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Abstract

Following Ergun et al. (JCSS 2000), we consider testing group properties and focus on the
problem of testing whether a binary operation is a group operation. That is, given a finite set
S and oracle access to a function f : S x S — S, we wish to distinguish the case that (.5, f)
constitutes a group from the case that f is far from any function g such that (.5, ¢) is a group.

Our main result is a tester of running-time 6(|S [), which improves over the tester of Ergun
et al. that has running time O(]S[3/2).
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1 Introduction

In the last decades, the area of property testing has attracted much attention (see, e.g., the text-
book [7]). Loosely speaking, property testing typically refers to sub-linear time probabilistic algo-
rithms for deciding whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the object by making
adequate queries; that is, the object is modeled as a function and testers get oracle access to this
function (and thus may be expected to work in time that is sub-linear in the size of the object).

The area of property testing first emerged in the context of testing algebraic properties such as
group homomorphism (e.g., linearity) [3] and low-degree polynomials [15]. Hence, it is surprising
that the problem of testing whether a matrix represents a group operation was first considered
only a decade later, in [4], which is focused on a generalization (of property testing) called spot
checking.!

Definition 1.1 (testing the property of being a group): A tester for being a group is a probabilistic
oracle machine that, on input parameters n € N and ¢ > 0, and oracle access to a function
f:[n] x [n] — [n] distinguishes between the following two cases.?

f represents a group operation: The set [n] def {1,2,...,n} with the binary operation f is a

group.

f s e-far from representing a group operation: For every g : [n] x [n] — [n] such that [n]
with g constitutes a group, it holds that f is e-far from g; that is, |{(x,y) € [n)?: f(z,y) #
g(z, Y} > e-n?.

The tester is said to have one-sided error if it always accepts any function that represents a group
operation.

Ergun et al. [4] presented a tester for the group property that has running time 5(n3/ 2/€). Specif-
ically, in [4, Sec. 4.1], they claimed a tester of time complexity O(n/e) under the guarantee that
the function f is cancellative (i.e., f(z,y) = f(z,y’) implies y = ¢/ and f(z,y) = f(2/,y) implies
x = '), whereas in [4, Sec. 4.3] they waived this hypothesis/guarantee and claimed a tester of time
complexity O(n3/2/¢).? Our main result is

Theorem 1.2 (efficiently testing the property of being a group (see Corollary 4.3)): There exists
a O(n/e)-time tester for the property of being a group. Furthermore, the tester has one-sided error.

The tester consists of natural tests of associativity and cancellativity. Actually, we use specific
forms of these intuitive tests, whereas it is not clear whether different natural forms of the same
intuitive tests will do.

We comment that focusing on the query complexity while ignoring the time complexity allows
for a much simpler tester (for being a group). In fact, a generic test that applies to any property

!This generalization contains, as special cases, notions such as property testing, PCPs of proximity (see [2]), and
interactive proofs of proximity (see [14]).

2That is, the tester accepts any function that represents groups with probability at least 2/3, and rejects any
function that is far from representing any group with probability at least 2/3.

3We believe that there in a gap in the proof of Lemma 34 of [4, Sec. 4.1]: The second equality in the probabilistic
claim seems to replace ®' by ® with no justification. This affect the correctness of both [4, Thm. 28] and [4, Thm. 49].



of groups is quite straightforward. Towards presenting this result, we generalized Definition 1.1 as
follows.

Definition 1.3 (testing properties of groups): Let G be a set of finite groups that is closed under
isomorphism; that is, for every group G in G, all groups that are isomorphic to G are in G.* A
tester for being in G is a probabilistic oracle machine that, on input parameters n € N and € > 0,
and oracle access to a function f : [n] X [n] — [n] distinguishes between the following two cases.

f represents the operation of a group in G: The set [n] def {1,2,...,n} with the binary oper-

ation f is a group in G.

f s e-far from representing the operation of a group in G: For every g : [n] X [n] — [n]
such that [n] with g constitutes a group in G, it holds that f is e-far from g; that is, |{(z,y) €
[n]?: f(2,y) #9(z,y)} > e n’.

We may call G a property of groups. Using the fact that the number of groups over [n] is exp(O(n)),
we have

Theorem 1.4 (testing any property of groups (see Theorem 2.2)): For any set G of finite groups

that is closed under isomorphism, there exists a O(n/e€)-query tester for G. Furthermore, the tester
has one-sided error.

Note that, unlike Theorem 1.2, which provides a computationally efficient tester, Theorem 1.4 does
not bound the running time of the tester. Our proof of Theorem 1.4 uses a tester that runs in time
that is exponential in its query complexity. Recall that Theorem 1.2 (as well as Theorem 1.5) does
bound the time-complexity by 5(71/ €), but it only refers to the set of all groups (resp., all Abelian
groups).

Yet another tester for the property of being a group is presented in Theorem 3.2. This tester
uses O(n/€) queries but runs in time O(n2) and has two-sided error. However, its proof is much
simpler than the proof of Theorem 1.2. We mention that all three aforementioned testers can be
augmented to test Abelian groups. In particular, we prove

Theorem 1.5 (efficiently testing the property of being an Abelian group (see Theorem 4.4)):
There exists a O(n/e)-time tester for the property of being an Abelian group. Furthermore, the
tester has one-sided error.

(Note that O(n/e) = O(n)/e, because we may assume (w.l.o.g.) that e > 1/n2.)

1.1 Related work

Following the work of Ergun et al. [4], studies of testing properties of groups appeared in two
works [6, 9]. The first work (i.e., [6]) studies a related model in which the distance measure allows
for an n-element group to be close to an (n + 1)-element group, whereas the second work studies
both the model of [6] and the model that we use (i.e., Definition 1.3). Both works focus on
testing properties of groups such as being Abelian and being cyclic. The results of [9] that refer to

1 4
Definition 1.3 are (1) for every fixed k > 2, a Q(n6 6G*1) lower bound on the query complexity

4Two groups are called isomorphic if there exists a bijective group homomorphism between them.



of testing whether an Abelian group is generated by k elements, and (2) a polylogarithmic-time
tester for cyclic groups.

We stress that testers are oracle machines that are given access to the main input, which is a
function from [n] x [n] to [n]. Hence, bounds on their running time postulates that each query to
the oracle is answered in unit time. Note that this model is essentially equivalent to the standard
RAM model, except that the testers may afford not reading the entire input. In contrast, exact
decision procedures as presented in [13, 5] do read the entire input, and have running-time O(n?),
which is optimal for exact decision.

1.2 Future directions

Theorems 1.2 and 1.5 improve over the previously known results regarding testing the property of
being a group and being an Abelian group, respectively. However, it is unclear whether the com-
plexities of these new testers are the best possible. In particular, it is possible that the complexity
of testing Abelian groups is lower than the complexity of testing general groups.

We mention that a logarithmic lower bound on the query complexity of testing any group
property that contains cyclic groups is not hard to prove (see Section 5), but this leaves a large gap
towards the upper bound known for testing general (resp., Abelian) groups.

Theorem 1.6 (a lower bound on testing properties of groups (see Theorem 5.1)): Let G be a set of
finite groups that is closed under isomorphism and contains all cyclic groups of prime order. Then,
testing G requires (logn) queries.

In particular, it follows that testing cyclic groups requires at least a logarithmic (n the group
size) number of queries. Recall that the upper bound of [9, Thm. 3| asserts that polylogarithmic
complexity suffices for this task (i.e., for testing cyclic groups).

In general, determining the complexity of testing other group properties opens an interesting
direction of research. Indeed, the aforementioned results of [9] (regarding Abelian groups generated
by k elements) fit this direction, but leave much to be understood.

1.3 Organization

Our three testers of the group property are presented in three sections that are independent of one
another. Our main result (i.e., Theorem 1.2) is presented in Section 4 (which contains also a proof
of Theorem 1.5). The other sections are much easier, but reading them is not a useful warm-up
towards reading Section 4. Section 2 presents a generic tester (which establishes Theorem 1.4),
whereas Section 3 presents an alternative tester that makes O(n/€) queries but runs in time O(n?)
and has two-sided error.

The proof of Theorem 1.6, presented in Section 5, can be read independently of all other sections.

2 A generic result

A generic tester for any property (equiv., set) of groups G is derived from a generic tester for any
property (equiv., set) of functions. Indeed, let F be an arbitrary set of functions from D to R.
Then, F can be tested within query complexity O(e~!log |F]).



Theorem 2.1 (a totally generic tester): Testing whether f : D — R is in the set F can be done
using O(e!log |F|) queries, and O(|F|/€) time. Furthermore, the tester has one-sided error.

Proof: The tester just picks s = O(e ! log |F|) random points in [n] and checks whether the value
of f on them is consistent with some function in F. (Indeed, the time complexity of this tester is
Os - | 7).

Clearly, this tester always accepts any f € F. On the other hand, if f is e-far from F, then for
every f € F it holds that

Pra,,..a.en((Vi€[s]) f(ai)=f"(a:)] < (1 —€)°.

Using a union bound (and noticing that (1 —€)* = o(1/|F])), it follows that the tester rejects f
with probability at least 2/3. [l

Theorem 2.2 (generic tester of group properties (Theorem 1.4, restated)): Let G, be a set of
n-element groups. Then, testing whether f : [n] x [n] — [n] describes a group that is isomorphic to
a group in Gy can be done using O(n)/e queries, and exp(O(n))/e time. Furthermore, the tester
has one-sided error.

Proof: The key observation is that the number of non-isomorphic groups over [n] is exp(O(logn)3);
see [11, 10, 12]. Now, letting F be the set of all functions obtained by relabelling all g € G,,, the
task of testing the group property G, reduces to testing membership in F, whereas |F| < n!-|G,|.
Using Theorem 2.1, the claim follows. W

3 Testing whether f represents a group, take 2

The down side of Theorem 2.2 is its prohibitively high computational complexity (i.e., exp(O(n))-
time). Here, we significantly improve the computational complexity at the cost of allowing two-sided
error probability, but we still do not reach sub-linear (in n?) time.

The basic idea is any group can be generated by a small set of expanding generators; specifically,
for any group of n elements, a random set of O(logn) elements can serve as a set of expanding
generators [1], where expanding means that composing a random O(logn)-long sequence of gener-
ators (and inverses) yields an almost uniformly distributed element. Hence, the group operation
(i.e., [n] x [n] — [n]) is fully specified by the values assigned to pairs of the form [n] x S, where
S is a generating set (which includes the inverses of elements in S). Specifically, we construct the
following succinct data structure that allows to perform group operations in logarithmic time.

Construction 3.1 (producing a succinct representation of an alleged group): Given oracle access
to f :[n] x [n] — [n], we proceed as follow.

1. Finding a neutral element. This is done by picking an arbitrary a € [n], and finding the
unique e € [n] that satisfies f(a,e) = f(e,a) = a.
If this or any of the next steps fails, then we halt while indicating failure.

2. Finding a set of expanding generators (along with their inverses). We select uniformly at

random a set S of O(logn) elements in [n], and for each s € S find the unique s' € [n] such
that f(s,s") = f(s',s) =e.



We redefine S to contain S as well as the foregoing inverses. We also record I : S — S such
that 1(s) is the inverse of s.

3. Constructing the main table. Querying f on [n] x S, we construct T : [n] x S — [n] such that
T(a,s) = f(a,s) for every a € [n] and s € S.

(Actually, this information is already available to us (from the search for inverses of S per-
formed in the previous step).)

4. Expressing all elements in terms of the generating set. We generate O(nlogn) random
sequences over S, each of length £ = O(logn), in hope of reaching all n elements of the
group. The element generated by a sequence (s1,...,50) € S* is obtained by repeated com-
position. Specifically, for each sampled sequence (si,...,s;) € S, we compute the value

fC--(f(f(s1,82),83),...),8¢0) by using T(--- (T(T(s1,52),53),---), S¢)-
For each x € [n], we let (s7,...,s}) denote a sequence that is used to generate x. We define
E:[n] x [{] - S such that E(z,i) = s7.

Note that no queries are made at this step.

We output e, S and the tables I,T and E.

Overall, we made O(n) + O(nlogn) + O(nlogn) queries and spent O(n) time. We stress that if f
represents a group, then, with high probability, S is a set of expanding generators, and the sample
of /-sequences reaches all elements of the group. In this case, the construction returns the desired
tables. In any case, if Construction 3.1 returns tables as stipulated, then we define the following
function f’ : [n] x [n] = [n]

f(x,y) € T (T(T(x, E(y, 1)), E(y,2)), ...), E(y, 0)). (1)

That is, starting with v < x, for i = 1,...,¢, we let v < T'(v, E(y,1)), and finally let f'(x,y) + v.
Note that evaluating f’ amounts to O(log n) accesses to the tables E and T. Hence, testing whether
f represents a group (resp., a group with certain properties) reduces to invoking Construction 3.1,
testing whether f’ equals f, and checking that f’ satisfies the group property (resp., properties).

Theorem 3.2 (testing the group property): Testing whether f : [n] X [n] — [n] represents a group
can be done using O(n) + O(1/¢€) queries, and O(n?) 4+ O(e~! -logn) time.

Note that this tester has two-sided error probability, which is due to the (small) error probability
of Construction 3.1.

Proof: As stated upfront, we first invoke Constuction 3.1 and reject if it failed. Otherwise, we
obtain tables that allow us to compute f’ in logarithmic time, while making no additional queries,
where f is as defined in Eq. (1). In this case, we check that f’ represents a group, and make
O(1/¢) additional queries (to f) in order to test that f equals f’ (while rejecting (w.h.p.) when f is
e-far from f’). Specifically, checking that f’ represents a group is done by explicitly constructing f’
(according to Eq. (1)) and checking all group axioms (see details below). Testing equality between
f and f’ amounts to querying f at O(1/e) random entries, and comparing these value to the
corresponding values obtained from f’.



As for checking that f’ satisfies all group axioms, a straightforward implementation allows
checking the unique existence of a neutral element and the inverses in O(n?) time, whereas asso-
ciativity is checked in O(n3) time. We improve upon the latter by observing that there is no need
to check all triplets in [n]; it suffices to check triplets in which one of the elements is confined to
S. Actually, this observation was made by Light in 1949 (see [13]), and we prove it next for sake
of self-containment.

Claim: If f’ satisfies f'(x, f'(y,2)) = f'(f'(z,y),2) for all 2,y,z € [n] such that {z,y,z} NS # 0,
then f’ satisfies f'(z, f'(y, 2)) = f'(f'(x,y), 2) for all x,y, z € [n].

Proof: Let f(s) 5 for every s € S. Using induction on ¢ > 1, we define f : St — [n] such that

- def -

f(s1,82, ...y 8t) = f'(s1, f(s2,....,5)). We first prove that

f’(?(sl, ceny st/),?(st/H, veey St)) = f’(?(sl, cony St//),T(St/q_l, cony St)) (2)

for every t',t" € [t — 1].
The special case of t' = 1 implies that f(s1,2,....,8:) = f'(f (51, .., 8¢), f(Str141, .., ) for every
t" et —1].

We prove Eq. (2) by induction on ¢. Assuming, without loss of generality that ¢ < ¢/, we first
establish Eq. (2) for the case of " =t — 1 € [t — 1]. In this case, we have

f/(?(sl’ ) St’)v?(st’—kl"" St))) = f/(f/(?(slv %) St’—l)’ St’)a?(st’—kl"" St)))
= f’(?(sl, - st/_l),f’(st/,?(stl+1...,st)))
= f(f(s1, s 80-1), F(S7, 847415 8¢)),

where the second equality uses the claim’s hypothesis (with z = f(s1,...,s¢_1), y = sy and z =
f(s¢41...,5¢)) and the other equalities use the induction hypothesis. The general case (of ¢’ < t')
is handled by ¢’ — t” iterations of the foregoing special case (i.e., going from ¢’ to ¢’ — 1, then to
t' — 2, and similarly all the way till ¢’ — (' —¢")).

Having established Eq. (2), we turn to the actual claim. Recalling that any w € [n] can be
written as f(E(w,1),..,E(w,f)) = f(s¥,...,s¥), we establish f'(z, f'(y,2)) = f'(f'(z,y),2) by
using

F(F(sToest), f1(F(sYos7), F (5T 57)) = f’(Z(ST,---,Sf)j(s%-wszaSf-w5?))
= f/(f(sif’"'78§v531/"l5§)7f(5i af;))
= fIF(F(sT, s sD)s F(sT e 89))s F (5T 87))-

This completes the proof of the claim. ®

Conclusion: As stated upfront, if f represents a group, then, with high probability, Constuction 3.1
returns f’ = f, and in this case our tester accepts. On the other hand, if f is e-far from representing
a group, then either Constuction 3.1 rejects or it returns f’ that is either e-far from f or does not
represent a group. In each of these cases, our tester rejects (with high probability in case f’ is e-far

from f). W

Digest. The proof of Theorem 3.2 reduces testing a function f : [n] x [n] — [n], which supposedly
represents a group, to checking a data structure of size O(n). Recall that the latter data structure
is created by Constuction 3.1, which uses O(n) queries to f (and O(n) times). When f represents



a group, the data structure allows to compute f in logarithmic time (without access to f itself).
In general, this data structure yields a function f’, and we can test whether f/ = f and reduce
testing properties of f to checking properties of f’. In particular, we tested whether f is a group
by checking f’ represents a group (and f’ = f). Likewise, we can test whether f represents an
Abelian group by checking whether f’ represents an Abelian group.

4 Main result: Testing whether f represents a group, take 3

In this section, we present a tester of sub-linear (in n?) time complexity; specifically, the tester will
have time complexity O(n/e). Here it is instructive to view f : [n] X [n] — [n] as an n-by-n matrix
(or table). Intuitively, Steps 1 and 2 in Construction 4.1 constitute a test of cancellativity, whereas
Step 3 is a test of associativity. Recall that f represents a group if and only if it is both cancellative
(ie., f(z,y) = f(z,y) implies y = 3 and f(x,y) = f(«',y) implies z = 2’) and associative (i.e.,

We comment that Steps 1 and 2 in Construction 4.1 replace a less efficient test that appears
in [4, Sec. 4.3], which checks for collisions in each row of f. In contrast, Step 3 in Construction 4.1
is identical to the tester that appears in [4, Sec. 4.1.1]. (Our analysis utilizes all three steps, but it
may be that Step 2 is actually unnecessary.)

Construction 4.1 (a direct tester for the group property): On input n € N and € > 0, and oracle
access to f : [n] x [n] = [n], viewed as an n-by-n matriz over [n], the tester proceeds as follows.

1. Check that random rows and columns contains permutations: Select uniform at random
O(1/e) elements r € [n], and verify that for each of these r’s the mappings x — f(r,x) and
x +— f(x,r) are permutations. Otherwise, reject.

2. Check that random rectangles consist of columns that contain no repeated values:®> For each
i € [logyn], select uniformly at random a set of O(n/2%) rows and a set of O((2¢logn)/e)
columns and check that each value appears at most once in each of the residual columns.
Otherwise, reject. (That is, if for one of the selected columns ¢ and two selected rows 11 # 79
it holds that f(ri,c) = f(r2,c), then reject.)

3. Checking associativity. Specifically, for random values of two of the three variables, we check
the associativity condition for all values of the remaining variable. This is done for each of
the possible three choices of the identity of the remaining variable.

Repeat each of the following three checks O(1/¢€) times.

(a) Checking all values of the first variable: Select uniformly at random r,s € [n], and verify
that f(a, f(r,s)) = f(f(a,r),s) holds for every a € [n].

(b) Checking all values of the second variable: Select uniformly at random r,s € [n], and
verify that f(r, f(a,s)) = f(f(r,a),s) holds for every a € [n].

(¢) Checking all values of the third variable: Select uniformly at random r,s € [n], and
verify that f(r, f(s,a)) = f(f(r,s),a) holds for every a € [n].

SIndeed, it is natural to perform the same check for rows, but this is unnecessary for our analysis. Performing
both checks covers Step 1 as a special case for ¢ = log, n and ¢ = 1, respectively.




Reject if any of these checks fails.

If none of the steps rejected, then accept.

The time complexity of the foregoing tester is O(n/e)+O(e ' -nlog?n)+0(n/e) = O(e~*-nlog®n),
and it always accepts if f represents a group operation. We shall show that, if the tester accepts
with probability at least 1/3, then f is e-close to representing a group operation.

Theorem 4.2 (Construction 4.1 rejects (whp) functions that are e-far from respresenting a group):
If Construction 4.1 accepts f with probability at least 1/3, then f is e-close to representing a group
operation.

Proof: Using a sufficiently small ¢ = Q(e), we show that if Construction 4.1 accepts f with
probability at least 1/3, then f is O(€')-close to a self-corrected version (defined in Eq. (3) below),
which in turn represents a group operation. Specifically, after establishing a few preliminary claims,
we shall show that the latter function is cancellative and associative, which implies that it describes
a group.

Let R (resp., C') denote the set of r’s such that z — f(r,z) (resp., x — f(z,r)) is a permutation,
and note that |R| > (1 —€') - n (resp., |C] > (1 — €) - n), since otherwise Step 1 rejects with high
probability. The lower bounds on |R| and |C| implies that each value occurs at most min(|R|, |C|)
times in the rectangle R x C, but it does not imply that each value occurs at least min(|R|,|C|)
times. Nevertheless, a slightly weaker statement does hold.

Claim 4.2.1 (R x C contains at least |R| — 2¢/'n occurrences of each value): For every v € [n], it
holds that |{(r,c)eR x C': f(r,c)=v}| > |R| — 2¢'n.

Note that if f is guaranteed to be cancellative, as in [4, Sec. 4.1], then R = C = [n], and Claims 4.2.1
and 4.2.2 hold vacuously. In this case, Steps 1 and 2 of Construction 4.1 are unnecessary, and the
time complexity of the tester is reduced to O(n/e).

Proof: Fixing v and letting C &f [n] \ C, we shall prove that |{(r,c)€[n] x C : f(r,c)=v}| < 2¢n,
and the claim will follow (since each r € R contains the value v). For each ¢ € C, we let n. denote
the number of v’s in column c. Assuming, towards the contradiction that ) el Ne > 2¢'n, we shall
show that in such a case Step 2 rejects with high probability.

Letting ¢ = log, n, for each i € [¢], we define B; = {c € C : 2 < n. < 2771} and observe that

By el \Uieg Bi ={ce C :n. < 1}, whereas D ey e < |C|. Hence,

Z Z ne > 2én—|C| > én.

i€l ceB;

It follows that there exists ¢ € [¢] such that " .z n. > €n/f. Fixing this i, observe that |B;| >

% = 21%/1[ -n. Hence, with high probability, a random set of O(21//¢) columns contains a column

in B;, denoted c. Recalling that n. > 2¢ > 2, with high probability, a random set of O(n/2¢) rows
contains two distinct rows 71, g such that f(r1,¢) = v = f(r2,c). But in such a case, Step 2 rejects.
The claim follows. B

A self-corrector for f. For any v € [n] and r € R, let ¢,(r) be the unique value ¢ that satisfies
f(r,c) = v, where unique existence is guaranteed by r € R (which implies that v occurs exactly once



in row r). Letting a ©® b = f(a,b), we define a candidate self-correcting function ¢ : [n] x [n] — [n]
as follows®

g(z,y) < Plurality,c p{(z © 1) ® ¢, (1)} (3)

Indeed, for every x,y € [n] and r € R, it holds that 2 ® (r ® ¢y(r)) = x ®y, but f is not necessarily
associative (i.e., (x®r)®c,(r) may not equal x®(r®cy(r))). Nevertheless, since F' is “close to being
associative” (per being rarely rejected by Step 3), one may hope that (z©7)®cy(r) = 2O (rOcy(r))
typically holds (i.e., holds for 1—O(¢’) fraction of the r’s in R). This is indeed proved in Claim 4.2.3,
but our proof (as well as other proofs that follow) uses the following claim.

Claim 4.2.2 (¢, is almost uniformly distributed in [n]): For every v € [n], when selecting uniformly
r € R, it holds that c,(r) is 4€'-close to the uniform distribution over [n).

Proof: Fixing v, we call r € R good if ¢,(r) € C, and observe that good r’s yield different c¢,(r)’s

(because ¢ def co(r) = ¢(r") imply r ©® ¢ = v = 1’ ® ¢, which implies r = 7’ since ¢ € C). Recalling
that (by Claim 4.2.1) the number of v-entries in columns that is not in C' is at most 2¢’- n, it follows
that at most 2¢/n rows in R have a v-entry in a column that is not in C, Hence,

|R| — 2¢'n

Pr, ” Cl >
rrerlcw(r) € C] 7

>1-—3€¢;

that is, r € R is good with probability at least 1 — 3¢/. Recalling that different good r’s (in R) have
different values of ¢,(r), it follows that, for a uniformly distributed r € R, the distribution of ¢,(r)
is 3¢’-close to be uniform over some set of |R| values. The claim follows. B

Claim 4.2.3 (g is supported by a strong majority): For every a,b € [n],
Prypren [(a©7) ® ()= (a® 1) © ()] = 1 - O(€). (4)
Equivalently, for every a,b € [n], it holds that Prycgr[(a ®r) ® ¢p(r)=g(a,b)] =1 — O(¢).

The following proof (as well as subsequent ones) makes essential use of the specific way in which
associativity is checked in Step 3. Specifically, the fact that (w.h.p.) none of the invocations of
Step 3a rejects implies that

Pr, o) [(Ya€[n]) fa, f(r,5)) = f(fla,r),s)] > 1—¢. (5)
We shall use the fact that Eq. (5) implies that, for every function « : [n] x [n] — [n], it holds that
Pr, scin] [f(a(r,s), f(r,s)) = f(f(a(r,s),r),s)] > 1— €. (6)

Analogously, by Steps 3b and 3c, we get

5Tt seems that a more natural (and “symmetric”) form of a self-corrector is given by
Plurality, .cp{s ® ((cz(s) ©1) ® cy(r))}

However, as shown in the auxiliary claim of Claim 4.2.5, this more complicated form is equivalent to the one we use
below (i.e., in Eq. (3)).



Prr,se[n} [f(r, flalr,s),s)) = f(f(r,a(r,s)),s)] > 1- ¢ (7)
Prr,se[n} [f(r, f(s,(r,5)))) = f(f(r,s),a(r,s)] > 1- €. (8)

Proof: To gain some intuition, note that Eq. (8) immediately implies that Eq. (4) holds for any
fixed b € [n] and a uniformly distributed a € [n]. Furthermore, fixing a € [n] and considering a
random b € [n], one may use Claim 4.2.1 to show that ¢,(r) is distributed almost independently
of r, and then derive Eq. (4) by using Eq. (6). The actual claim, which refers to any a,b € [n], is
proved by a more complicated argument, which employs the foregoing ideas more extensively.

Fixing any a,b € [n], we consider r and 7’ that are distributed independently and uniformly in
R. Then, by Claim 4.2.2, we have Pr,cpg[cp(r) € C] > 1 — 4¢/, whereas ¢,(r') is defined per 1’ € R.
In this case (i.e., ¢p(r) € C), there exists a unique d = dy(r,7’) such that d ® ¢,(r) = ¢p(r’"). Hence,
it holds that

Pr.er[r’ @ cp(r') =1" @ (dp(r,r') © cp(r))] > 1—4€. (9)

Recalling that c(r) is 4€’-close to uniform (and r’ is €’-close to uniform), by Eq. (7) we have

Pr,,cr [r/ O (dp(r, ") © ep(r)) = (' © dp(r, 7)) © cb(r)} > 1—6€. (10)
Combining r ® ¢,(r) = 1’ @ ¢(r') with Eq. (9)&(10), we get

Pr,cr [r@a(r) =" ©dy(r,r) ©@a(r)] > 1-10-¢. (11)

Recalling that ¢,(r) € C means that there is a unique value w such that w ® ¢(r) = b (i.e., w =7),
it follows that Pr, v cr[r =1 @ dy(r,r’")] = 1 — O(¢'). Hence, for every a,b € [n], we have

Pr,,er [(a Or)©cy(r)=(a® (r ©dy(r,r"))) ® cb(r)] = 1-0(¢). (12)

Assuming that (a ® (r' © dp(r,7"))) ® ep(r) equals (a © ") © (dp(r, ") ® cp(r)), which in turn equals
(a®r") ®cp(r'), would have established the claim; that is, under this assumption, Eq. (12) implies
Pr,erl(a®r) ©cp(r) = (a@r') @ ()] = 1—0(¢). However, associativity is only guaran-
teed by Eq. (6)—(8) when two of the three operands are uniformly and independently distributed.
Thus, towards applying the associativity guaranteee, we first argue that the joint distributions of
(r',dy(r,r")) and (dyp(r,7"),cp(r)) are (each) almost uniformly distributed in [n] x [n].

Recall that, for 7,7 € R such that ¢,(r) € C, it holds that dp(r,7") ® cp(r) = ¢p(r’) uniquely
determines dp(r,7’) as a function of ¢,(r) and ¢p(r’). Considering uniformly distributed r,7’ € R,
we show that the distribution of dp(r,7’) is almost uniform (over [n]) and independent of the
distribution of ' (resp., ¢(7)).

e Fixing an arbitrary ' € R and letting r be uniformly distributed in R, we wish to show that
dy(r, ") is almost uniformly distributed in [n].

We first recall that (by Claim 4.2.1) the rectangle R x C' contains at least n’ def |R| —2¢'n >
(1 — 3€') - n entries that hold the value ¢,(r"), whereas each row in R (resp., column in C)
contains a single ¢,(r’) value. Hence, R x C contains an n’-by-n’ square, denoted R’ x C’,
such that each row in R’ (resp., column in C”) contains a single ¢;(r’) value that appears in
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a column in C’ (resp., a row in R’). It follows that, for a uniformly distributed ¢ € C’, the
unique d that satisfies d ® ¢ = ¢,(r’) is uniformly distributed in R'.

Next, we note that distinct r’s in R such that ¢,(r) € C' must have distinct ¢,(r)’s values.

Hence, for a random r € R such that ¢,(r) € C, the value ¢,(r) is uniformly distributed in

g & {ey(u)€C : uwe R}. Using the conclusion of the previous paragraph, it follows that, for

a random r € R such that ¢,(r) € SNC’, the value dy(r,r") (which solves d® ¢p(r) = (1)) is
uniformly distributed in some |SNC’|-subset of [n]. Using Pr.cgr[cpy(r) € SNC'] = 1-0(€),
it follows that dp(r,7’) is almost uniformly distributed in [n].

e Fixing an arbitrary r € R such that ¢,(r) € C and letting 7’ be uniformly distributed in R,
we wish to show that dy(r,7’) is almost uniformly distributed in [n].

In this case (i.e., ¢(r) € C), the value of dy(r,r’) is determined by ¢,(r’), which is almost
uniformly distributed in [n], such that different values of ¢;(r’) yield differnt values of dy(r, ")
(since the column ¢(r) € C contains different values).

Having estabished that, for uniformly distributed r,7" € R, the distribution of dy(r,r’) is almost
uniform (over [n]) and independent of the distribution of r’ (resp., ¢;(r)), we observe that, for every
a,b € [n], with probability 1 — O(€¢') over the choice of r, 7’ €R, it holds that

(@@ (' @d(r,) 0alr) = (a0r)ody(r,r)) o ea(r)
= (a®7)® (dp(r,r") ® cp(r))
= (a® T‘/) © Cb(T/)

where the first (resp., second) equality uses Eq. (6) and relies on the fact that r’ and dy(r, ') (resp.,
dp(r,r") and ¢,(r)) are almost independently distributed in [n]. Hence, we have

Pr,er [(a® (F @dy(r,) ©a(r) = (a@r) @ ()] = 1-0(€). (13)

Combining Eq. (12) with Eq. (13), the claim follows. m

Towards the key claims. Using the foregoing claims, we prove the key features of g; that is, that it
is close to f, cancellative, and associative. (Recall that f(a,b) =a ®b.)

Claim 4.2.4 (g is O(¢)-close to f): Prgpeplg(a,b) = f(a,b)] = 1—O(). Furthermore, for
every b € [n], it holds that Proeini[g(a,b) = f(a,b)] = 1—O(¢).

Proof: We shall prove the furthermore claim; that is, for every b € [n], we shall show that g(-,b) is
O(€')-close to f(-,b). This is proved by combining the following two facts.

e Using Claim 4.2.3, for every a,b € [n], we have Pr,crlg(a,b) = f(f(a,7),co(r))] = 1=0(¢),
where f(r,cy(r)) = b.

e Using Eq. (8)7 Jor every b € [n]7 we have PraE[n},TGR[f(f(a?T)7Cb(r)) = f(auf(ra Cb(r)))} >
1—¢.

Combining these two facts (and recalling that f(r, cp(r)) = b), for every b € [n], we have Pr,¢,[9(a, b) =
fla,b)] = 1-0(). m
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Claim 4.2.5 (g is cancellative):
1. For every a,a’,b € [n], if g(a,b) = g(da’,b), then a = d’.
2. For every a,b,t/ € [n], if g(a,b) = g(a,V’), then b=1'.

Proof: We start with Part 1. By Claim 4.2.3, Prycr[(a ©® 1) ® ¢p(r) =g(a,b)] = 1 — O(€’), and the
same holds for a/. Hence, g(a,b) = g(a’,b) implies

Prrcp [(a0r) @ a(r)=(d ©r) ®e(r)] =1-0(). (14)

Recalling that Prycrlcp(r) € C] = 1 — O(€’) and that in this case there is a unique w such that
w ® ¢p(r) = b, it follows that

Prep[(a@r)=( or)] =1-0() > ¢,

which implies that a = a’ (since a ©® r=a" ® r for some r € C).
Turning to Part 2, we first establish it for a € R. Analogously to Eq. (14), we observe that
g(a,b) = g(a,b’) implies

Prrer((a®@r)Oca(r)=(@or)®cy(r) =1-0(). (15)

Now, if a € R, then Pr,crla ®r € R] > w > 1 — 2€ follows (since each element appears

once in row a). In this case, ¢,(r) = ¢y (r) follows for some r € R (which satisfies a ©® r € R), which
implies r ® ¢p(r) =7 @ ¢y (1), and it follows that b = V' (since r ® ¢,(r) = b and ditto for b'). We
now turn to the general case (of a € [n]), but first prove an auxiliary claim.

Auxliliary claim: For every z,y € [n], it holds that Pr,.cg[r ® g(c.:(r),y)=g(z,y)] =1 — O(€).

Proof: Fixing z,y € [n], we observe that, with probability 1 — O(€’) over the choices of r, s € R, it
holds that

r©glee(r),y) = 10O ((calr) ©s) ©cyls))
= (ro(a(r) ©s)) ©cy(s)
= ((rocg(r)) ®s)©cy(s)
= (zO©s)®cy(s)
= 9(z,y)
where the first and last equality are due to Claim 4.2.3, whereas the second and third equalities
are guranateed by Eq. (7) (and Claim 4.2.2). This completes the proof of the auxliliary claim.

The general case of Part 2. For any a,b,b" € [n], if g(a,b) = g(a,V’), then (by the auxiliary claim)
we have

Pricp [r® g(ca(r),b) =1 © glca(r),b)] = 1-0(¢).
Using the hypothesis that » € R, this implies
Pr.cr [g(Ca(’l“), b) = g(Ca(T‘), b,)] = 1- O(El)'

Observing that (by Claim 4.2.2) it holds that Pr.ecgr[cs(r) € R] = 1 — O(€’) and applying the
foregoing special case (which refers to a first operand in R), we infer that b =10". m
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Claim 4.2.6 (g is associative): For every a,b,c € [n], it holds that g(a, g(b,c)) = g(g(a,b),c).

Proof: We prove the claim in two steps, first establishing it only for a random a € [n], and then
inferring that it holds for any a € [n]. Specifically, we first prove that, for every y, z € [n],

Prier [g(rag(yv z)):g(g(r, y)a Z)] =1- 0(6/)' (16)

Fixing y, z € [n] and using the furthermore part of Claim 4.2.4 (as well as Claim 4.2.3), we observe
that with probability 1 — O(€’) over the choice of r, s € R, it holds that

9(r,g(y,2)) = f(r,g(y,2))
= flr,(y©s)©cls)).
Hence,
Pr,ser[g(r,9(y, 2))=r © ((y ©s) ©cx(s)))] = 1 = O(€). (17)

Next, using Eq. (7) (as well as Claim 4.2.2), with probability 1 — O(¢€’) over the choice of 7, s € R,
it holds that

ro((y©s)©ecs))

where the first and second equalities are guranateed by Eq. (7) (while relying on the randomness
of r and c,(s) (resp., r and s)), whereas the third equality use Claim 4.2.3, and the last equality
uses the furthermore part of Claim 4.2.4. Hence,

Prser[r© ((y ©s) ©ca(s)=g(g(r,y),2)] =1 = O(€). (18)

Combining Eq. (17)&(18), we establish Eq. (16).

Using Eq. (16), we now establish the actual claim. In particular, we shall apply Eq. (16) four
times, while observing that in each of these application the first operand is uniformly (or almost
uniformly) distributed in R. Specifically, we observe that, for every z,y, z € [n], with probability
1 — O(€¢) over the choice of r € R, it holds that

9(r,9(z,9(y,2))) = g(g(r,v),9(y,2))
= g(g(9(r,z),y),2)
= 9g(g9(r,9(z,y)), 2)
= g(r,9(9(z,y),2))

where the second transition we rely on the randomness of g(r,z), which follows from Part 1 of
Claim 4.2.5 (i.e., for every z, the mapping r — ¢(r, x) is a bijection). Hence,

Pr’r’GR [g(rv g(xa g(y7 Z))) :g('l“, g(g(.%', y)? Z))] =1- O(€/>' (19)
Using Part 2 of Claim 4.2.5, it follows that g(z, g(y, 2)) = g(9(z,y),2). &

Conclusion. Claim 4.2.4 asserts that f is e-close to g, whereas Claims 4.2.5 and 4.2.6 assert that
g is cancellative and associative. Hence, g describes a finite cancellative semigroup, which means
that g describes a group, and it follows that f is e-close to representing a group. W
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Corollary 4.3 (testing the property of being a group) (Theorem 1.2, restated): There ezists a
(O(n)/e)-time tester for the property of being a group. Furthermore, the tester has one-sided error.

Theorem 4.4 (testing the property of being an Abelian group): There exists a (O(n)/e)-time
tester for the property of being an Abelian group. Furthermore, the tester has one-sided error.

Proof: Our tester first invokes Construction 4.1 and rejects if it has rejected. Otherwise, it checks
that g : [n] x [n] = [n] as defined in Eq. (3) represents an Abelian group by selecting a random pair
of elements in [n] and checking whether they commute (under g). Here we use the well known fact
that asserts that if a group is not Abelian, then at least 3/8 of the element pairs do not commute.”

Note that g can be evaluated, at random, by making 2 + n queries to f (i.e., g(z,y) «
f(f(z,7),cy(r)) for a uniformly chosen r € [n], where ¢,(r) is computed by finding ¢ such that
f(rye) = y), and recall that if f represents a group then Construction 4.1 always accepts and
g = f. Hence, our tester always accepts when f represents an Abelian group. Turning to the case
that f is e-far from representing an Abelian group, we prove that our tester rejects with probability
at least 1/3 (and obtain the desired tester by error reduction).

We actually prove the counterpositive. Assuming that f is accepted with probability at least 2/3,
it follows (by Theorem 4.2) that f is e-close to representing a group. Furthermore, in that case (by
Claim 4.2.3), the random evaluation of g yields its correct value, with probability at least 1 — O(e),
whereas g is e-close to f (see Claim 4.2.4) and represents a group (see Claims 4.2.5 and 4.2.6).
Lastly, note that the group represented by g must be Abelian, because otherwise our tester would
have rejected with probability at least (1 — O(e))-3/8 >1/3. N

5 A lower bound

Theorem 5.1 (a lower bound on testing properties of groups (Theorem 1.6, restated)): Let G be a
set of finite groups that is closed under isomorphism and contains all cyclic groups of prime order.
Then, testing G requires Q(logn) queries.

Proof Sketch: We employ the “indistinguishability technique” (see [7, Sec. 7.2]). Using two
primes m,n € N such that m < n < m + o(m/logm), we consider the following two distributions
on functions from [n] x [n] to [n].

1. The distribution of functions that represent random isomorphic copies of the cyclic group Z,,;
that is, the distribution is uniform over the functions f : [n] x [n] — [n] that represent a cyclic
group over [n].

To streamline the analysis, we also select uniformly at random an m-subset S C [n].

"An elementrary proof of a weaker lower bound (of 1/4) proceeds as follows. Suppose that more than 3/4 of the
pairs are commuting. Then, for every a € [n],

Prrscinr©(@®s)#(a®s)Or] <1/4 and Pr,cpma®(sOr))#a® (ros)] <1/4

which implies Pr, sc(n)[(r © a) ©® s#(a © 1) ® s] < 1/2. Hence, Pr¢[y)[r ® a7 a ® 1] < 1/2 holds for every a € [n]. It
follows that, for every a,b € [n],

Prrcpla®@ (0O #(bOr)©al <1/2 and Prepbo (roa)#b0 (a0 r)] < 1/2

which implies Pr,cj)[(a ©b) ©r#(b® a) ©®r)] < 1. Hence, a © b=b ® a holds for every a,b € [n].
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2. The distribution of functions that consist of functions that represent a cyclic group with
m elements augmented by an arbitrary function (e.g., the all-1 function) on the rest of the
domain; that is, the distribution is uniform over the functions f : [n] x [n] — [n] such that
for some m-subset S it holds that f|g represent a cyclic group over S whereas f(z,y) =1 for
every (r,y) € [n]?\ 52

We first show that one cannot distinguish these two distributions when making ¢ = o(log n) queries.
This is the case because distinguishing is possible only either when making a query in [n]? \ S?,
which occurs with probability at most 2¢- (n —m)/n, or when encountering the neutral element of
the relevant group.® Observing that each query (in S™) consists of a pair in which each element
is either a random element of the relevant group or the result of prior queries, it follows that each
answer is a linear combination of random elements of the group such that each coefficient is at
most 2¢. Hence, the latter answer is unlikely to be the neutral element, since this would require a
coefficient that is a multiple of the group size.’

On the other hand, each function in the first distribution represents a cyclic group of order n. In
contrast, we shall show that each function in the second distribution is 0.222-far from representing
such a cyclic group. The latter fact is shown by using the following claim, which is a special case
of [8, Cor. 1].

Claim (see [9, Lem. 3]): Let (S,®) and (S’,®') be two groups such that |S| < |S’|. If (S,®) is not
isomorphic to any subgroup of (S’,®’), then for every injective map p : S — S’ it holds that

Proyeslu(z ©y) = px) O uly)] <
Specifically, let (S, ®') be an arbitrary group with n elements, which is necessarily cyclic, and let
f be selected from the second distribution, where S is the corresponding p-subset and ® represents
the restriction of f to S? (i.e., (S,®) be a cyclic group of order m). Then, for every injective map

S — S, the function p o f and the function f’ o u such that f’ represents @' differ on at least
2 .m? elements. Using n = (14 o(1)) - m, it follows that f is 0.222-far from f'. [l

Corollary 5.2 (lower bounds on specific testing tasks):
e Testing the property of being a group requires Q(logn) queries.
o Testing the property of being an Abelian group requires )(logn) queries.

e Testing the property of being a cyclic group requires Q(logn) queries.
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