
Search-to-Decision Reductions for Kolmogorov Complexity

Noam Mazor ∗ Rafael Pass †

January 2, 2024

Abstract

A long-standing open problem dating back to the 1960s is whether there exists a search-to-
decision reduction for the time-bounded Kolmogorov complexity problem—that is, the problem
of determining whether the length of the shortest time-t program generating a given string x is
at most s.

In this work, we consider the more “robust” version of the time-bounded Kolmogorov com-
plexity problem, referred to as the GapMINKT problem, where given a size bound s and a
running time bound t, the goal is to determine whether there exists a poly(t, |x|)-time program
of length s+ log |x| that generates x. We present the first non-trivial search-to-decision reduc-
tion R for the GapMINKT problem; R has a running-time bound of 2ϵn for any ϵ > 0 and
additionally only queries its oracle on “thresholds” s of size s+log |x|. As such, we get that any
algorithm with running-time (resp. circuit size) 2αspoly(|x|, t, s) for solving GapMINKT (given
an instance (x, t, s), yields an algorithm for finding a witness with running-time (resp. circuit
size) 2(α+ϵ)spoly(|x|, t, s).

Our second results is a polynomial-time search-to-decision reduction for the time-bounded
Kolmogorov complexity problem in the average-case regime. Such a reduction was recently
shown by Liu and Pass (FOCS’20), heavily relying on cryptographic techniques. Our reduction
is more direct and additionally has the advantage of being length-preserving, and as such also
applies in the exponential time/size regime.

A central component in both of these results is the use of Kolmogorov and Levin’s Symmetry
of Information Theorem.

∗Cornell Tech. E-mail: noammaz@gmail.com. Research partly supported by NSF CNS-2149305.
†Tel-Aviv University and Cornell Tech. E-mail: rafaelp@tau.ac.il. Supported in part by NSF Award CNS

2149305, AFOSR Award FA9550-23-1-0387, AFOSR Award FA9550-23-1-0312, and an Algorand Foundation grant.
This material is based upon work supported by DARPA under Agreement No. HR00110C0086. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government, DARPA, AFOSR or the Algorand Foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 3 (2024)

1 Introduction

In his historical account, Trakhtenbrot [Tra84] describes efforts in the 1960s in the Russian Cy-
bernetics program to understand problems requiring brute-force search to solve [Tra84; Yab59a;
Yab59b]. The so-called Perebor (Russian for brute-force search) conjectures refer to the conjectures
that certain types of, what today are referred to as “meta-complexity”, problems require brute-
force search to be solve. These include (a) the Minimimum Circuit Size problem (MCSP) [KC00;
Tra84]—finding the smallest Boolean circuit that computes a given function x, and (b) the Time-
Bounded Kolmogorov Complexity Problem [Kol68; Sol64; Cha69; Ko86; Har83; Sip83]—computing
the length, denoted Kt(x) of the shortest program (evaluated on some particular Universal Turing
machine U) that generates a given string x, within time t, where t = poly(|x|) is a polynomial.

Our focus in this paper is on the Time-Bounded Kolmogorov Complexity problem. As explained
by Trakhtenbrot, two versions of this problem where considered since the 1960s.

• The “existential” (i.e., decisional) version: Given a string x and a threshold s, determining
whether Kt(x) is less than “roughly” s.

• The “constructive” (i.e., search) version: Given a string x and a threshold s, if Kt(x) is
less than “roughly” s, finding a program π of length “roughly” s that certifies this.

Both of these problems are conjectured to require brute-force search: that is, to require an algo-
rithms with running time close to 2n where n = |x| is the size of the given instance x. This is
referred to as the Perebor conjecture (with respect to the time-bounded Kolmogorov complexity
problem) and can be viewed as an early precursor, and stronger form, of the NP ̸= P conjecture
(as the problem trivially resides in NP). In fact, not only no non-trivial uniform algorithms are
known for the search versions1, but there are also no non-trivial (uniform) algorithms (i.e., beating
brute-force search) even if we have access to an oracle solving the decisional version: That is, the
only search-to-decision reduction is simply to ignore the decision oracle and solve the search version
using brute-force search.2

The central result of this paper is developing the first non-trivial search-to-decision reduction for
a gap-version of time-bounded Kolmogorov complexity; more precisely, we develop such a reduction
with running time 2ϵn for every ϵ > 0.

We additionally address search-to-decision reductions in the average-case regime (w.r.t. the
uniform distribution over instances). There, recently, Liu and Pass demonstrated a polynomial
time reduction [LP20], but the reduction is not length preserving and as such it cannot be applied
in the exponential regime. As our second result, we present a new a direct proof of the result of
[LP20], but achieve also a length-preserving polynomial-time reduction (which thus also applies in
the exponential regime).

1.1 Our Results

To explain our results, let us first recall the MINKT and GapMINKT problem.

1As we shall discuss shortly, two recent works [MP24; HIW23] demonstrate circuits (i.e., non-uniform algorithms)
of size 24n/5n+o(n) that solve it.

2As just mentionned, in the non-uniform regime, non-trivial algorithms are known, but the same algorithm solves
both the search and the decisional problem, so also in the non-uniform setting, the best approach known approach is
to simply ignore the decisional oracle and solving the search problem from scratch.

2

The GapMINKT Problem Following Ko [Ko86], we let MINKT denote the set of strings
(x, 1t, 1s) such that Kt(x) ≤ s. Since the notion of Kolmogorov complexity is highly dependent
on the choice of the universal Turing machine, a natural—and more “robust”— variant of this
problem allows for (a) some polynomial overheard in terms of the running time, and (b) some
logarithmic slackness in terms of the threshold [Lev73; Ko86]. Following Hirahara [Hir20], we refer
to GappMINKT as the promise problem where:

• YES-instances consist of strings (x, 1t, 1s) where Kt(x) ≤ s;

• NO-instances consist of strings (x, 1t, 1s) where Kp(t,|x|)(x) > s+ log p(t, |x|);

and we say that an algorithm A solves GapMINKT if there exists some polynomial p such that
A decides GappMINKT. Furthermore, we say that A solves the search-version of the problem,
search-GapMINKT if there exists some polynomial p such that given any GappMINKT YES-
instance (x, 1t, 1s), A outputs a program Π certifying that (x, 1t, 1s) is not a NO-instance (i.e, the
program can run in time p(t, |x|) and have length at most s+ log p(t, |x|).

Non-trivial Search-to-Decision for GapMINKT Our first (and main) result, is a non-trivial
search-to-decision reduction for GapMINKT.

Theorem 1.1 (Informal). For any ε > 0, and every polynomial τ , there exists a randomized oracle-
aided algorithm F such that for every A that decides GapτMINKT, FA solves search-GapMINKT.

Moreover, on input (x, 1t, 1s) F runs in time 2ϵspoly(|x|, t, s), and only queries A on inputs
(y, 1t

′
, 1s

′
) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s), and s′ ≤ s+ log poly(|x|, t, s).

We remark that the reduction is not fully length preserving—the reduction invokes its oracle
on statements x′ that are longer than the original statement x, and at first sight, it may thus seem
that the reduction is not useful in the regime of exponential hardness.

The key point, however, is that it only invokes the oracle on thresholds s′ that are of roughly the
same size as the original threshold s. Therefore, since hardness of the GapMINKT problem most
naturally should be thought to be a function of the threshold s (as there is a trivial poly(|x|, t)2s
algorithm, namely brute-force search), this reduction still yields a non-trivial search-to-decision
reduction in the exponential regime:

Corollary 1.2. For any ϵ > 0, α > 0, τ ∈ poly, assume that there is an algorithm that solves
GapτMINKT in time (resp. size) 2α·spoly(|x|, t, s). Then there exists an algorithm that solves
search-GapMINKT in time (resp. size) 2(α+ϵ)s · poly(|x|, t, s) on inputs (x, 1t, 1s).

An Average-case Search-to-Decision Reduction We turn to considering the average-case
regime. Here we provide an polynomial-time reduction that additionally is length-preserving and
as such directly also applies in the exponential regime. (This is in contrast to the earlier average-case
search-to-decision reduction of [LP20] that did not apply in the exponential regime.)

Theorem 1.3. For every p, t ∈ poly there exists p̂ ∈ poly and t′ ∈ poly, and an efficient oracle-
aided algorithm F such that the following holds. Let A be an algorithm that computes Kt′ with
probability 1− 1/p̂ on the uniform distribution. Then FA solves search-Kt with probability 1− 1/p
on the uniform distribution.

Moreover, on input x ∈ {0, 1}n, F makes only queries of the form x||y with y ∈ O(log n).

3

As corollaries, we thus get:

Corollary 1.4 (reproving [LP20]). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the
following holds: if there exists a polynomial time (reps. 2o(|x|) time) algorithm that computes Kt′

with probability 1−1/p̂ over the uniform distribution, then exists polynomial time (resp. 2o(|x|) time)
algorithm that solves search-Kt with probability 1− 1/p on the uniform distribution. Moreover, the
same holds also in the non-uniform setting (i.e., w.r.t. polynomial-size and respectively 2o(|x|) size
algorithms).

Corollary 1.5 (new). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the following holds:
if there exists a constant α > 0 and an 2α·|x|poly(|x|) time (reps. size) algorithm that computes
Kt′ with probability 1 − 1/p̂ over the uniform distribution , then there exists a 2α·|x|poly(|x|) time
(resp. size) algorithm that solves search-Kt w.p 1− 1/p over the uniform distribution.

We note that while our reduction improves on [LP20] in the length-preserving aspect (and ad-
ditionally is significantly simpler), it also has some disadvantages: in particular, in [LP20] an oracle
for Kt′ for any polynomial t′ can be used to solve search-Kt for any other polynomial t, whereas
in our case, the reduction only works as long as t is sufficiently larger than t′. Additionally, the
same thing holds also with respect to the error probability polynomials p̂, p. The reasons for these
“amplifications” is that [LP20] passes through cryptographic techniques (hardness amplification
[Yao82], and constructions of pseudorandom generators [HILL99]) that blow up the input size.

1.2 Related Works

While, as far as we know, no non-trivial search-to-decision reductions were previously known for
GapMINKT in the worst-case regime, there are several works that consider variants of this question:

Slightly Subexponential Search-to-Decision for MFSP: An elegant work by Ilango consider
a formula size variant of the classic Perebor conjecture problem, MFSP, where the goal is
to find the shortest formula computing some given function. He demonstrates a search-to-
decision reduction with running-time 20.67n for MFSP. As far as we know, this is the first result
to demonstrate any non-trivial search-to-decision reduction for a Perebor style problem. (We
note that in contrast, we here consider the standard time-bounded Kolmogorov complexity
problem, and we also get a smaller running time of 2ϵn for any ϵ > 0.) Ilango also gets an
improved running time of 2n/ log logn if only requiring an algorithm that succeeds on most (i.e.,
a 1− 1/o(1)) fraction of instances. In contrast, in this setting, we get a polynomial runnning
time.

Average-case Search-to-Decision for MINKT: Liu and Pass [LP20] show a polynomial-time
algorithm that solves the search-GapMINKT) on average over the uniform (over x, and for
every t, s) given access to an oracle that solves GapMINKT on average. Our second result
is a strict strengthening of this result since our reduction is length-preserving (i.e., it only
queries its oracle on inputs length that are O(log n) longer), and as such it also applies
in the exponential regime (whereas the result of [LP20] only apply in the polynomial to
subexponential regimes).

Conditional and Non-black-box Search-to-Decision for GapMINKT: An intriguing work
by Hirahara [Hir22] presents a non-black-box search to decision reduction for GapMINKT in

4

the polynomial regime, under standard derandomization assumptions. More precisely, assum-
ing that E does not have subexponential-size circuits, he shows that if GapMINKT has a (de-
terministic, wlog due to the assumption) polynomial-time decider, then search-GapMINKT
has a polynomial-time algorithm. His result does not extend to the non-uniform setting, or to
algorithms running in time even just nlogn due to the fact that the code of the GapMINKT
attacker gets incorporated into the witness for the search-GapMINKT problem. In contrast,
ours is unconditional; on the other hand, ours is only meaningful in the exponential regime
(as the running time of the reduction is subexponential).

A different paper by Hirahara [Hir18] gets an unconditional non-black-box search-to-decision
reduction for the polynomial regime for GapτMINKT w.r.t τ = 2

√
n.3 This result also does

not apply in the non-uniform, but does extend to the subexponential (but not exponential)
regime.

Search-to-Decision Reductions w.r.t. Black-box Solvers: In a very recent work, the cur-
rent authors consider black-box solvers for the MINKT problem that solve the problem no
matter what the underlying Universal Turing Machine U is, given black-box access to it. A
polynomial-size black-box search-to-decision reduction is demonstrated with respect to such
attackers. In contrast, we here consider all, and not just black-box, solvers.

Non-uniform Algorithms Beating Perebor: As mentionned above, two independent recent
works [MP24; HIW23] develop algorithms solving the MINKT problem using a circuit of
size 24n/5poly(n), disproving the “non-uniform” version of the Perebor conjecture. These
algorithms directly also work for the search version of the problem and as such, even in the
non-uniform regime, it was not known how to make use of an GapMINKT oracle to solve the
search version better than simply solving it from scratch.

1.3 Proof Overview

We provide a brief overview of the proofs of Theorem 1.1 and 1.3, starting with Theorem 1.1, which
proceeds in two steps.

Worst-case Search-to-Decision Reduction for “Shallow” Instances As an intermediary
step, which may be of independent interest, we start by providing a search-to-decision reduction
whose running time is a function of the so-called computational depth of the instance x we are
reducing from (i.e., that we want to find a witness for). Recall that the computational depth
[AFVMV06] of an instance x is defined as cdt(x) = Kt(x)−K(x). Note that by a standard counting
argument, we have that “computationally deep” strings (i.e., string x such that cdt(x) > O(log(|x|))
are rare.

We start by presenting a search-to-decision reduction with running time 2cd
t(x)poly(|x|, t, s)

(which thus for most strings runs in polynomial time). The key idea behind the reduction is
the following. Given a string x, and a minimal-length t-time program Π generating x, the Kt′-
complexity of the string x||Π, for t′ = poly(|x|, t), is not significantly higher than the Kt-complexity
of the string x—since the string x||Π also can be generated by a slight variant of Π. Furthermore,

3The results is actually a bit stronger—the running time only increases by a polynomial, but the gap increases by√
n, as opposed the desired O(logn).

5

the above argument also holds even if we concatenate not only the whole of Π but even just a prefix
of it.

Thus, if we have access to a GapMINKT oracle, we ought to be able to find Π “bit-by-bit” by
simply concatenating a bit to x and checking if the Kt′-complexity remains below s + O(log |x|).
In more details, we keep track of a set S of candidates y (whose prefix is x) and at each iteration
concatenate each bit b ∈ {0, 1} to y and check whether the Kt′-complexity of y||b remains small,
and if so adding y||b to the set S. By the argument above and a standard induction, we have that
at iteration i, y = x||Π≤i (where Π≤i denotes the i first bit of Π) must be in the set S, so we
can finally find x by simply going over all the elements y = x||Π′ of S and checking whether Π′

generates x.
The problem, of course, is that the set S could contain lots of other elements. This is where

computational depth enters the picture. To see why, let us first start by showing that if we had
been dealing with Kolmogorov complexity, as opposed to t-bounded Kolmogorov complexity, then
the size of S can never be more than of polynomial size. In fact, this follows almost directly from
Kolmogorov and Levin’s celebrated symmetry of information (SoI) theorem [Zvo] which states that
for any strings a, b, we have that

K(a||b) ≥ K(a) + K(b||a)−O(log(|a|+ |b|).

Indeed, recall that S consists of all strings y = x||Π whose K-complexity is roughly that of x; by
the SoI theorem, setting a = x and b = Π, we get that K(Π|x) ≤ O(log |x|) and thus there can be
at most poly(|x|) such strings.4

Finally, note that if considering a string x whose computational depth is d, then Kt(x)−K(x) ≤
d, and as such for each element x||Π that remains in S, we have that

K(x||Π)−K(x) ≤ s+O(log |x|)− (Kt(x)− cdt(x)) ≤ d+O(log |x|)

Thus, by the SoI theorem, we then get that K(Π|x) ≤ d + O(log |x|), and therefore we have that
|S| ≤ 2dpoly(|x|). As such, the running of our algoririthm becomes 2cd

t(x)poly(|x|, t, s), as desired.

Dealing with Deep Instances Note that given any instances x whose computational depth
is bounded by ϵ|x|, then the running time of the above algorithm becomes 2ϵ|x|poly(|x|, t, s), as
desired. If not, and in case the algorithm’s running time becomes larger than this, we must have
that the set S produced is bigger than 2ϵ|x|. Our key idea now is to simply stopping the algorithm
once the size of S reaches 2ϵ|x|, and at this point selecting a random element in x′ ∈ S, and restarting
the algorithm on x′ instead (since a program generating x′ can easily be modified to a program
generating x). The reason for doing this is that since the set S is “big”, by choosing a random
element, we are guaranteed that the actual (i.e., not time-bounded) Kolmogorov complexity of the
chosen string x′ is roughly ϵn larger than that of x, yet since all strings in S have roughly the same
time-bounded Kolmogorov complexity (s+O(log |x|), we must have that the computational depth
of x′ is at least ϵn smaller than that of x. In essence, by picking this random element, we are able
to get a new instance x′ such that (a) the witness for x′ is also a valid witness for x, yet (b) the
computational depth of x′ is ϵ|x| smaller than that of x.

4This result may be of independent interest. It shows a polynomial-time “list-to-decision” reduction for
Kolmogorov-complexity—that is, a polynomial-time algorithm that given access to a decision-oracle outputs a
polynomial-length list of candidate witnesses, one of which is correct. The reason why this does not yield a search-
to-decision reduction is that we cannot, in polynomial-time, determine if a witness is correct.

6

By iteratively continuing this process, we eventually (after 1/ϵ steps) end up with an element
with small computational depth and thus manage to find a witness in the desired running time.

Let us highlight why this approach only gives an algorithm with subexponential running time:
The issue is that each time we pick a random element x′ ∈ S, the time-bounded Kolmogorov
complexity of the element may increase by O(log |x|), so we can only afford a constant number of
iterations, which is why we need to make sure that we can eliminate a constant fraction of the
computational depth in each step. (An additional reason is that the the running-time t′ blows up
as polynomial of t in each iterations, so again, we can only afford a constant number of iterations.)

Search-to-Decision in the Average-case Regime We turn to discussing our search-to-decision
reduction in the average-case regime. The goal is to show how to use an oracle that (decides, or
equivalently, computes) Kt with high probability on the uniform distribution to find a Kt′ witness
w.r.t the uniform distribution for a polynomially related t′.

Towards this, we will show a reduction that again works in the worst-case regime, but only on
computationally shallow instances—that is, instances x with computational depth O(log |x|). This
reduction will improve on the one above in the sense that it is length preserving ; additionally, due to
the length-preserving aspect of the reduction, it will also follow that if we only require the reduction
to work with high probability (over the uniform distribution) over instances, then it suffices for the
oracle to also work with high probability.

The idea is to, given an instance x, consider strings y = x||i||Πi, where Πi is the ith “chunk”
of the smallest time-bounded program Π generating x; such strings still have roughly the same
time-bounded Kolmogorov complexity as x, and by the same argument based on symmetry-of-
information, we can argue that there cannot be more than polynomially many strings y that have
x as a prefix and also have roughly the same time-bounded Kolmogorov complexity as x. This
enables us to recover a small set of candidates for (most) of the “coordinates” of Π. But, even if
there are just 2 candidates for each such coordinate, there will still be too many options to try out.

To solve this problem, we will rely on the notion of a list-recoverable error-correcting code
[GS98; GI01]—in essence, a type of an error-correcting code (ECC) from which we recover a
polynomial-length list of candidate messages (one of which is guaranteed to be the true one) given
a polynomial-length candidate list for each symbol of the encoding. Roughly speaking, we find all
strings y = x||i||zi that have small time-bounded Kolmogorov complexity, and then apply the list-
recoverable procedure of the ECC. By the existence of efficient list-recoverable codes [GS98] (where
both the encoding and decoding can be done efficiently), we are still guaranteed that when zi is the
ith symbol of the encoding of x, then y indeed has small time-bounded Kolmogorov complexity;
next, the above symmetry-of-information based argument will ensure that we can only have a
“small” number of candidates for most coordinates i, and as such, the list-recovering procedure will
indeed find some short program Π.

There is just one catch with this argument: using the above SoI based argument we will get a
too weak bound on the number of possible candidates for each symbol. We note, however, that we
can use the same argument to bound the total number of strings of the form (x, i, z) with small
time-bounded Kolmogorov complexity, and as such, use an averaging argument to argue that for,
say 90% of the coordinates, we get a sufficiently small list of symbols. The issue remaining is that
we can no longer rely on the list-recoverability property to recover the message (as we no longer
have a short list for every symbol of the codeword). Luckily, there exists list-recoverable codes
satisfying exactly this property (i.e., that we can recover a polynomial-length list of messages, even

7

if we only have a bound on the set of symbols, for a constant fraction of the coordinates)—indeed,
as shown in [GS98; GRS12], the Reed-Solomon code also satiesfies such list-recoverability “with
errors”.

To finally see why this reduction also works in the average-case regime, first recall that compu-
tationally deep strings are rare, so the reduction will work with high probability over x, as long as
the oracle works on all instances. Next, note that the reduction, given an instance x, only queries
its oracles on instances on roughly the same length as x, and that have x as a prefix, which suffices
to argue that we only need an oracle that work with high probability.

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand for the set
of all polynomials. Given a vector v ∈ Σn, let vi denote its ith entry, let v<i = (v1, . . . , vi−1) and
v≤i = (v1, . . . , vi). For x, y ∈ {0, 1}∗, we let xy and x||y denote the concatenation of the strings x
an y.

2.2 Distributions and Random Variables

When unambiguous, we will naturally view a random variable as its marginal distribution. The
support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a (discrete)
distribution P, let x ← P denote that x was sampled according to P. Similarly, for a set S, let
x← S denote that x is drawn uniformly from S.

2.3 Kolmogorov Complexity

Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗ is
the length of the shortest program Π = (M,y) such that, when simulated by an universal Turing
machine, Π outputs x in t(|x|) steps. Here, a program Π is simply a pair of a Turing Machine M
and an input y, where the output of P is defined as the output of M(y). When there is no running
time bound (i.e., the program can run in an arbitrary number of steps), we obtain the notion of
Kolmogorov complexity.

In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We now
define the notion of Kolmogorov complexity with respect to the universal TM U.

Definition 2.1. Let t ∈ N be a number. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t) = x}

where |Π| is referred to as the description length of Π.

It is well known that for every x, Kt(x) ≤ |x| + c, for some constant c depending only on the
choice of the universal TM U.

Fact 2.2. For every universal TM U, there exists a constant c such that for every x ∈ {0, 1}∗, and
for every t such that t(n) > 0, Kt

U(x) ≤ |x|+ c.

8

We will also use the following fact, which states that we can efficiently encode a pair (x, y) with
a small overhead.

Fact 2.3. There exists q ∈ poly such that the following holds or every x, y ∈ {0, 1}∗,

Kq(|xy|)(x, y) ≤ |x|+ |y|+ log|x|+ 2 log log|x|+O(1).

We will use the following bound on the Kolmogorov complexity of strings sampled from the
uniform distribution.

Lemma 2.4. For any universal TM U, any string x ∈ {0, 1}∗ and any set S, it holds that

Pry←S [KU(y | x) < log|S| − i] ≤ 2−i.

In this paper, unless otherwise stated, we fix some universal Turing machine U that can emulate
any program Π with polynomial overhead, and let Kt = Kt

U and K = KU.
The computational depth of a string is the difference between its Kolmogorov complexity and

its time-bounded Kolmogorov complexity.

Definition 2.5 (Computational depth [AFVMV06]). For x ∈ {0, 1}∗ and t ∈ N, the computational
depth of x is defined to be cdt(x) = Kt(x)−K(x).

Since, by a simple counting argument, most strings x ∈ {0, 1}n have Kt(x) close to n, it holds
that most strings have small computational depth.

Fact 2.6. For every n ∈ N and every t ∈ N, Prx←{0,1}n
[
cdt(x) > i

]
≤ 2−i.

We will also use the Symmetry of Information lemma.

Theorem 2.7 (Symmetry of Information [Zvo]). There exists a constant c ∈ N such that for every
x, y ∈ {0, 1}∗,

K(x) + K(y | x) + c log(|x|+ |y|) ≥ K(x||y) ≥ K(x) + K(y | x)− c log(|x|+ |y|)

We next define MINKT and GapMINKT.

Definition 2.8 (MINKT). MINKT is the following promise problem:

• Y =
{
(x, 1t, 1s) : Kt(x) ≤ s

}
• N =

{
(x, 1t, 1s) : Kt(x) > s

}
We say that an algorithm A solves search-MINKT if A finds a program Π such that |Π| ≤ s and
U(Π, 1t) = x, for every (x, 1t, 1s) ∈ Y.

Definition 2.9 (GapMINKT). Let τ ∈ poly be a polynomial. Then GapτMINKT is the following
promise problem:

• Y =
{
(x, 1t, 1s) : Kt(x) ≤ s

}
• Nτ =

{
(x, 1t, 1s) : Kτ(t,|x|)(x) > s+ log τ(t, |x|)

}
We say that an algorithm A decides GapMINKT if there exists τ ∈ poly such that A decides
GapτMINKT.

We say that a (randomized) algorithm A solves search-GapMINKT if there exists τ ∈ poly such
that A (with probability 1/2) finds a program Π such that |Π| ≤ s+log τ(t, |x|) and U(Π, 1τ(t,|x|)) = x,
for every (x, 1t, 1s) ∈ Y.

9

3 Decision-to-Search for Shallow Instances

In this part we prove our search-to-decision reduction for inputs with small computational depth.

Theorem 3.1. There exists an oracle-aided algorithm F such that the following holds. Let A be
an oracle that decides GapMINKT. Then FA solves search-MINKT.

Moreover, on input (x, 1t, 1s), F runs in time 2cd
t(x)poly(|x|, t, s), and only queries A on inputs

(y, 1t
′
, 1s

′
) with |y| ≤ |x|+ s, t′ ∈ poly(|x|, t), and s′ ≤ s+O(log(|x|+ t)).

Directly from Theorem 3.1 we get the following corollary.

Corollary 3.2. The following holds:

• Assume that there is a poly-time (resp. poly size) algorithm that solves GapMINKT. Then there
exists an algorithm that solves search-GapMINKT in time (resp. size) 2cd

t(x) · poly(|x|, t, s) on
inputs (x, 1t, 1s).

• Assume that for some α > 0 there is an algorithm that solves GapMINKT in time (resp. size)
2α·spoly(|x|, t, s). Then there exists an algorithm that solves search-GapMINKT in time (resp.
size) 2cd

t(x)+α·s · poly(|x|, t, s) on inputs (x, 1t, 1s).

The proof of Theorem 3.1 is almost immediate from the following lemma, in which the running
time of the algorithm that solves MINKT is larger for high values of the threshold s.

Lemma 3.3. There exists an oracle-aided algorithm F ′ such that the following holds. Let A be an
oracle that decides GapMINKT. Then F ′A solves search-MINKT.

Moreover, on input (x, 1t, 1s), F runs in time 2s−K(x)poly(|x|, t, s), and queries A on inputs
(y, 1t

′
, 1s

′
) with |y| ≤ |x|+ s, t′ ∈ poly(t), and s′ ≤ s+O(log(|x|+ t)).

Proof of Theorem 3.1. Let F be the algorithm that given (x, 1t, 1s) runs F ′ on input (x, 1t, 1s
′
) for

every s′ = 1, . . . , s, until the first execution that outputs a program Π with U(Π, 1t) = x. The
theorem follows since the algorithm halts when s′ = Kt(x). □

We next prove Lemma 3.3. In the proof of Lemma 3.3 we will use the following claim.

Claim 3.4. There exists a polynomial q ∈ poly and a constant c0, such that the following holds
for every x ∈ {0, 1}∗ with |x| ≥ 2, and every t ∈ N. Let Π a program of length Kt(x) such that
U(Π, 1t) = x. Then for every i ≤ Kt(x), Kq(t,|x|)(x||Π≤i) ≤ Kt(x) + c0 log|x|.

Proof of Claim 3.4. Let U′ be a program such that U′(Π, i) = U(Π)||Π≤i (where we encode Π, i
using Fact 2.3), and let q be a polynomial such that q(t, |x|) is an upper bound on the running
time of U′ where t is a bound on the running time of U(Π) (recall that |Π| = Kt(x) ≤ |x|+O(1)).

Then Kq(t,|x|)(U(Π)||Π≤i) ≤ |(Π, i)|+O(1) ≤ |Π|+3 log|Π|+O(1) ≤ |Π|+3 log(|x|+ c) +O(1),
where the last inequality holds by Fact 2.2, for some constant c ∈ N. □

To prove Theorem 3.1, let q ∈ poly and c0 be the polynomial and constant promised by
Claim 3.4, and consider the following algorithm that finds a minimal Kt-witness.

Algorithm 3.5 (Find).

Oracle: GapMINKT decider A.

10

Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Set S0 = {x} and k = s+ c0 log|x|.

2. For every i = 1, 2, . . . , s:

(a) Compute Si =
{
yb : y ∈ Si−1, b ∈ {0, 1} and A(yb, 1q(t,|x|), 1k) = Yes

}
(b) If exists y ∈ Si such that y = x||Π and U(Π, 1t) = x, output Π and terminate.

3. Output ⊥.. .

We will show that the correctness of the above algorithm follows directly by Claim 3.4. To
bound the running time of Algorithm 3.5, we will use the following claim.

Claim 3.6. On input (x, 1t, 1s), Algorithm 3.5 runs in time 2s−K(x) · poly(|x|, t, s).

Before proving Claim 3.6, let us use Claims 3.4 and 3.6 to prove Lemma 3.3.

Proof of Lemma 3.3. We start with the correctness of Algorithm 3.5. Let (x, 1t, 1s) be the input
for the algorithm, and assume that Kt(x) ≤ s. Let Π be a program of minimal length such that
U(Π, 1t) = x. By Claim 3.4, the correctness of the oracle A, and by a simple induction, x||Π≤i is
in the set Si for every i ≤ |Π| ≤ s. Therefore, x||Π is in SKt(x), and thus Algorithm 3.5 outputs a
correct answer.

By Claim 3.6, Algorithm 3.5 runs in time 2s−K(x) · poly(|x|, t, s). Finally, it is not hard to
see that Algorithm 3.5 makes only queries of the form (yb, 1q(t,|x|), 1k) with k = s + c0 log|x|, and
|yb| ≤ |x|+ s. □

3.1 Proving Claim 3.6

We will use the following lemma.

Lemma 3.7. There exists a constant c ∈ N such that the following holds for every x ∈ {0, 1}∗ and
for every k, ℓ ∈ N. ∣∣∣{y ∈ {0, 1}≤k : K(xy) ≤ ℓ

}∣∣∣ ≤ 2ℓ+1−K(x) · (|x|+ k)c

Proof of Lemma 3.7. Let c be the constant from Theorem 2.7. By a simple counting argument,
there are at most 2ℓ+c log(|x|+k)+1−K(x) strings y ∈ {0, 1}≤k such that K(y | x) ≤ ℓ+ c log(|x|+ k)−
K(x). It thus enough to show that for every y ∈ {0, 1}≤k with K(y | x) > ℓ+ c log(|x|+ k)−K(x),
it holds that K(xy) > ℓ, which is true By Theorem 2.7. □

We are now ready to prove Claim 3.6.

Proof of Claim 3.6. The running time of Algorithm 3.5 is bounded by |
⋃
Si| · poly(|x|, t, s), and

thus it is enough to bound the size of
⋃
Si. Toward this goal, let τ ∈ poly be the polynomial for

11

which A decides GapτMINKT. We get that∣∣∣⋃Si∣∣∣ ≤ ∣∣∣{y ∈ {0, 1}≤s : A(xy, 1q(t,|x|), 1s+c0 log|x|) = Yes
}∣∣∣

≤
∣∣∣{y ∈ {0, 1}≤s : Kτ(q(t,|x|),|x|)(xy) ≤ s+ c0 log|x|+ log τ(q(t, |x|), |x|)

}∣∣∣
≤

∣∣∣{y ∈ {0, 1}≤s : K(xy) ≤ s+ c0 log|x|+ log τ(q(t, |x|), |x|)
}∣∣∣

≤ 2s+c0 log|x|+log τ(q(t,|x|),|x|)+1−K(x) · poly(|x|+ s)

= 2s−K(x) · poly(|x|, t, s),

where the second inequality holds by the correctness of A, and the last inequality holds by
Lemma 3.7. □

3.2 A List-to-Decision Reduction for K-complexity

We note that Algorithm 3.5 also gives “list-to-decision” reduction for Kolmogorov-complexity: given
access to an oracle that decides the threshold problem of Kolmogorov-complexity, a simple variant
of Algorithm 3.5 outputs a list of polynomial length, containing the witness.

Theorem 3.8. There exists an efficient oracle-aided algorithm F such that the following holds.
Let A be an oracle that given x ∈ {0, 1}∗ and s ∈ N, decides if K(x) ≤ s. Then FA outputs a list L,
such that |L| ∈ poly(|x|), and L contains a K-witness for x: that is, there exists Π ∈ L for which
|Π| = K(x) and U(Π) = x.

As in Theorem 3.1, the same holds when the oracle A only solves the gap version of the threshold
problem (given x and s, A decides if K(x) ≤ s or K(x) ≥ s+O(log|x|).)

The algorithm is as follows.

Algorithm 3.9 (Find).

Oracle: A.

Input: x ∈ {0, 1}∗.
1. Use A to compute s = K(x).

2. Set S0 = {x} and k = s+ c0 log|x|.

3. For every i = 1, 2, . . . , s:

(a) Compute Si =
{
yb : y ∈ Si−1, b ∈ {0, 1} and A(yb, 1k) = Yes

}
4. Output Ss.. .

Proof of Theorem 3.8. Fix an input x ∈ {0, 1}∗, and let Π be a K-witness for x. By Claim 3.4
and simple induction, there exists a constant c0 such that Π ∈ Ss. By Lemma 3.7, it holds that
|Ss| ∈ poly(|x|,K(x)) = poly|x|.

Finally, by Lemma 3.7 we get that |Si| ∈ poly(|x|, i), which implies that Algorithm 3.9 runs in
polynomial time.

□

12

4 Decision-to-Search Everywhere

In this part we prove our main decision-to-search reduction for GapMINKT.

Theorem 4.1. Let ε > 0 be a constant. Then there exists a randomized oracle-aided randomized
algorithm F such that the following holds for every τ ∈ poly. Let A be an oracle that decides
GapτMINKT. Then FA

τ = FA(τ, ·, ·, ·) solves search-GapMINKT.
Moreover, on input (x, 1t, 1s) Fτ runs in time 2ϵspoly(|x|, t, s), and only queries A on inputs

(y, 1t
′
, 1s

′
) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s), and s′ ≤ s+ log poly(|x|, t, s).

Directly from Theorem 4.1 we get the following corollary.

Corollary 4.2. The following holds for every τ ∈ poly and ϵ > 0: Assume that for some α > 0
there is an algorithm that solves GapτMINKT in time (resp. size) 2α·spoly(|x|, t, s). Then there
exists an algorithm that solves search-GapMINKT in time (resp. size) 2(α+ϵ)s · poly(|x|, t, s) on
inputs (x, 1t, 1s).

We next prove Theorem 4.1. In the following, let q ∈ poly, c0 ∈ N be the polynomial and
constant from Claim 3.4, and let c be the constant from Theorem 2.7. We start with the following
algorithm, that with high probability outputs a program Π such that x is a prefix of the output of
Π. We later change the algorithm such that the output will be a program that outputs x.

Algorithm 4.3 (Find).

Parameters: ϵ > 0, τ ∈ poly

Oracle: GapτMINKT decider A.

Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Set x1 = x, t1 = t and s1 = s.

2. For every j = 1, . . . , ⌈1/ε⌉+ 1:

(a) Set Sj0 =
{
xj
}
, and kj = sj + c0 log

∣∣xj∣∣.
(b) Set rj = ϵs+ (kj − sj) + c log(

∣∣xj∣∣+ sj) + log τ(q(tj ,
∣∣xj∣∣), ∣∣xj∣∣+ sj) + log 4/ϵ.

(c) For every i = 1, 2, . . . , sj:

i. Compute Sji =
{
yb : y ∈ Sji−1, b ∈ {0, 1} and A(yb, 1q(t

j ,|xj|), 1kj) = Yes
}

ii. If exists y ∈ Sji such that y = xj ||Π and U(Π, 1t
j
) = xj, output Π and terminate.

iii. If
∣∣∣Sji ∣∣∣ ≥ 2r

j
, set Sj = Sji and move to Item 2d.

(d) Randomly choose xj+1 ← Sj.
(e) Set tj+1 = τ(q(tj ,

∣∣xj∣∣), ∣∣xj+1
∣∣) and sj+1 = kj + log τ(q(tj ,

∣∣xj∣∣), ∣∣xj+1
∣∣).

3. Output ⊥.. .

We start with a simple observation on the parameters in Claim 4.5.

Claim 4.4. For every j ≤ ⌈1/ϵ⌉ + 1 it holds that tj ∈ poly(|x|, t, s),
∣∣xj∣∣ ∈ poly(|x|, t, s), sj =

s+ log(poly(|x|, t, s)), kj = s+ log(poly(|x|, t, s)), and rj = ϵ · s+ log(poly(|x|, t, s)).

13

Proof of Claim 4.4. The claim holds since ϵ is a constant, τ and q are polynomials, and by the
definition of tj , xj , sj , kj and rj . □

We next bound the running time of Algorithm 4.3.

Claim 4.5. On input (x, 1t, 1s), Algorithm 4.3 runs in time 2ϵs · poly(|x|, t, s). Moreover, Algo-
rithm 4.3 only queries A on inputs (y, 1t

′
, 1s

′
) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s), and

s′ ≤ s+ log poly(|x|, t, s).
Proof of Claim 4.5. Fix an input (x, 1t, 1s). Similarly to the proof of Claim 3.6, the running time
of the j-th iteration in Step 2 of Algorithm 4.3 is at most∣∣∣∣∣⋃

i

Sji

∣∣∣∣∣ · poly(∣∣xj∣∣, tj , sj) ≤ sj · 2rj · poly(
∣∣xj∣∣, tj , sj).

It thus enough to show that tj ∈ poly(|x|, t, s),
∣∣xj∣∣ ∈ poly(|x|, t, s), sj = s+log(poly(|x|, t, s)), and

rj = ϵ · s+ log(poly(|x|, t, s)) for every j ≤ ⌈1/ϵ⌉+ 1, which holds by Claim 4.4. □

To see that Algorithm 4.3 indeed outputs a program that outputs x, we have the following
claim.

Claim 4.6. There exists a constant c ∈ N such that the following holds. Assume that on input
(x, 1t, 1s), Algorithm 4.3 enters the j-th iteration in Step 2. Then,

1. x is a prefix of xj,

2. Ktj (xj) ≤ sj, and,

3. With probability at least 1− j · ϵ/4, K(xj) ≥ (j − 1) · ϵ · s+ (sj − s).

Proof of Claim 4.6. The first item holds by the definition of the algorithm. The second item holds

since in Algorithm 4.3, xj is in the set Sj−1i only if A(xj , 1q(t
j−1,|xj−1|), 1kj−1

) = Yes, which implies

by the correctness of A that Kτ(q(tj−1,|xj−1|),|xj|)(xj) ≤ kj−1 + log τ(q(tj−1,
∣∣xj−1∣∣), ∣∣xj∣∣), and since

tj = τ(q(tj−1,
∣∣xj−1∣∣), ∣∣xj∣∣), sj = kj−1 + log τ(q(tj−1,

∣∣xj−1∣∣), ∣∣xj∣∣).
The proof of the last item is by induction on j. Assume that

K(xj) ≥ (j − 1) · ϵ · s+ (sj − s).

Observe that by definition of the algorithm, it holds that xj is a prefix of every element in Sj . That
is, we can write Sj = xj ||S ′j for a set S ′j of size at least 2r

j
.

Thus, xj+1 = xj ||z, for z ∈ {0, 1}≤s
j

which is randomly chosen from a set of size at least 2r
j
.

Using Lemma 2.4, it holds that with probability at least 1− ϵ/4 that K(z | xj) ≥ rj − log 4/ϵ. by
Symmetry of Information (Theorem 2.7) we get that

K(xj+1) ≥ K(xj) + rj − log 4/ϵ− c log(
∣∣xj∣∣+ sj)

≥ (j − 1) · ϵ · s+ (sj − s) + (ϵs+ (kj − sj) + log τ(q(tj ,
∣∣xj∣∣), ∣∣xj∣∣+ sj))

≥ j · ϵ · s+ (kj + log τ(q(tj ,
∣∣xj∣∣), ∣∣xj∣∣+ sj))− s

≥ j · ϵ · s+ (kj + log τ(q(tj ,
∣∣xj∣∣), ∣∣xj+1

∣∣))− s

= j · ϵ · s+ sj+1 − s

The proof now follows by the union bound. □

14

We can now prove Theorem 4.1.

Proof of Theorem 4.1. We start with the definition of the algorithm F . Let F be the algorithm
that first executes Algorithm 4.3, to get a program Π such that U(Π)≤|x| = x. Then, F outputs a
program Π′ that simulates Π, and outputs the |x| first bits of its output. It follows that U(Π′) = x,
and |Π′| ≤ |Π| + O(log|x|). Moreover, the running time of Π′ is bounded by a polynomial of the
running time of Π.

Next, by Claim 4.5, F runs in the stated time. We now prove the correctness of F . First, recall
that by Fact 2.2, we can assume without loss of generality that s ≤ |x| + O(1). Next, observe
that by Claim 4.6, in every iteration j it holds that x is a prefix of xj , and that Ktj (xj) ≤ sj .
Thus, by the correctness of Algorithm 3.5, if for every iteration i, Sji is not larger than 2r

j
, then

Algorithm 4.3 outputs a program of length at most

sj = s+ log poly(|x|, t, s) = s+ log poly(|x|, t)

that outputs xj in time
tj = poly(|x|, t, s) = poly(|x|, t).

We are left to deal with the case that in every iteration j of Step 2, Sji is larger than 2r
j
for some

i. In this case, by the third item of Claim 4.6, with probability at least 1− (⌈1/ϵ⌉+ 1)ϵ/4 ≥ 1/2,
in the last iteration we get that

K(x⌈1/ϵ⌉+1) ≥ (⌈1/ϵ⌉+ 1)ϵs+ (s⌈1/ϵ⌉+1 − s) > s⌈1/ϵ⌉+1,

which is in contradiction to the second item of Claim 4.6, as K(x⌈1/ϵ⌉+1) ≤ Kt(x⌈1/ϵ⌉+1) for every
t ∈ N.

□

5 Decision-to-Search for MINKT using List Recoverable Codes

In this part we use list recoverable codes to get length-preserving decision-to-search for instances
with small computational depth. List recoverable codes [GI01] are defined next.

Definition 5.1. For Σ = {Σn}n∈N and functions m : N → N, p : N → [0, 1], ℓ : N → N and

L : N → N, an ensemble Enc = {Encn : {0, 1}n → Σ
m(n)
n }n∈N is efficient (p, ℓ, L)-list-recoverable

code if Enc can be computed in polynomial time, and there exists an efficient procedure Rec such
that the following holds for every n ∈ N. Given sets S1, . . . ,Sm(n) ⊆ Σn such that |Si| ≤ ℓ(n) for
every i, Rec(S1, . . . ,Sm(n)) outputs a list R of size at most L(n), containing all x ∈ {0, 1}n with

|{i ∈ [m(n)] : Enc(x)i /∈ Si}| ≤ p(n) ·m(n).

As shown in [GS98; GRS12], Reed-Solomon codes [RS60] are list recoverable with parameters
that are suitable for our needs. In particular:

Theorem 5.2 ([GS98; GRS12]). For every efficiently computable w ∈ O(log n), there exists an
efficient Enc : {0, 1}n → [m(n)]m(n), for m(n) = 2w(n), such that Enc is an (p, ℓ, L) list recoverable
code , for any p ≤ 1−

√
ℓ(n) · n/m(n) and L(n) ∈ O(ℓ(n) ·m(n)).

Moreover, Enc : {0, 1}n → [m(n)]m(n) runs in time poly(n,w(n)).

15

We now state the main theorem of this part.

Theorem 5.3. For every d ∈ N, there exists an oracle-aided algorithm F such that the following
holds. Let A be an oracle that decides MINKT. Then FA solves search-MINKT on inputs (x, 1t, 1s)
with cdt(x) ≤ d log|x|.

Moreover, on input (x, 1t, 1s), F runs in time poly(|x|, t, s), and only queries A on inputs
(x||y, 1t′(|x|,t), 1s′) with |y| = r(|x|, t) ≤ log poly(|x|, t), t′ ∈ poly and s′ ≤ s+ log poly(|x|, t).

In the following, let Enc = {Encn : {0, 1}n → Σ
m(n)
n } be an efficient (p, ℓ, L) list recoverable

code, and Rec the efficient reconstruction algorithm of Enc, for parameters Σn,m(n), p, ℓ, L we will
choose later. Let q ∈ poly and c0, c1 ∈ N be a polynomial and constants to be chosen later. We
will show that the following algorithm returns a short program that produces x, when the input s
is exactly equal to Kt(x), and then show how to get rid of this assumption. For i ∈ [m(n)], we let

⟨i⟩ ∈ {0, 1}⌈logm(n)⌉ be the binary representation of i. Let cK be the constant from Fact 2.2 such
that Kt(x) ≤ |x|+ cK for every x.

Algorithm 5.4 (Find).

Oracle: MINKT decider A.

Parameters: τ ∈ poly, d ∈ N.
Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Let n = |x|+ cK .

2. For every i ∈ [m(n)], compute the set Si =
{
y ∈ Σn : A(x||⟨i⟩||y, 1q(t,|x|), 1s+logm(n)+c1 log logm(n)) = Yes

}
.

3. For every i ∈ [m(n)] such that |Si| > ℓ(n), set Ŝi = ∅. Otherwise, set Ŝi = Si.

4. Compute Rec(Ŝ1, . . . , Ŝm(n)), and let R ⊆ {0, 1}n be the output.

5. Find a string Π ∈ {0, 1}s such that Π||0n−s ∈ R and U(Π, 1t) = x.

6. Output Π.
. .

We start by showing that the size of S1, . . . ,Sm(n) is not too large.

Claim 5.5. There exists a constant c2 ∈ N such that the following holds for every c1, d, w ∈ N. Let
x ∈ {0, 1}∗ such that cdt(x) ≤ d log|x|. Then there are at most

M = 2w+(c1+c2)(log 2w)+d log|x|+c2 log|x|

pairs (i, α) ∈ [2w] · [2w] such that K(x||⟨i⟩||α) ≤ Kt(x) + w + c1(logw).

Proof. Immediate by Lemma 3.7. □

Next, we will use the following claim to show that Π is in the set R.

Claim 5.6. For every w : N→ N, and every efficient code Enc : {0, 1}n → [2w(n)]2
w(n)

, there exists
a polynomial q such that the following holds for every x ∈ {0, 1}∗ with w(|x|) ≥ 2, and every t ∈ N.
Let Π a program of length Kt(x) such that U(Π, 1t) = x. Then for n = |x|+cK and every i ∈ [2w(n)],

Kq(t,|x|)(x||⟨i⟩||Enc(Π||0n−|Π|)i) ≤ Kt(x) + w(n) + c1 logw(n)

for some universal constant c1.

16

Proof. Let Π′ be the program that given input (Π, i), first simulates U(Π) to get an output x, and
then computes n = |x|+ cK and Enc(Π||0n−|Π|)i. Let q ∈ poly be the bound of the running time of
Π′. Then, using Fact 2.3, Kq(t,|x|)(x||⟨i⟩||Enc(Π)i) ≤ Kt(x) + w(n) + 4 logw(n). □

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. We will show that on input (x, 1t, 1s
′
) Algorithm 5.4 returns a program Π

such that U(Π, 1t) = x, if s′ = Kt(x). The theorem then follows by considering the algorithm that
enumerate over all possible values of s′ < s.

Let c1 and c2 be the constants promised by Claim 5.6 and Claim 5.5 respectively. Let Enc : {0, 1}n →
[2w(n)]m(n) be an efficient (p, ℓ, L) list recoverable code, for w(n) = 2(d + c1 + c2) log n + 10,
p(n) = 1/10, ℓ(n) = 2(c1+c2) logw(n)+(d+c2) logn+5, L(n) ∈ poly and m(n) = 2w(n). By Theorem 5.2
such a code exists as

ℓ(n) · n/m(n) = n · 2(c1+c2) logw(n)−(d+2c1+c2) logn−5 ≤ 2−5 ≤ (1− p)2

for any large enough n. Finally, let q be the polynomial promised by Claim 5.6 with respect to the
code Enc.

We next show that when using Enc as the code in Algorithm 5.4, Algorithm 5.4 outputs a
minimal program Π that produces the input x. By the list recoverable property of Enc, it is enough
to show that Π||0n−s is in the list outputted by Rec. It thus enough to show that (1) Enc(Π)i ∈ Si
for every i ∈ [m(n)] and (2), Si = Ŝi for at least (1− 1/10)m(n) indexes i ∈ [m(n)].

(1) follows immediately by Claim 5.6 and the definition of Si. For (2), by Claim 5.5 the total
size

∑
i|Si| of the sets Si is at most

2w+(c1+c2) log 2w+d logn+c2 logn = m(n) · ℓ(n) · 2−5.

By Markov, we get that there are at most 2−5 ·m(n) < 1/10 ·m(n) indexes i such that |Si| > ℓ(n).
For all other i’s it holds that Si = Ŝi , which concludes the proof. □

5.1 Decision-to-Search on Average

Definition 5.7. For a function t : N → N, we say that an algorithm A computes Kt if for every
x ∈ {0, 1}∗, A(x) = Kt(|x|)(x). We say that A computes Kt with error ϵ if for every n ∈ N,
Prx←{0,1}n

[
A(x) = Kt(|x|)(x)

]
≥ 1− ϵ(n).

We say that A solves search-Kt with error ϵ if A outputs a program Π such that U(Π, 1t(|x|)) = x
and |Π| = Kt(|x|)(x) with probability 1− ϵ(n) over x← {0, 1}n.

We prove the following theorem.

Theorem 5.8. For every p, t ∈ poly there exists p̂ ∈ poly and t′ ∈ poly, and an efficient oracle-
aided algorithm F such that the following holds. Let A be an that computes Kt′ with error 1/p̂.
Then FA solves search-Kt with error 1/p.

Moreover, on input x ∈ {0, 1}n, F makes only queries of the form x||y with y ∈ O(log n).

To prove Theorem 5.8, we will use the following theorem, which follows by the same proof as
Theorem 5.3.

17

Theorem 5.9. For every d ∈ N and t ∈ poly, there exists t′ ∈ poly and an oracle-aided algorithm
F such that the following holds. Let A be an oracle that computes Kt′. Then FA solves search-Kt

on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.
Moreover, on input x, F runs in time poly(|x|), and only queries A on inputs x||y with |y| =

r(|x|, t) ≤ log poly(|x|, t).

Proof. Follows by a similar proof to Theorem 5.3, together with the observation that MINKT can
be decided on inputs (x, 1t(|x|), 1s) using oracle that computes Kt. □

Proof of Theorem 5.8. We start with the assumption that the oracle A is deterministic, and later
show how to eliminate this assumption. Fix p and t, and let t′ and F be the polynomial and
algorithm promised by Theorem 5.3. Let r be the parameters of F as defined in Theorem 5.3, and
let d be such that |x|d > 2p(|x|) for every x with |x| > 2. Finally, let p̂(|x|) = 8p(|x|) · 2r(|x|,t(|x|)),
and let A be an oracle the computes Kt′ with error 1/p̂.

Let Â be an oracle that computes Kt′ correctly on every input. By Definition 5.7, on a random

x← {0, 1}n A and Â agree with probability 1− 1/p̂(x). By Theorem 5.3, F Â solves search-Kt on

every input with cdt(|x|)(x) ≤ d log|x|, and thus, by Fact 2.6, F Â solves search-Kt with error at
most 1/|x|d ≤ 1/(2p(|x|)). It is thus enough to show that

Prx←{0,1}n
[
FA(x) = F Â(x)

]
≥ 1− 1/2p(|x|). (1)

To see Equation (1), let Bn be the set of all x ∈ {0, 1}n such that FA(x) ̸= F Â(x). By definition
of B, on every input x ∈ Bn, there must be some query x||y that F makes to the oracle, such that

A(x||y) ̸= Â(x||y). Let Rn ⊆ {0, 1}n be the set of all x’s, such that there exists y ∈ {0, 1}r(n,t(n))
with A(x||y) ̸= Â(x||y). We get that |Rn| ≥ |Bn|, and,

1/p̂(n+ r(n, t(n))) ≥ Pr
z←{0,1}n+r(n,t(n))

[
A(z) ̸= Â(z)

]
≥ |Rn| · 2−n−r(n,t(n)).

Thus, we get that

|Bn| ≤ 2n+r(n,t(n))+1 · 1/p̂(n+ r(n, t(n))) ≤ 2n+r(n,t(n))+1 · 1/p̂(n),

which implies that |Bn|/2n ≤ 1/4p(n), which concludes the claim.
To deal with a randomized oracle A, we observe that by standard amplification, it is enough

to replace Equation (1), with Prx←{0,1}n
[
Pr

[
FA(x) ̸= F Â(x)

]
> 1/2

]
≤ 1/4p(|x|). We can thus let

Bn be the set of all x ∈ {0, 1}n such that Pr
[
FA(x) ̸= F Â(x)

]
> 1/2, and Rn ⊆ {0, 1}n be the

set of all x’s, such that with probability larger than 1/2 (over the randomness of A) there exists

y ∈ {0, 1}r(n,t(n)) with A(x||y) ̸= Â(x||y). We get that We get that |Rn| ≥ |Bn|, and,

1/p̂(n+ r(n, t(n))) ≥ Pr
z←{0,1}n+r(n,t(n))

[
A(z) ̸= Â(z)

]
≥ 1/2 · |Rn| · 2−n−r(n,t(n)),

and the claim follows as in the deterministic case. □

We get the following two corollaries. The first was already proven in [LP20].

Corollary 5.10 (reproving [LP20]). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the
following holds:

18

• Assume that there is a poly-time (resp. poly size) algorithm that computes Kt′ with error 1/p̂.
Then there exists poly-time (resp. poly-size) algorithm that solves search-Kt with error 1/p.

• Assume that there is an algorithm that computes Kt′(x) with error 1/p̂ in time (resp. size) 2o(|x|).
Then there exists an algorithm that solves search-Kt with error 1/p in time (resp. size) 2o(|x|).

The second shows that the same holds also in the exponential regime.

Corollary 5.11. For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the following holds:
Assume that there exists a constant α > 0 and an algorithm that computes Kt′ with error 1/p̂ in
time (resp. size) 2α·|x|poly(|x|). Then there exists an algorithm that solves search-Kt with error
1/p in time (resp. size) 2α·|x|poly(|x|).

6 Decision-to-Search for GapMINKT using List Recoverable Codes

In this part we show that Theorem 5.3 holds even when we start with an oracle that solves
GapMINKT instead of MINKT.

Theorem 6.1. For every τ ∈ poly and d ∈ N, there exists an oracle-aided algorithm F such that
the following holds. Let A be an oracle that decides GapτMINKT. Then FA solves search-MINKT
on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.

Moreover, on input (x, 1t, 1s), F runs in time poly(|x|, t, s), and only queries A on inputs
(x||y, 1t′(|x|,t), 1s′) with |y| = ℓ(|x|, t) ≤ log poly(|x|, t), t′ ∈ poly and s′(|x|, t) ≤ s+ log poly(|x|, t).

To prove Theorem 6.1 we will show that Algorithm 5.4 with different parameters works. When
the oracle A only decides GapMINKT, the size of the sets Si can be larger. The first claim shows
that it still cannot be too large.

Claim 6.2. There exists a constant c2 ∈ N such that the following holds for every c1, d, w ∈ N, and
every τ, q ∈ poly. Let x ∈ {0, 1}∗ such that cdt(x) ≤ d log|x|. Then there are at most

M = 2w+(c1+c2)(log 2w)+d log|x|+c2 log|x|)+log τ(q(t,|x|),|x|)

pairs (i, α) ∈ [2w] · [2w] such that K(x||⟨i⟩||α) ≤ Kt(x) + w + c1(logw) + log τ(q(t, |x|), |x|).

Proof. Immediate by Lemma 3.7. □

To get non-trivial bound from Claim 6.2, we will need to choose out code alphabet size, 2w,
to be larger than τ(q(t, |x|), |x|). Since the polynomial q is going to be dependent on the code
evaluation time, we will need to use codes where the running time of the code does not grow too
fast with the alphabet size. By Theorem 5.2, there is a family of list recoverable codes, such that we
can choose the size of the output alphabet Σ, and the running time of the encoder is only depends
on log|Σ|. This property is used in the next claim, that shows that Π||0n−s is in the set R.

Claim 6.3. There exists a constant c1 and polynomial q′, such that the following holds for every
w : N → N, every x ∈ {0, 1}∗ with |x| ≥ 16, and every t ∈ N. Let Π a program of length Kt(x)

such that U(Π, 1t) = x, and let Enc : {0, 1}n → [2w(n)]2
w(n)

be the code from Theorem 5.2. Then for
n = |x|+ cK and for every i ∈ [2w(n)],

Kq′(t,|x|,w(n))(x||⟨i⟩||Enc(Π||0n−|Π|)i) ≤ Kt(x) + w(n) + c1 logw(n).

19

Proof. The proof is similar to the proof of Claim 5.6, using the onservation that the running time
of Π′ is polynomial in t, |x| and w(n) by the choice of Enc. □

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. We will show that on input (x, 1t, 1s
′
) Algorithm 5.4 returns a program Π

such that U(Π, 1t) = x, if s′ = Kt(x). The theorem then follows by considering the algorithm that
enumerate over all possible values of s′ < s.

Let c1 and q′ be the constant and polynomial promised by Claim 6.3, and let c2 be the constant
from Claim 6.2. Let c0 be such that for w(n) = c0⌈log n+ t(n)⌉,

w(|x|+ cK) ≥ 2((c1 + c2) logw(|x|+ cK) + (d+ c2) log|x|+ log τ(q′(t(|x|), n, w(|x|+ cK)), |x|+ 2w(|x|+ cK))),
(2)

and, 2w(|x|+cK)/3 > |x|. Finally, let q(t, |x|) = q′(t, |x|, w).
The proof now continues similar to the proof of Theorem 5.3.

□

References

[AFVMV06] Luis Antunes, Lance Fortnow, Dieter Van Melkebeek, and N Variyam Vinodchan-
dran. “Computational depth: concept and applications”. In: Theoretical Computer
Science 354.3 (2006), pp. 391–404 (cit. on pp. 5, 9).

[Cha69] Gregory J. Chaitin. “On the Simplicity and Speed of Programs for Computing Infi-
nite Sets of Natural Numbers”. In: J. ACM 16.3 (1969), pp. 407–422 (cit. on p. 2).

[GI01] Venkatesan Guruswami and Piotr Indyk. “Expander-based constructions of effi-
ciently decodable codes”. In: Proceedings 42nd IEEE Symposium on Foundations
of Computer Science. IEEE. 2001, pp. 658–667 (cit. on pp. 7, 15).

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. “Essential coding theory”.
In: Draft available at http://www. cse. buffalo. edu/atri/courses/coding-theory/book
2.1 (2012) (cit. on pp. 8, 15).

[GS98] Venkatesan Guruswami and Madhu Sudan. “Improved decoding of Reed-Solomon
and algebraic-geometric codes”. In: Proceedings 39th Annual Symposium on Foun-
dations of Computer Science (Cat. No. 98CB36280). IEEE. 1998, pp. 28–37 (cit. on
pp. 7, 8, 15).

[Har83] J. Hartmanis. “Generalized Kolmogorov complexity and the structure of feasible
computations”. In: 24th Annual Symposium on Foundations of Computer Science
(sfcs 1983). 1983, pp. 439–445. doi: 10.1109/SFCS.1983.21 (cit. on p. 2).

[HILL99] Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A pseu-
dorandom generator from any one-way function”. In: SIAM Journal on Computing
(1999), pp. 1364–1396 (cit. on p. 4).

[Hir18] Shuichi Hirahara. “Non-black-box worst-case to average-case reductions within NP”.
In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2018, pp. 247–258 (cit. on p. 5).

20

[Hir20] Shuichi Hirahara. “Non-disjoint promise problems from meta-computational view of
pseudorandom generator constructions”. In: 35th Computational Complexity Con-
ference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2020 (cit. on
p. 3).

[Hir22] Shuichi Hirahara. “Symmetry of information from meta-complexity”. In: 37th Com-
putational Complexity Conference (CCC 2022). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. 2022 (cit. on p. 4).

[HIW23] Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating Brute Force for Com-
pression Problems. Tech. rep. TR23-171. Electronic Colloquium on Computational
Complexity, 2023 (cit. on pp. 2, 5).

[KC00] Valentine Kabanets and Jin-yi Cai. “Circuit minimization problem”. In: Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23,
2000, Portland, OR, USA. 2000, pp. 73–79 (cit. on p. 2).

[Ko86] Ker-I Ko. “On the Notion of Infinite Pseudorandom Sequences”. In: Theor. Comput.
Sci. 48.3 (1986), pp. 9–33. doi: 10.1016/0304-3975(86)90081-2. url: https:
//doi.org/10.1016/0304-3975(86)90081-2 (cit. on pp. 2, 3).

[Kol68] A. N. Kolmogorov. “Three approaches to the quantitative definition of information”.
In: International Journal of Computer Mathematics 2.1-4 (1968), pp. 157–168 (cit.
on p. 2).

[Lev73] Leonid A. Levin. “Universal’ny̆ıe pereborny̆ıezadachi (Universal search problems : in
Russian)”. In: Problemy Peredachi Informatsii (1973), pp. 265–266 (cit. on p. 3).

[LP20] Yanyi Liu and Rafael Pass. “On one-way functions and Kolmogorov complexity”. In:
2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).
IEEE. 2020, pp. 1243–1254 (cit. on pp. 2–4, 18).

[MP24] Noam Mazor and Rafael Pass. “The Non-Uniform Perebor Conjecture for Time-
Bounded Kolmogorov Complexity is False”. In: 15th Innovations in Theoretical Com-
puter Science (2024) (cit. on pp. 2, 5).

[RS60] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite fields”.
In: Journal of the society for industrial and applied mathematics 8.2 (1960), pp. 300–
304 (cit. on p. 15).

[Sip83] Michael Sipser. “A Complexity Theoretic Approach to Randomness”. In: Proceed-
ings of the 15th Annual ACM Symposium on Theory of Computing (STOC). 1983,
pp. 330–335 (cit. on p. 2).

[Sol64] R.J. Solomonoff. “A formal theory of inductive inference. Part I”. In: Information
and Control 7.1 (1964), pp. 1 –22. issn: 0019-9958. doi: https://doi.org/10.
1016/S0019-9958(64)90223-2 (cit. on p. 2).

[Tra84] Boris A Trakhtenbrot. “A survey of Russian approaches to perebor (brute-force
searches) algorithms”. In: Annals of the History of Computing 6.4 (1984), pp. 384–
400 (cit. on p. 2).

[Yab59a] Sergey Yablonski. “The algorithmic difficulties of synthesizing minimal switching
circuits”. In: Problemy Kibernetiki 2.1 (1959), pp. 75–121 (cit. on p. 2).

21

[Yab59b] Sergey V Yablonski. “On the impossibility of eliminating perebor in solving some
problems of circuit theory”. In: Doklady Akademii Nauk SSSR 124.1 (1959), pp. 44–
47 (cit. on p. 2).

[Yao82] A. C. Yao. “Protocols for Secure Computations”. In: Annual Symposium on Foun-
dations of Computer Science (FOCS). 1982, pp. 160–164 (cit. on p. 4).

[Zvo] “The complexity of finite objects and the development of the concepts of information
and randomness by means of the theory of algorithms”. In: Russian Mathematical
Surveys 25.6 (1970), p. 83 (cit. on pp. 6, 9).

22

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

