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Abstract

Given a distribution over [n]n such that any k coordinates need k/ logO(1) n bits of
communication to sample, we prove that any map that samples this distribution from uniform
cells requires locality Ω(log(n/k)/ log log(n/k)). In particular, we show that for any constant

δ > 0, there exists ε = 2−Ω(n1−δ) such that Ω(log n/ log log n) non-adaptive cell probes on
uniform cells are required to:

• Sample a uniformly random permutation on n elements with error 1− ε. This provides an
exponential improvement on the Ω(log log n) cell probe lower bound by Viola.

• Sample an n-vector with each element independently drawn from a random n1−δ-vector,
with error 1− ε. This provides the first adaptive vs non-adaptive cell probe separation for
sampling.

The major technical component in our proof is a new combinatorial theorem about flower
with small kernel, i.e. a collection of sets where few elements appear more than once. We show
that in a family of n sets, each with size O(log n/ log log n), there must be k = poly(n) sets

where at most k/ logO(1) n elements appear more than once.
To show the lower bound on sampling permutation, we also prove a new Ω(k) communication

lower bound on sampling uniformly distributed disjoint subsets of [n] of size k, with error

1 − 2−Ω(k2/n). This result unifies and subsumes the lower bound for k = Θ(
√
n) by Ambainis

et al., and the lower bound for k = Θ(n) by Göös and Watson.

1 Introduction

In this paper we examine the complexity of generating a certain distribution, which is a
study initially advocated by Viola [Vio12] and then followed up by a long line of works, e.g.
[LV12, BIL12, Wat14, Vio16, Vio20, CGZ22]. Specifically, we consider the problem of sampling a
distribution over vectors of lengths n with symbols in [n] = {1, . . . , n}, given access to ` uniformly
random cells of logn bits, via a function f : [n]` → [n]n, where ` can be arbitrarily large. We say f
is s-local if each output symbol depends on at most s input symbols, or in other words, f can be
computed with s non-adaptive cell probes.

We connect this notion of sampling with local maps to the task of sampling with communication
protocols, which was studied in e.g. [AST+03, Wat16, GW20, CGZ22]. Following [GW20], for a
distribution D on vectors of length k, we use Sampε(D) to denote the smallest ` ∈ N such that
there exists a private-randomness communication protocol among k parties, with transcript length
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always at most `, that the distribution C on the outputs of the k parties satisfies ∆(C,D) ≤ ε. Here
∆(·, ·) denotes the statistical (i.e. total-variation) distance, that is,

∆(C,D) = max
X⊆[n]k

∣∣∣∣ Pr
X∼C

[X ∈ X ]− Pr
X∼D

[X ∈ X ]

∣∣∣∣ .
Note that merging several parties into one does not increase the communication complexity, and
the communication lower bounds in this paper are all proved for two parties, so we do not specify
the number of parties when applying these lower bounds.

If the distribution D is over vectors of length n, we use DI to denote the marginal distribution
of D on the coordinates in I for any non-empty set I ⊆ [n]. We relate the locality of sampling D
to the communication complexity of sampling DI through the our main theorem, which states as
follows.

Theorem 1.1. Let D be a distribution on [n]n. Suppose ε ∈ (0, 1) and integers 0 < h ≤ k < n
satisfy that Samp1−ε(DI) > h log n for every set I ⊂ [n] of k coordinates. Then for any s ∈ N such
that 2s2 ≤ h and

s ≤ log(n/k)

log(8k/h) + 4 logdlog(n/k)e

and arbitrary ` ∈ N, every s-local map f : [n]` → [n]n must satisfy ∆(f(U),D) ≥ 1− ε, where U is
the uniform distribution over [n]`.

The key component in the proof is a new combinatorial theorem (Theorem 2.1) on the existence
of a flower with small kernel in a large family of sets, which consists of k sets within which there are
at most h elements appearing more than once. The theorem could also be of independent interest
since flowers are natural combinatorial objects and may emerge in other applications.

We give two applications of Theorem 1.1 which answers two open problems from [Vio20]. The
first application is on sampling permutations. If we take any k coordinates in a random permutation
and divide it into two equal parts, then the two parts are uniformly distributed over two disjoint
subsets of [n] with size k/2. Consequently, we have to prove the following communication lower
bound on sampling disjoint sets with fixed size:

Theorem 1.2. Let [n](k) denote the collection of all size-k subsets of [n]. Let Dn,k be the uniform
distribution over {

(X,Y )
∣∣ X,Y ∈ [n](k), X ∩ Y = ∅

}
.

Then for every ω(log log n) < k ≤ n/2, there exists ε = 2−Ω(k2/n) such that Samp1−ε(Dn,k) = Ω(k).

We note that some special cases of Theorem 1.3 have been known before this work. Ambainis et
al. [AST+03] proved the case for k = Θ(

√
n), while Göös and Watson [GW20] proved the case for

k = Θ(n), or similarly when there is no size restriction (where a uniformly random pair of disjoint
subsets almost always both have size Θ(n)). A simpler proof for the result of [GW20] was later
found by Chattopadhyay, Goodman and Zuckerman [CGZ22]. However, neither cases are suitable
for our application: We need k = o(n) to have a meaningful lower bound on the locality s when
applying Theorem 1.1, and we need k = ω(

√
n) so that ε is small and thus the statistical distance

is close to 1. Our Theorem 1.2 subsumes both previous cases and we present a self-contained proof
in Section 3.1.

By choosing k = n1−δ for some δ ∈ (0, 1/2) in Theorem 1.2 and h = Θ(k/ log2 n) in Theorem 1.1,
we immediately obtain the following corollary.
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Theorem 1.3. Let D be the uniform distribution over all permutations in [n]n. For every constant
δ > 0, there exists s = O(log n/ log logn) such that every s-local map f : [n]` → [n]n satisfies

∆(f(U),D) ≥ 1− 2−Ω(n1−δ).

Viola in [Vio20] proved a bound ∆(f(U),D) ≥ 1−exp(−n/ log2O(s)
n) for sampling permutation

with s-local maps, which is only non-trivial for s ≤ O(log log n). Therefore, our Theorem 1.3
provides an exponential improvement on the locality lower bound. It also almost answers the
long-standing open problem raised at the end of [Vio12], which asked for an Ω(log n) locality lower
bound. The result also implies a succinct data structure lower bound for storing permutations as
follows.

Corollary 1.4. For every constant δ > 0, there exists s = O(log n/ log logn) such that the following
holds. Any cell-probe data structure for storing permutations on n elements, such that each element
can be retrieved with s non-adaptive probes in cells of log n bits, must use log(n!) + Ω(n1−δ) space.

The proof of Corollary 1.4 from Theorem 1.3 can be found in [Vio12, Vio20]. Our second
application is on sampling tuples in [n]n with at most k distinct elements:

Theorem 1.5. Let E be the following distribution on [n]n for some k ∈ N+: first sample r uniformly
from [n]k, and let x ∼ E be that for every i ∈ [n], independently and uniformly draw j ∈ [k] and
let xi = rj. For every k ≤ n1−Ω(1), there exists s = O(log n/ log logn) such that every s-local map
f : [n]` → [n]n satisfies ∆(f(U), E) ≥ 1− 2−Ω(k).

Theorem 1.5 is proved via Theorem 1.1 by showing an Ω(k) communication lower bound for
sampling two equal sets of size k (Lemma 3.3), whose proof is fairly simple and standard. As noted in
[Vio20], each output symbol in E can be sampled with two adaptive probes from a uniformly random
input in [k]n × [n]k. It was conjectured in [Vio20] that non-adaptively a large amount of probes
is required. Theorem 1.5 proves the conjecture and thus providing an O(1) vs. Ω(log n/ log log n)
separation between adaptive and non-adaptive cell probes for sampling.

Comparisons with [FLRS23] Independently of our work, Filmus, Leigh, Riazanov and Sokolov
[FLRS23] recently proved an Ω(log(n/k)/ log log(n/k)) lower bound on the decision forest depth
for sampling uniformly random n-bit strings of Hamming weight k, which directly implies a lower
bound on sampling uniform permutations (as we can assign 1 to the outputs symbols in {1, . . . , k}
and 0 to {k + 1, . . . , n}).

Yet, their method and results are incomparable to ours: Although the lower bound they proved
works for adaptive queries, it is only against bit probes (as it crucially depends on the fact that
2s < n for the probe number s, which is not true if we replace the left-hand side with ns); while our
lower bound works against cell probes on O(log n)-bit cells, albeit being non-adaptive. In addition,
their method could only prove a bound on the statistic distance up to 1−n−O(1) while our bounds
are exponentially close to 1. However, our method apparently does not work on the Hamming
weight sampling problem that they considered.

Nevertheless, our work shares some interesting similarities with [FLRS23]: The asymptotic
lower bounds on the number of probes happen to be identical, and their proof also used some
variant of the sunflowers (robust sunflowers [Ros14, ALWZ21] to be precise). This indicates that
there might be deeper connections between the two works that we are currently not aware of.

2 Flower with Small Kernel

In this section we prove Theorem 1.1. The idea is to characterize every s-local map using a family
of n sets each with size at most s, indicating the input symbols that each output symbol depends
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on. We want to show that within this family there exists a large flower with small kernel, i.e. k sets
such that at most h < k elements appear more than once. In this case broadcasting h random input
symbols suffices to sample the corresponding k output symbols, as the rest of the input symbols
used for each output are independent.

To put it formally, we first define the flowers.

Definition 1. An s-family is a collection of sets S1, . . . , Sn such that |Si| ≤ s for all i. The family
is called a flower with kernel K, if Si ∩ Sj ⊂ K for all i 6= j, and each Si \K is called a petal.

The readers may find the definition a reminiscence of the well-known notion of sunflowers
[ER60, ALWZ21, BCW21]. Indeed, for a sunflower it is instead required that Si ∩ Sj = K for all
i 6= j. In [RR18] flowers are defined similarly to ours, but with the additional requirement that
|K| ≤ s. As a result, for a k-petal flower with their definition to exist, the size of the s-family has
to be kΩ(s), similar to the case of sunflowers. Here we show that, if we allow the kernel size |K| to
be larger (but still non-trivially small, while trivially the kernel could be the union and have size
Ω(ks)), then the dependence on k could be much better.

Theorem 2.1. For every s, k > 0 and h ≥ 2s2, if n ≥ (8ks4/h)s · k, then in every s-family F of n
sets, there exists a k-petal flower with kernel K such that |K| ≤ h.

Proof. We will iteratively construct a sequence of s-families F0,F1, . . . until certain requirements
are met specified below. Initially, let F0 = F .

Suppose that we currently have a set system Ft with size |Ft| = nt. We say an element x is
heavy (within this round of iteration), if∣∣{S ∈ Ft | x ∈ S}∣∣ > nt

2ks
,

and otherwise x is light. Let H be the collection of heavy elements in this round, and we have
|H| ≤ 2ks2 by counting the pairs (S ∈ Ft, x ∈ S). We partition Ft into subfamilies based on the
size of S ∩H: For every 0 ≤ i ≤ s, let

Ft,i =
{
S ∈ Ft | |S ∩H| = i

}
.

If |Ft,0| < 1
2nt, then there must be some i > 0 such that |Ft,i| ≥ nt/(2s). In this case we

continue the iteration by letting

Ft+1 =
{
S \H | S ∈ Ft,i, S ∩H ⊆ Ht

}
,

where Ht ⊆ H is a set of at most h/s heavy elements chosen to maximize the size of Ft+1. In fact,
if |H| ≤ h/s then we can simply take Ht = H. Otherwise let Ht be a uniformly random subset of
H with size h/s, then for every S ∈ Ft,i we have

Pr[S ∩H ⊆ Ht] =

(
|H| − i
h/s− i

)/(
|H|
h/s

)
≥
(
h/s− i
|H|

)i
≥
(

h

4ks3

)i
.

The least inequality is because h/s− i ≥ h/s− s ≥ h/(2s) and |H| ≤ 2ks2. Therefore, there must
be a choice of Ht such that

nt+1 = |Ft+1| ≥
(

h

4ks3

)i
|Ft,i| ≥

(
h

4ks3

)i
· nt

2s
. (1)

Notice that in the above scenario the size of sets in Ft+1 is reduced by i > 0 compared to that
in Ft, which means that the iteration goes for at most s rounds until either we have |Ft,0| ≥ 1

2nt,

4



or every set in Ft becomes empty and thus |Ft,0| = nt ≥ 1
2nt also holds. Now we just greedily

pick k sets from Ft,0 that are disjoint on the light elements. This is always achievable as long as
|Ft,0| ≥ k, because each set touches at most s light elements, which in total, by the definition of
light elements, prohibit at most

s · nt
2ks
≤ 1

2
nt ≤ |Ft,0|

sets in Ft,0 from further choices.
We take the flower to be the original sets in F0 corresponding to these k picked sets, and take

the kernel K to be the union of Ht. Since there are at most s rounds and |Ht| ≤ h/s in each round,
we have that |K| ≤ h. Finally, to ensure that |Ft,0| ≥ k holds in the final round, notice that the
sum of i through the iteration is at most s, and hence by (1) and the assumption on n,

|Ft,0| ≥
1

2
nt ≥

(
h

4ks3

)s
· (2s)−s · n ≥ k.

Now we can complete the proof of Theorem 1.1 simply by playing around with definitions.

Proof of Theorem 1.1. Given the s-local map f : [n]` → [n]n, we define an s-family S1, . . . , Sn over
the universe [`], where Si consists of the indices of inputs symbols that the u-th output symbol
depends on. By Theorem 2.1 we can find a flower {Si}i∈I with kernel K, where |I| = k and |K| ≤ h,
as long as h ≥ 2s2 and n ≥ (8ks4/h)s · k. The later is equivalent to

s · [log(8k/h) + 4 log s] ≤ log(n/k).

Our assumption on s implies that log s ≤ log log(n/k), and therefore the above inequality holds.
Using f , we design the following communication protocol for k players to sample DI . The

first player samples uniformly (xj)j∈K from [n]|K|, and broadcast it to other players. Then each
player, assigned with i ∈ I, uniformly samples inputs symbols in the petal (xj)j∈Si\K and output
f(x)i based on (xj)j∈Si . Note that the output distribution of the protocol is exactly f(U)I , and
communication complexity is |K| log n ≤ h log n. Thus if Samp1−ε(DI) > h log n, then we have
∆(f(U),D) ≥ ∆(f(U)I ,DI) > 1− ε.

Remark. The dependence on k in Theorem 2.1 is essentially optimal in the regime of interest for
the application in Theorem 1.1. In particular, for every s, h, k > 0, there exists an s-family F of

n =

⌊
1

4e

(
k

2h

)s
· k
⌋

sets where no k sets form a flower with kernel size at most h.
This fact can be shown via a probabilistic construction. Let each set in F be a random subset

of [k/2] by independently and uniformly sample s elements with replacement (so that each set has
size at most s). If a k-petal flower exists with kernel K ⊆ [k/2], since all the petals are disjoint
outside K, there must be at least k/2 sets in the flower that are completely contained in K. When
K is fixed with |K| ≤ h, each set in F is contained in K with probability at most (2h/k)s. By a
union bound over the choices of these k/2 sets among the n sets in F and the choices of K, we
have that the probability of F containing a k-petal flower with kernel size at most h is at most(

2h

k

)s·k/2
·
(
n

k/2

)
· 2k/2 ≤

[(
2h

k

)s
· 4en

k

]k/2
which is less than 1 with the choice of n above. Therefore there exists a family F as required. This
means that the log(n/k) factor in Theorem 1.1 is essential, and justifies our choices of k = n1−δ.
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3 Communication Complexity for Sampling

In this section we prove the communication lower bounds for sampling two-part distributions, which
by Theorem 1.1 imply lower bounds for sampling with s-local maps. We prove the lower bound for
sampling disjoint sets (Theorem 1.2) in Section 3.1, and prove Theorem 1.5 via a lower bound for
sampling equal sets (Lemma 3.3) in Section 3.2.

3.1 Sampling Disjoint k-Sets

Recall the sampling lower bound we need to prove, where we use [n](k) to denote the collection of
all size-k subsets of [n].

Theorem 1.2. Let Dn,k be the uniform distribution over{
(X,Y )

∣∣ X,Y ∈ [n](k), X ∩ Y = ∅
}
.

Then for every ω(log log n) < k ≤ n/2, there exists ε = 2−Ω(k2/n) such that Samp1−ε(Dn,k) = Ω(k).

Note that the error bound is tight as ∆(U × U ,Dn,k) ≤ 1 − 2−O(k2/n) for uniform distribution
U over [n](k). This also means that we cannot simply view the protocol as a convex combination
of product distributions, and assort to the standard lower bound technique on statistical distance
of convex combinations:

∆
(∑

i∈[m]
piDi,D

)
≥ 1−

∑
i∈[m]

(
1−∆(Di,D)

)
(2)

since the it will only provide a lower bound of Samp1−ε(Dn,k) ≥ Ω(k2/n), which in turn only gives a
constant lower bound on the locality s when plugged into Theorem 1.1. Note that (2) was crucially
used in the proof by [CGZ22] for k = Θ(n), and also in the sampling lower bound for permutation
of [Vio20], whereas here we need to use some different techniques.

Our actual proof of Theorem 1.2 is similar in framework with the proof by [AST+03] for
k = Θ(

√
n). Their proof depends on the fact that every large rectangle R = X × Y contains

at least a constant fraction of intersecting pairs, which was proved by Babai, Frankl and Simon for
their Ω(

√
n) randomized communication lower bound of computing set disjointness [BFS86]. In the

Lemma 3.1 below we prove a version of this fact for larger k, showing that the faction of disjoint
pairs in 2−O(k) large rectangles in [n](k) × [n](k) is exponentially small in k2/n. Our proof is based
on the work of Alon and Frankl [AF85], in which only k = Θ(n) was considered but the techniques
easily generalize to arbitrary k.

Lemma 3.1. For every constant σ ∈ [0, 1) the following holds. For every rectangle R = X × Y
with X ,Y ⊆ [n](k) and |X |, |Y| ≥

(
n
k

)
· 2−σk, we have

ρ(R) =
|R ∩ suppDn,k|

|R|
≤ 2−Ω(k2/n).

Proof. Let X1, . . . , Xt be independent uniform samples from X for some t to be chosen later. Let
S be the random variable that counts the number of Y ∈ Y disjoint from all Xi, that is,

S =
∣∣{Y ∈ Y | Xi ∩ Y = ∅, ∀i ∈ [t]

}∣∣ .
By convexity of the function x 7→ xt, we have

E[S] =
∑
Y ∈Y

Pr
[
Xi ∩ Y = ∅, ∀i ∈ [t]

]
=
∑
Y ∈Y

[
ρ(X × {Y })

]t
≥ |Y| ·

[
1

|Y|
∑
Y ∈Y

ρ(X × {Y })

]t
= |Y| · ρ(R)t. (3)
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On the other hand, notice that when |X1 ∪ · · · ∪Xt| ≥ n/2, we have

S ≤
(
bn/2c
k

)
≤
(
n

k

)
· 2−k ≤ |Y| · 2(σ−1)k.

To bound probability of the complement event where |X1 ∪ · · · ∪Xt| < n/2, we use union bound
to first choose a set of size bn/2c, and then pick every Xi from this set, which means that

Pr
[
|X1 ∪ · · · ∪Xt| < n/2

]
≤
(

n

bn/2c

)
·
[

1

|X |

(
bn/2c
k

)]t
≤ 2n · 2(σ−1)kt.

Therefore we conclude that

Pr
[
S > |Y| · 2(σ−1)k

]
≤ 2n · 2(σ−1)kt.

And since S ≤ |Y|, we can upper bound E[S] with

E[S] ≤ |Y| · 2(σ−1)k + |Y| · Pr
[
S > |Y| · 2(σ−1)k

]
≤ |Y| ·

(
2(σ−1)k + 2n · 2(σ−1)kt

)
. (4)

Combining (3) and (4) gives us

ρ(R)t ≤ 2(σ−1)k + 2n · 2(σ−1)kt.

Take t = 2n
(1−σ)k , then we have ρ(R)t ≤ 2(σ−1)k + 2−n ≤ 2−(σ−1)k/2. Therefore ρ(R) ≤ 2−Ω(k/t) ≤

2−Ω(k2/n).

Now, to prove Theorem 1.2 from Lemma 3.1, we need to decompose the product distributions
from the communication protocol into uniform distributions over rectangles, which is done by
decomposing any distribution (on each party) into uniform distributions.

Lemma 3.2. Given any distribution D over the universe [N ], there are m ≤ 2 logN + 1 uniform
distributions U1, . . . ,Um over subsets of [n], and a distribution (p1, . . . , pm) over [m] such that

∆
(
D,
∑

i∈[m]
piUi

)
≤ 1

N
.

Proof. For each x ∈ [N ], let dx be the probability of x under D. Then for i ∈ N+, we take Ui
to be the uniform distribution over all x such that the i-th bit after decimal point in the binary
representation of dx is 1, as long as such x exists. It is easy to see that D =

∑
i∈N+

2−i|suppUi| · Ui.
Let pi = 2−i|suppUi| for i ≤ logN , and let

p = 1−
∑

i≤2 logN

pi =
∑

i>2 logN

2−i|suppUi| ≤
∑

i>2 logN

2−iN ≤ 1

N
.

Then adding an arbitrary distribution U gives us

∆
(
D,
∑

i≤2 logN
piUi + p · U

)
≤ p ≤ 1

N
.

Proof of Theorem 1.2. Suppose we have a two-party communication protocol for sampling Dn,k
with error 1− ε and transcript length at most k/3. Conditioned on any transcript in {0, 1}k/3, the
outputs of the two parties are independent and thus generates a product distribution DX × DY .
By Lemma 3.2, each of DX and DY can be approximated by a convex combination of at most
2 log

(
n
k

)
+ 1 uniform distributions with error 1/

(
n
k

)
, and thus DX ×DY can be approximated by a

7



convex combination of at most
(
2 log

(
n
k

)
+ 1
)2

= O(k2 log2 n) uniform distributions over rectangles
with error 2/

(
n
k

)
≤ 2−k.

Therefore, altogether we have M ≤ O(2k/3k2 log2 n) rectangles R1, . . . ,RM and a distribution
(p1, . . . , pM ) over [M ] such that

∆
(
Dn,k,

∑
i∈[M ]

piRi
)
≤ 1− ε+ 2−k, (5)

where we abuse the notation and use Ri to also denote the uniform distribution over the rectangle
Ri = Xi × Yi. Let I ⊆ [M ] consist of indices i such that |Xi|, |Yi| ≥

(
n
k

)
· 2−k/2, and let

RI =
∑

i∈I piRi
/∑

i∈I pi. By Lemma 3.1 we have

∆(Dn,k,RI) ≥ 1− Pr
(X,Y )∼RI

[X ∩ Y = ∅]

= 1−
∑
i∈I

pi · Pr
(X,Y )∼Ri

[X ∩ Y = ∅]
/∑

i∈I
pi

= 1−
∑
i∈I

pi · ρ(Ri)
/∑

i∈I
pi

≥ 1− 2−Ω(k2/n).

And when i /∈ I, if |Xi| <
(
n
k

)
· 2−k/2 then

∆(Dn,k,Ri) ≥ 1− Pr
(X,Y )∼Dn,k

[X ∈ Xi] > 1− 2−k/2,

as the distribution of X is uniform over [n](k) in Dn,k. The same bound holds for the case when
|Yi| <

(
n
k

)
· 2−k/2 for the same reason, and therefore by inequality (2) (whose proof can be found in

e.g. [CGZ22, Lemma 2]), we have

∆
(
Dn,k,

∑
i∈[M ]

piRi
)
≥ 1− 2−Ω(k2/n) −M · 2−k/2. (6)

Since k = ω(log log n), we can find ε = 2−Ω(k2/n) that makes (5) and (6) contradict, which
means that the communication protocol with transcript length k/3 does not exist. Therefore
Samp1−ε(Dn,k) = Ω(k).

3.2 Sampling Equal k-Sets

In contrast to Theorem 1.2, the communication lower bound for sampling equal sets can be easily
proved via the standard inequality (2).

Lemma 3.3. Let En,k be the uniform distribution over{
(X,X)

∣∣ X ∈ [n](k)
}
.

Then for every k ≤ n1−Ω(1), there exists ε = n−Ω(k) such that Samp1−ε(En,k) = Ω(k log n).

Proof. Consider any product distribution X ×Y over [n](k) × [n](k). We can directly write out the
statistical distance as

∆(En,k,X × Y) = 1−
∑

Z∈[n](k)

min
{(n

k

)−1

, Pr
X∼X

[X = Z] · Pr
Y∼Y

[Y = Z]
}
.
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We claim that there are at most 2 ·
(
n
k

)2/3
such Z that the term in the summation is at least

(
n
k

)−4/3
,

since it would imply that either Pr[X = Z] ≥
(
n
k

)−2/3
or Pr[Y = Z] ≥

(
n
k

)−2/3
. Therefore we have

1−∆(En,k,X × Y) ≤ 2 ·
(
n

k

)2/3

·
(
n

k

)−1

+

(
n

k

)
·
(
n

k

)−4/3

= 3 ·
(
n

k

)−1/3

≤ n−Ω(k),

where the last inequality is because k ≤ n1−Ω(1). Since given any communication protocol,
conditioned on any transcript the output distribution is a product distribution, with inequality (2)
we can conclude the lemma.

Now recall the distribution x ∼ E in Theorem 1.5: First sample r uniformly from [n]k, and
for every i ∈ [n], independently and uniformly draw j ∈ [k] and let xi = rj . In order to use
Theorem 1.1, we fix two disjoint sets I, I ′ ⊆ [n] each containing 3k coordinates. We define three
sets of symbols in [n] as

S = {rj | j ∈ [k]}, X = {xi | i ∈ I}, Y = {xi | i ∈ I ′}. (7)

It is not hard to see that S = X = Y with constant probability. However, we cannot simply
restrict ourselves to this case as it does not provide lower bounds with error exponentially close
to 1. Instead, we show that X ∩ Y is almost always large, and thus two parties given X and Y
separately can independently sample two subsets that are equal with non-negligible probability.

Lemma 3.4. With probability at least 1− 2−Ω(k), |X ∩ Y | ≥ k/4.

Proof. First we have

Pr
[
|S| ≤ k/2

]
≤
(
n

k/2

)
· (k/2)k · n−k ≤

(
ek

2n

)k/2
≤ 2−Ω(k).

When |S| ≥ k/2, we can identify k/2 different coordinates and symbols in r. The probability that
X hits less than 3k/8 of them (while missing at least k/8) is at most(

k/2

k/8

)
·
(

1− k/8

k

)3k

≤ 2k/2 · (7/8)3k ≤ 2−Ω(k).

The same inequality holds for Y . And when both X and Y hits at least 3k/8 different symbols
from the set of size k/2, they have at least k/4 common ones, which happens with probability at
least 1− 2−Ω(k) by union bound.

Corollary 3.5. Let E ′n,k be the distribution of (X,Y ) described in (7). Then for every k ≤ n1−Ω(1),

there exists ε = 2−Ω(k) such that Samp1−ε(E ′n,k) = Ω(k log n).

Proof. First, suppose that we have the distribution E ′n,k, and we use it to sample En,k/4 as follows:
Give the two sets X and Y separately to the two parties, each of whom samples a uniform subset
of size k/4 from the set they receives (whenever possible) as the output. By Lemma 3.4, with
probability at least 1− 2−Ω(k), |X ∩Y | ≥ k/4, conditioned on which the two subsets of size k/4 are

equal with probability at least
(
k
k/4

)−1
= 2−O(k) as |X|, |Y | ≤ k. Notice that the sets of size k/4

are symmetric under this protocol. This means that with probability 2−O(k), which is a probability
independent from E ′n,k, we output a distribution that is 2−Ω(k)-close to En,k/4.

Now replace E ′n,k with the output distribution of a communication protocol that samples
E ′n,k with statistical distance at most 1 − ε. Then we get a protocol, without any additional
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communication, that with probability 2−O(k) outputs a distribution which is (1− ε+ 2−Ω(k))-close
to En,k/4. The overall error is thus at most

1− 2−O(k)(ε− 2−Ω(k)) < 1− n−o(k),

if we properly choose ε = 2−Θ(k). Therefore by applying Lemma 3.3 on En,k/4, we conclude that
Samp1−ε(E ′n,k) = Ω(k log n).

Now Theorem 1.5 follows directly from Theorem 1.1 and Corollary 3.5 by choosing h =
Θ(k/ log n).
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