(n) options) in the
binary search (at most 2 log2(q0) iterations; note q0 ≤ n).

7.2 Finding large subgroups of named simple groups

In order to prove Lemma 7.1, we need to present a method to determine a large subgroup
for G, given its name f(m, q). The characterization of this subgroup must rely only on
black-box properties of the group f(m, q), and not on some specific ways to present this
group. We summarize several such characterizations that we use.

Sporadic groups For the 27 sporadic groups, we do not exhibit an explicit construction
of a large subgroup, however their existence is known [4]. In these cases, we tweak our
algorithm to brute-force over all possible options. Since there is only a finite number of
these groups, the time complexity of our algorithm is not affected.

Alternating Groups An alternating group Am with m ≥ 5, has the large subgroup
of even permutation on m − 1 elements, that is, Am−1. It is large due to a simple
computation

|Am−1| =
(m− 1)!

2
≥

√
m!/2 =

√
|Am|.

However, from an algorithmic perspective, given G = Am as a black-box group, it is not
clear how to extract Am−1. The steps we use in order to do so are as follows.

1. Find all 3-cycles π = (a, b, c) in G. That is, permutations satisfying π(a) = b,
π(b) = c and π(c) = a with a, b, c ∈ [m] and π(x) = x for other x’s.
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Algorithm 8: EnumerateGroups

Input: A size n
Output: A list of name tuples (f,m, q) of all simple groups with |f(m, q)| = n

1 if n is a size of a sporadic group then
2 Names← {(Sporadic groups, Corresponding index of sporadic group, null)}
3 else
4 Names← ∅
5 end
6 for f ∈ Families of non-sporadic finite simple groups do
7 if f depends on parameter m by third column of Table 2 then
8 M ← {1, 2, . . . , ⌊log2(n)⌋} ▷ List of relevant m’s
9 else

10 M ← {null}
11 end
12 for m ∈M do
13 if f depends on parameter q by third column of Table 2 then
14 for Any g | 12(m+ 1) do
15 size(q) := Size of f(m, q) as in Table 2, but with gcd set to g
16 q0 ← BinarySearch(q ∈ [1, n], size(q) ≤ n)
17 if f(m, q0) is a group (by third column of Table 2) and

|f(m, q0)| = n then
18 Names← Names ∪ {(f,m, q)}
19 end

20 end

21 else if |f(m,null)| = n then
22 Names← Names ∪ {(f,m, null)}
23 end

24 end

25 end
26 return Names
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2. Find a subset of these 3-cycles which is conjugate to the set {(1, 2, k) : k = 3 . . .m}
in G = Am.

3. Identify Am−1 as the group generated by any subset of size m− 3 of the above set.

Step 1. To find all 3-cycles in G, we search in linear time for all elements of order 3. In this
set of elements, 3-cycles form a conjugacy class. Except for when m = 6, this conjugacy
class is the only one of size 2 ·

(
m
3

)
, and it may be found using Algorithm 5. Indeed,

conjugacy classes of elements of order 3 are characterized by the number r of disjoint
3-cycles in each permutation (3r ≤ m). The number of elements in each conjugacy class
is

2rm!

3!r(m− 3r)!r!
.

Except for when m = 6, substituting r > 1 yields larger conjugacy classes than r = 1.
Hence we can find the set of 3-cycles in the group G = Am that is given as a black box, in
near-linear time. The case m = 6 can be treated separately, e.g. by brute-force, similarly
to the sporadic groups.

Step 2. Given two 3-cycles x, y, there are three options for the interaction between x
and y. If the cycles are disjoint, then x · y has order 3. If x, y share a single element of
{1, . . . ,m}, then x · y has order 5. If x, y share two elements of [m], then either x · y is of
order 2 or is of order 3, depending on the orientation of the intersection. We demonstrate
this using two examples.

x · y of order 2: x = (1, 2, 3), y = (1, 2, 4).

x · y of order 3: x = (1, 3, 2), y = (1, 2, 4).

In particular, consider two 3-cycles a, b with a ·b of order 2. Then, there are exactly m−4
other 3-cycles c with both a · c and b · c of order 2. We find this set of permutations,
together with a, b in mO(1) time in the set of 3-cycles that we found in previous step.
This set is conjugate to {(1, 2, k) : k = 3 . . .m}.
Step 3. The set {(1, 2, k) : k = 3 . . . (m − 1)} is known to generate Am−1. Similarly, if
we drop any 3-cycle from the set of permutations that we found in the previous step, we
end up with a set of generators for a copy of Am−1, which is a large subgroup of Am.

Groups of Lie Type The finite simple groups which are not cyclic, sporadic, or belong
to the alternating family, are called groups of Lie type.

For this type of groups, our algorithm LargeSubgroupOfSimpleGroup follows the (com-
mon) construction by [4] and [5]. These constructions rely on the notion of a Borel
subgroup of a group of Lie type, whose existence is well known. Specifically, the large
subgroups provided both in [4] and [5] are of the following form.

Theorem 7.3. Let G be a finite simple group of Lie type with a Borel subgroup B. Then,
there exists an element a ∈ G so that the parabolic subgroup

P = ⟨B, a⟩

is a large subgroup of G.
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Theorem 7.3 is the result of Case 3 in the proof of [5]. There, the parabolic subgroup
is denoted PJ , and is defined as PJ = BNJB (for a certain set NJ). It is moreover shown
that PJ is a large subgroup if G is not one of the 27 sporadic groups (including the Tits
group). By [7, Proposition 8.3.1] it follows that PJ has the form ⟨B, a⟩ for some a ∈ G.

Accordingly, our algorithm includes the following ingredients to handle this case of
groups of Lie type.

Lemma 7.4. There exists an algorithm EnumerateParabolic that receives a group G of
order n, and a subgroup B of G, which enumerates all subgroups of the form

Pa = ⟨B, a⟩, a ∈ G (5)

in O
(
n2 · log |B|+1

|B|

)
time.

In order to control the running time of Lemma 7.4 in the case where B is a Borel
subgroup, we show that Borel subgroups are almost large.

Lemma 7.5. Let ϵ > 0. Except for only a finite number of finite simple groups G of Lie
type, every Borel subgroup B of |G| satisfies

|B| ≥ |G|1/2−ϵ.

Moreover, we show that it is possible to find a Borel subgroup efficiently.

Lemma 7.6. There exists an algorithm BorelSubgroup that receives a group G of Lie
type together with a name (f,m, q), and outputs a Borel subgroup of G if G ∼= f(m, q).

The running time of the algorithm is Õ(n).

Proof of Lemma 7.1. The Algorithm. LargeSubgroupOfSimpleGroup receives a simple
group G as input. It uses EnumerateGroups in order to enumerate over a shortlist of
names (f,m, q) of finite simple groups, one of which is isomorphic to G.

For each group name f(m, q), we attempt to construct a large subgroup of G under
the assumption that G is isomorphic to f(m, q). If we succeed we return our results;
otherwise, we proceed to the next candidate (f,m, q).

If f(m, q) is a sporadic group, we try to find a large subgroup by brute-force (or by
any clever method using the known structure of these groups). If f(m, q) is an alternating
group, then we attempt to find a large subgroup using the method described at the start
of Section 7.2.

Otherwise, f(m, q) is of Lie type. In this case we find a Borel subgroup for f(m, q) and
enumerate all parabolic subgroups containing B. By Theorem 7.3, one of these parabolic
groups will be a large subgroup of f(m, q).

Time complexity. For f a sporadic family we invest at most O(1) runtime. For f the

alternating group, we attempt to locate Am−1 in Õ(n) time using the method described
at the beginning of Section 7.2. When f is of Lie type, the Borel subgroup is found in
Õ(n) time by Lemma 7.6, and the parabolic subgroups are enumerated in O(n3/2+ϵ) time
due to the bound of Lemma 7.5 on B that we enforce, and Lemma 7.4.
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Algorithm 9: LargeSubgroupOfSimpleGroup

Input: A simple group G of non-prime size n
Output: A large subgroup of G

1 for (f,m, q) ∈ EnumerateGroups(n) do
2 if f is “sporadic groups” then
3 if (Can find a large subgroup in G by brute-force) then
4 return The large subgroup
5 end

6 else if f is “alternating groups” then
7 if (Can find a large subgroup in G by treating G as Am) then
8 return The large subgroup
9 end

10 else
11 B ← BorelSubgroup(G, f,m, q)
12 if (B is as large as projected by Lemma 7.5) then
13 for P ∈ EnumerateParabolic(f(m, q), B) do
14 if |P | ≥

√
n and |P | < n then

15 return P
16 end

17 end

18 end

19 end

20 end
21 ▷ Unreachable, unless input is invalid
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We present the short proof that Borel subgroups are almost large.

Proof of Lemma 7.5. The existence of Bruhat decompositions [7, Proposition 8.2.3] is
well-known for finite simple groups of Lie type. This decomposition implies the existence
of a set W ′ ⊆ G with

G =
⋃

w∈W ′

BwB. (6)

In (6), W ′ has a 1-to-1 correspondence with the Weyl group W of G. We claim that
|W | ≤ |G|2ϵ except for a finite number of simple groups. This can be verified using
Table 2, where the values for |W | are listed and are taken from [5, Table II]. Hence, with
only a finite number of exceptions, (6) implies

|G| ≤ |B|2 · |W | ≤ |B|2 · |G|2ϵ =⇒ |G|1/2−ϵ ≤ |B|.

7.2.1 Enumerating parabolic subgroups

Proof of Lemma 7.4. The Algorithm. EnumerateParabolic enumerates all groups Pa =
⟨B, a⟩ by considering only elements a that belong to some left transversal A of B in G.
This is valid since Pa = Pab for any b ∈ B. To compute Pa, the algorithm considers the
Cayley graph of G with respect to S ∪ {a} where S is a set of generators for B. The
connected component of the identity element eG equals Pa = ⟨B, a⟩.

Algorithm 10: EnumerateParabolic

Input: A finite group G of size n and a subgroup B ⩽ G
Output: A list of all subgroups Pa from Equation (5)

1 A← LeftTransversal(G,B)
2 S ← Generators(B)
3 E ← {g ↔ gs : g ∈ G, s ∈ S}
4 P ← {}
5 for a ∈ A do
6 E ′ ← E ∪ {g ↔ ga : g ∈ G}
7 Pa ← ConnectedComponent(E ′, eG)
8 P ← P ∪ {Pa}
9 end

10 return P

Time complexity. LeftTransversal(G,B) runs in O(n) time. Generators(B) performs

only Õ(|B|) multiplications. Initializing E requires n log |B| multiplications. Since A is
of size n/|B|, computing the edges g ↔ ga for all a ∈ A requires n2/|B| operations in the
group. Finally, finding a connected component is done in linear time in the number of
edges E ′ (at worst), which amounts to n(log |B|+1), and is done |A| = n/|B| times.
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7.2.2 Computing a Borel subgroup

In order to construct a Borel subgroup, we introduce several basic definitions.

Definition 7.7. Let H be a subgroup of G. The normalizer of H (in G) is defined as

NG(H) := {g ∈ G : gHg−1 = H}

Definition 7.8. Let G be a group whose order divides a prime p. A p-Sylow subgroup
H of G is a p-subgroup (subgroup whose order is a power of p) which is maximal with
respect to inclusion.

The following characterization of Borel subgroups is presented in [8].

Fact 7.9 ([9, Corollary 24.11]). Let G be a finite group of Lie type, defined over the field
Fq. Let p be the prime number dividing q. Then the normalizer of any p-Sylow group of
G is a Borel subgroup of G.

We need a few more group-theoretic facts.

Fact 7.10 (Cauchy’s theorem). Let G be a group of order divisible by a prime p. Then,
there exists a non-identity element g ∈ G satisfying gp = e.

Fact 7.11 (Sylow theorems [10]). Let G be a group with order divisible by a prime p.

1. There exists a subgroup of G of order pk with pk the largest p-power dividing |G|.

2. All p-Sylow subgroups are conjugate to each other.

Fact 7.12 ([11]). Let H be a proper subgroup of a p-group S. Then the normalizer of H
in S properly contains H.

Proof of Lemma 7.6. By Fact 7.9, the normalizer of a p-Sylow subgroup is a Borel sub-
group. Thus, the construction of a Borel subgroup immediately follows from two proce-
dures, that we describe next.

• PSylow: An algorithm to find a p-Sylow subgroup of G.

• Normalizer: An algorithm to find the normalizer of a subgroup H ⩽ G.

Both algorithms have Õ(n) running time.

The Normalizer Algorithm. We start by computing a small set S of generators for H.
We observe that if g ∈ G has gSg−1 ⊆ H, then gHg−1 ⊆ H and hence gHg−1 = H. The
opposite is also true – if g ∈ NG(H) then gSg−1 ⊆ H. Hence we compute in Õ(n) time
the set of g ∈ G satisfying gSg−1 ⊆ H.

The PSylow Algorithm. We iteratively find p-subgroups of G with orders pi, for
i = 0, 1, 2, 3, · · · . Given a non-maximal p-subgroup H of G, we compute the normalizer
of H in G. We search for an element g ∈ NG(H) which is outside of H so that gp is
inside H (using exponentiation by squaring). Once such a g in found, H = ⟨g,H⟩ is of
order p|H|, and we proceed likewise by trying to enlarge H. The algorithm runs in Õ(n),
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Algorithm 11: Normalizer

Input: A subgroup H of a group G
Output: The normalizer NG(H) of H in G

1 S ← Generators(H)
2 N ← G
3 for s ∈ S do
4 N ← N ∩ {g ∈ G : gsg−1 ∈ H}
5 end
6 return N

and we only need to prove that such a g with gp ∈ H is found, and that ⟨g,H⟩ has order
p|H|.

First, if g ∈ NG(H) \H satisfies gp ∈ H, then we notice (giH)(gjH) = gi+jH and so
⟨g,H⟩ =

⋃p
i=1(g

iH) is of order p|H|.
Second, we show such a g exists. Recall our assumption that p|H| divides |G|. It

implies that H is a proper subgroup of a p-Sylow subgroup S of G. By Fact 7.12 we have
that H ⊊ NS(H). Therefore, H is a proper normal subgroup of NS(H). Since NS(H)
is a p-subgroup of G by itself, NS(H)/H has order divisible by p. Hence, by Cauchy’s
theorem (Fact 7.10), there exists an element gH of NS(H)/H that is of order p. This
corresponds to our sought-of element g ∈ NS(H) ⊆ NG(H) that satisfies gp ∈ H.

Algorithm 12: PSylow

Input: A group G and a prime number p dividing its order
Output: A p-Sylow subgroup of G

1 H ← {e}
2 while p|H| divides |G| do
3 for g ∈ Normalizer(G,H) do
4 if g /∈ H and gp ∈ H then
5 H ← ⟨g,H⟩ ▷ ⟨g,H⟩ has size p|H|
6 break

7 end

8 end

9 end
10 return H
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