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Abstract

The seminal work of Ahn, Guha, and McGregor in 2012 introduced the graph sketching
technique and used it to present the first streaming algorithms for various graph problems over
dynamic streams with both insertions and deletions of edges. This includes algorithms for cut
sparsification, spanners, matchings, and minimum spanning trees (MSTs). These results have
since been improved or generalized in various directions, leading to a vastly rich host of efficient
algorithms for processing dynamic graph streams.

A curious omission from the list of improvements has been the MST problem. The best
algorithm for this problem remains the original AGM algorithm that for every integer p ě 1,
uses n1`Op1{pq space in p passes on n-vertex graphs, and thus achieves the desired semi-streaming
space of rOpnq at a relatively high cost of Op

logn
log logn q passes. On the other hand, no lower bounds

beyond a folklore one-pass lower bound is known for this problem.

We provide a simple explanation for this lack of improvements:

The AGM algorithm for MSTs is optimal for the entire range of its number of passes!

We prove that even for the simplest decision version of the problem—deciding whether the
weight of MSTs is at least a given threshold or not— any p-pass dynamic streaming algorithm
requires n1`Ωp1{pq space. This implies that semi-streaming algorithms do need Ωp

logn
log logn q passes.

Our result relies on proving new multi-round communication complexity lower bounds for
a variant of the universal relation problem that has been instrumental in proving prior lower
bounds for single-pass dynamic streaming algorithms. The proof also involves proving new
composition theorems in communication complexity, including majority lemmas and multi-party
XOR lemmas, via information complexity approaches.
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1 Introduction

In the dynamic graph streaming model, we have a (possibly edge-weighted) graph G “ pV,Eq

with vertices V :“ t1, 2, . . . , nu, whose edges and their weights are being defined by a sequence of
insertions and deletions in a stream σ :“ pσ1, σ2, . . . , σN q; here, N is the length of the stream which
is typically assumed to be polypnq. Each entry σi is either of the form pui, vi, wi,`q for ui, vi P V
and wi P N and is interpreted as the edge pui, viq with weight wpui, viq “ wi being inserted to E,
or pui, vi, wi,´q which means the edge pui, viq with the given weight wi is being deleted. We are
guaranteed that the stream does not delete an edge which is not inserted, does not insert an edge
more than once before deleting it in the middle, and that the weight of a deleted edge matches its
weight at the time of insertion1. The goal is to make one or a few sequential passes over the stream
σ, use a limited memory—ideally, rOpnq :“ Opn ¨ polylogpnqq bits, referred as the semi-streaming
space—and compute an answer to the given problem on G at the end of the last pass.

Dynamic streams (not necessarily for graphs) have been studied extensively in the streaming
literature since the introduction of the model in [AMS96], e.g., for statistical estimation prob-
lems [CCF02] or geometric problems [FIS05]. However, despite the significant attention graph
streams have received since their introduction in [FKM`05], dynamic graph streams were not
studied for quite some time due to lack of any techniques for addressing problems in this domain.

This state-of-affairs was entirely changed by a seminal work of Ahn, Guha, and McGregor
(henceforth, AGM) [AGM12a] who introduced the graph sketching technique and used it to devise
dynamic graph streaming algorithms for several fundamental problems, including connectivity,
minimum spanning trees, cut sparsifiers, and matchings. This immediately led to a flurry of results
on dynamic graph streaming algorithms, all using the graph sketching technique2, that either
improved upon [AGM12a] or extended its results to various other problems; see, e.g., [AGM12b,
AGM13,KLM`14,BHNT15,CCHM15,MTVV15,GMT15,ACG`15,BS15,AKLY16,CCE`16,HP16,
FKN21] and references therein.

One of the very few problems that saw zero improvement since [AGM12a] is the minimum
spanning tree (MST) problem. [AGM12a] designed a dynamic streaming algorithm that for every
integer p ě 1, with high probability, finds an MST of the input graph using n1`Op1{pq space
and p passes. Specifically, this leads to an Op

logn
log lognq-pass semi-streaming algorithm. No better

algorithms have been designed for this problem yet, despite the fact that in insertion-only streams,
a simple single-pass semi-streaming algorithm has already been known since [FKM`05].

We provide a simple explanation for this lack of improvements:

The AGM algorithm for MSTs is optimal for the entire range of its number of passes!

Specifically, semi-streaming algorithms for MSTs require Ωp
logn

log lognq passes. Beside settling the
complexity of the fundamental MST problem in the semi-streaming model, this also constitutes
one of the strongest separations between the power of insertion-only streams and dynamic graph
streams; see, e.g. [AKLY16,DK20] that prove such separations only between single-pass algorithms
(for the approximate matching problem).

1In particular, no “partial updates” to the edge weights are allowed and the stream needs to delete the edge “fully”
first (and provide its weight) and then re-inserts it possibly with another weight; see [CKL22] for more details on
this.

2The results in [LNW14,AHLW16] show that this is not a coincidence: any dynamic graph streaming algorithms
that can handle triply-exponential long streams and doubly-exponential edge-multiplicities (in the middle of the
stream), can be turned into a graph sketch. While these restrictions seem quite strong, almost all known graph
streaming algorithms can handle such inputs as well. However, in this work, we will not rely on this characterization.
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1.1 Our Contributions

We now discuss our contributions in more detail. Our main result establishes the optimality of the
MST algorithm of [AGM12a].

Result 1. For any integer p “ op
logn

log lognq, any p-pass dynamic streaming algorithm on n-vertex

graphs requires Ω̃pn
1` 1

2p´1 q space to solve the minimum spanning tree problem with constant
probability. The lower bound applies even if the edge weights and the length of the stream are
both at most Opn2q and the algorithm only needs to decide whether the weight of minimum
spanning trees is at least a given threshold.

Prior to our work, no lower bounds were known for the MST problem in dynamic streams
beside a single-pass lower bound of Ωpn2q space3. Another immediate corollary of our result is
a strong limitation on the power of the graph sketching technique. While graph sketching has
been extremely successful for problems such as cut- or spectral-sparsification [AGM12b,AGM13,
KLM`14], it appears to be quite weak for the MST problem, even when allowed “many” rounds of
adaptive sketching.

It is worth mentioning that our lower bound indeed only holds for exact MSTs. For the relaxed
version of the problem, wherein the goal is to obtain a p1 ` εq-approximation instead, [AGM12a]
already presents a single-pass semi-streaming algorithm. On the other hand, we prove our lower
bound for exact MSTs for the algorithmically easiest decision version of the problem: given a
threshold at the beginning of the stream, decide whether the weight of MSTs is at least as large as
this threshold or not. It is also worth mentioning that many problems admit provable separations
between their search versus decision variants in the dynamic streaming model; see, e.g. [AKL17]
for an example of a separation for finding approximate matchings versus estimating the size of the
largest matchings via single-pass algorithms (or in [AKL16] for the streaming set cover problem).

Our techniques. Result 1 relies on proving a new multi-round communication complexity lower
bound for a non-standard composition of a variant of the Universal Relation (UR) problem.
UR has been instrumental in proving prior lower bounds for single-pass dynamic streaming al-
gorithms [JST11,KNP`17,NY19] (see also [Yu21]). In this problem, there is a universe U of m
elements; Alice receives a set A Ď U and Bob receives a proper subset B Ă A. The communication
is only from Alice to Bob. Prior work has shown that in order for Bob to output any element from
AzB, Alice needs to communicate Ωplog2mq bits to succeed with constant probability [JST11] or
Ωplog3mq bits for high probability [KNP`17].

We start by proving that any r-round protocol—wherein Alice and Bob can communicate back
and forth at most r times—for outputting the smallest element in AzB (as opposed to outputting
any one) requires Ωrpm1{rq communication. We can then combine this with standard direct-sum
arguments in communication complexity (see, e.g. [BBCR13]) to obtain that solving m independent
copies of this problem requires Ωrpm1`1{rq communication. We then show how to reduce this to
the problem of finding MSTs in dynamic streams and prove a lower bound for the latter problem
as well. This lower bound however does not extend to the decision problem (which is a common
occurrence for other “direct-sum UR-type” reductions, e.g., in [NY19] and [Yu21]).

As we will explain in Section 3, to be able to extend the lower bound to the decision problem,
the key ingredients used in our proof are:

3To our knowledge, this lower bound appears to have been folklore and we do not know a reference for it.
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Direct sum with “hint”. At a high level, we will be dealing with a direct sum of a carefully
defined variant of pointer chasing problems on trees. It differs from typical direct-sum argu-
ments in that the reduction to MST demands knowing the sum of outputs of all copies, which
correlates the copies. Our direct-sum result is obtained by directly carrying this extra bit of
knowledge, named hint, throughout the proof.

Majority vs. XOR. It turns out the most straightforward approach, which guesses the hint
and conducts a typical direct-sum argument without the hint, can never work as it involves
lower bounding majority computation of multiple copies with super low advantage. Simple
coin toss examples will show that such a result is impossible. We work around this by a
connection between majority computation with high advantage and XOR computation with
low advantage. It enables us to utilize direct-sum results for XOR computation instead.

Multi-party XOR lemma. As known results are not strong enough for proving the optimal pass
lower bound, we devise a multi-party XOR lemma, mimicking the 2-party version of [Yu22],
that improves the dependence of communication in the number of rounds, while leading to
a worse advantage decay. In particular, suppose each of k pairs of 2 parties are given n{k
instances of a boolean function f , and they want to jointly solve the n-fold XOR of all n
instances. We prove the following result which may be of independent interest.

Result 2. If any r-round, 2-party protocol that solves f with constant probability, requires
C communication, then any r-round, 2k-party protocol that solves the n-fold XOR of f with

probability 1
2 ` p12qΩp k

r
q, requires Ωpnk ¨ pCr ´ Oprqqq communication.

The rest of this paper is organized as follows. Section 3 provides a sketch of our proof in more
detail. Then we prove a suboptimal pass lower bound in Section 4 using the 2-party XOR lemma
of [Yu22]. Our multi-party XOR lemma is presented in Section 5 and used to obtain the full version
of our main result.

2 Preliminaries

Notation. For an integer n P N, rns is used as a shorthand for the set t1, . . . , nu. For a tuple
X “ pX1, . . . , Xnq, we write Xďi “ pX1, . . . , Xiq. Similarly, we have Xěi and Xăi, Xąi. We also
use X´i “ pX1, . . . , Xi´1, Xi`1, . . . , Xnq. The XOR operation is denoted by ‘.

Throughout this paper, sans-serif letters are reserved for random variables (e.g. X) while normal
letters are used for realizations of the corresponding random variables (e.g. x,X). For random
variables X,Y, we denote the Shannon entropy of X by HpXq, the mutual information between X,Y
by IpX ;Yq, the KL-divergence between X,Y by DpX || Yq, and the total variation distance between
X,Y by }X ´ Y}tvd. Appendix A provides necessary background on information theory, including
the basic tools used in this paper.

Dynamic graph streaming. For a dynamic graph streaming problem, the input is a sequence
of insertions and deletions of edges in an underlying graph, initially empty. In every pass of an
algorithm, it processes the operations, one at a time, in the given order. At the end of the algorithm,
it answers some query about the constructed graph resulting from all insertions and deletions. Only
the space requirement between operations is considered in this paper (i.e., unlimited memory is
allowed while processing each operation). We are interested in the problem MSTn, which asks
whether the weight of minimum spanning trees of an n-vertex graph is at least a given threshold.
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Communication model. For the standard 2-party communication model, we assume Alice sends
the first message and the receiver of the last message returns the output. Let CCpπq denote the
communication complexity of a protocol π, and CCpiqpπq the communication complexity of the i-th
round of π. We also use ICpπq to denote the internal information cost of π. The distributional

complexity of f , denoted by D
prq
µ,ϵpfq, is defined as the infimum communication complexity of any

r-round protocol solving f with probability ϵ over µ.

The multi-party communication model we use in this paper is formally defined as follows. There
are 2k parties named Alice 1, . . . , k and Bob 1, . . . , k. Each Alice has an input from X and each
Bob has an input from Y. There is a blackboard, initially empty, visible to all parties. The parties
proceed in the circular order of Alice 1, . . . , k and Bob 1, . . . , k, starting with Alice 1. In one’s turn,
it computes a message given its input as well as the current blackboard, and posts the message
to the blackboard. At the end of the protocol, the last party returns an output (and does not
post a message to the blackboard). The communication complexity is defined as the length of the
final blackboard. The number of rounds is defined as the total number of times Alice k and Bob k
post messages to the blackboard. (So, e.g., a 1-round protocol in general consists of Alice 1, . . . , k
and Bob 1, . . . , k ´ 1 posting one message each, and Bob k returning an output.) In a randomized
protocol, each party is allowed to use both public randomness, shared by all parties, and private
randomness, known only to itself. The goal is to compute a function g over X k ˆYk. We similarly

define the distributional complexity of g in the 2k-party model and denote it by D
prq,k
µ,ϵ pgq, where

µ is a distribution over X k ˆ Yk. It can be verified that the multi-party model for k “ 1 coincides

with the standard 2-party model. Moreover, D
prq,1
µ,ϵ p¨q “ D

prq
µ,ϵp¨q.

In this paper, we are interested in the k-fold XOR of a function f : X ˆ Y Ñ t0, 1u, defined
as f‘kpx1, . . . , xk, y1, . . . , ykq “

À

iPrks fpxi, yiq. We also consider the k-fold majority, denoted by

f#k, which evaluates to 1 if fpxi, yiq “ 1 for more than tk{2u indices i P rks, and 0 otherwise.

3 Technical Overview

This section serves as an outline of our proof. As a starting point, in Section 3.1, we first tackle the
easier problem of proving a lower bound for the task of finding an MST solution, i.e., outputting the
edges of an MST. We then proceed to identify the primary challenges in extending our technique
to give a lower bound for the algorithmically easier task of computing the weight of MSTs or even
for the task of deciding whether it exceeds a specified threshold. In Section 3.2, we discuss some
of our initial attempts and their inherent limitations. Finally, we present the ultimate solution in
Section 3.3.

3.1 The Search Version

Our hard instance. We start by outlining our lower bound for the easier task of lower bounding
the space complexity of steaming algorithms that output the edges of an MST. To prove our lower
bound, we design hard instances inspired by that of [NY19,Yu21], that were used to prove lower
bounds for the Spanning Forest and Connectivity problems. See Figure 1 for an illustration of our
hard instances. Our construction starts with a clique of size n{2. Edges in the clique all have the
minimum possible weight, say 0. Another n{2 vertices are added, one at a time, as follows. For each
non-clique vertex v, it is randomly connected to some vertices in the clique, with distinct, positive
edge weights. Later in the stream, we remove a proper subset of the edges incident on v. Both the
inserted and deleted edges follow some (non-uniform) hard distributions. The concatenation of the
clique edges (of weight 0), followed by the edge insertions for all non-clique vertices, and then the
edge deletions for all non-clique vertices, constitutes the entire stream.
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Figure 1: An illustration of hard instances for the search version of MST. Bottom vertices are fully connected. Each
top vertex is connected to some bottom vertices via red edges (inserted and deleted) and blue edges (inserted but
not deleted) – to avoid clutter, only edges for the first vertex are drawn.

Observe that any MST of the constructed graph must have the following structure: a spanning
tree connecting the clique, plus, for each non-clique vertex, the minimum weight edge that is not
deleted connecting this vertex to the clique. As a consequence, the problem of finding an MST
essentially reduces to the direct sum (i.e., solving multiple copies) of the following subproblem,
which we denote by URĂ

min: find the minimum element in the difference AzB of two sets A,B,
where B is promised to be a proper subset of A.

The problem URĂ
min can be viewed as an addition to the well-studied family of Universal

Relation problems [KRW95]. The work of [NY19] proves optimal lower bounds for Spanning Forest
via one of its variants, URĂ, in which it is sufficient to find any element in the difference AzB, as
opposed to finding the minimum element. In particular, [NY19] use tight results from [KNP`17] for
the one-way communication complexity of URĂ. However, this bound is only poly-logarithmic and
therefore is too weak for our purposes. We prove that URĂ

min is hard even with multiple rounds of
communication. More specifically, we show that it admits an r vs. Ωrpm1{rq round-communication
tradeoff, where m is the size of the universe. Given the canonical reduction from communication to
streaming, this means any direct sum/product result for bounded-round two-party communication
(e.g., [JPY12,BRWY13]) suffices for lower bounding the search version of MST.

Augmented Tree Pointer Chasing. We prove the round-communication tradeoff for URĂ
min

by reduction from an “augmented” version of Pointer Chasing on trees4. The starting point is the
well-known Augmented Index problem [MNSW98], in which Alice holds x P t0, 1u

n while Bob is
required to output xi given i P rns and xăi. It is an “augmented” version of Index in that Bob
additionally knows xăi, i.e., everything to the left of the pointer i.

Note that Index can be viewed as Pointer Chasing on single-level trees. To generalize it to
multi-level trees, recall that in the standard Tree Pointer Chasing problem, one party owns all
pointers in odd levels (that is, the first party gets as input an edge going out of each node in an
odd level) and the other party owns all pointers in even levels. The parties’ goal is to output the
unique leaf node that can be reached using the parties’ pointers. See Figure 2a for an example.

A natural attempt is to additionally give the owner of each pointer full knowledge of all the left
subtrees, or equivalently all pointers owned by the other party in those subtrees. In other words,
if a party has, as part of its input, the pointer connecting vertex v to its i-th child, then the same
party also gets all the pointers in the other party’s input for the subtrees rooted at the first i ´ 1
children of v. See Figure 2b for an illustration. For example, in the illustration, since Bob has the
pointer connecting the root to its second child, Bob also knows all Alice’s pointers in the entire left

4We note that URĂ
min is introduced here only for the purpose of illustration and to provide a better context. Our

proofs in Sections 4 and 5 directly deal with the augmented version of Pointer Chasing with no reference to URĂ
min.

For completeness and since the lower bound for this problem may be of independent interest, we include its proof;
see Corollary 4.6.
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(a) A standard Tree Pointer Chasing instance.

1

2 3
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8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(b) The same instance with full knowledge of left subtrees.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(c) The same instance with full knowledge of left subtrees and no knowledge of right subtrees.

Figure 2: An illustration of ATPC instances. Solid, blue edges are known to Alice and solid, red edges are known
to Bob. Thick edges are owned in standard Tree Pointer Chasing while thin edges are known via augmentation. (For
example, in Figure 2c, there are two overlapping edges from node 6 to node 13. One is red and thick, meaning that
Bob owns this edge in standard Tree Pointer Chasing, and the other is blue and thin, meaning that Alice knows this
edge via augmentation.) Dashed, light-colored edges are forgotten during augmentation.
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subtree of the root.

Forgetting pointers. We wish to prove a lower bound for the augmented Pointer Chasing prob-
lem on trees as described above. However, we next show that there is a subtle issue. Suppose we
want to prove the lower bound using the, by now standard, embedding arguments, showing that
a protocol for instances with r levels implies a protocol with one less message for instances with
r ´ 1 levels. To do so, we sample an instance with r levels as follows. We denote by pAj , Bjq the
subinstance corresponding to the j-th subtree (of the root) of the r-level instance we are sampling.
We also denote by pA1, B1q the input instance with r ´ 1 levels that we attempt to solve. Alice and
Bob publicly sample an index i and do the embedding by setting pAi, Biq “ pA1, B1q. Aăi is also
publicly sampled (note that this standard sampling respects our augmentation). To eliminate the
first round of communication, Alice and Bob publicly sample Alice’s first message M1 (conditioned
on Aăi). In order to continue the simulation, the standard embedding argument would have the
parties privately sample all remaining parts, namely Aąi, Băi, Bąi. Unfortunately, Aąi and Bąi

may not be privately sampled (roughly following their original distributions) at the same time, due
to possible high correlation.

To rectify the situation, we “eliminate” Bąi by defining the Augmented Tree Pointer Chasing
(ATPC) problem as follows: for each pointer, the party that owns it, also (i) knows everything
that the other party knows in subtrees to its left; and (ii) knows nothing in subtrees to its right.
See Figure 2c for an illustration. For example, in the illustration, Alice “forgets” the pointer from
node 10 because it is in a subtree to the right of the pointer from node 2.

We also emphasize that “everything that the other party knows” may not be equivalent to
“all pointers owned by the other party”, exactly because the other party may forget some of its
originally owned pointers. To see this, consider the pointers from nodes 10 and 11 in the illustration.
Before the augmentation, Alice knows both of them and Bob knows neither. As we perform the
augmentation bottom-up, Bob knows the one from node 10 since it is in a subtree to the left of the
pointer from node 5. Another level up, Alice forgets both of them due to the pointer from node 2.
Note, however, that Bob still keeps his knowledge of the pointer from node 10. As a result, finally
at the top level, Bob has the combined knowledge of both parties, including the pointer from node
10, but not the one from node 11. In other words, Bob does not know the latter even though it is
also in a subtree to the left of the pointer from the root. Moreover, Bob’s knowledge of the former
is actually coming from himself in lower levels, but not from Alice.

A formal definition of ATPC is given in Section 4. Intuitively, the augmentation neither helps
nor hurts the parties that attempt to solve an ATPC instance, as both parties should always follow
the correct pointers. Indeed, we are able to prove an r vs. Ωrpn1{rq round-communication tradeoff
for trees with n leaf nodes, using standard information-theoretic tools.

Reducing ATPC to URĂ
min and the role of augmentation. Next, we wish to show a lower

bound for URĂ
min by proving that URĂ

min is even harder than ATPC. The reduction is as follows.
Given an ATPC instance, Alice is constructing the larger set A (corresponding to insertions for
MST) and Bob is constructing the smaller set B (corresponding to deletions for MST). The universe
contains all the leaf nodes of the ATPC instance, sequentially ordered from left to right, and the
goal is to have minpAzBq being the leaf node induced by the pointers in the ATPC problem.
Imagine the parties perform the construction of the sets A and B “bottom-up” in the following
sense. Suppose the current pointer i is known to Alice (a similar argument applies to the case in
which Bob knows the current pointer). Also, assume that the parties have already constructed
A1, . . . , Aw and B1, . . . , Bw where w is the arity of the ATPC tree and pAj , Bjq is the URĂ

min

instance constructed for the j-th subtree of the ATPC tree, and they want to combine all these
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sets to obtain A,B.

Now, we may wish for Bob to set B “ B1Y¨ ¨ ¨YBi and for Alice to set A “ B1Y¨ ¨ ¨YBi´1YAi,
as this would imply AzB “ AizBi, while the promise that B Ď A in the definition of URĂ

min is
satisfied. Note that Alice can indeed compute this set A thanks to the augmentation that gives
her B1, ¨ ¨ ¨ , Bi´1. In fact, this is the exact reason for the augmentation. Unfortunately, though,
Bob cannot compute B as he does not know i. Nevertheless, it can be easily remedied by setting
A “ B1 Y ¨ ¨ ¨ Y Bi´1 Y Ai Y A1 and B “ B1 Y ¨ ¨ ¨ Y Bw, where A1 is the set of all leaf nodes in
subtrees i ` 1, . . . , w.

Weights. Since the number of weights in our MST instances is essentially the number of leaf
nodes in the ATPC instances, our MST construction only uses polynomially many integer weights.
We note that this is necessary due to the result of [AGM12a], as otherwise there is a single pass
streaming algorithm that finds an MST in n1`op1q space. Specifically, an MST can be incrementally
found by considering all edges of weight i and applying the Spanning Forest algorithm of [AGM12a]
at the i-th step. This can be implemented in a single pass by maintaining W independent copies
of the sketch used for the Spanning Forest algorithm, resulting in an ÕpnW q-space algorithm.

Computing the MST weight with large edge weights. So far, we are able to lower bound
the search version of MST. We note that the construction shown in Figure 1 can be readily adapted
for computing the weight of MSTs if exponential edge weights were allowed5: edges incident on
the j-th non-clique vertex have weights in the order of nj , so that the minimum weight edge that
is not deleted, for each non-clique vertex, can be uniquely recovered from the MST weight alone.
However, exponential edge weights would lead to a polynomial overhead in space requirement,
which is unaffordable for streaming algorithms. So, we explore the decision version of MST in the
following, while keeping the edge weights polynomial.

3.2 The Decision Version

Decisional URĂ
min. We next proceed to outline our lower bound for the algorithmically-easier

decision version of the MST problem. Since there exist efficient algorithms, even with a single pass,
for approximating the weight of MSTs (e.g. [AGM12a]), we should expect hard instances for the
decision version to have MST weights concentrated within a small range. So the following attempt
seems plausible. Let ej be the minimum edge weight for the j-th non-clique vertex, and zj the
parity of ej . Also let T “

ř

j ej ´
ř

j zj . Then the weight of MSTs is always between T and T ` k,
where k “ n{2 is the number of non-clique vertices. In the above, we have argued that finding ej
is hard for a fixed j. With little additional effort we can show that computing zj is also hard.6

We denote by URĂ
min,dec the corresponding decisional universal relation problem, where one needs

to compute the parity of the minimum element in AzB. We remark that this attempt is in line
with [Yu21], in which a decision version of Universal Relation, URĂ

dec, is utilized to obtain optimal
lower bounds for Connectivity.

A majority lemma? One may hope that our final result would again follow from a direct-sum
(or, more accurately, “majority lemma”) type argument: hardness of some boolean function f
implies hardness of computing the majority of k copies of f7. This is because given such a majority

5This is not an issue for the search version of MST as even linear edge weights are sufficient to ensure a unique
MST, up to edges in the clique.

6Recall that the lower bound on URĂ
min is derived via ATPC. Roughly speaking, we may view the bottom level

as a composition of two sublevels, one of which is binary.
7For simplicity, we may assume throughout this section that f is “balanced” in the sense that it evaluates to 0 on

exactly half of possible inputs and to 1 on the other half.
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lemma, we can simply set the threshold to be T ` k{2. It is easy to see that the weight of MSTs
exceeds T ` k{2 if and only if the majority of the k parity bits zj is 1.

Fixing the threshold at the price of correlating the URĂ
min,dec instances. To our disap-

pointment, this approach has major problems. One notable issue is that T is “instance dependent”,
and is not a predetermined value, and therefore the threshold T ` k{2 is also instance dependent.
This is indeed a problem as, in the reduction in Figure 1, the parties would not know the threshold
value required for the streaming MST instance. In other words, we don’t even have a well-defined
input for the decision version of MST! To circumvent this, we add one special edge of weight
T 1 “ C ´ T to the graph, where C is a sufficiently large number to ensure T 1 is positive. This way,
we are always comparing the weight of the MSTs with a fixed number C ` k{2.

In the communication setting, this addition is equivalent to revealing T to both parities (imple-
mented as an extra part of input), which correlates all k copies of URĂ

min,dec. Since a direct-sum
style argument typically deals with independent copies, we now need to “get rid” of T . Note that
T “ polypnq “ polypkq. This renders it impossible to brute force over all possible values of T due
to the communication constraint.

Another way of getting rid of T would be to make a random guess at T and output randomly
if the guess is wrong (with very small communication overhead for verifying the guess). However,
this approach has the following major shortcoming: the random guessing reduces the advantage
(over 1{2) by a factor of T “ polypkq but a majority lemma can never hold in such a low advantage
regime! Specifically, the following may not be true:

If computing f with success probability 3{4 requires C communication, then computing
the majority of k copies of f with success probability 1{2 ` 1{k requires Ω̃pkCq commu-
nication.

What’s even worse, is that C communication is sufficient to achieve success probability 1{2 `

Θp1{
?
kq. To see this, suppose f evaluates to 0 on exactly half of the first k ´ 1 copies and

1 on the other half, and then the majority is solely determined by the output of the last copy.
Now consider the protocol that simply computes the value of the last copy and outputs it as the
majority. It succeeds whenever the single copy protocol succeeds and thus has constant advantage
(3{4 ´ 1{2 “ 1{4 to be exact) in the above case, which occurs with probability Θp1{

?
kq due to

properties of binomial distributions, and is equivalent to a random guess in all other cases as the
majority is already determined by the first k ´ 1 copies (recall that we assume f to be balanced).
So we cannot hope for a majority lemma that works with advantage well below Θp1{

?
kq. This

dooms our attempt as we are requiring even much lower advantage.

Majority Lemma with hint via XOR Lemma with hint. We work around the above limi-
tation by a different approach. Instead of directly getting rid of T and seeking a majority lemma
with low advantage (which turns out to be nonexistent), we convert majority computation into
XOR computation by a simple process (with T revealed). Only after that, we again guess T and
then utilize an XOR lemma with low advantage which indeed exists. As will be seen later, this
alternative approach can be viewed as a majority lemma with high advantage (close to 1{2).

To prove this latter majority lemma, we start from the beautiful recent work [Yu22] that
provides a strong XOR lemma in which advantage decreases exponentially in k. We then consider
the following process for computing XOR from majority. If the number of 1’s is at most k{2 (so
the majority is 0), return the parity of k{2 (assume that k is even), and otherwise return the parity
of k{2 ` 1. Intuitively, the probability of having exactly i 1’s is slightly larger than having i ´ 1,
for i ď k{2. So this process should have certain advantage over 1{2. Indeed, again by properties of
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binomial distributions, this advantage can be shown to be Θp1{
?
kq, assuming that the computation

of majority is perfect. In general, we can prove that a protocol for computing majority with success
probability 1´ ϵ implies a protocol for computing XOR with success probability 1{2´ ϵ`Θp1{

?
kq.

Since the XOR lemma of [Yu22] proves that a protocol for computing the XOR with success
probability 1{2´ϵ`Θp1{

?
kq (or even 1{2`expp´kq) is costly, it also implies that the computation

of the majority with success probability 1 ´ ϵ is costly. Our entire proof now works as follows.

1. Prove a lower bound on URĂ
min,dec.

2. Apply the XOR lemma of [Yu22] to show it is also hard to compute the XOR of k copies of
URĂ

min,dec, with success probability 1{2 ` 1{polypkq. This hardness continues to hold with T
revealed, which we call a “hint” in our proof.

3. Using the above process, we get a lower bound for computing the majority of k copies of
URĂ

min,dec, with success probability 1 ´ 1{polypkq, and also with hint T .

4. Finally, a streaming lower bound for the decision version of MST is derived by our reduction
(up to logarithmic factors resulted from boosting the success probability).

All the above ideas are formalized in Section 4. At a high level, what we really use, is roughly a
majority lemma of the following form, which has a very weak probability guarantee that is enough
for us:

If computing f with success probability 3{4 requires C communication, then computing
the majority of k copies of f with success probability 1 ´ 1{polypkq requires Ω̃pkCq

communication.

We note, however, that we need such a lemma that also works when T is revealed. As we claimed
before, to prove a majority lemma that works when T is revealed, we can guess T , but then need
to prove a majority lemma with a very small advantage. Likewise, to show an XOR lemma that
works when T is revealed, we can guess T and prove an XOR lemma for very small advantages.
Luckily, unlike the case for majority, such an XOR lemma can be proved. Indeed, the XOR lemma
of [Yu22] has a strong enough probability guarantee.

Unfortunately, all the above has not yet led to an optimal pass lower bound. Specifically, the
XOR lemma of [Yu22] shows that computing the XOR of k copies requires roughly k{rOprq times
the communication for computing a single copy, where r is the number of communication rounds.
This loss of an rOprq factor is problematic as the final lower bound that can be obtained is roughly
n1`1{r{rOprq, which only works for r up to

a

log n{ log logn. For comparison, [AGM12a] presents
a semi-streaming algorithm of Oplog n{ log lognq passes. So, there is still a gap between the lower
and the upper bounds. Furthermore, the loss in communication turns out to be the sole barrier
for closing this gap, in the sense that we can prove a tight lower bound if the rOprq factor could be
reduced to polyprq. We address this challenge in the rest of this section, by proving a multi-party
XOR lemma (rather than a two-party one) with a better dependence on the number of rounds.

3.3 Multi-Party XOR Lemma

The XOR lemma we need. As indicated above, an ideal XOR lemma (in the standard two-
party setting) that is sufficient for our purpose is of the following form: computing the XOR of k
copies requires k{polyprq times the communication for computing a single copy, to achieve 1{polypkq

advantage. Note that such an XOR lemma does not necessarily improve upon [Yu22] as it only
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requires a polynomial advantage decay. Nevertheless, to the best of our knowledge, the existence
of such an XOR lemma is still unknown.

We prove such a lemma in the multi-party setting. We note that we opt not to restrict ourselves
in the two-party setting as our ultimate goal is to prove streaming lower bounds and multi-party
settings are usually easier to work with. Nevertheless, our multi-party XOR lemma may be of
independent interest as well since it works entirely in the communication setting, with no reference
to streaming.

Separating amplification of communication and of advantage. To get our multi-party
XOR lemma, we decompose it into two independent parts: amplification of communication and
amplification of advantage. More specifically, up to polyprq factors, amplification of communication
means:

If computing f with success probability 1{2 ` δ requires C communication, then com-
puting the XOR of k1 copies of f with success probability 1{2 ` δ ` ϵ requires Ω̃ϵpk1Cq

communication,

and amplification of advantage means:

If computing f with success probability 3{4 requires C communication, then computing
the XOR of k2 copies of f with success probability 1{2 ` expp´Ωpk2qq requires Ω̃pCq

communication.

Intuitively, this decomposition is possible because the XOR of many XOR computations is equiva-
lent to a single XOR computation. Furthermore, our desired XOR lemma, up to logarithmic factors,
follows from combining amplification of communication with k1 “ Θpk{ log kq and amplification of
advantage with k2 “ Θplog kq.

Amplification of communication. As to amplification of communication, it can be accom-
plished using known (round-preserving) compression schemes (e.g., [JPY12,BRWY13]) in the stan-
dard two-party setting. However, we do emphasize that known compression schemes all seem
to have a linear (or even polynomial) dependence on 1{ϵ in the communication if we want an
ϵ-simulation. This essentially means amplification of communication has to be performed before
amplification of advantage. Otherwise, communication would suffer a polynomial blowup in order
to preserve the already amplified advantage.

Amplification of advantage. For amplification of advantage, inspiration is drawn from the
streaming XOR lemma by [AN21]. Their result shows that computing the XOR of k copies in the
streaming setting with the same space constraint as for a single copy, can only achieve advantage
exponentially small in k. Moreover, streaming algorithms are viewed as multi-party communica-
tion protocols in their proof. This enables us to adapt their techniques to prove a multi-party
communication version: computing the XOR of k copies with (2k parties and) the same total com-
munication as for a single copy (with two parties), can only achieve advantage exponentially small
in k. Combined with amplification of communication, it finally yields a multi-party XOR lemma
with the desired parameters.

We also remark that the streaming XOR lemma of [AN21] applies to streams in which k copies
arrive sequentially, i.e., one complete stream followed by another. For our MST construction, this
means insertions of the first non-clique vertex is followed by deletions of the same vertex, and then
insertions and deletions of the second non-clique vertex and so on. In contrast, our version for
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multi-party communication has an “interleaved” input order in the sense that part of the first copy
(insertions for the first non-clique vertex) is followed by part of the second copy (insertions for
the second non-clique vertex) and so on for all other copies, and the remaining part of the first
copy (deletions for the first non-clique vertex) only comes after that. Put it another way, all the
Alices communicate before all the Bobs. Consequently, the streams resulted from our proof have
the simplest form: all insertions arrive before all deletions.

4 A Lower Bound in Few Passes

As a warmup, we first prove the following weaker version of Result 1 for only few passes. It already
contains many of the critical ideas for fully proving Result 1, while also identifying the key barrier
in getting a proof for even more passes.

Theorem 1 (Weaker version of Result 1). For p “ op

b

logn
log lognq, any p-pass dynamic streaming

algorithm for solving MSTn with probability 2{3 requires Ωp n
1` 1

2p´1

pOppq logn
q space.

We remark that the upper bound on edge weights in Result 1 will be seen in the proof of Claim 4.4.

4.1 Augmented Tree Pointer Chasing

The proof of Theorem 1 is via a communication problem named Augmented Tree Pointer Chasing.

Definition 4.1. For d,w ě 1, the two-party problem ATPCd,w is defined recursively as follows.

1. For d “ 1, Alice is given as input Ap1q P t0, 1u
w and Bob is given as input Bp1q “ pip1q, A

p1q

ăip1qq,

where ip1q P rws. They are required to output A
p1q

ip1q.

2. For d ą 1, Alice is given as input Apdq “ b
pd´1q

ďw and Bob is given as input Bpdq “ pipdq, a
pd´1q

ďipdq , b
pd´1q

ăipdq q,

where ipdq P rws and pa
pd´1q

j , b
pd´1q

j q for j P rws is an instance of ATPCd´1,w
8. They are re-

quired to output the answer to pa
pd´1q

ipdq , b
pd´1q

ipdq q as an instance of ATPCd´1,w.

For k ě 1, ATPC‘k
d,w denotes the k-fold XOR version of ATPCd,w, and similarly ATPC#k

d,w

denotes the k-fold majority version of ATPCd,w.

Each ATPCd,w instance can be naturally visualized on a depth-d, w-ary tree with i’s being
pointers of corresponding levels. Suppose the leaf nodes are numbered from 1 to wd. Starting from
the root and following the pointers will lead to a unique leaf node t P rwds, which is called the
target of this instance. For either of the k-fold versions of ATPCd,w, both parties may additionally
be given the hint T “

ř

jPrks tj as part of their input, where tj is the target of the j-th ATPCd,w

instance. The resulting problems are denoted by Hint-ATPC‘k
d,w and Hint-ATPC#k

d,w, respectively.

At a high level, in an instance of ATPCd,w, Alice owns all pointers at even levels while Bob
owns all pointers at odd levels. It only differs from the stardard Tree Pointer Chasing problem by
performing the following modification to each internal node: the owner of a pointer is additionally
given the other party’s knowledge of subtrees to the left of the pointer, while losing any knowledge
of subtrees to the right of the pointer. The modification is performed bottom-up. In other words,
the effect of ancestors supersedes that of descendants. Intuitively, the extra information about

8For j ą ipdq, a
pd´1q

j is imaginary and given to neither party.
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subtrees to the left cannot help while the lost information about subtrees to the right cannot hurt,
as the owner of the current node should always follow the pointer. Also note that ATPC1,w is
exactly the same as the well-studied Augmented Index problem. For d ą 1, ATPCd,w can be
naturally viewed as its multi-round generalization.

The hard input distributions and corresponding lower bounds are as follows.

Distribution 1. For d,w ě 1, the hard input distribution Dd,w is defined recursively as follows.

1. For d “ 1, Alice is given as input Ap1q and Bob is given as input Bp1q “ pip1q, A
p1q

ăip1qq,

where ip1q is sampled from rws uniformly at random and Ap1q is independently sampled
from t0, 1u

w uniformly at random.

2. For d ą 1, Alice is given as input Apdq “ b
pd´1q

ďw and Bob is given as input

Bpdq “ pipdq, a
pd´1q

ďipdq , b
pd´1q

ăipdq q, where ipdq is sampled from rws uniformly at random and

pa
pd´1q

j , b
pd´1q

j q for j P rws is independently sampled from Dd´1,w.

Lemma 4.2. For d,w ě 1 and ϵ P r0, 1{2s, it holds that

D
pdq

Dd,w, 1
2

`ϵ
pATPCd,wq ě

ϵ2w

d
.

Distribution 2. For k, d, w ě 1, the hard input distribution Dk
d,w is defined as follows. Alice

is given as input A “ a
pdq

ďk and Bob is given as input B “ b
pdq

ďk, where pa
pdq

j , b
pdq

j q for j P rks is
independently sampled from Dd,w.

Lemma 4.3. For w ě 1, d “ oplogw{ log logwq, and k “ ωpd logwq, it holds that

D
pdq

Dk
d,w, 2

3

pHint-ATPC#k
d,wq “ Ω

ˆ

kw

dOpdq log k

˙

.

We first prove Theorem 1 in Section 4.2, assuming the lower bounds for Augmented Tree Pointer
Chasing. Proofs of the above lower bounds are shown in Sections 4.3 and 4.4, respectively.

4.2 Proof of Theorem 1

In this section, we present a proof of Theorem 1 via the following claim.

Claim 4.4. For k, p, w, S ě 1 and ϵ P r0, 1s, if there exists a p-pass, S-space dynamic streaming
algorithm for solving MSTk`w2p´1`1 with probability ϵ, then there also exists a p2p ´ 1q-round,

p2p ´ 1qS-communication protocol for solving Hint-ATPC#k
2p´1,w with probability ϵ over Dk

2p´1,w.

Before proving Claim 4.4, we show that it indeed implies Theorem 1.

Proof of Theorem 1. Fix a p-pass dynamic streaming algorithm for solving MSTn with probability
2{3 that has space S. Let k “ pn ´ 1q{2, d “ 2p ´ 1, w “ pn ´ k ´ 1q1{d, and C “ dS. Applying
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the reduction of Claim 4.4, we get a d-round protocol for solving Hint-ATPC#k
d,w with probability

2{3 over Dk
d,w that has communication C. On the other hand, Lemma 4.3 implies

C “ Ω

ˆ

kw

dOpdq log k

˙

,

or equivalently,

S “ Ω

˜

n
1` 1

2p´1

pOppq log n

¸

,

as claimed.

We remark that the assumption p “ op
a

log n{ log lognq of Theorem 1 is nessesary in the above
proof for satisfying the condition d “ oplogw{ log logwq of Lemma 4.3. Moreover, a closer look at
the proofs in Sections 4.3 and 4.4 will reveal that this constraint comes solely from the rOprq-fold
decrease in communication when using the XOR lemma of [Yu22]. If the loss factor were reduced
to polyprq (meaning a better XOR lemma), the constraint would then be relaxed to d “ wop1q. In
turn, this would be sufficient for proving a lower bound for up to p “ oplog n{ log lognq passes (and
thus the full verion of our main result). Nevertheless, as will be seen in Section 5, we actually take
a two-step approach in the absence of such an ideal XOR lemma. At a high level, we will perform
the amplification of communication and error probability separately.

The rest of this section constitutes a proof of Claim 4.4. Let d “ 2p ´ 1, C “ dS, and
n “ k ` wd ` 1. Fix a dynamic streaming algorithm π as described in the claim. In the following,
we construct a protocol τ for solving Hint-ATPC#k

d,w with the desired properties. On input ppA “

a
pdq

ďk, T q, pB “ b
pdq

ďk, T qq, τ simulates π on the following dynamic stream, where sender and receiver

are defined in Algorithm 1 and Algorithm 2, respectively (p “ 0 represents Alice and p “ 1
represents Bob); see Figure 3 for an illustration of the functions and Figure 4 for an illustration of
the reduction. The threshold given to π is to be determined.

1. Insert an edge p1, nq with weight 2kwd ´ 2T ` 1.

2. For u ă v P rwds, insert an edge pk ` u, k ` vq with weight 1.

3. For j P rks and t P senderpd,w, a
pdq

j , 0q, insert an edge pj, k ` rt{2sq with weight t ` 1.

4. For j P rks and t P receiverpd,w, b
pdq

j , 1q, delete the edge pj, k ` rt{2sq with weight t ` 1.

14



Algorithm 1. The function senderpd,w,Apdq, pq.

• d “ 1: We have Ap1q P t0, 1u
w.

– p “ 0: Return
!

2j ´ A
p1q

j | j P rws

)

.

– p “ 1: Return

r2wsz

!

2j ´ A
p1q

j | j P rws

)

.

• d ą 1: We have Apdq “ b
pd´1q

ďw , where b
pd´1q

j for j P rws is a valid input to Bob for
ATPCd´1,w. Return

ď

jPrws

!

2pj ´ 1q ¨ wd´1 ` t | t P receiverpd ´ 1, w, b
pd´1q

j , pq

)

.

Algorithm 2. The function receiverpd,w,Bpdq, pq.

• d “ 1: We have Bp1q “ pip1q, A
p1q

ăip1qq, where ip1q P rws and A
p1q

j P t0, 1u for j P rip1q ´ 1s.

– p “ 0: Return

r2wsz

!

2j ´ A
p1q

j | j P rip1q ´ 1s

)

.

– p “ 1: Return
!

2j ´ A
p1q

j | j P rip1q ´ 1s

)

.

• d ą 1: We have Bpdq “ pipdq, a
pd´1q

ďipdq , b
pd´1q

ăipdq q, where ipdq P rws, pa
pd´1q

j , b
pd´1q

j q for j P

ripd´1q ´ 1s is a valid instance of ATPCd´1,w, and a
pd´1q

ipdq is a valid input to Alice for
ATPCd´1,w. If p “ 0, return

¨

˝

ď

jPripdq´1s

!

2pj ´ 1q ¨ wd´1 ` t | t P receiverpd ´ 1, w, b
pd´1q

j , 1q

)

˛

‚

Y

!

2pipdq ´ 1q ¨ wd´1 ` t | t P senderpd ´ 1, w, a
pd´1q

ipdq , 0q

)

Y r2ipdq ¨ wd´1 ` 1, 2wds,

and if p “ 1, return

¨

˝

ď

jPripdq´1s

!

2pj ´ 1q ¨ wd´1 ` t | t P receiverpd ´ 1, w, b
pd´1q

j , 0q

)

˛

‚

Y

!

2pipdq ´ 1q ¨ wd´1 ` t | t P senderpd ´ 1, w, a
pd´1q

ipdq , 1q

)

.
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t2, 6, 7, 9, 11, 13, 14, 15, 16u , t2, 6, 7, 14u

t2, 6, 7u , t2u t1, 3, 5, 6, 7, 8u , t6u

t2, 3u , t2u t2, 3u ,H t1, 3u ,H t2, 4u , t2u

Figure 3: An illustration of functions sender and receiver, for d “ 3 and w “ 2. Blue edges are the pointers owned
by Alice (not via augmentation) while red edges are the pointers owned by Bob (not via augmentation). Unfilled
leaf nodes have value 0 while filled leaf nodes have value 1. Each internal node is labeled by the set of insertions (for
Alice), followed by the set of deletions (for Bob), with respect to the subinstance represented by its subtree, where
the owner of the pointer computes receiver and the other party computes sender.

Figure 4: An illustration of the reduction from Hint-ATPC#k
d,w to MSTn, for k “ 4, wd

“ 5, and n “ 10. Bottom

vertices (encircled in gray) represent the elements of rwd
s, which are fully connected as a clique, while each of the

top vertices represents an ATPCd,w instance. Red edges correspond to the deletions while each of the blue edges is
inserted but not deleted – to avoid clutter, only the edges for j “ 1 are drawn. The green edge is p1, nq.

At a high level, Alice and Bob jointly encode the target of each ATPCd,w instance as the
minimum weight edge incident on a unique vertex. To do this, the sender of a message (who does
not own the current pointer) has no choice but to collect and merge its insertions/deletions from
all subtrees (offset properly to make them disjoint). On the other hand, the receiver owns the
current pointer and thus has full knowledge of the subtrees to the left of the pointer, enabling
perfect simulation of both parties in all these subtrees. Suppose the receiver performs opposite
operations on exactly the same subset of elements as the sender, meaning effectively no edge is
inserted/deleted, in each of these subtrees. As a result, the output of the larger instance always
corresponds to the output of the smaller instance determined by the current pointer. Besides, to
ensure a proper inclusion, Alice as the receiver will insert everything to the right of the pointer
while Bob as the receiver will delete nothing to the right of the pointer, as can be seen in the second
case of Algorithm 2.

It can be verified that Alice is able to compute all insertions on her own and Bob is able to
compute all deletions on his own. So the p-pass dynamic streaming algorithm π can be simulated by
the protocol τ , using d rounds and C communication, in the canonical way of exchanging memory
states. Now, it remains to formally show the correctness of the reduction. This is done with the
help of the following technical claim.

Claim 4.5. For any ATPCd,w instance pApdq, Bpdqq, it holds that

senderpd,w,Apdq, 0q Ľ receiverpd,w,Bpdq, 1q,
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and
receiverpd,w,Bpdq, 0q Ľ senderpd,w,Apdq, 1q.

Furthermore, it also holds that

minpsenderpd,w,Apdq, 0qzreceiverpd,w,Bpdq, 1qq “ 2t ´ z,

and
minpreceiverpd,w,Bpdq, 0qzsenderpd,w,Apdq, 1qq “ 2t ´ z,

where t is the target of the instance, and z the output.

Assume the above claim for now. Applying it to pa
pdq

j , b
pdq

j q for j P rks, we know that the
constructed dynamic stream is well-defined and any minimum spanning tree of the constructed
graph must consist of the following edges.

1. The edge p1, nq with weight 2kwd ´ 2T ` 1.

2. wd ´ 1 edges connecting rk ` 1, k ` wds, each with weight 1.

3. The edge pj, k ` tjq with weight 2tj ´ zj ` 1, where tj is the target of pa
pdq

j , b
pdq

j q and zj is the
output of the same instance, for j P rks.

Therefore, the weight of minimum spanning trees is

2kwd ´ 2T ` 1 ` wd ´ 1 `
ÿ

jPrks

p2tj ´ zj ` 1q “ 2kwd ` wd ` k ´
ÿ

jPrks

zj .

In other words, τ will output 1 (i.e., more than tk{2u out of the k instances of ATPCd,w output
1) if and only if π outputs 0 given threshold 2kwd ` wd ` k ´ tk{2u (i.e., the weight of minimum
spanning trees is less than the given threshold). So the success probability remains the same.

We conclude this section with a proof of Claim 4.5.

Proof of Claim 4.5. The proof is by induction on d. The base case of d “ 1 is a direct consequence
of the first cases of Algorithm 1 and Algorithm 2. For d ą 1, we can get

senderpd,w,Apdq, 0q Ľ receiverpd,w,Bpdq, 1q,

because by the inductive hypothesis, we have that

receiverpd ´ 1, w, b
pd´1q

ipdq , 0q Ľ senderpd ´ 1, w, a
pd´1q

ipdq , 1q.

Furthermore, we actually know

minpsenderpd,w,Apdq, 0qzreceiverpd,w,Bpdq, 1qq

“ 2pipdq ´ 1q ¨ wd´1 ` minpreceiverpd ´ 1, w, b
pd´1q

ipdq , 0qzsenderpd ´ 1, w, a
pd´1q

ipdq , 1qq

“ 2pipdq ´ 1q ¨ wd´1 ` 2t1 ´ z1

“ 2t ´ z,

where t1 is the target of pa
pd´1q

ipdq , b
pd´1q

ipdq q and z1 is the output of the same instance.
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Similarly, we can also get

receiverpd,w,Bpdq, 0q Ľ senderpd,w,Apdq, 1q,

because by the inductive hypothesis, we have that

senderpd ´ 1, w, a
pd´1q

ipdq , 0q Ľ receiverpd ´ 1, w, b
pd´1q

ipdq , 1q.

Furthermore, we actually know

minpreceiverpd,w,Bpdq, 0qzsenderpd,w,Apdq, 1qq

“ 2pipdq ´ 1q ¨ wd´1 ` minpsenderpd ´ 1, w, a
pd´1q

ipdq , 0qzreceiverpd ´ 1, w, b
pd´1q

ipdq , 1qq

“ 2pipdq ´ 1q ¨ wd´1 ` 2t1 ´ z1

“ 2t ´ z,

where t1 is the target of pa
pd´1q

ipdq , b
pd´1q

ipdq q and z1 is the output of the same instance. This concludes
the proof.

We remark that Claim 4.5 can also be viewed as a reduction from ATPCd,w to URĂ
min,dec over a

universe of size m “ 2wd, by Alice computing the set senderpd,w,Apdq, 0q and Bob computing the
set receiverpd,w,Bpdq, 1q. So the following corollary follows immediately from the lower bound
for ATPCd,w (Lemma 4.2).

Corollary 4.6. For m, r ě 1, and ϵ P r0, 1{2s, any r-round (randomized) protocol that solves
URĂ

min,dec with probability 1{2 ` ϵ over a universe of size m, requires Ωpϵ2m1{r{rq communication.

4.3 Lower Bound for ATPCd,w

We derive Lemma 4.2 by round elimination in this section. Claims 4.7 and 4.8 take care of the base
case and each round elimination step, respectively.

Claim 4.7 (Base case). For w ě 1, any one-way protocol π for solving ATPC1,w succeeds with
probability at most 1{2 `

a

CCpπq{w over D1,w.

Proof. Throughout the proof, all superscripts on random variables will be temporarily omitted for
conciseness. Let M be the message sent from Alice to Bob. We can get

IpM,AăI, I ;AIq “ IpAăI, I ;AIq ` IpM ;AI | AăI, Iq

(by chain rule of mutual information (Fact A.1-(6)))

“ IpM ;AI | AăI, Iq (as AăI, I K AI)

“
1

w
¨

ÿ

iPrws

IpM ;Ai | Aăi, I “ iq (as I is uniform)

“
1

w
¨

ÿ

iPrws

IpM ;Ai | Aăiq (as M,Aďi K I “ i)

“
IpM ;Aq

w
(by chain rule of mutual information (Fact A.1-(6)))

ď
CCpπq

w
.

18



Furthermore, we have

E
M,AăI,I

}distpAI | M,AăI, Iq ´ distpAIq}tvd

ď E
M,AăI,I

a

DpdistpAI | M,AăI, Iq || distpAIqq (by Pinsker’s inequality (Fact A.6))

ď

c

E
M,AăI,I

DpdistpAI | M,AăI, Iq || distpAIqq (by concavity of
?

¨)

“
a

IpAI ;M,AăI, Iq (by Fact A.3)

ď

c

CCpπq

w
.

Since AI is initially uniformly random, the probability that Bob can correctly guess AI from his
perspective (i.e., given M,AăI, I) is then at most 1{2 `

a

CCpπq{w, as claimed.

Claim 4.8 (Round elimination). For d,w ě 1 and ϵ P r0, 1s, if there exists a pd ` 1q-round
protocol π for solving ATPCd`1,w with probability ϵ over Dd`1,w, then there also exists a d-round

protocol τ for solving ATPCd,w with probability ϵ ´

b

CCp1qpπq{w over Dd,w and communication

CCpτq “ CCpą1qpπq.

Proof. Throughout the proof, all superscripts on random variables will be temporarily omitted for
conciseness. When there is ambiguity, unprimed quantities represent the d-round versions while
primed ones are reserved for d`1 rounds. Let M be the first-round message of π. On input pA,Bq,
τ will simulate π as shown in Algorithm 3, where all random variables are with respect to π.

Algorithm 3. The d-round protocol τ for solving ATPCd,w on input pA,Bq.

1. Alice and Bob publicly sample M,BăI, I.

2. Alice sets AI “ A and Bob sets BI “ B.

3. Alice privately samples AăI conditioned on M,AI,BăI, I, and sets B1 “ pI,AďI,BăIq.

4. Bob privately samples BąI conditioned on M,BďI, I, and sets A1 “ B.

5. Alice and Bob simulate π on input pB1,A1q from the second round, assuming the first-round
message is M, with Alice playing the role of Bob and Bob playing the role of Alice.

6. Return the output of π.

It can be verified that pA1,B1q is a valid instance of ATPCd`1,w and thus τ is indeed a d-
round protocol for solving ATPCd,w, with the claimed communication complexity. We also want
to emphasize that with Alice and Bob playing the roles of each other, M is the first-round message
of π from Bob to Alice, so it is a function of A1 “ B. Now, it remains to calculate the success
probability of τ . To this end, the following two technical claims show that all the random variables
as sampled in τ almost perfectly follow their distribution in π.

Claim 4.9. It holds that

IpAI,BI ;M,BăI, Iq ď
CCp1qpπq

w
.
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Proof. Observe that

IpAI,BI ;M,BăI, Iq “ IpAI,BI ;BăI, Iq ` IpAI,BI ;M | BăI, Iq

(by chain rule of mutual information (Fact A.1-(6)))

“ IpAI,BI ;M | BăI, Iq (as AI,BI K BăI, I)

“ IpBI ;M | BăI, Iq ` IpAI ;M | BďI, Iq
(by chain rule of mutual information (Fact A.1-(6)))

ď IpBI ;M | BăI, Iq ` IpAI ;BąI | BďI, Iq
(by data processing inequality (Fact A.1-(7)) as M is a function of BąI,BďI)

“ IpBI ;M | BăI, Iq (as AI K BąI | BďI, I)

“
1

w
¨

ÿ

iPrws

IpBi ;M | Băi, I “ iq (as I is uniform)

“
1

w
¨

ÿ

iPrws

IpBi ;M | Băiq (as M,Bďi K I “ i)

“
IpB ;Mq

w
(by chain rule of mutual information (Fact A.1-(6)))

ď
CCp1qpπq

w
,

as claimed.

Claim 4.10. It holds that
AăI K BI | M,AI,BăI, I,

and
BąI K AďI | M,BďI, I.

Proof. Observe that

IpAăI ;BI | M,AI,BăI, Iq ď IpAăI ;M,BI | AI,BăI, Iq

ď IpAăI ;BěI | AI,BăI, Iq
(by data processing inequality (Fact A.1-(7)) as M is a function of BěI,BăI)

“ 0, (as AăI K BěI | AI,BăI, I)

and that

IpBąI ;AďI | M,BďI, Iq ď IpM,BąI ;AďI | BďI, Iq

ď IpBąI ;AďI | BďI, Iq
(by data processing inequality (Fact A.1-(7)) as M is a function of BąI,BďI)

“ 0. (as BąI K AďI | BďI, I)

This concludes the proof.

Note that τ succeeds on pAI,BIq so long as π does on pA1,B1q. Intuitively, τ samples pA1,B1q

closely following Dd`1,w so its success probability should also be close to the success probability of
π. This can be formally argued as follows. By chain rule of total variation distance (Fact A.8),
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together with Claims 4.9 and 4.10, we can get that the distribution sampled by τ of all random
variables (M,AďI,B, I) and their distribution in π have a total variation distribution upper bounded
by

E
M,BăI,I

}distpAI,BI | M,BăI,Iq ´ distpAI,BIq}tvd

ď E
M,BăI,I

b

DpdistpAI,BI | M,BăI,Iq || distpAI,BIqq (by Pinsker’s inequality (Fact A.6))

ď

c

E
M,BăI,I

DpdistpAI,BI | M,BăI,Iq || distpAI,BIqq (by concavity of
?

¨)

“

b

IpAI,BI ;M,BăI,Iq (by Fact A.3)

ď

d

CCp1qpπq

w
.

As a result, the overall success probability of τ is less than that of π by at most

b

CCp1qpπq{w due

to Fact A.5, concluding the proof.

Now, we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. Fix a d-round protocol π for solving ATPCd,w with probability 1{2 ` ϵ
over Dd,w that has optimal communication. By applying the round elimination step (Claim 4.8)
repeatedly for d ´ 1 times, we get a one-way protocol for solving ATPC1,w with probability

1{2 ` ϵ ´
ř

rPrd´1s

b

CCprqpπq{w over D1,w and communication CCpdqpπq. On the other hand,
Claim 4.7 implies that

ϵ ď
ÿ

rPrds

d

CCprqpπq

w

“ d ¨
ÿ

rPrds

1

d
¨

d

CCprqpπq

w

ď d ¨

g

f

f

e

ÿ

rPrds

1

d
¨
CCprqpπq

w
(by concavity of

?
¨)

“

c

d

w
¨ CCpπq.

The lower bound is derived by rearranging the terms.

4.4 Lower Bound for Hint-ATPC#k
d,w

We generalize the lower bound for ATPCd,w to its k-fold verisons in this section. The hardness

of Hint-ATPC#k
d,w will be proved by a series of reductions from ATPC‘k

d,w. Indeed, Claim 4.11
deals with the hint, namely the sum of targets, while Claim 4.12 relates the XOR and the majority
versions of the problem. The hardness of ATPC‘k

d,w will in turn be derived from the hardness of
ATPCd,w using the XOR lemma of [Yu22] (Lemma 4.13).
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Claim 4.11. For k, d, w ě 1 and ϵ P r0, 1{2s, it holds that

D
pdq

Dk
d,w, 1

2
` ϵ

kwd

pATPC‘k
d,wq ď D

pdq

Dk
d,w, 1

2
`ϵ

pHint-ATPC‘k
d,wq ` kd logw.

Proof. Fix a d-round protocol π for solving Hint-ATPC‘k
d,w with probability 1{2`ϵ over Dk

d,w that

has optimal communication. In the following, we construct a protocol τ for solving ATPC‘k
d,w with

the claimed properties. On input pA,Bq, τ starts by publicly guessing T 1 from rkwds uniformly at
random and simulating π on input ppA, T 1q, pB, T 1qq. Then, Alice sends the first message of π to
Bob. For r P r2, ds, the sender of the r-th round will transmit the r-th message of π, which can
be simulated using the current transcript, as well as the correct depth-pr ´ 1q pointers for each of
the k instances of ATPCd,w. So the receiver of the r-th round will know what the correct depth-r
pointers are. At the end of the protocol, the receiver of the last message has full knowledge required
to compute the sum T of all k targets and can verify whether T 1 “ T . If so, return the output of
π, and otherwise a uniformly random bit.

Note that apart from messages of π, τ transmits k pointers, each of which costs logw bits,
in each of the d rounds, so the additional communication is kd logw in total. To see its success
probability, observe that T 1 is a uniformly random guess independent of pA,Bq. Thus, it correctly
hits T with probability 1{pkwdq and τ succeeds with probability 1{2` ϵ, the same as π, conditioned
on this event. Otherwise, τ succeeds with probability 1{2 as a uniformly random bit is output. The
overall success probability then follows as claimed.

Claim 4.12. For k, d, w ě 1 and ϵ P r0, 1{2s, it holds that

D
pdq

Dk
d,w, 1

2
´ϵ`Θp 1?

k
q
pHint-ATPC‘k

d,wq ď D
pdq

Dk
d,w,1´ϵ

pHint-ATPC#k
d,wq.

Proof. Fix a d-round protocol π for solving Hint-ATPC#k
d,w with probability 1 ´ ϵ over Dk

d,w that

has optimal communication. In the following, we construct a protocol τ for solving Hint-ATPC‘k
d,w

with the claimed properties. On input ppA, T q, pB, T qq, τ simulates π on input ppA, T q, pB, T qq, and
outputs the parity of tk{2u ` 1 if π outputs 1 and outputs the parity of tk{2u otherwise. So it
remains to calculate the success probability of τ .

Assume for now that π were perfectly correct (i.e., ϵ “ 0). Note that the answer to an instance
drawn from Dd,w is simply a uniformly random bit. Therefore, τ succeeds with probability

tk{2u
ÿ

j“0

1rtk{2u ´ j is evens ¨

`

k
j

˘

2k
`

k
ÿ

j“tk{2u`1

1rj ´ tk{2u ´ 1 is evens ¨

`

k
j

˘

2k

“
1

2
¨

»

–

tk{2u
ÿ

j“0

`

k
j

˘

2k
`

tk{2u
ÿ

j“0

p´1qtk{2u´j ¨

`

k
j

˘

2k

fi

fl

`
1

2
¨

»

–

k
ÿ

j“tk{2u`1

`

k
j

˘

2k
`

k
ÿ

j“tk{2u`1

p´1qj´tk{2u´1 ¨

`

k
j

˘

2k

fi

fl

“
1

2
¨

»

–1 `

tk{2u
ÿ

j“0

p´1qtk{2u´j ¨

`

k
j

˘

2k
`

k
ÿ

j“tk{2u`1

p´1qj´tk{2u´1 ¨

`

k
j

˘

2k

fi

fl
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“
1

2
¨

«

1 `

`

k´1
tk{2u

˘

2k
`

`

k´1
tk{2u

˘

2k

ff

“
1

2
`

`

k´1
tk{2u

˘

2k

“
1

2
` Θ

ˆ

1
?
k

˙

,

by Stirling’s approximation. For π with error probability ϵ, by a union bound, the success proba-
bility of τ is reduced by at most ϵ. The claim hence follows.

We remark that the reductions in proving Claims 4.11 and 4.12 actually have little to do with
the base problem ATPCd,w itself. In fact, almost identical reductions will also be used in Section 5
for proving the full version of our main result.

Now, we are ready to prove Lemma 4.3 using the following XOR lemma of [Yu22]9.

Lemma 4.13 ( [Yu22]). For k, r ě 1, Boolean function f , and input distance µ, it holds that

D
prq

µk, 1
2

` 1

2k

pf‘kq ě k ¨

ˆ

1

rOprq
¨ D

prq

µ, 2
3

pfq ´ 1

˙

.

Proof of Lemma 4.3. Fix a d-round protocol for solving Hint-ATPC#k
d,w with probability 1 ´

1{polypkq over Dk
d,w that has optimal communication C. Applying Claim 4.12 and Claim 4.11

in sequence, we get a d-round protocol for solving ATPC‘k
d,w with probability 1{2 ` Θp1{pk3{2wdqq

over Dk
d,w that has communication C ` kd logw.

On the other hand, Lemma 4.2, together with Lemma 4.13, implies that

D
pdq

Dk
d,w, 1

2
` 1

2k

pATPC‘k
d,wq “ Ω

ˆ

kw

dOpdq

˙

,

under the assumption d “ oplogw{ log logwq. Since 1{2k ! 1{pk3{2wdq under the assumption
k “ ωpd logwq, we have that C “ Ωpkw{dOpdqq. The lemma follows by observing that error
reduction from 1{3 down to 1{polypkq requires an Oplog kq-fold increase in communication.

5 A Lower Bound in Optimal Number of Passes

In this section, we extend Theorem 1 to more passes as shown in Theorem 2, fully proving Result 1.
Also, Result 2, formalized in Theorem 3, will be a direct consequence of Lemmas 5.1 and 5.2.

Theorem 2 (Formal version of Result 1). For p “ op
logn

log lognq, any p-pass dynamic streaming

algorithm for solving MSTn with probability 2{3 requires Ωpn
1` 1

2p´1

p5 log3 n
q space.

9Technically, the main result (Theorem 1) of [Yu22] is an XOR lemma for randomized communication complexity,
while a distributional version is required in our proof. Nevertheless, [Yu22] proves the main result via another one
(Theorem 2) with asymmetirc communication, which directly works in the distributional model. The distributional
version we need is a natural byproduct of the simple argument from Theorem 2 to Theorem 1; see Section 4 in the
full version of [Yu22] for more details.
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Theorem 3 (Formal version of Result 2). There exists ϵ0 ą 0 such that for n, r ě 1, k P r1, ns,
ϵ P p0, ϵ0q, Boolean function f , and input distribution µ, it holds that

D
prq,k

µn, 1
2

`minpϵ1,ϵ2q
pf‘nq “ Ω

ˆ

n

k
¨

ˆ

ϵ

r
¨ D

prq

µ, 1
2

`ϵ
pfq ´ Oprq

˙˙

,

where ϵ1 “ prϵqΩpk{rq and ϵ2 “ ϵΩpϵk{rq.

As mentioned in Section 4, we take a two-step approach by amplifying first communication and
then error probability. The first step uses the following XOR-direct-sum result10, tight up to a
factor of r, for bounded-round communication complexity, which is implicitly implied by [JPY12].

Lemma 5.1 (Bounded-round XOR direct sum). For k, r ě 1, ϵ P r0, 1s, δ P p0, ϵq, Boolean function
f , and input distribution µ, it holds that

D
prq

µk,ϵ
pf‘kq “ Ω

ˆ

k ¨

ˆ

δ

r
¨ D

prq

µ,ϵ´δpfq ´ Oprq

˙˙

.

For the second step, we prove an XOR-lemma-type result for the multi-party model.

Lemma 5.2 (Multi-party XOR lemma). There exists ϵ0 ą 0 such that for k, r ě 1, ϵ P p0, ϵ0q,
Boolean function f , and input distribution µ, it holds that

D
prq,k

µk, 1
2

`minpϵ1,ϵ2q
pf‘kq ě D

prq

µ, 1
2

`ϵ
pfq,

where ϵ1 “ prϵqΩpk{rq and ϵ2 “ ϵΩpϵk{rq.

We remark that Lemma 5.2 is a weaker XOR lemma than the one of [Yu22] in the sense that the
decrease in advantage is worse and it only applies to the multi-party model. It nevertheless meets
our needs as we will eventually work in the streaming model. On the positive side, Lemma 5.2
no longer suffers a factor of rOprq in communication, which is exactly the only barrier towards
oplog n{ log log nq passes as identified in Section 4.

Formal proofs of Lemmas 5.1 and 5.2 are deferred to Appendix B. We now show that they
indeed imply Theorem 2. This is done via multi-party variants of the problems in Section 4.

Definition 5.3. For k1, k2, d, w ě 1, ATPC
‘pk1,k2q

d,w denotes the k1k2-fold XOR version of ATPCd,w

in the 2k2-party model, where each pair of Alice i and Bob i is given as input k1 instances of

ATPCd,w, where i P rk2s. Similarly, ATPC
#pk1,k2q

d,w denotes the k1k2-fold majority version of
ATPCd,w in the 2k2-party model.

When the hint, i.e., the total sum of targets of all k1k2 instances, is given to each of the

2k2 parties as part of its input, the resulting problems are denoted by Hint-ATPC
‘pk1,k2q

d,w and

Hint-ATPC
#pk1,k2q

d,w .

Multi-party analogues of Claims 4.4, 4.11 and 4.12 are given below. The proofs are almost
identical and omitted here, as the same reductions still apply.

Claim 5.4. For k1, k2, p, w, S ě 1 and ϵ P r0, 1s, if there exists a p-pass, S-space dynamic streaming
algorithm for solving MSTk1k2`w2p´1`1 with probability ϵ, then there also exists a p2p ´ 1q-round,

p2p´1qk2S-communication protocol for solving Hint-ATPC
#pk1,k2q

2p´1,w with probability ϵ over Dk1k2
2p´1,w.

10A similar direct-sum result also holds for fk. It is however subsumed by the direct-product result of [JPY12].
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Claim 5.5. For k1, k2, d, w ě 1, and ϵ P r0, 1{2s, it holds that

D
pdq,k2

Dk1k2
d,w , 1

2
` ϵ

k1k2w
d

pATPC
‘pk1,k2q

d,w q ď D
pdq,k2

Dk1k2
d,w , 1

2
`ϵ

pHint-ATPC
‘pk1,k2q

d,w q ` k1k2d logw.

Claim 5.6. For k1, k2, d, w ě 1 and ϵ P r0, 1{2s, it holds that

D
pdq,k2

Dk1k2
d,w , 1

2
´ϵ`Θp 1?

k1k2
q
pHint-ATPC

‘pk1,k2q

d,w q ď D
pdq,k2

Dk1k2
d,w ,1´ϵ

pHint-ATPC
#pk1,k2q

d,w q.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Fix a p-pass dynamic streaming algorithm for solving MSTn with probability
2{3 that has space S. Let k “ pn ´ 1q{2, k2 “ cd log n and k1 “ k{k2 for some sufficiently large
constant c ą 0. Also let d “ 2p ´ 1, w “ pn ´ k ´ 1q1{d, and C “ k2dS. Applying the reduction

of Claim 5.4, we get a d-round protocol for solving Hint-ATPC
#pk1,k2q

d,w with probability 2{3 over

Dk
d,w that has communication C. The success probability can be boosted to 1 ´ 1{polypnq by

Oplog nq parallel repetitions.

On the other hand, Lemma 4.2, together with Theorem 3 for some sufficiently small constant
ϵ ą 0, implies that

D
pdq,k2
Dk

d,w, 1
2

` 1
polypnq

pATPC
‘pk1,k2q

d,w q “ Ω

ˆ

k1w

d2

˙

.

Applying Claims 5.5 and 5.6 in sequence, we further get

D
pdq,k2
Dk

d,w,1´ 1
polypnq

pHint-ATPC
#pk1,k2q

d,w q “ Ω

ˆ

k1w

d2

˙

.

Combining the above arguments, we finally have

C log n “ Ω

ˆ

k1w

d2

˙

.

The theorem follows by rearranging the terms.

We remark that the above proof uses the ϵ2 case in Lemma 5.2 with ϵ “ Θp1q. It is also
possible to prove Theorem 2 using the ϵ1 case with ϵ “ Θp1{rq. However, this results in slightly
worse dependence on p for the derived space lower bound on streaming algorithms. Both cases
of Lemma 5.2 are provided just in case the result may be of independent interest to some readers.
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Appendix

A Basic Tools From Information Theory

We introduce some definitions from information theory that are needed in this paper. For a random
variable A, we use supppAq to denote the support of A and distpAq to denote its distribution. When
it is clear from context, we may abuse the notation and use A directly instead of distpAq, e.g., write
A „ A to mean A „ distpAq, i.e., A is sampled from the distribution of the random variable A.

We denote the Shannon entropy of a random variable A by HpAq, which is defined as:

HpAq “
ÿ

APsupppAq

Pr pA “ Aq ¨ log
1

Pr pA “ Aq
.

The conditional entropy of A conditioned on B is denoted by HpA | Bq and defined as:

HpA | Bq “ E
B„B

rHpA | B “ Bqs ,

where HpA | B “ Bq is defined in a standard way by using the distribution of A conditioned on the
event B “ B in the previous equation. We denote the mutual information between two random
variables A and B is by IpA ;Bq, which is defined as:

IpA ;Bq “ HpAq ´ HpA | Bq “ HpBq ´ HpB | Aq.

The conditional mutual information IpA ;B | Cq is defined to be HpA | Cq ´ HpA | B,Cq and hence
by linearity of expectation:

IpA ;B | Cq “ E
C„C

rIpA ;B | C “ Cqs .

We refer the interested readers to the excellent textbook by Cover and Thomas [CT06] for an
introduction to the field of information theory.

A.1 Useful Properties of Entropy and Mutual Information

We use the following basic properties of entropy and mutual information throughout.

Fact A.1 (cf. [CT06]). Let A, B, C, and D be four (possibly correlated) random variables.

1. 0 ď HpAq ď log |supppAq|. The right equality holds iff distpAq is uniform.

2. IpA ;B | Cq ě 0. The equality holds iff A and B are independent conditioned on C.

3. Conditioning on a random variable reduces entropy: HpA | B,Cq ď HpA | Bq. The equality
holds iff A K C | B.

4. Subadditivity of entropy: HpA,B | Cq ď HpA | Cq ` HpB | Cq.

5. Chain rule for entropy: HpA,B | Cq “ HpA | Cq ` HpB | C,Aq.

6. Chain rule for mutual information: IpA,B ;C | Dq “ IpA ;C | Dq ` IpB ;C | A,Dq.

7. Data processing inequality: for a function fpA,Cq, IpfpA,Cq ;B | Cq ď IpA ;B | Cq.
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A.2 Measures of Distance Between Distributions

We also use the following standard measures of distance (or divergence) between distributions.

KL-divergence. For two distributions µ and ν, the Kullback-Leibler divergence between µ and
ν is denoted by Dpµ || νq and defined as:

Dpµ || νq “ E
a„µ

„

log
µpaq

νpaq

ȷ

.

The conditional KL-divergence DpµpA | Bq || νpA | Bqq between two conditional distributions
µpA | Bq and νpA | Bq is defined to be:

DpµpA | Bq || νpA | Bqq “ E
b„µpBq

rDpµpA | B “ bq || νpA | B “ bqqs .

We use the following basic properties of KL-divergence.

Fact A.2. Suppose µ is a distribution and E is an event, then,

Dpµ | E || µq ď log

ˆ

1

µpEq

˙

.

The following states the relation between mutual information and KL-divergence.

Fact A.3. For random variables A,B,C,

IpA ;B | Cq “ E
pb,cq„pB,Cq

rDpdistpA | B “ b,C “ cq || distpA | C “ cqqs .

We also use the following chain rule of KL-divergence.

Fact A.4. Suppose µ and ν are two distributions for A,B, then,

DpµpA,Bq || νpA,Bqq “ DpµpAq || νpAqq ` DpµpB | Aq || νpB | Aqq.

Total variation distance. We denote the total variation distance between two distributions µ
and ν on the same support Ω by }µ ´ ν}tvd, defined as:

}µ ´ ν}tvd “ max
Ω1ĎΩ

`

µpΩ1q ´ νpΩ1q
˘

“
1

2
¨

ÿ

xPΩ

|µpxq ´ νpxq| .

We use the following basic properties of total variation distance.

Fact A.5. Suppose µ and ν are two distributions for a non-negative random variable A, then,
ˇ

ˇ

ˇ

ˇ

E
µ

rAs ´ E
ν

rAs

ˇ

ˇ

ˇ

ˇ

ď }µ ´ ν}tvd ¨ max
aPsupppAq

a.

The total variation distance between two distributions can be bounded in terms of their KL-
divergence by Pinsker’s inequality.

Fact A.6 (Pinsker’s inequality). For distributions µ and ν,

}µ ´ ν}tvd ď

c

1

2
¨ Dpµ || νq.
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An alternative bound for Pinsker’s inequality is used for distributions with large KL-divergence.

Fact A.7 ( [Tsy09], Equation 2.25). For distributions µ and ν,

}µ ´ ν}tvd ď 1 ´
1

2
¨ expp´Dpµ || νqq.

We also use the following chain rule of total variation distance.

Fact A.8. Suppose µ and ν are two distributions for A,B, then,

}µpA,Bq ´ νpA,Bq}tvd ď }µpAq ´ νpAq}tvd ` E
A„µpAq

r}µpB | A “ Aq ´ νpB | A “ Aq}tvds .

B Missing Proofs in Section 5

We denote the bias of a Boolean random variable A by biaspAq, which is defined as

biaspAq “ |PrpA “ 0q ´ PrpA “ 1q| .

We use the following basic property regarding the biases of independent Boolean random variables.

Fact B.1. For independent Boolean random variables A,B,

biaspA ‘ Bq “ biaspAq ¨ biaspBq.

B.1 Proof of Lemma 5.1

We use (simplified versions of) Theorem 5.1 in [BBCR13]11 and Lemma 3.4 in [JPY12].

Lemma B.2 ( [BBCR13], Theorem 5.1). For k, r ě 1, ϵ P r0, 1s, Boolean function f , and input
distribution µ, there exists an r-round protocol π for solving f with probability ϵ over µ that has

information cost ICµpπq ď D
prq

µk,ϵ
pf‘kq{k ` 2.

Lemma B.3 ( [JPY12], Lemma 3.4). For r ě 1, ϵ P p0, 1q, and input distribution µ, any r-round
protocol π can be ϵ-simulated (in r rounds) with communication Opr{ϵ ¨ ICµpπq ` r2{ϵq.

Proof of Lemma 5.1. By Lemma B.2, there exists an r-round protocol π for solving f with prob-

ability ϵ over µ that has information cost ICµpπq ď D
prq

µk,ϵ
pf‘kq{k ` 2. Furthermore, π can be

δ-simulated with communication Opr{pδkq ¨ D
prq

µk,ϵ
pf‘kq ` r2{δq by Lemma B.3. The same bound

holds for D
prq

µ,ϵ´δpfq. Rearranging the terms concludes the proof.

B.2 Proof of Lemma 5.2

This section constitutes a proof of Lemma 5.2. Fix an r-round, 2k-party protocol π for solving f‘k

over µk that has communication C. Suppose for the sake of contradiction that C ă D
prq

µ,1{2`ϵpfq. In

the following, we show that π succeeds with probability less than 1{2 ` minpϵ1, ϵ2q over µk, hence
proving the lemma. Without loss of generality, assume π is deterministic.

We first introduce some random variables with respect to π when input is drawn from µk.

11Technically, Theorem 5.1 of [BBCR13] is for unbounded-round protocols. However, the bounded-round version
also holds since the simulation protocol in their proof is round-preserving.
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• Xi: The input to Alice i for i P rks;

• Yi: The input to Bob i for i P rks;

• M
pjq

i : The rj{2s-th message posted by Alice i if j is odd, and the rj{2s-th message posted by
Bob i if j is even, for i P rks and j P rr ` 1s;

• B
pjq

i : The blackboard after M
pjq

i is posted for i P rks and j P rr ` 1s.

For convenience, we slightly abuse the notation and write B
p0q

k “K and B
pjq

0 “ B
pj´1q

k for j P rr`1s.

Let B “ B
pr`1q

k .12 For blackboard B, biaspBq is defined to be biaspf‘kpX,Yq | B “ Bq, and for
i P rks, define biasipBq as biaspfpXi,Yiq | B “ Bq. A couple of events are considered as well.

• E1pi, Bq: The event biasipBq ě
?
ϵ for i P rks and blackboard B;

• E1pS,Bq: The event
Ź

iPS E1pi, Bq for S Ď rks and blackboard B;

• E1pBq: The event that there exists S Ď rks of size p1 ´ 1{p10rqq ¨ k such that E1pS,Bq holds,
for blackboard B;

• E2pi, Bq: The event biasipBq ě ϵ1{p2rq for i P rks and blackboard B;

• E2pS,Bq: The event
Ź

iPS E2pi, Bq for S Ď rks and blackboard B;

• E2pBq: The event that there exists S Ď rks of size p1 ´ ϵq ¨ k such that E2pS,Bq holds, for
blackboard B.

We will use the following basic properties of the protocol π. Specifically, Claim B.4 proves a
rectangle property and Claim B.5 bounds the success probability of π in terms of biases.

Claim B.4. For i P rks, j P rr ` 1s, and fixed blackboard B
pjq

i , it holds that

distpX,Y | B
pjq

i q “
ą

i1Prks

distpXi1 ,Yi1 | B
pjq

i q.

Proof. The claim can be equivalently stated as that for i, i1 P rks and j P rr ` 1s, it holds that

IpXi1 ,Yi1 ;X´i1 ,Y´i1 | B
pjq

i q “ 0.

To this end, fix i, i1 P rks and j P rr ` 1s. Suppose i1 “ i. Observe that

IpXi1 ,Yi1 ;X´i1 ,Y´i1 | B
pjq

i q ď IpMpjq

i ,Xi,Yi ;X´i,Y´i | B
pjq

i´1q (as B
pjq

i “ pB
pjq

i´1,M
pjq

i q)

“ IpXi,Yi ;X´i,Y´i | B
pjq

i´1q. (as M
pjq

i is a function of B
pjq

i´1,Xi,Yi)

For i1 ‰ i, also observe that

IpXi1 ,Yi1 ;X´i1 ,Y´i1 | B
pjq

i q ď IpXi1 ,Yi1 ;M
pjq

i ,X´i1 ,Y´i1 | B
pjq

i´1q (as B
pjq

i “ pB
pjq

i´1,M
pjq

i q)

12Recall that for consistency with the standard 2-party model, the multi-party model is defined so that the last
party, who returns an output, does not post a message to the blackboard. Thus, there is an “pr ` 1q-th round” for
an r-round protocol. To minimize confusion, we avoid any reference to the “j-th round” throughout.
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“ IpXi1 ,Yi1 ;X´i1 ,Y´i1 | B
pjq

i´1q.

(as M
pjq

i is a function of B
pjq

i´1,X´i1 ,Y´i1)

In both cases, we get

IpXi1 ,Yi1 ;X´i1 ,Y´i1 | B
pjq

i q ď IpXi1 ,Yi1 ;X´i1 ,Y´i1 | B
pjq

i´1q.

Consequently, an induction in increasing order of pj, iq implies that

IpXi1 ,Yi1 ;X´i1 ,Y´i1 | B
pjq

i q ď IpXi1 ,Yi1 ;X´i1 ,Y´i1q.

The claim follows as Xi1 ,Yi1 K X´i1 ,Y´i1 .

Claim B.5. The protocol π succeeds with probability at most

1

2
`

1

2
¨ E
B

»

–

ź

iPrks

biasipBq

fi

fl .

Proof. Observe that given blackboard B, since the protocol π is deterministic, it succeeds with
probability at most

max
bPt0,1u

Prpf‘kpX,Yq “ b | B “ Bq “
1

2
`

1

2
¨ biaspBq.

Summing over B, we get that the success probability of π is upper bounded by

1

2
`

1

2
¨ E
B

rbiaspBqs “
1

2
`

1

2
¨ E
B

”

biaspf‘kpX,Yq | Bq

ı

“
1

2
`

1

2
¨ E
B

«

biasp
à

iPrks

fpXi,Yiq | Bq

ff

“
1

2
`

1

2
¨ E
B

»

–

ź

iPrks

biaspfpXi,Yiq | Bq

fi

fl (by Fact B.1 and Claim B.4)

“
1

2
`

1

2
¨ E
B

»

–

ź

iPrks

biasipBq

fi

fl ,

as claimed.

Claim B.6. For S Ď rks, it holds that

Pr
B

pE1pS,Bqq ă p4
?
ϵq

|S|

r`2 ,

and
Pr
B

pE2pBqq ă p6ϵ1´ 1
2r q

k
r`2 .
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The proof of Lemma 5.2 is done with the help of the above technical claim. Assume its correct-
ness for now. We show that it indeed implies Lemma 5.2. Let B1 be the subset of blackboards B
such that E1pBq holds. By Claim B.5, the success probability of π is at most

1

2
`

1

2
¨ E
B

»

–

ź

iPrks

biasipBq

fi

fl

“
1

2
`

1

2
¨

»

–

ÿ

BPB1

PrpB “ Bq ¨
ź

iPrks

biasipBq `
ÿ

BRB1

PrpB “ Bq ¨
ź

iPrks

biasipBq

fi

fl

ď
1

2
`

1

2
¨

»

–Pr
B

pE1pBqq `
ÿ

BRB1

PrpB “ Bq ¨
ź

iPrks

biasipBq

fi

fl (as biasipBq P r0, 1s)

ď
1

2
`

1

2
¨

„

Pr
B

pE1pBqq ` p
?
ϵq

k
10r

ȷ

, (as PrBpE1pBqq ď 1)

where we use the observation that for B R B1, biasipBq ă
?
ϵ for more than k{p10rq indices i P rks.

By a union bound, we further upper bound the success probability of π by

1

2
`

1

2
¨ E
B

»

–

ź

iPrks

biasipBq

fi

fl ď
1

2
`

1

2
¨

»

—

—

—

–

ÿ

SĎrks:

|S|“p1´ 1
10r

q¨k

Pr
B

pE1pS,Bqq ` ϵ
k

20r

fi

ffi

ffi

ffi

fl

ă
1

2
`

1

2
¨

„ˆ

k

p1 ´ 1
10r q ¨ k

˙

¨ p4
?
ϵqp1´ 1

10r
q¨k¨ 1

r`2 ` ϵ
k

20r

ȷ

(by Claim B.6)

“
1

2
`

1

2
¨

„ˆ

k
k
10r

˙

¨ p16ϵq
10r´1
20r

¨ k
r`2 ` ϵ

k
20r

ȷ

ď
1

2
`

1

2
¨

«

ˆ

ek

k{p10rq

˙
k

10r

¨ p16ϵq
10r´1
20r

¨ k
r`2 ` ϵ

k
20r

ff

ď
1

2
` ϵ1,

for sufficiently small ϵ ă ϵ0.

Meanwhile, let B2 be the subset of blackboards B such that E2pBq holds. Similarly by Claim B.5,
we can also upper bound the success probability of π by

1

2
`

1

2
¨ E
B

»

–

ź

iPrks

biasipBq

fi

fl ď
1

2
`

1

2
¨

„

Pr
B

pE2pBqq ` pϵ
1
2r qϵk

ȷ

,

since for B R B2, biasipBq ă ϵ1{p2rq for more than ϵk indices i P rks. By Claim B.6, the success
probability of π is at most

1

2
`

1

2
¨ E
B

»

–

ź

iPrks

biasipBq

fi

fl ă
1

2
`

1

2
¨

”

p6ϵ1´ 1
2r q

k
r`2 ` ϵ

ϵk
2r

ı

ď
1

2
` ϵ2,

for sufficiently small ϵ ă ϵ0. This concludes the proof of Lemma 5.2. It now remains to show
the correctness of Claim B.6. Suppose not, we will construct an r-round, 2-party protocol τ for
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solving f with probability 1{2` ϵ over µ that has communication C, contradicting the assumption

C ă D
prq

µ,1{2`ϵpfq. On input pX,Y q, τ will simulate π as shown in Algorithm 4, where all random

variables are with respect to π. The parameters T Ď rks and event E are to be determined and are
supposed to be such that biasIpBq is large with high probability, conditioned on E , for I „ T .

Algorithm 4. The protocol τ for solving f on input pX,Y q.
Parameters: T Ď rks and event E .

1. Alice and Bob publicly sample I uniformly at random from T .

2. Alice and Bob publicly sample XăI,YăI conditioned on I, E .

3. Alice sets XI “ X and Bob sets YI “ Y .

4. For j P rr ` 1s, if j is odd,

(a) Alice simulates π on XďI and computes M
pjq

ďI , given B
pj´1q

k .

(b) Alice privately samples M
pjq

ąI conditioned on B
pjq

I ,XăI,YăI, I, E .
(c) Alice sends Mpjq to Bob if j ď r, and otherwise outputs

argmax
bPt0,1u

Pr
px,yq„µk|B

pfpxi, yiq “ bq;

if j is even,

(a) Bob simulates π on YďI and computes M
pjq

ďI , given B
pj´1q

k .

(b) Bob privately samples M
pjq

ąI conditioned on B
pjq

I ,XăI,YăI, I, E .
(c) Bob sends Mpjq to Alice if j ď r, and otherwise outputs

argmax
bPt0,1u

Pr
px,yq„µk|B

pfpxi, yiq “ bq.

It can be verified that the current transcript always reflects the up-to-date blackboard and thus
τ is indeed an r-round protocol for solving f that has communication C. Regarding the success
probability of τ , the following two technical claims show that all the random variables as sampled
in τ almost perfectly follow their distribution in π conditioned on E .
Claim B.7. For T Ď rks and event E, it holds that

E
XăI,YăI,I|E

DpdistpXI,YI | XăI,YăI, I, Eq || distpXI,YIqq ď
1

|T |
¨ log

1

PrpEq
.

Proof. Observe that

E
XăI,YăI,I|E

DpdistpXI,YI | XăI,YăI, I, Eq || distpXI,YIqq

“ DpdistpXI,YI | XăI,YăI, I, Eq || distpXI,YI | XăI,YăI, Iqq (as XI,YI K XăI,YăI, I)

“
1

|T |
¨

ÿ

iPT

DpdistpXi,Yi | Xăi,Yăi, I “ i, Eq || distpXi,Yi | Xăi,Yăi, I “ iqq

(as I is uniform over T )
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“
1

|T |
¨

ÿ

iPT

DpdistpXi,Yi | Xăi,Yăi, Eq || distpXi,Yi | Xăi,Yăiqq

(as Xďi,Yďi K I “ i | E and Xďi,Yďi K I “ i)

ď
1

|T |
¨

ÿ

iPrks

DpdistpXi,Yi | Xăi,Yăi, Eq || distpXi,Yi | Xăi,Yăiqq (as T Ď rks)

“
1

|T |
¨ DpdistpX,Y | Eq || distpX,Yqq (by chain rule of KL-divergence (Fact A.4))

ď
1

|T |
¨ log

1

PrpEq
, (by Fact A.2)

as claim.

Claim B.8. For j P rr ` 1s, T Ď rks, and event E, it holds that

E
B

pjq

I ,XďI,YďI,I|E
DpdistpM

pjq

ąI | B
pjq

I ,XďI,YďI, I, Eq || distpM
pjq

ąI | B
pjq

I ,XăI,YăI, I, Eqq ď
1

|T |
¨ log

1

PrpEq
.

Proof. Observe that

E
B

pjq

I ,XďI,YďI,I|E
DpdistpM

pjq

ąI | B
pjq

I ,XďI,YďI, I, Eq || distpM
pjq

ąI | B
pjq

I ,XăI,YăI, I, Eqq

“ E
B

pjq

k ,XďI,YďI,I|E
log

PrpM
pjq

ąI | B
pjq

I ,XďI,YďI, I, Eq

PrpM
pjq

ąI | B
pjq

I ,XăI,YăI, I, Eq
(as B

pjq

k “ pB
pjq

I ,M
pjq

ąI q)

“ E
B

pjq

k ,XďI,YďI,I|E
log

PrpXI,YI | B
pjq

k ,XăI,YăI, I, Eq

PrpXI,YI | B
pjq

I ,XăI,YăI, I, Eq
(as PrpA|Bq

PrpAq
“

PrpB|Aq

PrpBq
)

“ E
B

pjq

k ,XďI,YďI,I|E
log

PrpXI,YI | B
pjq

k ,XăI,YăI, I, Eq

PrpXI,YI | B
pjq

k ,XăI,YăI, Iq

´ E
B

pjq

k ,XďI,YďI,I|E
log

PrpXI,YI | B
pjq

I ,XăI,YăI, I, Eq

PrpXI,YI | B
pjq

k ,XăI,YăI, Iq
(as log a

b “ log a
c ´ log b

c)

“ DpdistpXI,YI | B
pjq

k ,XăI,YăI, I, Eq || distpXI,YI | B
pjq

k ,XăI,YăI, Iqq

´ E
B

pjq

k ,XďI,YďI,I|E
log

PrpXI,YI | B
pjq

I ,XăI,YăI, I, Eq

PrpXI,YI | B
pjq

I ,XăI,YăI, Iq

(as XI,YI K M
pjq

ąI | B
pjq

I ,XăI,YăI, I by Claim B.4)

“ DpdistpXI,YI | B
pjq

k ,XăI,YăI, I, Eq || distpXI,YI | B
pjq

k ,XăI,YăI, Iqq

´ DpdistpXI,YI | B
pjq

I ,XăI,YăI, I, Eq || distpXI,YI | B
pjq

I ,XăI,YăI, Iqq

ď
1

|T |
¨

ÿ

iPT

DpdistpXi,Yi | B
pjq

k ,Xăi,Yăi, I “ i, Eq || distpXi,Yi | B
pjq

k ,Xăi,Yăi, I “ iqq

(as I is uniform over T )

“
1

|T |
¨

ÿ

iPT

DpdistpXi,Yi | B
pjq

k ,Xăi,Yăi, Eq || distpXi,Yi | B
pjq

k ,Xăi,Yăiqq

(as B
pjq

k ,Xďi,Yďi K I “ i | E and B
pjq

k ,Xďi,Yďi K I “ i)
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ď
1

|T |
¨

ÿ

iPrks

DpdistpXi,Yi | B
pjq

k ,Xăi,Yăi, Eq || distpXi,Yi | B
pjq

k ,Xăi,Yăiqq (as T Ď rks)

“
1

|T |
¨ DpdistpX,Y | B

pjq

k , Eq || distpX,Y | B
pjq

k qq

(by chain rule of KL-divergence (Fact A.4))

ď
1

|T |
¨ E
B

pjq

k |E
log

1

PrpE | B
pjq

k q
(by Fact A.2)

ď
1

|T |
¨ log E

B
pjq

k |E

1

PrpE | B
pjq

k q
(by concavity of logp¨q)

“
1

|T |
¨ log

ÿ

B
pjq

k

PrpB
pjq

k | Eq

PrpE | B
pjq

k q

“
1

|T |
¨ log

ÿ

B
pjq

k

PrpB
pjq

k q

PrpEq
(as PrpA|Bq

PrpB|Aq
“

PrpAq

PrpBq
)

“
1

|T |
¨ log

1

PrpEq
.

This concludes the proof.

We emphasize that Alice is able to compute M
pjq

ďI exactly for odd j P rr ` 1s as it is fully

determined by B
pj´1q

k , which is provided by the current transcript, and XďI. Similarly, Bob is able

to compute M
pjq

ďI exactly for even j P rr ` 1s since he has full knowledge of B
pjq

k and YďI. We are
now ready to prove Claim B.6.

Proof of Claim B.6. Fix the input distribution µ. Let νπ be the distribution of B,XďI,YďI, I where
I is drawn from T uniformly at random and B,XďI,YďI follow their distribution in π conditioned on
E . Also let ντ be the distribution of B,XďI,YďI, I as sampled in τ . By chain rule of KL-divergence
(Fact A.4), together with Claims B.7 and B.8, we get that

Dpνπ || ντ q ď
r ` 2

|T |
¨ log

1

PrpEq
.

Using an alternative bound for Pinsker’s inequality (Fact A.7), we further have

}νπ ´ ντ }tvd ď 1 ´
1

2
¨ PrpEq

r`2
|T | .

Fix a threshold value t P r0, 1s. Observe that the success probability of τ is

1

2
`

1

2
¨ E
B,I„ντ

rbiasIpBqs ě
1

2
`

t

2
¨ Pr
B,I„ντ

pbiasIpBq ě tq (as biasIpBq P r0, 1s)

ě
1

2
`

t

2
¨

„

Pr
B,I„νπ

pbiasIpBq ě tq ´ }νπ ´ ντ }tvd

ȷ

(by Fact A.5)

ě
1

2
`

t

2
¨

„

Pr
B,I„νπ

pbiasIpBq ě tq `
1

2
¨ PrpEq

r`2
|T | ´ 1

ȷ

.
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Recall that τ has communication C and thus by assumption, it can only succeed with probability
less than 1{2 ` ϵ. Rearranging the terms above, we get

PrpEq ă

„

2 `
4ϵ

t
´ 2 ¨ Pr

B,I„νπ
pbiasIpBq ě tq

ȷ

|T |

r`2

.

For S Ď rks, setting T “ S, E “ E1pS,Bq, and t “
?
ϵ implies

Pr
B

pE1pS,Bqq ă

»

–2 ` 4
?
ϵ ´ 2 ¨ Pr

B|E1pS,Bq,
I„S

`

biasIpBq ě
?
ϵ
˘

fi

fl

|S|

r`2

“
`

2 ` 4
?
ϵ ´ 2 ¨ 1

˘

|S|

r`2

“ p4
?
ϵq

|S|

r`2 ,

since conditioned on E1pS,Bq, it always holds that biasIpBq ě
?
ϵ for I P S. Meanwhile, setting

T “ rks, E “ E2pBq, and t “ ϵ1{p2rq implies

Pr
B

pE2pBqq ă

»

—

–

2 ` 4ϵ1´ 1
2r ´ 2 ¨ Pr

B|E2pBq,
I„rks

´

biasIpBq ě ϵ
1
2r

¯

fi

ffi

fl

k
r`2

ď

´

2 ` 4ϵ1´ 1
2r ´ 2 ¨ p1 ´ ϵq

¯
k

r`2

ď p6ϵ1´ 1
2r q

k
r`2 , (as ϵ ď ϵ1´ 1

2r )

where in the second step, we use the fact that conditioned on E2pBq, at least a 1 ´ ϵ fraction of
indices I P rks satisfy biasIpBq ě ϵ1{p2rq. This concludes the proof.
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