
A Simple Supercritical Tradeoff between Size and

Height in Resolution

Sam Buss* Neil Thapen�

December 29, 2023

Abstract

We describe CNFs in n variables which, over a range of parameters,
have small resolution refutations but are such that any small refutation
must have height larger than n (even exponential in n), where the
height of a refutation is the length of the longest path in it. This
is called a supercritical tradeoff between size and height because, if
we do not care about size, every CNF is refutable in height n. A
similar result appeared in [Fleming, Pitassi and Robere, ITCS ’22], for
different formulas using a more complicated construction.

Small refutations of our formula are necessarily highly irregular,
making it a plausible candidate to separate resolution from pool reso-
lution, which amounts to separating CDCL with restarts from CDCL
without. We are not able to show this, but we show that a simpler
version of our formula, with a similar irregularity property, does have
polynomial size pool resolution refutations.

1 Introduction

We define families of unsatisfiable CNF formulas, Γa,b, Γa,b,c and Φb,c,d for
which small resolution refutations require large height and, correspondingly,
low height refutations require exponential size. For Φb,c,d, these size-height
tradeoffs are called “supercritical” since the height lower bounds can be
larger than the number of variables, which is the natural upper bound on
refutation height, c.f. [2, 17, 11]. Similar supercritical size-height tradeoff
have been independently obtained by Fleming, Pitassi and Robere [11] using
an xor-ification method of Razborov [17] that xor-ifies by reusing variables,
but our proofs are simpler and more direct.

*Department of Mathematics, U.C. San Diego, sbuss@ucsd.edu. Supported in part by
Simons Foundation grant 578919.

�Institute of Mathematics, Czech Academy of Sciences, thapen@math.cas.cz. Sup-
ported by the Czech Academy of Sciences (RVO 67985840) and GAČR grant 23-04825S.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 1 (2024)

The principle Γa,b is an induction principle related to PLS [14]. The sec-
ond principle Γa,b,c is a substitution instance of Γa,b obtained via or-fication,
that is, by replacing some of the variables in Γa,b with disjunctions of new
variables. The third principle Φb,c,d is obtained from Γa,b,c by identifying
variables. In other words, Φb,c,d can be obtained from Γa,b by an or-ification
that reuses variables. Our or-ification with reuse of variables is consider-
ably simpler than the xor-ification of [17]: variables are reused in a pattern
based on the base-d representations of integers and this does not depend
on expander graphs. For a general statement of our tradeoff result, see
Corollary 10 below.

The supercriticality of the height lower bounds means that, for suit-
able parameters, short resolution refutations of Φb,c,d must be highly ir-
regular, containing paths that query the same variable many times, simply
because the height of the refutation is much more than the number of dis-
tinct variables; for similar reasons, small proofs of Γa,b,c must be highly
irregular, for suitable parameters. These principles are thus potential can-
didates for solving an open problem about the relation between resolution
and the CDCL algorithms used in SAT solving, by separating the systems
of pool-resolution [20] or regWRTI [8, 4, 5, 6], which model CDCL without
restarts, from unrestricted resolution. We discuss this problem in Section 5
and show that the principles Γa,b,c do have polynomial size pool resolution
refutations, and so do not give such a separation. However this remains
open for the more complex principles Φb,c,d.

We recall some standard definitions. A literal is a propositional vari-
able x or its negation ¬x. A clause is a disjunction of literals, and a CNF
(conjunctive normal form) formula is a set of clauses, treated as a con-
junction of clauses. The width of a clause is the number of literals in it.
We will often write clauses using a “sequent-style” notation; for example,
x1 ∧ · · · ∧xk → y1 ∨ · · · ∨ y` means the clause ¬x1 ∨ · · · ∨ ¬xk ∨ y1 ∨ · · · ∨ y`.

A resolution refutation of a CNF F is a sequence of clauses, where each
clause is either from F or is derived from earlier clauses by a resolution
or weakening rule, and where the last clause is the (unsatisfiable) empty
clause. The resolution rule allows deriving the clause C ∨ D from C ∨ x
and D ∨¬x, where x is any variable. The weakening rule allows deriving D
from C whenever D ⊇ C. Such a refutation naturally has the structure of a
directed acyclic graph, with the initial clauses of F as sources and the final
empty clause as its sink. The height of the refutation is the number of edges
in the longest path from any source to the sink (this measure is often called
depth; we prefer to reserve depth for the logical depth of formulas appearing
in a refutation). The size of the refutation is simply the number of clauses.

2

2 The CNF families

For a, b > 1, the CNF Γa,b is a principle about an a × b rectangular grid.
Columns in the grid are numbered with values x = 0, . . . , b−1; we assume
b is a power of two. The a many rows in the grid are numbered with
i = 0, . . . , a−1; we picture row 0 as the top row, and row a−1 as the bottom
row. Each node (i, x) in the grid corresponds to a propositional variable Gi,x.
If Gi,x is true, we say the node (i, x) is given the value 1; otherwise Gi,x is
false, and we say (i, x) is given the value 0. There are also propositional
variables describing a function f : [b] → [b] mapping columns to columns,
via a binary encoding. (The notation [b] means {0, . . . , b−1}.) That is, for
each column x there are log b many variables f(x)0, . . . , f(x)log b−1 giving the
value of f(x) in binary. For a column x′ we will use the notation (f(x) = x′)
for the conjunction of log b literals which asserts that the bits of f(x) match
the bits of x′.

Definition 1. The unsatisfiable CNF Γa,b consists of

1. The singleton clause ¬G0,0

2. For each i < a− 1 and each pair x, x′ < b the clause1

(f(x) = x′) ∧ ¬Gi,x → ¬Gi+1,x′

3. For each x < b the singleton clause Ga−1,x.

This expresses that the node at (0, 0) at the top left is 0; that if (i, x)
is 0 then (i+1, f(x)) is 0; and that every node on the bottom row is 1.
This is clearly a contradiction, and is very close to what has been called the
house-sitting contradiction [10, 7], the iteration principle [9], or the sink-
of-dag principle [14]. The novel aspect of Γa,b is that there is one common
function f for all rows, instead of having different functions for f at each
row, as one might expect.

The definition of Γa,b,c uses a third parameter c ≥ 2 and variables Gyi,x
for all i < a, x < b and y < c. Then Γa,b,c is the result of replacing the
variable Gi,x in Γa,b with the disjunction G0

i,x ∨ · · · ∨ G
c−1
i,x and expanding

the result as a CNF:

Definition 2. The unsatisfiable CNF Γa,b,c consists of

1. For each y < c, the singleton clause ¬Gy0,0
1Here we are using sequent notation for clauses. The sequent displayed here means

precisely the clause ¬(f(x) = x′) ∨ Gi,x ∨ ¬Gi+1,x′ where ¬(f(x) = x′) denotes the
disjunction of the negations of the log b many literals whose conjunction expresses that
f(x) = x′.

3

2. For each i < a− 1, each pair x, x′ < b and each y′ < c, the clause

(f(x) = x′) ∧ (
∧

y<c
¬Gyi,x)→ ¬Gy

′

i+1,x′

3. For each x < b the clause
∨
y<cG

y
a−1,x.

The principle Γa,b,c is something like CPLS [12, 18] (and our presenta-
tion in this section is modelled on [18]), except that CPLS contains extra
functions which allow the analogs of items 2. and 3. to be written with small
width, which is something we do not need here.

The node (i, x) now corresponds to G0
i,x ∨ · · · ∨G

c−1
i,x . In this sense each

column x of the grid in Γa,b,c contains ac distinct G-variables.
The construction of the final CNF Φb,c,d uses a substitution which reduces

this number of variables substantially, and thereby allows for supercritical
proof height lower bounds. Let d ≥ 2 be a new parameter and suppose
a = dc. We introduce new variables all Hy

j,x for j < d, x < b and y < c.

Definition 3. Suppose a = dc. The unsatisfiable CNF Φb,c,d is Γa,b,c after
the following substitution. For each i < a, let i0, . . . , ic−1 be the digits of i
when written in base d with, for definiteness, the least significant digit first.
Then Φb,c,d is formed from Γa,b,c by replacing every occurrence of each Gyi,x,
with the new variable Hy

iy ,x
.

After the substitution the clause corresponding to (i, x) changes from
G0
i,x ∨ · · · ∨ G

c−1
i,x to H0

i0,x
∨ · · · ∨Hc−1

ic−1,x
. So whereas in Γa,b,c each column

contains ac many G-variables, in Φb,c,d each column contains only dc many
H-variables. For appropriate choices of the parameters, this can be an
exponential reduction in the number of variables.

We remark that the fact that the tuples of indices i0, . . . , ic−1 of the H-
variables appear in each column in lexicographic order is not actually used in
our tradeoff arguments below, as they would still work if these tuples were
reordered arbitrarily. In fact we anticipate that a version of these CNFs
in which the tuples are randomly permuted may be useful for some lower
bounds.

Proposition 4. The formula Φb,c,d has

� bcd+ b log b variables

� c+ (dc − 1)b2c+ b ≤ dcb2c clauses, of width at most c+ log b+ 1

� a resolution refutation of size O(dcb2c) and width c+ log b+ 1.

Proof. The numbers of variables and clauses of Φb,c,d are immediate from
the definition. Since Φb,c,d is a substitution instance of Γa,b,c, the upper
bound on proof size will be proved by bounding the size of a proof of Γa,b,c.

4

Letting a = dc, the bounds on proof size come from the natural inductive
refutation of Γa,b,c where a = dc. The refutation of Γa,b,c works with each
row i in turn, starting at the bottom row i = a−1. For each i, the b many
clauses

∨
y<cG

y
i,x for x < b are derived.2 For the base case, i = a−1, this is

precisely an initial clause 3. of Γa,b,c..
The clauses for row i are derived from the clauses for row i+1 using the

initial clauses 2. The argument is straightforward and splits into b many
subcases depending on the values of f(x)j specifying the value of f(x) in
binary. Finally, the clause for row i = 0 and column x = 0 contradicts the
initial clauses 1.

The size and width bounds on the refutation of Γa,b,c are evident by
inspection. In particular, the log b terms in the width comes from handling
the bitwise encoding of the function f .

3 Width versus height

We will first show that every small-width refutation of the simple principle
Γa,b must have large height. Then we will observe that this is still true,
with the same width and height parameters, for the full principles Γa,b,c and
Φb,c,d. In the next section, an easy random restriction argument will turn
this into a size-height tradeoff for Φb,c,d.

Consider the following Prover-Delayer game played on the variables of Γa,b.
We divide the variables into blocks. For each column x, all the variables Gi,x
in the column form a block, and all the variables f(x)0, . . . , f(x)log b−1 form a
second block. So there are 2b blocks in total. We only consider assignments
that assign whole blocks, and for this reason we may talk about assigning
values to f(x) rather than to individual bits f(x)j .

At the beginning of each turn in the game, the Prover’s memory contains
an assignment to all variables in some set of blocks (this is empty at the
start of the game). The Prover can either

� Query a new block, in which case the Delayer reveals an assignment
to block’s variables and this is added to the Prover’s memory, or

� Forget all variables in a block, erasing them from memory.

The Prover wins when the partial assignment in memory falsifies an axiom
of Γa,b. The Delayer’s goal is to force the Prover to make as many queries as
possible before winning. The Delayer is free to give different answers each
time a block is queried.

We define the block-width of a Prover-strategy to be the maximum num-
ber of blocks the Prover has in memory at once. Thus the Prover has a
simple strategy of block-width 3, which will win in about 2a turns. This is

2Similar refutations are given for CPLS in [18].

5

to first query the G-block in column 0, to which the Delayer must reply with
an assignment that sets node (0, 0) to 0, to avoid falsifying axiom 1. The
Prover can then propagate this 0 down the grid by querying the f -block for
the column the current lowest 0 is in, then querying the G-block for the col-
umn f points to. He does not need to remember the answers to old queries.
He also has a strategy of block-width b+1, which requires only b+1 queries.
This is to query all G-blocks. If no 0 appears, this violates axiom 1; a 0 in
the bottom row violates axiom 3; otherwise he queries the f -block for the
column in which the lowest 0 appears, and the answer must violate axiom 2.

Lemma 5. There is a strategy for the Delayer which forces the Prover either
to use block-width at least b/2, or to make at least a− 1 queries to f -blocks.

Proof. We will make the simplifying assumption that the Prover’s first query
is to G-block 0 (that is, the G-block in column 0), and that this block is
never forgotten. This increases the block-width of the Prover’s strategy by
at most 1. So suppose the Prover’s strategy has width w < b/2. We will use
this assumption to lower bound the number of queries to f -blocks.

We write α for the partial assignment currently in the Prover’s memory
and t for the number of times that the Prover has queried a value of f so
far. We define an f -path of length k ≥ 1 to be a sequence x0, . . . , xk such
that f(xj) = xj+1 in α for each j < k. The Delayer tries to maintain the
following invariants of α, as long as t ≤ a− 1.

A1. f is a partial injection with no cycles.

A2. For every x, either G-block x is not set by α, or it is set so that at
most one row s is 0 and every other row is 1.

A3. Suppose G-block x0 is set with a 0 in row s. Then s ≤ t. If furthermore
there is an f -path x0, . . . , xk in α, then s+ k ≤ t.

A4. Suppose x0, . . . , xk is a path in α and G-blocks x0 and xk are both set
and have 0s respectively in rows s and s′. Then s′ = s+ k.

Forgetting a piece of information preserves the invariants. The Delayer
responds to queries as follows.

The Prover queries f(x). Call column x′ good if G-block x′ is not set
and x′ is not on any f -path. By the limit on the block-width, at most 2w
columns x′ are not good, namely one for each G-block set in α and two
for each f -block. Therefore at least one good x′ must exist. The Delayer
chooses any good x′ and replies that f(x) = x′. This preserves A2 trivially,
and A1 and A4 because x′ is good. It preserves A3 because t has increased
by one.

The Prover queries G-block x. The Prover’s first query has this form,
with x = 0, and in this case the Adversary replies that the top row is 0

6

and all other rows are 1. Otherwise, if x is on a path which already has a
set G-block with a 0 row in it, the Adversary replies with an assignment
which puts a 0 in the appropriate row in G-block x to satisfy A4, and a 1
in every other row in the block. By A3 such an assignment exists as long
as t ≤ a−1. This does not affect A1 and preserves A2, A3 and A4 by
construction. If there is no such column on the path, the Adversary replies
with an assignment setting all variables in the column to 1.

Theorem 6. Any resolution refutation of Γa,b of width strictly below b/2
must have height at least a.

Proof. Suppose such a refutation π exists. We make π into a strategy for
the Prover in the standard way. That is, we work backwards from the final
(empty) clause of π; each resolution step turns into a query of the block in
which the resolved variable appears; and the Prover forgets a block whenever
we reach a clause in which no variables from that block appear. Thus the
block-width of the strategy is at most the width of π, and the game cannot
last for more queries than the height of π. But the Delayer-strategy outlined
in Lemma 5 forces the Prover to make at least a queries — precisely, he must
make at least a−1 queries to f -blocks, in addition to which he must query
at least one G-block to violate an axiom and win the game.

Having shown the height-width tradeoff for the simple formula Γa,b, we
now show that it holds for the full formula Φb,c,d.

Theorem 7. Any resolution refutation of Φb,c,d of width strictly below b/2
must have height at least dc.

Proof. Letting a = dc, the proof is essentially the same as that of the pre-
vious theorem. We define a Prover-Delayer game played on the variables
of Φb,c,d. As before, we divide the variables into 2b blocks with, in each
column, one block for all the f -variables and another block for all the H-
variables. The Prover can either query a full block, or forget one or more full
blocks, and wins when the current assignment falsifies an axiom of Φb,c,d.
We claim that Lemma 5 above also holds for this game, that is, that there is
a strategy for the Delayer which forces the Prover either to use block-width
at least b/2, or to make at least a− 1 queries to f -blocks.

The strategy is the same as the strategy described in the proof of Lemma 5,
except that there the Delayer set G-blocks, in which each node in the col-
umn corresponds to a single variable Gi,x, while now she must set H-blocks,
in which each node corresponds to c variables H0

i0,x
. . . Hc−1

ic−1,x
, behaving as

a disjunction, and where each variable appears in several rows in the same
block. However, there were only two kinds of assignment the Delayer had
to make to a G-block in the proof of Lemma 5: either set every node to 1;
or set the node in some given row s to 0, and set every other node to 1.
To imitate this strategy, it is enough to have a+ 1 possible assignments to

7

each H-block x: one which satisfies the disjunction at every node in the
column; and, for each s < a, one which falsifies the disjunction at row s,
and satisfies the disjunction at every other node. By construction of the
formula Φb,c,d, this is easy. In the first case, we just set every variable in the
block to 1. In the second case, we set every variable in row s to 0, and set
every other variable in the block to 1. This works, because every row other
than s contains some variable that does not appear in row s.

The theorem then follows by the same proof as Theorem 6.

Lemma 5 gave a lower bound on the number of queries to f -blocks; thus
our bound on proof height is in actuality a lower bound on the maximum
number of resolutions on f -variables along a path in the proof. It is possible
to get a lower bound on H-variables as well as f -variables:

Theorem 8. Any resolution refutation of Φb,c,d of width w < b/2 must have
a path in which there are at least dc many resolutions on f -variables and
dc/w many resolutions on H-variables.

Proof sketch. We may extend Lemma 5 to also lower-bound the number of
queries to G-variables made by the Prover. For this, the Delayer’s strategy
is unchanged, but the Delayer maintains one more invariant:

A5. Suppose s is the maximum row with a 0 in any G-block. Then the
number of queries made so far to G-blocks is at least s/w.

This is maintained because the only time (other than at the first query) the
Delayer sets a new G-block with a 0 row is when it is on a path which already
contains a G-block with a 0 row, and paths have maximum length w.

4 Size versus height

Theorem 9. Any resolution refutation of Φb,c,d of size less than 2b
1
4 must

have height at least a = dc.

Before proving the theorem we describe the supercritical tradeoffs that
follow from it, using the estimates from Proposition 4.

For a simple example, given a parameter m, set b = d = m and c = 3.
Then Φb,c,d has Θ(m2) variables, O(m5) clauses, and a refutation of sizeO(m5);

but any refutation of size less than 2m
1/4

must have height at least m3. In
particular, measured by the number of variables, a polynomial-sized proof
exists but any subexponential-sized proof must have superlinear height.

The next corollary constructs a more general family of examples, showing
that our tradeoffs are in broadly the same regime as those in [11]. In partic-
ular, we can force the height to be exponential in the number of variables,
although at the cost of the number of clauses also being exponential.

8

Corollary 10. For n, k with 1 ≤ k < n/(log n)2, there is a CNF with
Θ(n) variables, nk+2 clauses and a refutation of size O(nk+2), for which

any refutation of size less than 2(n/k)
1/8

must have height at least nk.

Proof. The CNF is Φb,c,d with c = k log n, b = n/c, and d = 2 (we are
ignoring issues with rounding, and that b should strictly be a power of 2).
Observe log n ≤ b ≤ n/ log n. Referring to Proposition 4, we have bcd+b log b
variables, where bcd = 2n and b log b ≤ n. We upper bound the number of
clauses and refutation size using dcb2c = 2k logn(n/c)2c = nk+2/c. For the
tradeoff, we have n/k = (bk log n)/k ≤ b2. Thus, by the theorem, any

refutation of size less than 2(n/k)
1/8

has height at least 2k logn.

Proof of Theorem 9. Let Π be a refutation of Φ := Φb,c,d of size less than 2b
1
4 .

We will define a random restriction which, with high probability, makes Π
“narrow” in the following sense: no clause will contain variables from b/4 dif-
ferent f -blocks, or from b/4 different H-blocks. This will be enough to then
apply a width lower bound argument like the one in the proof of Theorem 7.

Fix w = b/4. Set δ = 1/3 and let p = bδ/b = b−2/3. We do the restriction
in two, almost independent, stages, to deal with the two different kinds of
variables.

Stage 1. Independently for each column x, with probability p put x into
a set S1. For each x ∈ S1 choose a random column x′. Set f(x) and f(x′)
both to x′. Set all variables in H-blocks x and x′ to 1.

For this construction we want that |S1| ≤ 2bδ and that S1 does not
contain 0 or any of the chosen columns x′. The first condition is true with
exponentially high probability (in b), and given that the first is true, the

second is true with probability at least (1 − p)2bδ ≥ (e−2p)2b
δ

= e−4b
2δ−1

=

e−4b
−1/3

which asymptotically approaches 1.
If either condition fails, we abandon the construction. Otherwise, we first

observe that we have a restriction which does not falsify any axiom of Φb,c,d.
Now let C be any clause containing literals z1, . . . , zw from variables in f -
blocks for distinct columns x1, . . . , xw. Each f(xi) is set to some random
value with probability p. Hence the probability that zi is satisfied (that is,
is set true) is p/2, and the probability that no literal in C is satisfied is

at most (1 − p/2)w < e−
1
2
pw = e−

1
8
b
1
3 . The refutation Π contains at most

2b
1
4 clauses so, by the union bound, with high probability if we apply this

restriction to Π we get a refutation of the restricted Φ in which no clause
mentions variables from w or more f -blocks.

Stage 2. Independently for each column x, with probability p put x into
a set S2. Then for each x ∈ S2, randomly divide the interval [0, c) into two
“halves”, one of size dc/2e and the other of size bc/2c. For each index y in
the first half, set every variable of the form Hy

j,x in H-block x to 1. Set all
remaining variables in H-block x to 0. Set f(x) = x.

9

We want |S2| ≤ 2bδ and that S2 does not contain 0, any column from S1,
or any of the columns x′ from stage 1, and we abandon the construction if any
of these conditions fail. By a similar calculation to before, with probability
close to 1 we do not abandon it.

As before this restriction (unless it was aborted) does not falsify any
axioms. For any H-literal z, the probability that z is set is p and, given
that it is set, the probability that it is satisfied is at least 1/3 (it is 1/3 only
if z is negative and c = 3). Therefore, if a clause involves H-variables from
w or more columns, it is satisfied with probability at least (1− p

3)w = (1−
b−2/3/3)b/4. Hence, by a similar calculation as above, with high probability,
applying this restriction to Π yields a refutation of the restricted Φ in which
no clause mentions H-variables from w or more different columns.

Now let ρ be the restriction given by combining the two stages. We have
a refutation Π � ρ of Φ � ρ in which each clause mentions f -variables from
at most b/4 columns and H-variables from at most b/4 columns. We now
repeat the proof of Theorem 7, with a few small changes.

Say that the restriction ρ affects a column x if x ∈ S1, x ∈ S2, or x was
the value assigned to some f -block x′ for x′ ∈ S1. Then ρ affects less than a
constant fraction of columns, and for every column x it affects, it either sets
at least one variable to 1 in every row of H-block x, or it does not set any
variables in the block at all. The Delayer now avoids in her strategy every
column x affected by ρ, and because ρ does not set any row to 0, she does
not care that f may have collisions and cycles on these columns, since this
will never falsify any axiom.

Π�ρ gives rise to a Prover strategy in which the Prover knows at most
b/4 f -blocks and b/4 H-blocks. So if the Prover queries f(x), and we want
to count the number of “good” columns, at most b/4 columns are not good
because the Prover knows about that H-block; at most b/2 are not good
because they are on a path known by the Prover; and only a small fraction,
much less than b/4, are not good becuase they are affected by ρ and the
Delayer is not allowed to touch them. Hence a good column still exists. The
rest of the proof is unchanged, and shows that Π�ρ, and hence Π, has large
height, namely height at least a = dc.

As in [17, 11], we can also use this construction to show a double-
exponential lower bound on treelike proof size, over proofs of small width.

Theorem 11. Any treelike resolution refutation of Φb,c,d of width strictly
less than b/4 must have size at least 2d

c
.

Proof sketch. In the proof of Theorem 7, when the Prover queries f(x), at
most 2w columns are not good, where w is the block-width of the Prover’s
strategy. If w < b/4 then more than half of the columns are good. The
query arose from a resolution on some variable f(x)j among the log b vari-
ables representing the bits of f(x). So there must be a good column x′ for

10

which this bit is 1, and a good column x′′ for which this bit is 0, and the
Adversary could potentially reply to the query with either x′ or x′′. This is
enough to give the lower bound on treelike size by adapting the proof of the
Impagliazzo-Pudlák game [16].

5 CDCL without restarts

The CDCL algorithm [13] is at the core of most modern SAT solvers. Given
a set of clauses, it grows a partial assignment, called the trail, until it con-
tradicts a clause in the set; from this it learns a new clause implied by the
current set, forgets some recently assigned values from the trail, and begins
growing it again. Eventually it either builds an assignment which satisfies
every clause, or learns the empty clause and declares the initial set to be un-
satisfiable. An important additional heuristic, which seems in practice to be
necessary for effective SAT solving, is to frequently restart, meaning, throw
away the current trail and begin again, keeping just the learned clauses.

It is known [3, 15] that, for an unsatisfiable CNF F , the length of the
shortest run of CDCL on F is polynomially related to the size of the shortest
resolution refutation of F , provided that CDCL is allowed unlimited restarts.
This is open for CDCL without restarts. In particular it is possible that
disallowing restarts means that CDCL computations must be exponentially
longer than resolution refutations, on some CNFs. The pool resolution proof
system was defined in [20] as a restricted version of resolution which captures
CDCL without restarts, in such a way that we could resolve the question
above by either showing that pool resolution simulates resolution, or showing
superpolynomial bounds in pool resolution for a CNF with short resolution
refutations.

A resolution refutation is regular if, on every path through the refuta-
tion from an axiom to the final clause, no variable is resolved on twice. Pool
resolution simulates regular resolution [20], so natural candidates for super-
polynomially separating resolution from pool resolution are CNFs which are
already known to separate resolution from regular resolution. There are
not many such CNFs known. Three examples, from [1, 19] are the guarded
graph tautologies, the Stone tautologies, and the guarded pebbling tautolo-
gies. All three have been shown to have polynomial size pool resolution
refutations [4, 5, 6].

We observe that it follows from Theorem 9 that, for suitable choices of
parameters, Φb,c,d has no subexponential-size regular resolution refutations.
This is simply because a regular refutation cannot have height greater than
the number of variables. (Strictly, for this to be true we should not count
weakening steps when we measure height; but the height lower bounds in
this paper do not count weakenings.) Indeed, any small refutation must be
highly irregular, with variables reused many times. Setting a = dc, even for

11

the formula Γa,b,c any small refutation must be highly irregular, as it must
have paths that resolve on f -variables dc times, and this is greater than the
number of f -variables.

We show that nevertheless, like the three CNF families mentioned above,
Γa,b,c has polynomial size pool resolution refutations. We have not been able
to show a similar results for Φb,c,d and it remains a possible candidate for
the separation.

We will not use the original definition of pool resolution but will work
with an equivalent system called regRTL (standing for regular resolution
trees with lemmas). There are also generalizations of these concepts that
allow certain types of weakenings or “w-resolution” inferences, but we will
not need them here – see [8]. We recall some definitions from [8]. A reso-
lution proof is now represented as an (ordered) tree T with nodes labelled
with clauses. The root node of T is at the bottom, and is labelled with the
empty clause. The post-order ordering <T of the clauses in T is defined as
follows: if u is a clause in T , v and w are clauses in the left and right subtrees
(respectively) above U , then v <T w <T u; intuitively, clauses earlier in the
post-order represent clauses learnt earlier in the CDCL computation.

Definition 12. ([20, 8]) A pool resolution refutation, or regRTL refutation,
of a set of clauses F is a resolution proof tree T such that: (a) each leaf is
labeled with either a clause of F or a clause C (called a “lemma”) that
appears earlier in the tree in the <T ordering; (b) each internal node is
obtained by resolution from its two children; (c) the proof tree is regular, in
that no branch in T uses the same resolution variable twice; (d) the root is
labelled with the empty clause.

Theorem 13. The formulas Γa,b,c have polynomial size regRTL refutations.

Proof. We first restate the axioms of Γa,b,c in a slightly different notation
where in particular, to improve clarity of the figures below, we introduce a
symbol Gi,x to stand for the disjunction

∨
z<cG

z
i,x. The axioms become

1. ¬Gy0,0 for y < c

2. (f(x) = x′) ∧Gyi+1,x′ → Gi,x for i < a−1, x, x′ < b and y < c

3. Ga−1,x for x < b.

Broadly, the refutation works its way up from the bottom row of the
grid of Γa,b,c, row a−1, to the top row, row 0. For each row i it derives all
clauses Gi,x for x < b.

For i = a−1, these are just axiom 3. For i < a−1, we will make use of a
treelike subproof Ai,x which derives Gi,x assuming we already have {Gi+1,x′ :
x′ ∈ [b]}. The structure of Ai,x is shown in Figure 1. For each x′ ∈ [b], it
introduces all axioms {(f(x)=x′), Gyi+1,x′ → Gi,x}y∈[c] and resolves these

12

{
Gi+1,x′

}
x′∈[b]

{
(f(x)=x′), Gyi+1,x′ → Gi,x

}x′∈[b]
y∈[c]

(Axiom)

{
(f(x)=x′)→ Gi,x

}
x′∈[b]

Gi,x

Figure 1: The structure of the tree Ai,x. This is an abstracted diagram where
we do not show individual resolution steps. Clauses in Γa,b,c are labelled as
axioms. The other leaf clauses are available as learned clauses.

with Gi+1,x′ on the variables Gyi+1,x′ to derive (f(x)=x′) → Gi,x. Thus
we have {(f(x)=x′) → Gi,x}x′∈[b] and we can derive Gi,x from these by
resolving away all the variables (f(x))j of f(x), since the antecedents run
through all possible patterns of signs on these variables.

It would be easy to make the trees Ai,x into a resolution refutation
of Γa,b,c, if we did not care about it being treelike or satisfying the regularity
condition; essentially this is what is described in Proposition 4. But this
naive refutation is not treelike, as it reuses the clauses Gi,x in an uncontrolled
way, and is not regular, as paths through it typically will resolve several times
on the same f -variables. Instead we will introduce a scaffolding of clauses,
which do not derive anything very useful themselves, but which give us the
structure of a tree with appropriate places to put the trees Ai,x as subtrees
in a way that satisfies the rules of regRTL.

We inductively define a sequence of trees Ta−1, . . . , T1, where Ti is a
derivation of Gi−1,0 and contains Ti+1 as a subtree. Our final refutation of
Γa,b,c consists of T1, which as just stated derives G0,0, followed by resolution
steps with all instances of axiom 1, that is, with all clauses in {¬Gy0,0}y∈[c],
giving the empty clause. The structure of Ti, for i < a − 1, is shown in
Figure 2 and we now go through its important properties.

The base-case tree Ta−1 has the same structure as in the figure, except
that we delete the subtrees on the left marked as Ti+1, Ai,1, . . . , Ai,b−1; we do
not need them, since we are given the clauses Ga−1,0, . . . ,Ga−1,b−1 directly
as axioms. We have not described the subtrees of the form By

i,x in the figure
yet — we postpone this to the end of the proof.

Tree Ti has as a backbone a sequence of clauses of the formG0
i,0, . . . , G

0
i,x →

Gi−1,0. For each x < b− 1 this clause has exactly c+ 1 parents, as shown in
the figure, and is derived from them by c resolution steps over the variables
G0
i,x, . . . , G

c−1
i,x . The details of these resolutions are not shown, but preserve

that Ti+1 and the trees Ai,x appear as left subtrees.

13

Gi−1,0

G0
i,0→Gi−1,0

Gi,0

Ti+1 {
Gyi,0→Gi−1,0

}
y∈[1,c)

By
i,0

G0
i,0, G

0
i,1→Gi−1,0

Gi,1

Ai,1 {
G0
i,0, G

y
i,1→Gi−1,0

}
y∈[1,c)

By
i,1

G0
i,0, . . . , G

0
i,b−2→Gi−1,0

G0
i,0,G

0
i,b−1→Gi−1,0

B0
i,b−1

Gi,b−1

Ai,b−1 {
G0
i,0, . . . , G

0
i,b−2, G

y
i,b−1→Gi−1,0

}
y∈[1,c)

By
i,b−1

Figure 2: The structure of the tree Ti, for i < a− 1.

14

{
Gi,x′

}
x′∈[x+1,b)

{
(f(0)=x′), Gy

′

i,x′→Gi−1,0
}x′∈[x+1,b)

y′∈[c]

(Axiom)

{
(f(0)=x′)→Gi−1,0

}
x′∈[x+1,b)

G0
i,0, . . . , G

0
i,x−1, G

y
i,x→Gi−1,0

(f(0)=x), Gyi,x→Gi−1,0

(Axiom)

{
(f(0)=x′), G0

i,x′→Gi−1,0
}
x′∈[0,x)

(Axiom)

Figure 3: The structure of the tree By
i,x.

Tree Ti contains Ti+1 as a leftmost subtree in the post-order, and induc-
tively Ti+1 contains every clause in Gi+1,x for x ∈ [b]. Thus we are allowed
to reuse these clauses anywhere else in Ti+1, and in fact we use them in the
subtrees of the form Ai,x shown in the figure.

The trees Ai,x only include resolutions on f -variables and on G-variables
from row i+ 1 (that is, of the form Gyi+1,x′). Inductively, Ti+1 only includes
resolutions on f -variables and on G-variables from rows j ≥ i+1. Otherwise,
all resolutions in the body of Ti are on G-variables from row i, with no
variable resolved twice. Thus we satisfy the regularity condition on the
parts of Ti described so far.

It remains to handle the “loose ends” left in Ti, that is, the clauses of the
form G0

i,0, . . . , G
0
i,x−1, G

y
i,x→Gi−1,0 on the right and at the top of the tree.

We will describe trees By
i,x that derive these. Note that By

i,x is allowed to
use the clauses {Gi,x′}x′∈[b] since these were derived in an earlier part of the
proof in the post-order, at the conclusions of the trees Ai,x and Ti+1. Note
also that on the path from the root of Ti to the conclusion of By

i,x, the only

resolutions that occur are on variables of the form Gy
′

i,x′ with x′ ≤ x, so we

will avoid resolving on these inside By
i,x.

The structure of By
i,x is shown in Figure 3. It is a variant of the

treeAi−1,0, with the main difference that we avoid resolving away as manyG-

variables. First, for each x′ > x, from Gi,x′ and the axioms {(f(0)=x′), Gy
′

i,x′ →
Gi−1,0}y′∈[c] we derive (f(0)=x′) → Gi−1,0 by resolving on the variables

Gy
′

i,x′ . Then we resolve on the variables (f(0))j to combine the clauses

(f(0)=x′) → Gi−1,0 for x′ > x, the axioms (f(0)=x′), G0
i,x′ → Gi−1,0 for

15

x′ < x, and the single axiom (f(0)=x), Gyi,x → Gi−1,0 (which is where y
appears), to get the desired result. Thus we satisfy the regularity condition.

This completes the description of the RegRTL refutation. It is polyno-
mial size by construction.

References

[1] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair
Urquhart. An exponential separation between regular and general res-
olution. Theory of Computing, 3(5):81–102, 2007.

[2] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space trade-
offs in resolution: Superpolynomial lower bounds for superlinear space.
SIAM Journal on Computing, 43(4):1612–1645, 2016.

[3] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards under-
standing and harnessing the potential of clause learning. Journal of
Artificial Intelligence Research, 22:319–351, 2004.

[4] Maria Luisa Bonet and Samuel R. Buss. An improved separation of
regular resolution from pool resolution and clause learning. In Proc.
15th International Conference on Theory and Applications of Satisfia-
bility Testing – SAT 2012, Lecture Notes in Computer Science #7317,
pages 45–57, 2012.

[5] Maria Luisa Bonet, Samuel R. Buss, and Jan Johannsen. Improved
separations of regular resolution from clause learning proof systems.
Journal of Artificial Intelligence Research, 49:669–703, 2014.

[6] Sam Buss and Leszek Ko lodziejczyk. Small stone in pool. Logical
Methods of Computer Science, 10(2):Paper 2, 2014.

[7] Samuel R. Buss. Lower bounds on Nullstellensatz proofs via designs.
In P. Beame and S. Buss, editors, Proof Complexity and Feasible Arith-
metics, pages 59–71. American Mathematical Society, 1998.

[8] Samuel R. Buss, Jan Hoffmann, and Jan Johannsen. Resolution
trees with lemmas: Resolution refinements that characterize DLL-
algorithms with clause learning. Logical Methods in Computer Science,
4, 4:13(4:13):1–18, 2008.

[9] Samuel R. Buss and Jan Kraj́ıček. An application of Boolean complex-
ity to separation problems in bounded arithmetic. Proc. London Math.
Society, 69:1–21, 1994.

16

[10] Matt Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the Groeb-
ner basis algorithm to find proofs of unsatisfiability. In Proceedings of
the Twenty-eighth Annual ACM Symposium on the Theory of Comput-
ing, pages 174–183, 1996.

[11] Noah Fleming, Toniann Pitassi, and Robert Robere. Extremely deep
proofs. In Proc. 13th Innovations in Theoretical Computer Science
Conference, ITCS, LIPIcs 215, pages 70:1–23, 2022.

[12] Jan Kraj́ıček, Alan Skelley, and Neil Thapen. NP search problems
in low fragments of bounded arithmetic. Journal of Symbolic Logic,
72(2):649–672, 2007.

[13] João P. Marques-Silva and Karem A. Sakallah. GRASP — A new
search algorithm for satisfiability. IEEE Transactions on Computers,
48(5):506–521, 1999.

[14] Christos H. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Computer and Sys-
tem Sciences, 48(3):498–532, 1994.

[15] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-
learning SAT solvers as resolution engines. Artificial Intelligence,
172(2):512–525, 2011.

[16] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL al-
gorithms for k -SAT (preliminary version). In Proc. 11th AM-SIAM
Symposium on Discrete Algorithms (SODA), pages 128–136, 2000.

[17] Alexander A. Razborov. A new kind of tradeoffs in propositional proof
complexity. J. ACM, 62(3):16:1–14, 2016.

[18] Neil Thapen. A trade-off between length and width in resolution. The-
ory of Computing, 12(5):1–14, 2016.

[19] Alasdair Urquhart. A near-optimal separation of regular and general
resolution. SIAM Journal on Computing, 40(1):107–121, 2011.

[20] Allen Van Gelder. Pool resolution and its relation to regular resolution
and DPLL with clause learning. In Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2005), Lecture Notes in Computer
Science 3835, pages 580–594. Springer-Verlag, 2005.

17

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

