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Abstract

We study the problem of whether persistent randomness is helpful for polynomial-time algorithms
that only use logarithmic space. In more detail, we consider the class SearchBP∗L, of search-problems
that are solvable by a polynomial-time Probabilistic Logspace TMs with 2-way access (i.e., with
multiple, as opposed to one-time, access) to a random tape—denoted P∗LM—and demonstrate two
complexity-theoretic hardness assumptions that are equivalent to SearchBP∗L = SearchL. Namely,
the following are equivalent:

1. SearchBP∗L = SearchL,

2. The gap problem, of deciding whether the conditional Kolmogorov-Space complexity of strings
KS is “large“ (i.e., KS(x | y) ≥ n− 1) or “small” (i.e., KS(x | y) ≤ O(log n)), is worst-case hard for
P∗LM with sufficiently bounded time and space, given any sufficiently long auxiliary input y.

3. The existence of a logspace computable function f : {0, 1}n → {0, 1}n, that is almost-all-input
hard for sufficiently space and time bounded P∗LM, even in the presence of a bounded-length
leakage computable by a (sufficiently time/space-bounded) P∗LM that is given access to the
solution.

Our results leverage and extend earlier characterizations of BPP = P of Liu and Pass (CCC’22,
CCC’23), and relies on the recent space-efficient reconstruction technique of Doron and Tell (CCC’23).

Taken together with the earlier results of Liu and Pass, our results enable simple comparison
between the hardness assumptions required to derandomize SearchBPP (or equivalently BPP) vs.
SearchBP∗L.
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1 Introduction

Randomness is an ubiquitous tool in algorithm design. A central problem in complexity theory concerns
the question of whether all randomized algorithms can be derandomized; that is, can every randomized
polynomial-time algorithm be simulated by a deterministic polynomial-time? In this work (in accordance
with the recent literature), we consider this question with respect to promise problems; by slightly abusing
notations, we refer to BPP as the class of promise problems (as opposed to languages) that can be solved
in probabilistic polynomial time (with 2-sided error), and P to the class of promise problems than can be
solved in deterministic polynomial time; SearchBPP,SearchP denotes the search version of the promise
problems (i.e., the tasks of finding a witness for some problem).

The most general question of whether “all algorithms can be derandomized” amounts to the question
of whether SearchBPP = SearchP, but by a result by Goldreich [Gol11], this question is equivalent to
the “simpler” BPP = P question, which has been the focus of a long line of research.

The Hardness v.s. Randomness Paradigm Starting in the 1980s, a sequence of works originating
with the works of Blum and Micali [BM84], Yao [Yao82], Nisan [Nis91], Nisan and Wigderson [NW94],
Babai et al. [BFNW91], and Impagliazzo and Wigderson [IW97] have presented beautiful connections
between the BPP v.s. P and the problem of proving computational-complexity lower bounds—the so-
called hardness v.s. randomness paradigm.

For instance, the results of [NW94; IW97] show that BPP = P under the assumption that E =
DTIME(2O(n)) contains a language that requires Boolean circuits of size 2Ω(n) for almost all input
lengths (i.e., E is not contained in ioSIZE(2Ω(n))). Additionally, results by Impagliazzo, Kabanets, and
Wigderson [IKW02] show a partial converse: if BPP = P, then some non-trivial circuit lower bound
must also hold. While the above works give very clean complexity theoretic hardness assumptions that
imply derandomization, and those implied by it, it is not clear whether these are necessary. More recently,
Chen and Tell [CT22] introduced a new class of “almost-all-input” hardness assumption, and Liu and
Pass [LP22; LP23] presented uniform complexity-theoretic hardness assumption of the almost-all-input
hardness type (w.r.t., the Time-Bounded Kolmogorov complexity problem, and Leakage-Resilient Hard
functions) that characterize BPP = P (and thus also SearchBPP = SearchP).

More broadly, several papers in the recent years [CT22; LP22; LP23; Kor22] presented different
assumptions that are sufficient or equivalent to derandomize BPP, yet the connections between these
results is a priori unclear. Chen, Tell, and Williams [CTW23] managed to bridge the gap by presenting
a new framework dubbed “derandomization vs. refutation”, proving that each of the aforementioned
derandomizations’ assumptions can be spelled out in terms of a “refutation”. Specifically, a refuter for a
lower bound f /∈ C (for some function f and complexity class C) is an algorithm that given a description
of C ∈ C, outputs efficiently a proof that C fails to compute f—namely an x such that f(x) ̸= C(x).
In essence, “refutation” is the constructive version of lower bound, and in these notations, [CTW23]
managed to compare and improve these papers by weakening the complexity class C and strengthening
the function f , thereby presenting weaker hardness assumption that is equivalent to BPP = P. This
framework, however, fails to capture assumptions characterizing partial derandomization, which some of
the aforementioned papers do.

Derandomization of Logspace Algorithms If the original randomized algorithm only employs a
small—logarithmic—amount of space, we ideally would also like the derandomized algorithm to use a
logarithmic amount of space. This setting is the focus of the current paper. As explained by Nisan
[Nis93], there are two quite different reasonable models of logspace randomized computation: (a) the
multi-access (or two-way access) model, and (b) the single-access (or one-way access model).

• In the one-time/one-way access model, the algorithm can only access each bit on its random
tape once (i.e., the algorithm is specified using a TM that only has one-directional access to a long

3



random tape). This corresponds to a setting where randomness is generated on the fly (e.g., using
a coin-toss), and earlier random coins may not necessarily be remembered, since the algorithm only
has logarithmic space. We refer to BPL (resp. SearchBPL) as the promise (reps. promise-search)
problems solvable by logarithmic space algorithms with such one-way access to randomness. It is
well known that in this one-way access model, any log space algorithm must also run in polynomial
time (see eg, [AB09; Vad12]).

• In the multi/two-way access model, on the other hand, we consider a log space algorithm that
may access this random tape multiple times (i.e., using a TM that has two-way access to the random
tape). This corresponds to algorithms that on their own only have a small a amount of storage,
but they have access to some potentially much larger amount of randomness (e.g., by observing the
sky/sunspots etc.) and this randomness is persistent. As observed by Nisan [Nis93], such log-space
randomized algorithms may not necessarily run in polynomial time (as the number of configurations
the machine can be in no longer is polynomially bounded). Consequentially, we need to explicitly
also limit the running time to be polynomial. We refer toBP∗L (resp. SearchBP∗L) as the promise
(reps. promise-search) problems solvable by logarithmic space algorithms with such two-way access
to randomness.

The one-way access model is more well-studied, and while the general problem of whether BPL = L
is still wide open, there have been promising progress toward resolving it unconditionally [Sav70; SZ99;
Rei08; Hoz21]. There are also conditional derandomization results, but as far as we know, they all also
apply to the two-way accessible model (and will be discussed shortly).

The main focus of the current paper is on the more powerful (and less studied) two-way accessible
model to randomness, and on the question of whether such randomized algorithms can be derandomized.
We note that in the setting of log space algorithms, the search-to-decision reduction of Goldreich [Gol11]
no longer applies, so to understand whether randomness is useful for log space algorithm, we directly
study the question of whether SearchBP∗L = SearchL (which implies that BP∗L = L), with the goal
of providing hardness assumptions that characterize it. In particular, by doing so, we will attempt to
gain insights into the different types of hardness assumptions required to derandomize SearchBPP (or
equivalently BPP) v.s. SearchBP∗L.

As far as we know, prior to our work, only few works have investigated conditional derandomization
of space bounded machines. Klivans and Melkebeek [KM02] implemented the pseudorandom generator
(PRG) construction of Nisan and Wigderson [NW94]/Impagliazzo and Wigderson [IW97] in logarithmic
space1, given that they start off with a function that can be computed in linear space. As a conse-
quence, they show that under a variation of the assumption of [NW94; IW97]—namely, the existence of
a linear-space (as opposed to exponential-time) computable function f : {0, 1}n → {0, 1} that cannot be
implemented by circuits of size 2Ω(n)—it holds that BPL = L. In fact, their proof extends also to show
that SearchBP∗L = SearchL under the same assumption. Recently, [DT23] managed to weaken the
assumption of [KM02], showing how to rely on hard functions for TC0 with oracle access to ROBPs; they
also present uniform assumptions, similar in spirit to the leakage-resilient hardness assumption of [LP23]
under which BPL = L (plus an additional uniform cryptographic assumptions).2

1.1 Our Results

Our main results shows that appropriate analogous of the characterizations of BPP = P in terms of
the almost-all-instance hardness [CT22] of (a) some resource bounded Kolmogorov complexity problem

1Specifically, they showed that the so-called “designs” in the NW PRG [NW94] can be implemented using pair-wise
independence distributions, thereby reducing its space complexity; see [KM02] for full details.

2We note that while the results of [DT23] are all stated using this additional cryptographic assumption, this assumption
only seems to be used to get a tighter simulation (in terms of the space overhead), and it would seem that one can dispense
of it if only aiming to show that BPL = L.
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[LP22], and (b) leakage-resilient hardness [LP23] can be extended also to characterize SearchBP∗L =
SearchL.

Towards explaining these results, let us briefly introduce the notions that we will consider:

Kolmogorov-Space Complexity The conditionalKolmogorov-Space complexity [Sol64; Cha69; Kol68;
Har83; Ko86; Tra84; ABK+06; AKRR11], KS(x | y), of a string x conditioned on a string y, is defined
as the minimal “cost” (w.r.t. description size and space complexity) of a TM that prints the string x,
when given (for free) access to the auxiliary input y; here the cost is defined as the sum of the program’s
description length and its space complexity:

KS(x | y) def
= min

Π∈{0,1}∗
{|Π|+ space(Π(y)) | Π(y) = x} .

This Kolmogorov-problem, as well as other resource bounded variants of it, were introduced and studied
in [ABK+06; AKRR11], and can be view of a “linear-charge” version of the notion of Levin-Kolmogorov
complexity [Lev84; Lev85; Tra84] (where instead of adding the space used by the algorithm, one charges
logarithmically for running time); this Levin-Kolmogorov complexity was used in the characterization of
BPP = P of [LP22]. Though introduced nearly two decades ago, limited new information has emerged
about that problem since the publication of the original paper: Allender et al. [ABK+06] considered the
un-conditional KS(·) complexity, and presented several basic facts about it; moreover, they showed that
the characteristic language of strings with high KS(·) complexity3 is complete for PSPACE under ZPP
reductions.

Following [LP22], we will consider the gap-problem version of KS(· | ·), denoted by GapMcKSP[a(n), b(n)];
here the problem is, given an auxiliary string y, and an input x that has either a “low” complexity–that
is, KS(x | y) ≤ a(|x|)—or “high” complexity—that is KS(x | y) ≥ b(|x|), to decide which of the two that
holds. We emphasize that the PSPACE-completeness of KS(·) due to [ABK+06] is not known to hold
for the promise problem that we consider.

We say that a machine M fails to decide (x, y) ∈ GapMcKSP[a(n), b(n)] if it err on its decision with
high probability, that is:

Pr
r
[M [x, y, r] = 1(KS(x | y) ≤ a(|x|))] < 2

3
,

where 1(·) is the indicator function. Following [LP22], we will consider an “almost all-input” [CT22]
notion of hardness for this problem: We will consider worst-case of this problem, w.r.t. all sufficiently
large auxiliary inputs.

Leakage-resilient Space-Hard Functions Following [LP23], we will also consider a notion of leakage-
resilient hard function f : {0, 1}n → {0, 1}n, parameterized by (Adv, Leak, ℓ). Here Adv, Leak stands for
collections of TMs of Adversaries and Leakage algorithms that tries to compute f on a given input x.
Specifically, an adversary A ∈ Adv tries to compute f(x) given ℓ(|x|) bits of leakage L(x, f(x)) on x, f(x),
produced by a leakage algorithm L ∈ Leak. We say that A fails to compute f(x) if:

Pr
r,r′

[
A(x, L(x, f(x), r), r′) = f(x)

]
≤ 1

3
,

where the probability is over the randomness of A,L.
Following [CT22; LP23], we say that f is an (Adv, Leak, ℓ)-almost-all-input leakage resilient hard, if

for every pair of algorithms (A ∈ Adv, L ∈ Leak) such that the output of |L(x′, ·)| ≤ ℓ(|x′|) for all x′, there
exist at most finitely many x such that A(x, L(x, f(x)) succeeds (i.e., does not fail) to compute f(x). See
[LP23] for further discussion of leakage-resilience hardness, and connection to results in Cryptography.

While [LP23] considered leakage-resilient hardness w.r.t. time-bounded attackers, we will here consider
hardness against log-space (and polynomial-time) attackers. We refer to R∗TISP(T, S) as the class of
randomized algorithms with two-way access to randomness that run in time T (·) and space S(·).

3Namely, the collection of strings x ∈ {0, 1}∗ s.t. KS(x) > |x|1/c, for some fixed constant c ∈ N.
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Main Theorem Our main result provides two characterizations for derandomizing SearchBP∗L. Let
R∗TISP(T, S) denote the collection of all the Probabilistic Turing Machines, that on input length n, runs
in time T (n) and space S(n), given 2-way access to their randomness tape.

Theorem 1.1 (Informally, see Theorems 4.1 and 5.1). The following are equivalent:

1. SearchBP∗L = SearchL.

2. For every large enough constant a, there exists b, c = O(1) so the following holds.

For every R∗TISP(nc, ab log n) machine M , for all sufficiently long y ∈ {0, 1}n, there exists some
x ∈ {0, 1}nsuch that M fails to decide whether (x, y) ∈ GapMcKSP[a log n, n− 1]

3. There exists constants a, c such that for every constant b > a the following holds. There exists an
(Adv, Leak, n2/3)-almost-all-inputs leakage resilient hard function f : {0, 1}n → {0, 1}n, computable

in space b log n, where Leak
def
= Adv

def
= R∗TISP(nc, a log n).

In fact, in Theorem 5.1 we show that its sufficient and necessary to consider deterministic adversaries
for the leakage resilient function, opposed to the probabilistic ones stated in bullet (3); as a consequence,
we get that in this context, it is without loss of generality to restrict attention to deterministic attacks
(but probabilistic leakage).4

We defer the comparison of Theorem 1.1 with previous works to Section 1.2.
We view our contributions as mostly conceptual in nature, identifying the right problems that can be

used to characterize SearchBP∗L = SearchL: on a high level, our proof will follow the proof approaches
in [LP22; LP23] (which in turn rely on [Gol11; NW94; IW97; CT22]), but to perform the reductions in
log space, we will need to be more careful. Indeed, while as mentioned above [KM02] managed to provide
a log space implementation of the NW/IW-PRG [NW94; IW97], we need to ensure also that the security
reduction is log space (and this was not shown by them). Fortunately, very recent works of Doron and
Tell [DT23], and independently that of Pyne, Raz, and Zhan [PRZ23], provide exactly the right tools to
enable this.

Characterizing partial derandomization We additionally show that the “leakage-resilient” charac-
terization extends also to capture partial derandomization—that is, characterizing when SearchBP∗L ⊆
SearchL1+γ for some γ ≥ 1 (as opposed to just the case when γ = 1 as in Theorem 1.1).

Theorem 1.2. Let γ ≥ 0. The following are equivalent:

1. SearchBP∗L ⊆ SearchL1+γ.

2. There exists constants a, c such that for every constant b > a the following holds. There exists
an (Adv, Leak, n2/3) leakage resilient hard function f : {0, 1}n → {0, 1}n for almost-all-inputs, com-

putable in space b log1+γ n, where Leak
def
= Adv

def
= R∗TISP(nc, a log n).

The “Kolmogorv” characterization falls short of capturing partial derandomization as one of its ingre-
dients (the invocation of [BF99]) relies on some “nice” property of the underlying classes, which do not
hold for SearchL1+γ .

4We remark that this statement is not trivial since the length of the leakage is small so the leakage function cannot simply
sample the randomness for the attacker.
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1.2 Comparison with previous works

Comparison with [LP22; LP23] Let us compare our characterizations with those of BPP = P
[LP22; LP23]. Our bullet (2) is very similar to the assumption characterizing BPP = P from [LP22].
There are two differences: (a) [LP22] considers Levin-Kolmogorov complexity Kt [Lev84] (as opposed to
KS) which charges logarithmically for running time (as opposed to charging linearly for space), and (b)
[LP22] considered hardness w.r.t. polynomial-time bounded machines, as opposed to log-space bounded
and polynomial-time algorithms.

Our bullet (3) is very similar to the leakage-resilient hardness assumption of [LP23] but again with two
differences: (a) whereas [LP23] requires the function to be computable in polynomial time, we require it
to be logspace computable, and (b) [LP23] considers hardness w.r.t. probabilistic time-bounded leakage
and adversaries, as opposed to probabilistic log-space bounded (and polynomial-time).

In essence, in both cases the hardness condition is weaker (i.e., we consider hardness only w.r.t.
polynomial-time and log-space bounded, as opposed to simply polynomial-time bounded, algorithms).
But in both case, we consider problems that are at least as easy (and potentially easier): in bullet (2), the
GapMcKSP[O(log n), n− 1] problem can trivially be solved by a solver for the GapMcKtP[O(log n), n− 1]
problem considered in [LP22]5, and in bullet (3) any log-space computable function trivially gives a
polynomial-time computable function.

Comparison with [DT23] Recently Doron and Tell [DT23] found several new sufficient assumptions
to derandomize BPL, and continued the hardness vs. randomness framework of [NW94; IW97; KM02]
while incorporating more modern techniques (see references therein). While [DT23] indeed relies on the
read-once property of randomness in BPL, they seemingly do so only to achieve a small space overhead.
Thus, it seems that minor variants of their assumptions also lead to derandomization of BP∗L (i.e., that
BP∗L = L).

In particular, the assumption most related to our results is that of an almost-all-input “compression-
hard functions” against probabilistic log-space attackers with 1-way access to randomness. [DT23, The-
orem 3] shows that this assumption (together with a cryptographic hardness assumption) suffices for
showing that BPL = L (with small space complexity overhead), but as mentioned it would seem that the
cryptographic assumption is not needed to simply get that BPL = L. As we show in Appendix C, the
“compression hard function” assumption, albeit when considered against log-space attackers with 2-way
access to randomness, is syntactically equivalent to our concept of leakage-resilient hardness. As such,
according to our results, their assumption is not only sufficient but also necessary for derandomization
(at least when one wants to derandomize also SearchBP∗L, and not just BPL).

Comparison with [Hir20] Hirahara [Hir20] have shown characterization of (black-box) Hitting Sets
Generators (HSGs), as opposed to our study of derandomization, by studying a close problem to GapMcKSP.
More specifically, he consider the same promise problem, but without any conditioning/auxiliary inputs,
and shows that hardness with respect to circuits (as opposed to uniform probabilistic log-space poly-time
algorithms as we do) implies HSGs that are hard with respect to the same class of circuits.

On a high level, Hirahara uses the PRG construction of [NW94; IW97; KM02], albeit extending its
seed to use additional O(log n) random bits to select a program, whose output is essentially considered as
the truthtable of the supposedly hard function in [KM02]. The construction is claimed to be HSG, and
the proof is by a reduction from any attacker to the HSG to a distinguisher that decides whether KS(x)
is small (i.e. ≤ O(log n)) or large (i.e. ≥ n− 1).

Our targeted-HSG construction relies on similar principles. Similarly to [Hir20], we use the first
O(log n) bits of the seed to select a program Π, but we apply it on the target string σ ∈ {0, 1}n, and get

5To see this, first observe that KS(x | y) ≤ O(logn) implies x is producible by a machine Π, with description size at most
O(logn), such that Π(y) is computable in at most O(logn) space, and hence runs in time at most poly(n). This implies
Kt(x | y) ≤ O(logn). Hence, any Kt decider for complexity ≤ O(logn) also decides correctly whether KS(x | y) ≤ O(logn).
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a string Π(σ) ∈ {0, 1}n. In contrast, [Hir20] applies it on i = 1, . . . , n, and consider the considers the
string Π(1)1, . . . ,Π(n)1, namely the first output bit of each invocation. Each of these strings is considered
as the hard function in the respective construction. In our case, as we shall see, we can show that
any distinguisher for the targeted HSG that works given the target σ can be used, together with the
[DT23] reconstruction procedure, to distinguish for any x ∈ {0, 1}|z| whether KS(x | z) is small or large.
Hirahara [Hir20] employs similar techniques, but as mentioned, he considers a different promise problem,
and derives a (black-box) HSG.

Comparison with [MPV15] Mandal, Pavan, and Vinodchandran [MPV15] investigated space-bounded
machines with bounded number of times access to the random tape. Specifically, they considered gener-
alization of the read-once model, where multiple read-once passes are allowed. Such a model is strictly
stronger than the standard read-once model, yet weaker than our model—which essentially allows poly-
nomial number of read-once accesses to the random tape. Then they showed that if the set of languages
decidable by log-space machines, that uses O(log1+ω(1) n) random bits, and allowed to have ω(1) number
of read-once accesses to it, is contained in P, then there exists a non-trivial derandomization of time
machines, namely BPTIME(n) ⊆ DTIME(2o(n)).

In our terminology, those languages are strictly contained in BP∗L. In particular, derandomization
of the sort SearchBP∗L = SearchL implies BP∗L = L ⊆ P, and by their work, it further implies
non-trivial derandomization of time machines.

2 Proof overview

While our results are inspired and follows ideas presented in [LP22; LP23], they overcome several chal-
lenges that arise in the space-bounded settings—most notably, we leverage the very recent work of [DT23].

2.1 The class SearchBP∗L

Let us start by defining the class of search problems, SearchBP∗L. As any search class, it consists
of relations R ⊆ {0, 1}∗ × {0, 1}∗ such that (1) we can “efficiently” verify containment in R—through a
Verification algorithm—and (2) we can “efficiently” find—through a so-called Finder algorithm—a witness
y for any “true” statement x (for which there exist some y s.t. (x, y) ∈ R). By “efficient”, we mean here by
a P∗LM algorithm, where P∗LM refers to the class of logarithmic space and polynomial-time algorithms
with two-way access to randomness.

2.2 From Derandomization to Hardness

We first show that derandomization of SearchBP∗L implies the two hardness conditions. Towards
this, let us first recall the notion of Pseudo-Random Generators (PRGs) [BM84; NW94] and targeted-
PRGs [Gol11], that will be important for our results. An ε-PRG G : {0, 1}s → {0, 1}n is an “efficiently”
computable function (where in our context, efficiency will mean log-space computable) whose output
given a random input is indistinguishable from random w.r.t. some class of algorithm; namely, if M is a
machine in that collection, then∣∣∣∣∣ E

r∈R{0,1}n
[M [r]]− E

x∈R{0,1}s
[M [G(x)]]

∣∣∣∣∣ ≤ ε.

Targeted-PRGs, introduced by Goldreich [Gol11], are just like standards PRG G, with the modification
that they gets an additional “target” σ as input and the pseudorandomness property of G also holds with
respect to machines M that also get the target σ as input, namely:∣∣∣∣∣ E

r∈R{0,1}n
[M [σ, r]]− E

x∈R{0,1}s
[M [σ,G(σ, x)]]

∣∣∣∣∣ ≤ ε.
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We say that G is an ε targeted-PRG, if the above holds for every target σ.
Standard probabilistic arguments can be used to show that a random function is either a targeted-

PRG (as was shown by [Gol11; LP22]), or a leakage-resilient hard function (as was shown by [LP23]).
Additionally, as shown in [Gol11; LP22; LP23] for PRGs/leakage-resilient functions against the class of
time-bounded attackers, the search problem of finding such an object belongs to SearchBPP. We start
by noting that the analysis can also be extended to the space bounded setting, to show containment in
SearchBP∗L, but this heavily leverages 2-way access to the instance (to be verified) and the randomness.
As a consequence, under the assumption that SearchBP∗L = SearchL, these objects can be computed
in deterministic logspace.

While this suffices for the characterization in terms of leakage-resilient hardness, it is still left to
reduce targeted-PRGs to worst-case hardness of KS. Here we observe that, similarly to the time-bounded
regime, strings in the range of a targetted-PRG have significantly smaller KS complexity than random
string (with high probability):

1. The logspace generator has constant description-length given the target, so all the generated strings
have conditional KS complexity ≤ O(log n)

2. Whereas, by a standard counting argument, most strings have KS complexity ≥ n−O(1).

Thus, a decider for KS (given auxiliary input σ) must also distinguish the targeted-PRG (given target σ)
which concludes the proof.

2.3 From Hardness to Derandomization

The more interesting direction of the characterization is showing derandomization of SearchBP∗L from
the hardness assumptions. Here, both of our characterizations are based on variants of the Nisan-
Wigderson (NW) PRG [NW94]. To deal with the fact that we only assume worst-case hardness, we
will rely on the variant of Impagliazzo and Wigderson [IW97], which as observed by Klivans and Melke-
beek [KM02] is also constructible in logspace (specifically, they showed a logspace implementation for the
“designs” of [NW94], using pair-wise independence). Additionally, we require a logspace reconstruction
procedure, achieved only recently by Doron and Tell [DT23] by further modifying the construction. Es-
sentially, they presented a space-efficient variant of [STV99], another PRG variant from the same line of
works.

This utilization of [DT23] will be a crucial component of our construction. Henceforth, we denote
their PRG by DTf (given a “hard” function f). We highlight that the use of this PRG is different from
the approach in [LP22; LP23], where log space reconstructibility was not a concern.

2.3.1 A Blackbox Logspace-Reconstructible PRG

Our results rely on stronger objects than simply PRGs based on hard functions. We will require a PRG
where (a) the PRG construction is computable in (deterministic) linear (in the seed length) space while
having black-box access to the “hard function” f , and (b) the security reduction (i.e., the “reconstruction”
algorithm) is blackbox in both the distinguisher and the function f , where the reduction is computable in
randomized log space (with two-way access to randomness). We refer to such a PRG as a black-box logspace
reconstructible PRG, and note that this is a strengthening of the notion of a black-box reconstructible
PRG of [LP23] (by adding the extra space-efficiency requirements), which in turn is a strengthening of
the notion of a black-box PRG from [Vad12] (which only requires the reconstruction algorithm to be
black-box in the distinguisher, but not the function).

In more details, we require a function Gf : {0, 1}s → {0, 1}n that is linear space computable, and log
space machines A,R, that given any distinguisher D s.t.

E
x∈R{0,1}s

[
D[Gf (x)]

]
− E

r∈R{0,1}n
[D[r]] ≥ 0.1,

9



it holds that
Pr
r

[
∀y, RD[1n,AD,f [1n, r], y] = f(y)

]
≥ 2/3.

The “black-box reconstruction” terminology stems from the fact that the reconstruction algorithm has
oracle access to both D, f .

We note that such black-box reconstructive PRG was constructed in [DT23], by presenting a space-
efficient variant of [NW94; STV99].

2.3.2 Derandomization from Kolmogorov-hardness

Given the above notion of a blackbox logspace reconstructible PRG, we are now ready to derandomize
SearchBP∗L assuming the hardness of GapMcKSP.

Derandomizing R∗L We first show how to derandomize R∗L—the class of all languages decidable,
with 1-sided error, by probabilistic poly-time and log-space machines with multiple access to randomness.
That is, L ∈ R∗L if and only if there exists such a resource bounded TM M such that

∀x ∈ L =⇒ Pr
r∈R{0,1}∗

[M [x, r] = 1] ≥ 2/3

∀x /∈ L =⇒ Pr
r∈R{0,1}∗

[M [x, r] = 0] = 1.

Towards this, we will rely on the notion of a Hitting-Set Generator (HSG) and more precisely that of
a targeted-HSG, both of which are natural variants of PRGs and targeted-PRGs (see Section 2.2). An
ε-HSG H : {0, 1}s → {0, 1}n satisfies the property that it “hits” some collection of TMs. Namely, if M is
a machine in that collection, then

E
r∈R{0,1}n

[M [r]] ≥ ε =⇒ E
x∈R{0,1}s

[M [G(x)]] > 0.

Targeted-HSG, are just like a standard HSG H, with the modification that they gets an additional target
σ as input; the “hitting” property of H then holds with respect to uniform algorithms that also get the
target σ as input, namely:

E
r∈R{0,1}n

[M [σ, r]] ≥ ε =⇒ E
x∈R{0,1}s

[M [σ,H(σ, x)]] > 0.

We say that H is an ε-target HSG, if the above holds for every target σ.
Assuming that the gap variant of KS is worst-case hard for suitably restricted machines, we construct

a new targeted-HSG H against deterministic logspace algorithms (defer for the moment the question why
we claim H is targeted-HSG and not a targeted-PRG):

H(σ,Π, x)
def
= DTΠ(σ)(x),

where, we set a = O(1) as large enough constant and,

• σ ∈ {0, 1}n stands for an input target,

• Π ∈ {0, 1}a logn is a randomly selected deterministic logspace machine with short description,

• Π(σ) ∈ {0, 1}poly(n) is the output of Π when simulated on σ, which is associated with the truth-table

of supposedly hard function {0, 1}O(logn) → {0, 1},

• and x ∈ {0, 1}O(logn) is a seed for DTΠ(σ).

10



Overall, the construction has O(log n) seed length and is computable in logspace (because so does
DT(·),Π(·)).

The correctness is by reduction from a distinguisher D for H, on instance σ, to a suitably efficient
solver for KS(z | σ). A deterministic distinguisher D for the HSG implies that

E
r
[D[σ, r]] ≥ ε,

E
(Π,x)

[D[σ,Hσ(Π, x)]] = 0.

Now let us explain how to decide KS. Here we make use of the blackbox Reconstruction and Advice
procedures R,A of DT that were discussed in Section 2.3.1. The idea is that a, which was defined as
max |Π| ≤ a log n, and controls the description length of the hard function, could be arbitrary large and
independent of the space complexity of A,R. Thus,

1. If KS(z |σ) ≤ O(log n), then simulating AD[σ,·],z on the distinguisher D[σ, ·] and the string z ∈
{0, 1}poly(n) that represents a hard function, would produce (w.h.p.) a good and short advice that
helps R to fully reconstruct z; the catch is that computing everything here is possible in logspace,
but “constantly less” than a log n. In that case we decide that z belongs to the yes case.

2. Otherwise, if KS(z |σ) ≥ n−1, then by definition, it is not possible that both the advice is short (say
≤ n/2) and the reconstruction would succeed to fully reconstruct z while doing so in log space—
because then KS(z |σ) ≤ 0.75n. Thus, either the advice is long, or the computation was not in
logspace, and hence its safe to always decide z belongs to the no case.

This concludes the HSG correctness, and further shows that R∗L = L: the implied derandomization is
by simple enumeration of seeds and taking the majority.

Let us highlight why we can only claim that H is a HSG (rather than a PRG): our KS decider needs
to solve the problem in worst-case, namely it can get an adversarially chosen strings z as input. The
reduction, however, only needs to work for “hard functions” z chosen according to the distribution used
in the construction. We here rely on the observation that every Yes-instance z is in the support of the
constructed HSG, and as a consequence, the distinguisher needs to work on those instances (since we only
aim to show the hitting property).

It finally follows using standard techniques that such a log space efficient targeted PRG implies
derandomization of R∗L

As a final remark, let us explain why we assumed that GapMcKSP is hard given all sufficiently long
auxiliary inputs (as stated in Theorem 1.1). The auxiliary inputs are considered, during the reduction, as
the target-instances of the machines. To conclude “worst-case” derandomization, we need by definition,
to decide correctly every instance.

Derandomizing BP∗L We next show how to derandomize BP∗L using the above targeted HSG.
Towards this, we will build on the result of Buhrman and Fortnow [BF99]: They considered the class
RP, of all the problems decidable by polynomial time algorithms with 1-sided error and showed that
RP = P =⇒ BPP = P. In other words, to derandomize BPP, we can without loss of generalize focus
on derandomizing RP. We observe that their proof can be extended (with only minor modifications) to
apply in the logspace regime given 2-way access to randomness, and conclude that R∗L = L implies that
BP∗L = L. This implies that our constructed targeted-HSG further implies BP∗L = L.

Derandomizing SearchBP∗L We finally proceed to showing how to derandomize also SearchBP∗L.
Let F, V be a solution Finder and Verifier for some relation in SearchBP∗L (see Section 2.1 for definition).
Since the Verifier have 2-way access to solution-candidates, they can be considered as standard decisional
algorithms for languages in BP∗L, which we already claimed can be decided deterministically. It only
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remains to derandomize the solution Finder F . But since they can reproduce their output (given free
access to their random tape), we can consider them, together with the deterministic Verifier, as algorithms
that decide whether there exists a solution or none; namely solving some problem in R∗L. The HSG
guarantees to hit good random strings in these cases, which here can be converted to good solutions when
fed to the Finders. Altogether, SearchBP∗L ⊆ SearchL.

2.4 Derandomization from Leakage-resilience

Here we assume the existence of a logspace computable function f : {0, 1}n → {0, 1}n that is hard to
compute, in the presence of bounded length-leakage. Let us defer the parameters, and infer them from
the proof.

We use similar construction to the previous paragraph, when using the function f on the instance,
rather than a randomly selected TM. Specifically,

P (σ, x)
def
= DTf(σ)(x)

where σ, x are as before, and f(σ) ∈ {0, 1}n is associated with the truth-table of supposedly hard function
{0, 1}logn → {0, 1}.

First, its important to observe that the logspace computability of f implies that P is also logspace
computable. Now we claim that P is targeted-PRG rather than HSG, which also shortcuts the proof.

The correctness is again by reduction. Given any distinguisher D, on instance σ, we construct the
following leakage L and adversary A algorithms on input σ. In fact, the black-box construction we
make use of give rise to very simple algorithms, that are associated with the Advice and Reconstruction
procedures discussed earlier:

L(σ, f(σ))
def
= AD[σ,·],f(σ)[1n],

A(σ, adv, k)
def
= RD[σ,·][1n, adv, k],

namely the leakage algorithm L(σ, f(σ)) is simply defined as the advice (which is guaranteed to be short),
and the adversary A(σ, adv, k) simply simulates the reconstruction procedure on the generated advice.

Now observe that since D[σ, ·] is a distinguisher for P (σ, ·), then by definition we can invoke Advice
and Reconstruction to compute f(σ), which is the hard function used by DT. Thus A succeeds to compute
(reconstruct) f(σ)k whenever the leakage algorithm produced a good output (advice); these holds by the
definitions of A,R, which contradicts the hardness assumption.

All that’s left is to set the parameters. The Advice and Reconstruction algorithms A,R are logspace
computable, independent of the space takes to compute f . Hence we require f to be computable in a
slightly more space (still log space, but constantly larger), which concludes a contradiction.

As a final remark, let us explain why we assumed that the function is leakage-resilient, for almost-all-
inputs; this follows from the same argument as in the “Kolmogorov” direction. The inputs to the function
are considered, during the reduction, as the target-instances of the machines. To conclude “worst-case”
derandomization, the function needs by definition, to be hard on every input.

2.5 Additional notes

Why Blackbox? In both directions we make use of the instance σ to generate “hard functions”. The
correctness is by reduction from distinguishers to a short and efficient program, or efficient leakage and
adversary procedures, that computes the hard function. However, we crucially rely on giving access to
σ to the advice procedure, as σ is too long to be hard-wired to the programs. To avoid this, recall that
the KS decider is given σ as the auxiliary input, namely as “oracle” access; the leakage and adversary
algorithms are given σ as inputs, and hence could simulate the Advice and Reconstructions procedures
correctly, without “paying” for σ. In turn, we just need to make sure the Advice and Reconstruction
produces could use σ in black-box manner.
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Leakage resilient vs Kolmogorov hardness Observe that our KS decider simulated both the Ad-
vice and Reconstruction procedures A,R, in contrast to our leakage and adversary algorithms that are
associated with either A or R. Since R is deterministic, it allows us to consider weaker adversaries for
the leakage-resilient function (namely, deterministic).

3 Preliminaries

3.1 Complexity classes, space bounded computation

Turing machines We distinguish between TM that access their randomness tape in 1- or 2-way manner.
The notation M [x; y] denotes that a TM M have 2-way access to its input x but 1-way access to y.

Complexity class For clarity, we start by recalling the definition of prBPL.

Definition 3.1 (prBPL). The class prBPL consists of all the promise problems (Yes,No), such that
Yes,No ⊆ {0, 1}∗, for which there exists a probabilistic logspace machine M with 1-way access to ran-
domness that always halts, such that:

1. for every x ∈ Yes, Prr [M [x; r] = 1] ≥ 2
3 ,

2. for every x ∈ No, Prr [M [x; r] = 0] ≥ 2
3 .

The requirement of the machines to always halts implies that prBPL ⊆ prP (see, eg, [Vad12; AB09]).
The class prBP∗L is defined similarly, but allows the machines 2-way access to their random tape.
Although a natural variant, it seems to significantly increase the computational power; in particular, it is
not clear whether their running time is polynomially bounded (see [Nis93]). To overcome this annoyance,
we modify the definition to also impose a polynomial running time bound on the algorithm; more generally,
we upper bounds the running time exponentially in the space complexity.

Definition 3.2 (prBP∗SPACE,prR∗SPACE). Let s : N → N be any function. The class prBP∗SPACE(s)
consists of all the promise problems (Yes,No), such that Yes,No ⊆ {0, 1}∗, for which there exists a Prob-
abilistic TM M , that on n-bit input x, it uses s(n) memory bits, runs at most 2O(s(n)) time, has 2-way
access to its randomness, such that:

1. for every x ∈ Yes, Prr [M [x, r] = 1] ≥ 2
3 ,

2. for every x ∈ No, Prr [M [x, r] = 0] ≥ 2
3 .

The class prR∗SPACE(s) is defined similarly, but the machines have only 1-sided error: namely, the
machine M (defined as before), satisfies:

1. for every x ∈ Yes, Prr [M [x, r] = 1] ≥ 2
3 ,

2. for every x ∈ No, Prr [M [x, r] = 0] = 1.

Finally,

prBP∗L
def
=

⋃
a∈N

prBP∗SPACE(a log n),

prR∗L
def
=

⋃
a∈N

prR∗SPACE(a log n).

More generally, we can restrict both the time and space complexity:
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Definition 3.3 (prBP∗TISP,prR∗TISP). Let t, s : N → N be any two functions. The class prBP∗TISP(t, s)
consists of all the promise problems (Yes,No), such that Yes,No ⊆ {0, 1}∗, for which there exists a prob-
abilistic TM M , that on n-bit input x, it uses s(n) memory bits, runs at most t(n) time, has 2-way access
to its randomness, such that:

1. for every x ∈ Yes, Prr [M [x, r] = 1] ≥ 2
3 ,

2. for every x ∈ No, Prr [M [x, r] = 0] ≥ 2
3 .

The class prR∗TISP(t, s) is defined similarly, but the machines have only 1-sided error.

From hereon, we identify complexity classes with their promise version, e.g. BP∗L refers to prBP∗L.

Resource-Bounded TMs We make use of the following resource-restricted classes of TMs:

1. Deterministic Logspace Machines, denoted DLM, which consists all the TMs M such that for every
input x ∈ {0, 1}∗, M [x] is computable in space O(log n).

2. Probabilistic* Logspace Machines, denoted P∗LM, which consists all the Probabilistic TMs M such
that for every input x ∈ {0, 1}∗ and every coins tosses r ∈ {0, 1}∗, M [x, r] is computable in space
O(log n) and time poly(n).

3. Time and Space Machines, denoted TISP(T, S), which consists all the TMs M such that for every
input x ∈ {0, 1}∗, M [x] runs in deterministic time T (n) and space S(n),

4. Probabilistic* Time and Space Machines R∗TISP(T, S), which consists all the TMs M such that
for every input x ∈ {0, 1}∗ and every coins tosses r ∈ {0, 1}∗, M [x, r] runs in time T (n) and space
S(n).

We abuse notations and associate the TMs collections with its resource restrictions; for example, we say
that a TM is a DLM if it belongs to that collection.

Lemma 3.1 (Composition of space-bounded machines). Let f1, f2 : {0, 1}∗ → {0, 1}∗ be two functions
that on input length n, are computable in space s1(n), s2(n) = Ω(logn), respectively. Then, for every x,
f2(f1(x)) is computable in space O(s1(|x|) + s2(|f1(x)|)).

For any TM M and input x, we denote by s[M [x]] the space consumption of M [x].

3.2 Pseudorandom objects

We consider a generalized notion of a targeted PRG [Gol11] which, following [LP22], allows also proba-
bilistic classes of distinguishers.

Definition 3.4. Let s,m : N → N and ε : N → [0, 1].

An ε(n) targeted-PRG G : {0, 1}n × {0, 1}s(n) → {0, 1}m(n) against a collection of TMs C, is defined
such that, for every sufficiently large n, and for every machine M ∈ C and 2-way accessible input σ ∈
{0, 1}n (dubbed target henceforth),∣∣∣∣∣ E

r∈R{0,1}m(n)
[M [σ, r]]− E

x∈R{0,1}s(n)
[M [σ,G(σ, x)]]

∣∣∣∣∣ ≤ ε(n).

Similarly,
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Definition 3.5. Let s,m : N → N and ε : N → [0, 1].

An ε(n) targeted-HSG H : {0, 1}n × {0, 1}s(n) → {0, 1}m(n) against a collection of TMs C satisfies,
that for every sufficiently large n, and for every machine M ∈ C and 2-way accessible target σ ∈ {0, 1}n:

E
r∈R{0,1}m(n)

[M [σ, r]] ≥ ε(n) =⇒ E
x∈R{0,1}s(n)

[M [σ,H(σ, x)]] > 0.

We emphasize that if C is consists of probabilistic machines, then all the above probabilities are also
over additional random string which is provided to M (which access it according to the restrictions of C).

3.3 Kolmogorov Space complexity

Our proofs make use of a Universal Turing machine U , that can simulates any TM Π on input length n
in time O(t log t) and space O(s), where t = t(n), s = s(n) are the time and space complexity of Π on
input length n. For a reference, see for example [AB09].

We make use of the space-bounded Kolmogorov problem as was introduced by [ABK+06]. See the
paper for several basic facts about it.

Definition 3.6. The Kolmogorov Space bounded complexity of a string x ∈ {0, 1}∗, given an auxiliary
string y ∈ {0, 1}∗ is defined as

KS(x | y) def
= min

Π∈{0,1}∗,s∈N
{|Π|+ s[Π(y)] | U(Π(y)) = x} .

Definition 3.7. Let a, b : N → N. The promise problem GapMcKSP[a, b] is compromised with two kinds
of strings (x, y), both of length n:

1. (x, y) ∈ Yes if KS(x | y) ≤ a(n),

2. (x, y) ∈ No if KS(x | y) ≥ b(n).

Say that a probabilistic machine M fails to decide (x, y) ∈ GapMcKSP[a, b], if the pair (x, y) is
yes/no instance but

Pr
r
[M [x, r] = 1((x, y) ∈ Yes)] ≤ 2

3
,

where 1(·) is the indicator function.
We say that GapMcKSP[a, b] is worst-case hard for probabilistic complexity class C, given all sufficiently

long auxiliary inputs, if for every M ∈ C, every sufficiently long string y, there exists an x of the same
length, so M fails to decide (x, y) ∈ GapMcKSP[a, b].

3.4 Searching in Logspace

Let R ⊆ {0, 1}∗×{0, 1}∗ be a relation, and denote R(x)
def
= {y | (x, y) ∈ R}. The following definitions are

of promise search problems.

Definition 3.8. Say R ∈ SearchL if there are DLM F, V , such that for every x, y:

1. Deterministic finding of good solutions: F [x] ∈ R(x),

2. Deterministic verification of solutions: V [x, y] = 1(y ∈ R(x)).

Definition 3.9. Say R ∈ SearchBP∗L if there are P∗LM F, V such that for every x, y:

1. Probabilistic finding of good solutions: Prr [F [x, r] ∈ R(x)] ≥ 2/3,

2. Probabilistic verification of solutions: Prr [V [x, y, r] = 1(y ∈ R(x))] ≥ 2/3.

Definition 3.10. Say R ∈ SearchR∗L if there is P∗LM F and DLM V such that for every x, y:

1. Probabilistic finding of good solutions: Prr [F [x, r] ∈ R(x)] ≥ 1
poly(n) ,

2. Deterministic verification of solutions: V [x, y] = 1(y ∈ R(x)).
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3.5 Blackbox PRGs from hard functions

We make use of Blackbox reconstructive PRGs, as was defined in [LP23] (which in turn is based on
[Vad12]); by focusing on space efficient derandomization, we adapt the definition to be space-efficient.

Definition 3.11. Let Adv,Rec be collections of TMs. Let k : N2 → N be a function. Let G : {0, 1}d →
{0, 1}n be a deterministic algorithm.

We say that G is a (Adv,Rec, k)-logspace-reconstructive PRG construction, if there exists machines
A ∈ Adv and R ∈ Rec, such that for every function f : {0, 1}logm → {0, 1}, and arbitrary distinguisher
D : {0, 1}n → {0, 1} such that

E
x∈R{0,1}d

[
D(Gf (x))

]
− E

r∈R{0,1}n
[D(r)] ≥ 1

poly(n)
,

then Af,D[1n+m] will output ≤ k(n,m) bits so when given as input to R, it holds

Pr
x∈R{0,1}logm

[
RD[1n+m,Af,D[1n+m], x] = f(x)

]
= 1.

If Adv is a collection of probabilistic machines, the above should hold with probability ≥ 2/3 over the
randomness of A. If Rec is a collection of probabilistic machines, then R should be able to compute f(x)
with probability ≥ 2/3 over its own randomness.

We observe that there exists a logspace-reconstructive PRG. The construction is due to [DT23], whom
only recently showed logspace computable reconstruction variant of [NW94; STV99].

Theorem 3.2 (Implicit in [DT23, Theorem 6.1]). There exists a (PLM,DLM, k)-logspace-reconstructive

PRG construction, denoted DTf : {0, 1}O(logn) → {0, 1}n such that, for sufficiently large m
def
= nO(1) and

f : {0, 1}logm → {0, 1}, the following holds:

1. Explicitness: Gf is computable in deterministic space O(logm) = O(log n).

2. Short advice: k(n,m)
def
= m2/3.

The original phrasing differs as follows:

1. Their reconstruction algorithm output a TC0 circuit that makes non-adaptive queries to the distin-
guisher D. As was further shown in [DT23], a DLM can evaluate such a circuit when given as input
(this follows because: (1) for non-oracle circuits, we have TC0 ⊆ NC1 ⊆ L, and (2), the inclusion
still holds for circuits with oracle to DLMs with non-adaptive queries).

2. They do not distinguish between the Advice and the Reconstruction algorithms; instead, they argue
that their reconstruction algorithm produces a relatively small TC0 circuit. In our consideration,
the circuit serves as the Advice’s output; the Reconstruction procedure, given access to that circuit,
simply evaluates it on a given input (thus, it is computable in log-space, as described in the former
bullet).

4 SearchBP∗L vs GapMcKSP

The main theorem of this section is:

Theorem 4.1. For every large enough constant a, there exists b, c = O(1) so the following holds.
SearchBP∗L = SearchL if and only if GapMcKSP[a log n, n−1] is worst-case hard for R∗TISP(nc, ab log n)
given all sufficiently long auxiliary inputs.
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4.1 SearchBP∗L = SearchL implies GapMcKSP is hard

We first observe that a random function is a targeted-PRG against R∗TISP(n, log n); Goldreich [Gol11]
proved this results against any deterministic (bounded) polynomial-time algorithms, and [LP22] noted
that his proof extends also to deal with probabilistic polynomial-time algorithms. We here note that the
same proof also directly extends to log space bounded algorithms—in fact, the class of algorithms does
not matter for the proof as long as it is a uniform class. We defer the proof to Appendix B.

Claim 4.2. Let ε > 0 be an arbitrary constant, and σ ∈ {0, 1}n. Let a, b = O(1) be arbitrary.
Then, a random function f : {0, 1}10 logn → {0, 1}n is an ε targeted-PRG against all M ∈ R∗TISP(na, b log n)∩

{0, 1}log log logn that decides the instance σ, w.h.p:

Pr
f

∀M :

∣∣∣∣∣∣∣∣ E
s∈R{0,1}10 logn,

y∈R{0,1}n
a

[M [σ, f(s), y]]− E
r∈R{0,1}n,
y∈R{0,1}n

a

[M [σ, r, y]]

∣∣∣∣∣∣∣∣ ≥ ε

 ≤ 2−n.

Let us define the search-problem of finding targeted-PRGs.

Definition 4.1. Let C be a collection of TMs. The relation Find-PRGC [α, β] is defined as follows. Let

σ ∈ {0, 1}n, and let Gσ : {0, 1}O(logn) → {0, 1}n be an arbitrary function.

1. (σ,Gσ) ∈ Yes if for all M ∈ {0, 1}log log logn ∩ C,∣∣∣∣∣ E
x∈R{0,1}O(logn)

[M [σ,Gσ(x)]]− E
r∈R{0,1}n

[M [σ, r]]

∣∣∣∣∣ ≤ α,

2. (σ,Gσ) ∈ No if there exists an M ∈ {0, 1}log log logn ∩ C such that,∣∣∣∣∣ E
x∈R{0,1}O(logn)

[M [σ,Gσ(x)]]− E
r∈R{0,1}n

[M [σ, r]]

∣∣∣∣∣ ≥ β.

If C consists of probabilistic machines, then all the probabilities are also over the random coins of M .

Observe that Claim 4.2 essentially implies that to find a good targeted-PRG, one can simply print
a random function. The next claim shows that also verifying whether a given function, is a good one,
is possible in logspace given 2-way access to the random and the candidate function. The proof follows
using the same approach as [Gol11], and verifies the log-space efficiency of solver.

Claim 4.3. For every constants a, b = O(1),

Find-PRGR∗TISP(na,b logn)[.1, .2] ∈ SearchBP∗L.

Proof. We describe suitable P∗LM solution Finder and Verifier F, V . The finder simply prints a random
input, whereas the verifier simply verifies (using its 2-way access to solution), if it is good one.
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Algorithm 1: Low-space algorithms for Find-PRGR∗TISP(na,b logn)

Input: σ ∈ {0, 1}n

Randomness (multiple read): Gσ : {0, 1}10 logn → {0, 1}n and r′ ∈ {0, 1}poly(n)
1 Function F [σ,Gσ]:
2 print Gσ

3 Function V [σ,Gσ, r
′]:

4 for M ∈ {0, 1}log log logn ∩ R∗TISP(na, b log n) do

5 Let pM be an estimation, using poly(n) many y ∈R {0, 1}n and r ∈R {0, 1}n
a

, of

E
y∈R{0,1}n,
r∈R{0,1}n

a

[M [σ, y, r]]

6 Let qM be an estimation, using poly(n) many r ∈ {0, 1}n
a

, of

E
s∈R{0,1}3a logn,

r∈{0,1}n
a

[M [σ,Gσ(s), r]]

7 if |pM − qM | ≥ 0.2− 1
2n then return 0

8 return 1

To enumerate over R∗TISP(na, b log n) machines, we verify during the simulation of M [σ, y, r] that M
uses at most ≤ b log n space and runs for ≤ na steps; otherwise, we skip to the next M ∈ {0, 1}log log logn.

We now claim that both F, V are P∗LM:

1. F simply prints its randomness tape, so it is clearly a P∗LM.

2. Consider V . First observe it uses |r′| = poly(n) random bits, as each iteration requires poly(|r|·|y|) ≤
poly(n) many random bits to estimate pM , qM , and there are ≤ 2log log logn ≤ log logn iterations.

Since V has has two-way access its randomness and candidate solution Gσ, it can be implemented
to consume at most O(log n) space, by recalling Gσ and random strings from the input tape for
proper simulations of M [σ,Gσ(s), r] or M [σ, y, r].

Each simulation requires only logspace and polynomial time overhead, which in turn concludes that
V is indeed a P∗LM.

As for the correctness, for every fixed σ, by Claim 4.2, F [σ, ·] finds good PRG w.h.p:

Pr
Gσ

[F [σ,Gσ] ∈ Yes] = Pr
Gσ

[Gσ is 0.1 PRG] ≥ 1− 2−n.

Now consider Gσ ∈ Yes. Observe that V verifies Gσ correctly at least when all the estimations pM , qM
were accurate up to error 1/n; by using polynomially large enough number of sampling of r, y, the
Hoeffding bound implies that each of which is accurate with probability ≥ 1 − 2−n. Thus by the union
bound, V verifies correctly with overwhelming probability:

Pr
Gσ ,r′

[
V [σ,Gσ, r

′] = 1
∣∣Gσ is 0.1 PRG

]
≥ 1−O(log log n) · 2−n ≥ 1− 2−0.99n.

On the other hand, if Gσ ∈ No, namely it is not an 0.02 targeted-PRG, then V verifies badly only if some
pM or qM were approximated badly; this happens with negligible probability:

Pr
Gσ ,r′

[
V [σ,Gσ, r

′] = 1
∣∣Gσ ∈ No

]
≤ 2−n.
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Finally, assuming that SearchBP∗L can be fully derandomized, we can argue that GapMcKSP is
suitably hard for (sufficiently bounded) P∗LM.

Claim 4.4. For every large enough constant a, there exists b = O(1) so the following holds.
If SearchBP∗L = SearchL, then GapMcKSP[a log n, n−1] is worst-case hard for R∗TISP(n, ab log n),

given any sufficiently long auxiliary input.

Proof. Let b be a constant TBD.
By Claim 4.3, the search problem Find-PRGR∗TISP(n,a

b
logn)[.1, .2] belongs to SearchBP∗L, and so

the hypothesis implies it further belongs to SearchL.
By Claim 4.2, for every σ and constants a, b, there exists some Gσ such that (σ,Gσ) ∈ Yes, namely

the relation is non-empty.
Combined together with the fact the relation in SearchL, implies that there exists a DLM, that on

input σ ∈ {0, 1}n, prints the truthtable of a function

G : {0, 1}n × {0, 1}O(logn) → {0, 1}n,

which is of length poly(n), such that for all M ∈ R∗TISP(n, ab log n) ∩ {0, 1}log log logn, it holds∣∣∣∣∣∣∣∣ E
x∈R{0,1}O(logn)

y∈R{0,1}n

[M [σ,Gσ(x), y]]− E
r∈R{0,1}n
y∈R{0,1}n

[M [σ, r, y]]

∣∣∣∣∣∣∣∣ ≤ 0.1,

Furthermore, the algorithms prints it in space O(ab log n). Put differently, this implies a targeted-PRG
computable in that space.

Let σ ∈ {0, 1}n be sufficiently long target, and abbreviate Gσ(x)
def
= G(σ, x). Observe that given σ,

Gσ has constant length description; thus by the PRG definition, for any seed x,

KS(Gσ(x) |σ) ≤ |Gσ|+ |x|+ s[Gσ(x)]

= O
(a
b
log n

)
.

Set b = O(1) such that the above is bounded by ≤ a log n; thus

max
x

KS(Gσ(x) |σ) ≤ a log n.

Assume, by way of contradiction, that there is a R∗TISP(n, ab log n) distinguisher A for GapMcKSP, given
the auxiliary input σ:

∀(z | σ) ∈ Yes, E
r
[A[z, σ, r]] ≥ 0.9,

∀(z | σ) ∈ No, E
r
[A[z, σ, r]] ≤ 0.1.

We now show A succeeds to distinguish Gσ, namely it distinguishes pseudorandom inputs from random
ones, with high probability.

Let y = Gσ(x) be a pseudorandom input (for any seed x). By b’s definition, (σ,Gσ) ∈ Yes, so,

E
x,r

[A[Gσ(x), σ, r]] ≥ 0.9.
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Consider random inputs y ∈R {0, 1}n. As every deterministic machine Π produces one string, the number
of strings y with KS complexity ≤ n− 2 is at most

|{y ∈ {0, 1}n | KS(y |σ) ≤ n− 2}| ≤ |{Π ∈ {0, 1}n | |Π|+ s[Π(σ)] ≤ n− 2}|
≤ |{Π ∈ {0, 1}n | |Π| ≤ n− 2}|
≤ 2n−1,

the fraction of random y’s such that (y, σ) /∈ No, namely having KS complexity ≤ n− 2 is at most,

Pr
y∈R{0,1}n

[(y, σ) /∈ No] = Pr
y∈R{0,1}n

[KS(y |σ) ≤ n− 2]

≤ 2n−1

2n

= 0.5,

so A would reject random strings with high probability:

E
y∈R{0,1}n,r

[A[y, σ, r]] ≤ Pr
y∈R{0,1}n

[KS(y |σ) ≤ n− 2] · 1 + 1 · E
y∈R{0,1}n,r

[A[y, σ, r] |KS(y |σ) > n− 2]

≤ 0.5 + E
y∈R{0,1}n,r

[A[y, σ, r] | (y, σ) ∈ No]

≤ 0.6.

It follows that, for every sufficiently long target σ, A distinguishes Gσ with probability ≥ 0.3, a contra-
diction.

4.2 Hardness of GapMcKSP implies SearchBP∗L = SearchL

The main claim of this section is:

Claim 4.5. For every large enough constant a, there exists b, c = O(1) so the following holds.
If GapMcKSP[a log n, n− 1] is worst-case hard for R∗TISP(nc, ab log n) given all sufficiently long aux-

iliary inputs, then SearchBP∗L = SearchL.

Proof. Combine Claims 4.6 and 4.7 and Corollary 4.12 (see below).

In high level, we first construct a targeted-HSG against TISP(n, log n), based on hardness of GapMcKSP
against R∗TISP(nc, ab log n); we then show how to conclude SearchBP∗L = SearchL.

4.2.1 Hardness to target HSG

Claim 4.6. Let ε > 1/nO(1). For every large enough constant a, there exists b, c = O(1) so the following
holds.

If GapMcKSP[a log n, n−1] is worst-case hard for R∗TISP(nc, ab log n) given all sufficiently long auxil-

iary inputs, then there exists an ε target HSG H : {0, 1}poly(n)×{0, 1}O(logn) → {0, 1}n against TISP(nγ , log n)
for all sufficiently long target, computable in space O(log n), for some constant γ > 0.

Proof. Let DTf : {0, 1}O(logn) → {0, 1}n be the construction from Theorem 3.2 using parameter m
def
=

nΘ(1). Let γ > 0 be the constant satisfying n = mγ .

Given a target σ ∈ {0, 1}m, denote Hσ(·)
def
= H(σ, ·); we define the HSG

Hσ :

 ⋃
ℓ∈[a logm]

{0, 1}ℓ
× {0, 1}O(logm) → {0, 1}n
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as

Hσ(Π, x)
def
= DTΠ(σ)(x),

where Π(σ) ∈ {0, 1}m is the output of the TM represented by Π on input σ that uses at most a logm
space; if the output is shorter we pad it by 0’s, and if its longer, we truncate it to the first m bits.

Space Complexity Hσ(Π, x) is computable in logspace because so does DT (Theorem 3.2) and Π(σ)
(the space complexity overhead of the simulation is linear).

Reduction SupposeH is not a target HSG for all sufficiently long target; thus there is some TISP(mγ , logm)
distinguisher A, that on input length m distinguishes H, when simulated on infinitely many instances
σ ∈ {0, 1}m:

E
r
[A[σ, r]] ≥ ε,

E
(Π,x)

[A[σ,Hσ(Π, x)]] = 0.
(1)

Observe that mγ = n and hence A[σ, ·] runs in time n, and Hσ indeed outputs n bits.
Let A,R be the Advice and Reconstruction P∗LM from Theorem 3.2.
Consider the following distinguisher B(z | σ) for GapMcKSP on input length m = |z| = |σ|:

1. Compute the advice adv
def
= Az,A[σ,·][1m], by associating z with a function {0, 1}logm → {0, 1}.

By A[σ, ·] we mean the adversary program that relies on the fixed instance σ.

2. Return 1 iff

∀k ∈ {0, 1}logm, RA[σ,·][1m, adv, k] = zk (2)

and |adv| ≤ |z|2/3 and everything was computed in O(logm) space.

We emphasize that for every k, B compute on the fly the advice adv to evaluate R. This only
increase the space complexity by additional O(logm) factor.

Complexity Since A[1m],R[1m, ·] are simulatable by P∗LM (at worst; proven in Theorem 3.2), and
A[σ, ·] is a DLM, by composition of space bounded machines (Lemma 3.1), it follows that B is also P∗LM.

Moreover, observe that the input-length of A,R is m, and hence their space complexity O(logm) is
independent of the constant a which controlled the seed length of H (namely the length of the chosen
TM, whose output was considered as the hard function in DT). Thus, if a is large enough, there exists
b, c = O(1) such that B is simulatable by

R∗TISP
(
mc,

a

b
logm

)
.

We emphasize that B computes everything on the fly; in particular, the advice adv is recomputed over
and over and thus does not blows up B’s space complexity.

Correctness Let σ ∈ {0, 1}m be a distinguishable instance. We claim that B decides GapMcKSP,
given the auxiliary input σ, for every z of length |z| = m.

Let (z | σ) ∈ No. We claim that the algorithm B would never accept such inputs. This follows
because, by definition, every program Π that produces z, is either > 0.5(m− 1) bit long, or evaluable in
> 0.5(m− 1) bits of work-space. Thus B would always reject:

E
r
[B[z, σ, r]] = 0.
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Let (z | σ) ∈ Yes. Thus, there is some Π that produces Π(σ) 7→ z and

|Π|+ s[Π(σ)] ≤ a logm,

and so by definition ofHσ, that includes all the machines of description length ≤ a logm that are evaluable
in space ≤ a logm, for every x it holds

DTz(x) ∈ Im(Hσ(·, x)).

In particular, by Equation (1), A would distinguish DTz(·) from random string.
Thus, by Theorem 3.2, the Advice procedure Az,A[σ,·] would output with probability ≥ 2/3 a “good

advice”, such that RA[σ,·] would reconstruct z with probability 1, namely Equation (2) would hold. By
Theorem 3.2, the advice is relatively short:

|adv| ≤ |z|2/3,

so since indeed A,R are computable in logspace, B would output 1 w.h.p.:

E
r
[B[z, σ, r]] ≥ Pr

r

[
Az,A[σ,·][1m, r] succeeds

]
≥ 2

3
.

This contradicts the hardness of GapMcKSP given all sufficiently long auxiliary input σ.

Observe that for every constant γ > 0, a targeted-HSG against TISP(nγ , log n) can be extended, using
padding argument, to be against DLM, namely TISP(poly(n), O(log n)) for arbitrary large poly-time and
logarithmic space machines.

Claim 4.7. Let m = m(n), s = s(n), d = d(n), ε(n) = ε be functions of n. Let γ > 0 be a constant.
If there exists an ε target HSG H : {0, 1}m ×{0, 1}s → {0, 1}n against TISP(nγ , log n), computable in

space d, then there exists an ε(poly(n)) target HSG H ′ : {0, 1}m × {0, 1}s(poly(n)) → {0, 1}n against DLM
that is computable in space d(poly(n)).

In particular, if s(n), d(n) = O(log n), then H ′ is logspace computable and has logarithmic seed length.

Proof. Fix an instance σ ∈ {0, 1}n, and let D be an arbitrary DLM such that

E
r
[D[σ, r]] ≥ ε,

where it uses ℓ
def
= |r| = poly(n) random bits (the bound is due to D’s polynomial running time bound).

Let m
def
= ℓ1/γ = poly(n). Define the machine D′ as follows:

D′[τ ′, y]
def
=

{
D[τ, y] |τ ′| = n+m ∧ τ ′ = τ ◦ 1m,

0 otherwise.

Observe that D′ decides the “padded” language that D decides: namely, for every string y, it accepts
targets of the form τ ◦ 1m iff D accepts τ . Moreover, since D′ can verify in O(log(n + m)) = O(log n)
space whether its input τ ′ is of the form τ ◦ 1m, it follows that D′ is a DLM.

Now observe that D′[σ ◦ 1m], which has input length n+m > m = ℓ1/γ , consumes only ℓ ≤ (n+m)γ

random bits, and

E
r∈R{0,1}ℓ

[
D′[σ ◦ 1m, r]

]
= E

r∈R{0,1}ℓ
[D[σ, r]] ≥ ε,

in which case, by definition of D′ and H,

E
x∈R{0,1}s

[D[σ,H(σ ◦ 1m, x)]] = E
x∈R{0,1}s

[
D′[σ ◦ 1m, H(σ ◦ 1m, x)]

]
> 0.
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Now define the HSG H ′(σ, ·) def
= H(σ ◦ 1m, ·), namely generating strings according to the “padded”

instance. Hence, by the above equation, H ′ is guaranteed to hit D[σ, ·] = D′[σ ◦ 1m, ·]. Observe that H ′

computable in space s(n+m) = s(poly(n)), has seed length d(n+m) = d(poly(n)), and the HSG’s new
threshold error becomes ε(poly(n)).

Such an targeted-HSG, as in the hypothesis of Claim 4.7, implies R∗L ⊆ L by enumerating the
HSG seeds and taking the majority vote. Furthermore, using the space-variant reduction of [BF99] from
Theorem A.1, that shows R∗L = L =⇒ BP∗L = L, this even implies that a good targeted-HSG implies
2-sided error derandomization:

Corollary 4.8. For every large enough constant a, there exists b, c = O(1) so the following holds.
If GapMcKSP[a log n, n− 1] is worst-case hard for R∗TISP(nc, ab log n) given all sufficiently long aux-

iliary inputs, then BP∗L ⊆ L.

4.2.2 Target HSG against DLM implies derandomization of SearchBP∗L

This section is devoted to prove Corollary 4.12, which exhibits derandomization of search problems
SearchBP∗L = SearchL, given an optimal target HSG against DLM.

Claim 4.9. If BP∗L = L, then SearchBP∗L ⊆ SearchR∗L.

Proof. Given a relation R ∈ SearchBP∗L, let F, V be P∗LM which are R’s solution Finder and Verifier
TMs, respectively; by definition,

∀x, y, Pr
r
[V [x, y, r] = 1(y ∈ R(x))] ≥ 2

3
.

Thus V decides the language R = {(x, y)} ∈ BP∗L. By the hypothesis, R ∈ L, and so there exists a
DLM verifier V ′ for R:

∀x, y : V ′[x, y] = 1(y ∈ R(x)),

which implies R ∈ SearchR∗L (see Definitions 3.9 and 3.10).

Claim 4.10. If there exists a logspace targeted-HSG against DLM for all sufficiently long targets, then
SearchR∗L ⊆ SearchL.

Proof. Let R ∈ SearchR∗L, and let F, V be its P∗LM finder and DLM verifier, respectively.
Define the language R′ ⊆ {0, 1}∗ as

R′ def= {x ∈ {0, 1}∗ | R(x) ̸= ∅} .

Claim 4.11. R′ ∈ R∗L.

Proof. Consider the machine M [x, r] that acts as follows:

M [x, r]
def
= V [x, F [x, r]].

Observe that M is P∗LM, as it leverages the 2-way access to randomness and composition of space
bounded machines (Lemma 3.1).

As for the correctness, by definition of F, V :

x ∈ R′ =⇒ R(x) ̸= ∅ =⇒ Pr
r
[F [x, r] ∈ R(x)] ≥ 2

3
=⇒ Pr

r
[V [x, F [x, r]] = 1] ≥ 2

3
,

x /∈ R′ =⇒ R(x) = ∅ =⇒ Pr
r
[F [x, r] ∈ R(x)] = 0 =⇒ Pr

r
[V [x, F [x, r]] = 1] = 0.
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Let n be sufficiently large such that there exists a target HSG for that n.
Let x ∈ {0, 1}n, and consider the following search algorithm F ′[x] for R:

1. Let Hx : {0, 1}O(logn) → {0, 1}poly(n) be a targeted HSG against DLM for target x.

2. Loop all s ∈ {0, 1}O(logn):

(a) If M [x,Hx(s)] = 1: Print F [x,Hx(s)].

Then, by definition of the HSG,

R′ ∈ R∗L ⇐⇒ Pr
r
[M [x, r] = 1] ≥ 2

3

⇐⇒ ∃s ∈ {0, 1}O(logn), M [x,Hx(s)] = 1

⇐⇒ ∃s ∈ {0, 1}O(logn), V [x, F [x,Hx(s)]] = 1

⇐⇒ ∃s ∈ {0, 1}O(logn), F [x,Hx(s)] ∈ R(x),

so F ′[x] would always print a good solution in deterministic logspace, and hence R ∈ SearchL.

Corollary 4.12. If there exists a 0.1 targeted-HSG H : {0, 1}n×{0, 1}O(logn) → {0, 1}n against DLM for
all sufficiently long targets, that is computable in space O(log n), then SearchBP∗L = SearchL.

Proof. The existence of logspace targeted-HSG implies that R∗L = L by enumeration of the HSG. By
Theorem A.1, we further conclude BP∗L = L; by Claim 4.9, SearchBP∗L ⊆ SearchR∗L; then, by
Claim 4.10, we can use the HSG to derandomize SearchR∗L ⊆ SearchL.

5 SearchBP∗L vs Leakage-resilient

5.1 Definitions

Let ℓ : N → N. A probabilistic TM L is said to have a bounded output length ℓ if, on every sufficiently
long input x, it outputs at most ℓ(|x|) bits, regardless of its randomness r:

max
r

|L[x, r]| ≤ ℓ(|x|).

Definition 5.1. Let Adv, Leak be collections of TMs; let ℓ : N → N.
A function f : {0, 1}n → {0, 1}m is an (Adv, Leak, ℓ)-almost-all-inputs-leakage resilience hard, if for

all algorithms (A,L) ∈ Adv × Leak such that L has have bounded output length ℓ, the following holds.
For every sufficiently long x ∈ {0, 1}n, A fails to compute f(x) with constant probability, even when

given 2-way access to the leakage of L[x, f(x)]; that is,

Pr
r,r′

[
A[x, L[x, f(x), r′], r] = f(x)

]
≤ 2

3
.

Similarly, we define f to be (Adv, Leak, ℓ)-almost-all-inputs-leakage resilience locally hard similarly as
leakage resilience hard function with the following modifications: first, A gets an additional input i ∈ [n]
and is asked to compute only f(x)i ∈ {0, 1}; second, the hardness assumption now is that for every
sufficiently long x there exists i so A[x, i, ·] fails to compute f(x)i w.h.p:

∃i ∈ [n], Pr
r,r′

[
A[x, i, L[x, f(x), r′], r] = f(x)i

]
≤ 2

3
.

24



The main theorem of this section is:

Theorem 5.1. There exists constants a, c = O(1) so for every constant b > a the following holds.
Define the collection of TMs Adv, Leak as

Leak
def
= R∗TISP(nc, a log n)

Adv
def
= TISP(nc, a log n).

Then SearchBP∗L = SearchL if and only if there exists an (Adv, Leak, n2/3)-almost-all-inputs leakage
resilient locally hard function f : {0, 1}n → {0, 1}n, computable in space b log n.

Proof. By combining Claim 5.3 and Theorem 5.7 with the observation that every (A,L, ℓ) leakage resilient
hard function is also a leakage resilient locally hard one (for almost all inputs).

5.2 Leakage resilience implies SearchBP∗L = SearchL

We first show, based on leakage resilience function, how to derive targeted-PRG against DLM; using that,
we derandomize SearchBP∗L.

Theorem 5.2. There exists constants a, c = O(1) so for every constant b > a the following holds.
Define the collections of TMs Adv, Leak as

Leak
def
= R∗TISP(nc, a log n)

Adv
def
= TISP(nc, a log n).

Let ε > 1/nO(1). If there exists an (Adv, Leak, n2/3)-almost-all-inputs leakage resilient locally hard function

f : {0, 1}n → {0, 1}n, computable in space b log n, then there exists an ε targeted-PRG G : {0, 1}poly(n) ×
{0, 1}O(logn) → {0, 1}n against DLM, computable in space O(log n), for all sufficiently long targets.

For simplicity we focus on TISP(nγ , log n) adversaries, for some constant γ > 0, so we need to generate
nγ pseudo-random bits. The general case follows by padding argument on the target.

Proof. Let DTf : {0, 1}O(logn) → {0, 1}n be the construction from Theorem 3.2 using parameter m
def
=

nΘ(1). Let γ > 0 be the constant satisfying n = mγ . From hereon we use the leakage function on input
length m.

Let us describe the PRG with parameters

G : {0, 1}m × {0, 1}O(logn) → {0, 1}n.

Given a target σ ∈ {0, 1}m, we abbreviate Gσ(x)
def
= G(σ, x). Define the targeted PRG as

Gσ(x)
def
= DTf(σ)(x),

where the string f(σ) ∈ {0, 1}m is viewed as a function {0, 1}logm → {0, 1}.

Space complexity. Using composition of space bounded-machines, Gσ(x) is computable in O(log n)
space because both f(σ) and DTf(σ) are computable in space O(logm) = O(log n) (see Theorem 3.2).
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Correctness Suppose, by way of contradiction, that G is not an ε target PRG for all sufficiently long
targets; so there is a TISP(mγ , logm) distinguisher D, that on input length m, and infinitely many targets
σ such that

E
x
[D[σ,Gσ(x)]]− E

r
[D[σ, r]] ≥ ε.

Observe that mγ = n and hence D[σ, ·] runs in time n, and Gσ indeed outputs n bits.
Let A,R be the Advice and Reconstruction P∗LM from Theorem 3.2. We now construct leakage and

adversary algorithms that contradicts the hardness of f .

The leakage L[σ, f(σ)] returns the advice defined as

L[σ, f(σ)]
def
= Af(σ),D[σ,·][1m].

By D[σ, ·] we mean the distinguisher program that relies on the fixed instance σ.
By Theorem 3.2, the advice has bounded length ≤ m2/3, so indeed L produce short enough leak:

|L[σ, f(σ)]| =
∣∣∣Af(σ),D[σ,·][1m]

∣∣∣ ≤ m2/3.

By composing space-bounded machines, since D,A[1m] are computable by P∗LM (at worst), so does L;
thus for some constants a, c = O(1),

L ∈ R∗TISP(mc, a logm) = Leak.

The deterministic adversary A[σ, i, adv], on input σ, index i ∈ [m] and leakage adv, returns the
evaluation

A[σ, i, adv]
def
= RD[σ,·](1m, adv, i).

Observe that A access adv in 2-way manner, and it does not count as part of its space-tape. By composing
space-bounded machines, since R[1m, adv, ·], D are DLM, so does A; so for large enough constants a, c =
O(1),

A ∈ TISP(mc, a logm) = Adv.

Correctness for sufficiently long σ, by Theorem 3.2, with probability ≥ 2/3, the leakage algorithm
L would produce a good leakage adv, such that RD[σ,·][1m, adv, ·] would fully reconstruct the string
f(σ) ∈ {0, 1}m (associated with the function {0, 1}logm → {0, 1}); in that case, the adversary A would
succeed with probability 1:

∀i ∈ [m], Pr
r
[A[σ, i, L[σ, f(σ), r]] = f(σ)i] = Pr

r

[
Af(σ),D[σ,·][1m, r] succeeds

]
≥ 2

3
,

which contradicts the leakage-resilience local hardness of f .

Building on our targeted-PRG against DLM, we can now derandomize SearchBP∗L:

Claim 5.3. There exists constants a, c = O(1) so for every constant b > a the following holds.
Define the collections of TMs Adv, Leak as

Leak
def
= R∗TISP(nc, a log n)

Adv
def
= TISP(nc, a log n).

If there exists an (Adv, Leak, n2/3)-almost-all-inputs leakage resilient locally hard function f : {0, 1}n →
{0, 1}n, computable in space b log n, then SearchBP∗L = SearchL.
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Proof. Observe that Theorem 5.2 implies, by the hypothesis, a targeted PRG: there is 1-1 correspondence
between targets of the PRG, and hard inputs of the function; since its almost-all-input hard, the generator
is against all sufficiently long target.

The proof follows by combining it with Corollary 4.12, with the observation that a targeted PRG is
by definition also a targeted-HSG.

Finally, we observe that the space complexity of the given leakage-resilient function corresponds to the
space complexity of our constructed targeted-PRG. This helps us to characterize partial derandomization
of SearchBP∗L.

Corollary 5.4. Let γ > 0. There exists constants a, c = O(1) so for every constant b > a the following
holds.

Define the collections of TMs Adv, Leak as

Leak
def
= R∗TISP(nc, a log n)

Adv
def
= TISP(nc, a log n).

If there exists an (Adv, Leak, n2/3)-almost-all-inputs leakage resilient locally hard function f : {0, 1}n →
{0, 1}n, computable in space b log1+γ n, then SearchBP∗L = SearchL1+γ.

Proof. Essentially as Theorem 5.2, except that now the construction G is computable in space b log1+γ ,
which in turn blows-up the derandomization complexity.

5.3 SearchBP∗L = SearchL implies leakage-resilience hard function

This section adapts [LP23] proof to the logspace regime. In high level, it shows that a random function is
leakage-resilience, and that it possible to verify it by a P∗LM; this in turn implies that the search problem
of finding leakage-resilient hard function belongs to SearchBP∗L. Then, we leverage the hypothesis to
compute it deterministically.

Definition 5.2. Let Adv, Leak be collections of TMs, and ℓ : N → N; let α, β > 0.
The relation Find Leakage Resilient FunctionAdv,Leak,ℓ[α, β] consists of pairs {(x, y) | x, y ∈ {0, 1}n}

where, for every x, y of length n,

1. (x, y) ∈ Yes if for all (A,L) ∈ Adv × Leak that have short description A,L ∈ {0, 1}logn it holds

Pr
r,r′

[
|L[x, y, r]| ≤ ℓ(|x|) ∧A[x, L[x, y, r], r′] = y

]
≤ α.

2. (x, y) ∈ No if there exists (A,L) ∈ Adv × Leak that have short description A,L ∈ {0, 1}logn and

Pr
r,r′

[
|L[x, y, r]| ≤ ℓ(|x|) ∧A[x, L[x, y, r], r′] = y

]
≥ β.

Fix large enough constants a, c = O(1). From hereon we use the collection of TMs and leakage length

Leak
def
= R∗TISP(nc, a log n),

Adv
def
= TISP(nc, a log n),

ℓ(n)
def
= n2/3.

(3)

As observed by [LP23], a random function is an (Adv, Leak, ℓ) leakage resilient with high probability.
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Claim 5.5 ([LP23]). For any fixed TM A, and for all x ∈ {0, 1}n,

Pr
y∈R{0,1}n

[
∃t ∈ {0, 1}ℓ : Pr

r
[A[x, t, r] = y] ≥ ε

]
≤ 2ℓ+1/ε

2n
.

We provide the proof for completeness:

Proof. For every fixed t, the algorithm A[x, t, ·] can produce at most ≤ 1/ε outputs with probability ≥ ε.
By the union bound over all “leakages” t ∈ {0, 1}ℓ, there are at most 2ℓ+1/ε such “frequent” outputs of
A[x, t, ·]; the string y is bad if its one them. This occur with probability that is proportional to their
density in {0, 1}n.

Next, we observe that the search-problem of finding leakage-resilient hard function belongs to SearchBP∗L,
as was shown by [LP23]; the proof verifies that everything is computable in low space, given 2-way access
to the random tape. The proof is essentially similar to Claim 4.3.

Claim 5.6. Find Leakage Resilient FunctionAdvLeak,ℓ[0.1, 0.2] ∈ SearchBP∗L.

Proof. Consider the following algorithms F, V that finds and verify solutions for the search problem.

Algorithm 2: Low-space algorithms for Find Leakage Resilient FunctionAdv,Leak,ℓ

Input: x ∈ {0, 1}n

Randomness (multiple read): y ∈ {0, 1}n and r′′ ∈ {0, 1}poly(n)
1 Function F [x, y]:
2 print y

3 Function V [x, y, r′′]:

4 for (A,L) ∈ Adv × Leak such that A,L ∈ {0, 1}logn do
5 Let pA,L be an estimation, using poly(n) many r, r′, of

Pr
r,r′

[
|L[x, y, r]| ≤ ℓ ∧A[x, L[x, y, r], r′] = y

]
.

6 if pA,L ≥ 0.2− 1
n then return 0

7 return 1

To enumerate over Adv, Leak machines, we verify during the simulation of L[x, y, r], A[x, L[x, y, r], r′]
that they obey the time and space restrictions of Adv, Leak; if not, we continue to the next pair.

We now claim that F, V are P∗LM:

1. F simply prints its random tape, so it is clearly a P∗LM.

2. Consider V . First observe that for every fixed A,L, each estimation pA,L requires poly(|r| · |r′|) ≤
poly(n) many random bits, as A,L consumes ≤ poly(n) random bits (see the definition of A,L
from Equation (3)). So since there are ≤ 22 logn ≤ n2 iterations, V consumes |r′′| = poly(n) many
random bits.

Second, as V can access its randomness and candidate solution y in 2-way, he can be implemented
to consume at most O(log n) space, by recalling y and random strings from the random tape, for
proper simulations of L[x, y, r] and A[x, L[x, y, r], r′].

Each simulation requires only logspace and polynomial time overhead, which in turn concludes that
V is a P∗LM.
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As for the correctness, observe that for every x, by Claim 5.5, F [x, ·] finds good values y w.h.p:

Pr
y∈R{0,1}n

[F [x, y] /∈ Yes] ≤ Pr
y∈R{0,1}n

[
∃t ∈ {0, 1}ℓ : Pr

r
[A[x, t, r] = y] ≥ 0.1

]
≤ 10 · 2ℓ+1

2n

≤ 2−n/2,

where we set ℓ = n2/3.
Now consider (x, y) ∈ Yes. Observe that V verifies y correctly at least when all the estimations pA,L

were accurate up to 1/n error; assuming it uses polynomially large enough number of sampling of r, r′,
by the Hoeffding bound, each of which is accurate with probability ≥ 1− 2−n. Thus by the union bound
over all pairs, V verifies correctly with overwhelming probability:

Pr
y,r

[V [x, y, r] = 1 | (x, y) ∈ Yes] ≥ 1− n2 · 2−n ≥ 1− 2−0.99n.

On the other hand, if (x, y) ∈ No, namely y is “easy” to compute given some efficiently computable
leakage, then V verifies badly only if some pA,L was approximated badly; this happens with negligible
probability:

Pr
y,r

[V [x, y, r] = 1 | (x, y) ∈ No] ≤ 2−n.

Thus we conclude,

Theorem 5.7. For every constant a, c = O(1), there exists a constant b > a, so the following holds.
Define the collection of TMs Adv, Leak as

Leak
def
= R∗TISP(nc, a log n)

Adv
def
= TISP(nc, a log n).

If SearchBP∗L = SearchL, then there exists an explicit (Adv, Leak, n2/3)-almost-all-inputs leakage re-
silient function f : {0, 1}n → {0, 1}n, computable in space b log n.

Proof. By Claim 5.6, the search problem Find Leakage Resilient FunctionAdv,Leak,n2/3 [0.1, 0.2] be-
longs to SearchBP∗L, and thus by the assumption it also belongs to SearchL.

Let x ∈ {0, 1}n be arbitrary. Due to Claim 5.5, there exists some y in the relation with x, namely the
relation is non-empty:

(x, y) ∈ Find Leakage Resilient FunctionAdv,Leak,n2/3 [0.1, 0.2].

Thus, combined with the fact the relation in SearchL, implies there exists a DLM, that on input x,
prints y, in space b log n > ac log n, where b = O(1). This algorithm, by definition, evaluates the function
f , which is leakage resilient for all all sufficiently long input.

Finally, we observe that the above theorem generalizes in the natural way, when beginning instead
with partial derandomization assumption; this in turn, affects the space complexity of the hard function.

Corollary 5.8. Let γ > 0. For every constants a, c = O(1), there exists a constant b > a, so the following
holds.
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Define the collection of TMs Adv, Leak as

Leak
def
= R∗TISP(nc, a log n)

Adv
def
= TISP(nc, a log n).

If SearchBP∗L ⊆ SearchL1+γ, then there exists an explicit (Adv, Leak, n2/3)-almost-all-inputs leakage
resilient function f : {0, 1}n → {0, 1}n, computable in space b log1+γ n.

6 Discussion

Our focus was on characterizing the power of randomness, given a multiple access to it, while restricting
the computation to logspace. Liu and Pass [LP22; LP23] considered also characterization of derandomizing
MA and “effective dereandomization” of BPP; it seems that our techniques are extendable to capture
the analogue results in our settings, but we omit the details in this manuscript.

Acknowledgment We thank Muli Safra and Itamar Rot for enlightening discussions.
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A Derandomizing R∗L implies derandomization of BP∗L

We show that the proof of RP = P implies BPP = P due to Buhrman and Fortnow [BF99] works just
the same for bounded-space complexity classes with 2-way access to randomness.

Theorem A.1. If R∗L ⊆ L, then BP∗L ⊆ L.

For simplicity we prove that BP∗TISP(n, log n) ⊆ L.

Proof. Let L ∈ BP∗TISP(n, log n) be any language decidable by some machine with error ≤ 1/3; by naive
amplification, let M be the P∗LM that decides L with error ≤ 2−n, whose running time is t = poly(n);
thus it uses ≤ t random coins.

Define the promise language A = (Yes,No) as follows; for every (x, r1, . . . , rt) ∈ {0, 1}n+t2 :

1. (x, r⃗) ∈ Yes if
Pr

w∈R{0,1}t
[∃i ∈ [t], M [x,w ⊕ ri] = 1] = 1.

2. (x, r⃗) ∈ No if
Pr

w∈R{0,1}t
[∃i ∈ [t], M [x,w ⊕ ri] = 1] ≤ 0.5.
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Claim A.2. A ∈ R∗L.

Proof. Consider the machine M ′[x, r⃗] that samples t many wj , and returns

M ′[x, r⃗, w⃗]
def
=

∧
j∈[t]

1
(
∃ij ∈ [t], M [x,wj ⊕ rij ] = 1

)
.

Correctness If (x, r⃗) ∈ Yes, then M ′ would always accept.
If (x, r⃗) ∈ No, by the Chernoff bound M ′ would reject with probability ≥ 1− 2−t.

Complexity M ′ runs in space O(log t + s[M ]) = O(log n) by referring to the wj ’s from the random
tape; its running time is poly(t) = poly(n).

Thus, by the hypothesis A can be derandomized; the next step is to solve L using A:

Claim A.3. L ∈ R∗LA.

Proof. Consider the machine M ′ that samples r1, . . . , rt and answers 1((x, r1, . . . , rt) ∈ A) according to
its oracle. Observe that M ′ uses space O(log t+s[M ]) = O(log n) by referring to the random tape instead
of holdings the ri’s; its running time, dominated by t, is polynomial; hence M ′ is a P∗LM.

Let x ∈ L. Then, since the randomness is of length |w| = |ri| ≤ t,

Pr
r1,...,rt

[(x, r⃗) /∈ Yes] = Pr
r1,...,rt

[
Pr
w
[∃i ∈ [t], M [x,w ⊕ ri] = 1] < 1

]
= Pr

r1,...,rt
[∃w∀i, M [x,w ⊕ ri] = 0]

≤
∑
w

Pr
r1,...,rt

[∀i, M [x,w ⊕ ri] = 0]

=
∑
w

∏
i∈[t]

Pr
ri

[M [x,w ⊕ ri] = 0]

≤
∑
w

(2−n)t

≤ 2t · 2−nt

≤ 2−n,

and thus M ′ would accepts with high probability:

Pr
r1,...,rt

[
M ′[x, r⃗] = 1

]
≥ Pr

r1,...,rt
[(x, r⃗) ∈ Yes] ≥ 1− 2−n.

Suppose now x /∈ L. Then, for every r1, . . . , rt,

Pr
w
[∃i, M [x,w ⊕ ri] = 1] ≤

∑
i

Pr
w
[M [x,w ⊕ ri] = 1] ≤ t · 2−n ≪ 0.5,

since t = poly(n); so any fixation of ri leads to No and hence rejection by M ′:

Pr
r1,...,rt

[
M ′[x, r⃗] = 0

]
≥ Pr

r1,...,rt
[(x, r⃗) ∈ No] = 1.

It now follows that L ∈ R∗LR∗L ⊆ L.
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B Random objects are good

Proof of Claim 4.2. Fix a machine M and target σ ∈ {0, 1}n. Since M runs in time na, its randomness
y is bounded by length ≤ na.

For every seed s ∈ {0, 1}10 logn, denote by Xs the indicator random variable, over f, y, whether M
accept on σ, f(s), y:

Xs
def
= 1(M [σ, f(s), y] = 1)

Observe that for every seed s, since f is a random function,

E
f,y

[Xs] = E
f,y

[M [σ, f(s), y]] = E
r,y

[M [σ, r, y]].

Thus, by Hoeffding’s bound, the probability that f is not a PRG for M [σ, ·, ·], is at most,

Pr
f


∣∣∣∣∣∣∣∣
1

n10

∑
s∈{0,1}10 logn

Xs − E
r∈R{0,1}n

y∈R{0,1}n
a

[M [σ, r, y]]

∣∣∣∣∣∣∣∣ ≥ ε

 ≤ 2−
(n10ε)2

n10 = 2−n10ε2 ≤ 2−n2
,

Hence the probability that f does not fools some M ∈ {0, 1}log log logn is at most:

Pr
f
[∃M s.t. f does not ε-fools M [σ, ·, ·]] ≤

∑
M

2−n2 ≤ log log n · 2−n2 ≤ 2−n.

C Equivalence to [DT23]

Definition C.1 ([DT23, Defintion 1.1]). We say that P ∈ {0, 1}∗ is an S-space compressed version of
f ∈ {0, 1}∗ if P is a description, of length

√
|f |, of a TM M that satisfies the following: On input i ∈ [|f |],

the machine M runs in space S(|i|) and outputs fi.

The following is based on [DT23, Assumption 3]; the only modification is the reference to 2-way access
to the random tape and the polynomial time bound.

Assumption C.1. For a sufficiently large constant C, there exists a function f : {0, 1}∗ → {0, 1}∗ map-
ping n bits to n2 bits, that is computable in space (C + 1) · log n, and satisfies the following. For every
2-way probabilistic algorithm R running in space C log n + O(log n) and polynomial time poly(n), there
are at most finitely many x ∈ {0, 1}∗ for which

Pr
r
[R[x, r] prints a (C log n)-space compressed version of f(x)] ≥ 2

3
.

Claim C.1. There exists constants a, b, d, C = O(1) so the following holds. Let

Adv
def
= TISP(nb, d · C log n),

Leak
def
= R∗TISP(nb, C log n+ a log n).

Then, Assumption C.1 holds if and only if there exists an (Adv, Leak,
√
n)-almost-all-inputs-leakage re-

silience locally hard function f : {0, 1}n → {0, 1}n which is computable in space (C + 3) log n space, up to
constantly shorter leakage.
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Proof. First we assume that Assumption C.1 require length-preserving function; this assumption will be
resolved later using a simple padding.

Observe that the space complexity of f in both definitions is the same. It remains to show that either
hardness implies the other one. Let U be a UTM.

1. Assume f is a (Adv, Leak,
√
n)-almost-all-inputs leakage resilience locally hard function. Let d :=

duni be the space complexity overhead imposed by U .6 Observe that every adversary R as in
Assumption C.1 belongs to R ∈ Leak, and the UTM U belongs to U ∈ Adv. Then, if x ∈ {0, 1}n is a
hard input in the sense of leakage resilience, it is in particular hard for the pair of leakage-adversary
(R,U), where R is arbitrary from Assumption C.1. Thus x is also hard input for f in the sense of
Assumption C.1.

2. Assume f satisfies Assumption C.1. We claim that f is a (Leak,Adv,
√
n−O(1))-almost-all-inputs

leakage resilience locally hard function, for the constant d := 1.

Otherwise, there exists (R,A) ∈ (Leak× Adv) and infinitely many inputs x ∈ {0, 1}n that violates
the leakage-resilience locally hardness of f . Consider the algorithm R′, that on input x, computes

y
def
= R(x, f(x)), and prints the description A with hard-coded input y. To simulate R properly on

f(x), R′ computes f .

Since |A| = O(1) (because a TM has a constant length description), it follows that |R′(x)| ≤
|R(x, f(x))| −O(1) +O(1) ≤

√
n. Moreover, R′(x) is computable in space

≤
space(R)

(C log n+ a log n) +
space(f)

(C + 1) log n+
simulation’s overhead

O(log n) ≤ (C +O(a)) log n.

Thus, since R′ is as in Assumption C.1, it follows that R′ prints a C log n compressed version of
f(x). Since there is 1-1 correspondence in the x’s, we have contradicted Assumption C.1.

We now resolve the expansion property of f . Assuming f : {0, 1}n → {0, 1}n is length-preserving leakage-
resilient hard function, and consider the function f ′(x) = f(x) ◦ 1n. We claim that f ′ is hard as in
Assumption C.1: otherwise, there exists an adversary R, in the sense of Assumption C.1, that compresses
f ′(x). It could be utilized as before to violate the leakage-resistance property of f , by simply modifying
the adversary/leakage algorithms to compute f ′ instead of f (by concatenating the padding).

On the other hand, if f ′ : {0, 1}n → {0, 1}n
2

is hard as in Assumption C.1, consider the function

f(x ◦ 1n2−n)
def
= f ′(x).

Consider any adversary-leakage pair (A,L) attackers to f . Define the algorithm L′(x, f ′(x))
def
= L(x ◦

1n, f ′(x)). It is clear that (A,L′) is an adversary-leakage pair attackers to f , and thus could be used (as
previously explained) to violate Assumption C.1.

In summary, both directions increase the space complexity of f by additional ≤ 2 log n factor to
account for the padding.

6Specifically, duni is defined as follows. For every description of a deterministic TM Π ∈ {0, 1}∗, that is computable in
space s(n) on inputs length n, the simulation of Π under U is computable in space duni · s(n).
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