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Abstract

Arithmetic circuits are a natural well-studied model for computing multivariate
polynomials over a field. In this paper, we study planar arithmetic circuits. These are
circuits whose underlying graph is planar. In particular, we prove an Ω(n log n) lower
bound on the size of planar arithmetic circuits computing explicit bilinear forms on 2n
variables. As a consequence, we get an Ω(n log n) lower bound on the size of arithmetic
formulas and planar algebraic branching programs computing explicit bilinear forms.
This is the first such lower bound on the formula complexity of an explicit bilinear
form. In the case of read-once planar circuits, we show Ω(n2) size lower bounds for
computing explicit bilinear forms. Furthermore, we prove fine separations between the
various planar models of computations mentioned above.

In addition to this, we look at multi-output planar circuits and show Ω(n4/3) size
lower bound for computing an explicit linear transformation on n-variables. For a
suitable definition of multi-output formulas, we extend the above result to get an
Ω(n2/ log n) size lower bound. As a consequence, we demonstrate that there exists
an n-variate polynomial computable by n1+o(1)-sized formulas such that any multi-
output planar circuit (resp., multi-output formula) simultaneously computing all its
first-order partial derivatives requires size Ω(n4/3) (resp., Ω(n2/ log n)). This shows
that a statement analogous to that of Baur, Strassen[3] does not hold in the case of
planar circuits and formulas.

1 Introduction

Arithmetic circuits are a natural computational model for computing multivariate polynomials
over a field. These are directed acyclic graphs whose in-degree 0 vertices are labeled by
variables or field constants and whose internal vertices are either addition or multiplication
gates. Arithmetic circuits compute polynomials in the natural way. The two important
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parameters of a circuit are size which is the number of vertices in it and depth which the
length of a longest input to output path. One of the primary goals in Algebraic Complexity
Theory is to prove lower bounds on the size of arithmetic circuits computing an explicit
polynomial. Despite consistent efforts, the best known size lower bound is due to Baur and
Strassen[3] who proved that any fan-in 2 circuit computing the polynomial xn

1 + · · ·+xn
n has

size Ω(n log n).
Arithmetic formulas are circuits where the underlying graph is a tree. Kalarkoti[10] has

proved that a certain complexity measure based on the transcendence degree (algebraic rank)
of polynomials is a lower bound on the formula size. Using this technique, he proves that
the formula complexity of Detn×n, the determinant polynomial, is Ω(n3) (note that this is
an Ω(m3/2) size lower bound where m = n2 is the number variables of Detn×n). Chatterjee
et al.[7] proved that over fields of characteristic greater than 0.1n, any formula computing
the elementary symmetric polynomial on n variables of degree 0.1n requires size Ω(n2).

Algebraic branching programs(ABPs) are yet another model for computing polynomials.
ABPs are directed acyclic graphs with designated source and sink vertices. Their edges are
labeled by variables or constants. The polynomial computed by an ABP is defined to be
the sum of weights of all paths from source to sink (the weight of a path is the product of
edge labels in the path). Chatterjee et al. [6] show that any ABP computing the polynomial
xn
1 + · · ·+ xn

n has size at least Ω(n2). In fact, the results by Chatterjee et al. [6] also hold for
ABPs where the edges are labeled by affine forms.

In the regime of constant degree polynomials, Raz[18] showed that for any constant r
and any field F, there is an explicit n-variate polynomial of total-degree O(r), with {0, 1}
coefficients such that any depth-r arithmetic circuit for it (using constants from F) has
size n1+Ω(1). As observed by Raz[18], super-quadratic lower bound of Ω(n2+ϵ) for constant-
depth circuits for an explicit polynomial of constant degree implies a strong superlinear
(Ω(n1+ϵ/2)) lower bound for general circuits. Also, recently Chatterjee et al.[6] demonstrated
that a superlinear lower bound on the size any ABP for a homogeneous constant-degree
polynomial would imply a superlinear lower bound on its determinantal complexity.

From the preceeding discussion, it is imperative to note that we do not know any explicit
constant degree polynomial that has superlinear circuit complexity.

Bilinear forms are a special and important class of degree two polynomials. These are
polynomials form yTMx where y and x are vectors of n variables each and M ∈ Fn×n

is a matrix. A natural model to compute bilinear forms is the model of bilinear circuits.
A bilinear circuit is an arithmetic circuit in which every product gate has two inputs one
of which is a linear form in x-variables and the other a linear form in y-variables. It is
well known and easy to prove that any circuit computing a bilinear form can be converted
into a bilinear circuit computing the same bilinear form with only constant blowup in size.
Therefore, superlinear lower bounds for bilinear circuits imply superlinear lower bounds on
the size of general circuits computing an explicit bilinear form. No such lower bounds are
known.

Bilinear formulas are defined similarly: it is a formula in which every product gate
computes a product of two linear forms, one in the x variables and one in the y variables.
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Superlinear (i.e., Ω(n log2 n/ log log n)) lower bounds on the bilinear formula complexity of
explicit bilinear forms follow from lower bounds on the size of depth two superconcentrators
(superconcentrators are directed graphs with strong connectivity properties, see 12 for a
formal definition).

Recall that a circuit is linear if it has no multiplication gates. We remark here that for
any matrix M the depth two linear circuit complexity of the linear transformation Mx and
the bilinear formula complexity of yTMx are essentially the same (see [15], Equation 2).
On the other hand, unlike circuits, it is not known whether formulas can be bilinearized
efficiently, so the lower bounds on bilinear formula complexity do not imply lower bounds
on general formula complexity. As noted by Nisan and Wigderson ([15], Section 1.2), no
superlinear lower bounds on the formula complexity of explicit bilinear forms are known. In
this paper, we prove the first such lower bounds. To get around the bilinearization obstacle
for formulas, we work with planar circuits, a more general object than formulas. We observe
that it is possible to bilinearize planar circuits efficiently, and that it is also possible to prove
superlinear (Ω(n log n)) lower bounds for planar, bilinear circuits.

1.1 Our results

In this article, we study planar arithmetic circuits, i.e., unbounded depth unbounded fan-
in arithmetic circuits whose underlying graph is planar. Recall that a graph is said to be
planar if it can be drawn on the plane without edge crossings. Note that every formula is
a planar circuit as every tree is a planar graph. We begin by observing (in Lemma 9) that
any arithmetic circuit can be converted into an equivalent planar arithmetic circuit with at
most quadratic blowup in size by introducing crossover gadgets.
Our main result is a superlinear lower bound on the size of planar arithmetic circuits
computing a class of explicit bilinear forms. In the sequel, we say a matrix M ∈ Fn×n

is totally regular if all of it’s square minors are non-singular.

Theorem 1. Let M ∈ Fn×n be any totally regular matrix and x and y be vectors of n
variables each. Then, any planar arithmetic circuit computing the bilinear form yTMx has
size Ω(n log n).

Over infinite fields, there exist explicit totally regular matrices (such as Cauchy matrices)
whose entries are uniformly computable in time polynomial in the dimension of the matrix, so
our bound applies to a class of explicit bilinear forms. It is important to note that our lower
bound works for unbounded-depth and unbounded fanin planar arithmetic circuits. Since
formulas are a subclass of planar circuits, Theorem 1 implies a superlinear lower bound on
the size of formulas computing certain explicit bilinear forms. Previously, no such lower
bounds were known (see [15], Section 1.2).

As a corollary, we get the following separation between circuits and planar circuits:

Corollary 2. Over any infinite field F, there exists an infinite family {Mn}n≥1 of totally
regular matrices(where Mn ∈ Fn×n) such that the bilinear form yTMnx can be computed by
an arithmetic circuit of size O(n) but any planar arithmetic circuit computing it requires size
Ω(n log n).
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Next, we consider read-once planar arithmetic circuits which are a special class of planar
arithmetic circuits where every variable appears as a leaf at most once. In particular, we
prove quadratic lower bounds for read-once planar circuits computing bilinear forms:

Theorem 3. Let M ∈ Fn×n be a totally regular matrix and x and y be vectors of n variables
each. Then, any read-once planar arithmetic circuit computing the bilinear form yTMx has
size Ω(n2).

It is not hard to see that this bound is tight. Furthermore, by the planarization procedure
in Lemma 9, a super-quadratic lower bound for read-once planar arithmetic circuits for
an explicit family of polynomials implies a superlinear lower bound for general arithmetic
circuits (for the same family), a long-standing open problem in algebraic complexity theory.

Using explicit superconcentrators of depth two, we get the following separations between
circuits, read-once planar circuits and arithmetic formulas:

Corollary 4. 1. Over any infinite field F, there exists an explicit family {fn}n≥1 of degree
4, n1+o(1)-variate polynomials such that fn is computable by a circuit of size n1+o(1) but
any read-once planar circuit for fn requires size Ω(n2).

2. Over any infinite field F, there exists an explicit family {fn}n≥1 of degree 4, n1+o(1)-
variate polynomials such that fn is computable by an arithmetic formula of size n1+o(1)

but any read-once planar circuit for fn requires size Ω(n2).

3. The polynomial xn
1 + · · ·+xn

n has a planar arithmetic circuit of size O(n log n) but any
formula computing it requires size Ω(n2).

Separations 2, 3 together imply that formula complexity and read-once circuit complexity
are incomparable measures in the arithmetic setting.

It is easy to see that any algebraic branching program can be converted into an equivalent
arithmetic circuit computing the same polynomial without much blowup in size. We observe
that this can be done while preserving planarity.

Thus, Ω(n log n) lower bound for planar circuits also extends to planar algebraic branching
programs (ABPs where the underlying DAG is planar). In fact, it holds for unlayered planar
ABPs:

Theorem 5. Let M ∈ Fn×n be any totally regular matrix and x and y be vectors of n
variables each. Then, any (not necessarily layered) planar ABP computing the bilinear form
yTMx has size Ω(n log n).

All our lower bounds for bilinear forms use variants of the planar separator theorem
(Lipton and Tarjan[13]) combined with a rank argument. One version of the planar separator
theorem says that any n-vertex planar graph can be partitioned into two disconnected
components of size ≥ n/3 by removing a small (≤ 2

√
2
√
n) number of vertices. The rough

idea is that the existence of a small separator induces algebraic dependencies among the
polynomials computed in the circuit.
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We now turn our attention to planar circuits computing multiple linear forms. In a
seminal work, Lipton and Tarjan[12] applied the planar separator theorem to (among other
things) obtain a quadratic lower bound on the size of planar superconcentrators. Valiant[23]
had already observed that if M is totally regular then any read-once circuit computing the
linear transformation Mx must be an n-superconcentrator. This gives a quadratic lower
bound on the read-once planar circuit complexity of Ax. First we relax the read-once
condition and show an Ω(n4/3) lower bound on the size of planar circuits computing Ax for
any totally regular A.

Theorem 6. Let M ∈ Fn×n be any totally regular matrix and x be a vector of n variables.
Then, any planar circuit that computes Mx requires size Ω(n4/3).

Next, we consider multi-output formulas. A formula is said to compute polynomials
f1, . . . , ft if there exist t gates in it that compute f1, . . . , ft resp.

Theorem 7. Let M ∈ Fn×n be any totally regular matrix and x be a vector of n variables.
Then, any multi-output formula for computing Mx requires size Ω(n2/ log n).

Finally, we look at the implications of these lower bounds on the complexity of first
order partial derivatives. In particular, we note that a result analogous to that of Baur and
Strassen [3] cannot hold for formulas and planar circuits, while it does hold for read-once
planar circuits. The Baur-Strassen theorem says that if a polynomial f has a (fan-in 2)
circuit of size s then there is a (fan-in 2) circuit of size O(s) computing all first order partial
derivatives of f .

1.2 Prior work on lower bounds for bilinear forms

As mentioned earlier, no superlinear lower bounds on the size of general circuits computing
explicit bilinear forms are known. This motivates the study of the complexity of bilinear
forms in more restricted models such as arithmetic formulas, bilinear formulas and bounded
coefficient models of computation. In [15], Nisan and Wigderson defined the notion of a
bilinear formula and noticed that bilinear formula complexity of the bilinear form yTAx and
depth two linear circuit complexity of the Ax are equivalent notions ([15], Equation 2). This
connection means that lower bounds for depth two linear circuits apply to bilinear formulas.
It remains open whether formulas can be bilinearized efficiently.

Further, Nisan and Wigderson [15] looked at the bilinear, bounded coefficient formula
complexity of computing certain bilinear forms and, using spectral techniques, proved lower
bounds of the form Ω(n1+δ) for this model. In a breakthrough paper, Raz [17] extended the
techniques in [15] vastly and proved an Ω(n2 log n) lower bound on the bounded coefficient
circuit complexity of matrix multiplication.

1.3 Related work on planar boolean circuits

Planar circuits are well studied in the boolean setting. Lipton and Tarjan[13] initiated the
study of planar boolean circuits by proving quadratic lower bounds on the size of read-once
planar circuits computing multi-output boolean functions.
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The read-once restriction was first relaxed by Savage [20]. He showed superlinear (n1+δ

for various constants δ) lower bounds on the planar circuit complexity of various multi-output
boolean functions.

The case of single output functions turned out to be harder and lower bounds for these
were first proved by Savage [19] (in the read-once case, an Ω(n2) lower bound) and Turan [22]
(in the general case, an Ω(n log n) lower bound). In [22], Turan also showed that read-once
planar circuit complexity and formula complexity are incomparable measures in the boolean
world.

All known lower bounds on the planar circuit complexity of boolean functions use variants
of the planar separator theorem combined with “crossing sequence arguments”. These
arguments make use of the fact that on any input, each wire of the circuit will either carry
a zero or a one, specifically the number of possibilities is a constant. This is obviously not
true in the case of arithmetic circuits over large fields, so the crossing sequence arguments do
not carry over. To get around this, we use rank based methods. We are able to prove lower
bounds for bilinear forms (which are degree two polynomials) using rank based methods
whereas the boolean functions in previous works have degree (in the sense of [14]) linear in
the number of variables.

2 Preliminaries

In this section, we formally introduce all algebraic models of computation considered in this
paper and some other graph-theoretic preliminaries that are crucial to our proofs.

Definition 1 (Arithmetic Circuits). Let F be a field. An arithmetic circuit Φ over F is
a directed acyclic graph with vertices of in-degree zero or two. A vertex of out-degree 0
is called an output gate. A vertex of in-degree zero is called an input gate and is labeled
by elements from X ∪ F. Every other gate is labeled either by + or ×. Every gate in Φ
naturally computes a polynomial in F[X] and the polynomial(s) computed by Φ is (are) the
polynomial(s) computed at the output gate(s). We allow edges (wires) to be labelled by field
elements, these simply scale the polynomial. The size of Φ is the number of gates in Φ and
depth of Φ is the length of the longest path from an input gate to an output gate. For a
polynomial f , we let C(f) denote the size of the smallest arithmetic circuit computing f .

Definition 2 (Arithmetic Formula). An arithmetic formula is an arithmetic circuit where
the underlying undirected graph is a tree. For a polynomial f , we let L(f) denote the size
of the smallest arithmetic formula computing f . We say a formula computes polynomials
f1, . . . , fk if there exist k nodes in the formula that compute f1, . . . , fk. Note that a formula
that computes multiple polynomials may have gates with fan-out ≥ 2. The restriction is that
there should be no cycles in the underlying undirected graph. For polynomials f1, . . . , fk,
we let L(f1, . . . , fk) denote the size of the smallest formula computing f1, . . . , fk.

Definition 3 (Planar arithmetic circuits). A planar arithmetic circuit is an arithmetic circuit
whose underlying graph is planar. For a polynomial f , we let Cp(f) denote the size of the
smallest planar arithmetic circuit computing f .
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Definition 4 (Read-once planar arithmetic circuits). A read-once planar arithmetic circuit
is a planar arithmetic circuit in which each variable labels at most one input gate. For a
polynomial f , we let Cr

p(f) denote the size of the smallest read-once planar circuit computing
f .

Definition 5 (Algebraic Branching Programs(ABPs)). An Algebraic Branching Program
(ABP) P is a layered directed acyclic graph with one vertex s of in-degree zero (source) in
the first layer and one sink vertex t of out-degree zero (sink) in the last layer. Every edge in
e in P is labelled by an element in X ∪ F. Let weight of a path be the product of its edge
labels and the polynomial computed by an ABP P is the sum of weights of all s to t paths
in P . The size of an ABP is the number of vertices in it. For a polynomial f , we let A(f)
denote the size of the smallest ABP computing f .

Definition 6 (Planar ABPs). A Planar ABP is an ABP whose underlying graph is planar.
For a polynomial f , we let Ap(f) denote the size of the smallest planar ABP computing f .

Definition 7 (Linear forms). By a linear form we mean a homogeneous degree one polynomial.

Definition 8 (Bilinear forms). Let F be a field and let x = (x1, . . . , xn)
T , y = (y1, . . . , yn)

T

be two vectors of variables. The bilinear form defined by a matrix M ∈ Fn×n is the
polynomial f(x,y) = yTMx. We say the bilinear form yTMx has rank r if rank(M) = r.
We say that a family of bilinear forms {yTMnx}n≥0 (where Mn ∈ Fn×n) is explicit if there
is an algorithm that on input n in unary outputs all entries of Mn in poly(n) time.

Definition 9 (Bilinear circuits). A bilinear circuit with inputs {x1, . . . , xn} and {y1, . . . , yn}
is an arithmetic circuit in which every product gate has exactly two children, one of which
computes a linear form in the x variables and the other computes a linear form in the y’s.
Every bilinear form f is clearly computed by some bilinear circuit, and we let Cb(f) denote
the size of the smallest bilinear circuit computing f . It is well known and easy to show that
for any bilinear form f , Cb(f) = O(C(f)). For a bilinear form f , we let Cb

p(f) denote the
size of the smallest circuit computing f that is both planar and bilinear.

Definition 10 (Bilinear formulas). A bilinear formula with inputs {x1, . . . , xn} and {y1, . . . , yn}
is an arithmetic formula in which every product gate has exactly two children, one of which
computes a linear form in the x variables and the other computes a linear form in the y’s.
Without loss of generality we can assume [15] that a bilinear formula for yTMx is a sum of
products of two linear forms, one in the x variables and one in the y variables, i.e, it has the
following structure:

yTMx =
k∑

i=1

yT (uivi
T )x

Equivalently, the bilinear formula above gives the factorization M = UV of M where ui’s
are the columns of U and vi’s are the rows of V . The size of such a bilinear formula is the
number of non-zero entries in all the vectors ui, vi. Every bilinear form f is clearly computed
by some bilinear formula and we let Lb(f) denote the size of the smallest bilinear formula
computing f . It is not known whether Lb(f) = O(L(f)) holds for every bilinear form f .
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Definition 11 (Totally regular matrix). Let F be a field. We say that a matrix M ∈ Fn×n

is totally regular if every square minor of M is non-singular. We say that a family {An}n≥0

of totally regular matrices (where An ∈ Fn×n) is explicit if there is an algorithm that takes
n as input in unary and outputs the entries of An in poly(n) time.

Definition 12 (Superconcentrators). An n-superconcentrator is a directed acyclic graph
G = (V,E) with n inputs I1, . . . , In and n outputs O1, . . . , On such that ∀k ∈ [n], for all
subsets I ′ ⊆ I such that |I ′| = k and all subsets O′ ⊆ O such that |O′| = k, there exist k
vertex disjoint paths from I ′ to O′. We say G has depth d if the longest path in G has length
d. We define the size of such a graph to be the number of edges in it. We say that a family
of n-superconcentrators (one for each n, the n-th member of the family must have n inputs
and outputs) is explicit if there is an algorithm that ∀n, outputs the n-th superconcentrator
in the family in poly(n) time.

2.1 Preliminary observations about planar circuits

First we note that in a planar circuit, we can assume without loss of generality that the
fan-in and fan-out of every gate is at most two:

Lemma 8. Let Φ be a planar circuit of size s (i.e., Φ has s gates) computing f ∈ F[x1, · · · , xn].
Then there exists another planar circuit Φ′ computing f such that size(Φ′) ≤ 10s and every
gate in Φ′ has fan-in and fan-out ≤ 2.

Proof. For every gate g in Φ with fan-in r (resp., fan out) larger than 2, replace the incoming
(resp., outgoing) wires with a balanced binary tree (with r leaves) with all gates of the same
type as g. The number of new gates added is at most thrice the number of wires in Φ. Since
Φ in planar, the number of wires in Φ is at most 3s − 6 and so the size of the new circuit
Φ′ ≤ 10s.

Lipton and Tarjan [12] observe that it is possible to planarize boolean circuits while
incurring at most a quadratic blow-up in size. We note here that it is also possible to planarize
arithmetic circuits in a similar way. We planarize a circuit Φ by fixing an embedding of the
graph of Φ and introducing a gadget at each edge crossing:

Lemma 9. Let Φ be a fan-in 2 arithmetic circuit of size s computing a polynomial f ∈
F[x1, · · · , xn]. Then there exists a fan-in 2 planar arithmetic circuit Φ′ of size O(s2) computing
f .

Proof. Fix an embedding E of Φ in the plane. At every edge crossing in E, introduce the
crossover gadget (of small enough size) shown in Figure 1. The number of edge crossings in
E is at most

(
number of wires in Φ

2

)
. Since the circuit has fan-in 2 the number of wires in Φ ≤ 2s

and hence size(Φ′) = O(s2).
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Figure 1: Crossover gadget

In the following subsection, we list some partition lemmas for graphs that will be crucial
to our lower bound arguments:

2.2 Some partition lemmas for planar graphs

We begin with the well-known planar separator theorem of Lipton and Tarjan [13] which is
used to prove quadratic lower bounds for read-once planar circuits:

Theorem 10 (Lipton and Tarjan [13]). Let G = (V,E) be a planar graph and w : V → [0, 1]
be a weight function such that

∑
v∈V w(v) ≤ 1. Then there exists a partition (A,B,C) of V

such that the sum of the weights of the vertices in A as well as the sum of the weights of the
vertices in B is at most 2/3, |C| ≤ 2

√
2
√

|V |, and all paths from A to B contain a vertex
from C. □

The following theorem by Turan [22] is a generalization to planar graphs of a separator
lemma for trees proved by Babai et al [2], which is itself a generalization to trees of a separator
lemma for sequences by Alon and Maasst [1] . It is useful for obtaining lower bounds for
planar circuits:

Theorem 11 (Turan [22]). Let Z = {z1, . . . , zs} and Z ′ = {z′1, · · · , z′s} be disjoint sets and
let G = (V,E) be a planar graph, some vertices of which are labelled by elements from Z ∪Z ′

so that each label occurs at most k times. Then there are subsets Z0 ⊆ Z, Z ′
0 ⊆ Z ′ and

V ∗ ⊆ V such that the following conditions hold:

1. |Z0| = |Z ′
0| ≥ s/9k

2. |V ∗| ≤ 450k
√

|V |

3. After deleting V ∗ none of the remaining components contain labels from both Z0 and
Z ′

0.
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For lower bounds on planar arithmetic circuits computing multiple outputs, we need the
following partition lemma from [20]. It partitions a planar graph into multiple parts each
having their own small separators. This is achieved by applying a version of the Lipton-
Tarjan planar separator theorem multiple times.

Theorem 12 (Savage [20]). Let G = (V,E) be a planar graph, V ′ ⊆ V be a subset of its
vertices and let 1 ≤ p ≤ |V ′|. Then there exists a partition V1, · · · , Vp of V such that the
following conditions hold:

1. For all i ∈ [p],
|V ′|
4p

≤ |V ′ ∩ Vi| ≤
4|V ′|
p

2. For all i ∈ [p] there exists a separator Si such that |Si| ≤ 60
√
|V | and no edge joins Vi

and V \ (Vi ∪ Si).

If we restrict to forests instead of the more general planar graphs, we can get a statement
analogous to Theorem 12 with much smaller (logarithmic) separators and we state this as
our next lemma. We defer the proof of the following Lemma to Section 4.

Lemma 13. Let F = (V,E) be a forest, V ′ ⊆ V be a subset of its vertices and let 1 ≤ p ≤
|V ′|. Then there exists a partition (V1, . . . , Vp) of V such that the following conditions hold:

1. For all i ∈ [p],
|V ′|
3p

≤ |V ′ ∩ Vi| ≤
3|V ′|
p

2. For all i ∈ [p] there exists a set Si such that |Si| = O(log(|V ′|)) and no edge joins Vi

and V \ (Vi ∪ Si).

3 Lower bounds for bilinear forms

In the following subsection, we present an Ω(n log n) lower bound on the planar circuit
complexity (and hence, formula complexity) of bilinear forms defined by n×n totally regular
matrices. First, we note that any planar circuit computing a bilinear form can be converted
into a planar bilinear circuit computing the same bilinear form with only a constant blowup
in size. Next, by using the partition theorem of Turan (Theorem 11) and a careful rank
argument we prove the desired lower bound.

3.1 Lower Bounds for Planar Arithmetic Circuits

We begin with bilinearization of planar arithmetic circuits:

Lemma 14. For any bilinear form f = yTMx, Cb
p(f) ≤ 3000Cp(f).
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Proof. Let Φ be a planar circuit of size s for f . Assume wlog that the fan-in and fan-out
of each gate in Φ is ≤ 2. Let E be a planar embedding of Φ and let v be a gate in Φ. The
polynomial computed at v (we denote this by f v) can be decomposed as

f v = f v
x + f v

y + f v
xy + f v

r

where f v
x is the x-linear component of f v (sum of all monomials in f v of the form αixi), f

v
y is

the y-linear component of f v and f v
xy is the bilinear component of f v (i.e., sum of monomials

of the form αijxiyj). f
v
r is the rest of f v. We now construct a bilinear circuit Ψ and planarize

it to get a planar, bilinear circuit Ψ′ computing f :
For every gate v in Φ we wish to add 3 gates in Ψ, denoted by vx, vy and vxy, that compute

f v
x , f

v
y and f v

xy respectively:

• If v is a leaf with label xi then add 3 leaves to Ψ: vx labelled by xi and vy, vxy labelled
by 0. If v is a leaf with label yi, again add 3 leaves to Ψ: vy labelled by yi and vx, vxy
labelled by 0. If v is leaf with label α ∈ F, add 3 leaves vx, vy, vxy all labelled by 0.

• If v is a sum gate in Φ with children u,w (say v = αu+ βw) then

f v
x = αfu

x + βfw
x

f v
y = αfu

y + βfw
y

f v
xy = αfu

xy + βfw
xy

By induction, the six gates of Ψ corresponding to u,w compute the intended polynomials.
Now define vx, vy and vxy to be sum gates with children (ux, wx), (uy, wy) and (uxy, wxy)
respectively. Label the two incoming wires to each of these gates by α and β. By doing
this, we have made the fan-outs of ux, uy, uxy, wx, wy, wxy all equal to 2.

• If v is a product gate in Φ with children u,w then ∃α, β ∈ F such that

f v
x = α · fu

x + β · fw
x

f v
y = α · fu

y + β · fw
y

f v
xy = α · fu

xy + β · fw
xy + fu

x · fw
y + fw

x · fu
y

By induction, the six gates of Ψ corresponding to u,w compute the intended polynomials.
Now define vx, vy to be sum gates with children (ux, wx) and (uy, wy) respectively and
label the incoming wires by α, β. Next, introduce two product gates p1v, p

2
v with children

(ux, wy) and (uy, wx) respectively and add p1v, p
2
v using a sum gate s1v. Introduce another

sum gate s2v computing αuxy + βwxy and define vxy to be a sum gate: vxy = s1v + s2v.
Overall, for each product gate v in Φ, we have added 7 gates in Ψ. Notice that by
doing this we have made the fan-outs of ux, wx, uy, wy equal to 4 and the fan-outs of
uxy, wxy equal to 2.

First note that size(Ψ) ≤ 7 · size(Φ). Also, note that if o is the output of Φ computing
the bilinear form f , then the gate oxy in Ψ also computes f . Now from E, we produce an

11



embedding E ′ of Ψ in the plane as follows: For every gate v of Φ, consider a δ neighbourhood
of E(v) for a value of δ to be specified later. E ′ embeds the ≤ 7 new gates of Ψ corresponding
to v inside this neighbourhood. For every wire w of Φ, we have ≤ 5 corresponding wires of
Ψ. Outside the size(Φ) many disjoint δ neighbourhoods, E ′ embeds these wires parallel to
each other and to the embedding E(w) of the original wire w, sufficiently close together so
that there are no crossings outside the neighbourhoods. Make δ small enough so that this is
possible.

It is clear that the only crossings in E ′ are inside the δ-neighbourhoods. The number of
crossings per neighbourhood is at most the number of wires in the neighbourhood choose
two. Since each gate has fan-in and fan-out ≤ 4, the number of wires in each neighbourhood
is at most 28, so the number of crossings is at most 378. Eliminate each crossing using the
crossover gadget in Lemma 9 to get a planar circuit Ψ′ that computes f . Since each gadget
introduces 7 new gates, size(Ψ′) ≤ 2646 · size(Φ) + size(Ψ) ≤ 3000 · size(Φ). Also, note that
if Φ is a read-once planar circuit then so is Ψ′.

We state some simple facts about circuit Ψ′ that are evident from construction in Lemma
14:

1. Each product gate in Ψ′ computes a bilinear form of rank 1 i.e., it computes the product
of a linear form in x-variables and a linear form in y-variables.

2. The bilinear form computed by the output of Ψ′ is a linear combination of the product
gates in Ψ′.

We now turn our attention to the proof of the main theorem in this paper:

Theorem 15. Let M ∈ Fn×n be a totally regular matrix. Then, L(yTMx) ≥ Cp(y
TMx) =

Ω(n log n).

Proof. Let Ψ be a planar circuit computing the bilinear form yTMx. Let X denote the set
of x variables {x1, . . . , xn} and Y denote the set of y variables Y = {y1, . . . , yn}. Assume
for the sake of contradiction that size(Ψ) ≤ 1

60000
n log n. Then, by Lemma 14 there exists a

planar, bilinear circuit Φ computing yTMx such that size(Φ) ≤ 1
200

n log n. Let the planar
graph underlying Φ be G = (V,E) (where |V | ≤ 1

200
n log n). It is easy to see that there exist

subsets X0 ⊆ X and Y0 ⊆ Y such that |X0| = |Y0| ≥ n/2 and every variable in X0 ∪ Y0

appears ≤ 1
100

log n times as an input in Φ (otherwise |V | > 1
200

n log n).
Applying Theorem 11 to G with Z = X0 and Z ′ = Y0, we obtain X1 ⊆ X0, Y1 ⊆ Y0 and

V ∗ ⊆ V such that the following conditions hold:

1. |X1| = |Y1| ≥
n/2

9
1

100
logn

= Ω(n0.96)

2. |V ∗| = O(
√
n(log n)3/2)

3. Upon deleting V ∗ from G, no component in the resulting graph contains labels from
both X1 and Y1.

12



Setting all variables in Φ outside X1 ∪ Y1 to zero, we obtain another planar, bilinear
circuit Φ′ that computes the bilinear form y′TM ′x′ where M ′ is the minor of M whose rows
are indexed by Y1 and columns by X1, x

′ is the vector of X1 variables and y′ is the vector
of Y1 variables. Since M is totally regular, rank(M ′) = |X1| = |Y1| = Ω(n0.96). But we can
show that rank(M ′) ≤ 3|V ∗|, which leads to a contradiction:

Claim 16. rank(M ′) ≤ 3|V ∗|

Proof of Claim 16: As mentioned before, the output of Φ′ is a linear combination of the
product gates in it. Also, each product gate gi in Φ′ computes a product li(x

′) × l′i(y
′) =

y′TAix
′ where li(x

′) and l′i(y
′) are linear forms in the X1 and Y1 variables respectively and Ai

is a matrix with rank ≤ 1. Next, we partition the product gates of Φ′ into three types, those
that belong to components of V \ V ∗ that do not contain inputs labelled by Y1 variables,
those that belong to components of V \ V ∗ that do contain inputs labelled by Y1 variables
and those that belong to V ∗. We show that the rank of any linear combination of the product
gates inside a particular partition is at most |V ∗|.

To that end, let G1, · · · , Gk be the components of V \V ∗ not containing inputs labelled by
Y1, let g1 = l1(x

′)×l′1(y
′), . . . , gt = lt(x

′)×l′t(y
′) be the product gates of Φ′ in G1∪. . .∪Gk and

let lv1(y
′), . . . , lvm(y

′) be all the linear forms in the Y1 variables computed at gates (including
leaves) of Φ′ that lie in V ∗. Clearly, m ≤ |V ∗|. The following claim shows that each l′i(y

′)
(1 ≤ i ≤ t) is a linear combination of lv1(y

′), . . . , lvm(y
′).

Sub-Claim 17. ∀i ∈ [t], ∃βi,1, . . . , βi,m ∈ F such that l′i(y
′) =

∑m
j=1 βi,jl

v
j (y

′).

Proof of Sub-Claim 17: First we observe some facts about the circuit Φ′ that follow from the
bilinearization procedure in Lemma 14: If a gate g in Φ′ computes a linear form in the Y1

variables then

1. g is a sum gate.

2. Every gate in the subcircuit rooted at g is also a sum gate and computes a linear form
in the Y1 variables.

3. Every leaf in the subcircuit rooted at g is labelled by 0 or by yi for some yi ∈ Y1.

Now consider a product gate gi of Φ
′ in G1 ∪ . . . ∪ Gk. One of the children of gi (say h)

computes l′i(y
′) which is a linear form in the Y1 variables. h either lies in V ∗ or it lies in the

same component (say H ∈ {G1, . . . , Gk}) of G \ V ∗ as gi. If h lies in V ∗ then the claim is
trivially true for that i.

We now prove that if a gate h ∈ H computes a linear form in Y1 variables then
∃β1, . . . , βm ∈ F such that h =

∑
j βjl

v
j (y

′). We allow h to be a leaf. The proof is by
induction on the size of the subcircuit rooted at h. For the base case, let h be a leaf.
Observe that h cannot be a leaf labelled by a non-zero constant by Observation 3, it cannot
be a leaf labelled by an X1 variable also by observation 3, and it cannot be a leaf labelled
by a Y1 variable because h ∈ H ∈ {G1, . . . , Gk}. So h is a leaf labelled by 0, and the claim
is obviously true, 0 is the trivial linear combination of lv1(y

′), . . . , lvm(y
′).

13



For the inductive step, let h be any non-leaf gate in H computing a linear form in the
Y1 variables. By observation 1, h must be a sum gate. Suppose h = β1h1 + β2h2 with
predecessors h1, h2. If h1 is in V ∗ then by observation 2, h1 = lvj (y

′) for some j. Otherwise,
h1 ∈ H. If it is a leaf then as before it must be labelled by 0. Again, 0 is the trivial linear
combination of lv1(y

′), . . . , lvm(y
′). If h1 not a leaf, by observation 2 it satisfies the inductive

hypothesis: ∃γ1, . . . , γm ∈ F such that h1 =
∑

j γjl
v
j (y

′). In all cases, h1 (and symmetrically
h2) is a linear combination of lv1(y

′), . . . , lvm(y
′), and so is h. (End of proof of Sub-Claim 17) □

Using Claim 17 we can show that a linear combination of g1, . . . , gt cannot have large rank:

Sub-Claim 18. For any α1, . . . , αt ∈ F let y′TM1x
′ =
∑t

i=1 αigi be a linear combination of
g1, . . . , gt. Then rank(M1) ≤ |V ∗|.

Proof of Sub-Claim 18: Consider the linear combination y′TM1x
′ =
∑t

i=1 αigi of g1, . . . , gt.

y′TM1x
′ =

t∑
i=1

αigi =
t∑

i=1

αi(li(x
′)× l′i(y

′))

=
t∑

i=1

(
αili(x

′)×

(
m∑
j=1

βi,jl
v
j (y

′)

))
By Claim 17

=
t∑

i=1

m∑
j=1

αiβi,j(li(x
′)× lvj (y

′)) =
m∑
j=1

t∑
i=1

αiβi,j(li(x
′)× lvj (y

′))

=
m∑
j=1

((
t∑

i=1

αiβi,jli(x
′)

)
× lvj (y

′)

)

This gives a decomposition of M1 as a sum of m matrices each with rank ≤ 1. Therefore,
rank(M1) ≤ m ≤ |V ∗|. (End of proof of Sub-Claim 18) □

Similarly, if y′TM2x
′ is a linear combination of the product gates in the components

of G \ V ∗ containing inputs labelled by Y1, then rank(M2) ≤ |V ∗|. Finally, the number of
product gates in V ∗ is at most |V ∗| so any linear combination of them will also have rank
≤ |V ∗|. Since the output y′TM ′x′ of Φ′ is a linear combination of all the product gates in
it, by subadditivity of rank we see that rank(M ′) ≤ 3|V ∗|. (End of proof of Claim 16) □

Claim 16 implies that Ω(n0.96) = |X1| = rank(M ′) ≤ 3|V ∗| = O(
√
n(log n)3/2), a

contradiction for large n. Hence, size(Ψ) ≥ 1
2000

n log n. (End of proof of Theorem 15)

If the size of the underlying field F is at least 2n, explicit n× n totally regular matrices
over F exist. Cauchy matrices are a standard example: Let (x1, . . . , xn) and (y1, . . . , yn) be
sequences of 2n distinct elements in F. The (i, j)th entry of the Cauchy matrix defined by
these sequences is 1/(xi − yj). It is not hard to see that every square minor of a Cauchy
matrix is itself a Cauchy matrix, so total regularity follows from non-singularity.

Corollary 19. Over any infinite field F there exists an infinite family {An}n≥1 of explicit
matrices (where An ∈ Fn×n) such that L(yTAnx) ≥ Cp(y

TAnx) = Ω(n log n) □.
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The following observation of Strassen is useful to get a separation between arithmetic
circuits and planar arithmetic circuits:

Lemma 20 ([24], Theorem 4.2). Let F be an infinite field. For any n-superconcentrator
G = (V,E), there exists a weight function w : E → F such that if all inputs of G are labelled
by x1, . . . , xn, internal vertices and outputs are labelled as sum gates then the linear forms
ℓ1, . . . , ℓn computed at the output gates forms the rows of a totally regular matrix.

It is known (Ta-Shma [21]) that there exist (explicit) superconcentrators of linear size.

Theorem 21 (Ta-Shma [21], Corollary 1.3). For every n, ∃ explicit n-superconcentrators of
linear size and depth poly(log log n).

Combining this fact with Lemma 20 and Theorem 15 gives us the following separation:

Corollary 22. Over any infinite field F, there exists an infinite family {Mn}n≥1 of totally
regular matrices (where Mn ∈ Fn×n) such that C(yTMnx) = O(n) but Cp(y

TMnx) =
Ω(n log n).

It is not known if there is an explicit totally regular matrix M such that C(yTMx) =
O(n). However, if it is possible to construct explicit, constant depth superconcentrators of
size o(n log n) then we can establish a separation as in Corollary 22 for explicit, constant
degree polynomials. Unfortunately, we are not aware of such a construction.

3.2 Lower Bounds for Read-Once Planar Arithmetic Circuits

In this section, we prove lower bounds against the size of read-once planar circuits. If we do
not restrict ourselves to planar circuits then the read-once restriction is not a restriction at
all: one can introduce n-new input gates into a non read-once circuit and make it read-once
without any asymptotic blowup in size. But as noted in [20], [22], the read-once restriction
in the planar setting is quite a strong one, and we can show quadratic lower bounds for
Cr

p(y
TMx) where M is any totally regular matrix. The argument is the same as Theorem

15 except we use a different partition theorem.

Theorem 23. Let M ∈ Fn×n be a totally regular matrix. Then, Cr
p(y

TMx) = Ω(n2).

Proof. Let X = {x1, . . . , xn} be the set of x-variables and Y = {y1, . . . , yn} be the set
of y-variables. Let Ψ be a read-once planar circuit computing yTMx and for the sake of
contradiction, suppose size(Ψ) = o(n2). By Lemma 14, there exists a read-once, planar,
bilinear circuit Φ computing yTMx such that size(Φ) = o(n2). Let the graph of Φ be
G = (V,E). Then |V | = o(n2). Since Φ is read-once, it has exactly n input gates labelled by
x1, . . . , xn resp. and exactly n input gates labelled by y1, · · · , yn resp. Applying Theorem 10
(ignoring directions on edges) with weight 1/(2n) for each input labelled by a variable and
0 for every other gate, we obtain a partition (A,B,C) of V with the properties mentioned
in Lemma 10. Since |V | = o(n2), |C| = o(n).
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Note that at least one of A ∪ C, B ∪ C must have ≥ n/2 X-inputs. Without loss
of generality, assume that A ∪ C contains ≥ n/2 X-inputs. Then, A contains at least
n/2− o(n) ≥ 5n/12 X-inputs. Since the weight of A is ≤ 2/3, A contains ≤ 4n/3−5n/12 =
11n/12 Y -inputs. Therefore, B contains ≥ n/12 − o(n) ≥ n/13 Y -inputs. Let X ′ ⊆ X
and Y ′ ⊆ Y be such that |X ′| = |Y ′| ≥ n/13, all the X ′ inputs are contained in A and
all the Y ′ inputs are contained in B. Consider Φ and set all inputs outside X ′ ∪ Y ′ to
0 to obtain another read-once, planar, bilinear circuit Φ′ that computes the bilinear form
y′TM ′x′ where M ′ is the minor of M whose rows are indexed by Y ′ and columns by X ′, x′

is the vector of X ′ variables and y′ is the vector of Y ′ variables. Since M is totally regular,
rank(M ′) = |X ′| = |Y ′| ≥ n/13. However, we obtain an upper bound on the rank of M ′ in
the following claim which gives the desired contradiction.

Claim 24. rank(M ′) ≤ 3|C| = o(n).

Sketch. Similar to Claim 16. Partition the product gates of Φ′ into 3 types: those appearing
in A, those appearing in B and those appearing in C. We can show as in Claim 17 that
there exist ≤ |C| linear forms l1(y

′), . . . , lm(y
′) such that for that every product gate g =

ℓg(x
′) · ℓ′g(y′) in A, ℓ′g(y

′) can be expressed as a linear combination of l1(y
′), . . . , lm(y

′). This
implies that the rank of any linear combination of product gates in A (and symmetrically
B) is at most |C|. There are at most |C| product gates in C so the rank of any linear
combination of them is also at most |C|. Since the output of Φ′ is a linear combination of
the product gates in it, we are done by subadditivity of rank.

Claim 24 implies that n/13 ≤ |X ′| = rank(M ′) ≤ 3|V ∗| = o(n), a contradiction for large
n. Hence size(Ψ) = Ω(n2).

We note that the Ω(n2) lower bound in Theorem 23 is tight and that a lower bound for
read-once planar circuits asymptotically better than Theorem 23 implies superlinear lower
bounds for general circuits. This is a direct consequence of the planarization procedure: by
Lemma 9 any circuit can be planarized with at most a quadratic blowup in size.

Observation 25. Let F be any field and let {fn}n≥1 be a family of polynomials where fn ∈
F[x1, . . . , xn]. Then, for any ϵ > 0, Cr

p(fn) = Ω(n2+ϵ) implies that C(fn) = Ω(n1+ϵ/2).

Strassen’s observation in Lemma 20 combined with Theorem 23 gives us the following
quadratic separation between circuit complexity and read-once planar circuit complexity:

Corollary 26. Over any infinite field F, there exists an infinite family {Mn}n≥1 of totally
regular matrices (where Mn ∈ Fn×n) such that C(yTMnx) = O(n) but Cr

p(y
TMnx) = Ω(n2).

Here, we can use Ben-Or’s trick from [15] to get an almost quadratic separation for an
explicit family polynomials of degree 4. These polynomials are explicit in the sense that
there is an algorithm which takes n as input and outputs the nth polynomial in the family
in poly(n) time. In the sequel we need explicit depth-two superconcentrators which can be
obtained from the following theorem of Ta-Shma:
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Theorem 27 (Ta-Shma [21], Corollary 1.2). For every n ∃ explicit n-superconcentrators of
size n1+o(1) and depth two.

Corollary 28. Over any infinite field F, there exists an explicit family {fn}n≥1 of degree 4
polynomials, where fn is n1+o(1)-variate, such that C(fn) = n1+o(1) but Cr

p(fn) = Ω(n2)

Proof. In order to get the explicit family of polynomials, we start with an explicit depth 2
superconcentrator G = (V,E) with n1+o(1) edges from Theorem 27. For every edge e ∈ E
introduce a variable ze. Now we construct an arithmetic circuit Ψ with inputs {x1, . . . , xn}∪
{y1, . . . , yn} ∪ {ze}e∈E from G as follows:

1. For the n input vertices of G, add n inputs in Ψ labelled by x1, . . . , xn respectively.

2. For every internal vertex and output v of G add a sum gate gv in Ψ whose inputs will
be specified next.

3. For every edge e ∈ E going from u ∈ V to v ∈ V , introduce a product gate ge one of
whose children is gu and the other is a newly introduced input gate labelled by ze. Let
the output of ge feed into gv.

4. If v1, . . . , vn are the outputs of G, multiply gv1 , . . . , gvn by y1, . . . , yn respectively and
add them up. This introduces ≤ 3n new gates. Let the gate computing this sum be
the output of Ψ.

Clearly, the number of wires in Ψ = n1+o(1) and so size(Ψ) = n1+o(1). The output of
Ψ is a polynomial in variables {x1, . . . , xn} ∪ {y1, . . . , yn} ∪ {ze}e∈E, there are n1+o(1) of
them. The degree of the output polynomial is 4 since the depth of G is 2. Let f(x,y, z)
be the output of Ψ. Since G was explicit and depth 2, f is also explicit and we have that
C(f) = n1+o(1). Now suppose we had a read-once planar circuit Φ computing f such that
size(Φ) = o(n2). Since G is a superconcentrator, there exists α ∈ F|E| (by Lemma 20) such
that f(x,y, α) = yTAx for some totally regular matrix A. Projecting the z variables in
Φ to α, we get a read-once planar circuit of size o(n2) computing yTAx. This contradicts
Theorem 23, and so size(Φ) = Ω(n2).

In the boolean setting, read-once planar circuit complexity and formula complexity are
known to be incomparable[22]. We show that this is the case in the arithmetic setting as
well, although the separation we have is not as strong as in the boolean case. For this, we
again use depth two superconcentrators. Here we note that one can build a bilinear formula
for yTAx (for some totally regular A) from a depth two superconcentrator. This is done
by Nisan and Wigderson in [15], we give a short, different proof here that suffices for our
purposes:

Claim 29 (Nisan and Wigderson [15]). Over any infinite field F, there exists a family of
totally regular matrices {An}n≥1 such that L(yTAnx) ≤ Lb(yTAnx) = n1+o(1)
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Proof. By Lemma 27, there exists an explicit depth two n-superconcentrator G = (V =
I ∪M ∪O,E) with n inputs I, n outputs O and k = n1+o(1) middle vertices M . By Lemma
20, we can label input vertices I of G by x1, . . . , xn, the middle vertices M and outputs O of
G by addition gates and the edges by constants from F (if F is large enough) such that the
outputs of the resulting circuit Φ(G) compute linear forms lT1 x, . . . , l

T
nx where the vectors

lT1 , . . . , l
T
n are the rows of a totally regular matrix A. Since G has depth 2, this gives us a

factorization A = UV such that U ∈ Fn×k, V ∈ Fk×n and |U | + |V | ≤ |E| = O(n1+o(1))
(where |M | denotes the number of non-zero entries of a matrix M). Let the columns of U
be u1, . . . , uk and the rows of V be vT1 , . . . , v

T
k . It is easy to see that

∑k
i=1 y

T (uiv
T
i )x is a

bilinear formula computing yTAx and the size of the formula is at most |E| = n1+o(1), the
number of edges in G.

Corollary 30. Over any infinite field F, there exists an explicit family of polynomials
{fn}n≥1 where fn is a polynomial in n1+o(1) variables of degree 4 such that L(fn) = n1+o(1)

but Cr
p(fn) = Ω(n2).

Proof. The family in question is exactly the one from the previous corollary (Corollary 26).
By Theorem 23, Cr

p(y
TAx) = Ω(n2) for any totally regular matrix A. By Claim 29, there

exists a totally regular A that is computed by a (bilinear) formula of size n1+o(1). This gives
a separation for a (non-explicit) bilinear form.

To get an explicit polynomial for which the separation holds, repeat the procedure used
in the proof of Corollary 28, i.e., introduce a new variable for every edge in the depth 2
superconcentrator. The resulting polynomial will have degree 4.

In the other direction, we have the following easy separation:

Lemma 31. There exists a family of polynomials {fn}n≥1 where fn is a polynomial in n
variables of degree n such that Cr

p(fn) = O(n log n) but L(fn) = Ω(n2).

Proof. Consider f(x1, . . . , xn) =
∑n

i=1 x
n
i . Since the degree of each xi in f is n, in any

formula computing f each xi must appear n times and so L(f) ≥ n2. On the other hand,
Cr

p = O(n log n), the usual circuit that raises each xi to the nth power using log n product
gates and then adds all the products is planar.

It would be interesting to see a multilinear polynomial which has small read-once planar
circuit complexity and large formula complexity. Together, Lemma 31 and Corollary 30 show
that the complexity measures Cr

p and L are incomparable.

3.3 Lower Bounds for Planar Algebraic Branching Programs

As mentioned in the introduction, planar algebraic branching programs can be converted
into planar arithmetic circuits without blowup in size. We describe this conversion in the
following lemma:
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Lemma 32. Let A be a planar ABP with v vertices and e edges computing f(x1, . . . , xn) ∈
F[x1, . . . , xn]. Then there exists a planar circuit Φ (with indegree of each gate ≤ 2) computing
f with size(Φ) = O(v).

Proof. Let G = (V,E) be the planar graph of the ABP A computing f . Let s be its source
and t the sink. Construct a circuit Φ from G as follows:

1. Remove the source s from the graph and let every u ∈ N+(s) be a leaf of the circuit
labelled by [s, u] (N+(s) denotes the out neighbourhood of s, [u, v] denotes the label
of the edge uv in A).

2. Let every v ∈ V \ ({s} ∪N+(S)) be a sum gate.

3. Subdivide every edge e = (u, v) of G and let the newly introduced vertex ve be a
product gate. Attach a leaf le to ve labelled by [u, v]. So ve is a product gate with
predecessors le and u.

It is easy to see that the resulting circuit Φ′ with output t computes the polynomial
f(x1, . . . , xn) and size(Φ′) ≤ v− 1+ 2e = O(v+ e) = O(v) (Note: G is planar, so e = O(v)).
Furthermore, since G is planar, Φ′ is also planar. Now covert Φ′ into a fan-in 2 circuit Φ by
replacing the incoming wires at every gate by a balanced binary tree. Again, this preserves
planarity. We have introducing at most 4e additional gates while going from Φ′ to Φ and so
size(Φ) = O(v). Clearly Φ computes f , and we are done.

We can now use the lower bound for planar circuits from Theorem 15 to get a lower
bound for planar ABPs:

Theorem 33. Let M ∈ Fn×n be a totally regular matrix. Then, Ap(y
TMx) = Ω(n log n).

Proof. Combining Lemma 32 with the lower bound for planar arithmetic circuits we get the
desired result.

By modifying Strassen’s construction a bit (Lemma 20), it is possible to establish separations
between ABP complexity and planar ABP complexity:

Lemma 34. Over any infinite field F, there exists an infinite family {Mn}n≥1 of totally
regular matrices (where Mn ∈ Fn×n) such that A(yTMnx) = O(n).

Proof. We start with an explicit n-superconcentrator G = (V,E) of linear size, ie, |V |, |E| =
O(n) (see Theorem 21). We add two new vertices s, t to G, connect s to every input of G and
t to every output. For every i ∈ [n] label the ith edge out of s by xi and the ith edge into t
by yi. Now note that the internal nodes behave exactly like sum gates in a linear circuit, so
we may label each edge by a constant from F such that the resulting ABP computes yTMx
and M ∈ Fn×n is totally regular (by Lemma 20).

Combining Lemma 34 and Theorem 33 we get the desired separation:

Corollary 35. Over any infinite field F, there exists an infinite family {Mn}n≥1 of totally
regular matrices (where Mn ∈ Fn×n) such that A(yTMnx) = O(n) but Ap(y

TMnx) =
Ω(n log n).
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4 Lower Bounds for Multi-Output Planar Circuits and

Partial Derivative Complexity

In the case of multi-output planar circuits, it is possible to show lower bounds better than
Ω(n log n). As mentioned earlier, an Ω(n2) lower bound on the size of any read-once planar
circuit computing Mx (for any totally regular M) follows from the work of Valiant [23] and
Lipton and Tarjan [12]. In this section we show an Ω(n4/3) lower bound on the size of (not
necessarily read-once) planar circuits computing Mx and an Ω(n2/ log n) lower bound on
the size of multi-output formulas computing Mx. We use (resp.) Theorem 12 and Lemma
13 for these lower bounds. Similar statements for multi-output planar boolean circuits are
proved in [22], [20] using crossing sequence arguments.

4.1 Lower Bounds for Multi-Output Circuits

Theorem 36. Let M ∈ Fn×n be any totally regular matrix. Then Cp(Mx) = Ω(n4/3).

Proof. Let Φ be a planar circuit computing Mx with outputs gates O1, . . . , On and let
L1 ⊔ . . . ⊔ Ln be its set of leaves labelled by variables, where Li contains all the leaves
labelled by xi. Because M is totally regular the following statement is true:

Claim 37. ∀k ∈ [n], ∀ subsets {Oi1 , . . . , Oik} of k outputs of Φ, ∀ k sets Lj1 , . . . , Ljk , ∃ a
permutation π : [k] → [k] such that ∀t ∈ [k], ∃ a path Pt from an input in Ljt to Oπ(it) and
the paths P1, . . . , Pk are vertex disjoint.

Proof. This is an immediate generalization of Valiant’s observation that the graph of a (read-
once) circuit computing Ax is an n-superconcentrator [23] (for any totally regular A). The
idea is that if the maximum number of vertex disjoint paths from Lj1 , . . . , Ljk to Oi1 , . . . , Oik

was less than k, then by Menger’s theorem there would exist a ({Lj1 ∪ . . .∪Ljk}, {Oi1 ∪ . . .∪
Oik}) cut of size strictly less than k, which would in turn imply that the minor of M whose
rows are indexed by Oi1 , . . . , Oik and columns by xj1 , . . . , xjk cannot be full rank.

Now we can apply Theorem 12 to get the desired lower bound:

Let G = (V,E) be the underlying undirected graph of Φ. Now suppose size(Φ) =
|V | = o(n4/3) (otherwise we’re done). Apply Theorem 12 to G with V ′ = {O1, . . . , On}
and p = (|V | + n)/n = o(n1/3) < n = |V ′|. Let V1, . . . , Vp be the partition so obtained
and let S1 . . . , Sp be the corresponding separators. Note that the number of input gates of
Φ is at most (|V | + n)/2: If Φ has t inputs each with indegree 0 and outdegree ≥ 1, and
k non-input gates each with indegree 2 out of which ≤ n (the outputs) have outdegree 0
and the rest have outdegree ≥ 1 (so that t + k = |V |) then |E| =

∑
v d

−(v) = 2k and
|E| =

∑
v d

+(v) ≥ |V | − n. So k ≥ (|V | − n)/2 =⇒ t ≤ (|V |+ n)/2. Here d−(v) and d+(v)
denote the indegree and outdegree of v resp.
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So there must exist a Vi ∈ {V1, . . . , Vp} that contains at most n/2 input gates for otherwise
the number of inputs of Φ would be > (|V | + n)/2. Let Xi ⊆ {x1, . . . , xn} be a set of n/2
variables not appearing in Vi. Let X ′

i ⊆ Xi be such that |X ′
i| = Ω(n) and all leafs labelled

by X ′
i appear in V \ (Vi ∪ Si). Such a set exists since |Si| ≤ 60

√
|V | = o(n2/3). Let Ai

be the set of outputs in Vi. Then |Ai| ≥
n

4p
= ω(n2/3). By Claim 37, there must be at

least |Ai| = ω(n2/3) vertex disjoint paths from the sets (Lj’s) of leaves corresponding to
variables in X ′

i to outputs in Ai. All these paths must go through Si. But as we saw before,
|Si| = o(n2/3). This is a contradiction, and so Size(Φ) = Ω(n4/3).

For proving better lower bounds for multi-output formulas we first prove the improved
partition lemma (Lemma 13). For this purpose, it will be convenient to work with partition
trees. We identify the vertices of a binary tree with binary strings in the natural way: the
root is identified with ϵ, the empty string, and the left and right children of a vertex α are
identified with α0, α1 respectively. A partition tree T for a set V is a binary tree each of
whose vertices are labelled by subsets of V (we say that a vertex α of T is labelled by the
subset Vα). Vϵ is labelled with V and for every non-leaf vertex α of T , (Vα0, Vα1) forms a
partition of Vα. It is easy to see that the subsets labelling the leaves of T form a partition
of V . We restate and prove lemma 13 in the language of partition trees:

Lemma 38. (Equivalent to lemma 13) Let F = (V,E) be a forest, V ′ ⊆ V be a subset of its
vertices and let 1 ≤ p ≤ |V ′|. Then there exists a partition tree Tp of V with p leaves such
that the following conditions hold:

1. For all leaves α of Tp,
|V ′|
3p

≤ |V ′ ∩ Vα| ≤
3|V ′|
p

2. For all vertices α of Tp there exists a set Sα such that |Sα| ≤ O(log(|V ′|)) and no edge
joins Vα and V \ (Vα ∪ Sα). □

Proof. We need the following well known lemma (see [5], [4])

Lemma 39. Let F = (V,E) be a forest and let V ′ ⊆ V .Then there exists a constant k and a
partition (A,B,C) of V such that |A| ≤ 2|V |/3, |B| ≤ 2|V |/3, |C| ≤ k and |V ′∩A| ≤ 2|V ′|/3,
|V ′ ∩B| ≤ 2|V ′|/3. Furthermore, all paths from A to B contain a vertex from C.

Now, let F = (V,E) be a forest and let V ′ ⊆ V . The only difference between the
proof of Theorem 12 in [20] and Lemma 38 is the use of Lemma 39 (see [22], Lemma 4
for an exposition of a similar result using the partition tree terminology we use here). We
construct, by induction on p, a partition tree Tp with p leaves such that partition induced
by it’s leaves satisfies the required properties. For each vertex α of Tp, in addition to Vα

we maintain also a partition (Wα, Uα) of Vα. The case when p = 1 is trivial, here Vϵ = V ,
Wϵ = V , Uϵ = ∅ and Sϵ = ∅. Now suppose 2 ≤ p ≤ |V ′| and we have constructed Tp−1. Pick
a leaf α of Tp−1 that such that |V ′ ∩ Vα| is maximized. To get Tp from Tp−1 we attach two
leaves α0, α1 to α. To get a complete description of Tp we must define Vα0 = Wα0 ⊔ Uα0

and Vα1 = Wα1 ⊔ Uα1. Applying Lemma 39 to the subforest of F induced by Wα, we get a
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partition (Aα, Bα, Cα). Define Wα0 = Aα, Wα1 = Bα and define (Uα0, Uα1) to be a partition
of Uα ∪ Cα such that

|V ′ ∩ (Wα0 ∪ Uα0)| ≤
2

3
|V ′ ∩ Vα| and

|V ′ ∩ (Wα1 ∪ Uα1)| ≤
2

3
|V ′ ∩ Vα|

These definitions imply that the following hold:

1. For any two leaves β, γ of Tp, |V ′ ∩ Vβ| ≤ 3|V ′ ∩ Vγ|, this follows by induction on p
and noticing that |V ′ ∩ Vα| is maximal for the leaf α of Tp−1. This observation implies
condition 1 of lemma 13.

2. For every vertex α in Tp, Wα ≤ (2/3)|α||V |. This follows by induction on |α| and
condition 1 of lemma 39.

3. For every inner vertex α of Tp, |Cα| ≤ k. This follows from condition 3 of lemma 39.

4. For every vertex α of Tp, let Sα =
⋃|α|−1

i=1 Cαi where αi is the prefix of α of length i.
Then Sα is a Vα, V \ (Vα ∪ Sα) separator. This follows by induction on |α|.

5. For every vertex α, we have that |Sα| = O(log |V ′|). This follows from the following
facts:

• The maximal length of any root to leaf path in Tp must be O(log |V ′|), since at
each step in the induction we pick a leaf α that maximizes |V ′ ∩ Vα| and attach

leaves α0, α1 such that |V ′ ∩ Vα0|, |V ′ ∩ Vα1| ≤
2

3
|V ′ ∩ Vα|;

• |Cβ| ≤ k for every inner vertex β of Tp; and

• The union bound

This implies condition 2 of lemma 13.

We can now prove, as promised, the improved lower bound for multi output formulas:

Theorem 40. Let M ∈ Fn×n be any totally regular matrix. Then L(Mx) = Ω(n2/ log n).

Proof. Let Φ be a multi-output formula computing Mx with outputs gates O1, . . . , On and
let L1 ⊔ . . . ⊔ Ln be its set of leaves labelled by variables, where Li contains all the leaves
labelled by xi. Observe that claim 37 continues to hold.

Let F = (V,E) be the underlying undirected forest of Φ. Now suppose size(Φ) = |V | =
o(n2/ log n) (otherwise we’re done). Apply lemma 13 to F with V ′ = {O1, . . . , On} and
p = (|V |+n)/n = o(n/ log n) < n = |V ′|. Let V1, . . . , Vp be the partition so obtained and let
S1 . . . , Sp be the corresponding separators. Note that the number of input gates of Φ is at
most (|V |+n)/2: If Φ has t inputs each with indegree 0 and outdegree ≥ 1, and k non-input
gates each with indegree 2 out of which ≤ n (the outputs) have outdegree 0 and the rest have
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outdegree = 1 (so that t+k = |V |) then |E| =
∑

v d
−(v) = 2k and |E| =

∑
v d

+(v) ≥ |V |−n.
So k ≥ (|V | − n)/2 =⇒ t ≤ (|V | + n)/2. Here d−(v) and d+(v) denote the indegree and
outdegree of v respectively.

So there must exist a Vi ∈ {V1, . . . , Vp} that contains at most n/2 input gates for otherwise
the number of inputs of Φ would be > (|V | + n)/2. Let Xi ⊆ {x1, . . . , xn} be a set of n/2
variables not appearing in Vi. Let X ′

i ⊆ Xi be such that |X ′
i| = Ω(n) and all leafs labelled

by X ′
i appear in V \ (Vi ∪ Si). Such a set exists since |Si| = O(log(|V ′|)) = O(log n). Let

Ai be the set of outputs in Vi. Then |Ai| ≥
n

4p
= ω(log n). By Claim 37, there must be

at least |Ai| = ω(log n) vertex disjoint paths from the sets (Lj’s) of leaves corresponding to
variables in X ′

i to the outputs in Ai. All these paths must go through Si. But as we saw
before, |Si| = O(log n). This is a contradiction, and so size(Φ) = Ω(n2/ log n).

Note that this bound is optimal up to the log n factor: any linear transformation can be
computed by an O(n2) size multi-output formula (by constructing disjoint formulas for each
linear form).

4.2 Complexity of Partial Derivatives

We now turn our attention to partial derivative complexity. Baur and Strassen[3] proved
that for any polynomial f ∈ F[x1, . . . , xn], C(∂x1(f), . . . , ∂xn(f)) = O(C(f)). That is, if there
exists a (fan-in 2) circuit of size s computing f then there exists another multi-output (fan-in
2) circuit of size O(s) that simultaneously computes all the first order partial derivatives of
f . We observe that an analogous result cannot hold for formulas and planar circuits, while
it does hold for read-once planar circuits. Theorem 40 combined with the construction in
Claim 29 immediately gives the following lower bound on the partial derivative complexity
of multi-output formulas:

Corollary 41. Over any infinite field F there exists a family {fn}n≥1 of polynomials where
fn ∈ F[x1, . . . , xn] such that L(fn) = n1+o(1) but L(∂x1(fn), . . . , ∂xn(fn)) = Ω(n2/ log n).

Similarly, Theorem 36 combined with the construction in Claim 29 gives us a lower bound
on the partial derivative complexity of planar circuits:

Corollary 42. Over any infinite field F there exists a family {fn}n≥1 of polynomials where
fn ∈ F[x1, . . . , xn] such that Cp(fn) = n1+o(1) but Cp(∂x1(fn), . . . , ∂xn(fn)) = Ω(n4/3).

In the case of read-once planar circuits, we observe that the proof of Baur-Strassen
theorem (as demonstrated in [8], this proof is due to Kaltofen and Singer [11]) extends easily
to the case of read-once planar circuits. Hence, we have the following corollary:

Corollary 43. For any polynomial f ∈ F[x1, . . . , xn], C
r
p(∂x1(f), . . . , ∂xn(f)) = O(Cr

p(f)).
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The above corollary holds as the circuit for simultaneously computing ∂x1(f), . . . , ∂xn(f)
of a polynomial f can be constructed using a copy of the circuit for f and a copy of its mirror
image (see [8], Theorem 9.10) and in the case of read-once planar circuits, it is easy to check
that this construction introduces only a linear number of edge crossings each of which can
be eliminated by introducing the crossover gadget in Lemma 9.

5 Discussion and Open Problems

• A long-standing open problem in algebraic complexity theory is to construct an explicit
constant degree polynomial that has superlinear circuit complexity. In this regard, it
is challenging to prove Ω(n1+δ) lower bound (for some δ > 0) for planar arithmetic
circuits for any explicit n-variate polynomial, not necessarily of constant degree. Note
that in the case of boolean planar circuits, the best known lower bound is Ω(n log2 n)
([9]). In fact, obtaining an Ω(n2+δ) lower bound (for some δ > 0) for read-once planar
arithmetic circuits for any explicit n-variate polynomial would also imply general circuit
lower bounds.

• Although the theorem gives an Ω(n log n) lower bound for planar arithmetic circuits
computing any bilinear form yTAx where A is totally regular, the best lower bound

that we can hope to get is Ω
(

n log2 n
log logn

)
because depth 2 superconcentrators of size

O
(

n log2 n
log logn

)
exist(see [16] for details). It would be interesting to see if Theorem 15 is

tight for some totally regular matrix.
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