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Abstract

Recently, Pasarkar, Papadimitriou, and Yannakakis [PPY23] have introduced the new TFNP subclass
called PLC that contains the class PPP; they also have proven that several search problems related to
extremal combinatorial principles (e.g., Ramsey’s theorem and the Sunflower lemma) belong to PLC.
This short paper shows that the class PLC also contains PLS, a complexity class for TFNP problems that
can be solved by a local search method. However, it is still open whether PLC contains the class PPA.

1 Introduction

1.1 Notation

First of all, we present terminologies that we will use in this short paper.
We denote by Z the set of all integers. For an integer a ∈ Z, we define Z≥a := {x ∈ Z : x ≥ a} and

Z>a := {x ∈ Z : x > a}. We use [n] := {1, 2, . . . , n} for every positive integer n in Z>0. Let X be a
finite set. We denote by |X| the cardinality of the elements in X. For any function f : X → X and any
sequence of elements ξ0, . . . , ξk in X, the unfilled set of X is defined as X \ {f(ξ0), . . . , f(ξk)}; we write
this for unfillf (X | ξ0, . . . , ξk). When X is a finite set of integers, for a positive integer κ, we denote X[k]
to be the set of κ smallest elements of X; that is, |X[κ]| = κ and ξ < η for each pair of two elements
ξ ∈ X[κ] and η ∈ X \X[κ].

Let {0, 1}∗ denote the set of binary strings with a finite length. For every string x ∈ {0, 1}∗, we denote
by |x| the length of x. For each positive integer n, we write {0, 1}n for the set of binary strength with the
length n. Throughout this short paper, we sometimes regard {0, 1}n as the set of positve integers [2n].

Search Problems Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation. We say that R is polynomially balanced if
there is a polynomial p : Z≥0 → Z≥0 such that for each (x, y) ∈ R, it holds that |y| ≤ p(|x|). We say that
R is polynomial-time decidable if for each pair of strings (x, y) ∈ {0, 1}∗ × {0, 1}∗, we can decide whether
(x, y) belongs to R in polynomial time. We say that R is total if for every string x ∈ {0, 1}∗, there always
exists at least one string y such that (x, y) ∈ R.

For a relation R ⊆ {0, 1}∗×{0, 1}∗, the search problem with respect to R is defined as follows1: Given
a string x ∈ {0, 1}∗, find a string y ∈ {0, 1}∗ such that (x, y) ∈ R if such a y exists, otherwise reports “no.”
When R is also total, we call such a search problem a total search problem. The complexity class FNP is the
set of all search problems with respect to a polynomially balanced and polynomial-time decidable relation
R. The complexity class TFNP is the set of all total search problems belonging to FNP. By definition, it
holds that TFNP ⊆ FNP.

1For simplicity, we call the search problem with respect to R the search problem R.
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Reductions Let R,S ⊆ {0, 1}∗×{0, 1}∗ be two search problems. A polynomial-time reduction from R to
S is defined by two polynomial-time computable functions f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ satisfying that (x, g(x, y)) ∈ R whenever (f(x), y) ∈ S. In other words, the function f maps an
instance x of R to an instance f(x) of S, and the other function g maps a solution y to the instance f(x)
to a solution g(x, y) to the instance x.

For a complexity class C, we say that a search problem R is C-hard if all search problems in C are
polynomial-time reducible to R. Furthermore, we say that a search problem R is C-complete if R is C-hard,
and R belongs to C.

1.2 Backgrounds

Consider the following two-player game: There are 2n stones; we denote by U0 the set of all stones. In the
first round, Player 1 chooses one stone a0 from U0, then Player 2 partitions remaining stones U1 := U0\{a0}
into two groups, denoted by U0

1 and U1
1 . In the second round, Player 1 chooses one stone a1 from U b1

1 ,
then all stones in the opposite to a1 (i.e., all stones in U1−b1

1 ) are removed from the game immediately.
Player 2 partitions all stones in the group U2 := U b1

1 \ {a1} into two groups, denoted by U0
2 and U1

2 . In
the i-th round, Player 1 chooses one stone ai−1 from U

bi−1

i−1 , then all stones in U
1−bi−1

i−1 are removed from
the game immediately. Player 2 partitions all stones in the group Ui := U

bi−1

i \ {ai−1} into two groups
U0
i and U1

i . They repeat such processes n+ 1 rounds. Player 1 wins if they can pick n+ 1 distinct stones
a0, a1, . . . , an at the end of the game. If Player 1 cannot choose any stones during the above game, then
Player 2 wins. In this paper, we call this game the Interactive Bipartition Stone-Picking Game2.

It is straightforward to see that a winning strategy for Player 1 in Interactive Bipartition Stone-
Picking Game always exists. Recently, Pasarkar, Papadimitriou, and Yannakakis [PPY23] have formu-
lated the problem of finding a winning strategy for Player 1 in Interactive Bipartition Stone-
Picking Game as a TFNP problem. Informally speaking, their problem, called Long Choice, is to find
a sequence of distinct elements that satisfies suitable properties when we are given a description of Player
2’s action at each round. The formal definition can be found in Definition 3.

TFNP problems [MP91; Pap94] — the existence of solutions guarantees, and the correctness of every
solution is effortlessly checkable — comprise a fascinating field in computational complexity theory. It is
known that many significantly important computational problems belong to the complexity class TFNP.
For example, finding a Nash equilibrium [CDT09; DGP09], computing a fair division [FG18; DFM22;
GHH23], integer factoring [Bur06; Jer16], and algebraic problems related to cryptographies [SZZ18; HV21].
A natural way to analyze the theoretical features of a complexity class is to characterize its class by
complete problems. However, it is widely believed that TFNP has no complete problem [Pud15; Pap94].
Consequently, several TFNP subclasses with complete problems have been introduced over the past three
decades. The best well-known such classes include PLS [JPY88], PPAD, PPA, PPP [Pap94], PWPP [Jer16],
and EOPL [DP11; Fea+20; Göö+22].

We are interested in the boundary of total search problems. In particular, our central motive is to
capture the most hard problems among syntactic TFNP problems. Previously, Goldberg and Papadimitriou
[GP18] have introduced a TFNP problem that unifies the traditional TFNP subclasses. However, we are
unaware of another TFNP problem that unifies PLS, PPP, and PPA. As a first step, this short paper sheds
light on the relationship between the oldest and the newest TFNP subclasses.

1.3 Our Contributions

We make clear the relationship between two TFNP subclasses: PLS and PLC.
2Remark that the term “bipartition” implies that, at each turn, Player 2 partitions the current set into two groups. This

game can be easily generalized to the multi-partition setting.
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The complexity class PLS, introduced by Johnson, Papadimitriou, and Yannakakis [JPY88], is one of
the most famous TFNP subclasses. The class PLS captures the complexity of the problems that can be
solved by a local search method. Formally, this class is defined as the set of all search problems that are
reducible to LocalOPT in polynomial time.

Definition 1. LocalOPT
Input: Two Boolean circuits f : [2n]→ [2n] and p : [2n]→ [2m].
Output: A point x in [2n] such that p(x) ≥ p(f(x))

Definition 2. The complexity class PLS is the set of all search problems that are reducible to LocalOPT
in polynomial time.

On the other hand, the complexity class PLC is the newest TFNP subclass, introduced by Pasarkar,
Papadimitriou, and Yannakakis [PPY23]. This class is formulated as the set of all search problems that
are reducible to the problem Long Choice in polynomial time.

Definition 3. Long Choice
Input: n−1 Boolean circuits P0, . . . , Pn−2 such that Pi : ([2

n])i+2 → {0, 1} for each i ∈ {0, . . . , n−2}
Output: A sequence of n+1 distinct elements a0, a1, . . . , an in [2n] such that for each i ∈ {0, . . . , n−
2}, Pi(a0 . . . , ai, aj) is the same for every j > i.

Definition 4. The complexity class PLC is the set of all search problems that are reducible to Long
Choice in polynomial time.

As mentioned before, the class PLC captures the complexity of finding a winning strategy for Player 1
in Interactive Bipartition Stone-Picking Game. Let P0, . . . , Pn−2 be a sequence of the predicates
given by an instance of Long Choice. For each index i ∈ {0, . . . , n − 2}, the predicate Pi : ([2

n])i+2 →
{0, 1} represents Player 2’s behavior at the (i+1)th round. Then, we can easily regard a solution to Long
Choice as a winning strategy for Player 1.

We show that the complexity class PLS is contained in PLC.

Theorem 5 (Main Contribution). PLS is contained in PLC.

2 Technical Ingredients

To prove our main theorem, we introduce a search problem, an extension of Pigeon (see Definition 6).
The complexity class PPP, introduced by Papadimitriou [Pap94], is the class for search problems related
to the pigeonhole principle. A total search problem belonging to PPP is to find a collision under the self-
mapping. For instance, consider the situation where we put 2n pigeons in 2n cages according to a function
C : [2n] → [2n]. Unfortunately, one of these cages is broken, denoted by v∗, and we cannot use it. The
task of the problem is to find a collision or detect the broken cage being used.

The formal definition of the canonical PPP-complete problem is as follows.
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Definition 6. Pigeon
Input: A Boolean circuit C : [2n]→ [2n] and a special element v∗ ∈ [2n]
Output: One of the following

1. two distinct elements x, y ∈ [2n] such that C(x) = C(y)

2. an element x ∈ [2n] such that C(x) = v∗

Definition 7. The complexity class PPP is the set of all search problems that are reducible to Pigeon in
polynomial time.

Theorem 8 (Pasarkar, Papadimitriou, and Yannakakis [PPY23]). PPP is contained in PLC.

From now on, we extend Pigeon to another TFNP problem called Quotient Pigeon. Let U be a finite
set, and let ∼ denote an equivalence relation over U . We now consider a Pigeon instance over the quotient
set U/∼. In other words, we focus on the following search problem: Given a function C : U/∼ → U/∼ and
a special element v∗ in U , find two distinct elements x, y ∈ U/∼ such that C(x) ∼ C(y) or an element
x ∈ U/∼ such that C(x) ∼ v∗. For example, consider the situation where we put N books away into M
bookshelves, but one of these bookshelves is broken; namely, this one cannot be used. Our behavior can
be represented by a function C : [N ] → [M ]. We sort these books by genre, which can be classified into
exactly M genres. Note that genre induces an equivalence relation E over these books. The task of the
problem is to detect that two books of different genres are stored on the same bookshelf or that the broken
bookshelf is being used.

To formulate the above variant of Pigeon, we allow to obtain another function E : U × U → {0, 1}
computing an equivalence relation over U . We denote by ∼E the binary relation defined by E; for each
pair of elements x, y in U , x ∼E y if and only if E(x, y) = 1. Formally, the new search problem called
Quotient Pigeon is defined as follows.

Definition 9. Quotient Pigeon
Input: Two Boolean circuits C : [2n]→ [2n] and E : [2n]× [2n]→ {0, 1} and an element v∗ ∈ [2n]
Ouput: One of the following

1. two elements x, y ∈ [2n] such that x ̸∼E y and C(x) ∼E C(y)

2. an element x ∈ [2n] such that C(x) ∼E v∗

3. two elements x, y ∈ [2n] such that x ∼E y and C(x) ̸∼E C(y)

4. an element x ∈ [2n] such that E(x, x) = 0

5. two elements x, y ∈ [2n] such that E(x, y) ̸= E(y, x).

6. three distinct elements x, y, z ∈ [2n] such that x ∼E y, y ∼E z, and x ̸∼E z

Unfortunately, we are unaware of a way of syntactically enforcing the Boolean circuit E to compute
an equivalence relation over the finite set [2n]. Thus, we introduce violations as solutions to Quotient
Pigeon to ensure that this problem belongs to TFNP. More precisely, the fourth-type solution is a violation
of the reflexivity. The fifth-type solution represents a violation of the symmetry. Finally, the sixth-type
solution means a violation of the transivity.

Proposition 10. Quotient Pigeon is PPP-hard.
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Proof. It suffices to define the Boolean circuit E : [2n]× [2n]→ {0, 1} as E(x, y) = 1 if and only if x = y
for all x, y ∈ [2n].

Before closing this section, we observe the useful properties of Quotient Pigeon. First, we show
that we can assume that there is no fixed point for any Quotient Pigeon without loss of generality.

Proposition 11. Let ⟨C : [2n] → [2n], E : [2n] × [2n] → {0, 1}, v∗ ∈ [2n]⟩ be an instance of Quotient
Pigeon. We can assume that there is no element x ∈ [2n] such that C(x) ∼E x or C(x) = v∗ without loss
of generality.

Proof. We first redefine the Boolean circuit C as follows: For each element x ∈ [2n], C(x) := u∗ if
C(x) ∼E v∗, otherwise we do not modify the output of C(x). Here, we pick arbitrary element u∗ in [2n]
with u∗ ̸= v∗. It is straightforward to see that we can recover a solution to the original instance from a
solution to the modified instance.

We write U for the set {0, 1} × [2n]. We construct new two Boolean circuits C ′ : U → U and
E′ : U × U → {0, 1} as follows. For each element (b, x) ∈ U , we define C ′(b, x) := (1− b, C(x)). For each
pair of two elements (b, x) and (c, y) in U , define E′((b, x), (c, y)) = 1 if and only if b = c and E(x, y) = 1.
Informally speaking, we create a copy of equivalent classes induced by E. Finally, we define (0, v∗) in U
to be a special element for the reduced instance of Quotient Pigeon.

Since the first bit is always flipped by the Boolean function C ′, there is no fixed point of C ′. Further-
more, it holds that ξ ̸∼E′ η for all elements ξ, η ∈ U whose first bits are different. This implies that there
is no element ξ ∈ U such that C ′(x) ∼E .

From our construction, it is easy to see that we can efficiently recover an original solution from a
solution to the reduced instance.

Next, we show that we can suppose that there exist at least 2n equivalent classes without loss of gen-
erality. More precisely, we can assume that the elements u0 := v∗, u1 := C(u0), . . . , ui := C(ui−1), . . . , u2n
are distinct under ∼E , i.e., ui ̸∼E uj for all 0 ≤ i < j ≤ 2n, without loss of generality.

Proposition 12. For every non-trivial3 instance of Quotient Pigeon ⟨C : [2n]→ [2n], E : [2n]×[2n]→
{0, 1}, v∗ ∈ [2n]⟩, we can assume that the elements u0 := v∗, u1 := C(u0), . . . , ui := C(ui−1), . . . , u2n are
distinct under ∼E, i.e., ui ̸∼E uj for all 0 ≤ i < j ≤ 2n, without loss of generality.

Proof. It is sufficient to prove that we can easily recover a solution to the original Quotient Pigeon
instance when there are two elements ui and uj such that ui ∼E uj . We prove this fact by induction.

In the base case, we can assume that u0 ̸∼E u1 = C(u0) from Proposition 11.
In the inductive case, suppose that the elements u0 := v∗, u1 := C(u0), . . . , ui := C(ui−1) are distinct

under ∼E for some positive integer i < 2n. If the element ui+1 := C(ui) collided with an element uj
under ∼E for some 0 ≤ j ≤ i, we can effortlessly recover a solution to the original Quotient Pigeon
instance as follows: The element ui is the second-type solution when j = 0; and the elements ui, uj−1 is
the first-type solution since ui ̸∼E uj−1 and C(ui) ∼E uj−1 when j > 0.

3 Proof of Our Main Theorem

Theorem 5 immediately follows from the following two lemmata.

Lemma 13. Quotient Pigeon is PLS-hard.

Lemma 14. Quotient Pigeon belongs to PLC.
3We say that an instance is trivial if it can be solved by a nïve approach in polynomial time.
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In other words, we first prove that there is a polynomial-time reduction from LocalOPT to Quotient
Pigeon in Lemma 13. After that, we show a polynomial-time reduction Quotient Pigeon to Long
Choice in Lemma 14. By the transitivity of the polynomial-time reduction, we have a polynomial-time
reduction from LocalOPT to Long Choice. This implies that LocalOPT belongs to the complexity
class PLC; therefore, we conclude our main theorem: PLS ⊆ PLC.

The proofs of Lemma 13 and Lemma 14 can be found in Section 3.1 and Section 3.2, respectively.

3.1 Proof of Lemma 13

To prove this lemma, we show a polynomial-time reduction from LocalOPT to Quotient Pigeon. Our
proof is inspired by the robustness proof of End of Potential Line by Ishizuka [Ish21].

Let two Boolean circuits f : [2n] → [2n] and p : [2n] → [2m] be an instance of LocalOPT. We first
show, in Proposition 15, that we can assume that the point 1 ∈ [2n] has the unit potential, and every
point x ∈ [2n] with f(x) ̸= x satisfies that p(f(x)) = p(x) + 1, without loss of generality.

Proposition 15. For every LocalOPT instance ⟨f : [2n]→ [2n], p : [2n]→ [2m]⟩, we have a polynomial-
time reduction from ⟨f, p⟩ to a LocalOPT instance ⟨F : [2m]× [2n]→ [2m]× [2n], P : [2m]× [2n]→ [2m]⟩
that satisfies the following two properties: (1) For each point ξ in [2m]× [2n] with F (ξ) ̸= ξ, it holds that
P (F (ξ)) = P (ξ) + 1; and (2) we know a special point v∗ in [2m]× [2n] with P (v∗) = 1.

Proof. Let two Boolean circuits f : [2n]→ [2n] and p : [2n]→ [2m] be an instance of LocalOPT. We first
reduce the above instance to another LocalOPT instance ⟨f ′ : [2n] → [2n], p′ : [2n] → [2m]⟩ satisfying
that p′(1) = 1. For each point x ∈ [2n], we define

f ′(x) :=

{
f(1) if f(x) = 1

f(x) otherwise,

and p′(x) = p(x) if x ̸= 1, otherwise p′(x) = 1. It is easy to see that the instance ⟨f ′, p′⟩ holds the desired
condition.

What remains is to prove that we can recover a solution to the original instance ⟨f, p⟩ from a solution
to the new instance ⟨f ′, p′⟩ in polynomial time. Let x ∈ [2n] be a solution to ⟨f ′, p′⟩; that is, it holds that
p′(x) ≥ p′(f ′(x)). First, we suppose that x = 1. This implies that p(x) ≥ p′(x) = 1 = p′(f ′(x)) = p(f(x)).
Hence, the point x = 1 is a solution to the original instance. Next, we suppose that x > 1, f(x) = 1,
and the special point 1 is not a solution to ⟨f ′, p′⟩. This implies that p(x) = p′(x) ≥ p′(f ′(x)) = p(f(1)).
Therefore, we can see that at least one of x and f(x) is a solution to the original instance ⟨f, p⟩. Finally,
we suppose that x > 1 and f(x) ̸= 1. This implies that p(x) = p′(x) ≥ p′(f ′(x)) = p(f(x)). Thus, the
point x is a solution to the original instance.

We move on to proving another desired condition: For every point, its potential increases at most one.
We will construct another LocalOPT instance ⟨F : [2m] × [2n] → [2m] × [2n], P : [2m] × [2n] → [2m]⟩
from the LocalOPT instance ⟨f ′ : [2n] → [2n], p′ : [2n] → [2m]⟩ such that P (F (i, x)) = P (i, x) + 1 for
each point (i, x) ∈ [2m]× [2n] with F (i, x) ̸= (i, x). Our idea is inspired by [Fea+20, Theorem 4].

For each vertex (i, x) ∈ [2m] × [2n], we say that (i, x) is active if it holds that p′(x) ≤ i < p′(f ′(x));
the vertex (i, x) is inactive if it is not active. For every inactive vertex (i, x) ∈ [2m] × [2n], we define
the function F (i, x) := (p(x), x). For each active vertex (i, x) ∈ [2m] × [2n], we define the function
F : [2m]× [2n]→ [2m]× [2n] as follows:

F (i, x) :=

{
(i+ 1, x) if p′(x) ≤ i < p′(f ′(x))− 1,

(p′(f ′(x)), f ′(x)) if i = p′(f ′(x))− 1.

Furthermore, we define the potential function P : [2m] × [2n] → [2m] as follows: P (i, x) = i if a vertex
(i, x) is active, otherwise P (i, x) = p′(x) − 1. It is not hard to see that every vertex satisfies the desired
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condition. We can effortlessly obtain a solution to the original instance from every solution to the new
instance.

We move on to describe how to construct the reduced Quotient Pigeon instance ⟨C : [2n]→ [2n], E :
[2n]× [2n]→ {0, 1}⟩. First, we define the equivalence relation E : [2n]× [2n]→ {0, 1} with respect to the
LocalOPT instance ⟨f, p⟩. For all x, y ∈ [2n], define E(x, y) := 1 if p(x) = p(y); otherwise E(x, y) = 0.
It is straightforward to see that the function E satisfies the requirements for the equivalence relation.
There is no solution that holds the fourth, fifth, or sixth type of solution. We define the Boolean circuit
C : [2n]→ [2n] as follows: C(x) = f(x) for every x ∈ [2n]. Finally, we set the special element v∗ to be 1.
We complete constructing a Quotient Pigeon instance ⟨C,E, v∗⟩.

What remains is to prove that we can recover a solution to the original LocalOPT instance from each
solution to the reduced Quotient Pigeon in polynomial time. Since the Boolean circuit E certainly
computes the equivalence relation over [2n], every solution to the reduced instance ⟨C,E, v∗⟩ is one of the
first-, second-, and third-type solutions.

First-type solution We first consider where we obtain two elements x, y ∈ [2n] such that x ̸∼E y and
C(x) ∼E C(y). This implies that p(x) ̸= p(y) but p(f(x)) = p(f(x)). Suppose that the point x is not
a solution to the LocalOPT instance (i.e., f(x) ̸= x and p(f(x)) = p(x) + 1), the other point y is a
solution to the LocalOPT instance. Similarly, suppose that y is not a solution; the other point x is a
solution. Hence, at least one of x and y is a solution to the LocalOPT instance ⟨f, g⟩.

Second-type solution Next, we consider the case where we obtain an element x ∈ [2n] such that
C(x) ∼E v∗. This implies that 1 = p(v∗) = p(f(x)) ≤ p(x). Therefore, the point x is a solution to the
LocalOPT instance ⟨f, g⟩.

Third-type solution Finally, we consider the case where we obtain two distinct elements x, y ∈ [2n]
such that x ∼E y and C(x) ̸∼E C(y). This implies that p(x) = p(y) but p(f(x)) ̸= p(f(y)). From our
assumption, exactly one of the points x and y is a fixed point of f . Therefore, we obtain a solution to the
original LocalOPT instance ⟨f, g⟩.

3.2 Proof of Lemma 14

This section proves that the problem Quotient Pigeon belongs to the class PLC. To prove this, we
will provide a polynomial-time reduction from Quotient Pigeon to Constrained Long Choice, a
restricted variant of the problem Long Choice. Our reduction heavily relies on the PPP-hardness proof
of Long Choice by Pasarkar, Papadimitriou, and Yannakakis [PPY23, Theorem 2].

Definition 16. Constrained Long Choice
Input: n−1 Boolean circuits P0, . . . , Pn−2 such that Pi : ([2

n])i+2 → {0, 1} for each i ∈ {0, . . . , n−2}
and an initial element a0 in [2n]
Output: a sequence of n+1 distinct elements a0, a1, . . . , an in [2n] such that for each i ∈ {0, . . . , n−
2}, Pi(a0 . . . , ai, aj) is the same for every j > i.

Proposition 17 (Pasarkar, Papadimitriou, and Yannakakis [PPY23]). Long Choice and Constrained
Long Choice are polynomial-time reducible to each other.

Let two Boolean circuits C : [2n] → [2n] and E : [2n] × [2n] → {0, 1} and an element v∗ ∈ [2n] be
an instance of Quotient Pigeon. From Proposition 11, we assume that C(x) ̸∼E x and C(x) ̸= v∗ for
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every x ∈ [2n], without loss of generality. Also, from Proposition 12, we assume that the 2n elements u0 :=
v∗, u1 := C(u0), . . . , ui := C(ui−1), . . . , u2n := C(u2n−1) are distinct under ∼E each other (i.e., ui ̸∼E uj
for all 0 ≤ i < j ≤ 2n), without loss of generality. We will construct the instance of Constrained Long
Choice ⟨P0, P1, . . . , Pn−2, v

∗⟩, where Pi : ([2
n])i+2 → {0, 1} for every i ∈ {0, 1, . . . , n− 2}.

Before constructing the predicates P0, P1, . . . , Pn−2, we briefly sketch our reduction. Every solution to
Constrained Long Choice is a sequence of distinct elements a0, a1, . . . , an in [2n]. In such a sequence,
each element ai is chosen by depending only on the previously chosen elements a0, a1, . . . , ai−1. Here, we
use the terminology distinct to mean that x ̸= y. Recall that two distinct elements x and y such that
x ∼E y and C(x) = C(y) are not a solution to Quotient Pigeon. So, we need to avoid such a bad
solution being constructed as a solution to Constrained Long Choice. In order to settle such an issue,
we arrange the sequence before applying the predicates P0, P1, . . . , Pn−2 that are defined in [PPY23]. We
introduce the sub-procedures β0, β1, . . . , βn−1, where for each index k ∈ {0, 1 . . . , n−1}, the sub-procedure
βk maps distinct k+1 elements a0, . . . , ak, ak+1 to k+1 elements b0, . . . , bk, bk+1 with a suitable property.

Roughly speaking, we require that the elements b0, . . . , bn are distinct under ∼E unless we can recover
a solution to the original instance in polynomial time. Each element bk+1 depends only on b0, . . . , bk,
and ak+1. Furthermore, if the sequence (b0, . . . , bn, bn+1) contains two distinct elements bi, bj such that
bi ∼E , bj , then we can recover a solution to the original Quotient Pigeon instance ⟨C,E, v∗⟩ from
(b0, . . . , bn, bn+1) in polynomial time.

We first describe how to construct the sub-procedures β0, . . . , βn−1. These sub-procedures are defined
inductively. We can find the formal structure for each index k ∈ {0, . . . , n− 1} in Algorithm 1.

Let (a0, . . . , an) denote an input sequence of the sub-procedures, where it holds that ai ̸= aj for all
0 ≤ i < j ≤ n. In the base case (i.e., k = 0), the sub-procedure β0 directly outputs b0 to be a0. Suppose
that for an index k < n − 1, we have a sequence of elements b0, . . . , bk constructed by the sub-procedure
βk−1. We now define the element bk+1 from the elements b0, . . . , bk, and ak+1.

First, we check whether the elements b0, . . . , bk are distcinct under ∼E . If not, we set it to be bk+1 :=
ak+1. Otherwise, we also check whether ak+1 ̸∼E bi for every i ∈ {0, 1, . . . , k}. If yes, we define bk+1 :=
ak+1. Also otherwise, we have the elements b0, . . . , bk and ak+1 such that (1) bi ̸∼E bj for all 0 ≤ i < j ≤ n;
and (2) there exists an elements bi such that ak+1 ∼E bi. In this case, we verify whether we can recover a
solution to the original Quotient Pigeon ⟨C,E, v∗⟩ from the elements b0, . . . , bk and ak+1 in polynomial
time. Specifically, we check the following six properties:

1. There exist two elements bi and bj such that bi ̸∼E bJ and C(bi) ∼E C(bj);

2. there is a elements x in {b0, b1, . . . , bk, ak+1} such that C(x) ∼E v∗;

3. there is an element bi such that bi ∼E ak+1 and C(bi) ̸∼E C(ak+1);

4. there exists an element x in {b0, b1, . . . , bk, ak+1} such that E(x, x) = 0;

5. there are two elements x and y in {b0, b1, . . . , bk, ak+1} such that C(x, y) ̸= E(y, x); and

6. there exist distinct three elements x, y, z ∈ {b0, b1, . . . , bk, ak+1} such that x ∼E y, y ∼E z, and
x ̸∼E z.

We call the algorithm that performs these above tests CheckSolutions (see also, Algorithm 2).
If it passes at least one of the above six tests, then we can efficiently recover a solution to the original

Quotient Pigeon ⟨C,E, v∗⟩. Note that these tests can be computed in polynomial time. Thus, we define
bk+1 := ak+1. Finally, if the sequence of elements (b0, . . . , bk, ak+1) is rejected by all of the above six tests,
then we find the smallest positive integer ℓ such that Cℓ(v∗) ̸∼E x for every element x ∈ {b0, . . . , bk, ak+1},
and we define bk+1 := Cℓ(v∗). Note that such an integer ℓ always exists and is bounded by 2n from our
assumption.
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We complete constructing the sub-procedures β0, . . . , βn−1. It is not hard to see that every sub-
procedure βk is polynomial-time computable. Moreover, a sequence of elements b0, . . . , bn defined by our
sub-procedures holds the next proposition.

Proposition 18. For every positive integer k ∈ [n−1], and for every equence of elements a0, . . . , ak, ak+1

in [2n] such that ai ̸= aj for all 0 ≤ i < j ≤ k + 1, if the sequence of elements b0, . . . , bk, bk+1 that are
produced by βk(a0, . . . , ak, ak+1) are not distinct under ∼E (i.e., there is a pair of elements bi and bj such
that bi ∼E bj), then the algorithm CheckSolutions(b0, . . . , bk, bk+1) returns True.

Proof. We prove this by induction. In the case where k = 1, the statement is trivial.
Let k be a positive integer in [n − 1], and let a0, . . . , ak, ak+1 denote a sequence of elements in [2n]

such that ai ̸= aj for all 0 ≤ i < j ≤ k + 1. Also, we write b0, . . . , bk, bk+1 for the correspond-
ing sequence of elements. Suppose that the statement holds for every i < k; that is, the algorithm
CheckSolutions(b0, . . . , bi, bi+1) returns True if we have two elements bj1 and bj2 with 0 ≤ j1 < j2 ≤ i+1
such that bj1 ∼E bj2 . We will show that the statement also follows for the index k.

We assume that there exist two elements bi and bj with 0 ≤ i < j ≤ k + 1 such that bi ∼E bj .
From the inductive supposition, we consider the case where we have an element bj such that bj ∼E bk+1.
By the constrcution of the sub-procedure βk, the algorithm CheckSolutions(b0, . . . , bk, ak) returns True
because if not, the element bk+1 is defined to be distinct with other elements under ∼E . We set it to be
bk+1 := ak+1, and thus, the algorithm CheckSolutions(b0, . . . , bk, bk+1) returns True.

We move on to constructing the predicates P0, P1, . . . , Pn−2, where Pi : ([2n])i+2 → {0, 1} for each
i = 0, 1, . . . , n − 2. Our structure is straightforward: After applying our sub-procedures, we apply the
predictions defined by Pasarkar, Papadimitriou, and Yannakakis [PPY23]. For the self-containment, we
now describe the definition of a sequence of finite sets B0, . . . , Bi, . . . and F0, . . . , Fi, . . . . We proceed with
an inductive definition.

In the base case, we define B0 := [2n] \ {v∗}. Since a0 := v∗ and C(v∗) ̸∼E v∗, the unfilled set
unfillC(B0 | a0) has size 2n− 2. We define F0 := B0[κ], where κ = 2n−1− 1 if C(a0) > 2n−1− 1; otherwise
κ = 2n−1. Then, the finite set F0 has size 2n−1 − 1.

Suppose that we have a sequence of elements a0, . . . , ak such that a0 = v∗, and Bi and Fi are defined for
every i < k. Here, we denote by b0, . . . , bk the sequence of elements that are outputs of βk−1(a0, . . . , ak).
We first define the finite set Bk using the following rules:

(I) If Bk−1 is a singleton, then Bk = Fk = Bk−1.

(II) Otherwise, if C(bk) belongs to Fk−1, then Bk = Fk−1. If C(bk) is not in Fk−1, then Bk = Bk−1\Fk−1.

Finally, we define Fk. Let κ denote the smallest integer such that

|unfillC(Bk | b0, . . . , bk)[κ]| =
⌈
|unfillC(Bk | b0, . . . , bk)|

2

⌉
.

We define Fk = Bk[κ].
From the above construction, we can see that B0 ⊇ B1 ⊇ · · · ⊇ Bi ⊇ · · · ⊇ Bn and Fi ⊆ Bi for every

i ∈ {0, 1, . . . , n− 1}.
To complete constructing the Constrained Long Choice instance, we define the predicate function

Pk for each index k in {0, 1, . . . , n− 2} as follows:

Pk(a0, . . . , ak, x) =

{
1 if C(bk+1) ∈ Fk

0 if C(bk+1) ̸∈ Fk,

where (b0, . . . , bk+1) = βk(a0, . . . , ak, x).
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We now obtain the reduced Constrained Long Choice instance ⟨P0, P1, . . . , Pn−2, v
∗⟩. What re-

mains is to prove that a feasible sequence for our instance allows us to recover a solution to the original
Quotient Pigeon instance ⟨C,E, v∗⟩.

Let a0, a1, . . . , an be a feasible sequence; that is, it holds that a0 = v∗, ai ̸= aj for all 0 ≤ i < j ≤ n,
and for each index i ∈ {0, . . . , n − 2}, Pi(a0, . . . , ai, aj) are the same for every j > i. Let b0, . . . , bn−1, bn
denote the elements that are outputs of the sub-procedure βn−1(a0, . . . , an−1, an). It suffices to show that
CheckSolutions(b0, . . . , bn−1, bn) returns True.

For the sake of contradiction, we suppose that CheckSolutions(b0, . . . , bn−1, bn) returns False. From
Proposition 18, it satisfies that bi ̸∼E bj for all 0 ≤ i < j ≤ n. That is, the elements b0, . . . , bn, bn+1

are distinct. Also, we have no element x such that C(x) ̸= v∗ from our assumption. Furthermore, the
following two properties hold.

Proposition 19 (Pasarkar, Papadimitriou, and Yannakakis [PPY23]). (1) For each i ∈ {0, . . . , n},
C(bj) ∈ Bi for every j > i. (2) For every i ∈ {0, . . . , n− 2}, |unfillC(Bi | b0, . . . , bi)| = 2n−i − 2.

From Item (2) of Proposition 19, we have that |unfillC(Bn−2 | b0, . . . , bn−2)| = 2. Recall the definition of
the subset Fn−2. It satisfies that |unfillC(Fn−2 | b0, . . . , bn−2)| = 1 and |unfillC(Bn−2 \ Fn−2 | b0, . . . , bn−2)| =
1. Since the Pn−2(a0, . . . , an−2, an−1) and Pn−2(a0, . . . , an−2, an) are the same, exactly one of the following
holds: (i) C(bn−1) and C(bn) are in Fn−2; and (ii) C(bn−1) and C(bn) are in Bn−2 \ Fn−2. Therefore, we
have a collision, which contradicts from CheckSolutions(b0, . . . , bn−1, bn) returns False.

4 Conclusion and Open Questions

This short paper has investigated the computational aspects of Interactive Bipartition Stone-
Picking Game. We have shown the PLS-hardness of Long Choice, a TFNP formulation of Interactive
Bipartition Stone-Picking Game. Our result implies that the complexity class PLC also contains the
class PLS. Furthermore, we have introduced the new TFNP problem Quotient Pigeon that is PPP- and
PLS-hard as a by-product.

This short paper has left the following open questions:

(i) Does PLC contain PPA? Thus, does PLC unify traditional TFNP subclasses?

(ii) Is the problem Quotient Pigeon PLC-hard? In other words, is Quotient Pigeon PLC-complete?

• As a matter of course, a natural PLC-complete problem is still unknown.

• We are also interested in the relationship between Quotient Pigeon and the problem Unary
Long Choice, a TFNP formulation of the non-interactive variant of Interactive Bipartition
Stone-Picking Game [PPY23, Section 2].

Finally, we remark that the concept of our TFNP problem Quotient Pigeon has come from [Ish21]
(and also [HG18]). Ishizuka [Ish21] has shown the robustness of End of Potential Line. To prove
this, he has constructed a reduction by regarding several nodes of the original instance as one node of
the reduced instance4. Such an approach can be viewed as a quotient from the mathematical perspective.
This short paper formulates a search problem over a quotient set by extending their ideas. The primal
purpose of this work has been to characterize the complexity of the variants with super-polynomially many
known sources of End of Line and End of Potential Line. It is still open whether such variants
are also PPAD- and EOPL-complete, respectively. We believe that a search problem on a quotient set helps
us advance our understanding of TFNP problems. For example, a computational problem related to the
Chevalley-Warning theorem [Göö+20] is one of TFNP problems on quotient sets.

4Previously, Hollender and Goldberg [HG18] have proven the robustness of End of Line using the similar approach.
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A Procedures

Algorithm 1 The sub-procedure βk for k ∈ {0, 1, . . . , n}
Input: a sequence (a0, . . . , ak, ak+1) on [2n] such that ai ̸= aj for all 0 ≤ i < j ≤ k + 1
Output: a sequence (b0, . . . , bk, bk+1) on [2n]
1: b0 ← a0
2: Suppose that we have a sequence (b0, . . . , bk) by using the sub-procedures β0, . . . , βk−1 inductively.
3: if Exists a pair bi, bj such that bi ∼E bj then
4: bk+1 ← ak+1

5: else if ak+1 ̸∼E bi for every i ∈ {0, 1, . . . , k} then
6: bk+1 ← ak+1

7: else if CheckSolutions(b0, . . . , bk, ak+1) returns True then
8: bk+1 ← ak+1

9: else
10: Find the smallest positive integer ℓ such that Cℓ(a0) ̸∼E bi for every i ∈ {0, 1, . . . , k}
11: bk+1 ← Cℓ(a0)
12: end if

Algorithm 2 The algorithm CheckSolutions that decides whether a solution to Quotient Pigeon exists
Input: a sequence of elements ξ0, . . . , ξk, ξk+1 in [2n]
Output: Ether True or False
1: if There exist two elements ξi and ξj such that ξi ∼E ξj and C(ξi) ∼E C(ξj) then
2: return True
3: else if There is an element ξ ∈ {ξ0, . . . , ξk, ξk+1} such that C(ξ) ∼E v∗ then
4: return True
5: else if There are two elements ξ, η ∈ {ξ0, . . . , ξk, ξk+1} such that ξ ∼E η and C(ξ) ̸∼E C(η) then
6: return True
7: else if There exists an element ξ ∈ {ξ0, . . . , ξk, ξk+1} such that E(ξ, ξ) = 0 then
8: return True
9: else if There are two elements ξ, η ∈ {ξ0, . . . , ξk, ξk+1} such that E(ξ, η) = E(η, ξ) then

10: return True
11: else if There exist distinct three elements ξ, η, ζ ∈ {ξ0, . . . , ξk, ξk+1} such that ξ ∼E η, η ∼E ζ, and

ξ ̸∼E ζ then
12: return True
13: else
14: return False
15: end if
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