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Abstract

While the existence of randomness extractors, both seeded and seedless, has been studied for
many sources of randomness, currently, not much is known regarding the existence of seedless
condensers in many settings. Here, we prove several new results for seedless condensers in the
context of three related classes of sources: Non-Oblivious Symbol Fixing (NOSF) sources, online
NOSF (oNOSF) sources (originally defined as SHELA sources in [AORSV, EUROCRYPT’20]),
and almost Chor-Goldreich (CG) sources as defined in [DMOZ, STOC’23]. We will think of
these sources as a sequence of random variables X = X1, . . . ,Xℓ on ℓ symbols where at least
g out of these ℓ symbols are “good” (i.e., have some min-entropy requirement), denoted as a
(g, ℓ)-source, and the remaining “bad” ℓ− g symbols may adversarially depend on these g good
blocks. The difference between each of these sources is realized by restrictions on the power of
the adversary, with the adversary in NOSF sources having no restrictions.

Prior to our work, the only known seedless condenser upper or lower bound in these settings
is due to [DMOZ, STOC’23], where they explicitly construct a seedless condenser for a restricted
subset of (g, ℓ)-adversarial CG sources.

The following are our main results concerning seedless condensers for each of these sources.

1. oNOSF sources

(a) When g ≤ ℓ/2, we prove that condensing with error 0.99 above rate 1

⌊ℓ/g⌋ is impossible.

In fact, we show that this is tight.

(b) Quite surprisingly, for g > ℓ/2, we show the existence of excellent condensers for
uniform oNOSF sources. In addition, we show the existence of similar condensers
for oNOSF sources with only logarithmic min-entropy. Our results are based on a
new type of two-source extractors, called output-light two-source extractors, that we
introduce and prove the existence of.

2. Adversarial CG sources

(a) We observe that uniform adversarial CG sources are equivalent to uniform oNOSF
sources and consequently inherit the same results.

(b) We show that one cannot condense beyond the min-entropy gap of each block or
condense low min-entropy CG sources above rate 1/2.

3. NOSF sources

(a) We show that condensing with constant error above rate g
ℓ is impossible for uniform

NOSF sources for any g and ℓ, thus ruling out the possibility of any non-trivial
condensing. This shows an interesting distinction between NOSF and oNOSF sources.

These results make progress on several open question from [DMOZ, STOC’23], [AORSV,
EUROCRYPT’20], and [KN, RANDOM’23].
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1 Introduction

One of the most fruitful lines of research in computer science has been that of randomness. From
the traditionally more applied areas of algorithm design (e.g., Monte Carlo simulations), error-
correcting codes and cryptography to the more theoretical areas of property testing, combinatorics,
and circuit lower bounds, randomness has played a key role in seminal discoveries. In many of
these works, the use of high-quality random bits, or alternatively, a way to convert low-quality
randomness into high-quality randomness, is essential. In cryptography, the authors of [DOPS04]
showed that high-quality randomness is essential for tasks such as bit commitment schemes and
secure two-party computation. On the other hand, being able to extract uniform bits from low-
quality randomness allows us to simulate randomized algorithms [Zuc90].

In most use-cases, randomness takes the form of uniformly random bits. These motivated the
construction of randomness extractors,1 functions that take low-quality randomness (which we often
like to think of as natural processes) and convert it into uniformly random bits. It is impossible to
extract from the class of all sources and so extractors are constructed with respect to a restricted
class of sources.

A number of works [SV86, CG88, Zuc90, RVW04] have shown that deterministic extraction
is impossible for many natural classes of randomness sources. The question that arises for such
sources then is whether any improvement to their randomness can be made. That is, while it may
not be possible to convert a source into uniform bits, maybe it is possible to condense a source
into another source with a higher density of randomness. The central focus of our paper is in
understanding the possibility of condensing for various natural models of weak sources where it is
known that extraction is impossible.

We first introduce the way that we measure randomness and the notions of extractors and
condensers. The notion of randomness that is standard in this line of work is that of min-entropy.
For a source X on n bits, we define its min-entropy as H∞(X) = minx∈{0,1}n{− log(Pr[X = x])}.
A source X over n bits with min-entropy at least k is called an (n, k)-source. Given any two
distributionsX andY on {0, 1}n, we define their statistical distance or total-variation (TV) distance
as |X−Y| = maxZ⊆{0,1}n |Prx∼X[x ∈ Z]− Pry∼Y[y ∈ Z]|. We also need the notion of smooth
min-entropy : for a source X on {0, 1}n, it=s smooth min-entropy with smoothness parameter ε is
Hε

∞(X) = maxY:|X−Y|≤εH∞(Y). Conceptually, smooth min-entropy asks that the source we are
looking at be ε-close in TV-distance to some other source with the desired amount of min-entropy.
We are now in a position to define randomness extraction and condensing.

Definition 1.1. Let X be a family of distributions over {0, 1}n. A function Ext : {0, 1}n → {0, 1}m

is an extractor for X with error ε > 0 if for all X ∈ X we have |Ext(X)−Um| ≤ ε.

For extractors to exist, we require all sources in X to have entropy. When each source in X
is an (n, k)-source, we say that Ext is a (k, ε)-extractor for X . For some classes, an extractor
may not exist (such as for the class of all (n, n− 1)-sources). Consequently, we turn to the looser
requirements of condensing.

Definition 1.2. For a family of distributions X over {0, 1}n, a function Cond : {0, 1}n → {0, 1}m

is a condenser with error ε ≥ 0 if for all X ∈ X we have that Hε
∞(Cond(X))/m ≥ H∞(X)/n. We

say that Cond has entropy gap ∆ if Hε
∞(Cond(X)) ≥ m−∆. When X is the class of (n, k)-sources

and k′ = m−∆, we say that Cond is a (k, k′, ε)-condenser.

1In this paper, when we mention extractors/condensers, we usually mean seedless extractors/condensers.
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Unfortunately, even this notion is too strong as we cannot condense with error ε from the class
of all (n, k)-sources so that the output entropy rate is larger than k/n. 2 We thus study condensing
from classes of sources which have some additional structure along with a min-entropy requirement.
In this paper, we explore the possibility of condensing from three related models of weak sources.
These models, some of which have been studied since the 1980s, are very general and well-motivated
by practical considerations.

The rest of the introduction is organized as follows: In Section 1.1, we present the case that
condensers have many applications and are hence a natural direction of study, in particular when
extraction is not feasible. In Section 1.2, we discuss the models of weak sources that we study,
present relevant prior work on these models, and discuss our results for each of them.

1.1 The utility of condensing

We present two viewpoints in motivating our study of condensers. We compare what is possible
via condensing in contrast to extracting and consider the utility of condensing for simulating BPP

algorithms.

1.1.1 Condensing vs. extracting

Condensers exist in many scenarios when it can be provably shown that deterministic extraction
is not possible. Thus, they allow us to obtain randomness that is more useful than what we began
with in cases where extracting uniform bits is impossible. One significant example is that of Santha-
Vazirani (SV) sources [SV86] and their generalization, Chor-Goldreich (CG) sources [CG88].

Informally, an SV source is a string of random bits such that the conditional distribution of each
bit on the bits that come before it is guaranteed to have some minimum amount of min-entropy; a
CG source generalizes this to allow each bit to instead be a symbol in {0, 1}n. It is well known that
deterministic extraction is impossible for both SV and CG sources [SV86, CG88, RVW04]. The
recent result of [DMOZ23] with regards to condensing from CG sources stands in contrast to these
impossibility results for extraction. Other examples of sources for which deterministic extraction is
not possible while deterministic condensing are the somewhat dependent sources of [BGM22] and
block sources [BCDT19].

We briefly mention that seeded condensers are known to achieve parameters unattainable by
seeded extractors [RT00]. Further, seeded condensers have been extremely useful in excellent
constructions of seeded extractors [RSW06, Zuc07, TUZ07, GUV09].

1.1.2 Condensing for simulating BPP algorithms

Condensers with small entropy gap are useful in simulating randomized algorithms with low over-
head [DMOZ23]. There are two ways one can go about this. First, there exists an explicit seeded
extractor Ext with seed length d = O(log(∆)) that can extract from any (n, k)-source X with en-
tropy gap ∆ = n − k [RVW02]. Then, to simulate a randomized algorithm A in BPP, we instead
sample x ∼ X and take the majority of the output of A on {Ext(x, s)} where we cycle over all seeds
s [Vad12].

2Assuming m ≤ n, the output entropy can be shown to be most k +m− n+ log(1/(1− ε)). See Lemma 4.20 for
a proof of this fact.
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For some applications in randomized protocols, cryptography and interactive proofs, one cannot
afford to compute Ext all 2d times by cycling through every seed [BDKPPSY11, DRV12, DY13,
DPW14]. Alternatively, we can simulate A using a “one-shot” method in which we do not iterate
over all seeds. A result from [DPW14] allows us to simulate A on the condensed source X (with
entropy gap ∆) by reducing the error of A to 2−∆−1 · ε and then using X directly to simulate
random bits in A. Such a simulation will have error ε.

1.2 Models of weak sources and our results

We consider three adversarial classes of sources motivated by weak sources that appear in prac-
tice as well as in various cryptographic settings. These sources are natural generalizations of the
well-studied independent sources wherein we allow for an adversarial dependence between sources.
Changing the scope and power of the adversary in natural ways gives rise to the three different
classes of sources that we will consider.

The three randomness sources that we focus on in this work are all composed of blocks of bits,
known as symbols, which vary in how they are permitted to relate to other symbols in the source.
In these definitions, we will consider sources X = X1, . . . ,Xℓ of length ℓ where each Xi ∈ {0, 1}n

is called a block. Generally, we will term blocks that have some minimum amount of randomness
“good” and blocks that are chosen by an adversary as “bad”. Next, we discuss these three models
of weak sources, presenting what was known from prior work and our new results for each of these
models.

1.2.1 Online non-oblivious symbol fixing sources

The first class of adversarial sources that we will define is that of online non-oblivious symbol
fixing (oNOSF) sources. While these are a restriction of general NOSF sources, which we will
define later, we introduce them first since they have the weakest adversary and, consequently, the
strongest positive results. Formally, we define oNOSF sources as follows.

Definition 1.3 (oNOSF sources, [AORSV20]). A (g, ℓ, n, k)-oNOSF source X = X1, . . . ,Xℓ on
({0, 1}n)ℓ is such that g out of the ℓ blocks are independently sampled (n, k)-sources (i.e., good),
and the remaining ℓ− g bad blocks only depend on blocks with smaller indices (i.e., to their left).

If k = n, we call X a uniform (g, ℓ)-oNOSF source. oNOSF sources form a natural class of
sources to study when an adversary is working in real time and cannot predict the future. One such
real-world example is that of blockchains. From [GKL15, PSS17], we know that in a sequence of
blocks, there will be some fraction of blocks that are chosen by honest players. Moreover, since these
honest players are not working together, their chosen blocks may be considered as independent,
fulfilling the requirement for good blocks for oNOSF sources. The adversarial players, on the other
hand, can only see blocks added to the blockchain thus far and do not know which values of blocks
will be added in the future, fulfilling the requirements for bad blocks for oNOSF sources. For more
uses of oNOSF sources, see [AORSV20].

Previous work Prior to our work, the only results for condensing or extracting from oNOSF
sources are due to [AORSV20]. In [AORSV20], the authors study Somewhere Honest Entropic
Look Ahead (SHELA) sources, which are exactly convex combinations of oNOSF sources (see
Proposition 3.15). They (1) transform (not uniform) oNOSF sources into uniform NOSF sources
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and (2) show that for any γ ∈ (0, 1), there exists an ℓ such that extraction is not possible for
(⌊γℓ⌋ , ℓ)-oNOSF sources.

Our results We prove the existence of condensers with excellent parameters when the majority
of the blocks of a uniform oNOSF source are good.

Theorem 1.4 (Informal version of Theorem 5.13). For all constant g, ℓ and all ε such that g > ℓ/2,
there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF source
X, we have Hε

∞(Cond(X)) ≥ m−O(log(m/ε)) where m = n.

For our construction, we introduce a new type of two-source extractor3 that we call a R-
output-light two-source extractor. Such a two-source extractor 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

satisfies the additional guarantee that each output z ∈ {0, 1}m can only be produced by R inputs
x ∈ {0, 1}n1 in the first source (see Definition 5.10 for the formal definition). The existence of such
extractors is not obvious, and we show that output-light two-source extractors exist with strong
parameters in Lemma 5.11. Our proof uses the observation that R-output-lightness is implied by
the notion of R-invertibility, which simply bounds ‖Cond(X)‖∞ by R (see Definition 5.18 for a
formal definition). Incidentally, this latter notion has been recently used in a different context, to
construct explicit random access linear codes with constant rate and distance [CM24]. While we are
unable to explicitly construct such output-light two-source extractors, we do construct an explicit
output-light seeded extractor, which we use to condense from uniform (2, 3)-oNOSF sources and
more (see Appendix A).

In fact, we can achieve a stronger result and show existence of condensers for oNOSF sources
with only logarithmic min-entropy guarantee in the good blocks.

Theorem 1.5 (Informal version of Corollary 5.14). For any constant g, ℓ and all ε such that
g > ℓ/2 + 1, there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any
(g, ℓ, n, k)-oNOSF source X with k ≥ 2 log(n/ε) we have Hε

∞(Cond(X)) ≥ m−O(log(m/ε)) where
m = Ω(k).

To accomplish this, we transform logarithmic min-entropy oNOSF sources to uniform oNOSF
sources and then apply the condenser for uniform oNOSF sources. We transform logarithmic min-
entropy oNOSF sources to uniform oNOSF sources by modifying the construction of a somewhere-
extractor for high min-entropy SHELA sources by [AORSV20]. These results imply that oNOSF
sources can be useful for low overhead simulation of BPP algorithms. Furthermore, taken in tandem
with the result that for all γ > 0 there exists a large enough ℓ such that one cannot extract from
uniform (⌊γℓ⌋ , ℓ)-oNOSF sources from [AORSV20], we have shown that oNOSF sources are one
of the natural classes of sources that admit seedless condensing but not seedless extraction. This
adds oNOSF sources to the short list of such natural sources mentioned in Section 1.1.1.

In contrast, condensing in the regime of g ≤ ℓ/2 is more nuanced: some non-trivial condensing
beyond rate g

ℓ is possible provided g does not divide ℓ, but condensing to a significantly higher rate
is not possible.

Theorem 1 (Theorem 4.1, restated). For any function f : ({0, 1}n)ℓ → {0, 1}m and ε > 0, there
exists a constant δ and uniform (g, ℓ)-oNOSF source X with g ≤ ℓ/2 such that Hε

∞(f(X)) ≤
1

⌊ℓ/g⌋ ·m+ δ.

3See Definition 3.9 for a definition of two-source extractors
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This partially resolves4 a conjecture of [AORSV20]: they conjectured that (g, ℓ)-oNOSF sources

cannot be transformed into uniform (g′, ℓ′)-NOSF sources with g′

ℓ′ >
g
ℓ . Our condensing impossibil-

ity implies g′

ℓ′ ≤
1

⌊ℓ/g⌋ for any such transformation. This negative result is tight and we are able to

condense uniform (g, ℓ)-oNOSF sources up to rate 1
⌊ℓ/g⌋ .

Theorem 2. (Informal version of Theorem 5.3) For any constant g, ℓ and ε such that ⌊ℓ/g⌋ = r
and ℓ/g 6= r, there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform
(g, ℓ)-oNOSF source X we have Hε

∞(Cond(X)) ≥ 1
r ·m−O(log(m/ε)) where m = Ω(n).

As before in Theorem 2, we can convert a logarithmic min-entropy oNOSF source to a uniform
oNOSF source and then apply Theorem 2. This yields:

Theorem 3. (Informal version of Theorem 5.1) For all constant g, ℓ and ε such that
⌊
ℓ−1
g−1

⌋
= r and

ℓ−1
g−1 6= r, there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g, ℓ, n, k)-oNOSF

source X with k ≥ 2 log(n/ε), we have that Hε
∞(X) ≥ 1

r ·m−O(log(m/ε)) with m = Ω(k).

We note that Theorem 1.4 and Theorem 1.5 are special cases of Theorem 2 and Theorem 3 in
the case that ⌊ℓ/g⌋ = r = 1, allowing us to state all of our condensing possibility results succinctly.

Put together, our results demonstrate a sharp threshold at g = ℓ/2 for condensing from oNOSF
sources with a small entropy gap. To our knowledge, there is no other set of sources that ex-
hibits such behavior, making oNOSF sources unique among both adversarial sources and general
randomness sources.

1.2.2 Adversarial Chor-Goldreich sources

Next, we consider a generalization of oNOSF sources, termed adversarial Chor-Goldreich (CG)
sources, that we obtain by strengthening the adversary’s power. Adversarial CG sources share the
motivation from oNOSF sources that the adversary cannot predict the future. Rather than forcing
the adversary to have its blocks only depend on blocks in the past (those with smaller indices),
aCG sources require that good blocks have some entropy conditioned on all blocks that came before
them. In other words, bad blocks cannot expose all of the entropy of future good blocks.

Definition 1.6 (Adversarial CG (aCG) sources, [CG88, DMOZ23]). We define a (g, ℓ, n, k)-aCG
source X = X1, . . . ,Xℓ to be a distribution on ({0, 1}n)ℓ such that there exists a set of good indices
G ⊆ [ℓ] of size at least g for which H∞(Xi | X1 = x1, . . . ,Xi−1 = xi−1) ≥ k for all i ∈ G and all
prefixes x1, . . . , xi−1.

As before, if k = n, then we say that X is a uniform (g, ℓ)-aCG source. Observe that because the
good blocks of a oNOSF source are independent of all blocks before it, oNOSF sources are trivially
aCG sources as well. As a consequence, our condensing impossibility results from Theorem 1
immediately apply to aCG sources as well. Moreover, a convenient fact that we later show in
Proposition 3.17 and will rely on is that uniform (g, ℓ)-aCG sources and uniform (g, ℓ)-oNOSF
sources are equivalent.

CG sources are a well-studied class of sources introduced by [CG88] as a generalization of
Santha-Vazirani sources [SV86]. Hence, the majority of the work done on CG sources has been in

4Our result on the existence of condensers falls short of completely resolving their conjecture as it does not
transform uniform oNOSF sources into uniform NOSF sources.
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the non-adversarial setting in which g = ℓ. Adversarial CG sources that contain bad blocks were
only recently introduced in [DMOZ23] (although they use the terminology “almost” CG sources),
in which the authors show several condensing results for CG and adversarial CG sources. Our work
can then be seen as a meaningful addition to this long line of research on CG sources and their
generalizations.

Previous work The impossibility of extraction from both oNOSF sources and aCG sources due
to [AORSV20, CG88] naturally raises the question of whether there is a distinction between these
two sources with regards to randomness condensing.

For CG sources, [GP20] showed that errorless condensing is impossible. In contrast, [DMOZ23]
proved several possibility results regarding condensing with error for CG sources. Their results
assume that the size of each block is very small (almost constant) compared to the number of
blocks.

We also note that the authors of [DMOZ23] considered various other relaxations of the definition
of aCG sources that we do not consider here. These include good blocks having only smooth min-
entropy conditioned on previous blocks instead of the stronger condition of min-entropy, having
smooth min-entropy conditioned on a constant fraction of prefixes of previous blocks instead of all
prefixes, and having a Shannon entropy requirement instead of min-entropy requirement.

Our results In [DMOZ23], the authors pose the question of whether it is possible to condense
from aCG sources with a constant entropy gap.5 We give a partially positive answer to this by
showing that we can condense from uniform (g, ℓ)-aCG sources with g > ℓ/2 with logarithmic
entropy gap since uniform (g, ℓ)-aCG sources are equivalent to uniform (g, ℓ)-oNOSF sources and
we can defer to Theorem 2. Of course, all of Theorem 2 applies to uniform aCG sources, so we
can condense any uniform (g, ℓ)-aCG source to rate 1

⌊ℓ/g⌋ . The generalization of these results in
Theorem 1.5 do not hold for non-uniform aCG sources since non-uniform aCG sources need not be
oNOSF sources. Before our work, no non-trivial condensing was known for uniform (g, ℓ, n)-aCG
sources even in the case of g = ℓ−1. It is important to note that our results hold for comparatively
large block sizes n = 2ω(ℓ), in contrast to the results of [DMOZ23] that hold for constant block sizes
and increasing ℓ.

As previously mentioned, since oNOSF sources are a subclass of aCG sources, our condensing
impossibility results from Theorem 1 transfer over. Thus, in the g ≤ ℓ/2 regime, we give a negative
answer to the question of [DMOZ23] by showing that good condensers do not exist for uniform (g, ℓ)-
aCG sources, let alone condensers with a constant entropy gap. Note that unlike our condensing
possibility results that only apply to uniform aCG sources, our impossibility result applies to non-
uniform aCG sources as well.

In addition, we prove various condensing impossibility results that work even when there are
no bad blocks (i.e., for non-adversarial, or just regular, CG sources): the first result of Theorem 4
is based on a reduction from general (n, k)-sources to CG sources and the second result uses a
reduction from uniform oNOSF sources to low min-entropy CG sources.

Theorem 4 (Informal version of Theorem 4.21 and Theorem 4.22). For all ∆ > 0 and for every
function f : ({0, 1}n)ℓ → {0, 1}m, there exists an (ℓ, ℓ)-aCG source X satisfying either of the
following with ε = 0.99:

5In their paper, they phrase it as removing the requirement of suffix-friendliness.
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• The good blocks have min-entropy at least n−∆− log(ℓ)−O(1) conditioned on all fixings of
previous blocks and Hε

∞(f(X)) ≤ m−∆−max(m− ℓn, 0) +O(1).

• The good blocks have min-entropy at least n/ℓ − log(ℓ) − O(1) conditioned on all fixings of
previous blocks and Hε

∞(f(X)) ≤ 1
2 ·m+O(1).

It is important to note that the first bullet above does not subsume the second. In particular,
the second bullet point from above gives a stronger result than the first in the setting when m is
much larger than n.

We note that these results do not contradict the condensing result from [DMOZ23] as in the
parameter regimes for which Theorem 4 works, the condenser of [DMOZ23] does not result in an
entropy increase. This also shows a separation between aCG sources and oNOSF sources since
Theorem 3 can condense from oNOSF sources in this parameter regime.

1.2.3 Non-oblivious symbol fixing sources

Finally, we strengthen the adversary one last time by letting the bad blocks depend arbitrarily on
all the good blocks. This gives rise to NOSF sources which themselves generalize the setting of
non-oblivious bit-fixing (NOBF) sources [CGHFRS85] where each block is a bit (i.e., n = 1).

Definition 1.7 (NOSF sources). A (g, ℓ, n, k)-NOSF source X = X1, . . . ,Xℓ on ({0, 1}n)ℓ is such
that g out of the ℓ blocks are independently sampled (n, k)-sources (i.e., “good”) while the other
ℓ− g bad blocks may depend arbitrarily on the good blocks.

When k = n and n is clear from context, we simply call X a uniform (g, ℓ)-NOSF source. The
adversary in NOSF sources clearly has a significant amount of power; every single good block is
sampled before the adversary gets to decide what to place in the bad blocks. As NOSF sources are
in the setting in which the adversary is the strongest, they are also the sources for which we are most
motivated to be able to extract or condense as they are the most general. We note that much of the
progress on explicit constructions of two-source extractors and condensers [CZ19, BCDT19], a major
problem in the area of randomness extraction, is based on constructing extractors and condensers
for NOSF sources (in a parameter regime where it was existentially known that extraction is
possible). This further motivates our exploration of condensing from NOSF sources in a more
general parameter setting.

Previous work We can trace back study of extracting from NOBF sources to the seminal work
of Ben-Or and Linial in [BL89].6 They made the connection between NOBF extractors and the
influence of sets of variables on Boolean functions. Together with the work of Kahn, Kalai, and
Linial in [KKL88], in which they demonstrated lower bounds on the influence of variables on
Boolean functions, these works show that it is not possible to extract from uniform (g, ℓ)-NOBF
sources when the number of bad bits is b = ℓ− g = Ω(ℓ/ log ℓ). While no analogous result is known
for NOSF sources,7 the extraction impossibility result from [AORSV20] for oNOSF sources also
applies for NOSF sources: for any γ > 0 there exists a large constant ℓ such that it is impossible
to extract even one bit from uniform (γℓ, ℓ)-NOSF sources.

6They used the terminology “collective coin flipping protocol” instead of “NOBF extractor”.
7Although one is conjectured in [Fri04] that attempts to recover what was initially proposed in [BKKKL92].
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To attempt to match these lower bounds on extraction, resilient functions, introduced by [BL85],
have yielded the current best results. The resilient function of Ajtai and Linial in [AL93] and its
explicit versions constructed by [CZ19, Mek17] achieve extractors for uniform (g, ℓ)-NOBF sources
when b = O(ℓ/ log2 ℓ), leaving a 1/ log ℓ gap between the lower and upper bounds.

Noting that a uniform (g, ℓ, n)-NOSF source is a uniform (ng, nℓ)-NOBF source, these results
imply extractors when g > ℓ(1− 1/C log2(nℓ)), for some large enough constant C. This still leaves
open whether condensing is possible for most settings of parameters.

Related to this, the work of [KN23] explores what they call extracting multimergers, which we
may consider as extractors for uniform NOSF sources. For seedless extracting multimergers, their
result implies that extracting from uniform (2, 3)-NOSF sources is impossible.

Our results As oNOSF sources are also NOSF sources, our condensing impossibility result in
Theorem 1 also applies to (g, ℓ)-NOSF sources when g ≤ ℓ/2. However, we are able to show an
even stronger result for any setting of g and ℓ and thus extend existing lower bounds of extraction
to condensing.

Theorem 5 (Corollary 4.10 restated). For all constant g, ℓ ∈ N, there exist constant ε, δ > 0 so
the following holds: for all a,m, n ∈ N and all functions f : ({0, 1}n)aℓ → {0, 1}m, there exists a
uniform (ag, aℓ)-NOSF source X such that Hε

∞(f(X)) ≤ g
ℓ ·m+ δ.

By varying a above, we extend our result for any g and ℓ to any rate g/ℓ uniform NOSF source.
These results together put NOSF sources in stark contrast with adversarial CG and oNOSF sources
since they can both be condensed in a useful manner for simulating BPP algorithms, while we have
shown that NOSF sources cannot be condensed in such a manner.

2 Proof Overview

We present the main ideas and techniques for proving our main condensing impossibility results in
Section 2.1 and possibility results in Section 2.2.

2.1 Impossibility results

In this subsection, we will go over the main techniques used in proving the condensing impossibility
result for the case that g ≤ ℓ/2 in Section 2.1.1, the condensing impossibility result for uniform
NOSF sources when g > ℓ/2 in Section 2.1.2, and the condensing impossibility result for low
min-entropy CG sources in Section 2.1.3.

2.1.1 Impossibility of condensing from uniform (g, ℓ)-oNOSF sources for g ≤ ℓ/2

We prove that when the number of good blocks g is not more than half of the total number of
blocks ℓ, then condensing beyond rate 1

⌊ℓ/g⌋ is impossible. Formally, we will prove the following
statement.

Theorem 2.1 (Theorem 4.1, restated). For all ε, there exists a δ such that for all g, ℓ ∈ N with
g ≤ ℓ/2 and for all f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-oNOSF source X such
that Hε

∞(f(X)) ≤ 1
⌊ℓ/g⌋ ·m+ δ.
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The steps we take to achieve the result of Theorem 2.1 are, broadly, as follows:

1. We first reduce proving the theorem to only proving it for the special case of g = 1. We show
that if it is possible to condense uniform (g, ℓ)-oNOSF sources to entropy-rate more than

1
⌊ℓ/g⌋ , then it is possible to condense uniform (1, ℓ′)-oNOSF sources to rate beyond 1

⌊ℓ′/1⌋ =
1
ℓ′ where ℓ′ = ⌊ℓ/g⌋. We do this by transforming any uniform (1, ℓ′)-oNOSF source to a
uniform (g, ℓ)-oNOSF source.

2. We prove the theorem for the special case of g = 1 and arbitrary ℓ. We do this by using an
“induct or win” argument. We show either condensing from uniform (1, ℓ)-oNOSF sources
is impossible (win) or we reduce to the case of condensing from uniform (1, ℓ− 1)-oNOSF
sources (induct). Either we will win at some point in our reduction or we will reach the base
case of g = ℓ = 1 where the claim trivially holds. Let f be a candidate condenser and take
cases on whether there exists a fixing of the first block in f such that the partial function
obtained by fixing f to that values will have small support. If such a fixing exists, then we
reduce the problem to condensing from uniform (1, ℓ− 1)-oNOSF sources. If not, then we
directly construct a uniform (1, ℓ)-oNOSF source where f fails to condense from by reducing
to a graph problem.

3. The graph problem we reduce to in the “win” case is the following: Let G = (U, V ) be a
bipartite graph with U = [N ], V = [M ] and such that deg(u) ≥ c0M

δ for all u ∈ U where
δ > 0 is some constant. Then, show there exists D ⊂ V such that |Nbr(D)| ≥ c1N and
|D| ≤ c2 ·M

1−δ where c0, c1, c2 are some universal constants.

We expand on these three steps and prove them.

Step 1 In this step, we transform any uniform (1, ℓ′)-oNOSF source X to a uniform (g, ℓ)-oNOSF
source Y where ℓ′ = ⌊ℓ/g⌋. Divide ℓ by ℓ′ so that ℓ = aℓ′ + r where 0 ≤ r < ℓ′. We compute that
a ≥ g. We split the blocks of X as evenly as possible: split up the first r blocks of X into a + 1
blocks and the remaining ℓ′ − r blocks into a blocks. These aℓ′ + r = ℓ blocks that we obtained
by splitting X will form Y. If a block in X is uniform, then all the split up blocks will also be
uniform. Similarly, if a block in X is bad and only depended on blocks appearing before it, so will
all the blocks formed after splitting it. Also, as at least one block in X is good, Y must have at
least a ≥ g good blocks in it. Hence, Y is indeed a uniform (g, ℓ)-oNOSF source.

Step 2 In this step, we execute our induct or win argument. Fix a candidate condenser function
f : ({0, 1}n)ℓ → {0, 1}m. We proceed by contradiction and assume f can condense from uniform
(1, ℓ)-oNOSF sources beyond rate 1/ℓ. We either directly construct a uniform (1, ℓ)-oNOSF source
X where f will fail to condense from or we show how using f , we can obtain a condenser for uniform
(1, ℓ− 1)-oNOSF sources, which is a contradiction.

Case 1. There exists a fixing of the first block x1 such that∣∣f(x1, y1, . . . , yℓ−1)|(y1, . . . , yℓ−1) ∈ {0, 1}
n(ℓ−1)

∣∣ ≤ 2m(1−1/ℓ). Then, by appropriately relabel-

ing outputs, we can define h : ({0, 1}n)ℓ−1 → {0, 1}m(1−1/ℓ) as h(y1, . . . , yℓ−1) = f(x1, y1, . . . , yℓ−1).
We now show that h will be a condenser for uniform (1, ℓ− 1)-oNOSF sources. Let Y be arbitrary
uniform (1, ℓ− 1)-oNOSF source. We transform Y into a uniform (1, ℓ)-oNOSF sourceY′ by
letting the first block of Y′ be fixed to x1 and the remaining ℓ − 1 blocks behave as Y. By
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assumption, f can condense Y′ so that output entropy is more than 1
ℓ ·m. However this implies

h can condense Y to have entropy more than 1
ℓ ·m = 1

ℓ−1 ·m(1 − 1/ℓ). As h outputs m(1 − 1/ℓ)
bits, this is a contradiction.

Case 2. For every fixing of the first block x1 : |f(x1, y1, . . . , yℓ−1)| > 2m(1−1/ℓ). To show f fails
to condense from X, it suffices to show that with constant probability, f(X) will lie in a small
set D ⊂ {0, 1}m where |D| = O

(
2m(1/ℓ)

)
(see Claim 3.3 for a formal version of this). Consider

the bipartite graph H = (U = ({0, 1}n), V = {0, 1}m) where edge (u, v) is included if there exist
y1, . . . , yℓ−1 such that f(x1, y1, . . . , yℓ−1) = v. By assumption, for all u ∈ U : deg(u) > 2m(1−1/ℓ).
Our graph theoretic dominating set lemma from Item 3. guarantees that there exists D ⊂ {0, 1}m

such that |D| ≤ c02
m(1/ℓ) and |Nbr(D)| ≥ c12

n where c0, c1 are universal constants. Now, let X be
uniform (1, ℓ)-oNOSF source where the first block is uniform and the remaining ℓ − 1 blocks are
adversarial where the value of those ℓ − 1 blocks (depending on the value of the first block) is set
so that f outputs an element from D if possible. By the construction of the bipartite graph and
the construction of X, with probability c1, f(X) will output an element in D. Hence, as f outputs
an element from a small set, D, with high probability, it fails to condense from X.

Step 3 We prove the dominating set lemma for bipartite graph in this step to conclude the proof
of the “win” argument. We construct D by repeatedly adding the vertex from V that has the
highest degree, removing vertices incident to that vertex, and stopping until at least c1N many
vertices from U are incident to some vertex from D. Whenever we attempt to add a vertex to D,
the graph will have at least (1−c1)N many vertices and so at least (1−c1)N ·c0 ·M

1−δ many edges.
This implies there will always be a vertex v ∈ V such that deg(v) ≥ c0(1− c1) ·

N
Mδ . This is true at

each stage and we repeat this until at least c1N many vertices are covered. Hence, |D| ≤ c2 ·M
1−δ

for some universal constant c2 as desired.

2.1.2 Impossibility of condensing from uniform NOSF sources

We prove much stronger condensing impossibility result for uniform NOSF sources: we prove that
no non-trivial condensing is possible. We are able to do so since the bad blocks have no restrictions
and can arbitrarily depend on any good block. Formally, we show the following:

Theorem 2.2 (Corollary 4.10 restated). For all fixed g, ℓ ∈ N, there exist fixed ε, δ > 0 so that
the following holds: for all a,m, n ∈ N and all functions f : ({0, 1}n)aℓ → {0, 1}m, there exists a
uniform (ag, aℓ)-NOSF source X such that Hε

∞(f(X)) ≤ g
ℓ ·m+ δ.

We prove Theorem 2.2 using the following strategy:

1. We reduce the general case to the special case of a = 1 and g > ℓ/2.

2. Our high level strategy for this step is same as in Item 2 from Section 2.1.1. We perform
an “induct or win” argument to show it is impossible to condense from uniform (g, ℓ)-NOSF
sources where g > ℓ/2 beyond rate g/ℓ. As earlier, we show either condensing from uniform
(g, ℓ)-NOSF sources is impossible (win) or we reduce to the case of condensing from uniform
(g, ℓ− 1)-NOSF sources (induct). So, we recursively apply this argument and either win at
some point or reach a base case of g = ℓ where the claim trivially holds. Let f be a candidate
condenser and take cases on whether there exists a block position p such that for constant
fraction of fixings of all other blocks, the partial function obtained by fixing f to those values
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will have large support. If this holds, then we use the almost-dominating set argument from
Item 3 (from Section 2.1.1) to reduce to the case of condensing from uniform (g, ℓ− 1)-NOSF
sources. If such a position p with these fixings do not exist, then we directly construct a
uniform (g, ℓ)-oNOSF source where f fails to condense from by reducing to a hypergraph
problem.

3. The hypergraph problem we reduce to in the “win” case is the following: Let H =
(V1, . . . , Vt, E) be a t-uniform t-partite hypergraph with V1 = · · · = Vt = [N ], |E| = c0N

t.
Let the edges of H be colored in M colors in a ‘locally light’ way: such that for ev-
ery position p ∈ [T ], and every (t − 1) tuples: (v1, . . . , vp−1, vp+1, . . . , vt) ∈ [N ]t−1, the
number of distinct colored edges as entries in position p vary is ≤ c1M

δ. Formally,
|χ(v1, . . . , vp−1, y, vp+1, . . . , vt) : y ∈ [N ]| ≤ c1M

δ. Then, there exists D ⊆ [M ] such that
|D| ≤ c2 ·M

tδ and at least c3N
t edges in H are colored in one of the colors from D. Here,

c0, c1, c2, c3 are some constants.

We expand on these three steps and prove them.

Step 1 We show how to reduce to the case of a = 1. We do this using the same argument as in
Item 1 from Section 2.1.1: we transform uniform (g, ℓ)-NOSF sources into uniform (ag, aℓ)-NOSF
sources by splitting up blocks; this way, a condenser for uniform (ag, aℓ)-NOSF sources will also
condense from uniform (g, ℓ)-NOSF sources.

We next carefully examine the argument made in Item 2 and see that the induct or win argument
made there can be generalized to show the following: either condensing from uniform (g, ℓ)-NOSF
source is impossible or we reduce to the case of condensing from uniform (g, ℓ− g)-NOSF source.
Applying this recursively to arbitrary g, ℓ, we either win and show impossibility at some step or we
end up reducing to showing impossibility for condensing from uniform (g, ℓ)-NOSF sources where
g > ℓ/2.

Combining these two steps, we reduce the general case to the special case of a = 1 and g > ℓ/2.

Step 2 In this step, we execute our induct or win argument. We fix a candidate condenser
function f : ({0, 1}n)ℓ → {0, 1}m. Proceed by contradiction and assume f can condense from
uniform (g, ℓ)-NOSF sources beyond rate g/ℓ. We either directly construct a uniform (g, ℓ)-NOSF
source X where f will fail to condense from or we show how using f , we can obtain a condenser
for uniform (g, ℓ− 1)-NOSF sources, which is a contradiction. For p ∈ [ℓ], let Sp be the set of ℓ− 1
tuples (x1, . . . , xp−1, xp+1, . . . , xℓ) such that

|{f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) : y ∈ {0, 1}
n}| ≥ c02

m/ℓ

Case 1. There exists p ∈ [ℓ] such that |Sp| ≥ c12
n(ℓ−1) where c1 > 0 is a small constant. Without

loss of generality let p = 1. Construct a bipartite graph G = (U, V ) where U = S1, V = {0, 1}m and
edge (u, v) if there exists a fixing y of block p such that f(u, y) = v. Then, we see that G satisfies
the requirement for Item 3 and hence, there exists D ⊂ {0, 1}m such that |D| ≤ 2m(1−1/ℓ) which
neighbors at least c32

n(ℓ−1) vertices from U . For the sake of presentation, assume c1 = c3 = 1.
In the full proof, c1, c3 > 0 are small constants and we need to induct using a stronger inductive
hypothesis. Now, define h : {0, 1}n(ℓ−1) → {0, 1}m(1−1/ℓ) as h(y1, . . . , yℓ−1) = f(x1, y1, . . . , yℓ−1)
where x1 is such that f(x1, y1, . . . , yℓ−1) ∈ D (as c1 = c3 = 1, such x1 always exists). The output
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domain of h can be made {0, 1}m(1−1/ℓ) instead of D by appropriately relabeling the output. We
then show, similar to proof of case 1 of Item 2, h will be a condenser for uniform (g, ℓ− 1)-NOSF
sources and get a contradiction.

Case 2. For all p ∈ [ℓ], |Sp| ≤ c12
n(ℓ−1). We say x = (x1, . . . , xℓ) ∈ {0, 1}

nℓ is bad if for some
p ∈ [ℓ], removing position p from x makes it an element of Sp. Let B be set of such bad strings.
Then, |B| ≤ c1ℓ · 2

nℓ. Let H = (V1, . . . , Vℓ) where Vi = {0, 1}
n be ℓ-uniform ℓ-partite hypergraph

where edge v = (v1, . . . , vℓ) is in H if v 6∈ B. Then, H has at least (1 − c1ℓ)2
nℓ edges. By an

averaging argument, there exists x = (x1, . . . , xℓ−g) ∈ {0, 1}
n(ℓ−g) such that the number of edges

in H containing that x is at least (1 − c1ℓ)2
ng. Consider uniform (g, ℓ)-oNOSF source Y where

the first ℓ − g blocks always output x and the remaining g blocks are uniform. To show f fails to
condense from X, it suffices to show: constant probability, f(X) will lie in a small set D ⊂ {0, 1}m

where |D| = O
(
2m(g/ℓ)

)
(see Claim 3.3 for a formal version of this).

Let H ′ = (U1, . . . , Ug) where Ui = {0, 1}n be g-uniform g-partite hypergraph where edge
u = (u1, . . . , ug) is in H ′ if (x1, . . . , xℓ−g, u1, . . . , ug) is in H. Then, H ′ has at least (1 − c1ℓ)2

ng

edges. Now, color H ′ into 2m colors by coloring edge (u1, . . . , ug) as f(x1, . . . , xℓ−g, u1, . . . , ug). By
definition of Sp and construction of H ′, we see that for every ℓ − 1 tuples u in {0, 1}n(ℓ−1), the
number of distinct colors in H ′ is at most c0 ·2

m/ℓ. We apply the hypergraph lemma to H ′ and infer
that there exists D ⊂ {0, 1}m such that |D| ≤ c2 · 2

m(g/ℓ) at least c3 · 2
ng edges in in H ′ are colored

in one of the colors from D. Hence, we found a small set D such that with constant probability,
f(X) lies in D as desired.

Step 3 We finally solve the hypergraph problem to conclude the proof of the “win” argument.
We repeatedly pick the color which covers the most edges to D until the number of edges covered
is at least c3 · N t. At the last step of the process, H must have at least (c0 − c3) · N t edges. We
show that at that stage, the chosen a color will cover at least c4N

t/M tδ edges. This implies at each
step before this, the chosen color must cover at least that many edges and hence, |D| ≤ 1

c4
M tδ as

desired.
So, our goal is to show that in a t-uniform t-partite hypergraph H = (V1, . . . , Vt) having at

least c5N
t edges and colored in M colors in a ‘locally light’ manner - on fixing any t− 1 tuple, the

number of colors adjacent to it as last entry varies is at most c1 ·M
δ, there exists a color γ covering

at least Ω(N t/M tδ) edges. We induct on t and show this. We sketch the idea below for bipartite
graphs.

For every v2 ∈ V2, let Cv2 ⊂ [M ] be the set of colors that have at most c6 · (N/M δ) where c6 is
a very small constant. We remove edge (v1, v2) from H if (v1, v2) ∈ Cv2 . For each v2, we remove at
most c1c6 ·N edges incident to it. Overall, we end up removing at most c1c6 ·N

2 edges from H and it
still has (c5−c1c6)N

2 edges. Doing this ensures that every color incident to every vertex v2 in V2 has
at least c6 ·(N/M δ) edges incident to it. We finally find such a popular color by doing the following:
By averaging argument, let v∗1 ∈ V1 and γ∗ ∈ [M ] be such that the number of edges incident to v∗1
with color γ is at least c5−c1c6

c1
·(N/M δ). Let Nbrγ(v

∗
1) = {v2 ∈ V2 : (v

∗
1, v2) is colored with color γ}.

Moreover, for every v2 ∈ Nbrγ(v
∗
1), the number of edges incident to them with color γ is at least

c6 · N/M δ. We are done as at least c6 ·
c5−c1c6

c1
· N2/M2δ = Ω(N2/M2δ) edges in H colored with

color γ.
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2.1.3 Impossibility of condensing from low min-entropy aCG sources

We provide two impossibility result for (ℓ, ℓ)-aCG source, we only sketch proof for one of them as
they both share many ideas. Our impossibility result Theorem 4.21 is based on reduction from
general (n, k)-sources and the fact that it is impossible to condense from such sources.

Here, we sketch a proof of the second impossibility result where we show that it is impossible to
condense from non-adversarial CG sources when each block’s min-entropy, conditioned on previous
blocks, is roughly bounded by n/(ℓ+ 1).

Theorem 2.3 (Theorem 4.22 restated). For all 0 < ε < 1 there exists a δ > 0 such that the
following holds: for every function f : ({0, 1}n)ℓ → {0, 1}m, there exists a (ℓ, ℓ)-aCG source X

where the good blocks have min-entropy at least n−ℓ log(2ℓ/ε)
ℓ+1 conditioned on all fixings of previous

blocks and Hε
∞(f(X)) ≤ 1

2 ·m+ δ.

The bulk of the proof is based on a transformation from a uniform (1, 2)-oNOSF source
X = X1,X2 to a source Y = Y1, . . . ,Yℓ that is ε/2-close to an (ℓ, ℓ)-aCG source. With this
transformation, applying Theorem 2.1 with ℓ = 2 and ε/2 to X then allows us to infer that we also
cannot condense from Y with error ε. Thus, we focus on how to construct Y next.

Briefly, to construct Y, we will take substrings of X1 and X2 to place into each block of Y.
From X2, we will take constant sized chunks of size t2 = n−ℓ log(2ℓ/γ)

ℓ+1 where γ = ε
2ℓ to place into

each Yi, and from X1 we will take blocks of increasing size i · t1 − 1 to place into each Yi where
t1 = t2 + log(1/γ). Our proof then finishes with an inductive argument to claim that Y is indeed
ε/2-close to an (ℓ, ℓ)-aCG source source, as required.

2.2 Possibility results

In this subsection, we will present our existential construction of condensers for oNOSF sources
and uniform aCG sources. We begin by describing the construction of our condenser for uniform
(g, ℓ)-oNOSF sources and uniform (g, ℓ)-aCG source in the setting of g > ℓ/2 in Section 2.2.1. Then
we generalize this result to any setting of g and ℓ in Section 2.2.2. Finally, we deal with logarithmic
min-entropy oNOSF sources in Section 2.2.3.

2.2.1 Condensing from uniform (g, ℓ)-oNOSF sources for g > ℓ/2

Before we dive into the actual proof, it is instructive to see why a random function fails to be a
condenser for uniform (g, ℓ)-oNOSF sources. In particular, let us consider uniform (2, 3)-oNOSF
sources. For a random function f : {0, 1}3n → {0, 1}m, with high probability over x1, x2 ∈ {0, 1}

n,
we have |f(x1, x2, ·)| = 2m. Hence, if the adversary is in position 3, then it can depend on x1 and x2
to ensure the output of f always lies in a small set. To overcome this, one can consider restricting
the number of choices adversary has when it is in position 3. This intuition indeed works out and
we give further details.

Theorem 2.4 (Theorem 5.13 restated). For all g, ℓ such that g > ℓ/2 and ε, there exists
a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF source X,
Hε

∞(Cond(X)) ≥ m− (5ℓ−g − 3) log(gn/ε) where m = n− 2(5ℓ−g − 1) log(gn).

Our construction relies on a (k1, k2, ε)-two-source extractor Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

with a property that we term output-lightness, the definition and importance of which we will see
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soon, and a clever choice of a partition and prefixes of our input sourceX. We do not currently know
of a construction of a two-source extractor with our desired min-entropy and error parameters that
is also output-light, so our construction is currently based on an existential output-light two-source
extractor that we show in Lemma 5.11. In particular, if we write X = X1, . . . ,Xℓ and we take Yi to
be the prefix of Xi containing the first 5ℓ−i ·4 log(gn/ε) bits, then we define our two inputs to Ext as
Z1 = X1, . . . ,Xg and Z2 = Yg+1, . . . ,Yℓ. Thus, our condenser becomes Cond(X) := Ext(Z1,Z2).

There are only two cases we must consider: when the adversary places at least one good block
in Xg+1, . . . ,Xℓ and when all of Xg+1, . . . ,Xℓ are adversarial (so X1, . . . ,Xg is uniform). In the
latter case, we have that Z1 is just the uniform distribution on gn bits and Z2 is fully controlled
by the adversary. For Ext(Z1,Z2) to condense then, we would require that no element h ∈ {0, 1}m

have too much weight placed on it by the adversary. Recalling that Z1 is uniform in this case, this
statement is equivalent to asking that the sum over all settings z1 of Z1 of the number of z2 such
that Ext(z1, z2) = h is not larger than R = 2n1+n2−m+O(1). This is precisely our definition of R-
output-lightness (see Definition 5.10 for a formal definition). With this property, we use Claim 3.5
to get that Hε

∞(Cond(X)) ≥ n1 = log(R/ε).
In the case that there is at least one good block among Xg+1, . . . ,Xℓ, then we notice that

there must be one good block among X1, . . . ,Xg because g > ℓ/2, so H∞(Z1) ≥ n. Without
loss of generality, we also assume that we only have one good block Xj for j ∈ {g + 1, . . . , ℓ}.
Consequently, we can define A = Yg+1, . . . ,Yj−1 and B = Yj+1, . . .Yℓ so that Z2 = A ◦Yj ◦B
where the adversary controls both A and B but not Yj . Since X is a oNOSF source, Yj remains
uniform regardless of any fixing of A, so H∞(Yj | A) = H∞(Yj) = 5ℓ−j · 4 log(gn/ε). In addition,
since we chose A to be logarithmically small in n, the min-entropy chain rule (Lemma 3.4) gives
us that, with high probability over the fixings of A, the min-entropy of Z1 is not decreased by
too much more than the length of A which is at most n2. In particular, for any of these good
fixings a ∈ Supp(A), we chose k1 to be such that H∞(Z1 | A = a) ≥ k1. Then if we temporarily
make the assumption that B is uniform, we have that H∞(Z2 | A = a) = H∞(a,Yj ,B | A =

a) =
∑ℓ

i=j 5
ℓ−j · 4 log(gn/ε) = (5ℓ−i+1 − 1) log(gn/ε). Since we can choose k2 to be smaller than

H∞(Z2 | A = a), we get that Ext(Z) is ε-close to Um. Of course, B may be adversarially chosen.
To take this into account, we use Lemma 5.16, which says that if only a few bits of a source are
adversarially controlled then we can still condense, to reduce our output entropy by the length of
B and multiplicatively increase our error by 2length(B). Finally, because we constructed B to have∑ℓ

i=j+1 5
ℓ−j · 4 log(gn/ε) = (5ℓ−i − 1) log(gn/ε) bits, it is still short enough in comparison Yj to

allow us to condense with our desired error.

2.2.2 Condensing from uniform (g, ℓ)-oNOSF sources for any g and ℓ

While we can condense from uniform (g, ℓ)-oNOSF sources for g > ℓ/2 as we saw above
(Theorem 2.4), we know from Theorem 2.1 that when g ≤ ℓ/2 we cannot condense from uni-
form (g, ℓ)-oNOSF sources above rate 1

⌊ℓ/g⌋ . Here, we sketch the argument for a matching bound
showing that this is indeed tight by generalizing Theorem 2.4.

Theorem 2.5 (Theorem 5.3 restated). For any g, ℓ, ε such that ⌊ℓ/g⌋ = r and r < ℓ/g, there exists
a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF source X we have
Hε

∞(Cond(X)) ≥ 1
r ·m− 2(5ℓ−g − 1) log(gn/ε) where m = r(n− 2(5ℓ−g − 1) log(gn)).

Satisfyingly, we need no new tools to construct this condenser. Instead, we use r instances of
the condenser from Theorem 2.4. We will prove this inductively on r, so let us consider the base
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case of r = 1. Notice that r = 1 implies that g > ℓ/2, so we are exactly in a position to use the
condenser Cond1 : ({0, 1}n)ℓ → {0, 1}m1 from Theorem 2.4 without modification. Thus, we define
our output block as O = O1 = Cond1(X).

To generalize to larger values of r, we perform induction on r and take the inductive hypothesis
of r − 1 to be true. We consider two cases. Beginning with the case that all of X1, . . . ,Xg are

bad, we notice that Xg+1, . . . ,Xℓ is a uniform (g, ℓ− g)-oNOSF source with
⌊
ℓ−g
g

⌋
= r − 1 and

ℓ−g
g 6= r−1. Our inductive hypothesis then gives us r−1 output blocks O2, . . . ,Or on ({0, 1}mr)r−1

where at least one is condensed. On the other hand, consider when at least one of X1, . . . ,Xg is
good and take Cond1 to be an instance of the condenser from Theorem 2.4 for X, and define O1

to be Cond1(X) truncated to its first mr bits. Observe that if Cond1(X) succeeds and condenses
X to some min-entropy k source, then H∞(O1) ≥ k − (m1 −mr), so we only lose as many bits of
entropy in O1 as we truncate from Cond1(X), which we show in Lemma 5.17, and m1 −mr is still
constant in g and ℓ. Then in this case we again get that O1 must be properly condensed by 2Ext1
being output-light when all of X1, . . . ,Xg are good or by 2Ext1 being a two-source extractor when
at least one of X1, . . . ,Xg is good. Thus, if we let our output be O = O1, . . . ,Or, then at least
one block is always condensed in any case.

2.2.3 Condensing from logarithmic min-entropy (g, ℓ)-oNOSF sources

We can extend Theorem 2.4 and Theorem 2.5 to logarithmic min-entropy oNOSF source by con-
verting a logarithmic min-entropy oNOSF source into a uniform oNOSF source via the following
theorem.

Theorem 2.6 (Theorem 5.2 restated). For any g, ℓ, ε, there exists a function f : ({0, 1}n)ℓ →
({0, 1}m)ℓ−1 with m = k

8ℓ such that for any (g, ℓ, k)-oNOSF source X with k ≥ 2 log(n/ε) there
exists a uniform (g − 1, ℓ− 1)-oNOSF source Y such that |f(X)−Y| ≤ ε.

Thus, if we take a (g, ℓ, n, k)-oNOSF source X such that g > ℓ/2+1 so g−1 > (ℓ−1)/2, we can
simply apply f from Theorem 2.6 to X and then pass the result to our condenser from Theorem 2.5
to condense from logarithmic min-entropy oNOSF source.

Theorem 2.7 (Theorem 5.1 restated). For all g, ℓ, r ∈ N and ε such that
⌊
ℓ−1
g−1

⌋
= r and r <

ℓ−1
g−1 , there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g, ℓ, n, k)-oNOSF

source X with k ≥ 2 log(n/ε), we have that Hε
∞(X) ≥ 1

r ·m − 2(5ℓ−g − 1) log
(
(g−1)k
8ℓε

)
with m =

r
(

k
8ℓ − 2(5ℓ−g − 1) log

(
(g−1)k

8ℓ

))
.

All that is left then is to show how we convert a low min-entropy oNOSF source to a uniform
oNOSF source in Theorem 2.6. Our method here is based on the somewhere extractor for low-
entropy oNOSF source from [AORSV20] with two important modifications. First, we use a two-
source extractor instead of a seeded extractor which enables us to handle logarithmic min-entropy
in the good blocks of a oNOSF source instead of just linear. Second, we require that the output
of our function is not just somewhere random, but instead a uniform oNOSF source. To achieve
this, we decrease the output length of our two-source extractor (which decreases the block length
of our resulting uniform oNOSF source) to show that the good blocks in our resulting source are
independent from all adversarial blocks before them.

15



The construction of f from Theorem 2.6 is quite straightforward. For every i ∈ {2, . . . , ℓ},
we use the same existential two-source extractor from Lemma 5.11 that we used in the proof of
Theorem 2.4 to define 2Exti : ({0, 1}

n)i−1 × {0, 1}n → {0, 1}m where m = k
8ℓ and k ≥ 2 log(n/ε) is

the min-entropy requirement of each good block in our (g, ℓ, n, k)-oNOSF source X = X1, . . . ,Xℓ.
We then define our ℓ− 1 output blocks as Oi = 2Exti((X1, . . . ,Xi−1),Xi), so f(X) = O2, . . . ,Oℓ.
Because there are g good blocks in X at indices G1, . . . , Gg, we are guaranteed that OG2 , . . . ,OGg

are the outputs of a two-source extractor with a good block in each source. The crux of our argument
then is to show that OG2 , . . . ,OGg are close to uniform and independent of the adversarial blocks
before them. This part of our argument follows that of [AORSV20] closely, so we do not expand
on it here except to note that shortening the length of our output blocks from m = O(k), not
depending on ℓ, in [AORSV20] to m = k/8ℓ is what allows us to show that good output blocks are
uniform and independent of output blocks before them.

3 Preliminaries

We will generally denote distributions or sources in a bold font, such as X, and reserve Um to be
the uniform distribution on m bits. When these sources are actually a sequence of sources, we use
subscripts to denote blocks of that source as X = X1, . . . ,Xℓ. In addition, since we often consider
binary strings of length n and m, we let N = 2n and M = 2m. Often it is convenient to consider
strings as labels, in which case we use the notation [N ] = {1, 2, . . . , N}.

3.1 Basic probability lemmas

Here, we first state a few basic probability facts that will be useful to us throughout. Our first one
is a direct reverse Markov style inequality.

Claim 3.1 (Reverse Markov). Let X be a random variable taking values in [0, 1]. Then, for
0 ≤ d < E[X], it holds that

Pr[X > d] ≥
E[X]− d

1− d

Proof. Let Y = 1−X. Applying Markov’s inequality to Y gives the required bound.

We will use the following version of the Chernoff bound:

Claim 3.2 (Chernoff Bound). Let X1, . . . ,Xn be independent random variables taking values in
{0, 1}. Let X =

∑
iXi. Let µ = E[X]. Then, for all δ ≥ 0, the following holds:

Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/(2 + δ))

Several of our impossibility results rely on a simple TV distance bound.

Claim 3.3 (TV distance lower bound). Let X ∼ {0, 1}n and S ⊂ {0, 1}n be such that Prx∼X[x ∈

S] ≥ p. Then, for 0 < ε < p, it holds that Hε
∞(X) ≤ log

(
|S|
p−ε

)
.

Proof. Let k = log
(

|S|
p−ε

)
. Let Y ∼ {0, 1}n be an arbitrary distribution with H∞(Y) ≥ k. By the

min entropy condition, for all s ∈ S, it holds that Pr[Y = s] ≤ 2−k. Hence,

|X−Y| ≥ Pr
x∈X

[x ∈ S]− Pr
y∈Y

[y ∈ S] = p− 2−k · |S| = ε
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We will utilize the very useful min entropy chain rule in our constructions.

Lemma 3.4 (Min-entropy chain rule). For any random variables X ∼ X and Y ∼ Y and ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |Supp(Y)| − log(1/ε)] ≥ 1− ε.

Lastly, we will later utilize a consequence of upper bounds on smooth min-entropy.

Claim 3.5 (Lemma 8.8 from [Zuc07]). Let X ∼ {0, 1}n be such that Hε
∞(X) < k. Then, there

exists D ⊂ Supp(X) such that |D| < 2k and Pr[X ∈ D] ≥ ε.

3.2 Extractors

Let A ≈ε B mean that A and B are ε close in statistical distance. Recall the definition of a seeded
extractor.

Definition 3.6. A (k, ε)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m satisfies the following:
for every (n, k)-source X, and every Y = Ud,

Ext(X,Y) ≈ε Um.

d is called the seed length of Ext. Ext is called strong if

Ext(X,Y),Y ≈ε Um,Y.

A useful fact about strong seeded extractors that they work even when the seed is not fully
uniform. (See for example Lemma 6.4 from [CGL20] for a proof.)

Lemma 3.7. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong (k, ε)-seeded extractor. Let X be a
(n, k)-source and let Y be a (d, d− λ)-source. Then,

|Ext(X,Y),Y −Um,Y| ≤ 2λε.

We will use the following construction of seeded extractors:

Theorem 3.8 (Theorem 1.5 in [GUV09]). For all constant α > 0 and all n, k, ε, there exists
an explicit (k, ε)-seeded extractor sExt : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log(n/ε)) and
m ≥ (1− α)k.

In addition, we will use a generalization of seeded extractors, two-source extractors, that only
require the second source to be independent from the first and not necessarily be uniform.

Definition 3.9. A function 2Ext : {0, 1}n1×{0, 1}n2 → {0, 1}m is a (k1, k2, ε)-two-source extractor
if for every (n1, k1)-source X1 and (n2, k2)-source X2 where X1 and X2 are independent of each
other, we have

2Ext(X1,X2) ≈ε Um.

It is said to be strong in the first argument if

2Ext(X1,X2),X1 ≈ε Um,X1.
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Similarly, one can define 2Ext that is strong in the second argument. If 2Ext is strong in both
arguments, we simply say that it is strong. We use the fact that inner product function is a good
two source extractor:

Theorem 3.10. [CG88, Vaz85, ILL89] Let X,Y ∼ {0, 1}n with H∞(X) = k1, H∞(Y) = k2. Let
m = n

r for some r ∈ N. Let IP(x, y) : {0, 1}2n → {0, 1}m be the function that interprets x, y as
elements of Fr

2m and outputs the m bit string corresponding to x · y. Then, |IP(X,Y)−Um| ≤
2(n+m−k1−k2)/2.

For a proof of the above theorem, see Theorem 2.5.3 in [Cha16].

3.3 Randomness sources relevant to our work

We now formally introduce the randomness sources that are relevant to our work. We begin with
NOSF sources, which have no restrictions on the adversary producing the bad blocks.

Definition 3.11 (NOSF source). A (g, ℓ, n, k)-NOSF source (NOSF) X with symbols in Σ = {0, 1}n

and length ℓ is over Σℓ, written as X = X1, . . . ,Xℓ, and has the following property: There exists
a set of good blocks G ⊆ [ℓ] such that |G| ≥ g and the random variables in {Xi}i∈G are each
independently sampled (n, k)-sources. We say that a block Xi is good if i ∈ G and bad otherwise.

Note that we have no restrictions on how bad blocks may depend on the good blocks. If k = n,
we say that X is a uniform (g, ℓ, n)-NOSF source. When n is implicit or not relevant, we simply
call X a uniform (g, ℓ)-NOSF source. Next, we introduce oNOSF sources by restricting the NOSF
adversary.

Definition 3.12 (Online NOSF source). A (g, ℓ, n, k)-oNOSF source X with symbols in Σ = {0, 1}n

and length ℓ is over Σℓ, written as X = X1, . . . ,Xℓ, and has the following property: There exists
a set of good blocks G ⊆ [ℓ] such that |G| ≥ g and the random variables in {Xi}i∈G are each
independently sampled (n, k)-sources such that Xi is independent of X1, . . . ,Xi−1. We say that a
block Xi is good if i ∈ G and bad otherwise.

Remark 3.13. Online NOSF sources are also NOSF sources because the adversary in oNOSF
sources is strictly weaker than that of NOSF sources.

These oNOSF sources are special cases of the SHELA sources from [AORSV20]. We now
introduce SHELA sources in their full generality.

Definition 3.14 (SHELA source [AORSV20]). A distribution X over ({0, 1}n)ℓ is a (g, ℓ, n, k)-
Somewhere Honest Entropic Look Ahead (SHELA) source if there exists a (possibly randomized)
adversary A such that X is produced by sampling g out of ℓ indices to place independently sam-
pled (n, k)-sources and then placing adversarial blocks in the other ℓ − g indices that may depend
arbitrarily on any block that comes before it.

Concretely, there must exist random variables 1 ≤ I1 < I2 < · · · < Ig ≤ ℓ with arbitrary joint
distribution, denoting the indices of the independent (n, k)-sources, and g independent (n, k)-sources
Z1,Z2, . . . ,Zg such that X is generated in the following manner:

1. Sample (i1, i2, . . . , ig) ∼ (I1, I2, . . . , Ig).

2. For all j ∈ [g] set Bij = Zj.

18



3. For all i ∈ [ℓ] \ {i1, i2, . . . , ig], the adversary sets Bi = A(B1, . . . ,Bi−1, i1, . . . , ig}.

4. Finally, let X = (B1, . . . ,Bℓ).

We will generally call the blocks Z1, . . . ,Zg the “good” blocks and the remaining blocks “bad” blocks.

Similar to NOSF sources, when k = n we will simply say X is a (g, ℓ, n)-uniform SHELA source,
and when n is implicit we will simplify further to a uniform (g, ℓ)-SHELA source.

While working over oNOSF sources is easier than working over general SHELA sources, all of
our results still apply to general SHELA sources since SHELA sources are convex combinations of
oNOSF sources.

Proposition 3.15. Every (g, ℓ, n, k)-SHELA source X is a convex combination of (g, ℓ, n, k)-
oNOSF sources.

Proof. Let I = I1, I2, . . . , Ig be the distribution of indices used in the construction of X. For a
sample I ∼ I, let XI be the (g, ℓ, n, k)-oNOSF source in the construction of which the adversary
chose the good blocks to be at indices I and the functions describing the bad blocks to be identical
to those of X when the sample of indices from I is I. That is, when I is sampled in the construction
of X we have for all j ∈ [ℓ] \ I that Xj = (XI)j as functions.

With this setup, we directly have that X = EI∼I[XI ], so X is a convex combination of XI ’s.

Lastly, we define adversarial Chor-Goldreich (CG) sources, which have an adversary like that
of oNOSF sources that can depend arbitrarily on past blocks, but the adversary of adversarial CG
sources can have some effect on future blocks, unlike that of oNOSF sources.

Definition 3.16 (Adversarial CG source). A (g, ℓ, n, k)-aCG source X with symbols in Σ = {0, 1}n

and length ℓ is over Σℓ, written as X = X1, . . . ,Xℓ, and has the following property: There exists a
set of good blocks G ⊆ [ℓ] such that |G| ≥ g and the random variables in {Xi}i∈G have the property
that for all prefixes (a1, . . . , ai−1) ∈ ({0, 1}n)i−1,

H∞(Xi | X1, . . . ,Xi−1 = a1, . . . , ai−1) ≥ k.

As before, if k = n then we simply call X a uniform (g, ℓ, n)-aCG source, and we omit n when
it is implicit.

We have introduced all of these definitions since our results resolve open questions for each.
The relationship between all these definitions is necessary to clearly see how our lower and upper
bounds apply. In line with this, we show an equivalence between uniform oNOSF sources and
uniform aCG sources.

Proposition 3.17. A source X is a uniform oNOSF source if and only if it is a uniform aCG
source.

Proof. Say X is a uniform (g, ℓ, n)-oNOSF source. Then, because bad blocks may only depend on
the good blocks that have a lower index than them and all the good blocks are sampled indepen-
dently, the good blocks satisfy the prefix condition in Definition 3.16 to give us that X is a uniform
(g, ℓ, n)-aCG source.

On the other hand, say that X is a uniform (g, ℓ, n)-aCG source. Then the fact that for a good
block Xi we have for all (a1, . . . , ai−1) ∈ ({0, 1}n)i−1 that H∞(Xi | X1, . . . ,Xi−1 = a1, . . . , ai−1) =
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n, so Xi is uniform given any prefix, means that Xi is independent of all blocks that come before
it. In particular, this means that bad blocks may only depend on the good blocks that come before
them. In addition, the good blocks being uniform clearly means that they are independent from
each other. Hence, X is a uniform (g, ℓ, n)-oNOSF source as well.

Therefore, when we prove a condensing impossibility result by constructing a oNOSF source,
that same result applies to NOSF sources and aCG sources sources as well. On the other hand,
our condensing possibility results for uniform oNOSF sources also apply to uniform aCG sources,
but our results for non-uniform oNOSF sources may not apply to non-uniform aCG sources.

4 Impossibility Results

In this section, we prove condensing impossibility results for uniform NOSF sources and uniform
oNOSF sources. First, in Section 4.1 we demonstrate condensing impossibility results for all three
classes of sources when g ≤ ℓ/2. Then, in Section 4.2 we show a condensing impossibility result
for uniform (g, ℓ)-NOSF sources for arbitrary settings of g and ℓ. Finally, we use a result from
Section 4.1 to show the impossibility of condensing from low min-entropy CG sources in Section 4.3.

4.1 Impossibility of condensing when g ≤ ℓ/2

We will prove that for g ≤ ℓ/2, it is impossible to condense from uniform (g, ℓ)-oNOSF sources
to rate more than 1

⌊ℓ/g⌋ . As we noted in Remark 3.13 and Proposition 3.17, these results apply to
uniform NOSF sources and uniform aCG sources as well.

Theorem 4.1. For all ε > 0, there exists a δ > 0 such that for all g, ℓ ∈ N with g ≤ ℓ/2 and for
all f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-oNOSF source X so that Hε

∞(f(X)) ≤
1

⌊ℓ/g⌋ ·m+ δ.

This implies that for the special case when g divides ℓ, any non-trivial condensing is impossible.

Corollary 4.2. For all ε > 0, g, ℓ ∈ N with g | ℓ, there exists a δ > 0 such that: for all functions
f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-oNOSF source X such that Hε

∞(f(X)) <
g
ℓ ·m+ δ.

Proof. Follows immediately from Theorem 4.1.

The proof of Theorem 4.1 involves two ingredients. First, we show that for the special case of
g = 1, condensing above rate 1

ℓ is impossible for uniform (1, ℓ)-oNOSF sources. Second, we extend
these results to uniform (g, ℓ)-oNOSF sources with g ≤ ℓ/2 by showing that if it is impossible to
condense from uniform (1, ℓ′)-oNOSF sources, then it is impossible to condense above rate 1

ℓ′ from
uniform (g, ℓ)-oNOSF sources when g

ℓ ≤
1
ℓ′ .

Formally, these two lemmas are as follows:

Lemma 4.3. For all ε > 0, there exists a δ > 0 such that for all functions f : ({0, 1}n)ℓ → {0, 1}m,
there exists a uniform (1, ℓ)-oNOSF source X so that Hε

∞(f(X)) < 1
ℓ ·m+ δ.

Lemma 4.4. Let g, ℓ, ℓ′, n′, n,m ∈ N be such that ℓ′ ≤ ℓ, gℓ ≤
1
ℓ′ , ⌈ℓ/ℓ

′⌉n < n′. Let 0 < ε < 1, δ > 0

be such that: for any function f : ({0, 1}n
′
)ℓ

′
→ {0, 1}m, there exists a uniform (1, ℓ′)-oNOSF

source Y so that Hε
∞(f(Y)) < 1

ℓ′ ·m + δ. Then, for any function h : ({0, 1}n)ℓ → {0, 1}m, there
exists a uniform (g, ℓ)-oNOSF source X such that Hε

∞(h(X)) ≤ 1
ℓ′ ·m+ δ.
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Our main theorem follows by combining these two lemmas.

Proof of Theorem 4.1. Divide ℓ by g so that ℓ = c · g + r where c ≥ 1, r < g ∈ N. We can
derive our desired impossibility result by applying Lemma 4.4 to the result of Lemma 4.3 uniform
(1, c)-oNOSF sources.

We defer the proof of Lemma 4.4 until Section 4.4. In the next subsubsection, we will focus on
proving Lemma 4.3.

4.1.1 Proving main theorem for the case of g = 1

We prove this lemma by showing that if one cannot condense from uniform (g, ℓ)-oNOSF sources,
then one cannot condense from uniform (g, ℓ+ g)-oNOSF sources.

Lemma 4.5. Let c0, c1, ε, δ ∈ R and g, n, ℓ ∈ N be such that g ≤ ℓ, 0 < c0 < 1, ε < c1 < 1. Assume
that for all A ∈ N and function f : ({0, 1}n)ℓ → [A], there exists a uniform (g, ℓ)-oNOSF source
(uniform (g, ℓ)-NOSF source, respectively) X such that Hε

∞(f(X)) ≤ g
ℓ · log(A) + δ. Then, for

all M ∈ N and every function h : ({0, 1}n)ℓ+g → [M ], there exists a uniform (g, ℓ+ g)-oNOSF
source (uniform (g, ℓ)-NOSF source, respectively) Y such that Hε

∞(h(Y)) ≤ g
ℓ+g · m + δ′ where

δ′ = max
(
log

(
c1

(1−c1)c0(c1−ε)

)
, δ + log(c0)g

ℓ

)
and m = log(M).

We remark that Lemma 4.5 paves the way for an inductive argument and we instantiate it to
prove Lemma 4.3 as follows:

Proof of Lemma 4.3. We inductively apply Lemma 4.5 with g = 1 and arbitrary ℓ to prove the
claim. Notice that for all distributionsX on {0, 1}m, Hε

∞(X) ≤ m. For the base case of g = 1, ℓ = 1:
for any function f and uniform (1, 1)-oNOSF source W, it must be that Hε

∞(f(W)) ≤ m. Now,

inductively apply Lemma 4.5 by setting c0 = 1, c1 = 1+ε
2 , δ = log

(
2(1+ε)
(1−ε)2

)
to infer the claim for

uniform (1, ℓ)-NOSF sources.

4.1.2 Recursive impossibility lemma

To prove Lemma 4.5, we find a dominating set in dense bipartite graphs with left degree lower
bound. We will use it to construct a uniform oNOSF source that will serve as a counterexample
for a candidate condenser.

Lemma 4.6 (Small Dominating Set in Bipartite Graph). Let c0 > 0, 0 < c1 < 1, δ > 0 ∈ R, N,M ∈
N be arbitrary. Let G = (U, V,E) be a bipartite graph with |U | = N , |V | = M , such that for all
u ∈ U : deg(u) ≥ c0 · M

δ. Then, there exists D ⊆ V with |D| ≤ c1
(1−c1)c0

· M1−δ such that

|Nbr(D)| ≥ c1N .

Using this dominating set lemma, we prove Lemma 4.5.

Proof of Lemma 4.5. Fix a function h : ({0, 1}n)ℓ+g → [M ]. We will construct a uniform (g, ℓ+ g)-
oNOSF source (uniform (g, ℓ+ g)-NOSF source respectively) Y such that Hε

∞(f(Y )) < g
ℓ+g ·m+δ′.

Let N = 2n. We consider two cases:
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Case 1. For all (x1, . . . , xg) ∈ ({0, 1}n)g : | Supp(h(x1, . . . , xg,Uℓ))| ≥ c0M
ℓ/(ℓ+g).

Consider an undirected bipartite graph G = (U, V,E) where U = ({0, 1}n)g and V = [M ] with
edge e = (u, v) ∈ E where u = (x1, . . . , xg) ∈ U and v ∈ V iff there exist xg+1, . . . , xℓ+g

such that h(x1, . . . , xℓ+g) = v. Applying Lemma 4.6 to G, there exists D ⊂ [M ] such that
|D| ≤ c1

(1−c1)c0
Mg/(ℓ+g) and for c1N

g many tuples (x1, . . . , xg) ∈ ({0, 1}n)g, there exist y1, . . . , yℓ ∈

({0, 1}n)ℓ such that h(x1, . . . , xg, y1, . . . , yℓ) ∈ D. Let Adv : ({0, 1}n)g → ({0, 1}n)ℓ be defined as:

Adv(x1, . . . , xg) =

{
(y1, . . . , yℓ) if there exist y1, . . . , yℓ such that h(x1, . . . , xg, y1, . . . , yℓ) ∈ D

(0n)ℓ otherwise

Consider the uniform (g, ℓ+ g)-oNOSF source (uniform (g, ℓ+ g)-NOSF source respectively)
X = (X1, . . . ,Xℓ+g) such that X1, . . . ,Xg are independent uniform distributions and
(Xg+1, . . . ,Xg+ℓ) = Adv(X1, . . . ,Xg). Then, with probability c1, h(X) ∈ D. Applying Claim 3.3,

we infer that Hε
∞(X) ≤ log

(
c1Mg/(ℓ+g)

(1−c1)c0(c1−ε)

)
= g

ℓ+g ·m+ log
(

c1
(1−c1)c0(c1−ε)

)
≤ g

ℓ+g ·m+ δ′.

Case 2. There exist x1, . . . , xg ∈ ({0, 1}n)g such that | Supp(h(x1, . . . , xg,Uℓ))| ≤ c0M
ℓ/(ℓ+g).

Let S = Supp(h(x1, . . . , xg,Uℓ)). Define f : {0, 1}ℓ → S by f(y1, . . . , yℓ) = h(x1, . . . , xg, y1, . . . , yℓ).
Then, by assumption, there exists uniform (g, ℓ)-oNOSF source (uniform (g, ℓ)-NOSF source, re-
spectively) Y such that Hε

∞(f(Y)) ≤ g
ℓ · log(|S|) + δ. Consider uniform (g, ℓ+ g)-oNOSF source

X = (X1, . . . ,Xℓ+g) where distributions X1, . . . ,Xg always output x1, . . . , xg and Xg+1, . . . ,Xℓ+g

are distributed as Y. Then,

Hε
∞(f(X)) ≤

g

ℓ
· log(|S|) + δ ≤

g

ℓ+ g
·m+ δ +

log(c0)g

ℓ
≤

g

ℓ+ g
·m+ δ′

4.1.3 Finding small dominating set in bipartite graphs

We now directly prove Lemma 4.6.

Proof of Lemma 4.6. We construct D via a greedy algorithm specified in Algorithm 1. This algo-
rithm greedily chooses right vertices in V with highest degree, adds them to D, and stops once the
neighborhood of D, gets large enough. To analyze this algorithm, we can use loose bounds on the
number of edges and vertices at any one step. As the algorithm stops once at least c1N vertices
are removed from U , for all iterations i, |Ui| ≥ (1− c1)N . In addition, because left vertices are only
removed when one of their neighbors in V is added to D, the remaining vertices in U always have
their original degrees intact. So, for all iterations i and for all u ∈ Ui, it holds that deg(u) ≥ c0 ·M

δ.
So,

|Ei| ≥ |Ui| c0 ·M
δ ≥ (1− c1)Nc0 ·M

δ

Observe that for all i, |Vi| ≤ |V | = M . So,

deg(vi) ≥
|Ei|

|Vi|
≥

(1− c1)Nc0 ·M
δ

M
=

(1− c1)c0N

M1−δ
.
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Algorithm 1:

i← 0
D ← ∅

G0 = (U0, V0, E0)← G = (U, V,E)
while |Nbr(D)| < c1N do

Let vi ∈ Vi be the vertex of maximum degree in Gi

D ← D ∪ {vi}
Vi+1 ← Vi \ {vi}
Ui+1 ← Ui \Nbr(vi)
Ei+1 ← Ei \ {(u, v) ∈ E : v = vi or u ∈ Nbr(vi)}
Gi+1 ← (Ui+1, Vi+1, Ei+1)

end

The algorithm terminates when at least c1N vertices are added to D and at each step deg(vi)
vertices are added to D. Hence, the number of iterations for which the algorithm runs is at most

c1N
(1−c1)c0N

M1−δ

=
c1

(1− c1)c0
·M1−δ

The claim follows since exactly 1 vertex is added to D in each iteration.

4.2 Impossibility of condensing from uniform (g, ℓ)-NOSF sources

Our main theorem in this subsection is that it is impossible to condense from uniform (g, ℓ)-NOSF
sources where g ≥ ℓ

2 + 1. Using it and previous results, we obtain impossibility results for all g, ℓ.

Theorem 4.7. There exists a universal constant c > 0 such that for all g, ℓ,m, n ∈ N with ℓ/2 <

g < ℓ, there exist ε =
(
1
cℓ

)ℓ−g
, δ = c · ℓ2 log(ℓ) so that the following holds: for any function f :

({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-NOSF source X such that Hε
∞(f(X)) ≤ g

ℓ ·m+δ.

We also infer the following useful corollary that shows that uniform (g, ℓ)-NOSF sources cannot
be condensed beyond rate 1 − 1/ℓ′ with error O(1/ℓ′) where ℓ′ is the smallest integer such that
g/ℓ ≤ 1− 1/ℓ′.

Corollary 4.8. There exists a universal constant c such that the following holds: For all
g, ℓ, ℓ′,m, n ∈ N where ℓ′ is the smallest integer such that g

ℓ ≤
ℓ′−1
ℓ′ , there exist ε = 1

cℓ′ , δ =

c · (ℓ′)2 log(ℓ′) so that the following holds: for all functions f : ({0, 1}n)ℓ → {0, 1}m, there exists a
uniform (g, ℓ)-NOSF source X such that Hε

∞(f(X)) ≤ 1
ℓ′ ·m+ δ.

We also get a stronger impossibility result for uniform (g, ℓ)-NOSF sources (compared to con-
densing impossibility for uniform (g, ℓ)-oNOSF sources proved in Theorem 4.1) for the regime
g ≤ ℓ/2.

Corollary 4.9. There exists a universal constant c such that for all ℓ, g, r,m, n ∈ N with ℓ mod g =

r, there exist ε =
(

1
c(g+r)

)r
, δ = c ·(r+g)2 log(g+r) so that the following holds: for all functions f :

({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-NOSF source X such that Hε
∞(f(X)) ≤ g

ℓ ·m+δ.
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Proof. For ℓ = g + r, apply Lemma 4.12 (see below) to infer there exists a universal constant c

such that the claim holds for ε =
(

1
c(g+r)

)r
, δ = c · (r + g)2 log(g + r). Now, recursively apply

Lemma 4.5 with these ε, δ, setting c0 = 1, c1 =
1+ε
2 to infer the claim. When applying Lemma 4.5,

we take advantage of the fact that ε < 3/4 and that c is a large enough constant to get that

δ ≥ log
(
2(1+ε)
(1−ε)2

)
.

We obtain impossibility result for all uniform (ag, aℓ)-NOSF sources where g and ℓ are constants
and a ∈ N is arbitrarily large.

Corollary 4.10. For all fixed g, ℓ ∈ N, there exist constants ε, δ > 0 so that the following holds: for
all a,m, n ∈ N and for all functions f : ({0, 1}n)aℓ → {0, 1}m, there exists a uniform (ag, aℓ)-NOSF
source X such that Hε

∞(f(X)) ≤ g
ℓ ·m+ δ.

We also record the special case of when the total number of blocks ℓ is a constant.

Corollary 4.11. For all fixed g, ℓ ∈ N, there exist constants ε, δ > 0 so that the following holds:
For all m,n ∈ N and for all functions f : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-NOSF
source X such that Hε

∞(f(X)) ≤ g
ℓ ·m+ δ.

Proof. Directly follows by setting a = 1 in Corollary 4.10.

We prove our main theorem using the following general version of the theorem which we denote
as our main lemma:

Lemma 4.12. There exists universal constants c such that for all c0 > 0, g, ℓ,M, n ∈ N with
ℓ/2 < g < ℓ, and for all A ⊂ ({0, 1}n)ℓ with |A| = c0(2

n)ℓ, the following holds: for any function
f : ({0, 1}n)ℓ → [M ], there exists a uniform (g, ℓ)-NOSF source X, A′ ⊂ A∩Supp(X) and D ⊂ [M ]

such that f(A′) ⊂ D where |A′| ≥ c0 ·
(
1
cℓ

)ℓ−g
·Ng, and |D| ≤ (cℓ)ℓ

2

·
(

2
c0

)g
·Mg/ℓ.

Using this main lemma, the theorem follows:

Proof of Theorem 4.7 assuming Lemma 4.12. Applying Lemma 4.12 with A = M = {0, 1}m, we
infer that there exists uniform (g, ℓ)-NOSF source X, universal constant c0 and D ⊂ {0, 1}m such

that |D| ≤ (c0ℓ)
ℓ2 ·2g ·Mg/ℓ and Pr[f(X) ∈ D] ≥

(
1
c0ℓ

)ℓ−g
. Applying Claim 3.3 with ε = 1

2 ·
(

1
c0ℓ

)ℓ−g
,

we infer that

Hε
∞(f(X)) ≤ log

(
|D|

ε/2

)

≤
g

ℓ
·m+ ℓ2 log(c0ℓ) + g + (ℓ− g) log(c0ℓ) + 1

≤
g

ℓ
·m+ c · ℓ2 log(ℓ)

where c is a large enough universal constant. As ε = 1
2 ·

(
1
c0ℓ

)ℓ−g
≥

(
1
cℓ

)ℓ−g
, we infer the claim.

To prove our corollary regarding condensing uniform (g, ℓ)-NOSF sources where g
ℓ is a large

constant, we will use the following lemma:

24



Lemma 4.13. Let g, ℓ, ℓ′, n′, n,m ∈ N be such that g
ℓ ≤

ℓ′−1
ℓ′ , ⌈ℓ/ℓ′⌉n < n′. Let 0 < ε < 1, δ > 0

be such that: for any function f : ({0, 1}n
′

)ℓ
′

→ {0, 1}m, there exists a uniform (ℓ′ − 1, ℓ′)-NOSF
source Y so that Hε

∞(f(Y)) ≤ ℓ′−1
ℓ′ ·m+ δ. Then, for any function h : ({0, 1}n)ℓ → {0, 1}m, there

exists a uniform (g, ℓ)-NOSF source X such that Hε
∞(h(X)) ≤ ℓ′−1

ℓ′ ·m+ δ.

We will prove this lemma in a later in Section 4.4. Using it, the corollary immediately follows:

Proof of Corollary 4.8. We apply Theorem 4.7 to uniform (ℓ′ − 1, ℓ′)-NOSF sources and use it in
Lemma 4.13 to infer the claim.

To prove our corollary regarding condensing uniform (ag, aℓ)-NOSF sources where g and ℓ are
constants and a is arbitrary, we will use the following lemma that allows us to generalize the
impossibility result:

Lemma 4.14. Let g, ℓ ∈ N and 0 < ε < 1, δ > 0 be such that for all n,m ∈ N and all functions
f : ({0, 1}n)ℓ → {0, 1}m, there exists an uniform (g, ℓ)-NOSF source X such that Hε

∞(f(X)) ≤
g
ℓ · m + δ. Then, for all a, n,m ∈ N and all functions f : ({0, 1}n)aℓ → {0, 1}m, there exists an
uniform (ag, aℓ)-NOSF source X such that Hε

∞(f(X)) ≤ g
ℓ ·m+ δ.

We will also prove this lemma in Section 4.4. Using it, the corollary immediately follows:

Proof of Corollary 4.10. We apply Corollary 4.9 with g, ℓ to infer that there exist 0 < ε < 1, δ > 1
such that for all n,m ∈ N and all functions f : ({0, 1}n)ℓ → {0, 1}m, there exists an uniform
(g, ℓ)-NOSF source X such that Hε

∞(f(X)) ≤ g
ℓ ·m+ δ. Finally, we apply Lemma 4.14 to infer the

claim.

4.2.1 Proving the main lemma

Here, we will prove Lemma 4.12. We first introduce some helpful notation for this part. For an
edge e ∈ E, let χ(e) denote the color of e in H. For a vertex x ∈ H, let

NbrH(x) = {y ∈ H : (x, y) ∈ E}.

Similarly, for a vertex x ∈ H, and color γ ∈ [M ], let

NbrH(x, γ) = {y ∈ H : (x, y) ∈ E and χ(x, y) = γ}.

To prove the main lemma, we will utilize the following special case of the main lemma, corre-
sponding to the case of g = ℓ− 1, that we prove later:

Lemma 4.15. There exists a universal constant c > 0 such that for all M,n, ℓ ≥ 3 ∈ N, and
A ⊂ ({0, 1}n)ℓ with |A| = c0(2

n)ℓ, the following holds: for any function f : ({0, 1}n)ℓ → {0, 1}m,
there exists a uniform (ℓ− 1, ℓ)-NOSF source X, A′ ⊂ A ∩ Supp(X) with |A′| ≥ 1

c ·
c0
ℓ ·N

ℓ−1, and

D ⊂ [M ] with |D| ≤ c · 1
ℓ2
·
(

2
c0

)ℓ−2
·M (ℓ−1)/ℓ such that f(A′) ⊂ D.

The main lemma follows by an inductive argument where the special case above is the base
case.
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Remark 4.16. In proof of Lemma 4.12, one can use g = ℓ as the base case as well. However, for
clarity’s sake we use g = ℓ− 1 as the base case. For first time readers, it will be helpful to first read
the direct non-inductive proof of Lemma 4.15 presented in Section 4.2.2 before reading the proof of
Lemma 4.12 as both these proofs share a lot of ideas.

Proof of Lemma 4.12. Let N = 2n. We will often identify {0, 1}n with [N ] wherever convenient.
We let c be a very large universal constant.

We proceed by induction on b = ℓ − g. Formally, for b ≥ 1 ∈ N we will prove the claim for
ℓ, g ∈ N with ℓ/2 < g < ℓ such that b = ℓ− g.

For the base case, we let b = 1 and apply Lemma 4.15 to infer the claim.
For the inductive step, say we want to prove the hypothesis for b ≥ 2 assuming the hypothesis

holds for b− 1. Fix some g, ℓ such that ℓ− g = b. Let c1 =
1
4ℓ , c2 =

(
3
2

)1/ℓ2
− 1, c3 =

2
3 , c4 =

c0
4 . By

binomial approximation, there exists a constant α ≥ 1 such that 1
α ·

0.4
ℓ2
≤ c2 ≤ α · 0.6

ℓ2
for all ℓ. For

all positions p ∈ [ℓ], let Sp ⊂ [N ]ℓ−1 be defined as follows: (x1, . . . , xp−1, xp+1, . . . , xℓ) ∈ Sp if and
only if

|{f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) : y ∈ {0, 1}
n ∧ (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A}| ≥ c2M

1/ℓ

We consider various cases:

Case 1. There exists p ∈ [ℓ] such that |Sp| ≥ c0c1N
ℓ−1.

Consider the bipartite graph G = (U, V,E) where U = Sp, V = [M ] and edge e =
(u, v) = ((x1, . . . , xp−1, xp+1, . . . , xℓ), z) ∈ E if and only if there exists y ∈ {0, 1}n such that
f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) = z and (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A. Then by assumption,
for all u ∈ U , it holds that deg(u) ≥ c2M

1/ℓ. We apply Lemma 4.6 to G and infer that there exists
Dend ⊂ V such that |Dend| ≤

c3
c2(1−c3)

M (ℓ−1)/ℓ and NbrG(Dend) ≥ c0c1c3 |U | ≥ c0c1c3N
ℓ−1.

Let A′
end ⊂ A be defined as follows: for a vertex u = (x1, . . . , xp−1, xp+1, . . . , xℓ) ∈ NbrG(Dend), we

add (x1, . . . , xp−1, y, xp+1, . . . , xℓ) to A′
end where y is such that (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A

and f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ Dend (we only pick one such y per u and if multiple such y
exist, we break ties arbitrarily). Let z ∈ Dend be an arbitrary element. Let fend : ({0, 1}n)ℓ−1 →
Dend be defined as follows:

fend(x1, . . . , xp−1, xp+1, . . . , xℓ) ={
f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∃y : (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A′

end

z otherwise

We now use inductive hypothesis on the candidate function fend (having rangeDend), and restriction
set NbrG(Dend). Notice that |NbrG(Dend)| ≥ cend0 = c0c1c3. We infer there exists uniform (g, ℓ− 1)-
NOSF source Xind, A′

ind ⊂ NbrG(Dend)∩ Supp(X
ind), and Dind ⊂ Dend such that f(A′

ind) ⊂ Dind.
Let Adv : ({0, 1}n)ℓ−1 → {0, 1}n be defined as follows:

Advend(x1, . . . , xp−1, xp+1, . . . , xℓ) =

{
y ∃y : (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A′

end

0n otherwise

Let Xind = (Xind
1 , . . . ,Xind

p−1,X
ind
p+1, . . . ,X

ind
ℓ ). Now, define

X = (Xind
1 , . . . ,Xind

p−1,Advend(X
ind
1 , . . . ,Xind

p−1,X
ind
p+1, . . . ,X

ind
ℓ ),Xind

p+1, . . . ,X
ind
ℓ )
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Similarly, define

A′ = {(x1, . . . , xp−1, y, xp+1, . . . , xℓ) | (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A′
end∧(x1, . . . , xp−1, xp+1, . . . , xℓ) ∈ A′

ind}

Let D = Dind. By construction, X is a uniform (g, ℓ)-NOSF source where A′ ⊂ A ∩ sup(X) and
f(A′) ∈ D. Moreover,

∣∣A′
∣∣ ≥ cprev0 ·

(
1

c(ℓ− 1)

)ℓ−g−1

·Ng

≥ c0 ·
1

4ℓ
·
2

3
·

(
1

cℓ

)ℓ−g−1

·Ng

≥ c0 ·

(
1

cℓ

)ℓ−g

·Ng

Also,

|D| ≤ (c(ℓ− 1))(ℓ−1)2 ·

(
1

cend0

)g

· (|Dend|)
g/(ℓ−1)

≤ (c(ℓ− 1))(ℓ−1)2 ·

(
1

c0c1c3

)g

·

(
c3

1− c3
·
1

c2
·M (ℓ−1)/ℓ

)g/(ℓ−1)

≤ (cℓ)(ℓ−1)2 ·

(
1

c0
· (4ℓ) ·

3

2

)g

·

(
2 ·

α · ℓ2

0.4
·M (ℓ−1)/ℓ

)g/(ℓ−1)

≤ (cℓ)(ℓ−1)2 ·

(
1

c0

)g

· (6ℓ)ℓ · (5α · ℓ2) ·Mg/ℓ

≤ (cℓ)ℓ
2

·

(
1

c0

)g

·Mg/ℓ

Hence, the inductive step is proven for this case.

Case 2. The above case does not happen, i.e., for all p ∈ [ℓ], |Sp| < c0c1N
ℓ−1.

Let S ⊂ [N ]ℓ be defined as follows: (x1, . . . , xℓ) ∈ S if and only if there exists p ∈ [ℓ] such that
x1, . . . , xp−1, . . . , xp+1, . . . , xℓ ∈ Sp. Then,

|S| ≤
ℓ∑

p=1

|Sp| ·N ≤ c0c1ℓ ·N
ℓ

Consider the ℓ-uniform ℓ-partite hypergraph H = (V1, . . . , Vℓ, E) where e = (v1, . . . , vℓ) ∈ E if and
only if e ∈ A \ S. As |S| ≤ c0c1ℓ · N

ℓ, it must be that |E| ≥ c0(1 − c1ℓ) · N
ℓ. This implies there

exists (v∗1, . . . , v
∗
ℓ−g) ∈ (V1, . . . , Vℓ−g) such that deg(v∗1, . . . , v

∗
ℓ−g) ≥ c0(1 − c1ℓ) · N

g. Consider the
g-uniform g-partite hypergraph H ′ = (Vℓ−g+1, . . . , Vℓ, E

′) where e = (vℓ−g+1, . . . , vℓ) ∈ E′ if and
only if (v∗1, . . . v

∗
ℓ−g, vℓ−g+1, . . . , vℓ) ∈ E. Then, |E′| ≥ c0(1 − c1ℓ) · N

g Now, color the edges of H ′

with colors from [M ] such that χ(vℓ−g+1, . . . , vℓ) = f(v∗1, . . . , v
∗
ℓ−g, v

∗
ℓ−g+1, . . . , vℓ). By assumption,
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for every position p ∈ [ℓ− g + 1, ℓ], and every (ℓ− 1) tuple (vℓ−g+1, . . . , vp1 , vp+1, . . . , vℓ) ∈ [N ]ℓ−1:
the number of distinct colored edges as entries in position p vary in H ′ is ≤ c2M

1/ℓ. Formally,
|χH′(vℓ−g+1, . . . , vp−1, y, vp+1, . . . , vℓ) : y ∈ [N ]| ≤ c2M

1/ℓ. Applying Lemma 4.17 to H, we infer

that there exists D ⊂ [M ] such that |D| ≤ c4c2(c2+1)g(g+1)/2−1

(c0(1−c1ℓ)−c4)g
Mg/ℓ and c4N

g edges in H are colored
in one of the colors from D.

Let A′ = {(v∗1, . . . , v
∗
ℓ−g, xℓ−g+1, . . . , xℓ) : χH′(xℓ−g+1, . . . , xℓ) ∈ D}. Then, A′ ⊂ A and

∣∣A′
∣∣ ≥ c4N

g ≥
1

c
· c0 ·N

g ≥ c0 ·

(
1

cℓ

)ℓ−g

·Ng

Moreover, f(A′) ⊂ D and

|D| ≤
c4c2(c2 + 1)g(g+1)/2−1

(c0(1− c1ℓ)− c4)g
Mg/ℓ ≤ (cℓ)ℓ

2
·

(
1

c0

)g

·Mg/ℓ

We now create uniform (ℓ− 1, ℓ)-NOSF source X = (X1, . . . ,Xℓ) which will have the desired
properties. Let Adv : {0, 1}(ℓ−1)n → {0, 1}n be defined as follows:

Adv(xℓ−g+1, . . . , xℓ) =

{
v∗1, . . . , v

∗
ℓ−g if (xℓ−g+1, . . . , xℓ) ∈ E′

0n otherwise

Let Xℓ−g+1 = · · · = Xℓ = Un and let X1, . . . ,Xℓ−g = Adv(Xℓ−g+1, . . . ,Xℓ). Then, A′ ⊂ Supp(X)
as desired, completing the inductive step for this case as well.

4.2.2 Proving the main lemma for g = ℓ− 1

We will prove our main lemma for the case of g = ℓ − 1 using a color covering lemma for dense
t-partite t-uniform hypergraphs colored in some special way:

Lemma 4.17 (Small Color Covering for Hypergraphs). Let 0 < c0 ≤ 1, 0 < c1, 0 < ε < c0
be arbitrary. Let H = (V1, . . . , Vt, E) be a t-uniform t-partite hypergraph with V1 = · · · = Vt =
[N ], |E| = c0N

t. Let the edges of H be colored in one of M colors so that for every position p ∈ [T ],
and every (t − 1) tuples: (v1, . . . , vp1 , vp+1, . . . , vt) ∈ [N ]t−1, the number of distinct colored edges
as entries position p vary is ≤ c1M

δ. Formally, |χ(v1, . . . , vp−1, y, vp+1, . . . , vt) : y ∈ [N ]| ≤ c1M
δ.

Then, there exists D ⊆ [M ] such that |D| ≤ εc1(c1+1)t(t+1)/2−1

(c0−ε)t ·M tδ and at least εN t edges in H are
colored in one of the colors from D.

We prove this color covering lemma later. Using it, we prove our main lemma for the case of
g = ℓ− 1:

Proof of Lemma 4.15. Let N = 2n. We will often identify {0, 1}n with [N ] wherever convenient.

Let c1 = 1
4ℓ , c2 =

(
3
2

)1/ℓ2
− 1, c3 = 2

3 , c4 = c0
4 . We let c be a very large universal constant. By

binomial approximation, there exists a constant α ≥ 1 such that 1
α ·

0.4
ℓ2
≤ c2 ≤ α · 0.6

ℓ2
for all ℓ. For

all positions p ∈ [ℓ], let Sp ⊂ [N ]ℓ−1 be defined as follows: (x1, . . . , xp−1, xp+1, . . . , xℓ) ∈ Sp if and
only if

|{f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) : y ∈ {0, 1}
n ∧ (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A}| ≥ c2M

1/ℓ

We consider various cases:

28



Case 1. There exists p ∈ [ℓ] such that |Sp| ≥ c0c1N
ℓ−1.

Consider the bipartite graph G = (U, V,E) where U = Sp, V = [M ] and edge e =
(u, v) = ((x1, . . . , xp−1, xp+1, . . . , xℓ), z) ∈ E if and only if there exists y ∈ {0, 1}n such that
f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) = z and (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A. Then by assumption,
for all u ∈ U , it holds that deg(u) ≥ c2M

1/ℓ. We apply Lemma 4.6 to G and infer that there exists
D ⊂ V such that |D| ≤ c3

c2(1−c3)
M (ℓ−1)/ℓ and NbrG(D) ≥ c0c1c3 |U | ≥ c0c1c3N

ℓ−1.

We now construct set A′ ⊂ A. For each vertex u = (x1, . . . , xp−1, xp+1, . . . , xℓ) ∈ NbrG(D), we
add (x1, . . . , xp−1, y, xp+1, . . . , xℓ) to A′ where y is such that (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A and
f(x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ D (we only pick one such y per u and if multiple such y exist, we
break ties arbitrarily). By construction, we have that A′ ⊂ A and

∣∣A′
∣∣ ≥ c0c1c3N

ℓ−1 ≥
1

c
·
c0
ℓ
·N ℓ−1

Moreover, f(A′) ∈ D and

|D| ≤
c3

c2(1− c3)
M (ℓ−1)/ℓ ≤ c ·

1

ℓ2
·

(
2

c0

)ℓ−2

·M (ℓ−1)/ℓ

We now construct uniform (ℓ− 1, ℓ)-NOSF source X = (X1, . . . ,Xℓ) with the desired properties.
Let Adv : ({0, 1}n)(ℓ−1) → {0, 1}n be defined as follows:

Adv(x1, . . . , xp−1, xp+1, . . . , xℓ) =

{
y ∃y : (x1, . . . , xp−1, y, xp+1, . . . , xℓ) ∈ A′

0n otherwise

Let X1 = · · · = Xp−1 = Xp+1 = · · · = Xℓ = Un. Let Xp = Adv(X1, . . . ,Xp−1, . . . ,Xp+1, . . . ,Xℓ).
Then, A′ ⊂ Supp(X) as desired.

Case 2. The above case does not happen, i.e., for all p ∈ [ℓ], |Sp| < c0c1N
ℓ−1.

Let S ⊂ [N ]ℓ be defined as follows: (x1, . . . , xℓ) ∈ S if and only if there exists p ∈ [ℓ] such that
x1, . . . , xp−1, . . . , xp+1, . . . , xℓ ∈ Sp. Then,

|S| ≤
ℓ∑

p=1

|Sp| ·N ≤ c0c1ℓ ·N
ℓ

Consider the ℓ-uniform ℓ-partite hypergraph H = (V1, . . . , Vℓ, E) where e = (v1, . . . , vℓ) ∈ E if and
only if e ∈ A \ S. As |S| ≤ c0c1ℓ · N

ℓ, it must be that |E| ≥ c0(1 − c1ℓ) · N
ℓ. This implies there

exists v∗1 ∈ V1 such that deg(v∗1) ≥ c0(1− c1ℓ) ·N
ℓ−1. Consider the (ℓ− 1)-uniform (ℓ− 1)-partite

hypergraph H ′ = (V2, . . . , Vℓ, E
′) where e = (v2, . . . , vℓ) ∈ E′ if and only if (v∗1, . . . , vℓ) ∈ E. Then,

|E′| = deg(v∗1) ≥ c0(1 − c1ℓ) · N
ℓ−1 Now, color the edges of H ′ with colors from [M ] such that

χ(v2, . . . , vℓ) = f(v∗1, v2, . . . , vℓ). By assumption, for every position p ∈ [2, ℓ], and every (ℓ − 1)
tuple (v2, . . . , vp1 , vp+1, . . . , vℓ) ∈ [N ]ℓ−1: the number of distinct colored edges as entries in position
p vary inH ′ is≤ c2M

1/ℓ. Formally, |χH′(v2, . . . , vp−1, y, vp+1, . . . , vℓ) : y ∈ [N ]| ≤ c2M
1/ℓ. Applying

Lemma 4.17 to H, we infer that there exists D ⊂ [M ] such that |D| ≤ c4c2(c2+1)(ℓ−1)ℓ/2−1

(c0(1−c1ℓ)−c4)ℓ−1 M (ℓ−1)/ℓ

and c4N
ℓ−1 edges in H are colored in one of the colors from D.
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Let A′ = {(v∗1, x2, . . . , xℓ) : χH′(x2, . . . , xℓ) ∈ D}. Then, A′ ⊂ A and

∣∣A′
∣∣ ≥ c4N

ℓ−1 ≥
1

c
· c0 ·N

ℓ−1 ≥
1

c
·
c0
ℓ
·N ℓ−1

Moreover, f(A′) ∈ D and

|D| ≤
c4c2(c2 + 1)(ℓ−1)ℓ/2−1

(c0(1− c1ℓ)− c4)ℓ−1
M (ℓ−1)/ℓ ≤ c ·

1

ℓ2
·

(
2

c0

)ℓ−2

·M (ℓ−1)/ℓ

We now create uniform (ℓ− 1, ℓ)-NOSF source X = (X1, . . . ,Xℓ) which will have the desired
properties. Let Adv : {0, 1}(ℓ−1)n → {0, 1}n be defined as follows:

Adv(x2, . . . , xℓ) =

{
v∗1 if (x2, . . . , xℓ) ∈ E′

0n otherwise

Let X2 = · · · = Xℓ = Un and let X1 = Adv(X2, . . . ,Xℓ). Then, A
′ ⊂ Supp(X) as desired.

4.2.3 Finding a small color covering in locally-light hypergraphs

We consider dense t-uniform t-partite hypergraphs where all edges are colored and the hypergraph
satisfies a “locally-light” condition: all t− 1-tuples are adjacent to a small number of colors. The
covering lemma finds small set of colors that covers constant fraction of edges in the hypergraph.
We do this by finding a popular color in such a hypergraph.

Lemma 4.18 (Popular Color in Locally-Light Hypergraphs). Let 0 < c0 ≤ 1, 0 < c1 be arbitrary.
Let t ≥ 2 ∈ N. Let H = (V1, . . . , Vt, E) be a t-uniform t-partite hypergraph with |V1| = · · · = |Vt| =
N, |E| = c0N

t. Let the edges of H be colored in one of M colors so that for every position p ∈ [T ],
and every (t − 1) tuples: (v1, . . . , vp1 , vp+1, . . . , vt) ∈ [N ]t−1, the number of distinct colored edges
as entries position p vary is ≤ c1M

δ. Formally, |χ(v1, . . . , vp−1, y, vp+1, . . . , vt) : y ∈ [N ]| ≤ c1M
δ.

Then, there exists a color γ ∈ [M ] such that at least
ct0

c1(c1+1)t(t+1)/2−1 ·N
t/M tδ edges in H are colored

with color γ.

Using this lemma, our color covering lemma for hypergraph follows by repeatedly finding such
popular colors.

Proof of Lemma 4.17. We introduce some additional notation: for a color γ ∈ [M ], let

countH(γ) = |{e ∈ H : χ(e) = γ}| .

We will construct D by a greedy algorithm where we add the most popular color in H to D, remove
all edges of that color, and repeat. Further details are specified in Algorithm 2.

We observe that countH(γ1) ≥ · · · ≥ countH(γ|D|). At the iteration number |D| of the loop, the

number of uncovered edges in H is at least (c0− ε)N2. Applying Lemma 4.18 on H(|D|−1), we infer
that

countH(γ|D|) ≥
(c0 − ε)t

c1(c1 + 1)t(t+1)/2−1
·N t/M tδ
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Algorithm 2:

i← 0, D ← ∅

H(0) = (V
(0)
1 , . . . , V

(0)
t , E(0))← H = (V1, . . . , Vt, E)

while countH(D) ≤ εN t do
Let γi ∈ [M ] be the color that maximizes countHi(γi).
D ← D ∪ {γi}
E(i+1) ← E(i) \ {e ∈ E | χ(e) = γi}
H(i+1) ← (V1, . . . , Vt, E

(i+1))
i← i+ 1

end

Hence, the number of edges covered in each iteration of the loop is at least (c0−ε)t

c1(c1+1)t(t+1)/2−1 ·

N t/M tδ As the loop stops when the number of edges covered is at least εN t, the number of iterations
to terminate is at most

εN t

(c0−ε)t

c1(c1+1)t(t+1)/2−1 ·N t/M tδ
=

εc1(c1 + 1)t(t+1)/2−1

(c0 − ε)t
·M tδ

As the number of iterations of the loop equals |D|, we indeed infer the claim.

4.2.4 Finding a popular color in locally-light hypergraphs

For the base case, we find such a popular color in graphs:

Lemma 4.19 (Popular Color in Locally-Light Graphs). Let 0 < c0 ≤ 1, 0 < c1 be arbitrary. Let
H = (U, V,E) be a bipartite graph with |U | = |V | = N, |E| = c0N

2. Let the edges of H be colored
in one of M colors so that for every vertex x ∈ H, the number of distinct colored edges incident on

x is ≤ c1M
δ. Then, there exists a color γ ∈ [M ] such that at least

c20
(c1+1)2c1

·N2/M2δ edges in H

are colored with color γ.

Using this, we inductively find a popular color in locally-light hypergraphs.

Proof of Lemma 4.18. We prove this result by induction on t with the inductive hypothesis for t
being that such a popular color exists for graphs with this property.

For the base case, t = 2. We apply Lemma 4.19 directly on H and infer the claim.
For the inductive step, assume that we have proven the hypothesis for t − 1 and using it, we

prove the hypothesis for t where t ≥ 3. Let c2 =
c0

c1+1 . Let

E′ = {e = (v1, . . . , vt) ∈ E : |NbrH((v2, . . . , vt), χ(e))| ≥ c2N/M δ}

Let H ′ = (V1, . . . , Vt, E
′). We now lower bound the number of edges in E′. Fix arbitrary (t − 1)-

tuple v = (v2, . . . , vt) ∈ [N ]t−1. By assumption, |{γ ∈ [M ] : |NbrH(v, γ)| > 0}| ≤ c1M
δ. In H ′, we

excluded all edges in H incident to the tuple v with color γ such that |NbrH(v, γ)| < c2N/M δ.
Hence, we exclude at most c1c2N such edges incident to v in H. As there are at most N t−1 such
tuples, the total number of edges we excluded in E′ is at most c1c2N

t. Hence, |E′| ≥ (c0− c1c2)N
t.
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As |V1| ≤ N , there exists v∗1 ∈ V1 such that NbrH′(v∗1) ≥ |E
′| /N ≥ (c0 − c1c2)N

t−1. Let
G = (V2, . . . , Vt, EG) be a (t− 1)-uniform (t− 1)-partite hypergraph where (v2, . . . , vt) ∈ EG if and
only if (v∗1, v2, . . . , vt) ∈ E′. We see that G satisfies the conditions of the inductive hypothesis for

t− 1. Hence, there exists a color γ∗ ∈ [M ] such that at least (c0−c1c2)t−1

c1(c1+1)t(t−1)/2−1 ·N
t−1/M (t−1)δ edges

in G are colored by γ∗. For each edge e = (v2, . . . , vt) in G with χ(e) = γ∗, by property of E′ and
the fact that edge (v∗1, v2, . . . , vt) ∈ E′, |NbrH′((v2, . . . , vt), γ

∗)| ≥ c2N/M δ. Thus, the number of
edges in H ′, and hence H colored with γ∗ is at least

(c0 − c1c2)
t−1

c1(c1 + 1)t(t−1)/2−1
·N t−1/M (t−1)δ · c2N/M δ ≥

ct0
c1(c1 + 1)t(t+1)/2−1

·NT /M tδ

Hence, the inductive hypothesis holds for t, completing the inductive step, proving the claim.

Finally, we directly argue a popular color exists in dense locally-light bipartite graphs.

Proof of Lemma 4.19. Let c2 =
c0

c1+1 . Let

E′ = {e = (u, v) ∈ E : |NbrH(v, χ(e))| ≥ c2N/M δ}

Let H ′ = (U, V,E′). We now lower bound the number of edges in E′. Fix arbitrary vertex v ∈ V .
By assumption, |{γ ∈ [M ] : |NbrH(v, γ)| > 0}| ≤ c1M

δ. In H ′, we excluded all edges in H incident
to v with color γ such that |NbrH(v, γ)| < c2N/M δ. Hence, we exclude at most c1c2N such edges
incident to v in H. As |V | ≤ N , the total number of edges we excluded in E′ is at most c1c2N

2.
Hence, |E′| ≥ (c0 − c1c2)N

2.
As |U | ≤ N , there exists u∗ ∈ U such that NbrH′(u∗) ≥ |E′| /N ≥ (c0− c1c2)N . As the number

of distinct colored edges incident on u∗ is at most c1M
δ, there exists a color γ∗ ∈ [M ] such that

|NbrH′(u∗, γ∗)| ≥ (c0−c1c2)N
c1Mδ . For each v ∈ NbrH′(u∗, γ∗), by definition of E′, |NbrH′(v, γ∗)| ≥ c2N

Mδ .

Hence, the number of edges e ∈ H ′ colored with γ∗ is at least

∑

v∈NbrH′ (u∗,γ∗)

|NbrH′(v, γ∗)| ≥
∣∣NbrH′(u∗,γ∗)

∣∣ · c2N
M δ

≥
(c0 − c1c2)c2N

2

c1M2δ
=

c20N
2

(c1 + 1)2c1M2δ

4.3 Impossibility of condensing from CG sources

We prove two impossibility results regarding impossibility of condensing from (ℓ, ℓ)-aCG sources.
Our first result Theorem 4.21 states that any candidate condenser cannot decrease the entropy gap
present in the blocks of CG sources. Our second result in contrast, states that when blocks have
linear entropy, then condenser cannot condense beyond rate 1/2. The latter result is much stronger
than the former in regimes where m is comparatively larger than n (say m = O(nℓ) and ℓ = ω(1)).

4.3.1 Impossibility of non-trivial condensing beyond min-entropy gap

We will use the fact that it is impossible to condense from general (n, k)-sources.

Lemma 4.20. For all n, k,m ∈ N and ε > 0 the following holds: For all functions f : {0, 1}n →
{0, 1}m, there exists an (n, k) source X such that Hε

∞(f(X)) ≤ m − (n − k) + log(1/(1 − ε)) −
max(m− n, 0).
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We believe a result of this form is well-known but we were unable to find a good reference.
Thus, for the sake of completeness, we prove this lemma at the end of this subsection. Using this,
we prove our impossibility result for (ℓ, ℓ)-aCG sources.

Theorem 4.21. For all 0 < ε < 1,∆ and ℓ,m, n ∈ N, the following holds: for every function
f : ({0, 1}n)ℓ → {0, 1}m, there exists a (ℓ, ℓ)-aCG source X where the good blocks have min-entropy
at least n − ∆ − log(ℓ/ε) − O(1) conditioned on all fixings of previous blocks and Hε

∞(f(X)) ≤
m−∆+ log(2/(2− ε))−max(m− ℓn, 0).

Proof. Let X be an arbitrary (t, k)-source where t = ℓn and k = n − ∆. We transform X into
a source Y = (Y1, . . . ,Yℓ) with block lengths n that is ε/2-close to an (ℓ, ℓ)-aCG source where
the good blocks have min-entropy at least n − ∆ − log(2(ℓ − 1)/ε) conditioned on all fixings of
the previous blocks. We then apply Lemma 4.20 to infer that it is impossible to condense (ℓ, ℓ)-
aCG sources so that the output distribution is ε-close to having min-entropy more than m−∆+
log(2/(2− ε)−max(m− ℓn, 0) as desired.

Let γ = ε
2(ℓ−1) . For 1 ≤ i ≤ ℓ, we define each block Yi as Yi = X[(i − 1) · n, i · n]. We prove

that Y is ε/2-close to a block source with ℓ blocks of length n each and each of them has entropy
at least n−∆− log(1/γ) conditioned on all previous blocks. We will inductively prove that for all
j down from ℓ+ 1 to 1, there exist blocks Zj , . . . ,Zℓ such that:

1.
(Y1, . . . ,Yℓ) ≈(ℓ−j+1)γ (Y1, . . . ,Yj−1,Zj , . . . ,Zℓ)

2. For all w ∈ N such that j ≤ w ≤ ℓ, conditioned on every fixing of Y1, . . . ,Yj−1,Zj , . . . ,Zw−1:
the min-entropy of Zw is at least n−∆− log(1/γ).

3.
H∞((Y1, . . . ,Yj−1)) ≥ n(j − 1)−∆.

The base case of j = ℓ+ 1 is trivially true.
For the inductive step, assume the claim holds for j + 1 ≤ ℓ + 1. We prove the claim

for j. We begin by proving the third requirement is satisfied. By assumption, we know that
H∞((Y1, . . . ,Yj)) ≥ jn − ∆. Looking ahead, we apply Lemma 5.17 to (Y1, . . . ,Yj) and to it’s
projection onto first n(j − 1) bits ; we infer that H∞((Y1, . . . ,Yj−1)) ≥ n(j − 1)−∆ as desired.

Applying Lemma 3.4, we get that with probability at least 1− γ over fixings of Y1, . . . ,Yj−1,
the source (Y1, . . . ,Yj) will have conditional min-entropy at least n − ∆ − log(1/γ). So, with
probability at least 1 − γ over fixings of (Y1, . . . ,Yj−1), Yj will have conditional min-entropy
at least n − ∆ − γ. Let these good fixings of Y1, . . . ,Yj−1 be S. By the inductive hypothesis,
there exist blocks Zj+1, . . . ,Zℓ that satisfy the conditions of the inductive hypothesis. Define the
distribution (Z′

j , . . . ,Z
′
ℓ) as being same as the conditional distribution of (Yj ,Zj+1, . . . ,Zℓ) when

(Y1, . . . ,Yj−1) ∈ S and equal to (Un)
ℓ−j+1 otherwise. Then,

(Y1, . . . ,Yj ,Zj+1, . . . ,Zℓ) ≈γ (Y1, . . . ,Yj−1,Z
′
j , . . . ,Zℓ)
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Hence,

∣∣(Y1, . . . ,Yℓ)− (Y1, . . . ,Yj−1,Z
′
j , . . . ,Z

′
ℓ)
∣∣ ≤ |(Y1, . . . ,Yℓ)− (Y1, . . . ,Yj ,Zj+1, . . . ,Zℓ)|

+
∣∣(Y1, . . . ,Yj ,Zj+1, . . . ,Zℓ)− (Y1, . . . ,Yj−1,Z

′
j , . . . ,Z

′
ℓ)
∣∣

≤ (ℓ− j)γ + γ

≤ (ℓ− j + 1)γ

We now prove that the second condition of the inductive hypothesis for j is satisfied.
When (Y1, . . . ,Yj−1) 6∈ S, for all w ∈ N with j ≤ w ≤ ℓ, Z′

w will be independent and uniform
and so will have entropy at least n−∆− log(1/γ) conditioned on all fixings of blocks before it.

When (Y1, . . . ,Yj−1) ∈ S, then the conditional distribution (Z′
j , . . . ,Z

′
w) equals the conditional

distribution (Yj ,Zj+1, . . . ,Zℓ). By the definition of S, Z′
j will have min-entropy at least n−∆−

log(1/γ). Moreover, for all w ∈ N with j + 1 ≤ w ≤ ℓ, by the inductive hypothesis, on every fixing
of (Yj ,Zj+1,Zw−1), we have that Zw will have min-entropy at least n −∆ − log(1/γ). Thus, on
every fixing of (Z′

j , . . . ,Z
′
w−1), we have that Z′

w will have min-entropy at least n−∆− log(1/γ).
Hence, all 3 conditions are satisfied and the inductive step is proven.

Lastly, we provide the proof that no non-trivial condensers exist for arbitrary (n, k)-sources.

Proof of Lemma 4.20. Let N = 2n,M = 2m,K = 2k. We identify {0, 1}n, {0, 1}m with [N ], [M ]
respectively. We prove that for m ≤ n, Hε

∞(f(X)) ≤ k+m− n+ log(1/(1− ε)). If m > n then we
observe that |Supp(f)| ≤ N . So, we relabel f so that it’s co-domain is {0, 1}n, apply the mentioned
claim, and infer that Hε

∞(f(X)) ≤ k+ log(1/(1− ε)). Hence, it suffices to prove the said claim for
m ≤ n.

For z ∈ [M ], let χ(z) = {x ∈ [N ] : f(x) = z} and w(z) = |χ(z)|. Without loss of generality,
let w(1) ≥ w(2) ≥ · · · ≥ w(M). For i ∈ [M ], let Si =

∑i
j=1w(j). Let i∗ ∈ [M ] be the smallest

integer such that Si∗ ≥ K. Let r = K − Si∗−1. Let A = ∪i
∗−1
j=1 χ(j). Moreover, add arbitrary

r elements from χ(i∗) into A. Let X be the (n, k) source that is uniform over the set A. Let
kout = k+m− n+ log(1/(1− ε)). Then, we claim that Hε

∞(f(X)) ≤ kout. As w(1) ≥ · · · ≥ w(M),

it must be that for all 1 ≤ j ≤M :
Sj

j ≥
SM
M = N

M . Hence, Sj ≥
jN
M . In particular, if j ≥ KM

N , then

Sj ≥ K. As i∗ is the smallest integer such that Si∗ ≥ K, it must be that i∗ ≤ KM
N . Hence, with

probability 1, f(X) ∈ [KM/N ]. Applying Claim 3.3, we infer thatHε
∞(f(X)) ≤ k+m−n+log(1/ε)

as desired.

4.3.2 Impossibility of condensing beyond rate 1/2

Using condensing impossibility result for uniform (1, 2)-oNOSF sources, we prove a condensing
impossibility result for (ℓ, ℓ)-aCG source (which are just CG sources, with no adversarial blocks)
where the good blocks have min-entropy at least O(n/ℓ) conditioned on every fixing of previous
blocks.

Theorem 4.22. For all 0 < ε < 1 there exists a δ > 0 such that the following holds: for every
function f : ({0, 1}n)ℓ → {0, 1}m, there exists a (ℓ, ℓ)-aCG source X where the good blocks have min-

entropy at least n−ℓ log(2ℓ/ε)
ℓ+1 conditioned on all fixings of previous blocks and Hε

∞(f(X)) ≤ 1
2 ·m+ δ.
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Proof. Let X = (X1,X2) be an arbitrary uniform (1, 2)-oNOSF source where the length of the

blocks is at least ℓ(ℓ+1)
2 ·

(
n−ℓ log(2ℓ/ε)

ℓ+1 + log(2ℓ/ε)
)
. We transform X into a source Y = (Y1, . . . ,Yℓ)

with block lengths n that is ε/2-close to an (ℓ, ℓ)-aCG source. We will then apply Lemma 4.3 with
ℓ = 2 and error ε/2 to infer that it is impossible to condense such (ℓ, ℓ)-aCG sources so that the
output distribution is ε-close to having min-entropy more than 1

2 ·m+ δ.

Let γ = ε
2ℓ , t2 =

n−ℓ log(1/γ)
ℓ+1 , t1 = t2 + log(1/γ). Define each block Yi as follows:

Yi = X2[(i− 1) · t2 + 1, . . . , (i) · t2] ◦X1[(i)(i− 1)/2 · t1 + 1, . . . , (i)(i+ 1)/2 · t1] ◦ 0
n−(t2+i·t1)

We claim that Y is ε/2-close to a CG source where each good block has min-entropy at least t2 for
every fixing of the previous blocks. We consider cases on the location of the good block in X.

Case 1. Block X2 is good.
As X is a uniform oNOSF source, X1 and X2 are independent. As X2 is uniform, this implies each
sub-source from X2 is also uniform conditioned on every fixing of all other bits in X. Hence, for
all i, and (y1, . . . , yi−1) ∈ ({0, 1}n)i−1 : H∞ (Yi | (Y1, . . . ,Yi−1) = (y1, . . . , yi−1)) ≥ t2.

Case 2. Block X1 is good.
We will use the following claim that most fixings of previous blocks preserve min-entropy:

Claim 4.23. For all 1 ≤ i ≤ ℓ: with probability at least 1 − γ over fixings of Y1, . . . ,Yi−1 :
H∞(Yi) ≥ t2

We will prove this claim later.

Using it, we will inductively to prove that for all j starting from ℓ down to 1, there exist blocks
Zj , . . . ,Zℓ such that:

1. (Y1, . . . ,Yℓ) ≈(ℓ−j+1)γ (Y1, . . . ,Yj−1,Zj , . . . ,Zℓ).

2. For all t ∈ N such that j ≤ t ≤ ℓ, conditioned on every fixing of Y1, . . . ,Yj−1,Zj , . . . ,Zt−1:
the min-entropy of Zt is at least t2.

The overall claim exactly corresponds to the inductive hypothesis for j = 1 and hence, it suffices
to prove this.

For the base case of j = ℓ, proceed as follows: Applying Claim 4.23, with probability at least 1− γ
over fixings of Y1, . . . ,Yℓ−1, Yℓ will have conditional min-entropy at least t2. Let these good fixings
of Y1, . . . ,Yℓ−1 be S. Define the distribution Zℓ as being same as the conditional distribution Yℓ

when (Y1, . . . ,Yℓ−1) ∈ S and equals Un otherwise. Then,

(Y1, . . . ,Yℓ) ≈γ (Y1, . . . ,Yℓ−1,Zℓ)

Moreover, conditioned on every fixing of (Y1, . . . ,Yℓ−1): Zℓ will have entropy at least t2. Hence,
both conditions are satisfied and the base case is proven.

For the inductive step, assume the claim holds for j + 1 ≤ ℓ. We prove the claim for j. Applying
Claim 4.23, with probability at least γ over fixings of Y1, . . . ,Yj−1, Yj will have conditional min-
entropy at least t2. Let these good fixings of Y1, . . . ,Yj−1 be S. By the inductive hypothesis, there
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exists blocks Zj+1, . . . ,Zℓ that satisfy both conditions laid out in the inductive hypothesis. Define
the distribution (Z′

j , . . . ,Z
′
ℓ) as being same as the conditional distribution of (Yj ,Zj+1, . . . ,Zℓ)

when (Y1, . . . ,Yj−1) ∈ S and equal to (Un)
ℓ−j+1 otherwise. Then,

(Y1, . . . ,Yj ,Zj+1, . . . ,Zℓ) ≈γ (Y1, . . . ,Yj−1,Z
′
j , . . . ,Zℓ)

Hence,

∣∣(Y1, . . . ,Yℓ)− (Y1, . . . ,Yj−1,Z
′
j , . . . ,Z

′
ℓ)
∣∣ ≤ |(Y1, . . . ,Yℓ)− (Y1, . . . ,Yj ,Zj+1, . . . ,Zℓ)|

+
∣∣(Y1, . . . ,Yj ,Zj+1, . . . ,Zℓ)− (Y1, . . . ,Yj−1,Z

′
j , . . . ,Z

′
ℓ)
∣∣

≤ (ℓ− j)γ + γ

≤ (ℓ− j + 1)γ

We now prove that the second condition of the inductive hypothesis for j is satisfied.

When (Y1, . . . ,Yj−1) 6∈ S, for all t ∈ N with j ≤ t ≤ ℓ, Z′
t will be independent and uniform and

hence will have entropy at least t2 conditioned on all fixings of blocks before it.

When (Y1, . . . ,Yj−1) ∈ S, then the conditional distribution (Z′
j , . . . ,Z

′
t) equals the conditional

distribution (Yj ,Zj+1, . . . ,Zℓ). By the definition of S, Yj and hence Z′
j will have min-entropy at

least t2. Moreover, for all t ∈ N with j + 1 ≤ t ≤ ℓ, by the inductive hypothesis, on every fixing of
(Yj ,Zj+1,Zt−1), we have that Zt will have min-entropy at least t2. Equivalently, on every fixing
of (Z′

j , . . . ,Z
′
t−1), we have that Z′

t will have min-entropy at least t2.

Hence, both conditions are satisfied and the inductive step is proven.

Lastly we prove our claim that most fixings of previous blocks preserve min-entropy in the later
block.

Proof of Claim 4.23. Let s = i(i−1)
2 · t1. As X1 is uniform, X1[s+ 1, . . . , s+ i · t1] remains uniform

conditioned on every fixing α of X1[1, . . . , s]. By the min-entropy chain rule (Lemma 3.4), with
probability at least 1− γ over fixings β of X2[1, . . . , i · t2] and every fixing α ∈ {0, 1}s:

H∞ (X1[s+ 1, . . . , s+ i · t1] | X2[1, . . . , (i− 1) · t2] = β,X1[1, . . . , s] = α)

≥ i · t1 − ((i− 1) · t2 + log(1/γ))

≥ t2

By construction, fixing X2[1, . . . , (i − 1) · t2] and X1[1, . . . , s] fixes Y1, . . . ,Yi−1. For every fixing
of these blocks, H∞(Yi) ≥ H∞(X1[s+ 1, . . . , s+ i · t1]) and the claim follows.

4.4 Deferred proofs of helpful lemmas

The remaining deferred proofs of lemmas follow from the following results:
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Lemma 4.24. Let g, ℓ, n, g′, ℓ′, n′,m ∈ N be such that g ≤ a · g′+max(b− (ℓ′− g′), 0), (a+1)n ≤ n′

where a, b ∈ N are unique integers such that ℓ = a · ℓ′ + b where 0 ≤ b < ℓ′. Let 0 < ε < 1, δ > 0
be such that: for any function f : ({0, 1}n

′

)ℓ
′

→ {0, 1}m, there exists a uniform (g′, ℓ′)-oNOSF

source (uniform (g′, ℓ′)-NOSF source, respectively) Y so that Hε
∞(f(Y)) ≤ g′

ℓ′ · m + δ. Then,
for any function h : ({0, 1}n)ℓ → {0, 1}m, there exists a uniform (g, ℓ)-oNOSF source (uniform

(g, ℓ)-NOSF source, respectively) X such that Hε
∞(h(X)) ≤ g′

ℓ′ ·m+ δ.

Proof of Lemma 4.24. For the sake of contradiction, assume there exists a non-trivial condenser
h : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF source (uniform (g, ℓ)-NOSF source,

respectively) X, Hε
∞(h(X)) ≥ g′

ℓ′ ·m+ δ. We will use h to construct a condenser f : ({0, 1}n
′
)ℓ

′
→

{0, 1}m for uniform (g′, ℓ′)-oNOSF source (uniform (g′, ℓ′)-NOSF sources, respectively) to get a
contradiction.

Define f : ({0, 1}n
′
)ℓ

′
→ {0, 1}m as: f(Y1, . . . ,Yℓ′) = h(X1, . . . ,Xℓ=aℓ′+b) where the Xi are

constructed by splitting up the Yj as evenly as possible. Concretely, from each of the b blocks
Y1, . . . ,Yb, construct a+1 blocks of length n each to form b(a+1) blocks of the Xi’s. Furthermore,
from each of the ℓ′ − b remaining blocks Yb+1, . . . ,Y

′
ℓ construct a blocks of length n each to form

(ℓ′ − b)a blocks of the Xi’s. In total, we constructed b(a+ 1) + (ℓ′ − b)a = aℓ′ + b = ℓ blocks of X
as desired. As Y contains at least g′ good blocks, X will contain a · g′ good blocks if g′ ≤ ℓ′ − b
and at least a · g′ + g′ − (b − ℓ′) otherwise. By assumed constraints on g, we infer that X will
contain at least g good blocks as desired. We indeed check that this construction preserves one
sidedness of the bad blocks — if X is a uniform oNOSF source source, then Y is also a uniform
oNOSF source source. Hence, X is a uniform (g, ℓ)-oNOSF source (uniform (g, ℓ)-NOSF source,

respectively). Thus, Hε
∞(f(Y) ≥ Hε

∞(h(X)) ≥ g′

ℓ′ ·m+ δ, a contradiction.

The deferred proofs of couple of lemmas follow from this result.

Proof of Lemma 4.4. We apply Lemma 4.24 with g′ = 1 to infer the claim.

Proof of Lemma 4.13. We apply Lemma 4.24 with g′ = ℓ′ − 1 to infer the claim.

Proof of Lemma 4.14. We apply Lemma 4.24 with g = ag′, ℓ = aℓ′ to infer the claim.

5 Condensers for oNOSF Sources

We will prove the following main theorem regarding condensing from oNOSF sources in this section:

Theorem 5.1. For all g, ℓ, r ∈ N, ε > 0 such that
⌊
ℓ−1
g−1

⌋
= r and r < ℓ−1

g−1 , there exists a condenser

Cond : ({0, 1}n)ℓ → {0, 1}m such that for any (g, ℓ, n, k)-oNOSF source X with k ≥ 2 log(gn/ε), we

have that Hε
∞(X) ≥ 1

r ·m− 2(5ℓ−g − 1) log
(
(g−1)k
8ℓε

)
with m = r

(
k
8ℓ − 2(5ℓ−g − 1) log

(
(g−1)k

8ℓ

))
.

This result is tight up to lower order terms as it asymptotically matches the impossibility results
of Theorem 4.1.

We prove this theorem in two steps. First, we show how to transform oNOSF sources to uniform
oNOSF sources:

Theorem 5.2. For any g, ℓ, ε, there exists a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 with
m = k

8ℓ such that for any (g, ℓ, k)-oNOSF source X with k ≥ 2 log(gn/ε) there exists a uniform
(g − 1, ℓ− 1)-oNOSF source Y such that |f(X)−Y| ≤ ε.
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Second, we show how to condense from uniform oNOSF sources.

Theorem 5.3. For any g, ℓ, ε such that ⌊ℓ/g⌋ = r and r < ℓ/g, there exists a condenser Cond :
({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF source X we have Hε

∞(Cond(X)) ≥
1
r ·m− 2(5ℓ−g − 1) log(gn/ε) where m = r(n− 2(5ℓ−g − 1) log(gn)).

Using these two ingredients, our main theorem follows:

Proof of Theorem 5.1. Take the transformation function f from Theorem 5.2 and let X′ = f(X)
be the resulting source that is ε/2 close to a uniform

(
g′ = g − 1, ℓ′ = ℓ− 1, n′ = k

8ℓ

)
-oNOSF source

source.
By assumption, we have ⌊ℓ′/g′⌋ = r and r < ℓ′/g′. Consequently, we can apply Theorem 5.3 to

get a condenser Cond′ : ({0, 1})n
′

)ℓ
′

→ {0, 1}m where m = r(n′ − 2(5ℓ
′−g′ − 1) log(g′n′)) such that

Hε2
∞(Cond(X′)) ≥ 1

r · m − 2(5ℓ
′−g′ − 1) log(g′n′/ε2) with ε2 = ε/2. These expressions simplify to

m = r
(

k
8ℓ − 2(5ℓ−g − 1) log

(
(g−1)k

8ℓ

))
and Hε2

∞(Cond(X′)) ≥ m− 2(5ℓ−g − 1) log
(
(g−1)k
8ℓε2

)
.

Finally, we put these two steps together to define Cond : ({0, 1}n)ℓ → {0, 1}m as Cond(X) :=

Cond′(f(X)) so that Hε
∞(X) ≥ m− (5ℓ−g − 1) log

(
(g−1)k
8ℓε

)
.

5.1 Transforming low entropy oNOSF sources to uniform oNOSF sources

We will prove Theorem 5.2 in this subsection. We will use the fact that a random function is a
very good two source extractor.

Lemma 5.4. Let n1, n2, k1, k2,m, ε be such that k1 ≤ n1, k2 ≤ n2,m = k1+ k2− 2 log(1/ε)−O(1),
k2 ≥ log(n1 − k1) + 2 log(1/ε) +O(1), and k1 ≥ log(n2 − k2) + 2 log(1/ε) +O(1). Then, a random
function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a (k1, k2, ε)-two source extractor with probability
1− o(1).

We defer proof of this to Section 5.3. Using this, we will prove our main lemma:

Lemma 5.5. Let g, ℓ,m, n ∈ N and k, k1, k2, ε > 0 be such that k ≥ k1 + ℓm + log(1/ε), k ≥ k2.
Suppose there exists a (k1, k2, ε)-two-source extractor 2Ext : {0, 1}(ℓ−1)·n×{0, 1}n → {0, 1}m. Then
we can construct a function f : ({0, 1}n)ℓ → ({0, 1}m)ℓ−1 such that for any (g, ℓ, n, k)-oNOSF
source X, there exists a uniform (g − 1, ℓ− 1)-oNOSF source Y such that |f(X)−Y| ≤ 2(g− 1)ε.

Using this main lemma, Theorem 5.2 follows:

Proof of Theorem 5.2. Applying Lemma 5.4 with k1 = k − mℓ − log(1/ε), k2 = k, and εExt =
ε/2(g− 1), we get that there exists a two-source extractor 2Ext : {0, 1}n1 ×{0, 1}n2 → {0, 1}m with
these parameters.

Using this two-source extractor as input to Lemma 5.5 gives us the desired result.8

One can get an explicit version of this transformation, with polynomial error by using an explicit
two-source extractor, such as the one from [CZ19].

8We note that we have not fully optimized our parameters here from Lemma 5.4, and it is possible to get k′
2 =

(1 + γ)k2 for some γ > 0 at the expense of other constants.
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We now focus on proving Lemma 5.5. We extend an argument for a somewhere extractor for
low entropy oNOSF sources from [AORSV20]. We do this by using a two source extractor instead
of a seeded extractor in their construction.

To achieve this result, we use the notion of average conditional min-entropy and use some known
results about two-source extractors.

Definition 5.6. For any two distributions X and W, define the average conditional min-entropy
of X given W as

H̃∞(X |W) = − log

(
E

w∼W

[
max

x∈Supp(X)
Pr[X = x |W = w]

])
.

We use this notion of average conditional min-entropy to define notions of average-case strong-
ness in two-source extractors:

Definition 5.7. We say that 2Ext is average-case strong if

2Ext(X1,X2),W ≈ε Um,W

for every X1 and W such that H̃∞(X1 |W) ≥ k1 with X2 independent of X1 and W.

One benefit of the average conditional min-entropy in comparison to conditional min-entropy
is that the chain rule is simpler:

Lemma 5.8. [DORS08] Let A, B, and C be distributions such that Supp(B) ≤ 2λ. Then H̃∞(A |
B,C) ≥ H̃∞(A,B | C)− λ ≥ H̃∞(A | C)− λ.

In addition, Lemma 2.3 of [DORS08] shows that two-source extractors are average-case-two-
source extractors with similar parameters.

Lemma 5.9. [DORS08] For any η > 0, if 2Ext is a (k1, k2, ε)-two-source extractor, then 2Ext is a
(k1 + log(1/η), k2, ε+ η))-average-case-two-source extractor.

We will use it to prove our main theorem in which we provide a general transformation of
low min-entropy oNOSF sources to uniform oNOSF sources given a two-source extractor. This
transformation is based on a similar transformation in [AORSV20].

Proof of Lemma 5.5. For i ∈ {2, . . . , ℓ}, let 2Exti : ({0, 1}
n)i−1 × {0, 1}n → {0, 1}m be defined as

2Exti(x, y) = 2Ext(x◦0(ℓ−i)n, y). Then, 2Exti is a (k1, k2, ε) two source extractor. Using Lemma 5.9
with η = ε gives us that 2Exti is an average-case (k1, k2, ε)-two-source extractor with k1 = k1 +
log(1/ε) and ε = 2ε. By assumption, we have that k ≥ k1+ℓm+log(1/ε) = k1+ℓm, so k−ℓm ≥ k1.

Next, write X as X = X1,X2, . . . ,Xℓ with the g good blocks at indices G1, . . . , Gg. Let
G = {G2, . . . , Gg}. For 2 ≤ r ≤ ℓ, define G≤r = {v ∈ G : v ≤ r}. We define f(X) as f(X) = O =
(O2, . . . ,Oℓ) where our ℓ − 1 output blocks are defined as Oi := 2Exti(X1:i−1,Xi) ∈ {0, 1}m. We
will show that

O2, . . . ,Oℓ ≈2(g−1)ε Y2, . . . ,Yl (1)

where Y = (Y2, . . . ,Yℓ) is a uniform (g, ℓ)-aCG source with good blocks at indices G2, . . . , Gg. By
Proposition 3.17, we infer that Y is also a uniform (g, ℓ)-oNOSF source, proving our claim.
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To show Equation (1), we will use a hybrid argument. For 1 ≤ i ≤ ℓ, let Y(i) =
(O2, . . . ,Oi,Yi+1, . . . ,Yℓ). Note that Y(1) = O and Yℓ = Y. We will maintain the property

that for all 2 ≤ r ≤ ℓ and all j ∈ G with j ≤ r, it holds that Y
(r)
j is uniform conditioned on

Yr
1:(j−1). Furthermore, we will show that Y(r) ≈|G≤r|ε O. We still haven’t specified Y, we will do

it as we go along in the proof.
We now proceed by induction on r where 2 ≤ r ≤ ℓ. If r 6∈ G, then we let Yr = Or and observe

that the property of uniformity of good blocks conditioned on all previous blocks still holds and
the distance property is still maintained. If r ∈ G, then we compute:

H̃∞(X1:r−1 | Y
(r)
2:r−1) ≥ H̃∞(XG1 | Y

(r)
2:Gr−1)

≥ H̃∞(XG1)− ℓm By Lemma 5.8

≥ k − ℓm. By assumption

≥ (k1 + ℓm+ log(1/ε))− ℓm By assumption

= k1 + log(1/ε)

= k1,

We observe that XGr is independent of X1:Gr−1 and hence, from O2:Gr−1 and Y
(r)
2:Gr−1. So,

Or | Y
(r)
2:r−1 = ExtGr(X1:r−1,Xr) | Y

(r)
2:r−1 ≈2ε Um

Hence,

(Y
(r)
2 , . . . ,Y

(r)
r−1,Or) ≈2ε (Y

(r)
2 , . . . ,Y

(r)
r−1,Um)

Let Y
(r)
r = Um. Then, by inductive assumption and triangle inequality, we infer that R ≈|G≤r|ε

Y(r). This completes the inductive proof and Equation (1) indeed holds.

5.2 Condensing from oNOSF sources using output-light two source extractors

In this subsection, we will prove Theorem 5.3. To obtain the condenser, we will utilize two-source
extractors which have an additional property that we call output-light.

Formally, we define output-light two source extractors as follows:

Definition 5.10 (Output-light Two Source Extractor). Let Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m be
a (k1, k2, ε)-two source extractor. Then, Ext is R-output-light if for every z ∈ {0, 1}m, it holds that
|{x ∈ {0, 1}n1 : ∃y ∈ {0, 1}n2(Ext(x, y) = z)}| ≤ R.

We will show a random function is a output-light two source extractor with strong parameters
and we will use it with the following parameters:

Lemma 5.11. Let 0 < δ < 1, C ≥ 4 be arbitrary constants. Let n1, k1, n2, k2, m, εExt, ε be such
that n1 is arbitrary, n2 = C (log(n1) + log(1/ε)) , k1 = δn1 − 2n2, k2 = 4 (log(n1) + log(1/ε)) ,m =
k1 − 2n2, εExt = 2−k2/4 (note that if k2 is larger than the minimum requirement, then εExt gets
proportionally smaller). Then, a random function Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is an R-
output-light (k1, k2, εExt) two-source-extractor where R = 2n1+n2−m+O(1).

We defer proof of their existence in Section 5.3. Using such an extractor, we will prove the
following general condensing result:
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Lemma 5.12. Let g, ℓ, r, n, ε be such that r = ⌊ℓ/g⌋ and r < ℓ/g. Assume that for c ∈ {1, . . . , r},
there exists an Rc-output-light (k1,c, k2,c, εExtc)-two-source extractor 2Extc : {0, 1}

n1,c × {0, 1}n2,c →

{0, 1}mc where n1,c = gn, n2,c =
5ℓ−cg−1

4 ·4 log(gn/ε), k1,c = n−2n2,c, k2,c = 4 (log(gn) + log(1/ε)),

mc = n − 2n2,c, εExtc = 2−k2,c/4 and log(Rc/ε) ≤ n1,c + 2n2,c − mc. Then there exists a con-
denser Cond : ({0, 1}n)ℓ → {0, 1}m such that for any uniform (g, ℓ)-oNOSF source X, we have
Hε

∞(Cond(X)) ≥ 1
r ·m− 2n2,1 here m = r ·mr.

Using this main lemma, the theorem follows:

Proof of Theorem 5.3. We plug in the result of Lemma 5.11 to Lemma 5.12 to infer our claim.

Before we prove this main lemma, we prove Theorem 5.3 for the special case when g > ℓ/2.

Theorem 5.13. For all g, ℓ, ε such that g > ℓ/2, there exists a condenser Cond : ({0, 1}n)ℓ →
{0, 1}m such that for any uniform (g, ℓ)-oNOSF source X, Hε

∞(Cond(X)) ≥ m − (5ℓ−g −
3) (log(gn) + log(1/ε)) where m = n− 2(5ℓ−g − 1) log(gn).

As an application of this theorem, we construct a condenser from a low min-entropy (g, ℓ)-
oNOSF source with g > ℓ/2 + 1. We do this by composing our transformation from Theorem 5.2
with the condenser from Theorem 5.13.

Corollary 5.14. For all g, ℓ, ε such that g > ℓ/2 + 1, there exists a condenser Cond : ({0, 1}n)ℓ →
{0, 1}m such that for any (g, ℓ, n, k)-oNOSF source X with k ≥ 2 log(n), we have Hε

∞(Cond(X)) ≥

m− (5ℓ−g − 3) log
(
(g−1)k
8ℓε

)
where m = k

8ℓ − 2(5ℓ−g − 1) log
(
(g−1)k

8ℓ

)
.

Proof. We begin by transforming X into a uniform
(
g′ = g − 1, ℓ′ = ℓ− 1, n′ = k

8ℓ

)
-oNOSF source

X′ defined as X′ = f(X) by taking f from Theorem 5.2. In this step, we accumulate ε1 = ε/2
error.

As g′ > ℓ′/2, we apply Theorem 5.13 to get a condenser Cond′ : ({0, 1}n
′

)ℓ
′

→ {0, 1}m such
that Hε2

∞(Cond(X′)) ≥ m− (5ℓ
′−g′ − 3) log(g′n′/ε) where m = n′ − 2(5ℓ

′−g′ − 1) log(g′n′), ε2 = ε/2.

Simplifying these expressions then yields m = k
8ℓ − 2(5ℓ−g − 1) log

(
(g−1)k

8ℓ

)
and Hε2

∞(Cond(X′)) ≥

m− (5ℓ−g − 3) log
(
(g−1)k
8ℓε2

)
.

We finish by combining these two steps and defining Cond : ({0, 1}n)ℓ → {0, 1}m as Cond(X) :=

Cond′(f(X)) so that Hε
∞(Cond(X)) ≥ m− (5ℓ−g − 3) log

(
(g−1)k
8ℓε

)
.

5.2.1 Condensing from (g, ℓ)-oNOSF sources with g > ℓ/2

We will prove Theorem 5.13 that allows us to condense from uniform (g, ℓ)-oNOSF sources when
g > ℓ/2. This theorem allows us to condense to almost full entropy.

We will prove this theorem using the following general lemma:

Lemma 5.15. Assume that for some g, n, ε there exists an R-output-light (k1, k2, εExt)-two-source-

extractor Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m where n1 = gn, n2 = 5ℓ−g−1
4 · 4 log(gn/ε), k1 =

n − 2n2, k2 = 4 log(gn/ε),m = n − 2n2, εExt = 2−k2/4 (notice that we require that if k2 supplied is
larger, then εExt gets proportionally smaller). Then, there exists a condenser Cond : ({0, 1}n)ℓ →
{0, 1}m such that for any uniform (g, ℓ)-oNOSF source X with g > ℓ/2, Hε

∞(Cond(X)) =
min (m− n2, n1 − log(R/ε)).
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Using this, our theorem directly follows:

Proof of Theorem 5.13. We use the output-light two source extractor guaranteed from Lemma 5.11
in Lemma 5.15 to get our result.

Towards proving our general lemma, we show that for any flat distribution X over n bits, if
a function f condenses from X, then f also condenses (with a slight loss in parameters) from a
distribution X′ which is the same as the distribution X on most output bits but some output bits
are arbitrarily controlled by an adversary. We note that a lemma similar in spirit to this one was
shown as Lemma 28 in [BCDT19].

Lemma 5.16. Let X ∼ {0, 1}n be an arbitrary flat distribution and let Cond : {0, 1}n → {0, 1}m be
such that Hε

∞(Cond(X)) = k. Let G ⊂ [n] with |G| = n − b. Let XG ∼ {0, 1}
n−b be the projection

of X onto G. Let X′ ∼ {0, 1}n be the distribution where the output bits defined by G equal XG and
remaining b bits are deterministic functions of the n− b bits defined by G under the restriction that
Supp(X′) ⊂ Supp(X). Then, Hε′

∞(f(X′)) ≥ k − b where ε′ = ε · 2b.

We will prove this result later. Using this result, we use output-light two-source-extractor to
prove our general lemma:

Proof of Lemma 5.15. Let the input be x = (x1, . . . , xℓ). For g + 1 ≤ i ≤ ℓ, let yi be the first
5ℓ−i ·(4 log(gn/ε)) bits of xi. Let z1 = x1◦· · ·◦xg, z2 = yg+1◦· · ·◦yℓ. Then, let Cond(x) = Ext(z1, z2).
LetYi be the distribution of yi and let Zi be the distribution of zi. We consider cases on the position
of the adversary and show that for all such oNOSF sources, the output will be condensed:

Case 1. At least one source out of Xg+1, . . . ,Xℓ is good.
Let this block beXj (so g+1 ≤ j ≤ ℓ). As g > ℓ/2, at least one source out ofX1, . . . ,Xg is good and
hence, H∞(Z1) ≥ n. Without loss of generality, we assume only these 2 sources are good in X and
remaining sources are bad. Let A = Yg+1, . . . ,Yj−1,B = Yj+1, . . . ,Yℓ. Then, Z2 = A ◦Yj ◦B.
As Xj is a good source and X is a oNOSF source, Xj remains a uniform source conditioned on any
fixing of A, so Yj does as well. Also, by the min-entropy chain rule (Lemma 3.4), with probability
1− ε/2 over fixings of A, H∞(Z1) ≥ n− n2 − log(2/ε) ≥ k1.

Consider (Z|A = a) where a is such a good fixing of A. We will show that for all such good fixings

H
ε/2
∞ Ext(Z) ≥ m − n2. By assumption, H∞(Z1|A = a) ≥ k1 and H∞(Yj |A = a) = H∞(Yj) =

5ℓ−j · 4 log(gn/ε). Moreover, we can without loss of generality assume H∞(Z1|A = a) is a flat
source (we can express it as convex combination of such flat sources). As X is a oNOSF source,
(Z1|A = a) and (Yj |A = a) are independent distributions. Assume for now that (B|A = a) were
uniform and independent of Yj and A. Then, (Z1|A = a) and (Z2|A = a) = (a,Yj ,B|A =

a) will be independent sources with min-entropy at least k1 and k′2 =
∑ℓ

i=j 5
ℓ−j(4 log(gn/ε)) =

5ℓ−j+1−1
4 ·4 log(gn/ε) ≥ k2, respectively. Hence, Ext(Z) will be εExt close to the uniform distribution

over m bits where εExt = 2−k′2/4. However, in reality, B might be arbitrarily controlled by an
adversary and can depend on Z1,A,Yj . The number of bits controlled by the adversary is nb =∑l

i=j+1 5
ℓ−i (4 log(gn/ε)) = 5ℓ−j−1

4 · 4 log(gn/ε). To overcome this, we apply Lemma 5.16 (using

the fact that (Z1,A,Uk′2
)|A = a is a flat distribution) and infer that Hε′

∞(Ext(Z)) ≥ m− nb where

ε′ = εExt · 2
nb ≤ 2−k′2/4+nb . As nb ≤ n2, the output min-entropy is at least m − nb ≥ m − n2.

Moreover, ε′ ≤ 2−k′2/4+nb which is 2− log(gn/ε) ≤ ε/2 if j = ℓ and which is 2− log(gn/ε)·(5ℓ−j+3)/16 ≤
2− log(gn/ε)/2 ≤ ε/2 if j ≤ ℓ− 1.
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Case 2. All of the sources Xg+1, . . . ,Xℓ are bad.
This implies sources X1, . . . ,Xg are good. Let kout = n1 − log(R/ε). Let N1 = 2n1 ,M = 2m, and
Kout = 2kout . Assume that there exists a uniform (g, ℓ)-oNOSF sourceX such thatHε

∞(Cond(X)) <
kout. By Claim 3.5, there exists H ⊂ {0, 1}m such that |H| < Kout and Pr[Cond(X) ∈ H] ≥ ε. This
implies there exist h ∈ H and P ⊂ {0, 1}n1 with |P | > εN1

Kout
= R such that for all z1 ∈ P , there exists

z2 ∈ {0, 1}
n2 so that Cond(z1, z2) = h. However, this contradicts the fact that Ext is R-output-light.

Hence, for all uniform (g, ℓ)-oNOSF sources(g, ℓ) X, Hε
∞(Cond(X)) ≥ n1 − log(R/ε).

We finally prove our useful lemma that states a condenser for a distribution X still condenses
from a tampered version of X where some output bits are controlled by an adversary.

Proof of Lemma 5.16. We first claim that as X is a flat source, for all x ∈ Supp(X′),
Pr[X′ = x] ≤ 2b · Pr[X = x]. Indeed, let Sx = {z ∈ Supp(X) :
x and z equal each other when restricted to bits in G}. Then, |Sx| ≤ 2b. Hence,

Pr[X′ = x] ≤
∑

z∈Sx

Pr[X = z] = |Sx| · Pr[X = x] ≤ 2b · Pr[X = x].

We now proceed by contradiction and assume Hε′
∞(f(X′)) < k − b. Let O = {y ∈ {0, 1}m :

Pr[f(X′) = y] > 2k−b}. As Hε′
∞(f(X′)) < k − b, it must be that Pr[f(X′) ∈ O] ≥ ε′ + |O| · 2b−k.

Let I = {x ∈ Supp(X′) : f(x) ∈ O}. We now see that

Pr[f(X) ∈ O] ≥ Pr[X ∈ I] =
∑

x∈I

Pr[X = x] ≥
∑

x∈I

Pr[X′ = x]·2−b = (ε′+|O|·2b−k)·2−b = ε+|O|·2−k

where the first inequality follows by our observation. For y ∈ O, let Iy = {x ∈ I : f(x) = y}. We
see that

Pr[f(X) = y] ≥ Pr[X ∈ Iy] =
∑

x∈Iy

Pr[X = x] ≥
∑

x∈Iy

Pr[X′ = x] · 2−b > 2−k+b · 2−b = 2−k

Hence, for all y ∈ O, Pr[f(X) = y] > 2−k and Pr[f(X) ∈ O] ≥ ε+ |O| · 2−k. These together imply
Hε

∞(f(X)) < k, a contradiction.

5.2.2 Condensing from uniform oNOSF sources in all regimes

We finally prove our main lemma of the section - Lemma 5.12. We will use the following simple
claim that guarantees projections of high-entropy distributions have high-entropy.

Lemma 5.17. Let X be an arbitrary (n, k)-source and π : {0, 1}n → {0, 1}n−d be a projection onto
n− d bits of X (i.e., removes d bits of X). Then π(X) is a (n− d, k − d)-source.

Proof. Because X is an (n, k)-source, for any x ∈ Supp(X), we have that Pr[X = x] ≤ 2−k.
Furthermore, for any y ∈ {0, 1}n−d, there are at most 2d elements from Supp(X) that could map
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to y under π. Thus, for any y ∈ Supp(π(X)), we can compute that

Pr[π(X) = y] =
∑

x∈Supp(X)
π(x)=y

Pr[X = x]

≤
∑

x∈Supp(X)
π(x)=y

2−k

≤ 2d · 2−k = 2d−k.

Therefore, H∞(π(X)) ≥ k − d, as required.

We are finally ready to prove the main lemma. The proof of this main lemma uses a similar
strategy as in Lemma 5.15.

Proof of Lemma 5.12. We will proceed inductively on r ∈ N with the base case of r = 1 taken care
of by Lemma 5.15. For the inductive step, take Lemma 5.12 to be true for r − 1.

We will output r output blocks O1, . . . ,Or where each Oi ∼ {0, 1}
mr . We begin by defining

our first output block O1 ∈ {0, 1}
m by defining Yi to be the distribution after Xi is projected onto

its first 5ℓ−i · 4 log(gn/ε) bits and setting Z1 = X1, . . . ,Xg and Z2 = Yg+1, . . . ,Yℓ. We let O1 be
the first mr bits of 2Ext1(Z1,Z2).

To define our last r− 1 output blocks O2, . . . ,Or, we pretend for the moment that X1, . . . ,Xg

are bad blocks ofX. Since ⌊ℓ/g⌋ = r and r < ℓ/g, it must be that
⌊
ℓ−g
g

⌋
= r−1 and r−1 < (ℓ−g)/g.

Because X1, . . . ,Xg are bad, we see that Xg+1, . . . ,Xℓ is a uniform (g, ℓ− g)-oNOSF source with⌊
ℓ−g
g

⌋
= r − 1 and r − 1 < ℓ−g

g , meaning that we can use existence of 2Extc for c ∈ {2, . . . , r}

to apply our inductive hypothesis to get the output blocks O2, . . . ,Or with the property that
Hε

∞(O2, . . . ,Or) ≥ mr − n2,2. These allow us to define Cond(X) = O1, . . . ,Or. Of course, we
do not necessarily immediately have that this is true, but it will hold in our last case in our case
analysis:

Case 1. At least one, but not all, of X1, . . . ,Xg is good. Because not all of X1, . . . ,Xg are good,
it must be that at least one of Xg+1, . . . ,Xℓ is good. Thus, we can use the exact calculations of
Case 1. from Lemma 5.15 to get that Hε

∞(2Ext1(Z1,Z2)) ≥ m1 − n2,1. Then, because O1 is just
2Ext1(Z1,Z2) truncated to its first mr bits, we use Lemma 5.17 to get Hε

∞(O1) ≥ m1−n2,1−(m1−
mr) ≥ mr − 2n2,1.

Case 2. All of X1, . . . ,Xg are good.

In this case, we get that O1 is condensed by the R1-output-lightness of 2Ext1. We achieve this by
using the exact calculations of Case 2. of Lemma 5.15 to get that Hε

∞(2Ext1(Z1,Z2)) ≥ n1,1 −
log(R1/ε) ≥ m1−2n2,1. We again conclude by using Lemma 5.17 to get that Hε

∞(O1) ≥ mr−2n2,1.

Case 3. All of X1, . . . ,Xg are bad.

In this last case, we do not get that O1 is condensed because Z1 can be arbitrarily bad. Instead, we

have that Xg+1, . . . ,Xℓ is a uniform (g, ℓ− g)-oNOSF source with
⌊
ℓ−g
g

⌋
= r − 1 and ℓ−g

g < r − 1,

so by our inductive hypothesis it must be that Hε
∞(O2, . . . ,Or) ≥ mr − 2n2,2 ≥ mr − 2n2,1.

In all cases, we get that Hε
∞(O1) ≥ mr − 2n2,1. Thus, we can conclude that Hε

∞(Cond(X)) =
Hε

∞(O1, . . . ,Or) ≥ mr − n2,1 =
1
r ·m− 2n2,1 as desired.
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5.3 Existence of output-light two-source extractors

In this subsection, we show a random function is an output-light two-source extractor. Towards
showing output lightness, we introduce a related notion, of R-invertible functions.

Definition 5.18 (R-invertible function). A function f : {0, 1}n → {0, 1}m is R-invertible if for
every z ∈ {0, 1}m, it holds that |{x ∈ {0, 1}n : f(x) = z}| ≤ R.

We record the observation that R-invertible functions are also R-output light.

Observation 5.19. Let Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m be a (k1, k2, ε)-two source extractor. If
Ext is R-invertible, then Ext is R-output-light.

We now show that a random function is optimally invertible, hence concluding a random func-
tion is also output light.

Lemma 5.20. Let f : {0, 1}n → {0, 1}m be a random function where m ≤ n − log n. Then, with
probability 1− o(1), f will be 2n−m+c-invertible where c is a universal constant.

Proof of Lemma 5.20. Let R = (1 + δ)2n−m where δ > 0 is a large constant. For z ∈ {0, 1}m, let
Ez be the event that |{x ∈ {0, 1}n : f(x) = z}| > R. Fix any such z. Let B1, . . . , B2n be the events
corresponding to whether f(x) = z. Using Claim 3.2, we infer that

Pr

[
∑

i

Bi > R

]
≤ exp

(
−

δ2

2 + δ
· 2n−m

)

We union bound over all z ∈ {0, 1}m to obtain that the probability that at least one Ez holds is at
most

exp

(
−

δ2

2 + δ
· 2n−m

)
· 2m ≤ exp

(
−

δ2

2 + δ
·m+m

)
≤ o(1)

The claim follows.

We now prove that a random function is a two source extractor with strong parameters:

Proof of Lemma 5.4. Let N1 = 2n1 , N2 = 2n2 ,K1 = 2k1 ,K2 = 2k2 ,M = 2m. It suffices to show
that a random function is a two source extractor where the two sources have min-entropies exactly
k1, and k2, and are flat. Using proposition 6.12 in [Vad12], we infer that a random function
Ext : {0, 1}n1+n2 → {0, 1}m is a (k1 + k2, ε) extractor with probability 1 − 2−cK1K2ε2 where c > 0
is some universal constant. We union bound over all pairs of sources with min-entropies k1, and
k2 out of n1, and n2 bits respectively. The probability that a random function Ext will not be a
(k1, k2, ε)-two-source-extractor is:

(
N1

K1

)(
N2

K2

)
2−cK1K2ε2 ≤

(
eN1

K1

)K1
(
eN2

K2

)K2

2−cK1K2ε2

≤ 2
K1 log

(

eN1
K1

)

+K2 log
(

eN2
K2

)

−cK1K2ε2

= 2log(e)K1(n1−k1)+log(e)K2(n2−k2)−cK1K2ε2

≤ o(1)

where the last inequality follows because k2 > log(n1 − k1) + 2 log(1/ε) +O(1), and k1 > log(n2 −
k2) + 2 log(1/ε) +O(1). Hence, the claim follows.
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Finally, we show output-light two-source extractors exist, as required for our constructions.

Proof of Lemma 5.11. Combining Lemma 5.20 and Lemma 5.4 along with Observation 5.19, we
infer that output-light two source extractors with the promised parameters exist.

6 Open Questions

There are several natural questions that are raised by our work. A few immediate open questions
are:

1. Explicitly construct output-light two-source extractor. This would immediately imply explicit
condensers for oNOSF sources and uniform aCG sources by Lemma 5.12.

2. In our condensing possibility results for uniform oNOSF sources and uniform aCG sources in
Theorem 2.4 and Theorem 2.5, and our possibility results for logarithmic min-entropy oNOSF
sources in Theorem 2.7, we require ℓ = o(log(n)), that our block size to be much smaller than
the total number of blocks. It would be interesting to extend these results to smaller block
sizes, such as the regime achieved for almost CG sources in [DMOZ23].

3. Is it possible to improve our condenser for uniform aCG sources in Theorem 2.4 to have
constant entropy gap?

4. Can our condensing impossibility result for CG sources in Theorem 4.22 be strengthened to
close the gap with the results in [DMOZ23]?
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A Explicit Condensers for oNOSF Sources

In this section, we provide explicit constructions of condensers for uniform (g, ℓ)-oNOSF sources
for uniform (2, 3)-oNOSF sources directly in Appendix A.1 and for uniform (6, 9)-oNOSF sources
along with various other settings of parameters via a recursive nesting method in Appendix A.2.

Recall that [AORSV20] showed that for all γ > 0 there exists an ℓ large enough such that it
is impossible to extract from uniform (⌊γℓ⌋ , ℓ)-oNOSF sources below error 1−γ

48 . One may then
wonder whether the explicit condensers for uniform (g, ℓ)-oNOSF sources that we constructed in
the previous couple subsections are for some “easy” case of small g and ℓ, such as uniform (2, 3) and
(6, 9)-oNOSF sources in Theorem A.1 and Theorem A.3. In Appendix B, we dispel such worries
by showing that one cannot extract from rate 2/3 uniform NOSF sources.

A.1 An explicit condenser for uniform (2, 3)-oNOSF sources

In this section, we construct a condenser for uniform (2, 3)-oNOSF sources. The following is our
main result.
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Theorem A.1. There exists constant 0 < c0 < 1 such that for all ε > 2−c0n, we can explicitly
construct a condenser Cond : ({0, 1}n)3 → {0, 1}m, where m = n

16 such that for any uniform
(2, 3)-oNOSF source X, Hε

∞(Cond(X)) ≥ m−O(log(m/ε)).

To prove this, we construct an explicit output-light seeded extractor (see Definition 5.10) that
works for somewhere-random sources. We observe that in the proof of Lemma 5.15 for g = 2, ℓ =
3, it suffices to construct an output-light seeded extractor instead of an output-light two-source
extractor. And moreover, this output-lights seeded extractor need only extract from somewhere
random sources.

We could in fact use use existing seeded extractors that are known to be invertible, such as
Trevisan’s extractor [CM24]. However, this requires seed length of O(log2(n)), which translates
into the entropy gap of the condenser. For the specific case of somewhere random sources, we
construct a better seeded extractor that has seed length O(log(n)).

Theorem A.2. There exists constant 0 < c0 < 1 such that for all ε > 2−c0n, there exists a
R-output-light strong linear seeded ε-extractor Ext : {0, 1}2n × {0, 1}d → {0, 1}m for the class of
distributions X = (X1,X2), each Xi being a random variable on n bits and at least one of X1 or

X2 is guaranteed to be uniform, with d = O(logn/ε),m = n
16 and R = 22n−m

poly(m,1/ε) .

We note that this construction matches the probabilistic bounds (Theorem 5.13) as the m bit
output is condensed to entropy m−O(log(m)) with m = O(n). We also remark that we have not
tried to optimize the constant appearing in the output length of the extractor.

A.1.1 An explicit output-light seeded extractor for somewhere-random sources

We prove Theorem A.2 in this section and show

Algorithm 3: Ext (Output-light Somewhere-extractor)

Input: source X = (X1, X2) ∈ {0, 1}
n × {0, 1}n, seed S ∈ {0, 1}d

Let ExtGUV : {0, 1}7n/4 × {0, 1}d → {0, 1}n/2−log(1/ε0) be the GUV extractor from
Theorem 3.8 instantiated for entropy 3n/4 and error ε0 = ε/4.

Let U = X1, V = X2.
Let n1 =

n
4 , n2 =

7n
4 .

Let Y = (Y1, Y2) where Y1 =
(
U[1,n1/2], V[1,n1/2]

)
, Y2 =

(
U[(n1/2)+1,n], V[(n1/2)+1,n]

)
.

Let R2 = ExtGUV (Y2, S).
Let R′

2 be a length n/4 prefix of R2 with last bit set to 1. Let R1 ∈ {0, 1}
n/16 = R′

2 · Y1
where the operation is done over the finite field F

4
2n/16 .

Output R1.

Proof of Theorem A.2. We claim that Ext computed by Algorithm 3 computes the desired ex-
tractor.

LetY = (Y1,Y2) be the distribution of the variable Y above. LetR1,R2,R
′
2 be the distribution

of the variables R1, R2, R
′
2 above. We will show that Y is ε0 close to being a block source. As

either X1 or X2 is guaranteed to be uniform, H∞(Yi) ≥
ni
2 . By the min-entropy chain rule

Lemma 3.4, with probability 1 − ε0 over fixings of Y1 = α, it holds that H∞(Y2 ↾ Y1 = α) ≥
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n2
2 − n1 − log(1/ε0) =

3n
4 − log(1/ε0). We will add ε0 to our total error and assume this property

about Y from here on. By property of ExtGUV , it holds that,
∣∣R2 −U|R2|

∣∣ ≤ ε0. We will add ε0
to our total error and assume R2 is uniform from here on. So, R′

2 is a distribution over {0, 1}n/4

with min entropy n
4 − 1. As Y1 ∼ {0, 1}n/4 is such that H∞(Y1) ≥

n
8 , by Theorem 3.10, it holds

that
∣∣R1 −U|R1|

∣∣ ≤ 2−n/32+1. As Y is a block source, for each fixing α of Y1, it holds that:
∣∣ExtGUV (Y2, S)−U|R2|

∣∣ ≤ ε0

Hence, it must be that ∣∣(Y1,ExtGUV (Y2, S))− (Y1,U|R2|)
∣∣ ≤ ε0

and thus, ∣∣R1 −U|R1|

∣∣ ≤ 2ε0 + 2−n/32+1 ≤ 3ε0,

using the fact that ε ≥ 2−c0n, for some small c0 > 0. The total error of the extractor on input X
is thus bounded by 4ε0 = ε, as desired.

We now prove that this extractor is indeed output-light. For every fixing of the output R1

of R1, β of Y2 and the seed S, we can uniquely recover R′
2. Given 3n

16 bits corresponding to
first three out of the 4 intermediate outputs of the inner product, we can use R1 to compute the
fourth intermediate outer product and then use R′

2 to invert each of the products and recover
R1. Thus for a fixed seed S and output R1, there can be at most 23n/16+7n/4 = 231n/16 such
x ∈ {0, 1}2n so that Ext(x, s) = z. As there are at most 2d seeds, for a fixed output R1 ∈ {0, 1}

n/16,∣∣{x ∈ {0, 1}2n : ∃y(Ext(x, y)) = z
}∣∣ ≤ 22n−n/16−log(n/ε) = 22n−m

poly(n,1/ε) =
22n−m

poly(m,1/ε) .

A.2 Recursive condenser compositions

By composing the explicit condenser from Theorem A.1, we can get explicit condensers for other
values of g and ℓ as well. We present an explicit computation of parameters for the case of
uniform (6, 9)-oNOSF sources in Appendix A.2.1 and sketch of the general recursive composition
in Appendix A.2.2.

A.2.1 An explicit condenser for uniform (6, 9)-oNOSF sources

We can take our condenser for uniform (2, 3)-oNOSF sources even further to create a condenser for
uniform (6, 9)-oNOSF sources by nesting it within itself.

Theorem A.3. There exists a constant 0 < c < 1 such that for all ε > 2−cn+2, we can explicitly
construct a condenser Cond : ({0, 1}n)3

2
→ {0, 1}m where m = n

162
such that for any uniform(

2
33

2, 22
)
-oNOSF source X, we have Hε

∞(Cond(X)) ≥ m−O(log(m/ε).

Proof. To create a condenser for uniform
(
2
33

2, 22
)
-oNOSF sources, we will apply our condenser

from Theorem A.1 in a nested fashion. Recall that Theorem A.1 states that there exists a constant
0 < c1 < 1 such that for all ε1 > 2−c1n, we can explicitly construct a condenser Cond1 : ({0, 1}

n)3 →
{0, 1}m1 , where m1 = n

16 such that for any uniform (6, 9)-oNOSF source X, Hε
∞(Cond1(X)) ≥

m1 −O(log(m1/ε1)).
LetX be a uniform (6, 9)-oNOSF source. We will apply Cond1 on the first, second, and last third

of X to get Z1 = Cond1(X1,X2,X3), Z2 = Cond1(X4,X5,X6), and Z3 = Cond1(X7,X8,X9). To
define Cond2 : ({0, 1}n)9 → {0, 1}m2 , we again apply Cond1 to get Cond2(X) = Cond1(Z1,Z2,Z3).
Now, we analyze the result of this construction.
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We begin by noticing that the output length of Cond2 is m2 = t1
16 = n

162
since each of Z1, Z2,

and Z3 is on {0, 1}m1 . Next, because X is a uniform (6, 9)-oNOSF source, it has at most 3 bad
blocks. Consequently, if Cond1 did not work for one of Z1, Z2, or Z3 (i.e., its conditions were not
satisfied because 2 or 3 of its given blocks were bad), call this output Zk, then there is at most 1
bad block left over as inputs to Cond1 for Zi and Zj where i, j 6= k and i 6= j. Thus, the conditions
for Cond1 are met in the creation of Zi and Zj so Hε1

∞(Zi), H
ε1
∞(Zj) ≥ m1 −O(log(m1/ε1)).

By accumulating 2ε1 error, we can consider Zi and Zj as having min entropy at least m1 −
O(log(m1/ε1)). Applying Lemma 3.7 allows us to consider Zi and Zj as having full min entropy

in our application of Cond1(Z) by accumulating 2 · 2O(log(m1/ε1) = O(poly(m1/ε1)) =
(
m1
ε1

)p
=: γ

error for some exponent p ≥ 1. Finally, in our application of Theorem A.1 in Cond1(Z), we set

ε2 =
(
m1
ε1

)−2p
γ+2ε1 =

(
m1
ε1

)−p
+2ε1. Using that ε1 > 2−c1n, we get that

(
m1
ε1

)−p
>

(
n
16

)−p
2−c1np.

If we take n > 16 then we have 2−c1np >
(
n
16

)−p
2−c1np. Thus, we require that ε2 =

(
m1
ε1

)−p
+2ε1 >

2−c1np +2−c1n+1 > 2−c1n+2 since 2−c1np ≤ 2−c1n+1. Setting ε > 2−c1n+2 and c = c1 in the theorem
statement gives us our desired result.

A.2.2 General recursive composition

At the expense of shorter output length and larger error, we can generalize our explicit recursive
composition from Theorem A.3 to any odd ℓ. We give a proof sketch of this composition here. We
first state a simple corollary from Theorem A.3.

Corollary 1. There exists constant 0 < c0 < 1 such that for all ε > 2−c0n, we can explicitly
construct a condenser Cond : ({0, 1}n)ℓ → {0, 1}m, where m = n

16 such that for any uniform
(ℓ− 1, ℓ)-oNOSF source X with ℓ ≥ 3, we have Hε

∞(Cond(X)) ≥ m−O(log(m/ε)).

Proof. We simply apply the condenser from Theorem A.3 toX1,X2,X3 and infer the result because
at most one of X1,X2,X3 can be bad, so X1,X2,X3 is a uniform (2, 3)-oNOSF source.

Next, we give a sketch for what happens when we compose two condensers in a nested manner.

Lemma A.4. For i ∈ {1, 2}, say there exists a condenser Condi : ({0, 1}ni)ℓi → {0, 1}mi for
uniform (gi, ℓi)-oNOSF sources with mi = fi(ni), entropy gap ∆i = O(log(mi/εi)), and error
εi = 2−Ω(ni). Let bi = ℓi − gi. Then there exists a condenser Cond : ({0, 1}n)ℓ → {0, 1}m for
any uniform (g = ℓ− b, ℓ)-oNOSF source X where ℓ = ℓ1 · ℓ2, b = (b1 + 1)(b2 + 1) − 1, m =
max(f1(f2(n)), f2(f1(n))), and error ε = 2−Ω(n) such that Hε

∞(Cond(X)) ≥ m−O(log(m/ε)).

Proof. We will first consider defining Cond by nesting Cond2 within Cond1, although it will turn
out that the number of bad blocks that Cond can handle is independent from the order that we
choose to to nest Cond1 and Cond2.

Because X has ℓ = ℓ1 · ℓ2 blocks, we can split X up into ℓ1 chunks Y1, . . . ,Yℓ1 each with ℓ2
blocks from X in it. Then, we apply Cond2 to each of these chunks to get Zj = Cond2(Yj) for
j ∈ {1, . . . , ℓ1}. Finally, we define Cond(X) := Cond1(Z1, . . . ,Zℓ1). We claim that this construction
gives us the desired result.

To compute the number of bad blocks b that Cond can handle, we will think adversarially as to
the fewest number of blocks that are required to break our construction. To make the output of
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Cond1 fail, we require that at least b1 + 1 of Z1, . . . ,Zℓ1 be bad. For a single Zj to be bad — that
is, for Cond2 to fail — we require that at least b2 + 1 of the blocks of X used for Zj be bad. Thus,
to make the output of Cond fail, we require at least (b1 + 1)(b2 + 1) bad blocks in X. Conversely,
this means that Cond can handle at most b = (b1 +1)(b2 +1)− 1 bad blocks. In other words, Cond
requires at least g = ℓ−b = ℓ−(b1+1)(b2+1)+1 good blocks to succeed. Notice that this equation
is symmetric in b1 and b2, demonstrating that the order of composition of Cond1 and Cond2 does
not matter in computing b.

Next, we focus on the output length m. Each Zj will be on {0, 1}f2(n), so Cond(X) is on
{0, 1}f1(f2(n)). Since the order of composition of Cond1 and Cond2 does not matter for b, we can
take the optimal order to get m = max(f1(f2(n)), f2(f1(n))).

Finally, to compute ε and our final min-entropy gap, we defer to the proof of Theorem A.3 since
those computations follow in a similar manner.

We remark that Theorem A.3 is an explicitly computed version of Lemma A.4 applied to the
explicit uniform (2, 3)-oNOSF source condenser from Theorem A.1.

To finish our generalization, we give a sketch for how one could recursively apply Lemma A.4.
For the sake of succinctness, we define a useful prime counting function.

Definition A.5. For any ℓ ∈ N, let ϕ(ℓ) be the total number of prime factors of ℓ counting
multiplicity. That is, if ℓ = pa11 pa22 · · · p

an
n , then ϕ(ℓ) =

∑n
i=1 ai.

9 We use this to define

Φ(ℓ) :=

{
ϕ(ℓ) ℓ odd

ϕ(ℓ− 1) ℓ even
.

Essentially, Φ(ℓ) returns ϕ(ℓ) if ℓ is odd and ϕ(ℓ − 1) if ℓ is even. We now state our main
theorem.

Theorem A.6. Let ℓ ≥ 3.10 Then there exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m

for any uniform
(
ℓ− 2Φ(ℓ) + 1, ℓ

)
-oNOSF source X such that Hε

∞(Cond(X)) ≥ m − O(log(m/ε))

where m = n
16Φ(ℓ) and ε = 2−Ω(n).

Proof. Without loss of generality, we take ℓ to be odd. If ℓ is even, we truncate X to its
first ℓ − 1 blocks. Since ℓ − 1 is odd, meaning that Φ(ℓ − 1) = ϕ(ℓ − 1), we can use our
result for the odd case (which we prove below) to get that we can explicitly condense from
uniform

(
(ℓ− 1)− 2ϕ(ℓ−1) + 1, ℓ+ 1

)
-oNOSF sources. Thus, since we may be removing a good

block when we truncate the last block of X, this means that we can condense from uniform(
((ℓ− 1)− 2ϕ(ℓ−1) + 1) + 1, ℓ

)
-oNOSF sources which simplifies to uniform

(
ℓ− 2Φ(ℓ) + 1, ℓ

)
-oNOSF

sources, matching our claim.
Factor ℓ as ℓ = ℓ1 · · · ℓϕ(ℓ) and note that each factor is at least 3 since ℓ is odd. By Corollary 1,

we know that there exists an explicit condenser Condi for uniform (ℓi − 1, ℓi)-oNOSF sources for
i ∈ [ϕ(ℓ)]. Let bi = ℓi−1 and b′1 = b1. Nesting Cond1 in Cond2 by Lemma A.4 gives us a new explicit
condenser for uniform (ℓ1 · ℓ2 − b′2, ℓ1 · ℓ2)-oNOSF sources that can handle b′2 = (b2 +1)(b′1 +1)− 1
bad blocks.

9In number theory, this is usually denoted by the prime Omega function Ω(ℓ), but we don’t this notation here to
avoid confusion with asymptotics.

10Note that we consider ℓ as a constant and Φ1(ℓ) ≤ ℓ, so we can consider Φ1(ℓ) as a constant as well.
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Repeatedly applying Lemma A.4 gives us explicit condensers for uniform (ℓ′i − b′i, ℓ
′
i)-oNOSF

sources where ℓ′i = ℓ1 · ℓi and b′i = (bi + 1)(b′i−1 + 1)− 1. Taking i = ϕ(ℓ) then gives us our desired

condenser Cond for ℓ = ℓ′ϕ(ℓ) blocks that can handle at most b′ϕ(ℓ) = 2ϕ(ℓ) − 1 bad blocks, meaning

Cond is a condenser for uniform
(
ℓ− 2ϕ(ℓ) + 1, ℓ

)
-oNOSF sources, as desired.

The output lengths m = n
16ϕ(ℓ) of Cond follows because each application of Lemma A.4 divides

the output length by 16 due to our construction in Corollary 1. Furthermore, the final error and
entropy gap of Cond again follow similarly from the explicit computations in Theorem A.3.

As we have done previously in Corollary 5.14, we can prepend our function that transforms
low min-entropy oNOSF sources to uniform oNOSF sources from Lemma 5.5 to get a corollary of
Theorem A.6 but for low min-entropy oNOSF sources. We do note that to use Lemma 5.5 explicitly
in this way, we require using a two-source extractor from [CZ19, Li16] that has polynomial error
which ultimately gives us polynomial instead of exponential error as we have in Theorem A.6.

Corollary 2. Let ℓ > 3. Then there exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m for
any

(
ℓ− 2Φ(ℓ−1) + 1, ℓ, n, k

)
-oNOSF source X with k ≥ Ω(logC(n)) for some large enough constant

C, such that Hε
∞(Cond(X)) ≥ m−O(log(m/ε)) where m = Ω(poly(k)) and ε = 1/Ω(poly(k)).

Proof. We instantiate Lemma 5.5 with the explicit two-source extractor from [Li16] which achieves
polynomially small error, has output length poly(k), and can handle min-entropy at least k ≥
Ω(logC(n)). Prepending this transformation to Theorem A.6 gives us our desired result.

For a cleaner statement of Theorem A.6, we can truncate our input to a power of 3 instead.

Corollary 3. Let ℓ ≥ 3 and take the unique a, r ∈ N such that ℓ = 3a+r and r < 2 ·3a. Then there
exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m for any uniform (ℓ− 2a + 1, ℓ)-oNOSF
source X such that Hε

∞(Cond(X)) ≥ m−O(log(m/ε)) where m = n
16a and ε = 2−Ω(n).

Proof. Truncate X to its first 3a blocks and use that as input to Theorem A.6 where Φ(3a) =
a. This gives us a condensing possibility result for uniform ((ℓ− r) + 2a + 1, ℓ− r)-oNOSF
sources. Since we may remove r good blocks when we truncate X, our result holds for uni-
form (((ℓ− r) + 2a + 1) + r, ℓ)-oNOSF sources, which simplifies to uniform (ℓ+ 2a + 1, ℓ)-oNOSF
sources.

If we only take powers of 3, then we get:

Corollary 4. Let ℓ = 3a for some a ∈ N. Then there exists an explicit condenser Cond :
({0, 1}n)ℓ → {0, 1}m for any uniform (3a − 2a + 1, 3a)-oNOSF source X such that Hε

∞(Cond(X)) ≥
m−O(log(m/ε)) where m = n

16a and ε = 2−Ω(n).

As always, we get similar versions for low min-entropy oNOSF sources. Here, we get them as
corollaries from Corollary 2.

Corollary 5. Let ℓ > 3 and take the unique a, r ∈ N such that ℓ = (3a+1)+r and r < 2·3a+1. Then
there exists an explicit condenser Cond : ({0, 1}n)ℓ → {0, 1}m for any (ℓ− 2a + 1, ℓ, n, k)-oNOSF
source X with k ≥ Ω(logC(n)) for some large enough constant C, such that Hε

∞(Cond(X)) ≥
m−O(log(m/ε)) where m = Ω(poly(k)) and ε = 2−Ω(poly(k)).
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Proof. Truncate X to its first 3a+1 blocks and use that as input to Corollary 2 where Φ((3a+1)−
1) = a. This gives us a condensing possibility result for low min-entropy ((ℓ− r) + 2a + 1, ℓ− r)-
oNOSF sources. Since we may remove r good blocks when we truncate X, our result holds for
low min-entropy (((ℓ− r) + 2a + 1) + r, ℓ)-oNOSF sources, which simplifies to low min-entropy
(ℓ+ 2a + 1, ℓ)-oNOSF sources.

We can also restrict r = 0 to get an analogous result.

Corollary 6. Let ℓ = 3a + 1 for some a ∈ N. Then there exists an explicit condenser Cond :
({0, 1}n)ℓ → {0, 1}m for any (3a − 2a + 2, 3a, n, k)-oNOSF source X with k ≥ Ω(logC(n)) for some
large enough constant C, such that Hε

∞(Cond(X)) ≥ m−O(log(m/ε)) where m = Ω(poly(k)) and
ε = 2−Ω(poly(k)).

B Extraction impossibility for rate 2/3 oNOSF sources

We end our appendix by showing that one cannot extract from rate 2/3 uniform oNOSF sources.
Importantly, we note that this result is distinct from a similar result in [KN23] where the authors
showed that extracting from rate 2/3 uniform NOSF sources is impossible. Since uniform oNOSF
sources are a strict subset of the class of uniform NOSF sources, their impossibility result does not
transfer to uniform oNOSF sources and we must prove our own. To do so, we first claim the case
of uniform (2, 3)-oNOSF sources.

Theorem B.1. For any function f : ({0, 1}n)3 → {0, 1} there exists a uniform (2, 3)-oNOSF
source X such that |f(X)−U1| ≥ 0.08.

Then our desired result follows as a corollary.

Corollary 7. For any function f : ({0, 1}n)ℓ → {0, 1} where ℓ is divisible by 3, there exists a
uniform

(
2
3 · ℓ, ℓ

)
-oNOSF source X such that |f(X)−U1| ≥ 0.08.

Proof. For the sake of contradiction, say there exists such an ℓ and function f such that
|f(X)−U1| < 0.08 for any uniform

(
2
3 · ℓ, ℓ, n

)
-oNOSF source X. Then if we let X be a uni-

form
(
2, 3, nℓ3

)
-oNOSF source but consider it as a uniform

(
2
3 · ℓ, ℓ, n

)
-oNOSF source by splitting

up each block into ℓ/3 sub-blocks to get 3 · ℓ3 = ℓ total blocks, we get that f is a extractor for

uniform
(
2, 3, nℓ3

)
-oNOSF sources, a contradiction to Theorem B.1.

We now prove the main theorem.

Proof of Theorem B.1. To show that extraction is impossible, we will attempt to fix the output
of f with constant probability over its inputs. We begin by classifying the points in the first two
coordinates of f as follows.

S0 = {(x1, x2) ∈ [N ]2 | ∀x3 ∈ [N ], f(x1, x2, x3) = 0}

S1 = {(x1, x2) ∈ [N ]2 | ∀x3 ∈ [N ], f(x1, x2, x3) = 1}

S0,1 = {(x1, x2) ∈ [N ]2 | ∃x3, x
′
3 ∈ [N ], f(x1, x2, x3) = 0 and f(x1, x2, x

′
3) = 1}.

Note that we can write S0,1 = [N ]2 \ (S0 ∪ S1). In order, these are the sets of points in X1 and
X2 that fix the output of f to 0, to 1, and that do not fix the output of f . We now take constants
0.5 ≤ c0, c1 ≤ 1 and look at two cases that allow us to fix the output of f by putting an adversary
in the third coordinate, X3.
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Case 1. We have |S0|+ |S0,1| ≥ c0N
2. Here, we know that for (x1, x2) ∈ S0∪S0,1 there exists some

x3 such that f(x1, x2, x3) = 0. Define a(x1, x2) be this x3 for (x1, x2) ∈ S0 ∪ S0,1 and 0 otherwise.
Consequently, if we let X1 and X2 be random and define our uniform (2, 3)-SHELA source as
X = X1,X2, a(X1,X2), then we have that Pr[f(X) = 0] ≥ c0. It follows that |f(X)−U1| ≥ c0−

1
2 .

Case 2. We have |S1| + |S0,1| ≥ c0N
2. This case follows similarly since for (x1, x2) ∈ S1 ∪ S0,1

there exists some x3 such that f(x1, x2, x3) = 1. Therefore, we can define an adversary a(x1, x2)
such that when X = X1,X2, a(X1,X2) with X1 and X2 uniform we have |f(X)−U1| ≥ c0 −

1
2 .

Case 3. We are in neither of the previous two cases. Thus, because |S0| + |S1| + |S0,1| = N2 we
have that (1− c0)N

2 < |S0| , |S1| < c0N
2 and (2c0− 1)N2 < |S0,1| < c0N

2. To proceed, we will set
up two sub-cases in which we either make X1 our bad block or X2 our bad block.

Consider the bipartite graph H = (U, V ) with |U | = N left vertices representing the values of
X1 and |V | = N vertices representing the values of X2. We place an edge (u, v) with label t if
(u, v) ∈ St and do not place an edge otherwise. Consequently, the number of edges E in H is at
least E = |S0| + |S1| ≥ 2(1 − c0)N

2. For any u ∈ U , define its normalized degree (counting edges
with either label) as du = deg(u)/N . We then see that Eu∼U [du] = E/ |U | ≥ 2(1 − c0). To split
into our two sub-cases, we will consider the set of heavy vertices UH = {u ∈ U | du > c1} in U . By

Claim 3.1, we get that Pru∈U [du > c1] ≥
Eu[du]−c1

1−c1
≥ 2(1−c0)−c1

1−c1
=: c2, meaning that |UH | ≥ c2N .

Case i. For all u ∈ UH we have u ∈ S0 ∩ S1 (i.e., u has at least one edge labeled with a 0
and another with a 1). this means that for any u ∈ UH there exists an x2 ∈ [N ] such that
for all x3 ∈ [N ] we have that f(u, x2, x3) = 0. Let a(x1) be defined as outputting this x2 that
fixes f to 0 for x1 ∈ UH and to be 0 otherwise. Defining X = X1, a(X1),X3 with X1 and X3

uniform gives us a uniform (2, 3)-SHELA source for which Pr[f(X) = 0] ≥ |UH | /N ≥ c2, so
|f(X)− U1| ≥ c2 −

1
2 .

Case ii. There exists a u ∈ UH such that u /∈ S0 ∩ S1. Without loss of generality, say u ∈ S0,
so all of the edges of u are labeled 0, meaning that for all x2 ∈ N (u) and any x3 ∈ [N ] we have
that f(u, x2, x3) = 0. Because u ∈ UH , we have that du > c1, so defining X = u,X2,X3 with
X2 and X3 uniform gives us that Pr[f(X) = 0] ≥ c1. Therefore, |f(X)− U1| ≥ c1 −

1
2 .

Combining all of our cases and recalling that c2 = 2(1−c0)−c1
1−c1

, we have that we can construct a

uniform (2, 3)-oNOSF source X such that |f(X)− U1| ≥ ε where ε = min(c0, c1, c2) −
1
2 . Setting

c0 = 0.58 and c1 = 0.6 gives us ε = 0.58− 0.5 = 0.08.
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